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Abstract
We consider the moduli space of log smooth pairs formed by a cubic surface and an
anticanonical divisor. We describe all compactifications of this moduli space which
are constructed using geometric invariant theory and the anticanonical polarization.
The construction depends on a weight on the divisor. For smaller weights the stable
pairs consist ofmildly singular surfaces and very singular divisors. Conversely, a larger
weight allowsmore singular surfaces, but it restricts the singularities on the divisor. The
one-dimensional space of stability conditions decomposes in awall-chamber structure.
We describe all the walls and relate their value to the worst singularities appearing in
the compactification locus. Furthermore, we give a complete characterization of stable
and polystable pairs in terms of their singularities for each of the compactifications
considered.
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1 Introduction

The moduli space of cubic surfaces is a classic space in algebraic geometry. Indeed,
its GIT compactification was first described by Hilbert in 1893 [14], and several
alternative compactifications have followed it (see [12,15,20]). In this article,we enrich
this moduli problem by parametrizing pairs (S, D) where S ⊂ P

3 is a cubic surface,
and D ∈ | − KS| is an anticanonical divisor. There are several motivations for our
construction. Firstly, it was recently established that the GIT compactification of cubic
surfaces corresponds to the moduli space of K -stable del Pezzo surfaces of degree
three [21]. The concept of K -stability has a natural generalization to log-K-stability
for pairs, and our GIT quotients are natural candidates to construct compactifications
of log K-stable pairs of cubic surfaces and their anticanonical divisors. Therefore, our
description is a first step toward a generalization of [21] to the log setting, an approach
considered in the sequel to this article [11]. Secondly, a precise description of the
GIT of cubic surfaces is important for describing the complex hyperbolic geometry
of the moduli of cubic surfaces, and constructing new examples of ball quotients (see
[1]). More specifically, Laza et al. [17] predicted a Hodge theoretical compactification
of the moduli space of pairs (S, D) via a particular loci within the moduli space of
cubic fourfolds. One may expect that such uniformization coincides with one of the
compactifications of the moduli space of pairs (S, D) that we obtain in this article.
Finally, our compactifications explore the setting of variations of GIT quotients for
log pairs for which few examples exists (see [16] and [6, Theorem 11.2]).

The GIT quotients considered depend on a choice of a linearization Lt of the
parameter spaceH of cubic forms and linear forms in P3. We have thatH ∼= P

19×P
3.

Every ample divisor in Pic(P19 × P
3) ∼= Z〈a〉 ⊕ Z〈b〉 is of bidegree (a, b) for some

positive integers a and b. Thus, the different GIT quotients arising by picking different
polarizations of H are controlled by the parameter t = b

a ∈ Q>0 (see Sect. 3 for a
thorough treatment). For each value of t , there is a GIT compactification M(t) of
the moduli space of pairs (S, D) where S is a cubic surface and D ∈ | − KS| is
an anticanonical divisor. It follows from the general theory of variations of GIT (see
[7,24], c.f. [10, Theorem 1.1]) that 0 � t � 1 and that there are only finitely many
different GIT quotients associated to t . Indeed, there is a set of chambers (ti , ti+1)

where the GIT quotients M(t) are isomorphic for all t ∈ (ti , ti+1), and there are
finitely many GIT walls t1, . . . , tk where the GIT quotient is a birational modification
of M(t) where 0 < |t − ti | < ε � 1. Additionally there are initial and end walls
t0 = 0 and tk+1 = 1.

Lemma 1 The GIT walls are

t0 = 0, t1 = 1

5
, t2 = 1

3
, t3 = 3

7
, t4 = 5

9
, t5 = 9

13
, t6 = 1.

Given t ∈ Q>0 we say that a pair (S, D) is t-stable (respectively t-semistable) if
it is t-stable (respectively t-semistable) under the SL(4,C)-action. A pair is strictly
t-semistable if it is t-semistable but not t-stable. The space M(t) parametrizes t-stable
pairs and M(t) parametrizes closed t-semistable orbits.
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Moduli of cubic surfaces and their anticanonical divisors 855

The GIT walls can be interpreted geometrically as follows. Let T be one of the
possible isolated singularities in a cubic surface (see Proposition 1), let w(T ) be the
sum of its associated weights (see Definition 2). For example, the set of weights for

the An singularity is
(
1
2 ,

1
2 ,

1
n+1

)
and w(An) = n+2

n+1 . We define Wall(T ):= 4
w(T )

− 3.

Theorem 1 There are 13 non-isomorphic GIT quotients M(t). Seven of these quotients
correspond to the walls ti in Lemma 1 and they can be recovered as ti = Wall(T )

for each isolated ADE singularity T occurring at a point p of an irreducible cubic
surface S such that

(i) for some D ∈ | − KS|, the log pair (S, D) is strictly ti -semistable,
(ii) for t ′ < ti (S, D) is t ′-unstable, and
(iii) p /∈ Supp(D) unless t = 0.

Indeed, the values of the walls are:

t0 = Wall(A2) = 0, t1 = Wall(A3) = 1

5
, t2 = Wall(A4) = 1

3
,

t3 = Wall(A5) = Wall(D4) = 3

7
, t4 = Wall(D5) = 5

9
,

t5 = Wall(E6) = 9

13
, t6 = Wall(Ẽ6) = 1.

The other six GIT quotients M(t) correspond to linearizations t ∈ (ti , ti+1), i =
1, . . . , 6. All the points in M(t0) and M(t6) correspond to strictly semi-stable pairs,
while all other M(t) with t ∈ (0, 1) have stable points. The GIT quotient is empty for
any t /∈ [0, 1].
We will learn in Sect. 2 that the walls ti and classification of the log pairs (S, D)

parametrized by M(t) depend on both the singularities of the surface and the divisor
D in a complementary way. Indeed, the singularities of the surfaces will be worse
when t approaches 1 while the singularities of the hyperplane section will be worse
when t approaches 0 (see Table 1).

Furthermore,wehave a complete analysis of the stability of pairs (S, D) represented
in M(t) and M(t) for each t in the space of stability conditions [0, 1]∩Q. Specifically
for each t ∈ (0, 1) ∩ Q, in Theorem 2 and Table 1 we give a list of all t-stable
pairs represented in M(t), and in Theorem 3 and Table 2, we classify all strictly t-
semistable pairs with close orbits, which compactify M(t) into M(t). The quotient
M(0) is isomorphic to the GIT of cubic surfaces and the quotient M(1) is the GIT
of plane cubic curves (see [10, Lemma 4.1]). These spaces are classical and they are
described in [19, Sec 7.2 (b)] and [19, Example 7.12] respectively. Henceforth we
will focus on the case t ∈ (0, 1). As mentioned earlier, the following theorem gives a
first approximation to the classification of log stable pairs of other stability theories,
in particular for log K-stability (and the existence of Kähler-Einstein metrics with
conical singularities along a boundary). This was first observed for cubic surfaces (no
boundary) by Ding and Tian in [5].
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856 P. Gallardo, J. Martinez-Garcia

Table 1 Worst possible singularities in a t-stable pair (S, D) for each t ∈ (0, 1)

t (0, 1
5 ) 1

5 ( 15 , 1
3 ) 1

3

Sing(S) A2 A2 A3 A3

Sing(D) On smooth or
A1 ∈ S

Isolated on
smooth or
A1 ∈ S

Isolated on
smooth or
A1 ∈ S

Isolated or
cuspidal at
A1 ∈ S

t ( 13 , 3
7 ) 3

7 ( 37 , 5
9 ) 5

9

Sing(S) A4 A4 A5, D4 A5, D4

Sing(D) Isolated or
cuspidal at
A1 ∈ S

Tacnodal or
normal
crossings at
A1 ∈ S

Tacnodal or
normal
crossings at
A1 ∈ S

Cuspidal or
normal
crossings at
A1 ∈ S

t ( 59 , 9
13 ) 9

13 ( 9
13 , 1)

Sing(S) A5, D5 A5, D5 E6

Sing(D) Cuspidal or
normal
crossings at
A1 ∈ S

Normal
crossings on
smooth or
A1 ∈ S

Normal
crossings on
smooth or
A1 ∈ S

Throughout the article a pair (S, D) consists of a cubic surface S ⊂ P
3
C
and an

anticanonical section D ∈ | − KS| ∼= P(H0(S,OS(1))) Hence, D = S ∩ H for some
hyperplane H = {l(x0, . . . , x3) = 0} ⊂ P

3
C
. Whenever we consider a parameter

t ∈ (ti , ti+1) we implicitly mean t ∈ (ti , ti+1) ∩ Q.
In Sect. 3 we describe in detail the GIT setting we consider. We introduce the

required singularity theory in Sect. 4. GIT-stability depends on a finite list of geometric
configurations characterized in Sect. 5. We prove Theorem 2 in Sect. 6. We prove
Theorems 1 and 3 in Sect. 6.

Our article does an extensive use of J.W. Bruce and C.T.C. Wall’s elegant classifi-
cation of singular cubic surfaces [4] in the modern language of Arnold. Our results use
some computations done via software. The computations, together with full source
code written in Python can be found in [9]. The code is based on the theory developed
in our previous article [10] and a rough idea of the algorithm can be found there. The
source code and data, but not the text of this article, are released under a Creative
Commons CC BY-SA 4.0 license. See [9] for details. If you make use of the source
code and/or data in an academic or commercial context, you should acknowledge
this by including a reference or citation to [10]—in the case of the code—or to this
article—in the case of the data.

2 Classification of stable orbits and compactification log pairs

A nice feature of M(t) is that for each t ∈ (0, 1) and each t-stable pair (S, D), the
surface S has isolated ADE singularities. The classification is simplified by using the
notion of ‘worse singularity’. Roughly speaking, a singularity germ T1 is worse than a
singularity T2 if the former can be partially deformed into the latter. See Definition 1
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Table 2 Strictly semistable pairs with closed orbits appearing in each t ∈ (0, 1)

t (0, 1) 1
5

1
3

Sing(S) 3A2 A3 + 2A1 A4 + A1

D Unique three
lines in S

Double line
containing
2A1 and
unique line
not
containing
surface
singularities

Tacnodal
curve at A1

t 3
7

3
7

5
9

9
13

Sing(S) D4, S has an
Eckardt
point p

A5 + A1 p = D5 p = E6

D Unique three
coplanar
lines through
p

C
∗-invariant
cuspidal
curve at A1,

C
∗-invariant
tacnodal
curve,
p /∈ D

C
∗-invariant
cuspidal
curve,
p /∈ D

and Fig. 2 for a formal definition. Table 1 gives a summary of the t-stable pairs (S, D)

for each t in terms of their worst singularities and the intersection of the components
of D.

See Table 3 to reinterpret D in the language of ADE singularities. Our first classi-
fication result describes the stable orbits of M(t) in terms of their singularities:

Theorem 2 Consider a pair (S, D) formed by a cubic surface S and a hyperplane
section D ∈ | − KS|.

(i) Let t ∈ (0, 1
5 ). The pair (S, D) is t-stable if and only if S has finitely many

singularities at worst of type A2 and if P ∈ D is a surface singularity, then P
is at worst an A1 singularity of S. In particular D may be non-reduced.

(ii) Let t = 1
5 . The pair (S, D) is t-stable if and only if S has finitely many singu-

larities at worst of type A2, D is reduced, and if P ∈ D is a surface singularity,
then P is at worst an A1 singularity of S.

(iii) Let t ∈ ( 15 ,
1
3 ). The pair (S, D) is t-stable if and only if S has finitely many

singularities at worst of type A3, D is reduced and if P ∈ D is a surface
singularity, then P is at worst an A1 singularity of S.

(iv) Let t = 1
3 . The pair (S, D) is t-stable if and only if S has finitely many singulari-

ties at worst of type A3, D is reduced and if P ∈ D is a surface singularity, then
P is at worst an A1 singularity of S and D has at worst a cuspidal singularity
at P.

(v) Let t ∈ ( 13 ,
3
7 ). The pair (S, D) is t-stable if and only if S has finitely many

singularities at worst of type A4, D is reduced and if P ∈ D is a surface
singularity, then P is at worst an A1 singularity of S and D has at worst a
normal crossing singularity at P as a plane cubic curve.
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(vi) Let t = 3
7 . The pair (S, D) is t-stable if and only if S has finitely many singu-

larities at worst of type A4, D has at worst a tacnodal singularity and if P ∈ D
is a surface singularity, then P is at worst an A1 singularity of S and D has at
worst a normal crossing singularity at P as a plane cubic curve.

(vii) Let t ∈ ( 37 ,
5
9 ). The pair (S, D) is t-stable if and only if S has finitely many

singularities at worst of type A5 or D4, D has at worst a tacnodal singularity
and if P ∈ D is a surface singularity, then P is at worst an A1 singularity of S
and D has at worst a normal crossing singularity at P as a plane cubic curve.

(viii) Let t = 5
9 . The pair (S, D) is t-stable if and only if S has finitely many singular-

ities at worst of type A5 or D4, D has at worst an A2 singularity and if P ∈ D
is a surface singularity, then P is at worst an A1 singularity of S and D has at
worst a normal crossing singularity at P as a plane cubic curve.

(ix) Let t ∈ ( 59 ,
9
13 ). The pair (S, D) is t-stable if and only if S has finitely many

singularities at worst of type A5 or D5, D has at worst a cuspidal singularity
and if P ∈ D is a surface singularity, then P is at worst an A1 singularity of S
and D has at worst a normal crossing singularity at P as a plane cubic curve.

(x) Let t = 9
13 . The pair (S, D) is t-stable if and only if S has finitely many singu-

larities at worst of type A5 or D5, D has at worst normal crossing singularities
as a plane cubic curve and if P ∈ D is a surface singularity, then P is at worst
an A1 singularity of S.

(xi) Let t ∈ ( 9
13 , 1). The pair (S, D) is t-stable if and only if S has finitely many

ADE singularities, D has at worst normal crossing singularities as a plane
cubic curve and if P ∈ D is a surface singularity, then P is at worst an A1
singularity of S.

The next theorem gives a full of classification of the pairs (S, D) associated to each
of the unique closed orbits in M(t)\M(t) for each t ∈ (0, 1). Normal cubic surfaces
with a C

∗-action have been classified [8, Table 3]. They play a central role in our
classification, as they are all realized as part of some strictly semistable log pair of
some wall.

Figure 1 gives sketches of each of these pairs and Table 1 summarises these orbits.
Recall that an Eckardt point of a cubic surface S is a point where three coplanar lines
of S intersect.

Theorem 3 Let t ∈ (0, 1). If t �= ti , then M(t) is the compactification of the stable loci
M(t) by the closed SL(4,C)-orbit in M(t)\M(t) represented by the pair (S0, D0),
where S0 is the unique C∗-invariant cubic surface with three A2 singularities and D0
is the union of the unique three lines in S0, each of them passing through two of those
singularities.

If t = ti , i = 1, 2, 4, 5, then M(ti ) is the compactification of the stable loci M(ti )
by the two closed SL(4,C)-orbits in M(ti )\M(ti ) represented by the uniquely defined
pair (S0, D0) described above and the C∗-invariant pair (Si , Di ) uniquely defined as
follows:

(i) the cubic surface S1 with an A3 singularity and two A1 singularities and the
divisor D1 = 2L + L ′ ∈ | − KS|, where L and L ′ are lines such that L is the
line containing both A1 singularities and L ′ is the only line in S not containing
any singularities;
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Fig. 1 Pairs in M(t)\M(t) for each t ∈ (0, 1). The dotted lines represent the divisor D. The bold points
are singularities of the surface

(ii) the cubic surface S2 with an A4 singularity and an A1 singularity and the divisor
D2 ∈ | − KS|, which is a tacnodal curve singular at the A1 singularity of S;

(iii) the cubic surface S4 with a D5 singularity and the divisor D4 ∈ | − KS|, which
is a tacnodal curve that does not contain the surface singularity;

(v) the cubic surface S5 with an E6 singularity and the cuspidal rational curve
D5 ∈ | − KS|, that does not contain the surface singularity.

The space M(t3) is the compactification of the stable loci M(t3) by the three
closedSL(4,C)-orbits in M(t3)\M(t3) represented by theC∗-invariant pairs uniquely
defined as follows:

(i) the pair (S0, D0) described above;
(ii) the pair (S3, D3), where S3 is the cubic surface with a D4 singularity and and

Eckardt point and D3 consists of the unique three coplanar lines intersecting at
the Eckardt point;

(iii) the pair (S′
3, D

′
3), where S

′
3 is the cubic surface with an A5 and an A1 singularity

and the divisor D′
3, which is an irreducible curve with a cuspidal point at the A1

singularity of S′
3.

The theory of variations of GIT quotients used to construct these quotients can be
used to understand the birationalmaps among them. In particular, for ε > 0 sufficiently
small, we have morphisms M(ε) → M(0) and M(1 − ε) → M(1).

By Pinkham’s theory on deformation of singularities with C
∗-action, the defor-

mations of negative weight can be globalized and interpreted as a moduli space of
pairs (see [22, Theorem 2.9]). In particular, the fiber of the map M(1 − ε) → M(1)
over a point representing a smooth curve with trivial stabilizer is isomorphic to the
deformation of the Ẽ6 singularity in negative direction modulo the natural action

123



860 P. Gallardo, J. Martinez-Garcia

of C
∗ (c.f. [16, Section 2.4] for an analogue situation with the N16 singularity).

Such deformations of Ẽ6 were determined by Looijenga [18, Theorem 3.4]. To
make this explicit, let E be a smooth elliptic curve and pE ∈ M(1) ⊂ M(1) be
the point representing it. The fiber over pE of M(1 − ε) → M(1) is isomorphic to
(E ⊗ E6)/W (E6) ∼= P(1, g1, g2, g3, g4, g5, g6) where gi are the coefficients of the
highest root of E6 with respect to a set of simple roots, i.e the fiber is isomorphic to
P(1, 1, 1, 2, 2, 2, 3).

3 GIT set-up and computational methods

In this section, we briefly describe theGIT setting for constructing our compactmoduli
spaces. We refer the reader to [10], where the problem is thoroughly discussed and
solved for pairs formed by a hyperplane and a hypersurface of Pn+1 of a fixed degree.
Our GIT quotients are given by

M

(
b

a

)
:=

(
P(H0(P3,OP3(3))) × P(H0(P3,OP3(1)))

)ss //
O(a,b)

SL(4,C),

and they depend only of one parameter t := b
a ∈ Q�0. The use of GIT requires

three initial combinatorial steps which are computed with the algorithm described in
[10] and implemented in [9]. The first step is to find a set of candidate GIT walls
which includes all GIT walls (see [10, Theorem 1.1]). Some of these walls may be
redundant and they are removed by comparing if there is any geometric change to the
t-(semi)stable pairs (S, D) for t = ti±ε for 0 < ε � 1. The set of candidateGITwalls
is precisely the one in Lemma 1 and once Theorem 3 is proven this proves Lemma 1.

The second step (see [10, Lemma 3.2]) is to find the finite set S2,3 of one-parameter
subgroups that determine the t-stability of all pairs (S, D) for all t . For convenience,
given a one-parameter subgroup λ = Diag(r0, . . . , r3), we define its dual one as
λ = Diag(−r3, . . . ,−r0).

Lemma 2 The elements S2,3 are λk and λk where λk is one of the following:

λ1 = Diag(1, 0, 0,−1) λ2 = Diag(2, 0,−1,−1) λ3 = Diag(5, 1,−3,−3)

λ4 = Diag(13, 1,−3,−11) λ5 = Diag(3, 1,−1,−3) λ6 = Diag(9, 1,−3,−7)

λ7 = Diag(5, 5,−3,−7) λ8 = Diag(1, 1, 1,−3) λ9 = Diag(5, 1, 1,−7)

λ10 = Diag(1, 1,−1,−1)

Let Ξk be the set of all monomials in four variables of degree k. Let g ∈ SL(4,C).
Suppose g·S is given by the vanishing locus of a homogeneous polynomial F of degree
3 and g · D is given by the vanishing locus of F and a homogeneous polynomial l
of degree 1. We say that F and l are associated to the pair (g · S, g · D) and to the
corresponding pair of sets ofmonomials. Letλ = Diag(r0, . . . , r3). Denote byS ⊆ Ξ3
andD ⊆ Ξ1 the monomials with non-zero coefficients in F and l, respectively. There
is a natural pairing 〈v, λ〉 ∈ Z for any v ∈ Ξk , namely 〈xi00 · · · xi33 ,Diag(r0, . . . , r3)〉 =∑

i j r j . We define
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μt (g · S, g · D, λ):=min
v∈S

〈v, λ〉 + t min
xi∈D

〈xi , λ〉.

Lemma 3 (Hilbert-Mumford Criterion, see [10, Lemma 3.2]) A pair (S, D), where
D = S ∩ H, is not t-stable if and only if there is g ∈ SLn satisfying

μt (S, D) = max
λ∈S2,3

{μt (g · S, g · D, λ)} � 0.

Given t ∈ (0, 1), and λ ∈ S2,3 and i ∈ {0, . . . , 3}, the next step is to find the pairs of
sets N⊕

t (λ, xi ):=
(
V⊕
t (λ, xi ), B⊕(xi )

)
defined as:

V⊕
t (λ, xi ) = {v ∈ Ξd | 〈v, λ〉 + t〈xi , λ〉 > 0}, B⊕(xi ) = {xk ∈ Ξ1 | k � i},

which are maximal with respect to the containment order. Since by [10, Lemma 3.2],
we only need to consider the one-parameter subgroups in Lemma 2, which is a finite
computation. Hence, they can be computed using computer software [9]. A more
detailed algorithm can be found in [10].

Theorem 4 ([10, Theorem 1.4]) Let t ∈ (0, 1). A pair (S, S ∩ H) is not t-stable if
and only if there exists g ∈ SL(4,C) such that the set of monomials associated to
(g · S, g · H) is contained in a pair of sets N⊕

t (λ, xi ).

Given N⊕
t (λ, x), define N 0

t (λ, xi ):=
(
V 0
t (λ, xi ), B0(xi )

)
(see [10, Proposition 5.3])

where

V 0
t (λ, xi ) × B0(xi ) = {(v,m) ∈ V⊕

t (λ, xi ) × B⊕(xi ) | 〈v, λ〉 + t〈m, λ〉 = 0}.

Theorem 5 ([10, Theorem 1.6]) Let t ∈ (0, 1). If a pair (S, S∩H) belongs to a closed
strictly t-semistable orbit, then there exist g ∈ SL(4,C), λ ∈ S2,3 and xi such that
the set of monomials associated to (g · S, g · D) corresponds to those in a pair of sets
N 0
t (λ, xi ).

4 Preliminaries in singularity theory

We recall the admissible singularities in normal cubic surfaces.

Proposition 1 ([4]) Let X be an irreducible and reduced cubic surface and p ∈ X be
an isolated singular point. Then, the singularity at p is either a Du val singularity (of
type Ak , Dk with k ≤ 5 or E6), or a cone over a smooth elliptic curve (i.e. a simple
elliptic singularity of type Ẽ6).

Definition 1 ([2, p.88]) A class of singularities T2 is adjacent to a class T1, and one
writes T1 ← T2 if every germ of f ∈ T2 can be locally deformed into a germ in T1
by an arbitrary small deformation. We say that the singularity T2 is worse than T1; or
that T2 is a degeneration of T1.
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Fig. 2 Degeneration of germs of isolated singularities appearing in cubic surfaces

Table 3 Classification of plane cubic curves with isolated singularities

Non-singular - Cuspidal cubic A2

Nodal cubic A1 Three lines intersecting normally 3A1

Line and conic intersecting normally 2A1 Three lines intersecting at a point D4

Line and conic tangent at a point A3

The degenerations of the isolated singularities that appear in a cubic surface (or in
their anticanonical divisors, which are plane cubic curves) are described in Figure 2
(for details see [2, p. 88] and [3, §13]).

The above theory considers only local deformations of singularities.Whenwe study
degenerations in the GIT quotient we are interested in global deformations.

Lemma 4 ([23, Theorem 1], c.f. [13]) Let V (T1, . . . Tr ) be the set of cubic hypersur-
faces in P

n for n � 3 with r isolated singular points of types T1, . . . Tr . The germ of
the linear system |OP3(3)| at any X ∈ V (T1, . . . Tr ) is a joint versal deformation of
all singular points of X if

∑r
i=1 μ(Ti ) ≤ 9 where μ(Ti ) is the Milnor number of Ti .

Recall that μ(Ak) = k, μ(Dk) = k and μ(E6) = 6. By checking carefully how
these singularities appear together in each cubic surface (see [4, p. 255]) we conclude
that

∑r
i=1 μ(Ti ) � 6 for all cubic surfaces with ADE singularities. Furthermore, by

looking at Table 3, we see that
∑r

i=1 μ(Ti ) � 4 for any plane cubic curve with isolated
singularities . Hence, Lemma 4 implies that for cubic plane curves and cubic surfaces,
any local deformation of isolated singularities is induced by a global deformation.

Definition 2 ([4]) A polynomial F in n + 1 variables is semi-quasi-homogeneous
(SQH) with respect to the weights (w1, w2, . . . , wn) if all the monomials of F have
weight larger or equal than 1 and those monomials of weight 1 define a function with
an isolated singularity. In particular, the weights associated to the ADE singularities
Ak , Dk and E6 are

(
1

2
, . . . ,

1

2
,

1

k + 1

)
,

(
1

2
, . . . ,

1

2
,

(k − 2)

2(k − 1)
,

1

k − 1

)
,

(
1

2
, . . . ,

1

2
,
1

3
,
1

4

)
,

respectively. Furthermore, the weight of Ẽ6 is
( 1
2 , . . . ,

1
2 ,

1
3 ,

1
3 ,

1
3

)
. These weights are

uniquely associated to their respective singularity.

Lemma 5 ([4, p. 246]) If F(x0, x1, x2) is SQHwith respect to one of the sets of weights
in Definition 2we can, by a locally analytic change of coordinates, reduce the terms of
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weight 1 to the normal forms for Ak , Dk , E6, which are locally analytically isomorphic
to the following surface singularities:

Ak : xk+1
1 + x22 + x23 (k � 1), Dk : xk−1

1 + x1x
2
2 + x23 (k � 4),

E6 : x31 + x42 + x23 , Ẽ6 : x31 + x32 + x33 + 3λx1x2x3, λ3 �= −1.

and the resulting function will remain SQH.

Reduced plane cubic curves are completely characterized according to the number
and type of their ADE singularities (see Table 3).

5 Geometric characterization of pairs

In this section we relate the classifications of pairs in terms of singularity theory and
the equations defining them.We have divided our lemmas in four groups: classification
of singular cubic surfaces, classification of pairs (S, D) with singular boundary D,
classification of pairs (S, D) where S is singular at a point P ∈ D and classification
of pairs (S, D) invariant under a C∗-action. We will denote homogenous polynomials
of degree d in n + 1 variables as fd(x0, . . . , xn), gd , etc. Recall that pairs (S, D) and
(S′, D′) are projectively equivalent if and only if they are conjugate to each others by
elements of Aut(P3).

Lemma 6 ([4, Lemma 3]) Let F = x0x1x3 + f3(x0, x1, x2), P = (0, 0, 0, 1), Q =
(0, 0, 1, 0), H = {x3 = 0} ∼= P

2
(x0,x1,x2)

and Hi = {xi = x3 = 0} ⊂ H for i = 0, 1.

1. The singularities of {F = 0} other than that at P correspond to the intersection
of C = {x0x1 = 0} ⊂ H and C ′ = { f3 = 0} at points R other than Q. Indeed, if
multR(C · C ′) = k, then R is an Ak−1 singularity.

2. If f3(0, 0, 1) �= 0, then P is an A2 singularity. Let ki = multQ(Hi ·C ′). If both k0
and k1 are both at least 2, then {F = 0} has non-isolated singularities. Otherwise
P is an Ak0+k1+1 singularity for {k0, k1} = {1, 1}, {1, 2}, {1, 3}.

Lemma 7 A pair (S, D) is such that S has an A2 singularity at a point P ∈ D or a
degeneration of one if and only if P is conjugate to (0, 0, 0, 1) and simultaneously
(S, D) is projectively equivalent to the pair defined by equations

x3 f2(x0, x1) + f3(x0, x1, x2) = 0, l1(x0, x1, x2) = 0.

Proof Without loss of generality, we may assume P = (0, 0, 0, 1). By Lemma 6, S
has (a degeneration of) an A2 singularity at P if and only if it is given by the equation
x0x1x3 + f3(x0, x1, x2) = 0. Any quadric f2(x0, x1) can be transformed to x0x1 or to
a degeneration of x0x1 (e.g. x20 ) by a change of coordinates preserving x2 and x3. The
lemma follows because a hyperplane section D contains P if and only if D is given
by a linear form l1(x0, x1, x2).
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Lemma 8 A surface S has an A3 singularity or a degeneration of one if and only if it
is projectively equivalent to:

{x3 f2(x0, x1) + x22 f1(x0, x1) + x2g2(x0, x1) + g3(x0, x1) = 0}.

Proof By Lemma 6, we may assume S = {x0x1x3 + f3(x0, x1, x2) = 0} and
P = (0, 0, 0, 1). Moreover, the singularity is of type Ak with k � 3 if and only if
f3(0, 0, 1) = 0. Therefore f3(x0, x1, x2) = x22 f1(x0, x1)+ x2g2(x0, x1)+g3(x0, x1).

Lemma 9 A surface S has an A4 singularity or a degeneration of one if and only if it
is projectively equivalent to {x3x0l1(x0, x1)+ x0x22 + x2g2(x0, x1)+ g3(x0, x1) = 0}.
Proof By Lemma 6, the surface S is defined by the equation

x0x1x3 + f3(x0, x1, x2) = 0,

where f3(x0x1x2) = x22 f1(x0, x1)+x2g2(x0, x1)+g3(x0, x1), k0 = multQ(H0 ·C ′) �
2 and k1 = multQ(H1 ·C ′) � 1 if and only if P is (a degeneration of) an A4 singularity,
where C ′ is the curve given in Lemma 6. Notice that

ki = multQ(Hi · C ′) = dimC

(
C[x0, x1]

〈xi , f1 + g2 + g3〉
)

.

Therefore k0 � 2 if and only if f1(0, 1) = 0. Hence, f1 = x0. The lemma follows
from noticing that x0x1x3 is projectively equivalent to x0x3l1(x0, x1) by an element
of Aut(P3) fixing x0, x2, x3.

The proof of the next lemma is similar to the proof of Lemma 6, so we omit it.

Lemma 10 A surface S has an A5 singularity or a degeneration of one if and only if
it is projectively equivalent to

{x3x0l1(x0, x1) + x0x2 f1(x0, x1, x2) + f3(x0, x1) = 0}.

In Figure 2 we see that the only non-trivial degenerations of a D4 singularity in a
cubic surface which are not a Ẽ6 singularity are D5 and E6 singularities. Hence the
next lemma follows at once from [4, Case C].

Lemma 11 A surface S has a D4 singularity or a degeneration of one if and only if it
is projectively equivalent to

{x3x20 + f3(x0, x1, x2) = 0}.

Lemma 12 A surface S has a D5 singularity or a degeneration of one if and only if it
is projectively equivalent to

{ f3(x0, x1) + x2g2(x0, x1) + x0x
2
2 + x20 x3 = 0}.
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Proof By Lemma 11 and Figure 2, we may assume that S is given by x3x20 +
f3(x0, x1, x2) since D5 is a degeneration of D4. Let H = {x3 = 0}, C =
{x3 = f3(x0, x1, x2) = 0} ⊂ H and C ′ = {x3 = x0 = 0} ⊂ H . We can
rewrite f3 = x22g1(x0, x1) + x2g2(x0, x1) + g3(x0, x1). By [4, Lemma 4], the point
P = (0, 0, 0, 1) is (a degeneration of) a D5 singularity if and only if C ∩ C ′ consist
of at most two points. The equation of S ∩ H ⊂ H localized at Q = (0, 0, 1, 0) is
g1(x0, x1) + g2(x0, x1) + g3(x0, x1) = 0, and C ∩ C ′ consists of at most two points
if and only if

dimC

(
C[x0, x1]

〈x0, g1 + g2 + g3〉
)

� 2.

The latter is equivalent to taking g1 = ax0, which by rescaling x2 gives the result.

Lemma 13 The unique cubic surface S with a E6 singularity or a degeneration of one
such surface is projectively equivalent to

{x3x20 + x0x2l1(x0, x1, x2) + f3(x0, x1) = 0}.

Proof Using the same notation as in Lemma 12 and following [4, Lemma 4], S is
defined by x3x20 + x22g1(x0, x1) + x2g2(x0, x1) + g3(x0, x1) = 0, and has (a degen-
eration of) an E6 singularity if and only if

dimC

(
C[x0, x1]

〈x0, g1 + g2 + g3〉
)

� 3.

The latter is equivalent to take g1 = x0 and g2 = x0l1(x0, x1).

Remark 1 (see [4, Case E]) A surface S has an isolated Ẽ6 singularity if and only if S
is the cone over a smooth plane cubic curve given by f3(x0, x1, x2) = 0.

Consider a pair (S, D) and a point P ∈ D ⊂ S. By choosing coordinates appropri-
ately we can suppose that P = (0, 0, 0, 1) and (S, D) = ({F = 0}, {F = H = 0})
for F and H given as

F = x0 f2(x0, . . . , x3) + x23 f1(x1, x2) + x3g2(x1, x2) + f3(x1, x2), H = x0. (1)

Lemma 14 A pair (S, D) has D with an A2 singularity at a point P or a degeneration
of one if and only if (S, D) is projectively equivalent to the pair defined by equations:

x0 f2(x0, x1, x2, x3) + x3x
2
1 + f3(x1, x2) = 0, x0 = 0. (2)

Proof Without loss of generality we can suppose (S, D) is given by (1). The equation
of (a degeneration of) a plane cubic curve in {x0 = 0} with an A2 singularity at P is
given by x21 x3 + f3(x1, x2) = 0, where the curve has an A2 singularity at P if and
only if x32 has a non-zero coefficient in f3. Therefore D is as in the statement if and
only if in (1) we take f1 = 0 and g2 = x21 .
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Lemma 15 A pair (S, D) has D with an A3 singularity at P or a degeneration of one if
andonly if (S, D) is projectively equivalent to the pair definedby x0 f2(x0, x1, x2, x3)+
x1(x22 + x1l1(x1, x2, x3)) = 0 and x0 = 0.

Proof We may assume that the equations of (S, D) are as in (1) and P = (0, 0, 0, 1).
By restricting to {x0 = 0} ∼= P

2 and localizing at P , the equation for D is f1(x1, x2)+
g2(x1, x2) + f3(x1, x2) and by choosing coordinates appropriately we may assume
that L = {x1 = 0} and C = {x22 + x1l1(x1, x2) = 0} are a line and a conic intersecting
at P , where l is a polynomial of degree 1, not necessarily homogeneous. Therefore
D|x0=0 has equation x1(x22 + x1l1(x1, x2, x3)) so f1 ≡ 0, g2 ≡ ax21 , f3 = x1x22 +
x1l1(x1, x2, 0) and the result follows.

By similar arguments, one can prove the next two results:

Lemma 16 A pair (S, D) has D with a D4 singularity at P or a degeneration of
one if and only if (S, D) is projectively equivalent to the pair defined by equations
x0 f2(x0, x1, x2, x3) + f3(x1, x2) = 0 and x0 = 0.

Lemma 17 A pair (S, D) has D non-reduced if and only if it is projectively equivalent
to the pair defined by equations:

x0 f2(x0, x1, x2, x3) + x21 f1(x1, x2, x3) = 0, x0 = 0.

Lemma 18 A pair (S, D) has D = L + C where L is a line and C is a conic such
that 3L ∈ | − KS| if and only if it is projectively equivalent to the pair defined by
equations:

x0 f2(x0, x1, x2, x3) + ax31 = 0, l1(x0, x1) = 0.

where L and 3L are projectively equivalent to {x0 = x1 = 0} and = {x0 = 0}|S,
respectively. This surface has a point Q ∈ L ⊂ Supp(D) such that S has a singularity
at Q that is not of type A1.

Proof Suppose (S, D) as in the statement. Without loss of generality, we may suppose
that the equation of S is as in (1), D = {x0+bx1 = 0} and let D′ := {x0 = 0}. Clearly
L ⊂ Supp(D′)∩Supp(D) and D = D′ if and only if b = 0. In this case, the equation
of D = D′ in {x0 = 0} ∼= P

2 is given by x23 f1(x1, x2)+x3g2(x1, x2)+ f3(x1, x2) = 0
and 3L ∈ | − KS| if and only if f1 = g2 ≡ 0 and f3 = ax31 . If b �= 0, then x1 = − x0

b .
Take x0 = 0 in (1). The equation of D′ = {x0 = 0}|S is x23 f1 + x3g2 + f3 = 0 and
D′ ≡ 3L if and only if f1 = g2 = 0 and f3 = x31 . But then, the equation of D in
{x0 + bx1 = 0} is x1(b f2 + x21 ) and C = {b f2 + x21 = x0 + bx1 = 0}. It is a well
known fact that the line L contains a point Q at which S is singular and Q is not of
type A1 (see [19, p. 227]).

Lemma 19 Given a pair (S, D), S is singular at a point P ∈ D and D is an A2
singularity at P or a degeneration of one if and only if (S, D) is projectively equivalent
to the pair defined by equations:

x3x0l1(x0, x1, x2) + x3x
2
1 + f3(x1, x2) + x0 f2(x0, x1, x2) = 0, x0 = 0. (3)
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Table 4 Some pairs (S, D) invariant under a C∗-action

Sing(S) Sing(D) F H λ

Pi = A2, i = 1, 2, 3 A1 at each Pi x0x1x3 + x32 x2 λ2

P = A3, Q1 = A1, Q2 = A1 D = 2L + L ′,
Q1, Q2 ∈
L , Sing(S) ∩
L ′ = ∅

x0x1x3 + x1x
2
2 + x0x

2
2 x3 λ3

P = A4, Q = A1 A3 at Q x0x1x3 + x0x
2
2 + x21 x2 x3 λ5

P = A5, Q = A1 A2 at Q x0x
2
2 + x0x1x3 + x31 x3 λ6

P = D4 D4 not at P x20 x3 + x31 + x32 x3 λ9

P = D5 A3 not at P x20 x3 + x0x
2
2 + x21 x2 x3 λ6

P = E6 A2 not at P x20 x3 + x0x
2
2 + x31 x3 λ4

Proof Without loss of generality we can assume P = (0, 0, 0, 1). Then, the equation
of S can be written as (see [4, Section 2, pp. 247–252])

x3h2(x0, x1, x2) + h3(x0, x1, x2)

= a0x3x
2
1 + x0 f2(x0, x1, x2) + f3(x1, x2) + x1x3g1(x0, x2) + x3g2(x0, x2).

By comparing with the equation in Lemma 14, D has (a degeneration of) an A2
singularity at P if and only if g1(x0, x2) = ax0 and g2(x0, x2) = bx20 + cx0x2. The
lemma follows.

The proof of the next lemma is similar to that of Lemma 19.

Lemma 20 Given a pair (S, D), S is singular at a point P ∈ D and D has an A3
singularity at P or a degeneration of one if and only if (S, D) is projectively equivalent
to the pair defined by equations:

x20 l1(x0, x1, x2, x3) + x0 f2(x1, x2) + x0x3g1(x1, x2) + x21h1(x1, x2, x3) + x1x
2
2 = 0,

x0 = 0.

Lemma 21 Let (S, D) be a pair that is invariant under a non-trivial C∗-action. Sup-
pose the singularities of S and D are given as in the first and second entries in
one of the rows of Table 4, respectively. Then (S, D) is projectively equivalent to
({F = 0}, {F = H = 0}) for F and H as in the third and fourth entries in the same
row of Table 4, respectively. In particular, any such pair (S, D) is unique. Conversely,
if (S, D) is given by equations as in the third and fourth entries in a given row of
Table 4, then (S, D) has singularities as in the first and second entries in the same
row of Table 4 and (S, D) is C∗-invariant. Furthermore the element λ ∈ SL(4,C∗),
as defined in Lemma 2, given in the fifth entry of the corresponding row of Table 4 is
a generator of the C∗-action.
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Proof There is a unique surface S with three A2 singularities [4, p. 255] which cor-
responds to the equation in Table 4. When a surface S has singularities A4 + A1,
A5 + A1, D4, D5 or E6, and a C

∗-action, the equation for F follows from [8,
Table 3]. If S has singularities A3 + 2A1, then [8, Table 3] gives that S has equa-
tion x3 f2(x0, x1) + x22 l1(x0, x1) = 0, where x0x1 has a non-zero coefficient in f2,
since otherwise S is singular along a line. Hence, after a change of coordinates involv-
ing only variables x0 and x1 and rescaling x3, we obtain the desired result. It is trivial
to check that each one-parameter subgroup λ in the corresponding row of Table 4
leaves S invariant, and therefore λ is a generator of the C∗-action.

Given H , denote DH = {F = H = 0} ⊂ S. We need to show that for (S, D) with
prescribed singularities, DH = D if and only if H is as stated in Table 4. Verifying
that for F and H as in the table, the pair (S, D) has the exepected singularities is
straight forward and we omit it. We verify the converse.

Suppose that S has three A2 singularities. Then we may assume that F = x0x1x3+
x32 and the singularities correspond to P1 = (1, 0, 0, 0), P2 = (0, 1, 0, 0) and P3 =
(1, 0, 0, 0). There are only three lines L1, L2, L3 in S [4, p. 255], which correspond
to {x2 = xi = 0} for i = 0, 1, 3, respectively. Clearly any two of these intersect at
each of the points Pj . Moreover DH = D = ∑

Li and D has an A1 singularity at
each Pi , as stated in Table 4.

Suppose that S has an E6 singularity at a point P and D has an A2 singularity
at a point Q �= P and (S, D) is C

∗-invariant. Without loss of generality, we can
now assume that F = x20 x3 + x0x22 + x31 , H = ∑

ai xi for some parameters ai
and P = (0, 0, 0, 1). Since λ4 is a generator of the C

∗-action, then λ4(t) · H =
a0t11x0 + a1t3x1 + a2t−1x2 + a3t−13x3. Therefore DH is C∗-invariant if and only
if H = xi for some i = 0, . . . , 3. Notice that this happens every time the entries of
λ are distinct. If H = x0, then DH is a triple line. If H = x1, then DH is the union
of a conic and a line, and therefore DH does not have an A2 singularity. If H = x2,
then DH has an A2 singularity at P . If H = x3, then DH has an A2 singularity at
Q = (1, 0, 0, 0) �= P and DH = D.

Suppose S has a D5 singularity at a point P , D has an A3 singularity at a point
Q �= P and (S, D) is C∗-invariant. There is a unique pair satisfying these conditions.
Reasoning as in the previous case, we may assume F = x20 x3 + x0x22 + x21 x2, H = xi
for some i = 0, . . . , 3 and P = (0, 0, 0, 1). It follows from the equations that λ6
generates the C

∗-action. If H = x0 or H = x2, then the support of DH contains a
double line. If H = x2, then DH has an A3 singularity at P . If H = x3, then DH has
an A3 singularity at Q = (1, 0, 0, 0) �= P and DH = D.

Suppose S has an A5 singularity at a point P and an A1 singularity at a point Q, D
has an A2 singularity at Q and (S, D) isC∗-invariant.Wemay assume λ6 generates the
C

∗-action, F = x0x22 + x0x1x3 + x31 , H = xi for some i = 0, . . . , 3, P = (0, 0, 0, 1)
and Q = (1, 0, 0, 0). If H = x0 then DH is a triple line. If H = x1, then DH has a
double line in its support. If H = x2, then DH has two A1 singularities. If H = x3,
then DH has an A2 singularity at Q = (1, 0, 0, 0) �= P and DH = D.

Suppose S has an A4 singularity at a point P and an A1 singularity at a point Q, D
has an A3 singularity at Q and (S, D) isC∗-invariant.Wemay assume λ5 generates the
C

∗-action, F = x0x1x3+x0x22+x21 x2, H = xi for some i = 0, . . . , 3, P = (0, 0, 0, 1)
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and Q = (1, 0, 0, 0). If H = x0 or H = x1 then DH contains a double line in its
support. If H = x2, then DH has three A2 singularities and if H = x3, then DH has
an A2 singularity at Q and DH = D.

Suppose S has a D4 singularity at a point P , D has a D4 singularity at a point
Q �= P and (S, D) is C∗-invariant. We may assume the generator of the C∗-action is
λ9, F = x20 x3 + x31 + x32 and P = (0, 0, 0, 1). If DH is λ9-invariant, either H = xi
for some i = 0, . . . , 3 or H = x1 − ax2 for a �= 0. If H = x0, then DH has a D4
singularity at P . If H = x1 or H = x2, then DH has an A2 singularity. If H = x1−ax2
with a �= 0, then DH = {x20 x3 + (

1 + 1
a

)
x31 = 0, x2 = x1

a } has an A2 singularity. If
H = x3, then DH has a D4 singularity at Q = (1, 0, 0, 0) �= P and DH = D.

Suppose S has an A3 singularity at a point P , two A1 singularities at points Q1 and
Q2, D = 2L + L ′ where L is a line containing Q1 and Q2 and L ′ is a line such that
P, Q1, Q2 /∈ L ′. Furthermore, suppose (S, D) is C∗-invariant. We may assume that
λ3 is the generator of the C∗-action, F = x0x1x3 + x1x22 + x0x22 , P = (0, 0, 0, 1),
Q1 = (1, 0, 0, 0), Q2 = (0, 1, 0, 0) and L = {x2 = x3 = 0}. Moreover, if DH is λ3-
invariant, either H = xi for some i = 0, . . . , 3 or H = x0 −ax1 for a �= 0. If H = x0
or H = x1, then DH does not contain L in its support. If H = x2 or H = x0 − ax1,
then DH is reduced. If H = x3, then DH = 2L+L ′, where L ′ = {x1+x0 = x3 = 0}.
Since P, Q1, Q2 /∈ L , then DH = D.

6 Proof of main theorems

We present the proofs of theorems 2 and 3. First, we reduce the amount of pairs we
need to consider to those with isolated singularities:

Lemma 22 Let (S, D) be a pair.

1. If S is reducible or not normal, then (S, D) is t-unstable for t ∈ [0, 1).
2. If D is not reduced, then, (S, D) is t-unstable for t ∈ (1/5, 1].
Proof The case where S is reducible follows from [10, Theorem 1.3]. By Serre’s
criterion, any hypersurface of dimension 2 is non-normal if and only if it has non-
isolated singularities. The latter are classified for cubic surfaces in [4, Case E], hence
S is an irreducible non-normal cubic surface if and only if it is projectively equivalent
to {x3 f2(x0, x1) + f3(x0, x1) + x2g2(x0, x1) = 0}. Then μt (S, D, λ10) � 1− t > 0.
If D is not reduced, we may assume (S, D) is as in Lemma 17. Then μt (S, D, λ3) =
−1 + 5t > 0, if t > 1

5 .

Proof (Theorem 2) Let (S, D) be a pair defined by equations F and H . Notice that
Lemma 22 tells us that S being normal is a necessary condition for (S, D) to be t-
stable for any t ∈ (0, 1). In particular S has a finite number of singularities, since it is
a surface. By Theorem 4, the pair (S, D) is t-stable if and only if for any g ∈ SL(4,C)

the monomials with non-zero coefficients of (g ·F, g ·H) are not contained in a pair of
sets N⊕

t (λ, xi )—characterized geometrically in Sect. 4—which is maximal for every
given t , as stated in Theorem 4. These maximal sets can be found algorithmically
[9,10]. This is equivalent to the conditions in the statement. We verify the conditions
for each t ∈ (0, 1). We will refer to the singularities of D in terms of the ADE
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classification as in Sects. 4 and 5. These will be equivalent to the global description
used in the statement of Theorem 2 by Table 3.

Suppose t ∈ (0, 1
5 ) and (λ, xi ) = (λ3, x3). Then S cannot have an A3 singularity

or a degeneration of one. When (λ, xi ) = (λ9, x3), we deduce that S cannot have
a D4 singularity or a degeneration of one (this condition is redundant since D4 is a
degeneration of A3). From (λ, xi ) = (λ1, x2) or (λ, xi ) = (λ2, x2) we deduce that
if P ∈ D then P is a singular point of S of type at worst A1. We obtain the same
condition if (λ, xi ) = (λ2, x1). This completes the proof when t ∈ (0, 1

5 ).
When t = 1

5 , the maximal sets N⊕
t (λ, xi ) are the same as for t ∈ (

0, 1
5

)
with the

addition of N⊕
t (λ3, x0), which represents the monomials of the equations of any pair

(S′, D′) such that D′ is not reduced. Therefore (S, D) is 1
5 -stable if and only if in

addition to the conditions for t-stability when t ∈ (0, 1
5 ), D is not reduced. Hence (ii)

follows.
Let t ∈ ( 1

5 ,
1
3

)
. The maximal t-non-stable sets N⊕

t (λ, xi ) are the same as for t = 1
5

but replacing the set N⊕
t (λ3, x3)with both N

⊕
t (λ7, x3) and N

⊕
t (λ5, x3). A pair (S′, D′)

whose defining equations have coefficients in one of N⊕
t (λ3, x3), N

⊕
t (λ7, x3) and

N⊕
t (λ5, x3) require that S′ has (a degeneration of) an A3 singularity, S′ is not normal

or S′ has (a degeneration of) an A4 singularity, respectively. The second condition is
redundant by Lemma 22. Hence a t-stable pair (S, D) may now have A3 singularities
but not A4 singularities. However, the coefficients of the equations of (S, D) cannot be
in N⊕

t (λ9, x3) and hence S cannot have (degenerations of) D4 singularities. Therefore
(S, D) is t-stable if and only if S has at worst A3 singularities, D is reduced and if D
supports a surface singularity P , then P must be an A1-singularity and (iii) follows.

Let t = 1
3 . The maximal sets N⊕

t (λ, xi ) are the same as for t ∈ ( 1
5 ,

1
3

)
with the

addition of N⊕
t (λ5, x0), which represents the monomials of the equations of any pair

(S′, D′) such that D′ has (a degeneration of) an A3 singularity at a singular point P
of S. Hence (S, D) is 1

3 -stable if and only if it is t-stable for t ∈ ( 1
5 ,

1
3

)
but D does not

have (a degeneration of) an A3 singularity at a singular point of P . Hence (iv) follows.
Let t ∈ ( 1

3 ,
3
7

)
. The maximal sets are N⊕

t (λ, xi ) the same as for t = 1
3 but replacing

the set N⊕
t (λ5, x3) — parametrizing pairs (S′, D′) where S′ has (a degeneration of)

an A4 singularity—with the set N⊕
t (λ6, x3)—parametrizing pairs (S′, D′) where S′

has (a degeneration of) an A5 singularity. Hence a t-stable pair (S, D) may now have
A4 singularities but not A5 singularities. However, the coefficients of the equations
of (S, D) cannot be in N⊕

t (λ9, x3) and hence S cannot have (degenerations of) D4
singularities. Furthermore the restrictions for t = 1

3 regarding D still apply. Therefore
a pair (S, D) is t-stable if and only if satisfies the conditions in (v).

Let t = 3
7 . The maximal sets N⊕

t (λ, xi ) are the same as for t ∈ ( 1
3 ,

3
7

)
but replacing

the set N⊕
t (λ5, x0)—parametrizing pairs (S′, D′) such that D′ has (a degeneration of)

an A3 singularity at a surface singularity of S′—, for both the set N⊕
t (λ6, x0)—

parametrizing pairs (S′, D′) such that D′ has (a degeneration of) an A2 singularity
at a surface singularity of S′—and the set N⊕

t (λ9, x0)—parametrizing pairs (S′, D′)
such that D′ has (a degeneration of) an A4 singularity. Hence (vi) follows.

Let t ∈
(
3
7 ,

5
9

]
. The difference between the maximal sets for N⊕

t (λ, xi ) and for

N⊕
3
7
(λ, xi ) consists of three new sets (N⊕

t (λ6, x3), N
⊕
t (λ8, x3) and N⊕

t (λ10, x3)) and
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three sets that do not appear for t anymore (N⊕
t (λ9, x3), N

⊕
t (λ6, x3), N

⊕
t (λ7, x3)). The

three new sets parametrize pairs (S′, D′) such that S′ has at least either (a degeneration
of) one D5 singularity , a degeneration of one Ẽ6 singularity or one line of singularities,
respectively. The three sets that are not maximal non-stable sets for t parametrize pairs
(S′, D′) such that S′ has (a degeneration of) a D4, an A5 and a line of singularities,
respectively. Hence, the only difference with respect to t = 3

7 is that we include pairs
(S, D) such that S has at worst A5 or D4 singularities and (vii) follows.

Let t = 5
9 . The difference between the maximal sets for N⊕

t (λ, xi ) for t ∈
(
3
7 ,

5
9

)

and for N⊕
5
9
(λ, xi ) consists of replacing the set N⊕

t (λ3, x0)—parametrizing pairs

(S′, D′) such that D′ is non-reduced—for the set N⊕
t (λ6, x0)—parametrizing pairs

(S′, D′) such that D′ has (a degeneration of) an A3 singularity. Hence a 5
9 -stable pair

(S, D) is a t-stable pair for t ∈
(
3
7 ,

5
9

)
such that D has at worst an A2 singularity.

Notice that D is still reduced by Lemma 22. Hence (viii) follows.

Let t ∈
(
5
9 ,

9
13

)
. The difference between the maximal sets for N⊕

t (λ, xi ) for t ∈(
5
9 ,

9
13

)
and for N⊕

5
9
(λ, xi ) consists of replacing the set N⊕

t (λ6, x3)—parametrizing

pairs (S′, D′) such that S′ has (a degeneration of) a D5 singularity—for the set
N⊕
t (λ4, x3)—parametrizing pairs (S′, D′) such that S′ has (a degeneration of) an

E6 singularity. Hence (ix) follows.

Let t = 9
13 . The difference between the maximal sets for N⊕

t (λ, xi ) for t ∈
(
5
9 ,

9
13

)

and for N⊕
9
13

(λ, xi ) consists of replacing the set N⊕
t (λ6, x0)—parametrizing pairs

(S′, D′) such that D′ has (a degeneration of) an A2 singularity at a singular point
of S′—, the set N⊕

t (λ9, x0)—parametrizing pairs (S′, D′) such that D′ has (a degen-
eration of) a D4 singularity—and the set N⊕

t (λ6, x0)—parametrizing pairs (S′, D′)
such that D′ has (a degeneration of) an A3 singularity—for the set N⊕

t (λ4, x0)—
parametrizing pairs (S′, D′) such that D′ has (a degeneration of) an A2 singularity.
Hence (x) follows.

Let t ∈ ( 9
13 , 1

)
. The maximal sets N⊕

t (λ, xi ) are the same as for N⊕
9
13

(λ, xi ) but

removing the set N⊕
t (λ4, x3), which parametrizes pairs (S′, D′) where S′ has an E6

singularities. Hence such surfaces are now t-stable providing they do not violate any
other conditions. This concludes the proof of the theorem.

Theorem 3 Suppose (S, D)—defined by polynomials F and H—belongs to a closed
strictly t-semistable orbit. By Lemma 21, they are generated by monomials in
N 0
t (λ, xi ) for some (λ, xi ) such that N⊕

t (xi , λ) is maximal with respect to the con-
tainment of order of sets. Since there is a finite number of λ to consider (those in
Lemma 2), this is a finite computation which can be carried out by software [9,10].
For each pair (λ, xi ), there is a change of coordinates that gives a natural bijection
between N 0(λ, xi ) and N 0(λ, x3−i ). Therefore about half of the values are redundant
and we have two possible choices for each F and H if t �= t1, . . . , t5 three choices if
t = t1, t2, t4, t5 and four if t = t3.

Similarly, by [10, Lemma 3.2] and Lemma 2 we can check that the pair (S, D)

corresponding to F = x0x3x1 + x32 , H = x2 is strictly t-semistable. Suppose that
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(λ, xi ) = (λ1, x2). Then F = x0x3 f1(x1, x2) + f3(x1, x2) and H = g1(x1, x2).
After a change of variables involving only x1 and x2, we may assume that F =
x0x3x1 + f3(x1, x2). We will show that the closure of (S, D) contains (S, D). Let
γ = Diag(1, 1, 0,−2) be a one-parameter subgroup. Then

lim
t→0

γ (t) · F = x0x1x3 + bx32 and lim
t→0

γ (t) · H = x2.

If b = 0, then limt→0 γ (t) · S is reducible, which is impossible as it is not t-stable
for any value of t ∈ (0, 1) by Lemma 22. Therefore b �= 0 and by rescaling we see
that limt→0 γ (t) · (S, D) = (S, D). Hence, the closure of the orbit of (S, D) contains
(S, D), which we tackle next.

Suppose that (λ, xi ) = (λ2, x1). Then F = x31 + x0 f2(x2, x3) and H = x1. After a
change of variables involving only x2 and x3 we may assume that F = x31 + x0x2x3.
We can do similar changes of variables in the rest of the cases and end upwith F and H
not depending on any parameters. Observe that since (S, D) is strictly t-semistable,
the stabilizer subgroup of (S, D), namely G(S,D) ⊂ SL(4,C) is infinite (see [6,
Remark 8.1 (5)]). In particular there is a C

∗-action on (S, D). Lemma 21 classifies
the singularities of (S, D) uniquely according to their equations. For each t ∈ (0, 1),
the proof of Theorem 3 follows once we recall the classification of plane cubic curves
according to their isolated singularities (see Table 3).
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