
European Journal of Mathematics (2018) 4:1000–1034
https://doi.org/10.1007/s40879-018-0248-7

RESEARCH ARTICLE

Compactifications of the moduli space of plane quartics
and two lines

Patricio Gallardo1 · Jesus Martinez-Garcia2 ·
Zheng Zhang3

Received: 1 September 2017 / Revised: 8 February 2018 / Accepted: 1 April 2018 /
Published online: 24 April 2018
© The Author(s) 2018

Abstract Westudy themoduli spaceof triples (C, L1, L2) consistingof quartic curves
C and lines L1 and L2. Specifically, we construct and compactify the moduli space in
two ways: via geometric invariant theory (GIT) and by using the period map of certain
lattice polarized K3 surfaces. The GIT construction depends on two parameters t1 and
t2 which correspond to the choice of a linearization. For t1 = t2 = 1 we describe the
GIT moduli explicitly and relate it to the construction via K3 surfaces.
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1 Introduction

The construction of compact moduli spaces with geometric meanings is an important
problem in algebraic geometry. In this article, we discuss the case of the moduli of K3
surfaces of degree 2 obtained as minimal resolutions of double covers of P

2 branched
at a quartic C and two lines L1, L2, for which we give two constructions, one via
Geometric Invariant Theory (GIT) for the plane curves (C, L1, L2) depending on a
choice of two parameters for each of the lines, and one via the period map of K3
surfaces. For a particular choice of parameters, we show that the constructions agree.
Similar examples include [1,2,17,18,22,23,30]. Our interest on this example arose
after the first two authors considered studying the variations of GIT quotients for a
cubic surface and a hyperplane section [12]. The moduli of del Pezzo surfaces of
degree 2 with two anti-canonical sections seems to be closely related to the moduli
of K3 surfaces considered in this article, since del Pezzo surfaces of degree 2 with
canonical singularities can be obtained as double-covers of P

2 branched at a (possibly
singular) quartic curve. Also, a generic global Torelli for certain double covers of these
K3 surfaces (namely, minimal resolutions of bi-double covers of P

2 along a quartic
and four lines, cf. [14, Section 5.4.2]) can be derived using the results in this article
and the methods in [28].

Following the general theory of variations ofGITquotients developed byDolgachev
and Hu [9] and independently by Thaddeus [32], we construct GIT compactifications
M(t1, t2) for the moduli space of triples (C, L1, L2) consisting of a smooth plane
quartic curve C and two labeled lines L1, L2 in Sect. 2. These compactifications
depend on parameters t1, t2 which are the ratio polarizations of the parameter spaces
of quartic and linear homogeneous forms representingC and L1, L2.We generalize the
study in [13] of GIT quotients of pairs (X, H) formed by a hypersurface X of degree
d in P

n+1 and a hyperplane H to tuples (X, H1, . . . , Hk) with several hyperplanes
Hi , considering the relation between the moduli spaces of tuples with labeled and
unlabeled hyperplanes. We then apply the setting to the case at hand, namely plane
quartic curves and two lines. One sees in Lemma 2.9 that the space where the set of
stable points is not empty can be precisely described. Furthermore, given a particular
tuple, we can bound the set of parameters for which it is semistable (cf. Lemma 2.11).

Next we focus on the case when t1 = t2 = 1. The moduli space M(1, 1) can also
be constructed via Hodge theory (cf. Sect. 3). The idea is to consider the K3 surface
S(C,L1,L2) obtained by taking the desingularization of the double cover S(C,L1,L2) ofP

2

branched along the sextic curve C + L1 + L2. Note that generically S(C,L1,L2) admits
nine ordinary double points (coming from the intersection points C ∩ L1, C ∩ L2
and L1 ∩ L2). It follows that the K3 surface S(C,L1,L2) contains nine (−2)-curves
which form a certain configuration. Call the saturated sublattice generated by these
curves M ⊂ Pic(S(C,L1,L2)). Then the K3 surface S(C,L1,L2) is naturally M-polarized
in the sense of Dolgachev [8]. LetM0 ⊂ M(1, 1) be the locus where the sextic curves
C + L1 + L2 have at worst simple singularities (also known as ADE singularities
or Du Val singularities). By associating to the triples (C, L1, L2) the periods of the
M-polarized K3 surfaces S(C,L1,L2) one obtains a period map P fromM0 to a certain
period domain D/�. We shall prove that P is an isomorphism.
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1002 P. Gallardo et al.

Theorem 3.23 Consider the triples (C, L1, L2) consisting of quartic curves C and
lines L1, L2 such that C + L1+ L2 has at worst simple singularities. Let S(C,L1,L2) be
the K3 surface obtained by taking the minimal resolution of the double plane branched
along C + L1 + L2. The map sending (C, L1, L2) to the periods of S(C,L1,L2) extends
to an isomorphism P : M0 → D/�.

The approach is analoguos to the one used by Laza [17]. Roughly speaking, we
first consider the generic case where C is smooth and C + L1 + L2 has simple normal
crossings. Then we compute the (generic) Picard lattice M and the transcendental
lattice T = M⊥

�K3
(see Proposition 3.13), determine the period domainD and choose

a suitable arithmetic group � (cf. Sect. 3.3, N.B. � is not the standard arithmetic group
O∗(T ) used in [8] but an extension of O∗(T )). Finally we extend the construction
to the non-generic case (using the methods and some results of [17]) and apply the
global Torelli theorem and the surjectivity of the period map for K3 surfaces to prove
the theorem (cf. Sects. 3.4 and 3.5).

Note that the period domain D is a type IV Hermitian symmetric domain. The
arithmetic quotients of D admit canonical compactifications called Baily–Borel
compactifications. To compare the GIT compactification and the Baily–Borel com-
pactification we consider a slightly different moduli spaceM∗ (constructed by taking
a quotient of the GIT quotientM(1, 1)) parameterizing triples (C, L , L ′) consisting of
quartic curves C and unlabeled lines L , L ′. In a similar manner, we construct a period
map P′ and prove that P′ is an isomorphism between the locus M∗

0 ⊂ M∗ where
C + L + L ′ has at worst simple singularities and a certain locally symmetric domain
D/�′ (cf. Sect. 3.6). Moreover, we show in Corollary 2.16 thatM∗\M∗

0 is the union
of three points III(1), III(2a), III(2b) and five rational curves II(1), II(2a1), II(2a2),
II(2b), II(3)whose incidence structure is describe in Fig. 1. The quasi-projective vari-
ety M∗

0 ⊂ M∗ has codimension higher than 1 and hence the period map P′ extends
to the GIT compactification M∗. Note also that P′ preserves the natural polarizations
(the polarization of M∗

0 is induced by the polarization of the moduli of plane sex-
tics and the polarization of D/�′ comes from the polarization of moduli of degree
2 K3 surfaces). A proof similar to [21, Theorem 7.6] shows that the extension of P′
induces an isomorphism between the GIT quotientM∗ and the Baily–Borel compacti-
fication (D/�′)∗ (see Sect. 3.7). Some computations and remarks on the Baily–Borel
boundary components are also included in the paper (cf. Sect. 3.8).

Theorem 3.24 The period map P′ : M∗
0 → D/�′ extends to an isomorphism of

projective varieties P′ : M∗ ∼=−→ (D/�′)∗ where (D/�′)∗ denotes the Baily–Borel
compactification of D/�′.

We conclude by the following remarks. The moduli space of quartic triples
(C, L1, L2) is closely related to the moduli space of degree 5 pairs (cf. [17, Defi-
nition 2.1]) consisting of a quintic curve and a line (i.e. given a triple (C, L1, L2) that
we consider, compare it with the pairs (C + L1, L2) and (C + L2, L1)). Motivated
by studying deformations of N16 singularities, Laza [17] has constructed the moduli
space of degree 5 pairs using both the GIT and Hodge theoretic approaches. His work
is an important motivation for us and the prototype of what we do here. Also, the
study of singularities and incidences lines on quartic curves is a classical topic (see
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Fig. 1 Incidence relations
among the boundary
components of the
compactification ofM∗

0 in M∗.
We denote A → B when the
boundary component B is
contained in the closure of the
boundary component A

for example the work of Edge [10,11]) and a classifying space for such pairs may be
related to our GIT compactification.

2 Variations of GIT quotients

In [13] the first two authors introduced a computational framework to construct all GIT
quotients of pairs (X, H) formed by a hypersurface X of degree d and a hyperplane H
in P

n+1. They drew from the general theory of variations of GIT quotients developed
by Dolgachev and Hu [9] and independently by Thaddeus [32]. The motivation was
to construct compact moduli spaces of log pairs (X, D = X ∩ H) where X is Fano
or Calabi–Yau. In this article we need to extend this setting to the case of tuples
(C, L1, L2)whereC is a plane quartic curve and L1, L2 are lines. However, extending
our work in [13] to two hyperplanes entails the same difficulties as for an arbitrary
number of hyperplanes, while the dimension does not play an important role in the
setting. Therefore we will consider the most general setting of a hypersurface in
projective space and k hyperplane sections.

2.1 Variations of GIT quotients for n-dimensional hypersurfaces of degree d
together with k (labeled) hyperplanes

Let R = Rn,d,k be the parameter scheme of tuples (Fd , l1, . . . , lk), where Fd is a
polynomial of degree d and l1, . . . , lk are linear forms in variables (x0, . . . , xn+1),
modulo scalar multiplication. We have

Rn,d,k = P
(
H0(Pn+1,OPn+1(d))

)×P
(
H0(Pn+1,OPn+1(1))

)

× · · · ×P
(
H0(Pn+1,OPn+1(1))

)

∼= P
N ×(Pn+1)k,

where N = (n+1+d
d

) − 1 and natural projections π0 : Rn,d,k → P
N, πi : Rn,d,k →

P
n+1 for i = 1, . . . , k. The natural action of G = SLn+2 in P

n+1 extends to each
of the factors in Rn,d,k and therefore to Rn,d,k itself. The set of G-linearizable line
bundles PicG(R) is isomorphic to Z

n+1. Then a line bundle L ∈ PicG(R), is ample if
and only if a > 0, bi > 0 for i = 1, . . . , k, where
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1004 P. Gallardo et al.

L = O(a, b1, . . . , bk)
..= π∗

0

(
OPN (a)

) k⊗

i=1

π∗
i

(
OPn+1(bi )

) ∈ PicG(R).

The latter is a trivial generalization of [13, Lemma 2.1]. Hence, for L ∼= O(a, b1,
. . . , bk), the GIT quotient is defined as

M(t1, . . . , tk) = M(
t ) = M(
t )n,d,k = Proj
⊕

m�0

H0(R,L⊗m)G,

where ti = bi/a. Next, we explain why it is enough to consider the vector 
t =
(t1, . . . , tk) instead of (a; b1, . . . , bk). Let us introduce some notation.

Given a maximal torus T ∼= C
n+2 ⊂ G, we can choose projective coordinates

(x0, . . . , xn+1) such that T is diagonal in G. Hence, any one-parameter subgroup
λ : C

∗ → T is a diagonal matrix with diagonal entries sri where ri ∈ Z for all i
and

∑n+1
i=0 ri = 0. We say that λ is normalized if r0 � · · · � rn+1 and λ is not

trivial. Any homogeneous polynomial g of degree d can be written as g =∑ I gI x I,

where x I = xd0
0 · · · xdn+1

n+1 , I = (d0, . . . , dn+1) ∈ Z
n+2,

∑n+1
i=0 = d and gI ∈ C. The

support of g is Supp(g) = {x I | gI �= 0}.We have a natural pairing
〈
xd0
0 · · · xdn+1

n+1, λ
〉
..=

∑n+1
i=0 diri , whichwe use to introduce theHilbert–Mumford function for homogeneous

polynomials:

μ(g, λ) ..= min{〈I, λ〉 | x I ∈ Supp(g)}.
Define

μ
t (( f, l1, . . . , lk), λ) ..= μ( f, λ) +
k∑

i=1

tiμ(li , λ),

which is piecewise linear on λ for fixed ( f, l1, . . . , lk). Since the Hilbert–Mumford
function is functorial [25, Definition 2.2, cf. p. 49], we can generalise [13, Lemma
2.2] to show that a tuple ( f, l1, . . . , lk) is (semi-)stable with respect to a polarisation
L = O(a, b1, . . . , bk) if and only if

μL(( f, l1, . . . , lk), λ) = aμ( f, λ) +
k∑

i=1

biμ(li , λ) = aμ
t (( f, l1, . . . , lk), λ)

is negative (respectively, non-positive) for any normalized non-trivial one-parameter
subgroup λ of any maximal torus T of G. Hence the stability of a tuple is independent
of the scaling of L and as such, we may define:

Definition 2.1 Let 
t ∈ (Q�0)
k. The tuple ( f, l1, . . . , lk) is 
t-stable (respectively 
t-

semistable) if μ
t ( f, l1, . . . , lk, λ) < 0 (respectively μ
t ( f, l1, . . . , lk, λ) � 0) for all
non-trivial normalized one-parameter subgroups λ of G. A tuple ( f, l1, . . . , lk) is 
t-
unstable if it is not 
t-semistable. A tuple ( f, l1, . . . , lk) is strictly 
t-semistable if it is

t-semistable but not 
t-stable.
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Notice that the stability of a tuple ( f, l1, . . . , lk) is completely determined by the
support of f and l1, . . . , lk . Moreover, notice that the 
t-stability of a tuple is invari-
ant under the action of G. Hence, we may say that a tuple (X, H1, . . . , Hk) formed
by a hypersurface X ⊂ P

n+1 and hyperplanes Hi ⊂ P
n+1 is 
t-stable (respec-

tively, 
t-semistable) if some (and hence any) tuple of homogeneous polynomials
( f, l1, . . . , lk) defining (X, H1, . . . , Hk) is 
t-stable (respectively, 
t-semistable). A
tuple (X, H1, . . . , Hk) is 
t-unstable if it is not 
t-semistable.

In [13], for fixed torus T in G, we introduced the fundamental set Sn,d of one-
parameter subgroups—a finite set—and we showed that if k = 1 it was sufficient to
consider the one-parameter subgroups in Sn,d for each T to determine the 
t-stability
of any (X, H1). Let us recall the definition—slightly simplified from the original [13,
Definition 3.1]—and extend the result to any k.

Definition 2.2 The fundamental set Sn,d of one-parameter subgroups λ ∈ T consists
of all elements λ = Diag(sr0, . . . , srn+1) where

(r0, . . . , rn+1) = c(γ0, . . . , γn+1) ∈ Z
n+1

satisfying the following:

• γi = αi/βi ∈ Q such that gcd(αi , βi ) = 1 for all i = 0, . . . , n + 1 and c =
lcm(β0, . . . , βn+1).

• 1 = γ0 � γ1 � · · · � γn+1 = − 1 −∑n
i=1 γi .

• (γ0, . . . , γn+1) is the unique solution of a consistent linear system given by n
equations chosen from the following set:

Eq(n, d) ..=
{n+1∑

i=0

δiγi = 0

∣∣∣
∣ δi ∈ Z�0, − d � δi � d for all i and

n+1∑

i=0

δi = 0

}
.

The set Sn,d is finite since there are a finite number of monomials of degree d in n + 2
variables. Observe that Sn,d is independent of the value of k. The following lemma is
a straight forward generalization of [13, Lemma 3.2] which we include here for the
convenience of the reader:

Lemma 2.3 A tuple (X, H1, . . . , Hk) given by equations ( f, l1, . . . , lk) is not 
t-stable
(respectively not 
t-semistable) if and only if there is g ∈ G satisfying

μ
t (X, H) ..=max
λ∈Sn,d

{
μ
t
(
(g· f, g ·l1, . . . , g ·lk), λ

)}
� 0 (respectively > 0).

Moreover Sn,d ⊆ Sn,d+1.

Proof Let (Rns
T )
t be the non-
t-stable loci of R with respect to a maximal torus T , and

let (Rns)
t be the non-
t-stable loci of R.
By [7, p. 137], (Rns)
t = ⋃

Ti ⊂G(Rns
Ti

)
t . Let ( f, l1, . . . , lk) be the equations in
some coordinate system—inducing a maximal torus T ⊂ G—of a non-
t-stable tuple
(X, H1, . . . , Hk). Then, μ
t (( f, l1, . . . , lk), ρ) � 0 for some ρ ∈ T ′ in a maxi-
mal torus T ′ which may be different from T . All the maximal tori are conjugate
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1006 P. Gallardo et al.

to each other in G, and by [7, Exercise 9.2 (i)], we have μ
t (( f, l1, . . . , lk), ρ) =
μ
t (g ·( f, l1, . . . , lk), gρg−1) for all g ∈ G. Hence, there is g0 ∈ G such that
λ ..= g0ρg−1

0 ∈ T is normalized and ( f ′, l ′1, . . . , l ′k) ..= g0 · ( f, l1, . . . , lk) satisfies
μ
t (( f ′, l ′1, . . . , l ′k), λ) � 0. Normalized one-parameter subgroups in the coordinate
system induced by T are the intersection of

∑
ri = 0 and the convex hull of

ri − ri+1 � 0, where i = 0, . . . , n. The restriction of the n + 1 linearly indepen-
dent inequalities in n + 1 variables to

∑
ri = 0 gives a closed convex polyhedral

subset � of dimension n + 1 (in fact, a simplex) in the Q-lattice of characters of
T—isomorphic to the lattice of monomials (in variables x0, . . . , xn+1) tensored by Q,
which in turn is isomorphic to Q

n+2.
Given a fixed ( f, l1, . . . , lk), the function μ
t (( f, l1, . . . , lk),−) : Q

n+2 → Q is
piecewise linear and its critical points—thepoints inQ

n+2 whereμ
t (( f, l1, . . . , lk),−)

fails to be linear—correspond to those monomials x I, x I ′ ∈ Supp( f ) such that
〈x I, λ〉 = 〈x I ′

, λ〉, or equivalently, the points λ ∈ Q
n+2 ∩ � such that 〈x I−I ′

, λ〉 = 0
for some x I , x I ′ ∈ Supp( f ). These points define a hyperplane in Q

n+2 and the
intersection of this hyperplane with � is a simplex �x I,x I ′ of dimension n. As
μ
t (( f, l1, . . . , lk),−) is linear on the complement of �x I,x I ′ , the minimum of
μ
t (( f, l1, . . . , lk),−) is achieved on the boundary, i.e. either on ∂� or on �x I,x I ′
(for some I, I ′), all of which are convex polytopes of dimension n. By finite induc-
tion, we conclude that the minimum of μ
t (( f, l1, . . . , lk),−) is achieved at one of
the vertices of � or �x I,x I ′ , which correspond precisely, up to multiplication by a
constant, to the finite set of one-parameter subgroups in Sn,d . Indeed, observe that if
λ = Diag(sr0, . . . , srn+1) is one such vertex, then 0 = 〈x I−I ′

, λ〉 = ∑n+1
i=0 δiγi for

some δ = (δ0, . . . , δn+1) = I − I ′ where
∑n+1

i=0 = 0 and −d � δi � d. In addition,
observe that we can find one such δ so that 0 = ∑n+1

i=0 δiγi = γi − γi+1, thus giving
the equations determining the maximal facets of �, i.e. those where ri = ri+1. The
lemma follows from the observation that Eq(n, d) ⊂ Eq(n, d + 1). ��
Definition 2.4 The space of GIT stability conditions is

Stab(n, d, k) ..= {
t ∈ (Q�0)
k | there is a 
t-semistable (X, H1, . . . , Hk)

}
.

The space of GIT stability conditions is bounded, as it can be realized as a hyperplane
section of AmpG(R). Since R is a product of vector spaces (and hence a Mori dream
space), Stab(n, d, k) is also a rational polyhedron. It is possible to precisely describe
it and we will do this later for Stab(1, d, 2). Moreover, there is a finite number of
non-isomorphic GIT compactificationsM(
t ) as 
t ∈ Stab(n, d, k) in varies. Therefore
we have a natural division of Stab(n, d, k) into a finite number of disjoint rational
polyhedrons of dimension k called chambers and the intersection of any two-chambers
is a (possibly empty) rational polyhedron of smaller dimension which we will call a
wall [9, Theorem 0.2.3]. The quotientM(
t ) is constant as 
t moves in the interior of a
face or chamber. It is possible to find these walls explicitly by means of Lemma 2.3
(see [13, Theorem 1.1]) for given (n, d, k), since all walls of dimension k − 1 should
be a subset of the finite set of equations
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⎧
⎨

⎩
〈x I, λ〉 +

k∑

j=1

tj 〈xij , λ〉 = 0

∣∣
∣∣

x I is a monomial of degree d,

0 � i j � n + 1, λ ∈ Sn,d

⎫
⎬

⎭
. (1)

Another interesting feature is that the the 
t-stability of tuples (X, H1, . . . , Hk) is
equivalent of the t-stability of reducible GIT hypersurfaces of higher degree. Indeed:

Lemma 2.5 Let 
t = (t1, . . . , tk) = (s1/s′
1, . . . , sk/s′

k) ∈ Q�0 where gcd(si , s′
i ) = 1

for all i = 1, . . . , k. Let I = {i1, . . . , il}, I ′ = {i ′1, . . . , i ′k−l} such that I � I ′ =
{1, . . . , k} and let s0 = lcm

(
s′

i1
, . . . s′

il

)
. Let 
t ′ = (

s0 ti ′1 , . . . , s0 ti ′k−l

)
. A tuple

(X, H1, . . . , Hk) is 
t-(semi)stable if and only if the tuple

((
Xs0 + s0si1

s′
i1

Hi1 + · · · + s0sil

s′
il

Hil

)
, Hi ′1 , . . . , Hi ′k−l

)

is 
t ′-(semi)stable.
In particular, if t1, . . . , tk are natural numbers, (X, H1, . . . , Hk) is 
t-(semi)stable

if and only if X + t1H1 + · · · + tk Hk (semi)stable in the classical GIT sense.

Proof Let λ be a normalized one-parameter subgroup, m be a positive integer and
g =∑ gI x I be a homogeneous polynomial. Let J be such that

〈x J, λ〉 = min
{〈x I, λ〉 | x I ⊂ Supp(g)

}
.

Then, since λ is normalized, m〈x J , λ〉 = min{〈x I, λ〉 : x I ⊂ Supp(gm)}.
Let ( f, l1, . . . , lk) be the equations of (X, H1, . . . , Hk) under some system of

coordinates and let λ be a normalized one-parameter subgroup. Using the above obser-
vation, the lemma follows from:

s0μ
t (( f, l1, . . . , lk), λ) = s0

(
μ( f, λ) +

l∑

j=1

sij

s′
ij

μ(lij , λ) +
k−l∑

j=1

si ′j
s′

i ′j
μ(li ′j , λ)

)

= μ

((
f s0 · l

s0si1/s′
i1

i1
· · · l

s0sil /s′
il

il

)
, λ

)
+ s0

k−l∑

j=1

si ′j
s′

i ′j
μ(li ′j , λ)

= μ 
t ′
((

f s0 · l
s0si1/s′

i1
i1

· · · l
s0sil /s′

il
il

)
, li ′1 , . . . , li ′k−l

)
��

Corollary 2.6 Let 
t = (t1, . . . , tj , 0, . . . , 0) and 
t ′ = (t1, . . . , tj ), j � k. Then a
tuple (X, H1, . . . , Hk) is 
t-semistable if and only if (X, H1, . . . , Hj ) is 
t ′-semistable.

Lemma 2.7 (cf. [12, Corollary 1.2]) If the locus of stable points is not empty, and
d � 3, then

dimM(
t )n,d,k =
(

n + d + 1

d

)
− n2 + (k − 4)n + k − 4.
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Proof From [27, Theorem 2.1], any hypersurface X = { f = 0} where f is a homo-
geneous polynomial of degree d � 3 has dim(Aut( f )) = 0. Hence, for any tuple
p = (X, H1, . . . , HK ) such that X is smooth and X ∩ Hi has simple normal cross-
ings, its stabilizer Gp satisfies

0 � dim(Gp) = dim
(
G X ∩ G H1 ∩ · · · ∩ G Hk

)
� dim(G X ) � dim(Aut( f )) = 0,

where the last equality follows from [27, Theorem 2.1]. The result follows from [7,
Corollary 6.2]:

dim
(
M(
t )n,d,t

) = dim(R) − dim(G) + min
p∈R

dim Gp

=
((

n + 1 + d

d

)
− 1 + k(n + 1)

)
− ((n + 2)2 − 1

)
. ��

Now let us consider the case of the symmetric polarization of Rn,d,k . In order to do
so, observe that the group Sk acts on Rn,d,k by defining the action of h ∈ Sk as

h : ( f, l1, . . . , lk) �→ ( f, lh(1), . . . , lh(k)).

Define R′
n,d,k

..= Rn,d,k/Sk , which parametrizes classes of tuples [( f, l1, . . . , lk)] up
to multiplication by a scalar and permutation of (l1, . . . , lk), i.e. [( f, l1, . . . , lk)] =
[(a0 f, a1lg(1), . . . , aklg(k))] for g ∈ Sk and (a0, . . . , ak) ∈ (C∗)k+1. Hence, we
parameterize the same elements as in Rn,d,k but we forget the ordering of the linear
forms. In particular R′

n,d,k parametrizes pairs [(X, H1, . . . , Hk)] formed by a hyper-

surface X ⊂ P
n+1 of degree d and k unordered hyperplanes. The quotient morphism

π : Rn,d,k → R′
n,d,k is G-equivariant. Let L∗ = O(a, b1, . . . , bk) ∈ Pic(R) such

that (b1/a, . . . , bk/a) = (1, . . . , 1) (i.e. we are considering 
t-stability with respect to

t = 
t∗ ..= (1, . . . , 1)). If the condition


t∗ = (1, . . . , 1) ∈ Stab(n, d, k) (2)

holds, then a tuple ( f, l1, . . . , lk) is t1-(semi)stable if and only if (π( f ), π(l1), . . . ,
π(lk)) is stable with respect to L∗ ..= (π∗(L∗))∨∨ by [25, Theorem 1.1 and p.48].
Hence, it is natural to define the GIT quotient

M∗
n,d,k = Proj

⊕

m�0

H0(R′
n,d,k,L∗⊗m)G, (3)

which is the GIT quotient of unordered tuples (X, H1, · · · , Hk) with respect to the
polarization L∗. We have a commutative diagram
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Rss
n,d,k

π
R

′ss
n,d,k

M(
t∗)n,d,k
π∗

M∗
n,d,k .

We want to determine all the orbits represented inM∗
n,d,k from the orbits represented

inM∗
n,d+l,k−l via M(
t∗)n,d,k .

Choose 1 � j1 < · · · < jl � k and define the G-equivariant morphism
φj1,..., jl : Rn,d,k → Rn,d+l,k−l given by

( f, l1, . . . , lk) �→ ( f · l j1 · · · l jl , l1, . . . , l̂ ji , . . . , lk).

By Lemma 2.5, we have a commutative diagram

Rss
n,d+l,k−l

φj1,..., jl
Rss

n,d,k
π

R
′ss
n,d,k

M(
t∗)n,d+l,k−l

φ j1,..., jl
M(
t∗)n,d,k

π∗
M∗

n,d,k .

Proposition 2.8 Let 1 � j1 < · · · < jl � k and suppose that (2) holds. An
unordered tuple [(X, H1, . . . , Hk)]—where X is a hypersurface of degree d in P

n+1

and H1, . . . , Hk are k unordered hyperplanes—is (semi)stable with respect to L∗ if
and only if

(
X + Hj1+ · · · + Hjl , H1, . . . , Ĥji , . . . , Hk

)

—a pair represented by a tuple in Rn,d+l,k−l—is 
t∗-(semi)stable. Moreover an orbit
O ′ ∈ R

′ss
n,d,k is closed if and only if and only if φj1,..., jl (π

−1(O ′)) is closed. In addition,
an orbit O ∈ Rss

n,d,k is closed if and only if φj1,..., jl (O) is closed.

Proof Since (2) holds, all the spaces in the above diagram are non-empty. As π is
finite, the pair [(X, H1, . . . , Hk)]—represented by the classes of tuples in R′

n,d,k—

is (semi)stable with respect to L∗ if and only if every (X, H1, . . . , Hk) in the class
[(X, H1, · · · , Hk)] is 
t∗-(semi)stable, by [25, Theorem 1.1 and p. 48]. By Lemma 2.5,
(X, H1, . . . , Hk)—represented by tuples in Rn,d,k—is 
t∗-(semi)stable if and only if
(X + Hj1+· · ·+ Hjl , H1, . . . , Ĥji , . . . , Hk)—represented by tuples inR′

n,d+l,k−l—is

t∗-(semi)stable (note that we use the notation 
t∗ for vectors with all entries equal 1,
whether 
t∗ has k or k − l entries). The last statement regarding closed orbits follows
from noting that finite morphisms are closed, and hence φj1,..., jl is closed. ��
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2.2 Symmetric GIT quotient of a quartic curve and two lines

We have seen how to construct GIT quotientsM(t1, t2) ..= M(t1, t2)1,d,2 for (t1, t2) ∈
Stab(t1, t2). In this section we apply our results to the case of quartic plane curves
(d = 4), but let us first show that our setting satisfies condition (2) for arbitrary degree.
Hence, for the rest of the article, we assume that n = 1 and k = 2.

Lemma 2.9 The space of GIT stability conditions is

Stab(1, d, 2) ..=
{
(t1, t2) ∈ R

2
∣∣∣∣
2t1 − t2 − d � 0, 2t2 − t1 − d � 0,

0 � t1, 0 � t2

}
. (4)

In particular, (2) holds.

Proof Let 
t = (t1, t2) be a vector and (C, L1, L2) be a 
t-semistable tuple. By choosing
an appropriate change of coordinates, we may assume

C ..= { p(x0, x1, x2) = 0}, L1
..= {x0 = 0}, L2

..= {l2 = 0}.

Let λ = Diag(s2, s−1, s−1). Then, as t1 � 0, t2 � 0, we have

0 � μ(t1,t2)((p, x0, l2), λ) = μ(p, λ) + 2t1 + t2μ(l2, λ)

� μ(xd
2 , λ) + 2t1 + t2μ(x2, λ) = − d + 2t1 − t2.

Similarly, by taking a change of coordinates such that L1 = {l1 = 0}, L2 = {x0 = 0},
we may show that 0 � − d − t1 + 2t2.

Recall that the space of GIT stability conditions is convex [9, 0.2.1]. Hence it is
enough to show that all the vertices of the right hand side in (4) have a semistable tuple
(C, L1, L2) (and hence, they belong to Stab(1, d, 2)). These vertices correspond to
the points (0, 0), (d/2, 0), (0, d/2) and (d, d). By Corollary 2.6, a tuple (C, L1, L2)

is (d/2, 0)-semistable if and only if (C, L1) is (d/2)-semistable, but the space of GIT
t-stability conditions for plane curves and one hyperplane is [0, d/2] [13, Theorem
1.1]. A mirrored argument applies for the stability point (0, d/2).

Hence, we only need to exhibit a tuple (C, L1, L2) which is (d, d)-semistable. Let
(C, L1, L2) = ({xd

0 = 0}, {x1 = 0}, {x2 = 0}). By Lemma 2.5, such a pair is t-
semistable if and only if the reducible curve C + d L1 + d L2 (defined by the equation
xd
0 xd

1 xd
2 = 0) of degree 3d is semistable in the usual GIT sense. The latter follows

from the centroid criterion [13, Lemma 1.5]. ��
There are two natural problems regarding the subdivision of Stab(n, d, k) into cham-
bers and walls. One of them is to determine the walls and the solution is usually
rather heavy computationally and geometrically speaking (see [12,13] for the case
(n, d, k) = (2, 3, 1) and for a partial answer when k = 1 and (n, d) are arbitrary).
Given a tuple (X, H1, · · · , Hk) the second problem consists on determining for which
chambers and walls this tuple is (semi)stable. This problem may be easier to solve,
especially when the answer to the first problem is known. The problem is simpler when
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k = 1, as then Stab(n, d, 1) is one-dimensional has a natural order. Nevertheless, we
can give a partial answer when n = 1, k = 2 and d is arbitrary.

Definition 2.10 Let Stab(C, L1, L2) ⊂ Stab(1, d, 2) be the loci such that (t1, t2) ∈
Stab(C, L1, L2) if and only (C, L1, L2) is t-semistable.

Lemma 2.11 Suppose that C is a plane curve of degree d whose only singular point
p ∈ C is a linearly semi-quasihomogeneous singularity [17, Definition 2.21] with
respect to the weights 
w = (w1, w2), w1 � w2 > 0. Suppose further that C + L1+ L2
have simple normal crossings in C\{p}. Let f be the localization of the equation of
f at p and 
w( f ) be its weighted degree with respect to 
w.

(a) Suppose that p /∈ L1 ∪ L2. Then

Stab(C, L1, L2) ⊆
{

(t1, t2) ∈ Stab(1, d, 2)

∣∣∣∣ t1 + t2 − 3 
w( f )

w1 + w2
+ d � 0

}
.

(b) Suppose that p /∈ L2 and p ∈ L1 ∩ C. Then

Stab(C, L1, L2) ⊆
{

(t1, t2) ∈ Stab(1, d, 2)

∣∣∣∣

t2 − t1
2w2 − w1

w1 + w2
− 3 
w( fC )

w1 + w2
+ d � 0

}
.

Proof We may choose a coordinate system such that [0 :0 :1] is the singular point of
C . We consider the one-parameter subgroup λ = (2w1 − w2, 2w2 − w1,−w1 − w2)

which is normalized, as w1 � w2.

(a) The first statement is equivalent to show that if (t1, t2) ∈ Stab(1, d, 2) and t1 +
t2 − 3 
w( f )/(w1 + w2) + d < 0, then the triple is (t1, t2)-unstable.

Let l1(x0, x1) + x2 and l2(x0, x1) + x2 be the equations of the lines L1 and L2,
respectively, where l1, l2 are linear forms. We have

μt1,t2((C, L1, L2), λ) = μ(C, λ) + t1μ(L1, λ) + t2μ(L2, λ)

= min
{
3w1i0 + 3w2i1 | xi0

0 xi1
1 ∈ Supp( f )

}

+ (d + t1 + t2)(−w1 − w2)

= 3 
w( f ) − (w1 + w2)(d + t1 + t2)

= − (w1 + w2)

(
t1 + t2 − 3 
w( fC )

w1 + w2
+ d

)
.

Therefore, μt1,t2(C, L1, L2, λ) > 0 and the triple is destabilized by λ.

(b) The lines L1 and L2 have equation l1(x0, x1) and l2(x0, x1)+x2, respectively,where
l1, l2 are linear forms. If t2 − t1(2w2 − w1)/(w1 + w2)− 3 
w( fC )/(w1 + w2)+ d, as
w1 � w2, we have
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μt1,t2((C, L1, L2), λ) = μ(C, λ) + ti μ(Li , λ) + tk μ(Lk, λ)

� 3 
w( fC ) + d(−w1 − w2) + t1(2w2 − w1) + t2(−w1 − w2)

= − (w1 + w2)

(
t2 − t1

2w2 − w1

w1 + w2
− 3 
w( fC )

w1 + w2
+ d

)
> 0. ��

For the rest of the paper we consider tuples (C, L1, L2) formed by a plane quartic C
and two lines L1, L2 ⊂ P

2. The following result will come useful:

Lemma 2.12 (Shah [30, Section 2], cf. [19, Theorem 1.3]) Let Z be a plane sextic,
and X the double cover of P

2 branched along Z. Then X has semi-log canonical
singularities if and only if Z is semistable and the closure of the orbit of Z does not
contain the orbit of the triple conic. In particular, a sextic plane curve with simple
singularities is stable.

Lemma 2.13 Let 
t = (1, 1) and (C, L1, L2) be a tuple such that the sextic C+L1+L2
is reduced. Then, (C, L1, L2) is 
t-(semi)stable if and only if the double cover X of
P
2 branched at C + L1 + L2 has at worst simple singularities (respectively simple

elliptic or cuspidal singularities).

Proof The sextic Z ..= C + L1 + L2 = { f ·l1 · l2 = 0} (where f is a quartic curve
and l1, l2 are distinct linear forms not in the support of f ) cannot degenerate to a
triple conic and it is reduced by hypothesis. By Lemma 2.12, Z is a GIT-semistable
sextic curve if and only if X has slc singularities. The surface X is normal, as Z is
reduced [6, Proposition 0.1.1]. In particular X ..= {w2 = f · l1 · l2} ⊂ P(1, 1, 1, 3) has
hypersurface log canonical singularities away from the singular point (0 :0 :0 :1) /∈ X ,
and by the classification of such singularities in [20, Table 1], they can only consist of
either simple, simple elliptic or cuspidal singularities. If Z has only simple singularities
then Z is GIT-stable by Lemma 2.12. Now suppose Z is GIT-stable and reduced. By
[19, Theorem 1.3 and Remark 1.4] a GIT-semistable plane sextic curve has either
simple singularities or it is in the open orbit of a sextic containing a double conic or a
triple conic in its support, contradicting the fact that Z is reduced. Hence Z has only
simple singularities. The proof follows from Lemma 2.5. ��
Remark 2.14 Although, we will not discuss other polarizations. It is worth to notice
that for 
t = (ε, ε) the stability is very similar to the one of plane quartics. In particular,
if C is a semistable quartic and L1, L2 are lines in general position. Then, the triple
(C, L1, L2) is stable.

Let Rs

t and Rss


t be the set of 
t-stable and 
t-semistable tuples ( f, l1, l2), respectively.
Let

R0
..=
{

( f, l1, l2)

∣∣∣∣
the sextic { f · l1 · l2 = 0}

is reduced and has at worst simple singularities

}
.

Let 
t = (1, 1). By Lemma 2.12, R0 ⊆ Rs

t ⊆ Rss


t . Let M0
..= R0/PGL3,

Ms(1, 1) ..= Rs
(1,1)/PGL3 and recall that M(1, 1) = Rss

(1,1)/PGL3. Then M0 ⊆
Ms(1, 1) ⊂ M(1, 1). We are interested in describing the compactification of M0
byM(1, 1). We use the notation in [19].
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Lemma 2.15 The quotient M(1, 1) is the compactification of M0 by three points
and six rational curves. The three points correspond to the closed orbit of tuples
(C, L1, L2) defined up to projective equivalence by the following tuples:

[III(1)] : C = {(x0x2 − x21 )
2 = 0}, L1 = {x0 = 0}, L2 = {x2 = 0};

[III(2a)] : C = {x21 x22 = 0}, L1 = {x0 = 0}, L2 = {x0 = 0};
[III(2b)] : C = {x0x21 x2 = 0}, L1 = {x0 = 0}, L2 = {x2 = 0}.

The six rational curves correspond to the closed orbit of tuples (C, L1, L2) defined
up to projective equivalence by the following cases:

[II(1)] : C = {(x0x2 − x21 )(x0x2 − ax21 ) = 0}, L1 = {x0 = 0}, L2 = {x2 = 0};
[II(2a1)] : C = {x1x2(x2 − x1)(x2 − ax1) = 0}, L1 = {x0 = 0}, L2 = {x0 = 0};
[II(2a2)] : C = {x0x2(x2 − x1)(x2 − ax1) = 0}, L1 = {x0 = 0}, L2 = {x1 = 0};
[II(2b1)] : C = {x20 (x2 − x1)(x2 − ax1) = 0}, L1 = {x1 = 0}, L2 = {x2 = 0};
[II(2b2)] : C = {x0x2(x2 − x1)(x2 − ax1) = 0}, L1 = {x1 = 0}, L2 = {x0 = 0};

[II(3)] : C = {(x0x2 − x21 )2 = 0}, L1 = {x1 = 0},
L2 = {ax0 − (a + 1)x1 + x2 = 0}.

where a �= 0, 1,∞.

Proof Let R
′′ = R1,5,1, parametrising tuples (g, l1) up to multiplication by scalar

where g is a quintic homogeneous polynomial and l1 is a linear form. As we have seen
in Proposition 2.8, we have a morphism φ2 : Rss → R

′′ss defined by φ2 : ( f, l1, l2) �→
( f · l1, l2), and an orbit O of Rss is closed if and only if the orbit φ2(O) of R

′′ss is
closed.

Hence the points which compactifyM0 intoM(1, 1) corresponding to closed orbits
of Rss\R0 are mapped via φ2 onto points in φ2(M(1, 1))\φ2(M0) corresponding to
closed orbits in φ2(R

ss)\φ2(R0). Hence we just need to identify closed orbits in
M(1)1,5,1 ∩ Im(φ2). Our result is a straight forward identification of these orbits in
the classification ofM(1)1,5,1 in [17, Proposition 3.22] (Fig. 2). ��
Lemma 2.15, together with Proposition 2.8 gives us the following compactification
which will be of interest for the next section:

Corollary 2.16 Let M∗ ..= M∗
1,4,2 be the GIT compactification of a quartic plane

curve and two unlabeled lines and letM∗
0 ⊂ M∗ be the open loci parametrizing triples

(C, L , L ′) such that C +L +L ′ is reduced and has at worst simple singularities. Then,
M∗\M∗

0 is the union of three points, III(1), III(2a), III(2b), and five rational curves,
II(1), II(2a1), II(2a2), II(2b), II(3), which are obtained as images—via the natural
morphism π∗ : M(1, 1) → M∗—of points and rational curves described in Lemma
2.15, as follows:

• the points III(1), III(2a), III(2b) are the images of the points III(1), III(2a),

III(2b), and
• the rational curves II(1), II(2a1), II(2a2), II(2b), II(3) are the images of the ratio-

nal curves II(1), II(2a1), II(2a2), II(2b1), II(3).
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III(1) II(3) II(1)

II(2a1) II(2b1) II(2b2)

III(2b) III(2a)II(2a2)

Fig. 2 Triples parametrized by M(1, 1)\M0. The dotted and dashed lines represent the lines L1 and L2,
respectively (see Lemma 2.15)

Moreover, the boundary components II(2a2) and II(2b2) in M(1, 1) are mapped onto
the same boundary component II(2a2) in M(1).

3 Moduli of quartic plane curves and two lines via K3 surfaces

3.1 On K3 surfaces and lattices

By a lattice we mean a finite dimensional free Z-module L together with a symmetric
bilinear form (−,−). The basic invariants of a lattice are its rank and signature. A
lattice is even if (x, x) ∈ 2Z for every x ∈ L . The direct sum L1⊕ L2 of two lattices
L1 and L2 is always assumed to be orthogonal, which will be denoted by L1 ⊥ L2.
For a lattice M ⊂ L , M⊥

L denotes the orthogonal complement of M in L . Given two
lattices L and L ′ and a lattice embedding L ↪→ L ′, we call it a primitive embedding if
L ′/L is torsion free.

We shall use the following lattices: the (negative definite) root lattices An (n � 1),
Dm (m � 4), Er (r = 6, 7, 8) and the hyperbolic plane U . Given a lattice L , L(n)
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denotes the lattice with the same underlying Z-module as L but with the bilinear form
multiplied by n.

Notation 3.1 Given any even lattice L , we define:

• L∗ ..= {y ∈ LQ
..= L ⊗Q | (x, y) ∈ Z for all x ∈ L }, the dual lattice;

• AL
..= L∗/L , the discriminant group endowed with the induced quadratic form

qL : AL → Q/2Z;
• disc(L): the determinant of the Gram matrix (i.e. the intersection matrix) with
respect to an arbitrary Z-basis of L;

• O(L): the group of isometries of L;
• O(qL): the automorphisms of AL that preserve the quadratic form qL ;
• O−(L): the group of isometries of L of spinor norm 1 (see [29, Section 3.6]);
• Õ(L): the group of isometries of L that induce the identity on AL ;
• O∗(L) = O−(L) ∩ Õ(L);
• �(L): the set of roots of L (δ ∈ L is a root if (δ, δ) = −2);
• W (L): the Weyl group, i.e. the group of isometries generated by reflections sδ in
root δ, where sδ(x) = x − 2 (x,δ)

(δ,δ)
δ.

For a surface X , the intersection form gives a natural lattice structure on the torsion-
free part of H2(X, Z) and on the Néron–Severi group NS(X). For a K3 surface S,
we have H1(S,OS) = 0, and hence Pic(S) ∼= NS(S). Both H2(S, Z) and Pic(S) are
torsion-free and the natural map c1 : Pic(S) → H2(S, Z) is a primitive embedding.
Given any K3 surface S, H2(S, Z) is isomorphic to �K3

..= E2
8 ⊥ U 3, the unique

even unimodular lattice of signature (3, 19). We shall use O(S),�(S), W (S), etc. to
denote the corresponding objects of the lattice Pic(S). We also denote by �+(S) and
V +(S) the set of effective (−2) divisor classes in Pic(S) and the Kähler cone of S
respectively.

In our context, a polarization for a K3 surface is the class of a nef and big divisor
H (and not the most restrictive notion of ample divisor, we follow the terminology in
[17]) and H2 is its degree. More generally there is a notion of lattice polarization. We
shall consider the period map for (lattice) polarized K3 surfaces and use the standard
facts on K3 surfaces: the global Torelli theorem and the surjectivity of the period map.
We also need the following theorem (see [24, p. 40] or [17, Theorem 4.8, Proposition
4.9]).

Theorem 3.2 Let H be a nef and big divisor on a K3 surface S. The linear system
|H | has base points if and only if there exists a divisor D such that H · D = 1 and
D2 = 0.

3.2 The K3 surfaces associated to a generic triple

We first consider the K3 surfaces arising as a double cover of P
2 branched at a smooth

quartic curve C and two different lines L1 and L2 such that C + L1 + L2 has simple
normal crossings. We shall show that these K3 surfaces are naturally polarized by a
certain lattice.

Denote by S(C,L1,L2) the double cover of P
2 branched along C + L1 + L2. Let

S(C,L1,L2) be the K3 surface obtained as the minimal resolution of the nine singular
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points of S(C,L1,L2). Let π : S(C,L1,L2) → P
2 be the natural morphism. Note that

π : S(C,L1,L2) → P
2 also factors as the composition of the blow-up of P

2 at the
singularities of C + L1 + L2 and the double cover of the blow-up branched along the
strict transforms of C , L1 and L2 (see [4, Section III.7]).

Let h = π∗OP2(1) be the pullback of the class of a line in P
2. The class h is

a degree 2 polarization of S(C,L1,L2). We assume that C ∩ L1 = {p1, p2, p3, p4},
C ∩ L2 = {q1, q2, q3, q4} and L1 ∩ L2 = {r}. Denote the classes of the exceptional
divisors corresponding to pi , qi , and r by αi , βi and γ respectively (1 � i � 4). Let us
also denote by l ′1 (respectively l ′2) the class of the strict transform of L1 (respectively
L2). Note that the morphism π : S(C,L) → P

2 is given by the class

h = 2l ′1 + α1 + · · · + α4 + γ = 2l ′2 + β1 + · · · + β4 + γ. (5)

It is straightforward to check that (αi , αj ) = (βi , βj ) = −2δi j , (γ, γ ) = −2,
(αi , βj ) = (αi , γ ) = (γ, βj ) = 0 for 1 � i, j � 4. Clearly, we have (l ′1, l ′1) =
(l ′2, l ′2) = −2, (l ′1, αi ) = (l ′2, βj ) = (l ′1, γ ) = (l ′2, γ ) = 1, and (l ′1, βj ) = (l ′2, αi ) = 0
for 1 � i, j � 4.

Consider the sublattice of the Picard lattice of S(C,L1,L2) generated by the curve
classes γ, l ′1, α1, . . . , α4, l ′2, β1, . . . , β4. Let

ξ ..= 2l ′1 + α1 + · · · + α4 = 2l ′2 + β1 + · · · + β4.

It follows from (5) that {γ, l ′1, α1, α2, α3, l ′2, β1, β2, β3, ξ } forms a Z-basis of the
sublattice. The Gram matrix with respect to this basis is computed as follows:

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

−2 1 0 0 0 1 0 0 0 2
1 −2 1 1 1 0 0 0 0 0
0 1 −2 0 0 0 0 0 0 0
0 1 0 −2 0 0 0 0 0 0
0 1 0 0 −2 0 0 0 0 0
1 0 0 0 0 −2 1 1 1 0
0 0 0 0 0 1 −2 0 0 0
0 0 0 0 0 1 0 −2 0 0
0 0 0 0 0 1 0 0 −2 0
2 0 0 0 0 0 0 0 0 0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

.

Notation 3.3 Let M be the abstract lattice of rank 10 spanned by an ordered basis

{γ, l ′1, α1, α2, α3, l ′2, β1, β2, β3, ξ }

with the intersection form given by the above Gram matrix, which we will call G M .
Notice that M is an even lattice. If S(C,L1,L2) is a K3 surface obtained as above
from a smooth quartic C and two lines L1, L2 such that C + L1 + L2 has simple
normal crossings, then there is a natural lattice embedding j : M ↪→ Pic(S(C,L1,L2))

as described before.
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We set h = γ + ξ . Observe that j (h) is linearly equivalent to the pullback of a line
in P

2 via π and therefore, it is a base point free polarization. In particular, we have
(h, h) = 2, (h, l ′1) = (h, l ′2) = 1, and (h, αi ) = (h, βj ) = 0 for 1 � i, j � 3. We also
let α4 = ξ − 2l ′1 − α1 − α2 − α3 and β4 = ξ − 2l ′2 − β1 − β2 − β3.

Let us compute the discriminant group AM and the quadratic form qM : AM →
Q/2Z.

Lemma 3.4 The discriminant group AM = M∗/M is isomorphic to (Z/2Z)⊕6.

Proof Let us denote by α∗
i ∈ M∗ (respectively β∗

j , γ
∗, ξ∗, l ′∗1 , l ′∗2 ∈ M∗) the dual

element of αi ∈ M (respectively βj , γ, ξ, l ′1, l ′2 ∈ M , for 1 � i, j � 3). Recall that
α∗

i is defined to be the unique element of M∗ such that (α∗
i , αi ) = 1 and the pairing

of α∗
i with any other element of the basis {γ, l ′1, α1, α2, α3, l ′2, β1, β2, β3, ξ } is 0. We

define l ′∗1 , l ′∗2 , β∗
j , γ

∗ and ξ∗ in a similar way. The coefficients of the dual elements
γ ∗, l ′∗1 , α∗

1 , α
∗
2 , α

∗
3 , l ′∗2 , β∗

1 , β∗
2 , β∗

3 , ξ∗ (with respect to the basis {γ, l ′1, α1, α2, α3, l ′2,
β1, β2, β3, ξ }) can be read from the rows or columns of the inverse matrix G−1

M of the
Gram matrix G M of M :

G−1
M =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

0 0 0 0 0 0 0 0 0 1
2

0 −2 −1 −1 −1 0 0 0 0 1

0 −1 −1 − 1
2 − 1

2 0 0 0 0 1
2

0 −1 − 1
2 −1 − 1

2 0 0 0 0 1
2

0 −1 − 1
2 − 1

2 −1 0 0 0 0 1
2

0 0 0 0 0 −2 −1 −1 −1 1

0 0 0 0 0 −1 −1 − 1
2 − 1

2
1
2

0 0 0 0 0 −1 − 1
2 −1 − 1

2
1
2

0 0 0 0 0 −1 − 1
2 − 1

2 −1 1
2

1
2 1 1

2
1
2

1
2 1 1

2
1
2

1
2 − 1

2

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

.

For instance, l ′∗2 = − 2l2 − β1 − β2 − β3 − ξ , where we identify each element of
M with its image in M∗. By abuse of notation, we also use α∗

i , β∗
j , γ

∗, ξ∗ to denote
the corresponding elements in AM = M∗/M . Observe that l ′∗1 = l ′∗2 ≡ 0 ∈ AM . It
is straightforward to verify that AM can be generated by {γ ∗, α∗

1 , α
∗
2 , β

∗
1 , β∗

2 , ξ∗} and
hence AM is isomorphic to (Z/2Z)⊕6. Indeed, this follows from observing from the
columns of G−1

M that α∗
3 = γ ∗ + α∗

1 + α∗
2 ∈ AM and β∗

3 = γ ∗ + β∗
1 + β∗

2 ∈ AM . ��
Remark 3.5 We derive a formula for the quadratic form qM : AM → Q/2Z:
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1018 P. Gallardo et al.

qM
(
aγ ∗ + bα∗

1 + cα∗
2 + dβ∗

1 + eβ∗
2 + f ξ∗)

≡ b2 + c2 + bc + d2 + e2 + de + (a + b + c + d + e) f − 1

2
f 2 ∈ Q/2Z.

Proposition 3.6 Let S be a K3 surface. If j : M ↪→ Pic(S) is a lattice embedding
such that j (h) is a base point free polarization and j (l ′1), j (l ′2), j (αi ), and j (βj )

(1 � i, j � 3) all represent irreducible curves, then j is a primitive embedding.

Proof Assume that j is not primitive. Then the embedding j must factor through the
saturation Sat(M) of M which is a non-trivial even overlattice of M : M � Sat(M) ↪→
Pic(S). By [26, Proposition 1.4.1], there is a bijection between even overlattices of M
and isotropic subgroups of AM = M∗/M (which are generated by isotropic elements,
i.e. v ∈ AM such that qM (v) = 0). Using Lemma 3.4 and Remark 3.5, it is easy to
classify the isotropic elements of AM . As α∗

1 +α∗
2 +γ ∗ = α∗

3 and β∗
1 +β∗

2 +γ ∗ = β∗
3

in AM , there are only three cases to consider. We drop the embedding j in the rest of
the proof.

Case 1. The isotropic element is γ ∗. From the columns of G−1
M we see that γ ∗ = ξ/2 ∈

AM . Hence, we have ξ = 2x for some x ∈ Pic(S). But then (x, x) = 1
2(ξ, ξ) = 0 and

(h, x) = 1
2(h, ξ) = 1 which would imply that h is not base point free by Theorem 3.2.

Case 2. The isotropic element is α∗
i + β∗

j where 1 � i, j � 3. Let us take α∗
1 + β∗

1 for
example. The other cases are similar. Note thatα∗

1+β∗
1 = −α2/2−α3/2−β2/2−β3/2

in AM . We have α2 + α3 + β2 + β3 = 2y for some y ∈ Pic(S). Because S is a K3
surface and (y, y) = −2, either y or −y is effective. Note that l ′1, l ′2, αi and βj

(1 � i, j � 3) are irreducible curves (by the assumption), h is nef and (2h + l ′1, l ′1) =
0. It follows that 2h + l ′1 is nef. Since (2h + l ′1, y) = 1, y is effective. Because
(y, α2) = (y, α3) = (y, β2) = (y, β3) = −1, we know α2, α3, β2 and β3 are in the
support of y. Write y = mα2 + nα3 + kβ2 + lβ3 + D = (α2 +α3 +β2 +β3)/2 where
D is an effective divisor, α2, α3, β2, β3 �⊂ Supp(D) and m, n, k, l � 1. But then we
have a contradiction

1 = (y, 2h + l ′1) � m + n � 2.

Case 3. The isotropic element is α∗
i +β∗

j +γ ∗ where 1 � i, j � 3. Take α∗
1 +β∗

1 +γ ∗
for example. Since α∗

1 + β∗
1 + γ ∗ = α2/2 + α3/2 + β2/2 + β3/2 + ξ/2 in AM ,

there exists an element z of Pic(S) such that 2z = α2 + α3 + β2 + β3 + ξ . Because
S is a K3 surface, (z, z) = −2 and (z, h) = 1, the class z represents an effective
divisor. By the assumption l ′1, l ′2, αi and βj (1 � i, j � 3) represent irreducible
curves. Note that (z, α2) = (z, α3) = (z, β2) = (z, β3) = −1 < 0. Let us write
z = mα2 + nα3 + kβ2 + lβ3 + D, where D is effective, α2, α3, β2, β3 �⊂ Supp(D)

and m, n, k, l > 0. Then we have

2D = (1 − 2m)α2 + (1 − 2n)α3 + (1 − 2k)β2 + (1 − 2l)β3

which implies that (D, l ′1) < 0 and (D, l ′2) < 0. Now we write

z = mα2 + nα3 + kβ2 + lβ3 + sl ′1 + tl ′2 + D′
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where D′ is effective, α2, α3, β2, β3, l ′1, l ′2 �⊂ Supp(D) and m, n, k, l, s, t � 1. But
this is impossible: 2 � s + t � (z, h) = 1. ��
Corollary 3.7 Let C be a smooth plane quartic curve and L1, L2 two distinct lines
such that C + L1 + L2 has simple normal crossings and let j : M ↪→ Pic(S(C,L1,L2))

be the lattice embedding given in Notation 3.3. Then j is a primitive embedding.

The proof of Proposition 3.6 can easily be adapted to proof the following lemma.

Lemma 3.8 Let S be a K3 surface and j : M ↪→ Pic(S) be a lattice embedding. If
none of j (ξ), j (αi +αi ′ +βj +βj ′) or j (αi +αi ′ +βj +βj ′ + ξ) (1 � i, i ′, j, j ′ � 3)
is divisible by 2 in Pic(S), then the embedding j is primitive.

Proposition 3.9 Assume that S is a K3 surface such that Pic(S) is isomorphic to
the lattice M. Then S is the double cover of P

2 branched over a reducible curve
C + L1 + L2 where C is a smooth plane quartic, L1, L2 are lines and C + L1 + L2
has simple normal crossings.

Proof By assumption there exist h, γ, l ′1, α1, . . . , α4, l ′2, β1, . . . , β4 ∈ Pic(S) satisfy-
ing the numerical conditions in Notation 3.3. Without loss of generality, we assume
that h is nef (this can be achieved by acting by ±W (S)). Then l ′1 and l ′2 are both
effective (as (l ′i , l ′i ) = −2, (h, l ′i ) = 1). We further assume that αi , βj (1 � i, j � 4)
and γ are effective (apply sαi or sβj or sγ if necessary).

As h is nef and (h, h) = 2 > 0, h is a polarization of degree 2. We will show that h
is base point free by reductio ad absurdum. By Theorem 3.2, there exists a divisor D
such that (D, D) = 0 and (h, D) = 1. Note that this is a numerical condition. Write
D as a linear combination of γ, l ′1, α1, . . . , α3, l ′2, β1, . . . , β3 and ξ , with coefficients
c1, . . . , c10. Let S(Q,L ,L ′) be the K3 surface associated to a smooth quartic curve Q
and two lines L , L ′ such that Q + L + L ′ has simple normal crossings. Find the
curve classes corresponding to γ, l ′1, α1, . . . , α3, l ′2, β1, . . . , β3, ξ (as what we did
at the beginning of this subsection) and consider their linear combination D′ with
coefficients c1, . . . , c10, the same values as in the expression for D. Then, both D and
D′ satisfy the same numerical conditions in S (respectively S(Q,L ,L ′)) with respect to
the divisor class h = γ + ξ . Again, by Theorem 3.2 the pull-back h of ∼ OP2(1) in
S(Q,L ,L ′) has base points, which gives a contradiction. So the linear system of h defines
a degree two map π : S → P

2. Since S is a K3 surface of degree 2, the branching
locus must be a sextic curve B.

Consider h′ = 3h + l ′1 + l ′2. Note that (h′, h′) > 0 and (h′, h) > 0. We can write
any effective divisor as

D = a0l ′1 + a1α1 + · · · + a4α4 + b0l ′2 + b1β1 + · · · + b4β4 + cγ, (6)

where ai , bi , c ∈ Z, where 0 � i � 4. Let ki = a0/2 − ai , li = b0/2 − bi where
1 � i � 4. It follows that
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(D, h) = a0 + b0,

(D, l ′1) = c − 2a0 +
4∑

i=1

ai , (D, l ′2) = c − 2b0 +
4∑

i=1

bi ,

(D, D) = − 2

( 4∑

i=1

k2i +
4∑

i=1

l2i

)
+ 2c(a0 + b0 − c).

(7)

Let D ∈ �(S) as in (6). Then (D, D) = −2 implies that

c2 +
4∑

i=1

(
k2i + l2i

) = 1 + c(a0 + b0). (8)

First note that when a0 + b0 = (D, h) = 0, then (8) gives that either c = ±1
and D = ±γ or c = 0, and all coefficients in {k1, . . . , k4, l1, . . . , l4} but one
equal 0 and D ∈ {±α1, . . . ,±α4,±β1, . . . ,±β4}. In particular, 〈h〉⊥M ∩ �(S) =
{±γ,±α1, . . . ,±α4,±β1, . . . ,±β4}. If D ∈ �+(S) ∩ 〈h〉⊥M , then (D, h) =
a0 + b0 = 0 which in turn implies that (h′, D) = (l ′1 + l ′2, D) > 0.

Now suppose that D ∈ �+(S) and (h, D) > 0. Then (7) implies that a0 + b0 > 0
and (8) gives c � 0. Then, by the arithmetic-geometric mean inequality and (8), we
get

(h′, D) = a0 + · · · + a4 − 2a0 + 2b0 + · · · b4 + 2c

= 3a0 + 3b0 + 2c −
4∑

i=1

(ki + li )

� (3(a0 + b0) + 2c) − 2
√
2
√
1 + c(a0 + b0 − c) > 0,

where the latter inequality follows from observing that the first summand is positive
and

(3a0 + 3b0 + 2c)2 − (2√
2
√
1 + c(a0 + b0 − c)

)2

= 9(a0 + b0)
2 + 12c2 + 4c(a0 + b0) − 8 � 1 > 0.

Hence (h′, D) > 0 for all D ∈ �+(S).Moreover, if D ⊂ S is rational and D /∈ �+(S),
then π∗(D) �= 0 and (h′, D) = (π∗(h), π∗(D)) = deg(π∗(D)) > 0. Hence, by [15,
Corollary 8.1.7], h′ is ample.

Because (h′, l ′1) = 1, the class l ′1 is represented by an irreducible curve. Similarly,
l ′2, αi and βj (1 � i, j � 3) all correspond to irreducible curves. It follows that
the irreducible rational curves α1, . . . , α4, β1, . . . , β4 are contracted by π to ordinary
double points of the sextic B. Let L ′

1 (respectively L ′
2) be the unique irreducible curve

in S corresponding to the class l ′1 (respectively l ′2) and set L1 = π(L ′
1) (respectively

L2 = π(L ′
2)). Since (l ′1, h) = 1, the projection formula implies that L1 is a line.

Moreover, the line L1 has to pass through four ordinary double points of the branched
curve B since (l ′1, α1) = · · · = (l ′1, α4) = 1. Similarly, L2 is also a line passing
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through four different ordinary double points of B. (Note that both L1 and L2 pass
through the singularity of B corresponding to γ .) By Bezout’s theorem, the two lines
L1 and L2 are both components of B (otherwise we have contradictions: (L1, B) =
(l ′1, π∗(B)) �

∑
pi ∈B∩L1

mult pi(B) � 4 ·2 > 6 and analogously for L2). ��
Corollary 3.10 For a sufficiently general triple (C, L1, L2) (i.e. outside the union of
a countable number of proper subvarieties of the moduli space), the Picard lattice
Pic(S(C,L1,L2)) coincides with M via the embedding j .

Proof The argument in [16, Corollary 6.19] works here. Alternatively, let L1 and L2
be given by linear forms l1 and l2, respectively, and consider the elliptic fibration
S(C,L1,L2) → P

1 defined by the function π∗(l1/ l2). If (C, L1, L2) is sufficiently gen-
eral, then the pencil of lines generated by L1 and L2 only consists of lines intersecting
C normally or lines tangent to C at a point. As a result, the elliptic fibration contains
two reducible singular fibers of type I ∗

0 (i.e. with 5 components) and 12 singular fibers
of type I1 (i.e. with one nodal component), where we follow Kodaira’s notation as
in [4, Section V.7], [15, Section 11.1.3]. Note that the fibration admits a 2-section γ .
Consider the associated Jacobian fibration J (S(C,L1,L2))) → P

1 (see for example [15,
Section 11.4]). By the Shioda–Tate formula [15, Corollaries 11.3.4 and 11.4.7], the
K3 surface S(C,L1,L2) has Picard number 10 which equals the rank of M . Moreover,
we have [15, Section 11, (4.5)]:

disc
(
Pic(S(C,L1,L2))

) = 22 ·disc(Pic(J (S(C,L1,L2)))
) = 64.

It is easy to compute that the Gram matrix G M has determinant (−64). The propo-
sition then follows from the following standard fact on lattices (which implies
[Pic(S(C,L1,L2)):M] = 1):

disc(M) = disc
(
Pic(S(C,L1,L2))

) · [Pic(S(C,L1,L2)):M]2.

As M ↪→ (Pic(S(C,L1,L2)) and they have the same rank and discriminant, then M ∼=
(Pic(S(C,L1,L2)). ��
Now let us consider the case when C has at worst simple singularities not contained in
L1 + L2 and C + L1 + L2 has simple normal crossings away from the singularities of
C . We still use S(C,L1,L2) to denote the K3 surface obtained as a minimal resolution
of the double cover of P

2 along C + L1 + L2. The rank 10 lattice M is the same as
in Notation 3.3.

Lemma 3.11 If C has at worst simple singularities not contained in L1 + L2 and
C + L1 + L2 has simple normal crossings away from the singularities of C, then there
exists a primitive embedding j : M ↪→ Pic(S(C,L1,L2)) such that j (h) is a base point
free degree two polarization.

Proof Thanks to the transversal intersection, we define the embedding j as in the
generic case. In particular, the morphism π : S(C,L1,L2) → P

2 is defined by j (h). The
embedding j is primitive by Proposition 3.6. ��
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3.3 M-polarized K3 surfaces and the period map

In this subsection let us compute the (generic) Picard lattice M and the transcendental
lattice T . Then we shall determine the period domain D and define a period map for
generic triples (C, L1, L2) via the periods of M-polarized K3 surfaces S(C,L1,L2).

Definition 3.12 Let M be the lattice defined in Notation 3.3. An M-polarized K3
surface is a pair (S, j) such that j : M ↪→ Pic(S) is a primitive lattice embedding.
The embedding j is called the M-polarization of S. We will simply say that S is an
M-polarized K3 surface when no confusion about j is likely.

We now determine the lattice M and show that it admits a unique primitive embedding
into the K3 lattice �K3.

Proposition 3.13 Let M be the lattice defined in Notation3.3. Then M is isomorphic to
the lattice U (2) ⊥ A2

1 ⊥ D6 and admits a unique primitive embedding (up to isometry)
M ↪→ �K3 into the K3 lattice �K3. The orthogonal complement T ..= M⊥

�K3
with

respect to the embedding is isometric to U ⊥ U (2) ⊥ A2
1 ⊥ D6.

Proof By [26, Corollary 1.13.3] the lattice M is uniquely determined by its invariants
which can be easily computed from the Gram matrix G M (see also Lemma 3.4 and
Remark 3.5).

• M has rank 10 and signature (1, 9).
• The Gram matrix G M has determinant (−64).
• The discriminant group is AM ∼= (Z/2Z)⊕6 with quadratic form qM = u ⊕w1

2,1

⊕w1
2,1⊕w−1

2,1⊕w−1
2,1, where u, w1

2,1 and w−1
2,1 are the discriminant forms associ-

ated to U (2), E7 and A1 respectively (cf. [5, Section 1.5 and Appendix A] and
references therein). Note that w1

2,1⊕w1
2,1 is isomorphic to the discriminant form

of D6.

By [26, Theorem 1.14.4] the lattice M admits a unique primitive embedding into�K3.
The claim on the orthogonal complement T follows from [26, Proposition 1.6.1]. ��
Remark 3.14 Note that both M and T are even indefinite 2-elementary lattices (a
lattice L is 2-elementary if L∗/L ∼= (Z/2Z)k for some k). One could also invoke
Nikulin’s classification [26, Theorem 3.6.2] of such lattices to prove the previous
proposition. Moreover, M and T are orthogonal to each other in a unimodular lattice
and hence (AM , qM ) ∼= (AT ,−qT ), so O(qM ) ∼= O(qT ).

The moduli space of M-polarized K3 surfaces is a quotientD/� for a certain Hermi-
tian symmetric domain D of type IV and some arithmetic group � (see [8]). Fix the
(unique) embedding M ↪→ �K3 and define

D = {ω ∈ P(�K3⊗C) | (ω, ω) = 0, (ω, ω) > 0, ω ⊥ M
}
0 (9)

to be one of the two connected components. Note that D can also be identified with

D ∼= {ω ∈ P(T ⊗C) | (ω, ω) = 0, (ω, ω) > 0
}
0. (10)
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To specify the moduli of M-polarized K3 surfaces, one also needs to determine the
arithmetic group�. In the standard situation considered in [8] it is required that the M-
polarization is pointwise fixed by the arithmetic group and one takes � to be O∗(T ).
In our geometric context the choice is different. Specifically, the permutations among
α1, . . . , α4 and amongβ1, . . . , β4 are allowed.Observe that at themomentwe view the
lines L1 and L2 as labeled lines, distinguishing the tuples (C, L1, L2) and (C, L2, L1)

and we do not consider the isometry of M induced by flipping the two lines.
Let L be an even lattice. Recall that any g ∈ O(L) naturally induces g∗ ∈ O(L∗)

by g∗ϕ : v �→ ϕ(g−1v) (which further defines an automorphism of AL preserving qL ,
therefore giving a natural homomorphism rL : O(L) → O(qL)).

Lemma 3.15 The homomorphisms rM : O(M) → O(qM ) and rT : O(T ) → O(qT )

are both surjective.

Proof The lemma follows from Lemma 3.4 and [26, Theorem 1.14.2]. ��
In particular, we have O(M) � O(qM ) ∼= O(qT ) � O(T ). By [26, Theorem 1.6.1,
Corollary 1.5.2], an automorphism gM ∈ O(M) can be extended to an automorphism
of �K3 if and only if rM (gM ) ∈ Im(rT ). In our case, any automorphism gM ∈ O(M)

can be extended to an element in O(�K3).

Lemma 3.16 Let gM (respectively gT ) be an automorphism of M (respectively T ). If
rM (gM ) = rT (gT ), then gM can be lifted to g ∈ O(�K3) with g|T = gT . The same
statement holds for gT .

Proof The proof is similar to that for [15, Proposition 14.2.6]. Take any x = xM +
xT ∈ �K3 with xM ∈ M∗ and xT ∈ T ∗. View �K3 as an overlattice of M ⊥ T .
The corresponding isotropic subgroup (cf. [26, Section 1.4]) of AM⊥T ∼= AM ⊕ AT

is �K3/(M ⊥ T ). Since x ∈ �K3, x M + xT is contained in �K3/(M ⊥ T ) (where
x M denotes the corresponding element of xM in AM and similarly for xT ). Consider
gM (xM )+gT (xT ) ∈ M∗⊕T ∗. Note that the image of gM (xM )+gT (xT ) under themap
M∗⊕T ∗ → AM⊥T ∼= AM ⊕ AT is rM (gM )(x M ) + rT (gT )(xT ). Recall that AM and
AT are identified via the natural projections AM

∼← �K3/(M ⊥ T )
∼→ AT . Because

rM (gM ) = rT (gT ), rM (gM )(x M ) + rT (gT )(xT ) is contained in �K3/(M ⊥ T ). In
other words, we have gM (xM ) + gT (xT ) ∈ �K3. ��
Let �α ⊂ O(M) (respectively �β ⊂ O(M)) be the subgroup which permutes
{α1, . . . , α4} (respectively the subgroup which permutes {β1, . . . , β4}). We seek auto-
morphisms of T which can be extended to automorphisms of �K3 whose restrictions
to M belong to �α or �β . We observe that there is a natural inclusion �α×�β ↪→
O(M).

Lemma 3.17 The composition �α×�β ↪→ O(M) � O(qM ) is injective.

Proof First let us describe the automorphisms of AM induced by the transpositions
in �α and �β . We consider �α and the case of �β is analogous. The image of the
transposition (αiα

′
i ) (with 1 � i �= i ′ � 3) defines the element rM ((αiα

′
i )) in O(qM )

given by α∗
i �→ α∗

i ′ , α
∗
i ′ �→ α∗

i , leaving γ ∗, α∗
i ′′ (i

′′ ∈ {1, 2, 3}\{i, i ′}), β∗
j (1 � j � 3)

and ξ∗ invariant.
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The automorphism of AM induced by the transposition (α1α4) between α1 and α4
is given by

α∗
2 �→ α∗

3 + γ ∗ ≡ α∗
1 + α∗

2 , α∗
3 �→ α∗

2 + γ ∗ ≡ α∗
1 + α∗

3 , ξ∗ �→ ξ∗ + α∗
1 ,

and γ ∗, α∗
1 , β

∗
j (1 � j � 3) are invariant by this action. The case of transpositions

(α2α4) and (α3α4) is analogous. As it is well-known, the transpositions generate �α

and �β . It is easy to compute the image of �α×�β in O(qM ) using the previous
descriptions.

Let gα ∈ �α and gβ ∈ �β . Now we describe how to univocally recover (gα, gβ) ∈
�α×�β from the induced action g on AM . In particular, this will show that the
composed map �α×�β → O(qM ) is injective. Consider g(ξ∗). Because qM (ξ∗) ≡
−1/2 ∈ Q/2Z, the induced action g sends ξ∗ to an element v∗ satisfying qM (v∗) ≡
−1/2. By Remark 3.5 such elements are ξ∗, ξ∗ + α∗

i , ξ∗ + β∗
j and ξ∗ + α∗

i + β∗
j

(1 � i, j � 3).

• If g(ξ∗) = ξ∗, then gα (respectively gβ ) fixesα4 (respectivelyβ4) by the description
of the permutations above and gα (respectively gβ ) can be recovered from the action
of g on the set {α∗

1 , α
∗
2 , α

∗
3} (respectively {β∗

1 , β∗
2 , β∗

3 }).
• If g(ξ∗) = ξ∗ + α∗

i (1 � i � 3), then gα maps α4 to αi and gβ fixes β4. Then
gα (respectively gβ ) is determined by the action of g on the set {ξ∗ + α∗

1 , ξ
∗ +

α∗
2 , ξ

∗ + α∗
3 , ξ

∗} (respectively {β∗
1 , β∗

2 , β∗
3 }).

• If g(ξ∗) = ξ∗ + β∗
j (1 � j � 3), then gβ maps β4 to βj and gα fixes α4.

Then gα (respectively gβ ) is determined by the action of g on the set {α∗
1 , α

∗
2 , α

∗
3}

(respectively {ξ∗ + β∗
1 , ξ∗ + β∗

2 , ξ∗ + β∗
3 , ξ∗}).

• If g(ξ∗) = ξ∗ + α∗
i + β∗

j (1 � i, j � 3), then gα maps α4 to αi and gβ maps
β4 to βj . Then gα (respectively gβ ) can be recovered by the action of g on the set
{ξ∗ + α∗

1 + β∗
j , ξ

∗ + α∗
2 + β∗

j , ξ
∗ + α∗

3 + β∗
j , ξ

∗ + β∗
j } (respectively {ξ∗ + β∗

1 +
α∗

i , ξ∗ + β∗
2 + α∗

i , ξ∗ + β∗
3 + α∗

i , ξ∗ + α∗
i }). ��

By abuse of notation, we also use �α×�β to denote its image in O(qT ) ∼= O(qM ).

There exists a natural exact sequence 1 → Õ(T ) → O(T )
rT−→ O(qT ) → 1 which

also induces 1 → O∗(T ) → O−(T ) → O(qT ) → 1. We define � ⊂ O−(T ) ⊂
O(T ) as the following extension:

1 → O∗(T ) → � → (�α×�β) → 1.

By Lemmas 3.16 and 3.17, the group � fixes M but may permute the elements
α1, . . . , α4 (respectively β1, . . . , β4). Note that O∗(T ) is a normal subgroup of �

and �/O∗(T ) = �α×�β . Also, � and O(T ) are commensurable and hence � is an
arithmetic group. There is a natural action of� onD (see the description ofD in (10)).

Recall that M0 ⊂ M(1, 1) is the moduli space of triples (C, L1, L2) consisting of
a quartic curve C and (labeled) lines L1, L2 such that C + L1+ L2 has at worst simple
singularities.

Proposition 3.18 The period map P that associates to a (generic) triple (C, L1, L2)

the periods of the K3 surface S(C,L1,L2) defines a birational map P : M0 ��� D/�.
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Proof Let U be an open subset of M0 parameterizing triples (C, L1, L2) with C
smooth quartic curves and L1, L2 two (labeled) lines such thatC +L1+L2 has simple
normal crossings. Set �4 to be the permutation group of four elements and note that
�α

∼= �β
∼= �4. Let Ũ be the (�4×�4)-cover of U that parametrizes quintuples

(C, L1, L2, σ1, σ2) where σk : {1, 2, 3, 4} → C ∩ Lk , k = 1, 2, is a labeling of the
intersection points of C ∩ Lk . Note that the monodromy group acts as the permutation
group �4 on the four points of intersection C ∩ Lk . By Corollary 3.7, σ1 and σ2
determine an M-polarization j of the K3 surface S(C,L1,L2). Therefore there is a
well-defined map

P̃ : Ũ → D/O∗(T ).

By the global Torelli theorem and the surjectivity of the period map for K3 surfaces
(see also Proposition 3.9), the map P̃ is a birational morphism. The group �4×�4
acts naturally on both Ũ and D/O∗(T ) as � is an extension of �4×�4 and O∗(T ).
Essentially, the actions are induced by the permutation of the labeling of the intersec-
tion points C ∩ Lk (k = 0, 1). It follows that P̃ is (�4×�4)-equivariant and descends
to the birational map P : M0 ��� D/� (see also Lemmas 3.16 and 3.17). ��

3.4 M-polarization for non-generic intersections

We will show in this section that the birational map P : M0 ��� D/� in Proposition
3.18 extends to a birational morphism P : M0 → D/�. To do this, we need to extend
the construction of M-polarization j : M ↪→ Pic(S(C,L1,L2)) to the non-generic triples
(C, L1, L2) and show that the construction fits in families. The idea is to use the
normalized lattice polarization (cf. [17, Definition 4.24]) for degree 5 pairs constructed
in [17, Section 4.2.3]. A degree d pair (D, L) consists of a degree d plane curve D
and a line L ⊂ P

2 (see [17, Definition 2.1]). Given a triple (C, L1, L2) of a quartic
curve C and two different lines L1 and L2, one can construct a degree 5 pair in
two ways: (C + L2, L1) or (C + L1, L2). We follow the notation of the previous
subsections, especiallyNotation 3.3.Wewill determine the images of γ, l ′1, α1, . . . , α4
(respectively γ, l ′2, β1, . . . , β4) using the degree 5 pair (C + L2, L1) (respectively
(C + L1, L2)).

Let us briefly review the construction of normalized lattice polarization for degree
5 pairs. See [17, Section 4.2.3] for more details. Let (D, L) be a degree 5 pair such that
B ..= D+L has atworst simple singularities. Let S(D,L) be the normal surface obtained
as the double cover of P

2 branched along B. Let S(D,L) be the minimal resolution of
S(D,L), called the K3 surface associated to (D, L). The surface S(D,L) can also be
obtained as the canonical resolution of S(D,L), see [4, Section III.7]. Namely, there
exists a commutative diagram:
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S(D,L)

π ′

S(D,L)

S′ ε
P
2

where S′ is obtained by an inductive process. Start with S−1 = P
2 and B−1 = B =

D + L . Simultaneously blow up all the singular points of B. Let ε0 : S0 → P
2 be

the resulting surface and set B0 to be the strict transform of B together with the
exceptional divisors of ε0 reduced mod 2. Repeat the process for S0 and B0 until the
resulting divisor BN is smooth. Let S′ = SN , B ′ = BN and ε = εN ◦ · · · ◦ε0. Now
take the double cover π ′ : S(D,L) → S′ branched along the smooth locus B ′.

The construction of a normalized lattice polarization for degree 5 pairs is amodifica-
tion of the process of canonical resolution.Wemay choose a labeling of the intersection
points of D and L , which means a surjective map σ : {0, 1, 2, 3, 4} → D ∩ L satis-
fying |σ−1(p)| = multp(D ∩ L) for every p ∈ D ∩ L . As argued in [17, Proposition
4.25], L is blown up exactly 5 times in the desingularization process described above.
The blown-up points can be chosen as the first five steps of the sequence of blow-
ups: S′ → · · · → S0 → P

2, and the labeling determines the order of these first five
blow-ups. Let {pk}4k=0 be the centers of these blow-ups and Ek be the exceptional
divisors. Note that pk ∈ Sk−1 (the image of pk under the contraction to P

2 is a point
of intersection D ∩ L) and Ek is a divisor on Sk for k = 0, . . . , 4. We define the
following divisors:

Dk = (π ′∗◦ε∗
N ◦ · · · ◦ε∗

k+1

)
(Ek)

for 0 � k � 4. The divisor Dk on S(D,L) is Artin’s fundamental cycle (see for example
[4, p. 76]) associated to the simple singularity of the curve Bk−1 at the point pk .

The procedure described above produces five divisors: D0, . . . , D4. One can also
consider the strict transform of L in S′ and take its preimage in S(D,L). This is a
smooth rational curve on the K3 surface and we will denote its corresponding class by
L ′. We summarize the properties of these 6 divisors L ′, D0, . . . , D4 in the following
result. Given families of curves (C, L), we can carry out a simultaneous resolution in
families. As a result the construction above fits well in families, see [17, p. 2141].

Lemma 3.19 For a pair (D, L) and the surface S(D,L) as described above the fol-
lowing statements hold:

(a) the polarization class of S(D,L) is (ε◦π ′)∗OP2(1) = 2L ′ + D0 + · · · + D4, and
(b) their intersections are (L ′, L ′) = −2, (Dk, Dk′) = −2δkk′ , (L ′, Dk) = 1 for

0 � k, k′ � 4.

Proof See the proof of [17, Proposition 4.25]. ��
Let us consider triples (C, L1, L2) consisting of a quartic curve C and lines L1, L2
such thatC+L1+L2 hasworst simple singularities. Let S(C,L1,L2) be the double plane
branched along C + L1 + L2 and S(C,L1,L2) be the K3 surface obtained by taking the
minimal resolution of S(C,L1,L2). Letπ : S(C,L1,L2) → P

2 be the natural morphism. To
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define a lattice embedding j : M ↪→ Pic(S(C,L1,L2)), one needs to specify the images
of γ, l ′1, α1, . . . , α4, l ′2, β1, . . . , β4 so that the intersection form is preserved. There is
a compatibility condition induced by 2l ′1 + α1 + . . . + α4 = 2l ′2 + β1 + · · · + β4.
Recall that h = ξ + γ = 2l ′1 + α1 + . . . + α4 + γ = 2l ′2 + β1 + · · · + β4 + γ . We
also require that j (h) is the class of the base point free polarization π∗OP2(1).

Given a triple (C, L1, L2), one has two associated degree 5 pairs: (C + L2, L1) and
(C + L1, L2), which induce the same K3 surface S(D,L), constructed as above. Let
us fix two labelings σ1 : {0, 1, 2, 3, 4} → C ∩ L1 and σ2 : {0, 1, 2, 3, 4} → C ∩ L2
such that σ1(0) = σ2(0) = L1∩ L2. Every degree 5 pair produces six divisors as
described above. For the pair (C + L2, L1) (respectively (C + L1, L2)), we denote
the 6 divisors by L ′

1, R0, . . . , R4 (respectively L ′
2, T0, . . . , T4). Note that π∗OP2(1) =

2L ′
1 + R0 + . . . + R4 = 2L ′

2 + T0 + · · · + T4. We define j : M ↪→ Pic(S(C,L1,L2)) as
follows:

• j (γ ) = R0 = T0 (by our choice of the labelings, both R0 and T0 are the funda-
mental cycle associated to the singularity of C + L1 + L2 at the point L1 ∩ L2);

• j (l ′1) = L ′
1 and j (l ′2) = L ′

2;• j (αi ) = Ri and j (βj ) = Tj for 1 � i, j � 4.

After the first blow-up ε0, the strict transforms of the two lines L1 and L2 are disjoint
and hence, we have (Ri , Tj ) = 0 for 1 � i, j � 4. Using Lemma 3.19, it is straight-
forward to verify that j is a well-defined lattice embedding. The embedding j also
satisfies the following geometric properties and fits well in families (cf. [17, Section
4.2.3], especially the last paragraph on p.2141).

• j (h) is the class of the base point free polarization π∗OP2(1).
• j (l ′1) and j (l ′2) are the classes of irreducible rational curves.• j (γ ), j (α1), . . . , j (α4) (respectively j (γ ), j (β1), . . . , j (β4)) are classes of effec-
tive divisors which are contracted by π to the points of the intersection C ∩ L1
(respectively C ∩ L2). In particular, j (γ ) is contracted to the point L1 ∩ L2.

To conclude that j is an M-polarization we also need the following lemma.

Lemma 3.20 The lattice embedding j : M ↪→ Pic(S(C,L1,L2)) is primitive.

Proof This follows from a case by case analysis. Specifically, we check the conditions
of Lemma 3.8 as in the proof of Proposition 3.6. ��
Proposition 3.21 The birational map in Proposition 3.18 extends to a morphism
P : M0 → D/�. Moreover, the map P is injective.

Proof Given a triple (C, L1, L2) consisting of a quartic curve C and lines L1, L2
such that C + L1 + L2 has at worst simple singularities, we consider the M-polarized
K3 surface (S(C,L1,L2), j) where S(C,L1,L2) is the K3 surface obtained by taking the
minimal resolution of the double plane branched alongC + L1+ L2 and j is the lattice
polarization constructed above. By [8], the M-polarized K3 surface (S(C,L1,L2), j)

corresponds to a point inD/O∗(T ). The polarization j depends only on (C, L1, L2),
the ordering of C ∩ L1 and the ordering of C ∩ L2, and it is compatible with the action
of �/O∗(T ) = �4×�4. Consequently, we can associate to every triple (C, L1, L2)
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a point in D/�. In other words, we have a well-defined morphism P : M0 → D/�

extending the birational map in Proposition 3.18.
Choose a point ω ∈ D/� (more precisely, ω is a �-orbit) which corresponds to an

M-polarization K3 surface S(C,L1,L2). Lemma 3.16 allows us to extend an element
of � to an isometry of the K3 lattice �K3. The global Torelli theorem for K3 sur-
faces implies that the period ω determines the isomorphism class of the K3 surface
S(C+L1+L2). By our construction the classes h, l ′1 and l ′2 are fixed by �. It follows
that the period point ω uniquely expresses the K3 surface as a double cover of P

2

and determines two line components of the branched locus. Now we conclude that ω
determines uniquely the triple (C, L1, L2). ��

3.5 Surjectivity of the period map

We will show in this section that the period map P : M0 → D/� is surjective. Given
the general result of surjectivity of period maps for (lattice) polarized K3, one has to
establish that any K3 surface carrying an M-polarization is of type S(C,L1,L2).

Proposition 3.22 Let S be a K3 surface such that there exists a primitive embed-
ding j : M ↪→ Pic(S). Then there exists a plane quartic curve C and two different
lines L1, L2 ⊂ P

2 such that S ∼= S(C,L1,L2) and C + L1 + L2 has at worst simple
singularities.

Proof We apply [17, Proposition 4.31] (see also [17, Lemmas 4.27, 4.28, 4.30]).
The idea is to consider the primitive sublattices M1 and M2 of M generated by
l ′1, γ, α1, . . . , α4 and l ′2, γ, β1, . . . , β4 respectively. Both of the sublattices have the
following Gram matrix

⎛

⎜
⎜⎜⎜⎜⎜
⎝

−2 1 1 1 1 1
1 −2 0 0 0 0
1 0 −2 0 0 0
1 0 0 −2 0 0
1 0 0 0 −2 0
1 0 0 0 0 −2

⎞

⎟
⎟⎟⎟⎟⎟
⎠

.

Hence they are isomorphic to the lattice considered in [17, Notation 4.11] for degree
5 pairs. In particular, S is both M1-polarized and M2-polarized. Indeed, recall that

h = 2l ′1 + α1 + · · · + α4 + γ = 2l ′2 + β1 + . . . + β4 + γ, (11)

which coincides with Laza’s lattice (for both M1 and M2). Using [17, Proposition
4.31], we find two degree 5 pairs (D1, L1) and (D2, L2) (where, a priori, D1 and D2
may be irreducible) such that D1 + L1 = D2 + L2 has at worst simple singularities.
The twomorphisms S → P

2 associated to each degree 5 pair are both defined by j (h),
and hence they are the same. Because L1 and L2 are both contained in the branch locus
of the map S → P

2, D1 = L2 + C and D2 = L1 + C , where C is a quartic plane
curve such that C + L1 + L2 has at worst simple singularities. ��
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Theorem 3.23 Consider the triples (C, L1, L2) consisting of a quartic curve C and
lines L1, L2 such that C + L1 + L2 has at worst simple singularities. Let S(C,L1,L2)

be the K3 surface obtained by taking the minimal resolution of the double plane
branched along C + L1 + L2. The birational map sending (C, L1, L2) to the periods
of S(C,L1,L2) in Proposition 3.18 extends to an isomorphism P : M0 → D/�.

Proof It suffices to prove that P is surjective. Let ω ∈ D/� be a period point. By the
surjectivity of the period map of lattice-polarized K3 surfaces (see [8, Theorem 3.1])
there exists an M-polarized K3 surface (S, j : M ↪→Pic(S)) corresponding to ω. By
Proposition 3.22, the K3 surface S is the double cover ofP

2 branched at a plane quartic
curve C and two different lines L1, L2. Moreover, let M1 and M2 be the primitive
sublattices of M defined in the proof of Proposition 3.22. After choosing the Kähler
cone V +(S) and the set of effective (−2) curves�+(S) as in the proof of [17, Theorem
4.1], we may assume that the restrictions j |M1 and j |M2 of the polarization j to the
sublattices M1 and M2 are both normalized embeddings, as defined in [17, Definition
4.24]. The embeddings j |M1 and j |M2 are unique up to permutation of the classes
α1, . . . , α4 (β1, . . . , β4, respectively) thanks to [17, Lemma 4.29]. It follows that the
polarization j is unique up to action of�4×�4 and coincides with our construction in
Sect. 3.4. By Propositions 3.18 and 3.21, the period mapP : M0 → D/� is a bijective
birational morphism between normal varieties. As a result, P is an isomorphism, by
Zariski’s Main Theorem. ��

3.6 The period map for unlabeled triples

Consider the compact space M∗ and M∗
0 ⊂ M∗, consisting on the subset of triples

(C, L , L ′) formed by a quartic curve C and unlabeled lines L , L ′ such that the sextic
curve C + L + L ′ is reduced and has at worst simple singularities, as constructed in
Corollary 2.16. In this subsection we define the period mapP′ : M∗

0 → D/�′—for an
appropriately chosen arithmetic group �′—and show that P′ is an isomorphism. We
use the same approach taken to define P : M0 → D/� (Propositions 3.18 and 3.21)
and to prove Theorem 3.23. The modification one needs to do is to choose a different
arithmetic group �′. We follow the same notation as in the previous subsections,
especially regarding the description of the subgroup�α ×�β in Lemma3.17.Consider
the subgroup �α×�β �Z/2Z ⊂ O(M) where the factor Z/2Z corresponds to the
swap of αi ’s and βi ’s for 0 � i � 4 (the induced action on AM exchanges α∗

i with β∗
i

for 1 � i � 3 and fixes γ ∗ and ξ∗). As in the proof of Lemma 3.17, we can verify that
the composition �α×�β �Z/2Z ↪→ O(M) → O(qM ) is injective. Now we define
�′ to be the following extension:

1 → O∗(T ) → �′ → (�α×�β)�Z/2Z → 1.

For (C, L , L ′) ∈ M∗
0 (such that C + L + L ′ is reduced and has at worst simple sin-

gularities) we consider the period of the K3 surface S(C,L ,L ′) which is the minimal
resolution of the double cover of P

2 branched along C + L + L ′. Because S(C,L ,L ′)
is polarized by the lattice M , the period corresponds to a point in D. The lattice
polarization depends on the labeling of L and L ′, the ordering of C ∩ L and the
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ordering of C ∩ L ′, and thus is compatible with the action of �′/O∗(T ) = �4×�4
�Z/2Z. Therefore we have a well-defined period map P′ : M∗

0 → D/�′ (see also
Propositions 3.18 and 3.21). Moreover, the same argument in Proposition 3.21 and
Theorem 3.23 allows us to prove that the period map P′ : M∗

0 → D/�′ is an isomor-
phism.

3.7 Comparison of the GIT and the Baily–Borel compactifications

Consider the moduli space M∗
0 ⊂ M∗ of triples (C, L , L ′) formed by a quartic curve

C and unlabeled lines L , L ′ such that the sextic curve C + L + L ′ has at worst simple
singularities. We have constructed a period map P′ : M∗

0 → D/�′ in Sect. 3.6 and
have shown that it is an isomorphism. There are two natural ways to compactify M∗

0
as the GIT quotient M∗ ..= M∗

1,4,2 defined in (3) and described in Corollary 2.16, or
as the Baily–Borel compactification [3]. We compare these two compactifications by
applying some general results of Looijenga [21]. See also [17, Theorem 4.2].

Theorem 3.24 The period map P′ : M∗
0 → D/�′ extends to an isomorphism of

projective varieties P′ : M∗ ∼=−→ (D/�′)∗ where (D/�′)∗ denotes the Baily–Borel
compactification of D/�′.

Proof We apply a general framework of comparing GIT compactifications to certain
compactifications of the period domain developed by Looijenga. Specifically, by [21,
Theorem 7.6] an isomorphism M ∼= (�\H)/� (typically coming from a period
map) between a geometric quotientM and a complement of an arithmetic hyperplane
arrangementH in a type IV domain� extends to an isomorphismM ∼= �̃/� between
the GIT compactification M and the Looijenga compactification �̃/� associated to
H if their polarizations agree and dim(M)−dim(M) > 1.We haveM∗

0
∼= D/�′. The

hyperplane arrangement is empty and the associated Looijenga compactification is the
Baily–Borel compactification (D/�′)∗. Moreover, by Corollary 2.16 and Lemma 2.7,
we have

dim(M∗) − dim(M∗
0) = dim(M∗) − 1 > 1,

and their polarizations agree by restriction of the isomorphic polarizations for the GIT
of sextic curves and for the compact moduli of K3 surfaces of degree 2 (see [21,
Section 8]). Hence, by [21, Theorem 7.6] P′ : M∗

0 → D/�′ is an isomorphism for
polarized varieties. ��
Question 3.25 Does the period map for labeled triples P : M0 → D/� (cf. Theorem
3.23) preserve the natural polarizations?

A positive answer to this question would imply that the period map P : M0 → D/�

can be extended to an isomorphism P : M(1, 1) → (D/�)∗. We strongly believe that
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the answer is yes (by pulling back the polarizations for sextic curves and degree 2 K3
surfaces via the double covers M(1, 1) → M∗ and D/� → D/�′).

3.8 The Baily–Borel compactification

The locally symmetric space D/�′ admits a canonical minimal compactification,
the Baily–Borel compactification (D/�′)∗ (cf. [3]). The boundary components of
(D/�′)∗ are either 0-dimensional (Type III components) or 1-dimensional (Type II
components), and they correspond to the primitive rank 1, respectively, rank 2 isotropic
sublattices of T up to�′-equivalence. Following the approach of [17,29,31], we deter-
mine the number of the Type III boundary components of (D/�′)∗ and compute
certain invariants for the Type II boundary components. Notice that by Theorem 3.24,
the number of these boundary components and some of their invariants (such as the
dimension) can be worked out from the boundary components of the GIT quotientM∗
described in Corollary 2.16.

We determine the 0-dimensional components of (D/�′)∗ using [29, Proposition
4.1.3]. The 0-dimensional boundary components are in one-to-one correspondence
with the �′-orbits of primitive isotropic rank 1 sublattices of T . By Proposition 3.13
and [26, Theorem 3.6.2] we have T ∼= U ⊥U (2)⊥ A2

1⊥ D6 ∼= U ⊥U ⊥ A4
1⊥D4. (In

particular, T contains two hyperbolic planes.) Write �∗ = �α×�β �Z/2Z ⊂ O(qT )

(see Sect. 3.6). Note that for v ∈ T one can associate a vector v ∈ AT = T ∗/T
defined by v ≡ v/div(v)mod T (where div(v) is the divisor of v which is a positive
integer such that (v, T ) = div(v)Z). If v is a primitive isotropic vector then v is
an isotropic element in AT . By [29, Proposition 4.1.3] the map Zv �→ v induces a
bijection between the equivalence classes of primitive isotropic rank 1 sublattices of T
and �∗-orbits of isotropic elements of AT . Because T is the orthogonal complement
of M in �K3, one has (AM , qM ) ∼= (AT ,−qT ). We have computed the discriminant
quadratic form qM in Lemma 3.4. In particular, there are 20 isotropic elements in
AM ∼= AT : 0, γ ∗, α∗

i + β∗
j and α∗

i + β∗
j + γ ∗ (1 � i, j � 3). The action of �∗ has

been described in the proof of Lemma 3.17 and Sect. 3.6. It is easy to see that α∗
i +β∗

j
and α∗

i + β∗
j + γ ∗ (1 � i, j � 3) form one �∗-orbit. As a result, the Baily–Borel

compactification (D/�′)∗ consists of three 0-dimensional boundary components.

Remark 3.26 Similarly, one can show that (D/�)∗ has three 0-dimensional boundary
components (compare Lemma 2.15).

Remark 3.27 As discussed in [17, Section 4.4.1], one important invariant for the
O−(T )-equivalence class of isotropic sublattices E of T is the isomorphism classes
of E⊥/E (and we shall use it to label E). Let us compute the isomorphism classes
of v⊥/Zv (where Zv is a primitive isotropic rank 1 sublattice of T ). Observe that
T ∼= U ⊥ M . One could compute the Gram matrix of v⊥/Zv explicitly. Alternatively,
we consider Hv

..= Zv⊥⊥
T ∗ /Zv (cf. [17, Section 4.4.1]) which is an isotropic subgroup

of AT ∼= (Z/2Z)6 and the discriminant group Av⊥/Zv
∼= H⊥

v /Hv . In our case, Hv

equals either 0 or Z/2Z. The lattice v⊥/Zv is an even hyperbolic (N.B. the signature
is (1, 9)) 2-elementary lattice. By a direct computation we get the following (see also
[26, Theorem 3.6.2]).
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• If v = 0, then v⊥/Zv ∼= U ⊥ A4
1⊥ D4 ∼= U (2)⊥ A2

1⊥ D6.
• If v = γ ∗, then v⊥/Zv ∼= U ⊥ D4⊥ D4 ∼= U (2)⊥ D8.
• If v = α∗

i + β∗
j or α∗

i + β∗
j + γ ∗ (1 � i, j � 3), then v⊥/Zv ∼= U ⊥ A2

1⊥ D6 ∼=
U (2)⊥ A1⊥ E7.

To determine the 1-dimensional components of (D/�′)∗, one needs to compute the
equivalence classes of primitive isotropic rank 2 sublattices of T .We use the algorithm
for classifying isotropic vectors in hyperbolic lattices due toVinberg [33]. Specifically,
for each of the equivalence classes of primitive isotropic rank 1 sublatticesZv of T we
apply Vinberg’s algorithm to the hyperbolic lattice v⊥/Zv (with respect to the action
by the stabilizer �′

v of v).
Now we briefly recall Vinberg’s algorithm [33] (see also [31, Section 4.3]). Let N

be a hyperbolic lattice of signature (1, n). (In our case we take N = v⊥/Zv.) The
algorithm starts by fixing an element h ∈ N of positive square. Then one needs to
inductively choose roots δ1, δ2, . . . such that the distance function (h, δ)2/|(δ, δ)| is
minimized. The algorithm stops with the choice of δN if every connected parabolic
subdiagram (i.e. the extendedDynkin diagram of a root system) of theDynkin diagram
� associated to the roots δ1, δ2, . . . , δN is a connected component of some parabolic
subdiagram of rank n −1. If the algorithm stops then the W (N )-orbits of the isotropic
lines in N correspond to the parabolic subdiagrams of rank n − 1 of � (N.B. the
isomorphismclasses of E⊥/E ,where E is an isotropic rank2 sublattice ofT containing
v, are determined by theDynkin diagrams of the parabolic subdiagrams). To determine
the equivalence classes of the isotropic vectors by a larger group which contains the
Weyl group W (N ) as a subgroup of finite index, one should take certain symmetries
of � into consideration.

In our case, a straightforward application of Vinberg’s algorithm allows us to com-
pute the isomorphism classes of E⊥/E .

• If v = 0, then v⊥/Zv has at least three equivalence classes of isotropic vectors
which correspond to A4

1⊥ D4, A2
1⊥ D6 and D4⊥ D4 respectively.

• If v = γ ∗, then v⊥/Zv has at least two equivalence classes of isotropic vectors
which correspond to D4⊥ D4 and D8 respectively.

• If v = α∗
i + β∗

j or α∗
i + β∗

j + γ ∗ (1 � i, j � 3), then v⊥/Zv has at least three

equivalence classes of isotropic vectors which correspond to A2
1⊥ D6, A1⊥ E7

and D8 respectively.

By Theorem 3.24 and Corollary 2.16 we conclude that the Baily–Borel compact-
ification (D/�′)∗ consists of five 1-dimensional boundary components labeled by
A4
1⊥ D4, A2

1⊥ D6, A1⊥ E7, D4⊥ D4 and D8 respectively.

Remark 3.28 Using the Clemens–Schmid exact sequence and the incidence relation
of the GIT boundary components (see also [17, Theorem 4.32]), we match the GIT
boundary ofM∗ in Corollary 2.16 with the Baily–Borel boundary of (D/�′)∗.
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GIT boundary Baily–Borel boundary

II(1) D4⊥ D4
II(2a1) A1⊥ E7
II(2a2) A4

1⊥ D4
II(2b) A2

1⊥ D6
II(3) D8
III(1) U ⊥ D4⊥ D4
III(2a) U ⊥ A2

1⊥ D6
III(2b) U ⊥ A4

1⊥ D4
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