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ABSTRACT

The main objective of modern SoC (system-on-chip) designs is to achieve

high-performance while maintaining low power consumption and resource

usage. However, achieving such a goal is a difficult and time-consuming

engineering task due to the vast design space of hardware accelerators and

HW/SW task partitioning. Depending on the partitioning decision, com-

munication between parts of the SoC must be also optimized such that the

overall runtime including both computation and communication would be

fast. In this thesis, we propose an automated approach to iteratively search

for a near-optimal SoC design with minimum latency within the targeted

power and resource budget. Our approach consists of the following main

components: (1) polyhedral-model-based hardware accelerator design space

exploration, (2) modeling of various communication types and integration

into LLVM-based integer linear programming for HW/SW task partitioning,

(3) fast and efficient search algorithm to extract maximum operating fre-

quency using floorplanner, and (4) back-annotation of extracted information

to system level for iterative partitioning. Using FPGA as the target plat-

form, we demonstrate that our approach consistently outperforms the previ-

ous state-of-the-art solutions for automated HW/SW co-design by 37.8% on

average and up to 75.2% for certain designs.

ii



To my family, for their constant love and support.

iii



ACKNOWLEDGMENTS

I would like to thank Professor Deming Chen for his rich academic advice and

guidance. I also would like to thank several fellow students in my research

group for discussions and suggestions. Importantly, I would like to thank my

parents, sister, and Somin for their endless love and encouragement.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 RELATED WORK . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 3 FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 System Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Communication Modeling . . . . . . . . . . . . . . . . . . . . 9
3.4 System Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Static Timing Analysis and Search for Maximum Clock

Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

CHAPTER 4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 System Modeling Result . . . . . . . . . . . . . . . . . . . . . 19
4.2 Communication Modeling Result . . . . . . . . . . . . . . . . 20
4.3 System Partitioning Result . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 27

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



LIST OF TABLES

4.1 Possible SoC Designs for Each Benchmark after System
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Final Partitioning Result of Five Benchmarks . . . . . . . . . 24
4.3 Latency Improvement of Final SoC Solution through Iter-

ative HW/SW Partitioning for Five Benchmarks . . . . . . . . 26

vi



LIST OF FIGURES

3.1 Overview of Framework . . . . . . . . . . . . . . . . . . . . . 6
3.2 Task Graph Reformation of 3-mm (left) and RSA (right) . . . 8
3.3 XC7Z045 Zynq Processor Architecture and Communication . . 10
3.4 Hardware-to-Hardware Communication using AXI-4 Stream

FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Resource & Power Constrained System Task Partitioning Flow 15

4.1 Data Transfer Cycle vs. Data Size between DRAM and BRAM 21
4.2 Data Transfer Cycle vs. Data Size between OCM and BRAM 21
4.3 Data Transfer Cycle vs. Data Size between Two BRAMs

via FIFO Interface and DRAM Interface . . . . . . . . . . . . 22
4.4 Change in Design Candidate Selection over Iterative HW/SW

Partitioning for Third Loop of 3-mm . . . . . . . . . . . . . . 24
4.5 Change in Design Candidate Selection over Iterative HW/SW

Partitioning for Third Critical Loop of RSA . . . . . . . . . . 25

vii



LIST OF ABBREVIATIONS

ASIC Application-Specific Integrated Circuit

AXI Advanced Extensible Interface

BRAM Block Random Access Memory

CDFG Control Data Flow Graph

CPU Central Processing Unit

DFG Data Flow Graph

DDR Double Data Rate

DRAM Dynamic Random Access Memory

FIFO First In, First Out

FPGA Field-Programmable Gate Array

HLS High-Level Synthesis

HW Hardware

ILP Integer Linear Programming

IR Intermediate Representation

LLVM Low-Level Virtual Machine

OCM On-chip Memory

PL Programmable Logic

PLL Phased-Lock Loop

PS Processing System

RIP Randomized Integer-linear Programming

viii



RTL Register-Transfer Level

SoC System-on-Chip

STA Static Timing Analysis

SW Software

WNS Worst Negative Slack

ix



CHAPTER 1

INTRODUCTION

Achieving an optimal system-on-chip (SoC) design that efficiently runs ap-

plications is a challenging and time-consuming problem. It is also well known

that power, performance, and area/resource are the key metrics in hardware

design optimality evaluation. Not only does optimal accelerator design for

target applications itself involve much engineering effort, but appropriate

task partitioning between accelerators and CPU is also a challenging prob-

lem. Additionally, connecting those selected accelerators with CPU into an

integrated SoC through a communication system such that the overall design

becomes optimal in those three aspects is also a tough problem. Therefore, in

order to generate an optimal or near-optimal SoC design solution with appro-

priate task partitioning and hardware accelerator design, modern HW/SW

co-design tools must be able to consider many and diverse possible designs,

and apply optimizations at various levels of abstraction. Although it may be

desirable to develop and model hardware accelerators and overall integrated

SoC at register-transfer level (RTL) or gate-level with more accurate chip de-

sign parameters such as switching activities, critical path delay, and resource

usage, the associated development and simulation time is often too long, es-

pecially for large designs. On the other hand, system-level simulation tools

allow much faster simulation speed with correct design functionality, but de-

tailed information such as power estimates, resource estimates and operating

frequency may not be estimated well. To overcome such drawbacks and take

advantage of both fast simulation speed and detailed low-level design infor-

mation, data at lower abstraction level can be extracted and back-annotated

into the corresponding higher-level simulation platform. This process of back-

annotation (also called layout-aware or layout-driven design method) enables

fast system-level simulation with accurate low-level details, thereby allowing

designers to explore huge design spaces fast and efficiently.

There have been many research efforts to model and explore design spaces
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of HW/SW co-design for SoCs (e.g., [1, 2, 3]). However, many of them do

not consider layout information during the system partitioning task so that

they are not able to accurately model communication latency, which can be

very critical for SoC performance. To address this important issue, in this

work, we demonstrate a complete C-to-SoC approach that iteratively refines

and searches for an optimal integrated-SoC solution for target applications.

Our major contributions are the following:

• Consideration of a rich set of hardware accelerator designs by polyhe-

dral based modeling and software implementations for code regions of

interest

• Modeling of different types of communication and integration with

LLVM compiler-based integer-linear-programming optimization under

resource and power budget constraints

• Fast and efficient search of achievable maximum clock frequency using

high-level floorplanner

• Iterative refining approach by back-annotation to search for a near-

optimal integrated SoC solution

The remainder of the thesis is organized as follows. Chapter 2 provides

background and related work. Chapter 3 explains the methodologies and

algorithms of our approach. Chapter 4 presents the experimental results

of our approach on FPGA as the evaluation platform. Lastly, Chapter 5

concludes the thesis.
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CHAPTER 2

RELATED WORK

Many research works have been published on HW/SW co-design or partition-

ing. Zuo et al. [2] demonstrated Randomized Integer-linear Programming-

based Partitioning (RIP) for system-level HW/SW co-design, but assumed

that the communication between task graph nodes always happened by writ-

ing data to DRAM and reading data from DRAM. Also, many earlier works

demonstrated HW/SW partitioning by various algorithms such as mixed

and integer linear programming or randomized search. MAGELLAN [4] is

a heuristic technique for mapping high-level control-dataflow graph on het-

erogeneous architectures. It consists of a scheduler and a partitioner, and

optimizes the overall latency. Compared to this work, our proposed ap-

proach models not only computation but also communication between crit-

ical regions. Also, our approach considers frequency of processor and pro-

grammable logic differently. Eles et al. [5] formulated HW/SW partition-

ing as a graph partitioning problem and proposed two heuristics, simulated

annealing and tabu search. The authors defined the metric values for parti-

tioning, developed a cost function that guides partitioning, and considered

minimization of communication cost and improvement of overall parallelism.

However, as the design size grows and design space expands, it becomes much

harder to tune the heuristics. Also, solving the graph partitioning problem

also becomes time-consuming. Sha et al. [6] proposed two algorithms for the

HW/SW partitioning problem to minimize power consumption. However,

the communication latency is not considered, and the potential parallelism

in the input code is not explored.

Also, many works were published to extract post-layout information and

back-annotate to higher-level system design for optimization. Pasricha et al.

[7] proposed an automated framework, CAPPS, to explore power-performance

tradeoffs in bus matrix communication architecture synthesis. The authors

develop performance and energy macromodels, based on which heuristic op-
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timization techniques are applied to bus matrix to reduce components in the

design. This work focuses on the modeling and optimization of bus com-

munication architecture itself, without considering HW/SW partition of IP

components. They also developed a synthesis approach by utilizing post-

layout information such as wire delay and bus cycle time violation to itera-

tively reach an optimal design solution under certain constraints. However,

this work only focused on bus architecture synthesis, and also assumed that

the components and accelerators are already provided and left with final bus

connection. Also this work did not fully consider how the integrated design

could give the shortest program execution latency. Zheng et al. [8] demon-

strated that post-layout critical path information can be back-annotated to

a high-level synthesis (HLS) engine to generate a Verilog code such that the

identified critical path is removed. A number of critical paths are identified

to let the HLS engine iteratively improve the quality of Verilog code with

less critical path delay.
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CHAPTER 3

FRAMEWORK

3.1 Overview

The goal of the framework is to efficiently search for a near-optimal SoC

design point and generate a complete design solution by utilizing post-layout

information and integrating different communication types. The critical code

region in an application’s C code is a code region of interest that could po-

tentially be accelerated by hardware accelerators, or could still be run on

CPU based on the system task partitioning. Let Ω be the space or discrete

set of all possible SoC designs, and let n be the number of critical code

regions, and i be the index of the ith critical code region. Then, let Ai be

a discrete set of all possible candidate hardware accelerator designs for

the ith critical code region, and let Si be a discrete set of software imple-

mentation for the ith critical code region. Lastly, let Φ be a discrete set of

all possible clock frequencies that the supported phase-locked loop (PLL)

can provide for only accelerators. CPU has its own fixed clock frequency,

which is much faster than clock for accelerators. |Ω| is often huge because of

all these categorized variables above. Thus, with these definitions, the |Ω| is

determined by Equation 3.1.

|Ω| =
n∏

i=1

(|Ai|) · |Φ| (3.1)

where |·| denotes the size of finite discrete sets. |Ω| can increase exponentially

with respect to the number of critical code regions, n. |A| is determined by

how hardware accelerator modeling is performed as explained in Section 3.2.

|S| is always 1 assuming that our SoC design has only one CPU. Also, to

avoid excessive increase of |Ω|, the communication architecture of the SoC is
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assumed to have AMBA®AXI4 protocol where accelerators are connected

via memory-mapped interfaces. It is also assumed that there is one PLL that

provides clock signals to all accelerators.

Figure 3.1: Overview of Framework

The overview of the framework (Figure 3.1) is a meta-heuristic approach

in which the algorithm iteratively traverses the solution space toward a near-

optimal point. Thus, choosing a good starting point in Ω is important to

reach a near-optimal point in the least possible iterations. Starting point in

Ω is determined by initial system modeling and partitioning without floor-

plan and communication information. Then, RTL synthesis and floorplan-

ning are correspondingly performed to collect worst negative slack (WNS)

6



and maximum achievable clock frequency of accelerators in Φ. This infor-

mation is then back-annotated into the system-level partitioning stage and

task graph node information to iteratively perform a more realistic imple-

mentation which now considers timing details. Since only the cycle-accurate

simulation is performed at the system-level, iterative back-annotation of the

post-layout information enables a search for a better design solution. Also,

the application code is represented in the form of a task graph as shown

in Figure 3.2, where each node has information of task-specific execution

runtime or data communication runtime, depending on the node type – com-

putation node or communication node. Figure 3.2 also shows how the task

graph can be used to represent the data control flow of applications, and

demonstrates how certain nodes can be duplicated to extract task-level par-

allelism, as explained in Chapter 4. Here, SW-mapped computation nodes

and HW-mapped computation nodes are displayed in blue and green, re-

spectively. Also, there exist communication nodes in orange between any

two data-dependent computation nodes. In other words, since two compu-

tation nodes are data-dependent, there must exist a communication node to

represent the communication. Then, the total program execution runtime is

identified as an evaluation metric for comparison against the previous design

solution in Ω. This search process continues until convergence, which means

no better design result is generated.

3.2 System Modeling

3.2.1 Critical Code Identification

In system modeling stage, both hardware modeling for accelerators and soft-

ware modeling for CPU are performed for critical code regions. Prior to the

actual system modeling stage is the identification of critical code region. Of-

ten, a critical code region is referred to as a critical loop since the majority

of lengthy computation time is consumed in loop regions. Our tool identifies

the critical loops by profiling the application on CPU and examining the run-

time of the critical code block. If the runtime of the code of interest exceeds
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Figure 3.2: Task Graph Reformation of 3-mm (left) and RSA (right)

a certain threshold value, then it is noted to a designer as a critical code re-

gion. Also, by checking the fundamental properties of the code region, such

as atomicity, regular behavior, and whether the code is an affine loop, n is

determined. Through this stage, the number of critical loops, n in equation

3.1, is determined.

3.2.2 Hardware and Software Modeling

For each of these n critical loops individually, hardware modeling is per-

formed. Sets of rich hardware design candidate implementations are gen-
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erated by using polyhedral-based automatic SystemC open-source modeling

tools [1]. Using a powerful compiler technique such as complex program

restructuring through loop fusion and tiling with a polyhedral model [9],

C-to-SystemC design flow is utilized to automatically generate numerous im-

plementations. This technique enables fine-grained code transformation into

SystemC hardware description considering different parallelism architectures

in aspects of tiling and pipelining. By exploring various tile sizes, loop unroll

factors and switching activity for each of the n critical loops, n Pareto curves

are generated [1]. The number of points of the Pareto curve determine |Ai|.
For software modeling, CPU architecture is rather fixed with cores and

caches in contrast to huge hardware accelerator design space Ai. Utilizing

phase convergence modeling with fine granularity region-of-interest profiling

[3], we adopt this automated framework which provides performance and

energy of application source code through code-specific CPU profiling using

Sniper and gem5.

3.3 Communication Modeling

The data communication latency is an important factor that could potentially

change the HW/SW partitioning scheme. Although RIP [2] demonstrates a

good HW/SW partitioning approach, it is assumed that the communication

always happens through DRAM interface. However, depending on how n

nodes are mapped, data may not always travel through DRAM between two

consecutive nodes. Instead, source and destination of data communication

can vary. Since the mapping decision can be either HW or SW, there are four

possible combinations of communications: SW-SW, HW-SW, SW-HW, and

HW-HW. In our work, each of these four possible communications is charac-

terized and modeled to work with the existing cycle-accurate simulation and

estimate the cycle counts of data transfer. XC7Z045 SoC of Xilinx ZC706

was chosen as target platform.
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Figure 3.3: XC7Z045 Zynq Processor Architecture and Communication

3.3.1 Software-to-Software Communication

This type of communication happens where there are two consecutive software-

mapped nodes in a task graph, notated as Si and Si+1. In Processing System

(PS) of XC7Z045 SoC, there is a dual core ARM Cortex A9 CPU with L1

and L2 caches, 256-KB on-chip memory (OCM), memory interface to DRAM,

and memory interconnects for programmable logic (PL), as shown in Figure

3.3 with different communication types labeled from 1○ to 5○. OCM is lo-

cated inside PS whereas BRAM is located in PL. When a node of the task

graph is mapped to software, CPU becomes responsible for computation.

Although hardware modeling allows designers to freely explore various archi-

tectures and design schemes, the general architecture of CPU is rather well

established with computation cores, local caches, pipelined execution stages,

memory interface, and registers. Since CPU has cache structure and fast

clock, communication between two software-mapped nodes is much faster

than that for accelerators in PL. Only at the beginning of a program might

data need to be loaded from DRAM to “warm up” the caches, where the

path is labeled as 3○. For the next software-mapped node, the CPU again

does the computation by quickly reading data from cache, as shown in the

path 1○ in Figure 3.3. The node dependence naturally leads to data sharing

between two nodes in the cache as well.
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3.3.2 Hardware-to-Software Communication and Vice Versa

This type of communication happens when a node is mapped to hardware

and the next is mapped to software, or vice versa, notated as Ai and Si+1,

or Si and Ai+1. The subsequent node has data dependency on the pre-

vious node. Unlike the cache hierarchy structure of CPU, accelerators in

the PL have simpler memory structure. Block RAM (BRAM) is often used

as internal memory of an accelerator, which must be provided with data

through bus. The path on which data travel is also shown as 4○ and 5○
in Figure 3.3. Data can come from two different sources – OCM and ex-

ternal DRAM. Although DRAM has big capacity, it is located off-chip and

the access time is much slower than that to OCM. Therefore, for HW-SW

communication, these two different communication types were characterized

and modeled. For experiment setup, an empty accelerator with an internal

memory (BRAM) is instantiated and implemented on FPGA. Then, data

transfer cycles were measured by using AXI Timer where the data is visi-

ble to the programmer through software development kit. For the case of

communication between OCM and accelerator, i.e., 4○, common data were

loaded from DRAM to OCM for faster access. However, since not all data

can fit into OCM, hardware accelerators often directly access the DRAM

to obtain required data, as shown in 5○. Unlike the freedom of bus design

choice in ASIC, we chose a fixed AXI-4 crossbar interconnect architecture

with memory-mapped interface and 64-bit wide bus. We also let the ac-

celerators have master interface to allow direct access to DRAM for high

performance.

3.3.3 Hardware-to-Hardware Communication

The last type is HW-HW communication, where two nodes of a task graph

are consecutively mapped to hardware (notated as Ai and Ai+1). In the

work [2], communication is assumed to happen only through DRAM where

the data travel from DRAM to accelerators and back to DRAM. However, if

the previous accelerator can directly send data to the next accelerator, then

these accelerators do not need waste cycles to access DRAM. Using FIFO

to connect the two accelerators is a better communication method, where

the experimental setup is shown in Figure 3.4. Using the same measurement
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method, communication from one empty accelerator with BRAM interface

to another empty accelerator with BRAM interface via AXI-4 Stream FIFO

was measured. The size of FIFO was chosen with width being 32-bit (4-Byte)

and depth being 1024, which works well with the chosen FPGA board. The

characterization of communication via FIFO was also performed over various

ranges of data size, and results are in Chapter 4.

Figure 3.4: Hardware-to-Hardware Communication using AXI-4 Stream
FIFO

3.4 System Partitioning

3.4.1 Overview of the Flow

The system partitioning stage performs the actual HW/SW task partition-

ing, and determines the best implementation of each critical code region

such that the overall program runtime is minimized under area/resource

and power constraints. Also, just like computation nodes, communication

nodes have communication latency information and exist between each pair

of computation nodes as long as there is data dependence between the two

nodes. LLVM-based Clang front-end parser initially translates the applica-

tion code to intermediate representation (IR), where the basic block contains

information of the code behavior, resource, power and latency for potential

hardware and software implementation. Then, custom LLVM pass translates
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the LLVM IR to a form of control data flow graph (CDFG). The CDFG goes

through branch probability and data dependency analysis to extract par-

allelism, as shown in Figure 3.5. Then, task graph undergoes reformation

as shown in Figure 3.2, where each node represents a critical code region

with hardware and software latency, power, and resource information. Also,

ILP solver takes this information to make a mapping decision such that the

overall program latency is minimized.

Randomized Integer-linear Programming (RIP) [2] was adopted to opti-

mize and determine the initial HW/SW partitioning. The initial system

partitioning must be performed without data communication latency and

post-layout information because the nature of the ith and (i + 1)th nodes can

only be identified after initial partitioning. This helps to find a good initial

search point in Ω. As shown in Figure 3.2, there exists a communication

node between any pair of computation nodes when the pair of nodes have a

dependence edge between them. Although the initial HW/SW partitioning is

performed without communication node information, communication nodes

do exist from the beginning with latency values initialized to zero. Only

after computation node types are identified either as HW or SW, are the

corresponding communication type models used to estimate and update the

communication latency between the two data-dependent computation nodes.

In other words, the communication latency (or delay) is back-annotated into

the communication node, and thus the node gets the updated value. Sim-

ilarly, when post-layout timing information is extracted, back-annotation

works by updating the latency value of each computation node of the task

graph. This way, both computation and communication node latency values

are updated.

Additionally, through LLVM pass dependence analysis, basic blocks can

be duplicated to extract task-level parallelism. Figure 3.2 shows how the

task graphs of selected benchmarks have transformed at the end of the itera-

tion. After the iteration has finished and converged, the initially SW-mapped

nodes are no longer selected as a result of HW/SW partitioning. Instead,

the duplicated nodes are chosen by the ILP solver in an effort to explore

different paths from source to sink node to minimize cost function, where

cost is a function of latency values of each node (explained more in Section

3.4.2). Taking the benefit of node duplication and task-level parallelism, the

ILP solver chooses a path with minimum latency. Because of the duplicated

13



node, the path from source to sink node via originally SW-mapped gray

nodes is more expensive than the path via duplicated HW-mapped nodes.

Since the path via all SW-mapped node is long with large latency values, the

ILP solver does not choose this path as an optimal solution. Instead, the ILP

solver takes the path via duplicated nodes from top to bottom as an optimal

solution. Therefore, it is more beneficial to select the duplicated HW-mapped

node, and thus perform optimal HW/SW task partitioning. This process is

again portrayed in Figure 3.2, where the initially SW-mapped nodes are il-

lustrated in gray to indicate that they are no longer chosen and considered.

Also, the dashed arrows explain how the initially SW-mapped nodes get du-

plicated and mapped to HW for parallelism. When a computation node gets

duplicated, it needs to be accompanied by the corresponding communication

node to represent the required communication latency. With such transfor-

mation of the task graph, duplicated computation nodes and communication

nodes become a possible decision for the ILP solver. Consequently, as the

iteration continues through back-annotation of the communication and post-

layout information, our method searches for the near-optimal SoC solution

in Ω. Also, the ILP solving step again tries to find a solution iteratively that

minimizes the overall execution latency, which consists of both computation

and communication.

3.4.2 ILP Formulation

Regarding the actual formulation of the integer-linear programming, in re-

cently published work, Randomized Integer-linear Programming (RIP) [2]

was adopted and summarized in this section. The same set of equations

and constraints for integer-linear programming (ILP) formulation from [2]

was used. Assume that the graph has |V | vertices, where |Vc| are nodes for

critical regions. The objective is to search for the path from source node to

sink node on the task graph such that the overall latency is minimized under

resource and power constraints. Let Pij, Lij, and Rij be the power, latency

and resource usage of jth selected design point for the ith critical node, where

Pij, Lij, Rij ∈ R. The objective is to find a mapping decision such that the

overall latency L of task graph is minimized. Thus, by representing source
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Figure 3.5: Resource & Power Constrained System Task Partitioning Flow

node as Vsource and sink node as Vsink, the goal is to minimize the path from

Vsource to Vsink. If there can be resource reuse which does not affect the op-

timality of the latency, then it is factored in to maximize the resource reuse.

Decision variables Xij ∈ {0, 1} are also used to determine whether the jth de-

sign point of ith node is selected or not. Also, for all vertices V in task graph

G, let SV ∈ R denote the time stamp at which the node execution starts.

There are several constraints as well. Regarding the variable Xij, there is

only one design point selected for implementation, as shown in Equation 3.2.

Also, if there is a duplicated node, only one of the two should be selected,

where Xi′j is a duplicate of Xij for the ith critical node.

∑
j

Xij = 1,∀i ∈ {i : Vi ∈ Vc}, and
∑
j

(Xij + Xi′j) = 1 (3.2)
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If two kth designs are identical for all k in task graph, then they can share

the resource. For each node, the beginning time stamp must happen after

all its predecessor nodes are finished if there is data dependence. Also, there

is a resource constraint. For some nodes which do not share the resource

with other nodes, the total resource is just a sum of resources of all nodes,

as shown in Equation 3.3. But, for certain nodes where the resource may be

shared, only the associated resource of jth design point is considered. Also,

the sum of those resources must not exceed the total available resource. For

FPGA, the resource was represented in BRAM, DSP, FF and LUT.

∑
i∈{i:Vi∈VC,unshared}

∑
j

RijXij + Rshared < Rtotal (3.3)

Lastly, there is a power constraint. The power consumption of the design

should not exceed the maximum power budget available. When the task

graph is formed without any duplicated nodes, then there are no modules

running in parallel. However, if there is any duplicated node where two active

nodes in different execution paths on task graph are active, the total power

is the sum of all m non-critical node modules and r critical node modules

considering whether resource is shared or not, as shown in Equation 3.4.

m∑
i=1

Pi +
r∑

j=1

S∑
k=1

PjkXjk < Pmax (3.4)

3.5 Static Timing Analysis and Search for Maximum

Clock Frequency

The major purpose of floorplanner is to find WNS through Static Timing

Analysis (STA) and apply it to quickly identify maximum achievable clock

frequency, a single element in Φ, so that this information can be back-

annotated to system task partitioning stage. We utilize high-level FPGA

floorplanner, which is integrated in Xilinx Vivado. Then, an efficient search

algorithm for maximum clock frequency in Φ was developed and employed.
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Naively, clock period can be constrained by the user until WNS becomes min-

imum to achieve maximum clock frequency in a brute-force manner. How-

ever, repetitive floorplanning from the highest frequency down to a realistic

maximum frequency that the PLL can support is a time-consuming search

process. This kind of linear search method has the computational complex-

ity of O(N), where N is |Φ|. However, WNS can be used to guide the search

process more efficiently. Since WNS is the maximum difference between re-

quired delay time and arrival time for a signal to travel from one point to

another, it is possible to reduce the clock period by the amount of WNS,

and thus increase clock frequency. Equation 3.5 explains how the next target

frequency can be calculated based on the current frequency and WNS.

Next freq [GHz] =

(
1

Current freq [GHz]
−WNS [ns]

)−1
(3.5)

Unless the constraint specifies the desired clock frequency, the floorplan-

ner does not try to achieve maximum possible frequency at the first trial.

Therefore, in Φ, our search algorithm efficiently finds the fmax with timing

satisfaction (WNS > 0) as soon as possible. Algorithm 1 demonstrates an

efficient search algorithm for fmax for the provided system after HW/SW par-

titioning. The search initially starts with the maximum possible frequency

that PLL can support, which is 250 MHz. If the timing requirement is sat-

isfied by having WNS > 0, then the search process immediately quits and

returns 250 MHz. However, it is often unlikely that a design will run at

250 MHz. If WNS < 0, the WNS is used to guide the next feasible clock

frequency. Instead of linear search in Φ for maximum clock frequency that

satisfies timing requirement, the next target frequency is calculated for bi-

nary search. At line 8 of Algorithm 1, the binary direction at which the

search continues is determined. From this point, linear search is performed

for more fine-grained search. If the first binary search result is “WNS > 0”,

then the search continues for higher frequency until timing failure, which

is “WNS < 0”. Otherwise, the search continues for lower frequency until

timing success, which is “WNS > 0”. The best case of the algorithm is a

successful search on the first trial. However, it is very unlikely that a design
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will meet the timing at the first trial. A more feasible case will be a suc-

cessful search at third trial because the first step will start with the tightest

frequency, and the second trial will be either success or failure. The third

trial will be the opposite of the second. Considering the worst case, the al-

gorithmic complexity will be O(N) because the linear search could continue

until it reaches the limit of the search space.

Algorithm 1: Algorithmic Skeleton to Search for the Maximum
Achievable Clock Frequency of PLL for Accelerators

Result: Maximum Achievable Clock Frequency
1 Set freq ← max possible frequency;
2 Run Floorplanner & Report WNS;
3 if WNS > 0 then
4 return freq;
5 else
6 Update freq ← next calculated target frequency;
7 Run Floorplanner & Report WNS;
8 if WNS > 0 then
9 repeat

10 Update freq ← next calculated target frequency;
11 Run Floorplanner & Report WNS;

12 until WNS < 0;
13 return the most recent freq where WNS > 0 ;

14 else
15 repeat
16 Update freq ← next calculated target frequency;
17 Run Floorplanner & Report WNS;

18 until WNS > 0;
19 return freq;

20 end

21 end
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CHAPTER 4

RESULTS

4.1 System Modeling Result

Our complete floorplan and communication-aware C-to-SoC flow is evaluated

by five benchmarks, which were adopted from [2]. Three of them (Correla-

tion, Covariance and 3-mm) are from PolyBench/C. The first two bench-

marks calculate correlation matrix and covariance matrix as result. 3-mm

performs matrix multiplication three times: A = B × C,D = E × F,G =

A × D. These benchmarks contain affine loop structure, where polyhedral

modeling and analysis could explore rich design spaces. RSA is one of the

most popular asymmetric encryption and decryption algorithms, which con-

tains original message, key, encrypted message, and decrypted message. The

RSA algorithm execution runtime depends on the value of prime numbers for

key generation, and 16-bit integer value was chosen for the prime numbers.

Among the five benchmarks, AlexNet [10], with 5 convolution layers and 3

fully connected layers and input size of 224 by 224, was tested.

Table 4.1: Possible SoC Designs for Each Benchmark after System Modeling

Benchmark n |Ai| |Φ| |Ω|
Correlation 2 173 51 1.526× 106

Covariance 2 173 51 1.526× 106

3-mm 3 62 51 1.215× 107

RSA 6 100 51 5.1× 1013

AlexNet 8 100 51 5.1× 1017

First, our tool identifies the number of critical code regions, n, for each

of the five benchmarks, and performs polyhedral model based design space

exploration for the hardware accelerators. Table 4.1 summarizes the result of
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system modeling in Section 3.2. Considering |Si| and |Φ|, the total possible

number of design spaces for SoC is determined as shown in |Ω|, which can

exponentially increase as the number of n increases. For correlation and

covariance benchmarks, |Ai| were both 173. However, since there are only 2

critical loops, the |Ω| are much less than those of other benchmarks.

It is noticeable that |Ω| exponentially increases as the number of n in-

creases. For correlation and covariance benchmarks, the |Ai| are both 173.

However, since there are only 2 critical loops, |Ω| of these benchmarks are

much smaller than those of other benchmarks.

4.2 Communication Modeling Result

As described in Section 3.3, different types of communication were character-

ized, and average of data transfer cycles in both directions between the two

origins were measured. Thus, an average transfer cycle of both directions

was calculated. Then, communication models for different sources and des-

tinations are inferred, and adopted in the integer linear programming based

optimization stage by annotating communication latency overhead just like

computation latency. Depending on the amount of data between nodes of

task graph, cycle counts are estimated and annotated into the communication

node of task graph.

First, HW-SW communication (and vice versa) is considered. As shown

in Figure 4.1, there is a directly proportional relationship between the data

transfer cycle and data size with the regression coefficient R of 0.9999 and

slope of 5.05, which means that the data transfer cycle increases by approx-

imately 5.05 cycles per byte, or 20.2 cycles per 4-byte word. Between OCM

and BRAM, Figure 4.2 also shows a strong directly proportional relationship

with the regression coefficient of 1 and slope of 0.5091. The ratio between

the two identified slopes is 9.92, which means the cycle increase rate of data

transfer between OCM and BRAM is 9.92 times faster than that between

DRAM and BRAM. Looking at the architecture of XC7Z045 in Figure 3.3,

OCM is physically much closer to BRAM in the PL side than the external

DRAM.
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Figure 4.1: Data Transfer Cycle vs. Data Size between DRAM and BRAM

Figure 4.2: Data Transfer Cycle vs. Data Size between OCM and BRAM

The next type of communication is HW-HW communication. To allow

efficient communication between the two hardware-mapped accelerators, the

designer may let the result data stay on-chip so that the next accelerator

can directly use it. Thus, in the case of two consecutive hardware mapped

nodes, communication via FIFO is a much better communication than al-

ways accessing DRAM. The slope of the blue trendline in Figure 4.3 is 0.25,

which can be interpreted as the FIFO’s data transfer cycle rate for each

byte of data. On the other hand, the red trendline of Figure 4.3 shows a

slope of 9.85. Thus, the ratio between the two slopes is 39.4, which means

that the communication between the two accelerators by accessing DRAM is
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39.4 times slower than the communication through FIFO streamed interface.

Due to this significant difference, FIFO enabled communication is a much

better communication method. Also, the slope of communication between

two BRAMs via DRAM in Figure 4.3 is 9.85 while that between DRAM

and BRAM in Figure 4.1 is 5.0513. Thus, the ratio between the two slopes

is 1.95, which explains that the communication path of the former is twice

the path of the latter. Through the accurate modeling and characterization

of different types of communication, numeric models of average data trans-

fer cycle per data size increase were extrapolated and integrated into our

HW/SW co-design framework so that appropriate communication method

can be chosen by minimizing cost function.

Figure 4.3: Data Transfer Cycle vs. Data Size between Two BRAMs via
FIFO Interface and DRAM Interface

4.3 System Partitioning Result

For all benchmarks, our framework generated overall better HW/SW par-

titioning results. This is significant. Reference [2] used randomized ILP-

based method and demonstrated that they achieved optimal or near-optimal

HW/SW partitioning solution compared to known optimal solutions obtained

through brute-force enumeration. Our work demonstrates that when we

incorporate the right communication latency through our layout-aware ap-

proach, we can further improve their results significantly. Table 4.2 shows
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the result of final HW/SW partitioning. Also, Table 4.3 reports both base-

line and our final results with 37.78% performance improvement on average.

Figures 4.4 and 4.5 show how the iterative partitioning method changed the

selection of hardware accelerator from the initial point to the final point. For

correlation and covariance, performance improvements were not as significant

as the other benchmarks because these had only 2 critical loops and initial

design points were already close to the near-optimal design. For 3-mm, there

was an improvement of 60.83%. The final result showed that all three critical

loops were mapped to hardware accelerators. During the LLVM analysis of

system partitioning in Figure 3.5, loop 2 was identified as a duplicated node,

and thus loop 1 and loop 2 were both mapped to hardware so that these

hardware accelerators can run in parallel. Loop 3 was also mapped to hard-

ware, but was not identified as a duplicated node. Since all three loops were

mapped to hardware, a FIFO enabled communication interface between the

two adjacent hardware mapped nodes was chosen. The extracted maximum

clock frequency of 125 MHz allowed the system partitioning stage to choose

from the 58th to the 21st candidate point on the generated Pareto curve, as

shown in Figure 4.4. Next, RSA showed the best improvement of 75.15%

among the five benchmarks. Although the initial partitioning resulted in

two critical loops (3 and 4) being mapped to hardware, the final partitioning

showed that four loops (2, 3, 4 and 5) were mapped to hardware as shown

in Table 4.2 and Figure 3.2. Floorplanner reported the largest WNS for

this benchmark, and thus the maximum achievable clock frequency was re-

ported to be 187.5 MHz. Therefore, the final partitioning scheme completely

changed, and new design candidates were selected on Pareto curves of loop

2 and 5. Interestingly, there was a change in design point from the 51st to

the 31st point for loop 3, as shown in Figure 4.5. As the iteration continues

and generates more hardware mapped nodes, streamed communication via

FIFO between two hardware accelerators was also chosen. Lastly, AlexNet

initially had 6 loops being mapped to hardware and 2 loops being mapped

to software. As shown in Table 4.2, the number of final mapping decisions

did not change. However, the design point on Pareto curve of loop 1 was

changed from the 42nd point to the 1st point. Also, the floorplanner reported

maximum frequency of 111.11 MHz, and consequently, the overall latency

improved by 35.17%. Overall, all five benchmarks showed performance im-

provement with our communication and floorplan-aware partitioning.
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Table 4.2: Final Partitioning Result of Five Benchmarks

Correlation Covariance 3-mm RSA AlexNet

HW 2 2 3 4 6
SW 0 0 0 2 2

Figure 4.4: Change in Design Candidate Selection over Iterative HW/SW
Partitioning for Third Loop of 3-mm
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Figure 4.5: Change in Design Candidate Selection over Iterative HW/SW
Partitioning for Third Critical Loop of RSA
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Table 4.3: Latency Improvement of Final SoC Solution through Iterative
HW/SW Partitioning for Five Benchmarks

Benchmarks
Correlation Covariance 3-mm RSA AlexNet

Baseline

Latency
(ms)

640 600 450 3690 1040

Power
(W)

5.91 5.02 5.84 2.25 7.75

BRAM 384 256 382 8 504
FF 34185 23618 131093 18444 103340

DSP 812 820 848 72 885
LUT 84266 61618 80865 18867 104266

Final

Latency
(ms)

613.5 529 279.8 2106.8 769.4

Power
(W)

5.9258 4.92 5.86 2.7 7.872

BRAM 397 392 542 9 705
FF 25916 25509 49126 18633 108423

DSP 818 818 840 48 570
LUT 39446 40795 51552 17341 121686

Perf.
Improvement(%)

4.32 13.42 60.83 75.15 35.17

Avg. Perf.
Improvement(%)

37.78

26



CHAPTER 5

CONCLUSION

The importance of an automated HW/SW co-design tool which considers a

wide range of abstraction levels during the HW development process is sig-

nificant. HW/SW co-design is also an area of research where many scholars

studied and published in the past. Although many works were published

to optimize certain levels of abstraction in the process of SoC design, data

communication and physical delay information, which can only be identified

after floorplanning, were not considered much. Here, we not only generate

sets of many candidate accelerator designs for each task in given benchmark

applications using polyhedral model based analysis, but also perform integer

linear programming based HW/SW partitioning to model the application

code behavior and iteratively integrate and search for the system such that a

near-optimal SoC design is quickly discovered under user-defined power and

resource constraint. With several communication models being integrated

and post-layout timing information being annotated, our HW/SW co-design

tool was able to find a near-optimal SoC solution, and showed performance

improvement for all five benchmarks. Some applications with small number

of critical loops demonstrated that the result of initial partitioning was al-

ready near-optimal. However, some applications with data parallelism and

more critical loops demonstrated that identification and back-annotation of

WNS and maximum achievable clock frequency could actually help the inte-

ger linear programming solver to choose a different partitioning scheme by

selecting a different candidate on the Pareto curve, or by changing an initially

SW-mapped node to HW-mapped node. Also, exploration of various com-

munication models helped the integer linear programming solver to choose

the most appropriate communication interface.

27



REFERENCES

[1] W. Zuo, W. Kemmerer, J. B. Lim, L.-N. Pouchet, A. Ayupov,
T. Kim, K. Han, and D. Chen, “A polyhedral-based SystemC
modeling and generation framework for effective low-power design
space exploration,” in Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design, ser. ICCAD ’15.
Piscataway, NJ, USA: IEEE Press, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2840819.2840870 pp. 357–364.

[2] W. Zuo, L. N. Pouchet, A. Ayupov, T. Kim, C.-W. Lin, S. Shiraishi,
and D. Chen, “Accurate high-level modeling and automated hard-
ware/software co-design for effective SoC design space exploration,” in
2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2017, pp. 1–6.

[3] W. Kemmerer, W. Zuo, and D. Chen, “Parallel code-specific CPU
simulation with dynamic phase convergence modeling for HW/SW
co-design,” in Proceedings of the 35th International Conference on
Computer-Aided Design, ser. ICCAD ’16. New York, NY, USA: ACM,
2016. [Online]. Available: http://doi.acm.org/10.1145/2966986.2967063
pp. 79:1–79:8.

[4] K. S. Chatha and R. Vemuri, “MAGELLAN: Multiway hardware-
software partitioning and scheduling for latency minimization of
hierarchical control-dataflow task graphs,” in Proceedings of the
Ninth International Symposium on Hardware/Software Codesign, ser.
CODES ’01. New York, NY, USA: ACM, 2001. [Online]. Available:
http://doi.acm.org/10.1145/371636.371671 pp. 42–47.

[5] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System
level hardware/software partitioning based on simulated anneal-
ing and Tabu search,” Design Automation for Embedded Sys-
tems, vol. 2, no. 1, pp. 5–32, Jan 1997. [Online]. Available:
https://doi.org/10.1023/A:1008857008151

28



[6] E. Sha, L. Wang, Q. Zhuge, J. Zhang, and J. Liu, “Power
efficiency for hardware/software partitioning with time and area
constraints on MPSoC,” International Journal of Parallel Programming,
vol. 43, no. 3, pp. 381–402, Jun 2015. [Online]. Available:
https://doi.org/10.1007/s10766-013-0283-4

[7] S. Pasricha, Y. H. Park, F. J. Kurdahi, and N. Dutt, “CAPPS: A frame-
work for power-performance tradeoffs in bus-matrix-based on-chip com-
munication architecture synthesis,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 18, no. 2, pp. 209–221, Feb 2010.

[8] H. Zheng, S. T. Gurumani, K. Rupnow, and D. Chen, “Fast
and effective placement and routing directed high-level synthesis
for FPGAs,” in Proceedings of the 2014 ACM/SIGDA Interna-
tional Symposium on Field-programmable Gate Arrays, ser. FPGA
’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2554688.2554775 pp. 1–10.

[9] W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong,
“Improving high level synthesis optimization opportunity through
polyhedral transformations,” in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, ser.
FPGA ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2435264.2435271 pp. 9–18.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

29


