
c© 2019 Jiaxi Jason Nie

COMPRESSION ARTIFACT SUPPRESSION FOR COLOR IMAGES
WITH DUAL-DOMAIN SE-ARRESNET

BY

JIAXI JASON NIE

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Adviser:

Professor Minh N. Do

ABSTRACT

JPEG compression has been a popular lossy image compression technique

and is widely used in digital imaging. Restoring high-quality images from

their compressed JPEG counterparts, however, is an ill-posed inverse problem

but could be of great use in improving the visual quality of images. With the

representational power that convolutional neural networks (CNNs) demon-

strate, we show that it is possible to suppress JPEG compression artifacts

and recover visually pleasing images.

To recover original high-quality and high-resolution images from JPEG

compressed images, we leverage prior knowledge of JPEG compression into

consideration by exploiting frequency redundancies with the CNN in discrete

cosine domain and constrain the quantization loss, in addition to exploiting

spatial redundancies in the pixel domain. This data-driven approach tar-

gets removing compression artifacts, including blocking, blurring, ringing

and banding artifacts, and recovering high-frequency information for recon-

struction. We design a deep CNN in each domain and fuse the outputs with

an aggregation network to produce the output image. To improve the model

performance, we leverage the robustness and ability to tackle vanishing gra-

dient problems of ResNet to build a deep network, and utilize squeeze-and-

excitation block, a technique typically found beneficial in classification tasks,

to this regression problem to exploit global information in a larger scale. We

refer to the module proposed in this work as squeeze-and-excitation artifact

ii

removal ResNet (SE-ARResNet). Prior work in this field mainly focuses on

reconstructing a grayscale image or the luminance channel of the image. We

demonstrate that we can reconstruct color images effectively and robustly

with the dual-domain CNN approach.

iii

To my parents, for their unconditional love and support.

iv

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my adviser, Professor Minh N.

Do, for his continuous help and guidance throughout the development of this

project. I also wish to extend my gratitude to Cu Khoi N. Mac, Raymond A.

Yeh, Renan A. R. Gomez and Dr. Chen Chen for their help and constructive

critiques. I gratefully acknowledge the support of NVIDIA Corporation for

its donation of the Titan V GPU and Dr. Chen Chen for his donation of the

GeForce RTX 2080Ti GPU used in this research. Last but not least I’d like

to thank my parents, for their long-lasting love, support and sacrifice.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Image Compression . 2
1.2 JPEG Compression . 3
1.3 Compression Artifacts . 14
1.4 Convolutional Neural Network 17
1.5 Performance Measurement . 21

CHAPTER 2 RELATED WORK . 27

CHAPTER 3 APPROACH . 30
3.1 Super-Resolution Networks . 31
3.2 Artifact Removal Networks . 34
3.3 Dual-domain Approach . 35

CHAPTER 4 EXPERIMENTS . 50
4.1 Dataset . 50
4.2 Implementation Details . 51
4.3 Results . 52

CHAPTER 5 CONCLUSIONS . 59

REFERENCES . 60

vi

CHAPTER 1

INTRODUCTION

With the rapid development of the Internet, digital imaging and mobile

devices, transferring and displaying high-quality images has become ubiqui-

tous. The growing demand for high-quality visually pleasing images requires

high-resolution images with minimal noise and artifacts to be displayed on

high-resolution screens, which is unfortunately limited by the constraints in

network bandwidth and the amount of storage resource as the communica-

tion and storing are typically expensive. To meet this demand while coping

with the aforementioned bottlenecks, several image compression techniques

have been developed and widely applied over the past a few decades which

generate highly compressed images with low bitrate at the cost of almost

unnoticeable degradation.

In order to meet the bit-budget, many compression techniques, especially

lossy ones (JPEG, JPEG 2000, WebP, HEVC-MSP, etc.), have been adopted

to drop certain information during the compression process by taking ad-

vantage of the different sensitivities of human eyes. This process introduces

irreversible loss in the low-bitrate image signal and poses a challenge in recon-

structing the original high-quality image. JPEG compression was released in

1992 by the Joint Photographic Experts Group and is still one of the most

popular compression techniques used today because of its high compression

ratio and small perceptible loss. These quality degradations were typically

small and went unnoticeable at the time of release of JPEG, but with the

1

development of high-resolution displays they can be easily spotted by human

eyes, and are therefore unacceptable.

One way to tackle this problem is through progress in communication

and storage technologies to efficiently transfer and store high-quality original

images. Another way is through effective restoration techniques that can

reconstruct original images from their compressed counterparts.

Two representative types of the latter approach have been shown useful in

tackling this challenge and correcting the corrupted images: sparsity coding

based approaches and convolutional neural network (CNN) approaches. The

CNN approach has been demonstrated effective in reconstructing grayscale

images or the luminance channel of color images. Theoretically these net-

works can be adopted to restore color images, but practically the result is not

guaranteed to be as satisfying as that of a single-channel image. We show

that recovering color images poses additional challenges compared to recov-

ering single-channel images, and we propose a robust and effective framework

to reconstruct original color images by suppressing compression artifacts and

recovering high-frequency information. Our proposed model incorporates

state-of-the-art techniques to fully exploit the power of the CNN and demon-

strates satisfying performance in correcting compression artifacts.

1.1 Image Compression

Image compression is a major technique in computer vision to reduce the

bitrate of high-resolution images with relatively large file sizes. These com-

pression techniques output images with small file sizes such that they can be

easily transmitted or stored using fewer bits than the original images to save

precious transmission and storage resources. This compression is achieved

2

by exploiting correlations between pixel intensities and color components.

Various compression techniques have been proposed, of which there are two

distinct approaches: lossless and lossy. Lossless compression (PNG, GIF,

etc.) is the compression that enables recovery of the original image, while

lossy compression (JPEG, GIF, etc.) precludes recovery as it drops bits that

do not significantly contribute to the resulting image quality. Compared to

lossless compression, lossy compression can further reduce the bits required,

and this reduction can be measured with the compression ratio defined by:

r =
Noriginal(bits)

Ncompressed(bits)
(1.1)

Because of its higher compression ratio, we focus on lossy compression,

specifically JPEG compression, as lossless compressions can fully reconstruct

the original images but are less popular.

1.2 JPEG Compression

The JPEG compression standard was released by the Joint Photographic

Experts Group in 1992 to define and standardize a codec process for com-

pressing images into bit streams and decoding back into pixels for storage

and transmission. JPEG is a widely used transform coding technique and by

transforming the image into frequency domain, it exploits the correlations to

eliminate less-frequent information that is not noticeable in the resulting im-

ages. The compression quality is controlled by the parameter Quality Factor

(QF), which is an integer between 0 and 100. Compression with a lower QF

produces an image with smaller file size but more perceptible loss (see Fig.

1.1).

3

Figure 1.1: Top: Original high-resolution image. Middle: Image compressed
with QF 30. Bottom: Image compressed with QF 10. Best viewed in color.

The detailed encoding process is diagramed in Fig. 1.2 and explained in

the following section. For simplicity we denote the original image as x and

4

the compressed image as x̂ in the rest of this thesis.

Figure 1.2: JPEG encoding pipeline.

1.2.1 Colorspace Transformation

The first step of the JPEG compression pipeline is to transform images

from RGB colorspace into YCbCr colorspace by:


xY = 0 + 0.299 · xR + 0.587 · xG + 0.114 · xB

xCb
= 128− 0.169 · xR − 0.331 · xG + 0.5 · xB

xCr = 128 + 0.5 · xR − 0.419 · xG − 0.081 · xB

(1.2)

with three decimal points of precision. It is worth noting that in prac-

tice images are typically represented by 8 bit unsigned integers or 32/64

bit floating numbers, and the level of precision introduces negligible error

in colorspace conversion and final reconstruction. This transformation to

YCbCr colorspace is desired because the primary colors in RGB colorspace

are highly correlated, while channels in YCbCr colorspace eliminate this re-

dundancy and better approximate perceptual uniformity. Specifically, the

luminance channel (Y) captures the brightness of a pixel, while the chromi-

nance channels (Cb and Cr) represent the blue and red components.

5

1.2.2 Chroma Subsampling

Because human eyes are more sensitive to the pixel intensities represented

by the luminance change (Y) and less sensitive to the chrominance com-

ponents in channel (Cb and Cr), it is common to further reduce the spatial

dimension of chrominance channels by an optional factor denoted by J : a : b,

where J is the width of the horizontal sampling reference (typically 4), a is

the number of chrominance samples in the first row, and b is the number of

changes in the chrominance samples between the first and second rows of J

pixels. This operation further reduces the information to be encoded later in

the following compression pipeline.

1.2.3 Block Splitting

Both the luminance channel and the two downsampled chrominance chan-

nels are further split into non-overlapping 8x8 macroblocks. The term min-

imum coded unit (MCU) refers to these blocks. The size of the MCU of

the luminance channel is 8x8 and the size of the MCU of the chrominance

channel is 16x16, if the chroma subsampling factor is set to 4:2:0.

1.2.4 Zero-centering

Since the 8-bit image has pixel intensities ranging from 0 to 255, we sub-

tract 128 from these pixel values to make them center around 0 and reduce

their dynamic range. We denote this operation as S and the resulting image

as xs:

xs = S(xY) = xY − 128 (1.3)

The same operation is applied to chrominance channels.

6

1.2.5 Discrete Cosine Transform (DCT)

Following zero-centering, we apply 2D discrete cosine transform (2D DCT)

to each non-overlapping 8x8 macroblock to obtain its 8x8 DCT coefficients.

Discrete cosine transform is a technique used to transfer a signal from pixel

domain to frequency domain, similar to discrete Fourier transform (DFT)

but all frequency components are real values, as opposed to the complex

numbers in DFT. The 1D DCT is commonly defined as

y(k) = α(k)
N−1∑
n=0

x(n)cos(
πk(2n+ 1)

2N
), 0 ≤ k < N (1.4)

where x(n) is the input 1D signal with N samples and y(k) is its frequency

counterpart. The coefficient α(k) is defined as

α(k) =


√

1
N
, if k = 0,√

2
N
, if 1 ≤ k < N

(1.5)

The inverse discrete cosine transform IDCT is used to transform the signal

from frequency domain back to pixel domain, and is given by

x(n) =
N−1∑
k

α(k)y(k)cos(
πk(2n+ 1)

2N
), 0 ≤ n < N (1.6)

Compared to DFT, DCT produces real numbers and has better energy

compaction. Unlike DFT, DCT does not produce artificial high-frequency

coefficients which was caused by the boundary effects, namely the abrupt

transitions at the end of each interval.

Two-dimensional DCT (2D DCT) can be obtained by applying 1D DCT

successively to the rows and columns of each block in the image, hence 2D

7

DCT is a separable transform. We exploit this property in Section 3.3.1 to

speed up the calculation.

In JPEG compression 2D DCT is applied to each block in the image and

we denote this operation as DCT and the resulting coefficient matrix as xd.

This operation is formally defined as

xd(u, v) = DCT (xs)

=
1

4
α(u)α(v)

7∑
x=0

7∑
y=0

xscos[
(2x+ 1)uπ

16
]cos[

(2y + 1)vπ

16
]

(1.7)

where u and v are the horizontal and vertical spatial frequencies of the pixel

inside each 8x8 block, i.e. 0 ≤ u < 8, 0 ≤ v < 8.

Parameter α here is a normalizing scale factor where

α(u), α(v) =


1√
2
, if u = 0 or v = 0,

1, otherwise.

(1.8)

By multiplying this factor, the transformation becomes orthonormal. It is

worth noting that this is a linear operation as xs is not inside the cosine func-

tions. This is imperative for residual learning to be possible as we describe in

more detail in Chapter 3. After the DCT operation, we have transformed

the image from pixel domain to DCT domain.

The top-left corner of the 8x8 DCT coefficients of each macroblock is re-

garded as the DC coefficients and usually has the largest magnitude, while

the other 63 coefficients are referred to as the AC coefficients and have rel-

atively smaller magnitude. The DC coefficients contain the low-frequency

information, while the AC coefficients at the bottom-right corner have the

most high-frequency information. The same transform is applied to both the

8

luminance and chrominance channels. A sample picture in both pixel and

frequency domain is illustrated in Fig. 1.3.

Figure 1.3: Top-left: Original image in pixel domain. Top-right: Original
image in DCT domain. Bottom-left: Compressed image in pixel domain.
Bottom-right: Compressed image in DCT domain.

1.2.6 Quantization

Considering that human eyes are not sensitive to brightness variations in

a high-frequency area, we can leverage this insensitivity to reduce the infor-

mation we need to encode by dropping certain high-frequency information in

the bottom-right part of the 8x8 DCT blocks.. This is done by an element-

wise division of the DCT coefficients in each 8x8 macroblock by a predefined

9

quantization table (Qt). We denote this operation as Q and the resulting

quantized DCT coefficients as xq.

xq(i, j) = Q(xd(i, j)) =
xd(i, j)

Qt(i, j)
(1.9)

where the division is element-wise in each 8x8 DCT block and i, j denote

the row and column indices respectively. This operation is applied to both

luminance and chrominance channels by their corresponding quantization

tables obtained using the method below.

Quantization tables are empirically found to yield satisfying quantization

results and are sometimes trademarks for companies and entities who devel-

oped their own quantization tables. They also depend on the quality (QF) of

the desired level of compression and differ in the luminance and chrominance

channels. The commonly used quantization tables for QF of 50 are shown

below.

QtY 50 =



16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99



10

QtC 50 =



17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99


After the element-wise division of the luminance and chrominance channels

by their corresponding quantization tables, only a few coefficients in the top-

left corner of each 8x8 DCT block, including the DC coefficient, remain large

while all other AC coefficients become very close to 0.

Quantization tables for other quality factors QFnew can be obtained based

on the two quantization tables for QF = 50 by the following equations:

S =


5000
QFnew

, if QFnew < 50

200− 2 ·QFnew, if QFnew > 50

(1.10)

QtY new(u, v) =
S ·QtY 50(u, v) + 50

100
(1.11)

QtC new(u, v) =
S ·QtC 50(u, v) + 50

100
(1.12)

where u, v denote the row and column indices in each 8x8 DCT block.

1.2.7 Rounding

Following the previous step, we round all quantized DCT coefficients to

the nearest integer, which results in most coefficients being 0. This operation

11

is denoted by R and resulting coefficients by xr.

xr = R(xq) = round(xq) (1.13)

This is the only operation in the JPEG compression pipeline that intro-

duces loss, ignoring the numerical errors due to precision, which are negligi-

ble.

1.2.8 Entropy Coding

The last step in the encoding stage is entropy coding, which is a lossless

operation applied on the rounded DCT coefficients. The DCT coefficients

are first rearranged in a zigzag order to group similar frequencies together,

illustrated in Fig. 1.4. This reordering captures non-zero coefficients first and

adds zeros after the non-zero frequencies. Huffman coding is subsequently

applied to the reordered coefficients to encode all non-zero frequencies.

Figure 1.4: Illustration of zigzag ordering.

12

1.2.9 Decoding

Figure 1.5: JPEG decoding pipeline.

The decoding process, shown in Fig. 1.5, applies all operations listed above

in reverse order. After rearranging the DCT coefficient matrix in reverse

zigzag order, we perform element-wise multiplication of the 8x8 macroblocks

in the coefficient matrix with quantization tables of the corresponding chan-

nel. This operation is denoted by Q−1 and the resulting coefficient matrix

x̃q

x̃q(i, j) = Q−1(xr) = xr ∗Qt(i, j) (1.14)

where the multiplication is element-wise in each DCT block and i, j denote

the row and column indices of each 8x8 block.

Due to the rounding operation R in the encoding stage, most elements

in the coefficient matrix are zero at this point, which indicates the loss of

high-frequency information is irreversible.

Two-dimensional inverse discrete cosine transform (2D IDCT) is then ap-

13

plied to each 8x8 block. This operation is denoted by IDCT and the re-

sulting matrix in pixel domain by x̃d.

x̃d(i, j) = IDCT (x̃q)

=
1

4

7∑
u=0

7∑
v=0

x̃qα(u)α(v)cos[
(2i+ 1)uπ

16
]cos[

(2j + 1)vπ

16
]

(1.15)

where i and j are the horizontal and vertical indices of the pixel inside each

8x8 macroblock, i.e. 0 ≤ i < 8, 0 ≤ j < 8.

Parameter α is defined the same as Equation (1.5). Given that IDCT

may result in non-integer values, we round the resulting coefficient matrix

to the nearest integers. After this operation we have transformed from the

DCT domain back to the pixel domain.

The last step in the decompression stage is to add 128 back to add pixel

intensities. This operation is denoted by S−1 and the resulting image by x̂.

x̂ = S−1(x̃d) = x̃d + 128 (1.16)

Considering that this operation may result in pixel intensities outside of

the range [0, 255], we clip x̂ by [0, 255] to make sure all pixel values are

valid. At this point we have obtained the compressed image x̂ from the

original image x.

1.3 Compression Artifacts

As a lossy compression scheme, JPEG is able to produce compressed im-

ages with significantly fewer bits compared to the original images at the cost

of visual degradation. The degradation is reflected by the artifacts coupled

14

with the compression process. Here we show a few compression artifacts

that are commonly found in compressed images. The degree of corruption is

dependent on the quality factor at the time of compression.

1.3.1 Blocking Artifacts

Due to the nature of JPEG compression that splits the image into 8x8

blocks, blocking artifacts arise as a result of inconsistency at the boundaries of

macroblocks, due to the fact that adjacent pixels on either side of a boundary

are being quantized into two different intensities. Blocking artifacts manifest

as segmenting the original image into small square blocks, as shown in Fig.

1.6.

Figure 1.6: Left: Original image. Right: Compressed image with blocking
artifacts. Best viewed in color.

15

1.3.2 Blurring Artifacts

As JPEG compression removes high-frequency components that are less

noticeable to human eyes in the DCT domain, this loss is inevitably reflected

in the compressed images, as can be seen in Fig. 1.7. The sharp edges,

such as those on the woman’s hat and hair, are smoothed out. It is worth

mentioning that these discarded high-frequency components are found to be

the most difficult to recover in existing and ongoing restoration approaches.

Figure 1.7: Left: Original image. Right: Compressed image with blurring
artifacts. Best viewed in color.

1.3.3 Ringing Artifacts

For similar reasons, ringing artifacts arise around sharp edges due to the

coarse quantization of high-frequency signal; see Fig. 1.8 These artifacts

appear as oscillations around edges.

16

Figure 1.8: Left: Original image. Right: Compressed image with ringing
artifacts. Best viewed in color.

1.3.4 Banding Artifacts

Coarse quantizations in smooth regions of an image may induce banding

artifacts, or contouring artifacts, shown as the smooth regions being sepa-

rated into visible bands; see Fig. 1.9 for illustration.

Figure 1.9: Left: Original image. Right: Compressed image with banding
artifacts. Best viewed in color.

1.4 Convolutional Neural Network

Convolutional neural network (CNN) has enjoyed success in many visual

imagery and natural language processing tasks over recent years due to its

17

exemplary representational power and ability to exploit spatial redundan-

cies. It was first shown superior in image classification [1] and was later

applied to various high-level computer vision tasks including object detec-

tion, recognition and segmentation. In recent years it has been shown that

low-level computer vision tasks such as image super-resolution, denoising and

reconstruction can also benefit from the power of CNNs.

CNN is a regularized version of multi-layer perceptrons which utilize convo-

lutional neurons to convolve a filter with the signal in a predefined receptive

field. They have a large amount of parameters, namely the weights and

bias of the filters, that can be updated during gradient back-propagation to

minimize the predefined loss between model output and the desired signal.

Here we briefly review two CNN architectures that have demonstrated their

superiority in various vision-related tasks, and are the inspiration behind the

model we propose in this work.

1.4.1 ResNet

One way to better leverage the representational power of deep neural

networks is to make them deeper, namely adding more convolution lay-

ers. Adding more layers effectively increases the amount of parameters to

be learned and enables better approximation of the non-linear function the

model is trying to represent. However, very deep neural networks are diffi-

cult to train as they do not converge easily. This is because the gradients

calculated at back-propagation time are typically small and approach zero

indefinitely when multiplied together; therefore, they cannot propagate back

to the early layers. As a result, the neurons in early layers suffer from the

vanishing gradient problem and are unable to update.

18

Deep residual neural network (ResNet) [2] was proposed to tackle the van-

ishing gradient problem by adding skip connections between early and later

layers within each residual block. This is done by an element-wise addition

of the input and the output of a subsequent convolution layer, as illustrated

in Fig. 1.10.

Figure 1.10: Two residual blocks proposed in [2].

The two proposed residual blocks add batch normalization after each con-

volution layer to reduce internal covariance shift and speed up training. The

residual block in Fig. 1.10(b) replaces the first 3x3 convolution layer with a

1x1 layer and adds another 1x1 layer at the end of the residual block. Typ-

ically 1x1 convolution layers are used for feature dimensionality reduction,

such that Fig. 1.10(b) reduces feature dimensionality first and then increases

19

it later within the same residual block.

1.4.2 Squeeze-and-excitation Network

Squeeze-and-excitation network [3] came under the spotlight for its signifi-

cant improvement in ImageNet [4] classification accuracy. This network seeks

to enhance spatial encoding to improve the representational power of the net-

work. They exploit inter-channel dependencies and adaptively re-calibrate

each channel of the feature maps. Specifically, the model learns to assign a

weight to each channel based on its importance such that we can pay more

attention to the more useful and informative channels and less attention to

the other ones, as illustrated in Fig. 1.11.

Figure 1.11: Illustration of squeeze-and-excitation module. Different color
indicates different importance of each channel.

This module takes in a feature map from the previous layer and performs

a channel-wise global average-pooling at the squeeze phase, which effectively

reduces the dimension of the feature map from HxWxC to 1x1xC, followed

by the excitation stage where the module transforms the 1x1xC vector to

another 1x1xC vector which indicates the importance of each channel, as

its importance factor. This importance factor is multiplied back to the in-

20

put of the squeeze-and-excitation module by each channel to produce the

recalibrated feature map. Detailed operation of this module is shown in Fig.

1.12.

Figure 1.12: Left: Standard residual block. Right: Squeeze-and-excitation
block.

Compared to the standard residual block in ResNet (Fig. 1.12(a)), the

squeeze-and-excitation block does not add too much computation but is bet-

ter able to capture global information outside of the receptive field than

simply stacking convolutional filters. By embedding the global information

in the feature maps, various classification-related tasks are better able to

reduce their classification errors.

1.5 Performance Measurement

After enhancing or reconstructing images, it is common to adopt objective

evaluation metrics to quantify the enhancement or improvement. Besides

21

mean squared error, which indicates the squared difference between an image

and its reference, popular evaluation metrics include peak signal-to-noise

ratio (PSNR), structural similarity index (SSIM) [5] and PSNR-B [6], which is

specifically designed to assess blocking artifacts in JPEG compressed images

by including a blocking effect factor (BEF). These three commonly used

metrics are described in detail in the following sections.

1.5.1 PSNR

The mean square error (MSE) and peak signal-to-noise ratio (PSNR) are

two commonly used error metrics. MSE measures the cumulative squared

error between an image I and its reference image R while PSNR gives the

peak error. MSE is formally defined as:

MSE(I, R) =

∑
M,N(I(m,n)−R(m,n)2

M ×N
(1.17)

and PSNR is given by

PSNR(I, R) = 10× log10(
A2

MSE(I, R)
) (1.18)

correspondingly, where A is the maximum possible pixel intensity value, typ-

ically 1 for images where all pixel intensities are between 0 and 1, or 255 for

images where all pixel intensities are between 0 and 255.

Typically images with better quality have a lower MSE and higher PSNR,

and two identical images would have an MSE of 0 and PSNR of infinity. In

addition, because human eyes are more sensitive to luminance components

and less sensitive to chrominance components, it is sometimes common to

evaluate PSNR on luminance channel only instead of the RGB image.

22

1.5.2 SSIM

Although commonly adopted for image quality measurement, MSE and

PSNR sometimes fail to correlate with the perceptible quality loss and are

therefore not entirely reliable. Structural similarity index (SSIM) [5], on

the other hand, assesses image degradation by measuring the perceptible

loss by considering structural information and perceptual phenomena. It

exploits the structure manifested as inter-dependencies among spatially close

pixels. It also considers luminance masking and contrast masking, the former

indicating a phenomenon where image distortions are more conspicuous in

bright areas and the latter indicating distortions are also less visible in areas

with more textures.

Mathematically SSIM is a product of three different aspects of similarity:

luminance, contrast and structure. The luminance comparison of image I

and reference image R is defined as:

l(I, R) =
2µIµR + C1

µ2
I + µ2

R + C1

(1.19)

where µx and µy are mean of I and R, and C1 is a stabilizing constant.

Similarly the contrast comparison is defined as:

c(I, R) =
2σIσR + C2

σ2
I + σ2

R + C2

(1.20)

where σI and σR are standard deviation of I and R, and C2 is a stabilizing

constant.

The structure comparison is defined as:

s(I, R) =
σIR + C3

σIR + C3

(1.21)

23

where σIR is the correlation between I and R, and C3 is another stabilizing

constant.

Putting it together, the SSIM is given by:

SSIM(I, R) = l(I, R)α × c(I, R)β × s(I, R)γ (1.22)

In most cases we have C3 = C2

2
and α = β = γ = 1, and the SSIM equation

is reduced to a common form:

SSIM(I, R) =
(2µIµR + C1)(2σIR + C2)

(µ2
I + µ2

R + C1)(σ2
I + σ2

R + C2)
(1.23)

1.5.3 PSNR-B

To measure the image degradation caused by JPEG compression, specifi-

cally the severity of blocking artifacts, PSNR-B [6] was designed to incorpo-

rate a blocky effect factor term that measures the differences in pixel inten-

sities across DCT blocks, specifically the change in luminance levels around

block boundaries. This metric simply measures the extent of apparent block-

ing artifacts and does not require a reference image.

Assume we have an image I with shape NV × NH . Let H and V be

the sets of all pairs of adjacent pixels in image I in horizontal and vertical

directions. Denote HB to be a set of all pairs of adjacent pixels across the

horizontal boundaries and VB to be a set of all pairs of pixels across the

vertical boundaries. Consequently denote the complements of HB and VB,

which are all pairs of adjacent pixels that do not lie on the horizontal or

vertical boundaries, as HC
B and V C

B , i.e.

HC
B = H −HBV

C
B = H − VB (1.24)

24

Figure 1.13: Illustration of pixel blocks.

An illustration is shown in Fig. 1.13, where

HB = {(I4, I5), (I12, I13), ...}

HC
B = {(I1, I2), (I2, I3), ...}

VB = {(I25, I33), (I26, I34), ...}

V C
B = {(I1, I9), (I9, I17), ...}

(1.25)

Denoting the number of pairs in sets HB, HC
B , VB, V C

B by NHB
, NC

HB
, NVB ,

NC
VB

, respectively, and the block size by B, then

NHB
= NV [

NH

B
− 1]

NC
HB

= NV (NH − 1)−NHB

NVB = NH [
NV

B
− 1]

NC
VB

= NH(NV − 1)−NVB

(1.26)

We further differentiate the squared difference among all pixel pairs lying

25

on the boundaries and pixel pairs not lying on the boundaries by:

DB(I) =

∑
(Iu,Iv)∈HB

(Iu − Iv)2 +
∑

(Iu,Iv)∈VB(Iu − Iv)2

NHB
+NVB

(1.27)

DC
B(I) =

∑
(Iu,Iv)∈HC

B
(Iu − Iv)2 +

∑
(Iu,Iv)∈V C

B
(Iu − Iv)2

NHC
B

+NV C
B

(1.28)

where DB and DC
B are mean boundary pixel squared difference and mean

nonboundary pixel squared difference, respectively. As the quantization step

increases, DB will approach DC
B , in which case the blocking artifacts will

become more obvious.

We also define blocking effect factor (BEF) as

BEF (I) = η × [DB(I)−DC
B(I)] (1.29)

where

η =


logB2

log2(min(NH ,NV))
, if DB(I) > DC

B(I)

0, otherwise

(1.30)

from which we can see that η is a function of block size B, and the resulting

PSNR-B is nonzero if and only if the differences across pixel pairs lying on

block boundaries are larger than the differences across non-boundary pixel

pairs.

Finally the PSNR-B is defined as:

MSE −B(I, R) = MSE(I, R) +BEF (I) (1.31)

PSNR−B(I, R) = 10log10
2552

MSE −B(I, R)
(1.32)

26

CHAPTER 2

RELATED WORK

Existing works targeting suppression of compression artifacts have been

developed using various approaches.

Conventional approaches treat artifact removal as either a deblocking-

oriented or restoration-oriented task [7]. Deblocking-oriented methods aim at

removing blocking artifacts in spatial domain [8, 9] by devising adaptive fil-

ters to remove blocking artifacts in specific regions, or they denoise by thresh-

olding in the wavelet domain [10]. These approaches tend to oversmooth and

fail to recover high-frequency information such as edges in smooth regions

due to filtering operations. Restoration-oriented methods, including projec-

tion onto convex sets (POCS) [11] and regression tree fields [12], aim to

directly remove distortion introduced at compression time by utilizing prior

knowledge.

Learning based approaches, on the other hand, have demonstrated superior

reconstruction quality. Two representative learning based approaches include

sparse-coding based methods and reconstruction with a CNN. Sparsity-based

works seek to reconstruct the original image by building a dictionary of the

sparse representation of a set of compressed images using K-singular vector

decomposition (K-SVD) algorithm, then estimating the original image from

the learned dictionary by constraining the errors [13]. Liu et al. [14] incor-

porated prior knowledge of JPEG compression by carrying out the sparse-

coding in both pixel and DCT domain to constrain the quantization errors

27

within DCT domain. Both works have shown impressive deblocking perfor-

mance, but the performance is limited by the number and size of dictionaries,

and is found to be accompanied by either noisy edges or over-smoothed re-

gions [15]. Another drawback of these sparsity-based approaches is that the

reconstruction stage is performed iteratively, which is computationally ex-

pensive.

Since their success at the AlexNet [1] in ImageNet classification tasks [4],

convolutional neural networks (CNNs) have enjoyed continuous success at

various high-level computer vision tasks including classification, segmenta-

tion and recognition, etc. In recent years CNNs have also been shown to

succeed in low-level computer vision tasks such as image restoration and en-

hancement. Dong et al. first demonstrated that CNNs can be utilized to

restore images [16]. They approached the task of image super-resolution by

formulating a three-layer CNN (SRCNN) which is tailored to perform the

same jobs that sparsity-based models do. Specifically, the three convolu-

tional layers aim to extract and represent features, perform non-linear map-

ping and reconstruct images, respectively. Although this three-layer network

is effective at recovering high-resolution details, the limit in depth prevents

its further improvement. Kim et al. [17] developed a significantly deeper

CNN (VDSR) with 20 convolutional layers to perform single-image super-

resolution task. They ensured that by only learning the residual of the input

images, gradients can be back-propagated to the early layers and not lost

in the deep network. Based on SRCNN, Dong et al. [18] showed that com-

pression artifacts can be eliminated by enhancing the features extracted by

a CNN, and proposed a network (ARCNN) specifically targeting removal of

compression artifacts. ARCNN adds an extra convolutional layer after the

feature extraction layer to enhance extracted features. They also demon-

28

strated that directly training a model to recover images compressed with a

lower QF is difficult; however, by applying transfer learning, specifically fine-

tuning a model pretrained on recovering images with a relatively higher QF ,

their model is able to perform better on more difficult tasks. Inspired by the

dual-domain sparsity-coding approach, Guo and Chao [15] developed a CNN

(DDCN) while applying the constraint on quantization loss in DCT domain

to better reconstruct original images. DDCN learns residual images in both

DCT and pixel domain, and aggregates outputs from these two domains with

additional convolutional layers to produce the final output. Their work also

demonstrated the importance of the Adam optimization method [19], which

restricts gradient update in each backpropagation step in order to avoid ex-

ploding gradient and ease the training of a very deep network. It is worth

noting that all these CNN based approaches focus on recovering a grayscale

image or the luminance channel of an image; however, this is not the solu-

tion to the more practical problem, which is to reconstruct high-quality color

images to be displayed by users in high-resolution displays.

29

CHAPTER 3

APPROACH

Conventional learning-based approaches have been focusing on recovering

a grayscale image or the luminance channel of a color image; however, re-

covering color images poses additional challenges as compression artifacts

manifest differently in luminance and chrominance channels, as shown in the

examples in Fig. 3.1 and Fig. 3.2.

Figure 3.1: Comparison of compression artifacts in different channels.

Figure 3.2: Comparison of compression artifacts in residual images.

In order to suppress JPEG compression artifacts and recover high-quality

color images, we first adapt prior work that focuses on simply recovering

30

a grayscale image or the luminance channel of an image, then take advan-

tage of the prior knowledge of JPEG compression by developing a dual-

domain CNN to fully confine the quantization loss within DCT domain and

recover color images. We propose a residual block tailored for artifact re-

moval by utilizing the representational power of ResNet [2] to tackle the

vanishing gradient problem and better explore redundancies and use squeeze-

and-excitation technique to further extract useful information across differ-

ent channels from the feature map. We call this residual block dual-domain

squeeze-and-excitation artifact removal ResNet (SE-ARResNet), and incor-

porate this block into our proposed network.

3.1 Super-Resolution Networks

We first adapt CNN used for single-image super-resolution task to remove

compression artifacts of color images. We start with the SRCNN architecture

described in [16] and fix the input channel of the first feature extraction layer

and the output channel of the last reconstruction layer to be three. ReLU

activation layer is applied after the feature extraction and non-linearity map-

ping layer, and no activation is applied at the last reconstruction layer. The

network architecture is shown in Fig. 3.3. For each convolutional layer, the

first two numbers denote filter height and width and the last two numbers

denote the number of input and output channels. As with the SRCNN de-

scribed in the previous section, the number of input channels of the first

convolutional layer and the number of output channels of the last convolu-

tional layer are adjusted to 3 to accommodate the number of channels of

color images.

31

Figure 3.3: Network architecture of SRCNN.

The network is optimized by minimizing the l2-loss between the output

image from the network ŷ(i) = F (x̂(i); Θ) and the ground-truth original

image x(i):

Loss(Θ) =
1

m

m∑
i=1

∥∥∥ŷ(i) − x(i)
∥∥∥2
2

(3.1)

where m is the total number of training images, and Θ denotes the trainable

parameters in this network including filter weights and biases.

Given that SRCNN has only three convolutional layers, it may not have

enough representational power to tackle the compression artifact suppres-

sion task; therefore, we conduct a second experiment with a super-resolution

network, VDSR [17], which has 20 convolutional layers. Instead of learning

to recover the entire original image, VDSR learns the residual image, or the

correction image. We denote the ground-truth residual image as r and the

learned residual image as r̂:

32

r = x− x̂ (3.2)

A sample residual image is illustrated in Fig. 3.4. Ideally if the network can

fully recover the residual image, we can reconstruct the original uncompressed

image completely.

Figure 3.4: Residual image in RGB and luminance channels. (a) Original
RGB image. (b) Compressed RGB image. (c) RGB residual image. (d)
Luminance channel of the original image. (e) Luminance channel of the
compressed image. (f) Luminance channel of the residual image.

As the last operation of the network, the residual image is added back to

the input image to produce the output, as illustrated in Fig. 3.5.

33

Figure 3.5: Network architecture of VDSR.

The only difference in this network from its original design [17] is that the

number of input channels of the first convolutional layer and the number of

output channels of the last convolutional layer are both 3, corresponding to

the number of channels of color images.

Mathematically learning the residual image can be represented by modi-

fying the loss function to minimize the l2-loss between network output and

the ground-truth residual image r(i):

Loss(Θ) =
1

m

m∑
i=1

∥∥∥ŷ(i) − (x(i) − x̂(i))
∥∥∥2
2

=
1

m

m∑
i=1

∥∥∥ŷ(i) − r(i)
∥∥∥2
2

(3.3)

3.2 Artifact Removal Networks

As Dong et al. [18] pointed out, compression artifacts degrade the original

image in pixel domain and introduce noise to the features extracted the by

convolutional operation. To remove the added noise, the artifact removal

network (ARCNN) has an extra feature enhancement convolutional layer

following the feature extraction layer, right before the non-linear mapping

34

layer.

We experimented with ARCNN to reconstruct color images by changing

the input and output channels to 3 to recover color images. The ARCNN

architecture is illustrated in Fig. 3.6.

Figure 3.6: Network architecture of ARCNN.

Since this network learns to reconstruct the full image directly, we minimize

the same loss function as in SRCNN.

3.3 Dual-domain Approach

In order to incorporate prior knowledge of JPEG compression in frequency

domain to recover the original image in pixel domain, we follow the dual-

domain approach proposed in DDCN [15] and design a new model in which

we train separate CNNs in pixel and frequency domains and fuse the output

from the two domains to produce the final output with the help of ResNet

[2] and squeeze-and-excitation network [3].

35

3.3.1 DCT Branch

As noted in Chapter 1, the only operation in JPEG compression is the

rounding operation, which brings in quantization errors for the sake of ef-

ficient encoding. Specifically, we devise a DCT branch by using a CNN in

DCT domain (denoted by CONVD{i}) to learn DCT coefficients and apply

the constraint on quantization error to make sure the errors are not prop-

agated to the output. Because DCT coefficients are ordered corresponding

to their frequencies, exploiting the redundancies in frequency domain is ben-

eficial to recovering high-frequency information. Theoretically, if the CNN

in DCT branch is able to recover the DCT coefficients of the original im-

age, we can recover the original image with very high reconstruction quality.

Therefore, the goal of the DCT branch is to leverage the representational

power of the CNN to learn and minimize the MSE between the quantized

DCT coefficients of ground-truth x and the quantized DCT coefficients of

output image ŷ. Since all operations in JPEG compression besides round-

ing are invertible, we are able to obtain the quantized DCT coefficients of

the DCT domain output images by applying the compression procedure in

reverse order. Specifically,

ŷd = DCT (S(ŷ))

= DCT (ŷ − 128)

(3.4)

where ŷ is the output of DCT domain in YCbCr colorspace and we assume

these operations are applied to both luminance and chrominance channels.

Similarly we can obtain the quantized DCT coefficients of the original

image by:

36

xd = DCT (S(x))

= DCT (x− 128)

(3.5)

Since all operations are linear in Equation (3.5) above, minimizing the

MSE of quantized DCT coefficients ŷq and xq is the same as minimizing the

MSE between ŷ and x.

That said, we build the DCT branch by putting a DCT layer and an

IDCT layer at the beginning and end of the DCT branch, with a CNN

between the two. In practice, DCT and IDCT layers convolve feature maps

with a predefined 2D DCT coefficient kernel Wdct kernel to fully utilize the

computational speedup enabled by GPUs. We reshape the regular 1D DCT

coefficient matrix of size 64 to a 2D matrix of size 8 × 8, and denote it as

Wdct. Then the 2D DCT coefficient matrix can be obtained by taking the

Kronecker product of Wdct:

Wdct kernel = Wdct ⊗Wdct (3.6)

which results in a 64× 64 kernel.

3.3.2 Pixel Branch

Parallel to the DCT branch, we use another CNN (denoted by CONVP{i})

in the pixel branch to directly exploit spatial redundancies, as learning in

pixel domain has been shown necessary and efficient for removing blocking

artifacts in our early experiments. This is because while transforming the

signal from pixel domain to frequency domain via DCT, the spatial informa-

tion is lost. The pixel branch addresses this problem and complements the

37

DCT branch to exploit both spatial and frequency redundancies. We feed

the RGB compressed image to this branch for it to learn the RGB residual

image.

3.3.3 Aggregations Branch

The output of DCT and pixel branches are concatenated before feeding into

another aggregation network, which is also a CNN (denoted by CONVA{i})

and outputs the final residual image. The input compressed RGB image is

then added to the output residual image by element-wise addition to produce

the final recovered image.

3.3.4 Feature Representation in DCT Branch

In our previous experiment on removing compression artifacts with CNNs,

we noticed that blocking and ringing artifacts are relatively easy to eliminate

but high-frequency information is hard to recover. As a result we propose

to utilize the CNN in the DCT branch to better capture correlations with

high-frequency information. This is achieved by reshaping each 8x8 mac-

roblock of one channel in the DCT input to a vector with shape 1x1x64 with

the patch layer placed at the beginning of the DCT branch. The patch layer

convolves a predefined one-hot kernel to the input image x̂ and outputs a spa-

tially downsampled (by a factor of 8) tensor with 64 channels. For example,

the reshaped DCT coefficient matrix of image of size 512x512 will become

64x64x64. In this case each 1x1x64 vector represents an 8x8 macroblock in

the original image while the first channel represents the DC components of

each macroblock, which captures the low-frequency components of the im-

age, while the last channel captures only high-frequency information of the

38

original image. A sample image is shown in Fig. 3.7 with the first and last

three channels of the DCT feature map.

Figure 3.7: Sample DCT coefficients of different channels. (a) DCT
coefficients of the luminance channel (512x512). (b) 1st channel of the DCT
coefficients (64x64). (c) 2nd channel of the DCT coefficients (64x64). (d)
3rd channel of CDT coefficients (64x64). (e) 62nd channel of DCT
coefficients (64x64). (f) 63rd channel of DCT coefficients (64x64). (g) 64th
channel of DCT coefficients (64x64).

The DDCN [15] claims that image patches should not be extracted align-

ing with the 8x8 macroblocks boundaries, but randomly extracted with the

possibility of misaligning with macroblocks, in that it helps with remov-

39

ing the blocking artifacts. We found empirically that although this mis-

aligned extraction may better suppress blocking artifacts, it misrepresents

high-frequency information in the DCT domain, which is a much bigger prob-

lem than removing blocking artifacts. This misrepresentation is illustrated

in Fig. 3.8.

Figure 3.8: Comparison of DCT Coefficients At Different Alignment. (a)
1st channel of DCT coefficients aligned with DCT blocks. (b) 1st channel
of DCT coefficients misaligned with DCT blocks by 1 pixel. (c) 1st channel
of DCT coefficients misaligned with DCT blocks by 4 pixels. (d) 1st
channel of DCT coefficients misaligned with DCT blocks by 7 pixels. (e)
Last channel of DCT coefficients aligned with DCT blocks. (f) Last channel
of DCT coefficients misaligned with DCT blocks by 1 pixel. (g) Last
channel of DCT coefficients misaligned with DCT blocks by 4 pixels. (h)
Last channel of DCT coefficients misaligned with DCT blocks by 7 pixels.

In addition, an unpatch layer is placed at the very end of the DCT branch

to transform the frequency features back into the original dimensions of the

input image. The 64x64x64 feature map in frequency domain mentioned

earlier will be transformed back to 512x512x1.

40

3.3.5 Quantization Error Constraint

Given that the quantized DCT coefficients are being rounded to the nearest

integer, it easy to see that the difference between coefficients before and after

the rounding operation should be always below 0.5:

∣∣xq − xr

∣∣ ≤ 1

2
(3.7)

meaning that given xr, we can determine the valid range of the DCT coeffi-

cients of the original image. Therefore we can leverage this prior knowledge

by constraining the CNN output in the DCT branch to be within the follow-

ing range:

ŷq −
1

2
≤ xq ≤ ŷq +

1

2
(3.8)

3.3.6 Residual Learning

Following the success of VDSR at rapid convergence, we apply residual

learning in this network as well. This is theoretically possible because we

can rewrite Equation (3.8) as:

−1

2
≤ xq − ŷq ≤

1

2

−1

2
≤ Q(DCT (S(x)))−Q(DCT (S(ŷ))) ≤ 1

2

−1

2
≤ DCT (x− 128)

Qt
− DCT (ŷ − 128)

Qt
≤ 1

2

(3.9)

Since all operations in Equation (3.9) are linear, we can further simplify it

to:

−1

2
≤ DCT (x− ŷ)

Qt
≤ 1

2
(3.10)

where x− ŷ is the residual image.

41

In practice since all input and ground-truth images are normalized by 255

to be within the range [0, 1], we need to normalize the quantization tables

by 255 as well such that Equation (3.10) still holds.

The error constraint in Equation (3.10) can be easily achieved by a clipping

layer after the last convolutional layer in the DCT branch, and we denote

the output of the last convolutional layer as x̃conv and output of the clipping

layer as x̃clip:

x̃clip =


−1

2
, if x̃conv < −1

2

x̃conv, if − 1
2
≤ x̃conv ≤ 1

2

1
2
, if x̃conv >

1
2

(3.11)

This clipping operation is linear between -0.5 and 0.5 but flat outside this

range. Since the flat regions have a derivative of 0 and may lead to vanishing

gradient problems, we add a small fixed slope (α) to the flat regions such

that their gradients are not 0 and call this layer the adaptive clipping layer.

Therefore Equation (3.11) is updated to:

x̃clip =


(1− α) ∗ (−1

2
) + α ∗ x̃conv, if x̃conv < −1

2

x̃conv, if − 1
2
≤ x̃conv ≤ 1

2

(1− α) ∗ 1
2

+ α ∗ x̃conv, if x̃conv >
1
2

(3.12)

This operation is illustrated in Fig. 3.9. Here we initialize α to be

0.1 and make it learnable, meaning its value will be updated during back-

propagation. Additionally, instead of having one unique α in the entire

model, we train this variable for every channel of the output from the last

DCT convolutional layer.

42

Figure 3.9: Illustration of adaptive clipping operation.

To make sure this operation is differentiable, we further reformulate Equa-

tion (3.12) as:

x̃clip = (1− α) ∗ (−1

2
) + α ∗min{x̃conv,−

1

2
}

+ (1− α) ∗ 1

2
+ α ∗max{x̃conv,

1

2
}

+min{max{x̃conv,−
1

2
}, 1

2
}

x̃clip = α ∗min{x̃conv,−
1

2
}+ α ∗max{x̃conv,

1

2
}

+min{max{x̃conv,−
1

2
}, 1

2
}

(3.13)

Learning the residual image eases the training process and leads to faster

convergence, but since residual values are all close to zero this may induce

the vanishing gradients problem. The initialization techniques used by the

approaches described earlier are initializing all parameters to zero, or using

Xavier initialization method [20] to draw each parameter from a random

43

zero-mean normal distribution with standard deviation of

std(W i) =

√
1

Nfan in

(3.14)

where Nin is the number of incoming neurons.

As the initialization method significantly affects the performance of the

CNN, we update the initialization method to the one described in [21]. Specif-

ically, we initialize filter weights from a normal distribution with standard

deviation of

std(W i) =

√
2

Nfan in

(3.15)

He initialization [21] method is more suitable for this network than zero-

initialization or Xavier initialization [20] for almost all convolutional layers

are followed by a ReLU-like activation function, which drops half of the

signal; hence, the number 2 in the numerator of the standard deviation is

important in keeping the amplitude ratio of the output signal as close to 1

as possible.

3.3.7 SE-ARResNet Block

As we pointed out in Section 3.3.4, different channels in the DCT fea-

ture map include different frequency information. Considering the fact that

the skip connection passes low-frequency information to later layers and the

network only has to learn the residual image, we seek to exploit more useful

information from the features maps for color image reconstruction. We utilize

squeeze-and-excitation network [3] to exploit these inter-channel redundan-

cies and assign weights to feature maps in all DCT, pixel and aggregation

branches. Typical approaches in classification task take in the entire image

44

and resize them to a desired dimension before feeding into the network; how-

ever, this is not suitable for regression problems such as super-resolution or

artifact removal as the interpolation operation at resizing time introduces

additional loss. Therefore, as in super-resolution approaches, we break the

input images down into patches of predefined sizes before feeding them into

our network. Considering that the squeeze-and-excitation network performs

well in the classification task by taking global information in the entire input

image into consideration, we increase the size of input patches compared to

previous super-resolution and artifact removal approaches such that more

information can be considered by the squeeze-and-excitation block.

Following the success of ResNet [2] (Fig. 3.10(a)) in classification prob-

lems, many works have demonstrated that ResNet and its variant can be

applied to regression problems such as image super-resolution with superior

performance. SRResNet [22] (Fig. 3.10(b)) first removed the last ReLU ac-

tivation layer as it drops half of the signal and is therefore not suitable for

regression problems. EDSR [23] (Fig. 3.10(c)) later removed the batch nor-

malization layer from SRResNet as batch normalization removes the range

flexibility of features and requires too much memory. EDSR further modified

the original ResNet architecture by adopting a residual scaling layer, which

multiplies 0.1 to the output residual to make the model numerically stable.

Following these two architectures, we adopt a similar residual block with

squeeze-and-excitation module tailored for compression artifact removal, shown

in Fig. 3.10(d).

45

Figure 3.10: (a) Original ResNet. (b) SRResNet. (c) EDSR. (d) Proposed
SE-ARResNet block.

In contrast to the EDSR in Fig. 3.10(c), to improve the representational

power of our model, we replace the constant scaling layer with a squeeze-and-

excitation block, which, instead of scaling the residual output from ResNet

by a constant of 0.1, learns the scaling factor by exploiting model interdepen-

dencies between channels. We replace all convolutional layers in our model,

i.e. CONVD{i} in DCT branch, CONVP{i} in pixel branch, and CONVA{i}

in aggregation branch, with the proposed SE-ARResNet block. The final

network architecture is shown in Fig. 3.11, where LD, LP and LA denote the

number of SE-ARResNet blocks in the DCT, pixel and aggregation branch.

46

Figure 3.11: Proposed network architecture.

The DCT branch takes in the luminance channel of input patches and

outputs a residual image in luminance channel as well. The pixel branch

takes in the RGB image and produces the residual RGB image at the end.

These two outputs are concatenated at the beginning of the aggregation

branch, which in turns produces another RGB residual image. The input

compressed RGB image is added to this final output to produce the recovered

RGB image. An additional convolutional layer is placed at the beginning

and end of both pixel and aggregation branches to adjust the feature map

dimension accordingly.

For simplicity we denote the input RGB image as x̂RGB, the luminance

image of the input patch as x̂Y , output residual from the pixel branch as

ŷP , output residual from the DCT branch as ŷD, and output residual from

the aggregation branch as ŷA, and recovered image as ŷ. We also denote

the groundtruth original RGB image as xRGB, and the original luminance

channel of the input image as xY . The recovered output image is therefore

formulated as:

ŷ = xRGB + ŷA (3.16)

47

Unlike VDSR [17] and DDCN [15] which formulate the loss function as the

l2-norm between the groundtruth residual and the output residual from the

model, we define a loss function that contains four terms: DCT loss, pixel

loss, aggregation loss and BEF loss.

DCT loss directly models the difference between the groundtruth residual

image in frequency domain and the output residual image of the DCT branch,

as:

LossDCT (Θ) =
1

N

N∑
i=1

∥∥∥DCT (ŷ
(i)
D + x̂

(i)
Y)−DCT (x

(i)
Y)
∥∥∥2
2

(3.17)

Similarly, the pixel penalizes the difference between pixel branch output

residual and the groundtruth RGB residuals in pixel domain:

LossPixel(Θ) =
1

N

N∑
i=1

∥∥∥ŷ(i)
P − (x

(i)
RGB − x̂

(i)
RGB)

∥∥∥2
2

(3.18)

The aggregation loss also accumulates the difference between aggregation

branch output residual and the groundtruth RGB residuals in pixel domain:

LossAggregation(Θ) =
1

N

N∑
i=1

∥∥∥ŷ(i)
A − (x

(i)
RGB − x̂

(i)
RGB)

∥∥∥2
2

(3.19)

The BEF loss comes from the metric PSNR-B mentioned earlier in Sec-

tion 1.5.3. It penalizes visible boundary artifacts in the aggregation output

residual images where the differences in adjacent pixel intensities across DCT

block boundaries are larger than those of pixel intensities that are not across

DCT block boundaries. Formally, we define it as

LossBEF (Θ) =
1

N

N∑
i=1

η ∗ [DB(ŷ(i))−DC
B(ŷ(i))] (3.20)

48

where η, DB and DC
B are defined in the same way as in Section 1.5.3.

Putting it together, the loss function that our model optimizes is:

Losstotal(Θ) = LossDCT (Θ) + LossPixel(Θ) + LossAggregation(Θ) + LossBEF (Θ)

=
1

N

N∑
i=1

∥∥∥DCT (ŷ
(i)
D + x̂

(i)
Y)−DCT (x

(i)
Y)
∥∥∥2
2

+
1

N

N∑
i=1

∥∥∥ŷ(i)
P − (x

(i)
RGB − x̂

(i)
RGB)

∥∥∥2
2

+
1

N

N∑
i=1

∥∥∥ŷ(i)
A − (x

(i)
RGB − x̂

(i)
RGB)

∥∥∥2
2

+
1

N

N∑
i=1

η ∗ [DB(ŷ(i))−DC
B(ŷ(i))]

(3.21)

49

CHAPTER 4

EXPERIMENTS

4.1 Dataset

For training and testing dataset selection, we follow previous works in

super-resolution and artifact removal and use the BSDS500 [24] as well as the

LIVE1 dataset. BSDS500 has 500 images that are divided into 200 training

images, 100 validation images and 200 testing images. LIVE1 dataset has

another 29 testing images we use for testing in this project. We use the

200 training images in BSDS500 for training and the 100 validation images

to validate the model. BSDS500 is a very large dataset and takes too much

time to train; therefore, we also use the training dataset described in [25, 26],

which has 91 color images and will be referred to as Set91, to perform some

experiments and ablation studies. In this case the 14 images collected in

[27] are used for testing. These training and testing images were carefully

selected as they each demonstrate a variety of textures and edges that are

important for image restoration. Data augmentation was adopted to increase

the training set and improve generalization of our model. Specifically, we flip

and rotate all training images and then extract smaller overlapping patches

to feed into our networks. For SRCNN, ARCNN, VDSR and our proposed

SE-ARResNet, we feed input patches of size 33, 32, 41 and 64 respectively

into the network with a batch size of 64. In order to minimize degradation

along patch boundaries, for SE-ARResNet we only crop out the center 48x48

50

pixels as output of the model for evaluation and reconstruction; therefore, at

validation and testing time we extract patches at a stride of 48.

4.2 Implementation Details

In our implementation, we place 10 SE-ARResNet blocks as described in

Section 3.3.7 in the DCT branch, pixel branch and aggregation branch re-

spectively. The first convolutional layer in DCT branch has an input channel

of 1 to match the input luminance image, and similarly the first convolu-

tional layer in pixel branch has an input channel of 3 to match the input

RGB image. The output feature maps of these two branches have 1 and 3

channels respectively to reconstruct the residual images. Consequently the

first convolutional channel of the aggregation branch has an input channel

of 4 to accommodate the concatenation of DCT and pixel branch output.

All filter weights in convolutional and fully-connected layers are initialized

by drawing from a truncated normal distribution with standard deviations

specified using He initialization [21]. All remaining convolutional layers have

64 channels and stride 1. LD, LP and LA are all set to 10, meaning ten SE-

ARResNet blocks in each branch. In addition, both patch layer and unpatch

layer have stride 8. This is to make sure that at patching time each 8 × 8

DCT block is reshaped into 1×1×64 while at unpatching time each 1×1×64

vector is reshaped back to a 8× 8 block. The patch layer is implemented as

a convolution while the unpatch layer as a transposed convolution.

4.2.1 Training Details

The α in Eq. (3.12) are initialized to 0.1 to each channel in the DCT

feature map but updated as training proceeds. The reduction ratio r in the

51

squeeze-and-excitation block is set to 4 which is empirically the best choice.

Following the success mentioned in [15], we use Adam optimizer with first and

second momentum of 0.9 and 0.999 to limit each gradient update and prevent

gradient explosion. In addition, the learning rate is initialized to 0.0001 but

decreased by 10 every time the validation PSNR hits a plateau. We define

this plateau as where the validation PSNR does not vary over 0.05dB in the

last 5 epochs. Training is stopped after decreasing the learning rate 3 times.

The entire training process takes slightly less than 7 hours on a GPU.

4.3 Results

Following previous work, we report PSNR and SSIM in Table 4.1 to demon-

strate the reconstruction ability of each network. Although previous work

only reported evaluations on luminance channel, we believe it is not sufficient

since the luminance channel does not indicate the reconstruction ability of

color components; therefore, we also report PSNR and SSIM of the recon-

structed RGB images.

Table 4.1: Quantitative result on Set14 with QF=30. (Y) indicates only
luminance channel is evaluated.

Metric JPEG SRCNN ARCNN VDSR DDCN Ours

PSNR 28.783 29.128 29.797 30.041 30.377 30.543
SSIM 0.943 0.947 0.952 0.955 0.957 0.958

PSNR(Y) 32.785 33.181 33.892 34.046 34.295 34.380
SSIM(Y) 0.905 0.910 0.918 0.920 0.922 0.923

PSNRB(Y) 32.152 32.859 33.746 33.930 34.136 34.268

One reason that networks targeted at super-resolution tasks are not suit-

able for suppressing compression artifacts is that they are not tailored to

remove blocking and ringing artifacts. A sample residual output of VDSR

52

is shown in Fig. 4.1, and we can see that the network is not able to handle

blocking artifacts well. Sample recovered color images from our proposed

network are shown in Fig. 4.2 and Fig. 4.3 on page 57 and 58.

Figure 4.1: Left: An example groundtruth RGB residual image. Right:
Output residual image from VDSR. VDSR fails to handle compression
artifacts, specifically blocking artifacts in this example.

To quantitatively compare our model with previous approaches, we list the

PSNR and SSIM of the luminance channel of reconstructed color images in

Table 4.2 and Table 4.3. We also report PSNR-B of the luminance channel

of the recovered images as blocking artifacts do not manifest differently in

chrominance channels.

Table 4.2: Quantitative result of reconstruction of luminance channel on
LIVE1 dataset.

Quality Metric JPEG ARCNN CAS CNN DMCNN Ours

20
PSNR 30.62 31.78 31.70 32.09 32.03
SSIM 0.868 0.890 0.895 0.905 0.892

PSNR-B 27.57 30.69 30.88 31.32 31.93

10
PSNR 28.36 29.49 29.44 29.73 29.68
SSIM 0.791 0.823 0.833 0.842 0.829

PSNR-B 25.33 28.74 29.19 29.55 29.62

53

Table 4.3: Quantitative result of reconstruction of luminance channel on
BSDS500 testing dataset.

Quality Metric JPEG ARCNN DDCN DMCNN Ours

20
PSNR 30.61 31.71 31.88 31.98 31.95
SSIM 0.867 0.885 0.900 0.904 0.888

PSNR-B 27.22 30.55 31.10 31.29 31.81

10
PSNR 28.39 29.45 29.59 29.73 29.65
SSIM 0.810 0.834 0.838 0.840 0.835

PSNR-B 25.10 28.73 29.18 29.33 29.58

As Table 4.1 indicates, the proposed dual-domain squeeze-and-excitation

network recovers original color with comparable effectiveness but at much

lower cost. Specifically, training this network takes less than 8 hours, while

previous state-of-the-art models takes several days to converge. In addition,

as we can see from Table 4.2 and Table 4.3, as well as Fig. 4.2 and Fig.

4.3, our models gives a higher PSNR-B, which indicates its ability to better

remove blocking artifacts. This ability is also evidenced by the sample recov-

ered images as blocking and banding artifacts are completely invisible, but

high-frequency information such as sharp edges is not fully recovered.

4.3.1 Ablation Study

In this section we perform ablation studies on select key components of our

model and show that these components do help improve the performance of

our artifact removal model. Due to the limitations in resources, the ablation

studies are conducted on a relatively small dataset, namely Set91, for faster

convergence.

We first investigate whether replacing the conventional convolutional lay-

ers with residual blocks improves the model performance. In this experiment

we replace convolutional layers in all three branches with residual blocks from

54

ResNet. Each residual block has the same structure as EDSR, as shown in

Fig. 3.10(c), with scaling factor 0.1. All convolutional layers in residual

blocks have 64 channels. We add 1 convolutional layer at the beginning and

end of pixel and aggregation branches to change dimensionality accordingly.

The two models are trained on images with QF = 30. Quantitative compar-

isons are given in Table 4.4. All metrics are evaluated on RGB colorspace.

Table 4.4: Study of residual blocks.

Network PSNR SSIM PSNR(Y) SSIM(Y) PSNRB(Y)

JPEG 28.783 0.967 32.785 0.919 32.152
No residual model 30.308 0.974 34.252 0.927 34.168

Residual model 30.405 0.974 34.350 0.927 34.251

From Table 4.4 we can see that replacing the convolutional layers with

residual blocks improves the model performance by around 0.1 dB.

Next we investigate the contribution of the squeeze-and-excitation module

in our model. We replace the scaling layer in Fig. 3.10(c) with the squeeze-

and-excitation (SE) module and keep input patch size the same. Effectively,

we are learning the scaling factor from the SE module instead of using the

constant 0.1. We set the reduction ratio r to 4, which is empirically found

better among choices of 4, 8 and 16. This reduces the feature map from 64

channels to 16 channels in the squeezing phase of all SE modules. Again we

train the two models on images with QF = 30 and show the evaluations in

Table 4.5.

Table 4.5: Study of squeeze-and-excitation module.

Network PSNR SSIM PSNR(Y) SSIM(Y) PSNRB(Y)

JPEG 28.783 0.967 32.785 0.919 32.152
No SE module 30.308 0.974 34.252 0.927 34.168

With SE module 30.486 0.974 34.287 0.927 34.187

55

Table 4.6: Study of larger input patch size.

Network PSNR SSIM PSNR(Y) SSIM(Y) PSNRB(Y)

JPEG 28.783 0.967 32.785 0.919 32.152
Input 48x48 30.486 0.974 34.287 0.927 34.187
Input 64x64 30.568 0.974 34.381 0.927 34.286

The squeeze-and-excitation module works better by embedding global in-

formation. Since the model takes image patches as input and is not allowed

to resize them, we increase the input patch size from 48x48 to 64x64, and the

output size is increased from 32x32 to 48x48 correspondingly to avoid bound-

ary effect. This increase results in additional improvement in performance,

as shown in Table 4.6.

Evaluation results in Table 4.6 verify our proposition that using the squeeze-

and-excitation module benefits from embedding more global information, but

we do note that the improvement by adding squeeze-and-excitation networks

to our model is not significant. To the best of our knowledge there are no ex-

isting works applying squeeze-and-excitation to regression problems such as

image super-resolution, enhancement or restoration, and it is unclear whether

this technique can be widely beneficial in these fields.

56

Figure 4.2: Sample images recovered by our proposed network. Left: Input
compressed image. Middle: Original image. Right: Reconstructed image.

57

Figure 4.3: Sample images recovered by our proposed network. Left: Input
compressed image. Middle: Original image. Right: Reconstructed image.

58

CHAPTER 5

CONCLUSIONS

In this thesis, we demonstrated that by leveraging prior knowledge of JPEG

compression and applying a data-driven approach in both pixel and frequency

domains, we are able to recover original color images from their compressed

counterparts. The prior knowledge allows us to constrain quantization er-

rors within DCT domain and recover high-frequency information. We also

incorporated residual blocks and squeeze-and-excitation modules in our ap-

proach to exploit inter-channel redundancies and grow the network deeper

to improve its representational power. From both quantitative and qualita-

tive evaluations we can see that the proposed network is able to reconstruct

satisfying artifact-free images, and can be trained faster than other networks.

One potential improvement of the proposed network is to further recover

high-frequency components. In our experiments we noticed that compression

artifacts are generally easier to remove but high-frequency information is still

hard to recover. We believe training on a larger and more representative

dataset will help tackle this challenge. Another possible technique that may

help recover high-frequency information is to add additional reconstruction

in wavelet domain, and it would be very important to find the right balance

between improved reconstruction and additional computations.

59

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12. USA: Curran Associates Inc., 2012. [Online].
Available: http://dl.acm.org/citation.cfm?id=2999134.2999257 pp.
1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[3] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 7132–7141.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “ImageNet:
A large-scale hierarchical image database,” in CVPR09, 2009.

[5] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[6] C. Yim and A. C. Bovik, “Quality assessment of deblocked images,”
IEEE Transactions on Image Processing, vol. 20, no. 1, pp. 88–98, 2011.

[7] C. Dong, Y. Deng, C. C. Loy, and X. Tang, “Compression artifacts
reduction by a deep convolutional network,” CoRR, vol. abs/1504.06993,
2015. [Online]. Available: http://arxiv.org/abs/1504.06993

[8] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz,
“Adaptive deblocking filter,” IEEE Transactions on Circuits and Sstems
for Video Technology, vol. 13, no. 7, pp. 614–619, 2003.

[9] H. C. Reeve and J. S. Lim, “Reduction of blocking effects in image
coding,” Optical Engineering, vol. 23, no. 1, p. 230134, 1984.

60

[10] A.-C. Liew and H. Yan, “Blocking artifacts suppression in block-coded
images using overcomplete wavelet representation,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 14, no. 4, pp. 450–
461, 2004.

[11] Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, “Projection-based
spatially adaptive reconstruction of block-transform compressed im-
ages,” IEEE Transactions on Image Processing, vol. 4, no. 7, pp. 896–
908, 1995.

[12] J. Jancsary, S. Nowozin, and C. Rother, “Loss-specific training of non-
parametric image restoration models: A new state of the art,” in Euro-
pean Conference on Computer Vision. Springer, 2012, pp. 112–125.

[13] C. Jung, L. Jiao, H. Qi, and T. Sun, “Image deblocking via sparse rep-
resentation,” Signal Processing: Image Communication, vol. 27, no. 6,
pp. 663–677, 2012.

[14] X. Liu, X. Wu, J. Zhou, and D. Zhao, “Data-driven sparsity-based
restoration of jpeg-compressed images in dual transform-pixel domain,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 5171–5178.

[15] J. Guo and H. Chao, “Building dual-domain representations for com-
pression artifacts reduction,” in European Conference on Computer Vi-
sion. Springer, 2016, pp. 628–644.

[16] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolu-
tional network for image super-resolution,” in European Conference on
Computer Vision. Springer, 2014, pp. 184–199.

[17] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
1646–1654.

[18] C. Dong, Y. Deng, C. Change Loy, and X. Tang, “Compression artifacts
reduction by a deep convolutional network,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 576–584.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2015.

[20] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics, 2010, pp.
249–256.

61

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2015,
pp. 1026–1034.

[22] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single im-
age super-resolution using a generative adversarial network,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017, pp. 4681–4690.

[23] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep resid-
ual networks for single image super-resolution,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, 2017, pp. 136–144.

[24] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 5, pp. 898–916, 2011.

[25] R. Timofte, V. De Smet, and L. Van Gool, “Anchored neighborhood
regression for fast example-based super-resolution,” in Proceedings of the
IEEE International Conference on Computer Vision, 2013, pp. 1920–
1927.

[26] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” IEEE Transactions on Image Processing, vol. 19,
no. 11, pp. 2861–2873, 2010.

[27] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using
sparse-representations,” in International Conference on Curves and Sur-
faces. Springer, 2010, pp. 711–730.

62

