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Abstract

Monte Carlo methods are widely used in statistical computing area to solve different

problems. Social network analysis plays an importance role in many fields. In this disserta-

tion, we focus on improving the efficiency of importance sampling, detecting the degrees of

influence in networks, and exploring properties of generalized Erdős-Rényi model.

In the first part of the thesis, we propose an importance sampling algorithm with proposal

distribution obtained from variational approximation. This method combines the strength

of both importance sampling and the variational method. On one hand, this method avoids

the bias from variational approximation. On the other hand, variational approximation

provides a way to design the proposal distribution for the importance sampling algorithm.

Theoretical justification of the proposed method is provided. Numerical results show that

using variational approximation as the proposal can improve the performance of importance

sampling and sequential importance sampling.

In the second part of the thesis, we propose a sequential hypothesis testing procedure

to detect the degrees of influence in a network. We build a multivariate Bernoulli model to

represent the status of each node in the network with different degrees of influence. A double

bootstrap strategy is used to resolve the uncertainty from by estimating nuisance parameters

in hypothesis testing. Theoretical justification of the proposed method is provided to show

that the hypothesis testing is powerful for larger networks. Simulation studies show that our

method can preserve the levels and improve the powers in hypothesis testing. We also apply

our proposed method on two real network data to explore the degree of influence for various

features.
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In the third part of the thesis, we propose a random graph model for undirected networks

with small-world properties, namely with a high clustering coefficient and a low average path

length. We generalize the regular Erdős-Rényi dyadic random graph by considering higher-

order motif, which is triadic graph. We show some properties of our proposed model, analyze

the probability of multi-edges, and compare the local clustering coefficient with ER model.

In addition, we also provide some conditions about phase transition including connectivity

threshold and the existence of giant components.
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Chapter 1

Introduction

Bayesian inference is a popular statistical method for the posterior distribution of pa-

rameters or latent variables. There are many applications of it in a wide range of disciplines,

such as engineering, biology, pharmacy, sociology etc. In decision theory, we are more con-

cerned with the posterior mean or median, which can provide a good estimation in the sense

of minimizing the risk with respect to some particular loss functions. Bayesian framework

also indicates the underlying structures of some complex models, which means it plays an

important role when we are making decisions. In addition, Bayesian inference is sometimes

used in graphical models, social network analysis and variable selection procedures.

If the analytical computation on the posterior distribution is difficult to implement, we

can consider using the Monte Carlo methods as an alternative way to generate samples from

the posterior distribution. However, the posterior distributions are hard to sample for some

complex statistical models with both unknown parameters and latent variables. Markov

chain Monte Carlo (MCMC) (Hastings, 1970; Geman and Geman, 1984) and importance

sampling (IS) are widely used for handling such problems. Importance sampling draws sam-

ples from an easy-to-sample proposal distribution, and then correct the bias by introducing

the importance weights. Choosing a good proposal distribution is essential to improve the

efficiency of importance sampling algorithm. When the target distribution is hard to sample

directly, we often try to find a proposal distribution which is close to the target distribution

to reduce the variance of the importance weight. For high dimensional problems, sequential

importance sampling (SIS) (Liu and Chen, 1998; Doucet et al., 2000) gives a way to construct

the proposal sequentially.
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Variational Bayes (VB) (Jordan et al., 1999) tackles the problem in a different way by

deriving a tractable approximation to the posterior distribution. It minimizes the Kullback-

Leibler (KL) divergence (Kullback and Leibler, 1951) between the posterior and the vari-

ational approximation, and uses the variational approximation to make inference. In the

optimization part, VB algorithm usually uses stochastic optimization (Robbins and Monro,

1951) or coordinate optimization strategy. This method is also related to EM algorithm

(Dempster et al., 1977; Neal and Hinton, 1998), and we can also treat the optimization

procedure as two steps, which is just like how EM works. There are a lot of fields that

variational method can be applied, such as computational biology (Sanguinetti et al., 2006),

network data analysis (Hofman and Wiggins, 2008), natural language processing (Blei et al.,

2003), building statistical model (Armagan and Dunson, 2011) etc.

An advantage of VB is the variational approximation can be obtained quickly, and it

usually takes less time than Monte Carlo sampling algorithms, such as MCMC. However,

one issue for the variation method is that the gap between the variation approximation

and the true posterior distribution may lead to biased inference based on the variational

approximation. In many problems, the estimate obtained from the variation approximation

may not be consistent. Also the uncertainty of the VB estimate is not available. In order to

resolve the bias associated with VB, we will use the variational approximation as the proposal

distribution for importance sampling, and then use the importance weight to correct the bias.

Since the importance sampling estimate is consistent under mild conditions, the bias issue

of VB is resolved. In the meantime, since the variational approximation is close to the true

posterior distribution and is usually easy to sample, it is an ideal choice for the importance

sampling proposal distribution. So, this idea combines the strength of these two methods.

We will provide theoretical justification of the proposed methods using the f -divergence

(Ali and Silvey, 1966). We will also implement the proposed methods on several models to

demonstrate its performance in practice.

In chapter 2, we consider using the variational approximation as the proposal distribution
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for importance sampling, and then using the importance weight to correct the bias. Since

the importance sampling estimate is consistent under mild conditions, the bias issue of VB

is resolved. The uncertainty of the importance sampling estimate is also relatively easy to

obtain. In the meantime, since the variational approximation is close to the true posterior

distribution and is usually easy to sample, it is a good choice for the importance sampling

proposal distribution. So this idea combines the strength of these two methods. We will

provide theoretical justification of the proposed method using the f -divergence (Ali and

Silvey, 1966), and implement the proposed method on univariate normal model, Gaussian

mixture model, Bayesian linear regression model, hidden Markov model and Dirichlet process

mixture model to demonstrate its performance in practice.

Social network analysis plays an importance role in many fields, including sociology,

psychology, biology etc. Many new methods have been developed in recent years to analyze

the network data, and statistical technique sometimes gets involved when implementing the

analysis procedure. Usually, we are interested in figuring out if the individuals traits can

spread from one person to another through a process, which is usually known as social

influence or peer effect. Another purpose to analyze the network data is to explore the

internal structure and do the community detection to find clusters or groups of people who

are friends with a higher probability.

Mathematically, we use a graph to denote the whole network, and each person will be

presented by a vertex or node in the graph. Also, the friendship can be depicted by the

edges between each pair of the nodes. This abstract notation provides us a very intuitive

way to describe the network, and is also convenient to build the statistical models and do

the estimation.

However, most people are concerned about the exploration of community structure in

the network analysis, and they ignore the covariates of each person and build the model

without considering the peer effects. For example, medical research is centered on individual

health outcomes, or we say people smoke or not. The researchers should also care about if
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the behavior of one person has any influences to another one, or how long can the effects

being lasted. Here, we are interested in finding if the individuals traits can spread from one

person to another, which is usually known as social influence or social diffusion. We use the

term degrees of influence to denote how long the social influence can last in a network. If the

degrees of influence is zero, then the behaviors of all people in the network are independent,

and can not be influenced by other people. On the other hand, if the degrees of influence is

a positive integer, then people’s behaviors or opinions can be influenced by their friends or

even friends’ friends.

In chapter 3, we focus on exploring the degrees of influence in an observed network.

We build a multivariate Bernoulli model to specify the correlation structure of the people’s

behaviors in the whole network. In order to detect the true degrees of influence, we propose

a sequential hypothesis testing procedure and overcome the issue of nuisance parameters

by introducing double bootstrap (Beran, 1988). In addition, we show that under certain

conditions, the power of our proposed hypothesis testing goes to one when the network is

large. We also do some simulation studies and real data analyses to illustrate the performance

of our proposed method.

When describing a network, people usually assume each possible edge only contains two

vertices. In graph theory, the Erdős-Rényi (ER) model is one of the most popular method for

generating random graphs. There are two related generating procedures for the ER model.

The first one is the G(n,M) model, we randomly select one from the collection of all graphs

which contains n vertices and M edges. The other one is the G(n, p) model, we randomly

connect nodes in a graph with n vertices, and each edge appears in the graph with the same

probability p. However, in some complex real-world examples, the original graph setting for

the ER model is not enough to describe the model. So, a new type of graph with hyper-

edges is introduced to represent the structure of those networks, and some people also call

it hyper-graph.

In Chapter 4, we propose a random graph model for undirected networks with small-
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world properties. We generalize the regular Erdős-Rényi dyadic random graph by consid-

ering higher-order motif, which is triadic graph. We show some properties of our proposed

model, including analyzing the probability of multi-edges and comparing the local cluster-

ing coefficient with ER model. In addition, we also provide some conditions about phase

transition including connectivity threshold and the existence of giant components.
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Chapter 2

Variational Approximation for
Importance Sampling

2.1 Introduction

Monte Carlo methods, such as importance sampling (IS) and Markov chain Monte Carlo

(MCMC), are widely used in Bayesian inference when analytical computation based on the

posterior distribution is difficult. The posterior distributions are sometimes hard to sample

directly, especially for complex statistical models with both unknown parameters and latent

variables. In that case, importance sampling draws samples from an easy-to-sample proposal

distribution, and then corrects the bias by the importance weights. Choosing a good proposal

distribution is essential to the efficiency of importance sampling algorithms. We often try

to find a proposal distribution that is close to the target distribution to reduce the variance

of the importance weight. For high dimensional problems, sequential importance sampling

(SIS) (Liu and Chen, 1998; Doucet et al., 2000) gives a way to construct the proposal

distribution sequentially.

Variational Bayes (VB) (Jordan et al., 1999) tackles the problem in a different way by

deriving a tractable approximation to the posterior distribution. It minimizes the Kullback-

Leibler (KL) divergence (Kullback and Leibler, 1951) between the posterior and the vari-

ational approximation, and uses the variational approximation to make inference. In the

optimization part, VB algorithm usually uses stochastic optimization (Robbins and Monro,

1951) or coordinate optimization strategy. This method is also related to the EM algorithm

(Dempster et al., 1977; Neal and Hinton, 1998). VB, IS and MCMC can be used for general

computational problems, but in this chapter we focus on the application in Bayesian settings
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to make the discussion more concrete.

An advantage of VB is the variational approximation can be obtained quickly, and it

usually runs faster than Monte Carlo sampling algorithms such as MCMC. The variational

method has been applied in many fields, such as computational biology (Sanguinetti et al.,

2006), network data analysis (Hofman and Wiggins, 2008), natural language processing (Blei

et al., 2003), and statistical inference (Armagan and Dunson, 2011). However, one issue with

the variation method is that the gap between the variational approximation and the true

posterior distribution may lead to biased inference based on variational approximation. In

many problems, the estimate based on variation approximation may not be consistent. Also

the uncertainty of the VB estimate is not available.

In this chapter, we consider using the variational approximation as the proposal distri-

bution for importance sampling, and then using the importance weight to correct the bias.

Since the importance sampling estimate is consistent under mild conditions, the bias issue

of VB is resolved. The uncertainty of the importance sampling estimate is also relatively

easy to obtain. In the meantime, since the variational approximation is close to the true

posterior distribution and is usually easy to sample, it is a good choice for the importance

sampling proposal distribution. So this idea combines the strength of these two methods.

We will provide theoretical justification of the proposed method using the f -divergence (Ali

and Silvey, 1966), and implement the proposed methods on several models to demonstrate

its performance in practice.

This chapter is organized as follows. We first review importance sampling and variational

approximation in Section 2.2, and introduce the new method in Section 2.3. Then, we

provide theoretical justification in Section 2.4, and give numerical results of the new method

on several examples in Section 2.5. Section 2.6 concludes with a discussion.
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2.2 Literature Review

2.2.1 Importance sampling

Suppose Z is a random vector with probability density function p(z), and we want to

estimate the expectation of some function h(Z):

µ = Ep(h(Z)) =

∫
h(z)p(z)dz.

If p(z) is hard to sample directly, we may consider importance sampling (IS) to generate

samples from a proposal distribution q(z). Then the expectation µ can be estimated by the

weighted average

µ̃ =
w(z(1))h(z(1)) + · · ·+ w(z(m))h(z(m))

w(z(1)) + · · ·+ w(z(m))
, (2.1)

where w(z(i)) = p(z(i))/q(z(i)) are the importance weights. The estimate µ̃ is consistent, and

it can also handle densities that are only known up to normalizing constants.

The standard error of µ̃ can be used to measure the efficiency of the IS algorithm.

Another criterion is the effective sample size (ESS) (Kong et al., 1994; Kong, 1992; Martino

et al., 2017):

ESS =
m

1 + cv2
,

where the coefficient of variation (cv) is defined as:

cv2 =
V arq[w(Z)]

E2
q [w(Z)]

.

The ESS roughly approximates the number of independent and identically distributed (i.i.d.)

samples these m importance samples are equivalent to. Thus, a smaller cv2 indicates that

the IS algorithm is more effective in terms of the ESS. In addition, the cv2 is also the χ2
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distance between the proposal distribution q(z) and the target distribution p(z), defined as

χ2(p||q) =

∫
(p− q)2

q
dz,

and this will be used later in our theoretical justification.

For high dimensional problems, it is often hard to find a good proposal for IS. To overcome

this difficulty, Liu and Chen (1998) and Doucet et al. (2000) provided the general framework

of sequential importance sampling (SIS) to build up the proposal q(z) sequentially. For a

d-dimensional vector z = (z1, . . . , zd), the proposal distribution can be decomposed as:

q(z) = q1(z1)q2(z2|z1) · · · qd(zd|z1, . . . , zd−1).

Each proposal distribution in the decomposition is for a low dimensional component, so it is

relatively easier to design a good proposal. The target distribution p(z) can be decomposed in

a similar way by using auxiliary distributions to guide the choice of the proposal distribution

(Liu and Chen, 1998). The importance weight can also be computed recursively based on the

decomposition. SIS has been successfully applied to many problems, including the filtering

problem in hidden Markov models (or state space models).

Another variation of IS is adaptive importance sampling (AIS) (Cappé et al., 2004, 2008;

Bugallo et al., 2017), which provides a scheme to find a good proposal distribution adaptively

based on samples in previous steps. For multi-modal distributions, Owen (2013) suggested

using mixture importance sampling as a way to carry out AIS. However, AIS does not work

well for high dimensional distributions without incorporating an additional MCMC layer,

and the computation time of AIS is usually much longer than importance sampling (Bugallo

et al., 2017).
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2.2.2 Variational approximation

Variational Bayesian method (Jordan et al., 1999) is a technique for approximating the

intractable integrals in Bayesian inference. It is typically useful when the statistical models

are relatively complex with a lot of parameters and latent variables. In Bayesian inference,

suppose we have a set of n i.i.d. data x, and all latent variables and parameters are denoted

by Z. We need to find an approximation to the posterior distribution p(z|x) that can

minimize the KL divergence, i.e.,

q∗(z) = argmin
q(z)∈D

KL(q(z)||p(z|x)),

where D is a restricted distribution family. Here D is usually a simpler family of distributions

to make the optimization and inference tractable.

Xing et al. (2002) assumed the variational distribution q(z) can be factorized over some

partitions of the latent variables as follows:

q(z) =
M∏
j=1

qj(zj),

where M is the number of parameters and latent variables. The best distribution q∗j for each

factor that solves the optimization problem can be expressed as:

q∗j (zj) =
eE−j [log p(z,x)]∫
eE−j [log p(z,x)]dzj

∝ eE−j [log p(zj ,z−j ,x)]. (2.2)

Here E−j[·] means the expectation with respect to all qi(zi) with i 6= j and z−j means

all the elements in the vector z except zj. However, the optimal mean-field variational

approximations q∗j (zj) can not be computed directly because E−j[zi] (i 6= j) are involved

in the right hand side of (2.2). Thus, an iterative method is often used to obtain the best

solution, and such mean-field variational algorithm can only guarantee to converge to a local

minimum of KL(q(z)||p(z|x)) (Blei et al., 2017).
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Beal and Ghahramani (2003) proposed a variational Bayesian EM algorithm to estimate

the marginal likelihood of probabilistic models with latent variables or incomplete data.

They also compared the variational bound with a sampling-based method known as an-

nealed importance sampling (Neal, 2001). Dieng et al. (2017) proposed another variational

algorithm by minimizing the χ-divergence between the variational approximation and the

posterior distribution.

2.3 VB Approximation for Importance Sampling

Although obtaining variational approximation is faster than some sampling based meth-

ods, such as MCMC, and it learns the approximate probability density functions through

optimization, the inference based on the approximation is biased due to the gap between

the variational approximation and the true posterior distribution. On the other hand, IS

provides a consistent estimate, but the proposal distribution is hard to design. Here we

combine VB with IS by using variational approximation q(z) as the proposal distribution

for IS. It avoids the bias from VB approximation and also provides a good way to construct

the proposal distribution for IS.

Suppose we have a model with prior p(z) and likelihood function p(x|z), where z contains

both parameters and latent variables, then the posterior distribution is

p(z|x) =
p(z)p(x|z)

p(x)
∝ p(z)p(x|z) = p(x, z).

By the mean-field variational algorithm, we can obtain the variational approximation q(z)

to the posterior p(z|x). If the support of q(z) includes the support of p(z|x), then the

expectation of the function h(Z) with respect to p(z|x) can be estimated by importance

sampling as in (2.1), with w(z(i)) = p(z(i)|x(i))/q(z(i)). The variational importance sampling

algorithm is summarized in Algorithm 1.
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Algorithm 1 Variational importance sampling

1. Obtain the analytical expression of p(z|x) (up to a normalizing constant)

2. Derive the variational approximation q(z) =
∏M

j=1 qj(zj) to p(z|x)

3. For i ∈ {1, . . . ,m}

4. Draw z(i) from the proposal distribution q(z)

5. Calculate importance weight w(z(i)) = p(z(i)|x(i))/q(z(i))

6. Estimate the expectation of h(Z) with respect to p(z|x) by (2.1).

Dowling et al. (2018) used the modes of the variational distributions to initialize the

location parameters of the proposal distributions in adaptive importance sampling, which is

applicable when the variational approximation is in the location scale family. Our proposed

method uses the variational approximation itself as the proposal distribution for importance

sampling. It does not put restrictions on the proposal distribution, and it can be extended

to sequential importance sampling as shown in the next section.

2.3.1 VB approximation for sequential importance sampling

If the dimension of the parameters and latent variables is high, or if the data arrive

sequentially, SIS is often used. VB can be combined with SIS as well by constructing the

proposal with VB sequentially.

Let z be all the hidden variables, and z1:t = {z1, . . . , zt} be the first t components. Let

x = {x1, . . . , xT} be the data which arrive sequentially. The posterior distribution of interest

is p(z1:t|x1:t), t = 1, . . . , T . In variational approximation, we assume the approximation

q(z1:t|x1:t) can be factorized in the following way:

q(z1:t|x1:t) =
t∏

k=1

q(zk|x1:t), t = 1, . . . , T.

We consider two different approaches for constructing the proposal distribution sequentially.

VB-SIS1. In the first method, at each time t = 1, . . . , T , we minimize the KL divergence
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between q(z1:t|x1:t) and the true posterior distribution p(z1:t|x1:t), and obtain the variational

distributions as follows:

q(z1:1|x1:1) = q1(z1:1) = q11(z1),

q(z1:2|x1:2) = q2(z1:2) = q21(z1) q22(z2),

...

q(z1:T |x1:T ) = qT (z1:T ) = qT1(z1) qT2(z2) · · · qTT (zT ).

We will use qtt(zt), t = 1, 2, . . . , T , as the proposal distributions in SIS, and we call this

method VB-SIS1 with general procedure given in Algorithm 2.

Algorithm 2 Variational sequential importance sampling 1 (VB-SIS1)

1. Set w0(z
(i)
1:0) = 1, i = 1, . . . ,m

2. For t ∈ {1, . . . , T}

3. Obtain the analytical expression of p(z1:t|x1:t)

4. Derive the variational approximation to p(z1:t|x1:t) using VB-SIS1:

q(z1:t|x1:t) = qt1(z1)qt2(z2) · · · qtt(zt)

5. For i ∈ {1, . . . ,m}

6. Draw z
(i)
t from the proposal distribution qtt(zt)

7. Update importance weight wt(z
(i)
1:t) = wt−1(z

(i)
1:t−1)

p(z
(i)
1:t|x1:t)

p(z
(i)
1:t−1|x1:t−1)qtt(z

(i)
t )

8. Using the sample z
(i)
1:t, i = 1, . . . ,m, and importance weights wt(z

(i)
1:t) to estimate the

expectation of h(z1:t) with respect to p(z1:t|x1:t)

VB-SIS2. Another method is to obtain the proposal distribution in the current step t
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by reusing the proposals in previous steps. This procedure can be represented as follows:

q̃(z1:1|x1:1) = q̃1(z1:1) = q̃1(z1),

q̃(z1:2|x1:2) = q̃2(z1:2) = q̃1(z1) q̃2(z2),

...

q̃(z1:T |x1:T ) = q̃T (z1:T ) = q̃1(z1) q̃2(z2) · · · q̃T (zT ).

At time t, in order to obtain q̃t(z1:t), we fix the proposals from previous steps q̃1(z1), . . . , q̃t−1(zt−1),

and obtain q̃t(zt) by minimizing the KL divergence between q̃(z1:t|x1:t) and the true posterior

distribution p(z1:t|x1:t). Since we only need to determine the variational distribution for the

last latent variable at each step, the running time will be shorter than VB-SIS1. We will

use q̃t(zt), t = 1, . . . , T , as the proposal distribution, and we call this method VB-SIS2 with

general procedure given in Algorithm 3.

Algorithm 3 Variational sequential importance sampling 2 (VB-SIS2)

1. Set w0(z
(i)
1:0) = 1, i = 1, . . . ,m

2. For t ∈ {1, . . . , T}

3. Obtain the analytical expression of p(z1:t|x1:t)

4. Derive the variational approximation to p(z1:t|x1:t) using VB-SIS2:

q(z1:t|x1:t) = q̃1(z1)q̃2(z2) · · · q̃t(zt)

5. For i ∈ {1, . . . ,m}

6. Draw z
(i)
t from the proposal distribution q̃t(zt)

7. Update importance weight wt(z
(i)
1:t) = wt−1(z

(i)
1:t−1)

p(z
(i)
1:t|x1:t)

p(z
(i)
1:t−1|x1:t−1)q̃t(z

(i)
t )

8. Using the sample z
(i)
1:t, i = 1, . . . ,m, and importance weights wt(z

(i)
1:t) to estimate the

expectation of h(z1:t) with respect to p(z1:t|x1:t)

In some cases (such as the hidden Markov model example in Section 2.5.4), we use the
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following approximation to further simplify the variational approximation:

p(z1:t|x1:t) ≈ p(z1:t|xmax(1,t−∆+1):t)

where ∆ is a tuning parameter. This approximation assumes that the observations at time

k < t−∆ almost provide no additional information to z1:t. Under this assumption, we can

obtain the variational approximation at step t only based on the observations xmax(1,t−∆+1):t,

that is,

q(z1:t|x1:t) = q(z1:t|xmax(1,t−∆+1):t).

Naesseth et al. (2018) considered approximating the posterior distribution for the state

space model by introducing variational parameters and resampling procedures. The varia-

tional SIS algorithms we proposed are different because we obtain the proposal distribution

at each step by deriving variational approximation sequentially. Our variational SIS can

be used for general computation based on SIS, including state space models. Adding the

resampling procedure can further improve the efficiency of SIS. We will not consider it here

because we would like to compare the VB proposal with the standard proposal to evaluate

the efficiency gain from VB proposal. Adding resampling steps will make it hard to dis-

tinguish where the efficiency gain is coming from. In practice, users can always combine

resampling with variational SIS to make it more effective in high dimensional problems.

2.4 Theoretical Justification

To simplify the notation, we will use p and q to denote the true posterior distribution

p(z|x) and the variational distribution q(z) in this section. In variational inference, we

minimize the KL divergence between q and p:

KL(q||p) =

∫
q log

q

p
dz.

15



In importance sampling, the cv2 is the χ2 distance between p and q:

χ2(p||q) =

∫
(p− q)2

q
dz,

and we hope to find a proposal distribution q with a relatively small cv2.

In order to make connections between these two distances, we introduce a more general

f -divergence (Ali and Silvey, 1966) between p and q as:

Df (p||q) = Eq

[
f

(
p

q

)]
=

∫
f

(
p

q

)
· q dz,

where f(·) satisfies the following three conditions:

(i) f(1) = 0.

(ii) f(x) is a convex function.

(iii) f(x) is continuous at x = 1.

Let u = p/q, f1(u) = − log u and f2(u) = (u − 1)2, then we can see that the two distances

can be written as:

KL(q||p) = Df1(p||q) and χ2(p||q) = Df2(p||q).

The Taylor expansion for f1(u) at u = 1 is :

f1(u) = − log u = − log(1 + (u− 1)) = −(u− 1) +
(u− 1)2

2
− (u− 1)3

3
+ · · · .

Taking expectation on both sides with respect to q and using the fact Eq[u] = Eq[p/q] = 1,

we obtain the following equations

KL(q||p) =
1

2
χ2(p||q) + o((u− 1)2).
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This indicates that when u is close to 1, these two distances are equivalent, i.e.,

KL(q||p) � 1

2
χ2(p||q).

In order to quantify the value of u, we introduce two quantities β1 and β2 as follows

(Sason and Verdú, 2016):

β1 = ess inf
q

p
, β2 = ess inf

p

q
. (2.3)

The essential infimum and the essential supremum are defined as:

ess inf
p

q
= sup{b ∈ R : µ({x : p(x)/q(x) < b}) = 0},

ess sup
p

q
= inf{a ∈ R : µ({x : p(x)/q(x) > a}) = 0},

where µ(·) denotes the Lebesgue measure.

Since
∫
q(z) dz = 1 and

∫
p(z|x) dz = 1, we have 0 ≤ β1, β2 ≤ 1, and β1 = 1⇔ β2 = 1⇔

p = q. Suppose 0 < β1 < 1 and 0 < β2 < 1. We say a sequence of probability measures with

densities pn converge to q if

lim
n→∞

ess inf
pn
q

= 1. (2.4)

Lemma 2.1. Suppose f is a function satisfying Conditions (i)-(iii), and a sequence of

probability measures with densities pn converge to q in the sense of (2.4). Let

β−1
1,n = ess sup

pn
q
, β2,n = ess inf

pn
q
.

Then we have

lim
n→∞

β1,n = lim
n→∞

β2,n = 1,

and

lim
n→∞

Df (pn||q) = 0.
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The proof of the lemma as well as the proof of the following theorem are in Section 2.7.

Define a function:

κ(t) =
t log t+ (1− t)
(t− 1)− log t

, 0 < t < 1, (2.5)

which is increasing for 0 < t < 1. Then from Sason and Verdú (2016), the following

inequalities hold:

κ(β2,n) ≤ KL(pn||q)
KL(q||pn)

≤ κ(β−1
1,n), (2.6)

1

2
β1,n ≤

KL(pn||q)
χ2(pn||q)

≤ 1

2
β−1

2,n, (2.7)

where pn, β1,n, and β2,n are defined in Lemma 2.1. The following theorem gives the limit of

the ratios in (2.6) and (2.7).

Theorem 2.2. Suppose a sequence of probability measures with densities pn converge to q

in the sense of (2.4). For KL divergence and χ2 distance, we have

lim
n→∞

KL(pn||q)
KL(q||pn)

= 1, lim
n→∞

KL(pn||q)
χ2(pn||q)

=
1

2
.

From the above theorem, we immediately have the following corollary.

Corollary 2.3. Suppose a sequence of probability measures with densities pn converge to q

in the sense of (2.4). For KL divergence and χ2 distance, we have

lim
n→∞

KL(q||pn)

χ2(pn||q)
=

1

2
.

When we consider a proposal distribution q in importance sampling, we have from (2.6)

and (2.7) that

2β2κ(β2) ≤ χ2(p||q)
KL(q||p)

≤ 2β−1
1 κ(β−1

1 ). (2.8)

Therefore the upper and lower bounds for χ2 distances are

2β2κ(β2)KL(q||p) ≤ χ2(p||q) ≤ 2β−1
1 κ(β−1

1 )KL(q||p). (2.9)
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Our goal is to find a proposal distribution q close to the target distribution p in terms of

the χ2 distance χ2(p||q). The relation in (2.8) indicates that it is reasonable to use the

distribution q that minimizes the KL divergence KL(q||p) as the proposal distribution. This

justifies the use of VB solution as the proposal distribution for importance sampling. A

smaller upper bound in (2.9) often indicates that the corresponding proposal distribution

has better performance in importance sampling, so the upper bound can give us an intuitive

way to evaluate the choice of the proposal distribution. This idea is illustrated in the example

in Section 2.5.1 by computing β1 and β2 explicitly. However, the exact values of β1 and β2

are hard to calculate in some complex models.

2.5 Numerical Results

All examples in this section were coded in R and run on a MacBook Pro with 2.3 GHz

Intel Core i7 processor.

2.5.1 Univariate normal

This toy example is on Bayesian inference for a univariate normal distribution. Suppose

our observed data x = {x1, . . . , xN} is a random sample from a normal distribution with

mean µ and precision τ . We use the normal-gamma conjugate prior for µ and τ as follows:

p(µ|τ) = N (µ0, (λ0τ)−1), p(τ) = Gamma(a0, b0).

We consider a factorized variational approximation to the posterior distribution q(µ, τ) =

qµ(µ)qτ (τ). The variational approximation algorithm gives qµ(µ) ∼ N (ν, λ−1) with the mean

and precision:

ν =
λ0µ0 +Nx̄

λ0 +N
and λ = (λ0 +N)E[τ ],
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and qτ (τ) ∼ Gamma(a, b) with two parameters:

a = a0 +
N

2
, b = b0 +

1

2
Eµ

[
N∑
i=1

(xn − µ)2 + λ0(µ− µ0)2

]
.

If we follow the updating rules and compute the expectation with the parameter values from

the previous step, we can obtain the variational distribution q(µ, τ) as in Algorithm 4.

Algorithm 4 Variational algorithm for univariate normal

1. Initialize b = 1, λ = 1

2. Calculate ν = λ0µ0+Nx̄
λ0+N

and a = a0 + N
2

3. Repeat the following until convergence

4. λ = (λ0 +N)a
b

5. b = b0 + 1
2

[
(
∑N

i=1 x
2
n + λ0µ

2
0)− (2

∑N
i=1 xn + 2λ0µ0)ν + (λ0 +N)(ν2 + 1

λ
)
]

We set the hyperparameters µ0 = 1, λ0 = 1, a0 = 1, b0 = 1, and generated N = 50 data

points from N(1, 1). For this simple example, the true posterior distribution p(µ, τ |x) can

be derived as

p(µ|τ,x) = N
(
λ0µ0 +Nx̄

λ0 +N
, (λ0 +N)−1

)
,

p(τ |x) = Gamma

(
a0 +

N

2
, b0 +

1

2

[
N∑
i=1

(xi − x̄)2 +
λ0N(x̄− µ0)2

λ0 +N

])
.

The contour plots in Figure 2.1 show some resemblance between the true posterior distribu-

tion and the VB approximation.
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Figure 2.1: Contour plots for the true posterior and the VB approximation

We compared the performance of different methods in Table 2.1, including the variational

Bayes method (denoted by “VB”), IS with variational distribution as the proposal (denoted

by “VB as proposal”), IS with the prior as the proposal (denoted by “Prior as proposal”), and

adaptive importance sampling (denoted by “AIS”) (Bugallo et al., 2017). The variational

distributions are well-known standard distributions in this example, and the expectations

are easy to compute. The three IS algorithms are based on m = 100, 000 samples, and the

numbers in parentheses are the standard errors. The true posterior mean is also provided

(denoted by “True mean”).

Parameter VB VB as proposal Prior as proposal AIS True mean

µ 1.1445 1.1453 (0.0007) 1.1448 (0.0226) 1.1443 (0.0021) 1.1445

τ 0.8992 0.9170 (0.0006) 0.9192 (0.0183) 0.9181 (0.0015) 0.9169

Table 2.1: Simulation results for the univariate normal example.

Table 2.1 shows that IS with variational distribution as proposal gives much smaller

standard errors than IS with prior as the proposal and AIS. The computation time of AIS

is much longer than IS with VB or prior as the proposal, since AIS needs to update the

proposal distribution adaptively based on samples from previous steps, while the variational

distribution and the prior are relatively easier to obtain. Using variational method directly

gives a biased estimate for τ (the estimate for µ happens to be the same as the true mean),

21



and the variability of the estimate is unknown.

Since the true posterior distribution is known in this example, we can calculate β1 and β2

defined in (2.3). The values of β1 and β2, which are presented in Table 2.2, are related to the

ratio between the posterior distribution p and the proposal distribution q. They also appear

in the upper and lower bounds of the χ2 distance between p and q in (2.8) and (2.9). Since

β−1
1 is smaller when VB is the proposal and κ(t) is an increasing function for 0 < t < 1, that

implies the upper bounds 2β−1
1 κ(β−1

1 ) in (2.8) and 2β−1
1 κ(β−1

1 )KL(q||p) in (2.9) are smaller

when VB is the proposal (note that KL(q||p) is minimized for VB proposal). Similarly, VB

proposal has a larger β2 which implies 2β2κ(β2) in the lower bound in (2.8) and (2.9) is larger

for the VB proposal. All these suggest that using VB as the proposal may lead to a smaller

χ2 distance and better performance.

VB as proposal Prior as proposal

β−1
1 1.751 2.513

β2 0.673 0.282

Table 2.2: The values of β−1
1 and β2 for the univariate normal example.

2.5.2 Gaussian mixture model

Suppose we have N i.i.d. observations x = {x1,x2, . . . ,xN} from a Gaussian mixture

distribution, and each xi is a D-dimensional vector xi = (xi1, xi2, . . . , xiD)T . Suppose there

are K mixture components and π = (π1, π2, . . . , πK) denotes the mixture proportions. The

labels that indicate the membership of the observations are denoted by the latent variables

z = {z1, z2, . . . , zN}, where zi ∼ Multinomial(1,π). In other words, zi = (zi1, zi2, . . . , ziK)T

is a K-dimensional vector with one element equal to 1, which specifies the label of xi, and

all other elements equal to 0. If the k-th element of zi is 1, we write

xi|zik = 1 ∼ N (µk,Λ
−1
k ),
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where µi and Λi are the mean and precision matrix of each multivariate Gaussian component.

We use a symmetric Dirichlet distribution with hyperparameter α0 as the prior distribu-

tion for π:

p(π) = Dir(π|α0) = C(α0)
K∏
k=1

πα0
k , where α0 = (α0, α0, . . . , α0).

For the mean vector µk and the precision matrix Λk, we use a normal-Wishart prior distri-

bution as the conjugate prior for these two parameters:

Λk ∼Wishart(W0, ν0) ⇒ p(Λ) =
K∏
k=1

W(Λk|W0, ν0),

µk ∼ N
(
µ0, (β0Λk)

−1
)
⇒ p(µ|Λ) =

K∏
k=1

N
(
µk|µ0, (β0Λk)

−1
)
,

where Λ = (Λ1,Λ2 . . . ,ΛK) and µ = (µ1,µ2, . . . ,µK). The likelihood function of the

Gaussian mixture model is

p(z|π) =
N∏
i=1

K∏
k=1

πzikk ,

p(x|π,µ,Λ) =
N∏
i=1

(
K∑
k=1

πkN (xi|µk,Λ−1
k )

)
.

The posterior distribution is

p(π,µ,Λ|x) ∝ p(x,π,µ,Λ) = p(x|π,µ,Λ)p(π)p(µ|Λ)p(Λ).

For variational approximation, following Bishop (2006) we first factorize q(π,µ,Λ) into

the following variational distribution:

q(π,µ,Λ) = q(π)
K∏
k=1

q(µk,Λk).
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After calculating the logarithm of the optimal distribution, we get:

ln q∗(π) = (α0 − 1)
K∑
k=1

ln πk +
N∑
i=1

K∑
k=1

rikln πk

⇒ q∗(π) = Dir(π|α) where αk = α0 +Nk and Nk =
N∑
i=1

rik.

Then we further decompose the variational distribution as q∗(µk,Λk) = q∗(µk|Λk)q
∗(Λk),

and the variational joint posterior distribution of (µk,Λk) is also normal-Wishart distribution

with different parameters from the prior distributions:

q∗(µk,Λk) = N
(
µk|mk, (βkΛk)

−1
)
W(Λk|Wk, νk).

If we follow the updating rules for each parameter, we can obtain the variation approximation

for Gaussian mixture model as in Algorithm 5.
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Algorithm 5 Variational algorithm for Gaussian mixture model

1. Initialize α, x̄k, Wk, mk, Sk and rik

2. Repeat the following steps until convergence

3. Calculate Nk =
∑N

i=1 rik and update α by αk = α0 +Nk

4. Update x̄k and Sk by

x̄k =
1

Nk

N∑
i=1

rikxi and Sk =
1

Nk

N∑
i=1

rik(xi − x̄k)(xi − x̄k)
T

5. Update Wk and νk by

W−1
k = W−1

0 +NkSk +
β0Nk

β0 +Nk

(x̄k − µ0)(x̄k − µ0)T and νk = ν0 +Nk

6. Update mk and βk by

mk =
1

βk
(β0µ0 +Nkx̄k) and βk = β0 +Nk

7. Update rik by

ρik = exp

(
− D

2βk
− νk

2
(xi −mk)

TWk(xi −mk)

)
and rik =

ρik∑K
j=1 ρik

8. Variational distribution is q∗(µk,Λk) = N (µk|mk, (βkΛk)
−1) W(Λk|Wk, νk) and

q∗(π) = Dir(π|α).

In the following simulation, we fix the hyperparameters α0 = 1, β0 = 5, µ0 = 0, W0 = ID,

and ν0 = 5. Tables 2.3-2.5 show the results for different combinations of the dimension of the

data D and the number of mixture components K. The variational distributions are well-

known standard distributions in this example, and the expectations of all parameters are
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easy to compute when applying VB directly. The two IS algorithms are based on m = 10, 000

samples. The last column denotes the true parameters when we generated the observed data.

The ‘True mean’ is an estimate of the true posterior mean based on 1, 000, 000 samples from

importance sampling with VB approximation as the proposal.

Parameter VB VB as proposal Prior as proposal ‘True mean’ True parameter

ω1 0.7816 0.7735 (0.004) 0.6645 (0.125) 0.7751 0.7

ω2 0.2183 0.2265 (0.004) 0.3354 (0.125) 0.2349 0.3

µ1 −2.6710 −2.6663 (0.007) −1.1485 (0.892) −2.6632 −3

µ2 1.9445 1.8699 (0.032) 0.1613 (1.193) 1.8473 3

Λ1 0.2924 0.2865 (0.006) 1.4192 (0.726) 0.2781 1

Λ2 0.6862 0.6815 (0.005) 0.4463 (0.316) 0.6766 1

Table 2.3: Simulation results for Gaussian mixture model with D = 1, K = 2, and α0 = 1.

Parameter VB VB as proposal Prior as proposal ‘True mean’ True parameter

ω1 0.4991 0.4816 (0.012) 0.4494 (0.088) 0.4835 0.5

ω2 0.2658 0.2882 (0.010) 0.3910 (0.125) 0.2901 0.3

ω3 0.2350 0.2300 (0.014) 0.1594 (0.754) 0.2264 0.2

µ1 −3.6698 −3.6905 (0.102) −1.0197 (0.217) −3.6102 −5

µ2 −0.1359 −0.1700 (0.021) 0.0080 (0.157) −0.1581 0

µ3 2.6100 2.3060 (0.102) 0.3003 (0.136) 2.4152 5

Λ1 3.5765 3.9011 (0.153) 6.9669 (1.833) 3.7530 1

Λ2 0.1936 0.1887 (0.006) 4.7721 (2.148) 0.1852 1

Λ3 0.1600 0.1372 (0.005) 0.9650 (0.813) 0.1462 1

Table 2.4: Simulation results for Gaussian mixture model with D = 1, K = 3, and α0 = 1.
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Parameter VB VB as proposal Prior as proposal ‘True mean’ True parameter

ω1 0.7304 0.7320 (0.002) 0.6175 (0.125) 0.7331 0.7

ω2 0.2695 0.2680 (0.002) 0.3824 (0.125) 0.3669 0.3

µ11 −2.6889 −2.6887 (0.005) −0.6543 (1.412) −2.6875 −3

µ21 −2.6707 −2.6676 (0.006) −0.1346 (1.617) −2.6629 −3

µ12 2.0117 2.0057 (0.012) 0.5534 (0.925) 1.9725 3

µ22 1.5919 1.5781 (0.011) −0.0810 (0.825) 1.5864 3

Λ111 0.5793 0.5584 (0.006) 0.8220 (0.183) 0.5623 1

Λ121 −0.2919 −0.2816 (0.005) −1.5826 (0.902) −0.2759 0

Λ221 0.7004 0.6873 (0.007) 1.9365 (1.025) 0.6871 1

Λ112 1.9014 1.9175 (0.014) 5.7718 (2.245) 1.9201 2

Λ122 −1.6550 −1.6794 (0.014) −2.7911 (0.725) −1.6803 −1

Λ222 2.2336 2.2620 (0.016) 3.1288 (0.616) 2.2712 3

Table 2.5: Simulation results for Gaussian mixture model with D = 2, K = 2, and α0 = 1.

From Tables 2.3-2.5, we can see that IS with variational distribution as proposal gives

smaller standard errors than IS with prior as the proposal. In addition, using VB directly

will introduce bias to the estimates.

2.5.3 Linear regression model

Let {(yi,xi)}Ni=1 be the observed pairs of data, where xi ∈ Rp. Consider the linear

regression model

yi = xTi β + εi,

where β ∈ Rp and εi ∼ N(0, σ2). The likelihood function is

y|β, σ2 ∼ N(Xβ, σ2I),
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where y = (y1, y2, . . . , yN)T , X = (x1,x2, . . . ,xN)T , and I is the identity matrix. Similar to

You et al. (2014), we use inverse gamma and normal conjugate priors for β and σ2 as follows:

σ2 ∼ Inv-Gamma(A,B), β ∼ N(0, σ2
βI),

where A,B, σ2
β are hyperparameters.

Let z be all parameters of interests, i.e., z = [βT , σ2]T . We consider a factorized varia-

tional approximation q∗(z) = q∗β(β)q∗σ2(σ2). Since we chose the conjugate priors for z, the

variational distributions can be written as:

q∗β(β) ∼ N(µq(β),Σq(β)), q∗σ2(σ2) ∼ Inv-Gamma
(
A+ n/2, Bq(σ2)

)
.

By solving the optimization problem iteratively, we can obtain the updating rules of all the

parameters, as well as the corresponding variational algorithm in Algorithm 6.

Algorithm 6 Variational algorithm for linear regression model

1. Initialize Σq(β) = Ip, µq(β) = 1T , Bq(σ2) = 1

2. Repeat the following until convergence

3. Update Σq(β):

Σq(β) =

[(
A+ n/2

Bq(σ2)

)
XTX + σ−2

β I

]−1

4. Update µq(β):

µq(β) =

(
A+ n/2

Bq(σ2)

)
Σq(β)X

Ty

5. Update Bq(σ2):

Bq(σ2) = B +
1

2
||y −Xµq(β)||2 +

1

2
tr
(
XTXΣq(β)

)

28



In the simulation, we generated N = 50 data pairs from the following true model

y = 3 + 0 · x1 − 3x2 + 5x3 + ε , ε ∼ N(0, σ2),

where x1 has no influence on the response variable y. We fix the hyperparameters σβ = 2,

A = 2, and B = 5. The variational distribution obtained from Algorithm 6 is used to

estimate the parameters directly and also as the proposal for IS. The two IS algorithms with

different proposals are both based on m = 10, 000 samples. The ‘True mean’ is an estimate

of the true posterior mean based on 1, 000, 000 samples from IS with VB approximation as

the proposal.

Parameter VB VB as proposal Prior as proposal ’True mean’ True parameter

β0 2.9339 2.9487 (0.034) 2.7226 (0.174) 2.9027 3

β1 −0.0963 −0.0480 (0.054) −0.3141 (0.262) −0.0732 0

β2 −2.7448 −2.7102 (0.050) −1.9892 (0.482) −2.7025 −3

β3 4.4420 4.3498 (0.069) 3.2586 (0.565) 4.3713 5

σ2 5.8314 5.8533 (0.138) 7.9202 (1.401) 5.8521 4

Table 2.6: Simulation results for linear regression model

Table 2.6 shows that IS with variational distribution as proposal gives smaller standard

errors than IS with prior as the proposal. Using variational method directly gives a biased

estimate and variability of the estimate is unknown. For example, using VB directly gives

an estimate of −0.0963 for β1 without quantification of the uncertainty of the estimate, so

it is hard to tell whether the true value of β1 is 0. On the other hand, the 95% confidence

interval of the estimates based on both IS algorithms contain 0, which indicates that β1 is

not significant in the linear model.
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2.5.4 Hidden Markov model

The hidden Markov model (HMM) consists of a Markov chain with hidden states z =

{z0, z1, z2, . . . , zT} and an observed sequence of data x = {x1, x2, . . . , xT}, where z0 is the

initial state, and T is the length of the sequence. The hidden states evolve according to

Zt|(Zt−1 = zt−1) ∼ f(zt|zt−1),

and the dependence between the observed data and hidden state can be represented as

Xt|(Zt = zt) ∼ g(xt|zt).

Given the observed data, the posterior distribution of the hidden states can be written as:

p(z0:T |x1:T ) =
p(z0:T ,x1:T )

p(x1:T )
∝ p(z0:T )p(x1:T |z0:T ),

where

p(z0:T ) = f(z0)
T∏
t=1

f(zt|zt−1) and p(x1:T |z0:T ) =
T∏
t=1

g(xt|zt).

We consider the filtering problem, which is to infer z1:t from the observations x1:t, t =

1, . . . , T . When applying SIS to the filtering problem, the naive choice of the proposal

distribution is to sample zt from f(zt|zt−1). However, this proposal is not very efficient

because it does not take into account the information contained in the observations.

The two variational approximations in Section 2.3.1, VB-SIS1 and VB-SIS2, can be used

to construct better proposals for SIS. The corresponding algorithm is the same as Algorithms

2 and 3, and the weight updating step for HMM can be written explicitly as

wt(z
(i)
1:t) = wt−1(z

(i)
1:t−1)

p(z1:t|x1:t)

p(z1:t−1|x1:t−1)qtt(z
(i)
t )

= wt−1(z
(i)
1:t−1)

g(xt|z(i)
t )f(z

(i)
t |z

(i)
t−1)

qtt(z
(i)
t )

,
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or

wt(z
(i)
1:t) = wt−1(z

(i)
1:t−1)

p(z1:t|x1:t)

p(z1:t−1|x1:t−1)q̃t(z
(i)
t )

= wt−1(z
(i)
1:t−1)

g(xt|z(i)
t )f(z

(i)
t |z

(i)
t−1)

q̃t(z
(i)
t )

.

We study two examples below, one is a discrete HMM and the other one is a continuous

HMM.

Discrete hidden Markov model

In the discrete HMM example, assume zt ∈ {1, 2, . . . , K} and xt ∈ {1, 2, . . . ,W}. Then

the model can be specified by two matrices: transition matrix AK×K and emission matrix

BK×W , where Aij denotes the probability of transitioning from state i to state j and Bkw

denotes the probability of emitting observation w from state k. We propose the variational

approximation similar to Wang and Blunsom (2013).

In the simulation study, we set z0 = 1, K = 3 and W = 4, i.e., zt ∈ {1, 2, 3} and

xt ∈ {1, 2, 3, 4}. The transition and emission matrices are chosen to be:

A =


0.1 0.4 0.5

0.4 0.2 0.4

0.6 0.2 0.2

 , B =


0.3 0.3 0.3 0.1

0.4 0.1 0.2 0.3

0.1 0.6 0.2 0.1

 .

We considered different combinations of the length of the sequence T , the number of samples

m, and the tuning parameter ∆. The results are presented in Tables 2.7 and 2.8 and Figure

2.2.
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Proposal m cv2 Time (seconds)

f(zt|zt−1) 1000 321.0979 0.8

VB-SIS1 ∆ = 7 1000 78.0338 235

VB-SIS2 ∆ = 7 1000 205.3263 52

f(zt|zt−1) 5000 342.0129 4.2

VB-SIS1 ∆ = 7 5000 75.1225 251

VB-SIS2 ∆ = 7 5000 202.2352 63

f(zt|zt−1) 30000 336.1599 20.6

VB-SIS1 ∆ = 7 30000 77.9406 306

VB-SIS2 ∆ = 7 30000 208.3262 75

Table 2.7: Simulation results for discrete HMM with ∆ = 7, T = 50, and varying sample
size m

Proposal T cv2 Time (seconds)

f(zt|zt−1) 30 97.0153 3.1

VB-SIS1 ∆ = 7 30 18.0764 149

VB-SIS2 ∆ = 7 30 45.6237 34

f(zt|zt−1) 50 342.0129 4.2

VB-SIS1 ∆ = 15 50 75.1225 335

VB-SIS2 ∆ = 15 50 202.2352 63

f(zt|zt−1) 100 1252.2339 8.3

VB-SIS1 ∆ = 32 100 193.3824 703

VB-SIS2 ∆ = 32 100 527.2363 233

Table 2.8: Simulation results for discrete HMM with m = 5000 and varying length of
sequence T

From Table 2.7, we can see that if we fix ∆ and the length of sequence T , the cv2 for

each method will not change much when we increase the number of samples m. Table 2.8
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Figure 2.2: cv2 for variational SIS for discrete HMM with m = 5000, T = 30, and varying
tuning parameter ∆

shows that if we fix m, then T will influence both cv2 and the computation time a lot. In

general, using the state evolution f(zt|zt−1) takes less time, but the cv2 is large. VB-SIS1

gives the smallest cv2, but the computation time is the longest. The performance of VB-

SIS2 is somewhere between the other two methods. Note that after the data are generated,

we only need to compute the variational approximation once, so this time-consuming step

will not be influenced by the sample size m. Figure 2.2 shows how the cv2 of importance

sampling changes with the value of ∆. The horizontal dashed line is the cv2 when the state

evolution f(zt|zt−1) is used as the proposal, and it can serve as a benchmark.

Stochastic volatility model

The stochastic volatility model consists of the following state equation and observation

equation:

Zt = αZt−1 + σVt, Xt = β exp(Zt/2)Wt,

where Vt
i.i.d∼ N (0, 1), Wt

i.i.d∼ N (0, 1), and both the hidden state Zt and the observation Xt

are continuous real-valued random variables.

In the simulation study, the initial state Z0 ∼ N (0, σ2/(1 − α2)), and we set α = 0.3,

σ = 5 and β = 2. In this case, the variational distributions {qt(zt)}Tt=1 also follow the normal
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distribution. We considered different combinations of the length of the sequence T , the

number of samples m, and the tuning parameter ∆. The results are in Tables 2.9 and 2.10.

From Table 2.9, we can see that if we fix ∆ and the length of sequence T , the cv2 for

each method will not change much when we increase the number of samples m. Table 2.10

shows that if we increase the length of the observed sequence T , then the cv2 increases for all

proposal distributions we tested. Tables 2.9 and 2.10 indicate that using the state evolution

f(zt|zt−1) as the proposal distribution takes less time, but the cv2 is relatively large. VB-

SIS1 gives the smallest cv2, but the computation time is the longest. The performance of

VB-SIS2 is somewhere between the other two methods. If we fix the running time, VB-SIS2

has a larger effective sample size than VB-SIS1.

Proposal Estimate (s.e.) m cv2 Time (seconds)

f(zt|zt−1) 15.323 (1.42) 1000 151.0883 0.7

VB-SIS1 ∆ = 7 13.897 (0.97) 1000 48.0338 15.3

VB-SIS2 ∆ = 7 13.627 (1.23) 1000 68.5262 3.6

f(zt|zt−1) 14.984 (0.42) 5000 134.9283 3.2

VB-SIS1 ∆ = 7 14.714 (0.25) 5000 45.1735 17.7

VB-SIS2 ∆ = 7 14.642 (0.36) 5000 62.2415 5.7

f(zt|zt−1) 14.534 (0.04) 30000 142.1737 17.5

VB-SIS1 ∆ = 7 14.483 (0.03) 30000 51.2624 24.2

VB-SIS2 ∆ = 7 14.437 (0.03) 30000 98.1525 19.7

Table 2.9: Simulation results for stochastic volatility model with ∆ = 7, T = 50, and varying
sample size m
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Proposal Estimate (s.e.) T cv2 Time (seconds)

f(zt|zt−1) 15.323 (1.42) 30 151.0883 0.7

VB-SIS1 ∆ = 7 13.897 (0.97) 30 48.0338 15.3

VB-SIS2 ∆ = 7 13.627 (1.23) 30 65.5262 3.6

f(zt|zt−1) 24.723 (2.42) 50 412.5422 2.2

VB-SIS1 ∆ = 15 26.373 (1.75) 50 73.2527 22.4

VB-SIS2 ∆ = 15 26.426 (1.98) 50 83.6236 8.4

f(zt|zt−1) −24.523 (3.42) 100 1524.3532 15.3

VB-SIS1 ∆ = 32 −27.124 (2.52) 100 265.3262 32.5

VB-SIS2 ∆ = 32 −27.264 (2.97) 100 436.2363 20.3

Table 2.10: Simulation results for stochastic volatility model with m = 5000 and varying
length of the sequence T

2.5.5 Dirichlet process

The last example is a Dirichlet process (DP) mixture model widely used in Bayesian

inference. Dirichlet Process can be written as G ∼ DP(α,G0), where G0 is the base distri-

bution of this stochastic process, and α is a positive scalar parameter. In addition, G and

G0 should have the same support, but G is a discrete distribution with countably infinite

number of point masses. Given the previous n− 1 observations, we generate the next one as

follows:

Xn|X1, . . . , Xn−1 =


Xi with probability 1

n−1+α
(i = 1, . . . , n− 1),

a new draw from G0 with probability α
n−1+α

.
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Let K be the unique values among {X1, . . . , Xn−1}, denoted by {X∗k}Kk=1, and we can rewrite

the sampling procedure as

Xn|X1, . . . , Xn−1 =


X∗k with probability

numn−1(X∗
k )

n−1+α
(k = 1, . . . , K),

a new draw from G0 with probability α
n−1+α

,

where numn−1(X∗k) is the number of of X∗k in the set {X1, . . . , Xn−1}. Then, the joint density

function can be written as

P (X1, . . . , XN) = P (X1)P (X2|X1) · · ·P (XN |X1, . . . , XN−1)

=
αk
∏K

k=1(numN(X∗k)− 1)!

α(1 + α) · · · (N − 1 + α)

K∏
k=1

G0(X∗K),

which does not depend on the order of variables.

Dirichlet process can also be treated as a stick breaking process. We first draw V1, V2, . . . ∼

Beta(1, α), then generate X∗1 , X
∗
2 , . . . ∼ G0. A multinomial distribution can be derived as

πi(v) = vi

i−1∏
j=1

(1− vj).

The Dirichlet process G is a discrete distribution with P (G = X∗i ) = πi(v), and it can

be written as G =
∑∞

i=1 πi(v)δX∗
i
, where δx is the Dirac measure at point x. In Dirichlet

process mixture model, data come from a mixture of an infinite number of distributions. If

we have N observed data points {xi}Ni=1, they will be generated from at most N different

components. The following is the generating procedure of DP mixture model.

• V1, V2, . . . ∼ Beta(1, α)

• πi(v) = vi
i−1∏
j=1

(1− vj)

• yi ∼ Multinomial(π)

• ηk ∼ G0
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• Xi|yi,η ∼ p(xi|ηyi)

Given the latent variable zi, we assume the observation xi follows a distribution from an

exponential family with the likelihood function p(xi|ηyi).

Following Blei and Jordan (2006) and Hughes and Sudderth (2013), let Z = {V,η,Y}

be all latent variables and θ = {α} be the hyper parameter. Since the number of different

components is infinite, we introduce a truncated level T as an upper bound of the number

of clusters, that is, mixture proportions πt(v) = 0 for t > T . Then we can factorize the

posterior distribution and obtain the following variational decomposition:

q(v,η,y) =
T−1∏
t=1

q1,t(vt)
T∏
t=1

q2,t(ηt)
N∏
n=1

q3,n(yn),

where q1,t(vt) are beta distributions, q2,t(ηt) are exponential family distributions, and q3,n(yn)

are multinomial distributions. We can use the coordinate ascent algorithm to solve the

optimization problem. A general rule to choose the truncated level T is to be close to the

theoretical value of the expected number of clusters, given N observations:

E [number of clusters|x1, . . . , xN ] =
N∑
i=1

α

α + i− 1
= α(ψ(α +N)− ψ(α)),

where ψ(·) is the digamma function.

We generated N = 50 observed data from DP mixture model, and implemented IS

with different proposal distributions based on m = 1, 000 samples. We considered different

combinations of the hyper parameters (α, T ). Since the number of parameters is large, we

only reported the cv2 and the average of the ratios of the standard errors of the parameter

estimates from different methods.
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T α cv2 (naive proposal) cv2 (VB proposal) s.e. ratio (naive/VB)

2 1 159.43 32.62 1.52

3 1 142.52 21.63 3.62

5 1 163.13 19.63 10.39

7 1 158.40 29.64 7.52

5 3 235.12 62.35 3.74

7 3 265.32 53.52 5.96

9 3 257.41 37.36 12.94

11 3 246.51 51.74 9.62

Table 2.11: Simulation results for Dirichlet process mixture models

From the results in Table 2.11, we can see that IS with variational distribution as proposal

gives smaller cv2 than IS with prior as the proposal. The average of the ratios of the standard

errors is greater than 1 in all settings, which means using VB as the proposal usually gives

smaller standard errors than using the naive proposal. This average ratio becomes larger

when the truncated level T is close to the theoretical expectation of the number of clusters

(4.49 for α = 1 and 9.11 for α = 3).

2.6 Discussion

In this section, we combine variational approximation and IS to improve the performance

of both methods. Using variational approximation as the proposal distribution of IS can

avoid the biased estimate and the lack of uncertainty quantification of the VB estimate. It

also provides a way to design a good proposal for IS. We provide theoretical justification of

the proposed methods, and numerical results also show that using variational approximation

as the proposal can enhance the performance of IS and SIS.

Using VB as proposal for IS tends to be computationally more expensive than some
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naive choice of the proposal. This is mainly due to the computational cost for finding the

VB solution. Sometimes it might be worthwhile to stop the VB algorithm a little early to

obtain a rough approximation and allow more time for IS to correct the bias. The tradeoff

between VB-SIS1 and VB-SIS2 also illustrates this point.

2.7 Proofs

2.7.1 Proof of Lemma 2.1

Proof. We have limn→∞ β2,n = 1 immediately from the definition of convergence in (2.4).

Now we prove limn→∞ β1,n = 1. For ∀ ε > 0 and δ > 0, define I
(n)
1 = {x : pn(x)

q(x)
< 1− ε},

I
(n)
2 = {x : 1− ε ≤ pn(x)

q(x)
< 1+δ}, and I

(n)
3 = {x : pn(x)

q(x)
≥ 1+δ}. Since the Lebesgue measure

of I
(n)
1 is 0 for large enough n, we have

∫
I
(n)
1

pn
q
q dx = 0. (for large enough n).

So

1 =

∫
I
(n)
1

pn
q
q dx+

∫
I
(n)
2

pn
q
q dx+

∫
I
(n)
3

pn
q
q dx =

∫
I
(n)
2

pn
q
q dx+

∫
I
(n)
3

pn
q
q dx. (for large enough n).

Suppose lim inf
n→∞

∫
I
(n)
2

q dx = θ ≥ 0, then

1 =

∫
I
(n)
2

pn
q
q dx+

∫
I
(n)
3

pn
q
q dx ≥ (1− ε)

∫
I
(n)
2

q dx+ (1 + δ)

∫
I
(n)
3

q dx. (2.10)

Take limit inferior on both sides of (2.10), we have

1 ≥ (1− ε)θ + (1 + δ)(1− θ) = 1 + (1− θ)δ − θε. (2.11)

Therefore θε ≥ (1− θ)δ for any ε > 0 and δ > 0. Since 0 ≤ θ ≤ 1, we have θ = 1. Thus we
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have lim inf
n→∞

∫
I
(n)
3

q dx = 0 for any δ > 0. From the definition of β1,n, we have limn→∞ β1,n = 1.

Since

Df (pn||q) =

∫
f

(
pn
q

)
q dx ≤ sup

β2,n≤β≤β−1
1,n

f(β),

let n→∞, we have limn→∞Df (pn||q) ≤ f(1) = 0.

2.7.2 Proof of Theorem 2.2

Proof. From Lemma 2.1, we have

lim
n→∞

β1,n = lim
n→∞

β2,n = 1.

By L’Hospital’s rule, we have limt→1 κ(t) = 1, where κ(t) is defined in (2.5). Therefore, take

limit on the both sides of (2.6) and (2.7), we have

lim
n→∞

KL(pn||q)
KL(q||pn)

= 1 , lim
n→∞

KL(pn||q)
χ2(pn||q)

=
1

2
.
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Chapter 3

Statistical Inference on Social
Influence

3.1 Introduction

Social network analysis plays an importance role in many fields, including sociology,

psychology, biology etc. Many new methods have been developed in recent years to analyze

the network data, and statistical technique sometimes is used when implementing the analysis

procedure. Mathematically, we will use a graph to denote the whole network, and each person

will be presented by a vertex or node in the graph. Also, the friendship can be represented by

the edges between each pair of the nodes. This abstract notation provides us an intuitive way

to describe the network, and is also convenient to build the statistical models and estimate

the quantities of interest.

However, if people only concern about the community structure in the network, and the

peer effects and the covariates of each person will be ignored. For example, medical research

is centered on individual health outcomes, such as people smoke or not. The researchers

should also care about if the behavior of one person has any influences on another one, or

how long can the effects last, and also study the spread of features across network ties.

Here, we are interested in finding if the individuals traits can spread from one person

to another, which is usually known as social influence or social diffusion. There has been

some research about the spread of people’s behavior within a social network in social science

(Valente, 1996; Kempe et al., 2005; Centola, 2010). In addition, Sun and Tang (2011) pro-

vided a summary of statistical measures and models in social influence analysis. Researchers

examined the spread of various features including smoking (Christakis and Fowler, 2008;
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Miething et al., 2016), alcohol (Rosenquist et al., 2010), tastes (Lewis et al., 2012), happi-

ness (Fowler and Christakis, 2008) and obesity (Christakis and Fowler, 2007). In addition,

La Fond and Neville (2010) proposed a randomization test for temporal data, and mea-

sured the gain in correlation to determine whether the gain is due to influence. Christakis

and Fowler (2013) developed a permutation test to identify causal effects using Framingham

Heart Study (FHS) data. O’Malley (2013) provided a method to account for the confounding

effect in the analyses of peer effects. Sewell (2018) proposed a hierarchical model to con-

nect individuals susceptibility with individuals characteristics in egocentric network data.

Kempe et al. (2003) and Goyal et al. (2011) also proposed some models for social influence

maximization problem, which aims to find a sets of users in a network and maximize the

expected spread of influence.

This chapter focuses on exploring the degrees of influence in an observed network. We

build a multivariate Bernoulli model to specify the correlation structure of the people’s

behaviors in the whole network. In order to detect the true degrees of influence, we propose

a sequential hypothesis testing procedure and overcome the issue of nuisance parameters

by introducing double bootstrap (Beran, 1988). In addition, we show that under certain

conditions, the power of our proposed hypothesis testing goes to one when the network is

large. We also do some simulation studies and real data analyses to illustrate the performance

of our proposed method.

The chapter is organized as follows. We introduce our proposed multivariate Bernoulli

model for social influence in Section 3.2, and the general hypothesis testing procedure in

Section 3.3. Then, we provide theoretical justification in Section 3.4, and give some simu-

lation results of the new method in Section 3.5. We also implement our model on two real

network datasets in Section 3.6. Section 3.7 concludes the chapter with a discussion.
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3.2 Multivariate Bernoulli Model

Social influence indicates a process that the behaviors or opinions of an individual are

affected by others in a network. In this chapter, we are exploring the degrees of influence

in a network, which describes how long the influence can pass through individuals. We

consider the static network, and the structure of the network we are going to analyze can be

represented as an n× n adjacency matrix A, where n is the size of the network.

Suppose A = (aij)n×n, and aij represents the relationship between two individuals i and

j, and A is not necessarily symmetric in a directed network. Here, aij = 1 means individual

j has some influences on individual i, and in the graph representation, there is an arrow

directing from i to j. The individual we are focusing on is called ego, and all the other nodes

that connect with ego through a path are called alters. We have the following representation

ego → alter1 → alter2 → · · · ,

where alter1 is the first-degree alter of the ego, and alter2 is the second-degree alter of the

ego, and it should not be connected to the ego directly, that is, Aego,alter1 = 1, Aalter1,alter2 = 1

and Aego,alter2 = 0.

For each node j, there is a binary random variable Yj representing its current status

(such as smoking). For each pair of nodes i and j, individual j has some influence on i is

equivalent to the following inequality

P (Yi = 1|Yj = 1) > P (Yi = 1|Yj = 0).

Since both Yi and Yj are binary variables, we have

Cov(Yi, Yj) = E[YiYi]− E[Yi]E[Yj] = P (Yi = 1, Yj = 1)− P (Yi = 1)P (Yj = 1).

43



Then,

P (Yi = 1|Yj = 1) > P (Yi = 1|Yj = 0)

⇔ P (Yi = 1, Yj = 1)

P (Yj = 1)
>
P (Yi = 1, Yj = 0)

P (Yj = 0)

⇔ P (Yi = 1, Yj = 1)

P (Yj = 1)
>
P (Yi = 1, Yj = 1) + P (Yi = 1, Yj = 0)

P (Yj = 1) + P (Yj = 0)

⇔ P (Yi = 1, Yj = 1)

P (Yj = 1)
> P (Yi = 1)

⇔ P (Yi = 1, Yj = 1) > P (Yj = 1)P (Yi = 1)

⇔ Cov(Yi, Yj) > 0

⇔ Corr(Yi, Yj) > 0.

Thus, individual j has influence on i is equivalent to the correlation between Yi and Yj

is positive.

For a given degrees of influence d, we propose the following multivariate Bernoulli model

to illustrate the joint distribution of (Y1, . . . , Yn). For a random vector Y = (Y1, . . . , Yn)T ,

we say Y follows a multivariate Bernoulli distribution (Dai et al., 2013), if Yi can only

take values either 0 or 1, and the marginal distribution of Yi is a Bernoulli distribution

for i = 1, . . . , n. In order to implement the randomization test, we need to know how to

generate samples from multivariate Bernoulli distribution with particular mean vector and

the correlation matrix.

3.2.1 Sample from multivariate Bernoulli distribution

Leisch et al. (1998) proposed the following method to sample from the multivariate

Bernoulli distribution given the mean vector p and the correlation matrix R. We can also

use the R package bindata (Leisch et al., 2012) to sample from it directly. Suppose Y =

(Y1, . . . , Yn)T follows a multivariate Bernoulli distribution where p = (p1, . . . , pn)T and R =

(rij). Then the marginal distribution of Y is Yi ∼ Bernoulli(pi) (i = 1, . . . , n), and the
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correlation between each pair of components is Corr(Yi, Yj) = rij. Thus, the following

equation holds:

P (Yi = 1, Yj = 1) = E[YiYj] = Cov(Yi, Yj) + E[Yi]E[Yj]

=
√
pi(1− pi)pj(1− pj) rij + pipj = τij.

We can generate a sample Z = (Z1, . . . , Zn)T from the multivariate normal distribution

N (µ, Σ̃) with mean µ and covariance matrix Σ̃ = (σ̃ij) where σ̃ii = 1 (i = 1, . . . , n). Let

Yi = 1{Zi≥0}, where 1A is the indicator function. Also, we set µi = Φ−1(pi), where Φ(x) is

the cumulative distribution function of the standard normal distribution, then,

P (Yi = 1) = P (Zi ≥ 0) = P (Zi − µi ≥ −µi) = 1− Φ(−µi) = pi.

The relationship between σ̃ij and τij is shown as follows:

τij = P (Yi = 1, Yj = 1) = P (Zi ≥ 0, Zj ≥ 0) =

∫ ∞
−µi

∫ ∞
−µj

φ(x, y; σ̃ij)dxdy,

where

φ(x, y; ρ) =
1

2π
√

1− ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
.

We can use the bisection method to obtain σ̃ij given τij. For the rest of the chapter, We

use the following notation to denote the multivariate Bernoulli distribution generated by the

above steps:

Y ∼ multiBern(p,R),

where p = E[Y], and R = (rij)n×n is the correlation matrix of Y with rij = Corr(Yi, Yj). For

different degrees of influence in the network, we further assume the popularity of a behavior

for all individuals in the network is p, and propose the following corresponding correlation
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matrix structures for Y = (Y1, . . . , Yn)T .

3.2.2 Degrees of influence is 0

If the degrees of influence is zero, then the behavior of each individual will not be af-

fected by other people, so Y1, . . . , Yn will be independent to each other. Then, we have

Y1, . . . , Yn are independent and identically distributed random variables with the following

joint distribution:

Y ∼ multiBern(p,R),

where p = (p, p, . . . , p)T and R = In, where In is the identical matrix.

3.2.3 Degrees of influence is 1

If the degrees of influence is 1, then people’s behavior will be influenced by their friends,

and the influence phenomenon happens only when two people are directly connected in the

network. We have Y1, . . . , Yn ∼ Bernoulli(p), but they are not independent. We introduce a

positive parameter q1 to quantify the correlation between a person and his or her neighbor,

then the correlation matrix R will no longer be diagonal. The structure of the correlation

matrix R is shown as follows.

• If aij = 1, aji = 1, then rij = Corr(Yi, Yj) = 2q1 > 0.

• If aij = 1, aji = 0, then rij = Corr(Yi, Yj) = q1 > 0.

• If aij = 0, aji = 1, then rij = Corr(Yi, Yj) = q1 > 0.

• If aij = 0, aji = 0, then rij = Corr(Yi, Yj) = 0.

3.2.4 Degrees of influence is greater than 1

We can generalize the multivariate Bernoulli model to a network with arbitrary degrees

of influence. Suppose the true degrees of influence is d∗. Let dij be the length of shortest
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path from i to j, then we have dij ≥ 1 for i, j = 1, 2, . . . , n. Since we consider a directed

network, dij = dji is not always true. If two node i and j are not connected in the network,

then dij =∞.

We propose the following correlation structure for the random vector Y.

• If 1 ≤ dij ≤ d∗ and 1 ≤ dji ≤ d∗, then rij = Corr(Yi, Yj) = qdij + qdji > 0.

• If 1 ≤ dij ≤ d∗ and dji > d∗, then rij = Corr(Yi, Yj) = qdij > 0.

• If dij > d∗ and 1 ≤ dji ≤ d∗, then rij = Corr(Yi, Yj) = qdji > 0.

• If dij > d∗ and dji > d∗, then rij = Corr(Yi, Yj) = 0.

Another assumption for the correlation parameters is q1 > 0, q2 > 0, . . . , qd∗ > 0, which

means the model with smaller degrees of influence is nested in the model with larger degrees

of influence. In order to guarantee that the correlation matrix Rn×n is semi-positive definite,

q1, . . . , qd∗ should be selected specifically. Also, the model we proposed in Section 3.2.3 is

just a special case for d∗ = 1.

3.3 Hypothesis testing

3.3.1 Different ways to determine the degree

In order to determine the degrees of influence in a given network, there are two hypothesis

testing based methods. The first way is testing H0 : degree = 0 vs. H1 : degree = d at each

time. The second way is testing H0 : degree = d − 1 vs. H1 : degree = d at each time. For

both procedures, we will start from d = 1, and increase d by 1 if rejecting the null hypothesis.

Each procedure will be stopped until we do not reject the null, and then we can claim that

d− 1 is the degrees of influence.

However, H0 : d = 0 is not always the null hypothesis of primary interest if we concern

about the higher degrees of influence. A claim of the degrees of influence is 3 will be
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more convincing if we consider using next simplest case d = 2 as the model under the null

hypothesis.

Actually, using sequential hypothesis testing to determine the degrees of influence in

network is similar to variable selection in linear regression. The second procedure adds one

new predictor to the model at each time, and implements the goodness of fit test to compare

it with the model without the new variable. So, it is just like the forward variable selection

procedure. However, the first procedure just consider the intercept only model as the null

model for each time.

Here, we consider using the multivariate Bernoulli distribution to propose a new sequen-

tial hypothesis testing procedure to detect the degrees of influence. More discussions about

the comparison of these two procedures is in Section 3.5.1.

Christakis-Fowler method

If we consider the following hypothesis test: H0 : degree = 0 vs. H1 : degree = d.

Christakis and Fowler (2013) proposed a permutation test. We can obtain the following

contingency table by counting the frequencies for all (ego, alterd) pairs.

Yalterd = 1 Yalterd = 0

Yego = 1 a1 b1

Yego = 0 c1 d1

Table 3.1: Contingency table for hypothesis testing H0 : degree = 0 vs. H1 : degree = d

The proposed test statistic is

T =
a1

a1 + c1

− b1

b1 + d1

= P̂ (Yego = 1|Yalterd = 1)− P̂ (Yego = 1|Yalterd = 0).

We will use Christakis-Fowler to denote this method in the rest of our chapter.
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Proposed method

Christakis and Fowler (2013) just considered the hypothesis testing when the degree

under H0 is 0. Here, we propose the following hypothesis test, H0 : degree = d− 1 vs. H1 :

degree = d. For the new hypothesis testing, Y1, . . . , Yn are not independent under the null

when d > 1, so we need to eliminate the effect for alterd−1 when designing the test statistic.

We can obtain the following two contingency tables by counting the frequencies for all cases

containing egos, alterd−1’s and alterd’s.

Yalterd = 1 Yalterd = 0

Yego = 1 a2 b2

Yego = 0 c2 d2

Table 3.2: Contingency table for hypothesis testing H0 : degree = d− 1 vs. H1 : degree = d
when Yalterd−1

= 1

Yalterd = 1 Yalterd = 0

Yego = 1 e2 f2

Yego = 0 g2 h2

Table 3.3: Contingency table for hypothesis testing H0 : degree = d− 1 vs. H1 : degree = d
when Yalterd−1

= 0

The test statistic is:

T =
a2

a2 + c2

− b2

b2 + d2

+
e2

e2 + g2

− f2

f2 + h2

= P̂ (Yego = 1|Yalterd−1
= 1, Yalterd = 1)− P̂ (Yego = 1|Yalterd−1

= 1, Yalterd = 0)

+ P̂ (Yego = 1|Yalterd−1
= 0, Yalterd = 1)− P̂ (Yego = 1|Yalterd−1

= 0, Yalterd = 0).

Our proposed test statistics is valid since only when the alternative hypothesis is true,

T tends to be larger. However, it is very hard to know the distribution of T under H0, so
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we will use the randomization test (Dwass, 1957) and bootstrap hypothesis testing (MacK-

innon, 2009) to obtain the p value. This is a non-parameter method which can estimate the

distribution of the test statistic under the null.

For the Christakis-Fowler method, Y1, . . . , Yn are independent under the null hypothesis,

we can just randomly shuffle all components for the observation Y0 to obtain new samples

Y(1), . . . ,Y(B). For our proposed method, if the null hypothesis is degree = d − 1 ≥ 1, we

can consider randomly generate new samples Y(1), . . . ,Y(B) under H0 from the multivariate

Bernoulli model described in Section 3.2.

Toy example

We use the following toy example to illustrate how to calculate the test statistic. We

generated a network with n = 10 nodes, and assigned the corresponding smoking status for

each node. The network is shown as follows:

Figure 3.1: Network structure for the toy example
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In the network, we use white nodes to denote the three people who smoke, and the rest

of the seven blue nodes indicate non-smokers. In order to calculate the test statistic, we

consider all pairs of (ego, alter1) and their smoking status in this network, and the results

are shown as follows.

(ego, alter1) pairs

Yego = 1, Yalter1 = 1 (5, 10)

Yego = 1, Yalter1 = 0 (4, 6), (5, 3), (10, 3), (10, 1)

Yego = 0, Yalter1 = 1 (8, 4), (8, 5)

Yego = 0, Yalter1 = 0 (1, 9), (1, 7), (2, 1), (3, 2), (3, 6), (6, 3), (7, 8), (8, 7), (9, 1), (9, 3)

Table 3.4: All (ego, alter1) pairs for the toy example

From Table 3.4, we can see that there is only one pair of (Yego, Yalter1) = (1, 1) in

the network. For other cases, there are two pairs of (Yego, Yalter1) = (0, 1), four pairs of

(Yego, Yalter1) = (1, 0) and ten pairs of (Yego, Yalter1) = (0, 0). Then, we can obtain the follow-

ing contingency table.

Yalter1 = 1 Yalter1 = 0

Yego = 1 1 4

Yego = 0 2 10

Table 3.5: Contingency table for hypothesis testing H0 : degree = 0 vs. H1 : degree = 1 for
the toy example

The test statistics for the hypothesis testing H0 : degree = 0 vs. H1 : degree = 1 is

T =
1

1 + 2
− 4

4 + 10
= −0.0667.
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3.3.2 Nuisance parameters

For the hypothesis testing H0 : degree = 1 vs. H1 : degree = 2, the parameter that we

are interested in is q2, and the nuisance parameter is q1. It is easy to estimate nuisance

parameter q1 by using sample correlations between all (ego, alter1) pairs.

We constructed a network from the Erdős-Rényi model (n, pe) with n = 100 nodes,

and the edge probability is pe = 0.2. For each node, the marginal distribution of Yi is

Bernoulli(p), where p = 0.3. We generated m = 1000 observed data Y = (Y1, · · · , Yn) from

the multivariate Bernoulli model when d = 0, and the mean of estimated q1 is −0.0097.

Then, we also generated m = 1000 observed data Y from the model when d = 1, and the

true value of the correlation is q1 = 0.03. If we still used the sample correlation to estimate

q1, the results show that the mean of estimated q1 is 0.0284. The p-value for the two sample

t-test between the two estimated vectors corr0 and corr1 is 6 × 10−8, which means we can

distinguish the estimated values of parameters from different models.

The following plot shows the kernel density curves of the estimated q1 under models with

different degrees of influence.

Figure 3.2: Kernel density plot for estimated q1

There are a lot of methods which can deal with the hypothesis testing with nuisance

parameters θ. The most commonly used one is the conditional method, which requires
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the existence of a statistic T that is sufficient for the nuisance parameter under the null

hypothesis. Dufour (2006) also proposed a method to maximize the p value with respect to

the nuisance parameters θ, and used the following quantity psup = supθ p(θ) as the p-value.

Berger and Boos (1994) used the confidence interval of the nuisance parameter under H0 to

build a confidence set, and showed the validity of the proposed p-value. In addition, there

are some other methods including Bayesian p-value (Robins et al., 2000; Bayarri and Berger,

2000) and Generalized p-value (Tsui and Weerahandi, 1989).

However, our proposed method is based on randomization test, and all the above methods

are not easy to be applied in our case. When the hypothesis we are testing involves esti-

mated parameters, simple bootstrap (Efron, 1992) will introduce uncertainty for nuisance

parameters. In order to correct this, we consider the following double bootstrap (Beran,

1988) procedure to improve the accuracy of the estimations of p-values. The following is the

general procedure of double bootstrap:

• Calculate the test statistic T0 and the estimation of the nuisance parameters θ̂ from

observed data.

• Generate B1 bootstrap samples from H0 with θ̂, and use each of them to compute a

bootstrap test statistics T ∗j (j = 1, . . . , B1).

• Calculate the first-level bootstrap p-value

p̂∗(T0) =
1

B1

B1∑
j=1

1{T ∗
j >T0}.

• For each of the B1 first-level bootstrap samples, re-estimate the nuisance parameters

and obtain θ̃j. Generate B2 second-level bootstrap samples from H0 with θ̃j, and use

them to compute the second-level test statistics T ∗∗jl (l = 1, . . . , B2) .

• For each of the B1 first-level bootstrap samples, compute the second-level bootstrap
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p-values

p̂∗∗j =
1

B2

B2∑
l=1

1{T ∗∗
jl >T

∗
j }.

• Compute the double-bootstrap p-value:

p̂∗∗(T0) =
1

B1

B1∑
j=1

1{p̂∗∗j <p̂∗(T0)}.

The inner bootstrap is used to calculate the distribution of nominal bootstrap p-values.

For this procedure, we need to draw second-level bootstrap samples from the bootstrap re-

estimated θ̃, not from estimation θ̂ based on the observed data. One constraint for double

bootstrap method is that the estimated parameter θ̂ has to be a consistent estimator of the

nuisance parameter θ. In our proposed method, we use sample correlation as the estimator

for those correlation parameters qi, which can guarantee the consistency.

3.4 Theory

In order to verify the correctness of our proposed method, we show some theoretical

properties of the sequential hypothesis testing procedure. In this section we will first show

a property of the Erdős-Rényi model (Erdős and Rényi, 1960), and use it to show how the

power of hypothesis testing changes for different networks.

We consider the Erdős-Rényi model ER(n, pe), where n is the size of the network and

pe is the edge probability. For each pair of nodes i 6= j, we have P (aij = 1) = pe and

P (aij = 0) = 1−pe. From our multivariate Bernoulli model, we are interested in the starting

and the ending nodes for paths with some particular length k. Let λ be the expected degree

for all nodes in the ER(n, pe), and we further assume how the edge probability decreases

when the size of the network goes to infinity, then we have the following lemma about the

number of length-k paths.
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Lemma 3.1. If a random graph is generated from ER(n, pe) with pe = O(λ/n), then the

number of length-k paths in the graph goes to infinity in probability as n→∞ for any fixed

positive integer k.

The proof of Lemma 3.1 is in Section 3.8.2. We know that if pe = O(λ/n), the number of

length-k paths goes to infinity in probability. From the lemma above, we have the following

theorem which indicates the performance of the powers of the hypothesis testing at each

step.

Theorem 3.2. Suppose the network is generated by ER(n, pe) with pe = O(λ/n), and

we fix all correlation parameters qi (i = 1, 2, . . .) and the marginal probability p in the

multivariate Bernoulli model. Suppose d∗ is the true degrees of influence in a network

with q1 > 0, . . . , qd∗ > 0. Let T be the proposed test statistic for the hypothesis testing

H0 : degree = d− 1 v.s. H1 : degree = d, we have following results

(i) limn→∞ P (|T | ≥ ε|degree = d−1) = 0 for all ε > 0 and all 1 ≤ d ≤ d∗, which indicates

that T → 0 in probability under H0.

(ii) P (T > c∗|degree = d)→ 1 as n→∞ for all 1 ≤ d ≤ d∗, where c∗ is the critical value

of the hypothesis testing.

The proof of Theorem 3.2 is in Section 3.8.3. From the above theorem, we know that the

power of hypothesis testing goes to 1 when n → ∞ at each step. So, we can always figure

out the difference between the null and the alternative hypothesis as along as the network

is large enough. It also indicates that our proposed method can detect the true degrees of

influence with large probability.
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3.5 Simulation results

3.5.1 Comparing the recovery rate

We generated network from the Erdős-Rényi model (n, pe), where n is the size of the

network and pe is the edge probability. We set the marginal probability of Yi (popularity) to

be p = 0.3. For the rest of the chapter, we set the pre-specified level for hypothesis testing to

be α = 0.05. In order to compare our proposed method with the Christakis-Fowler method,

we generated data with true degree d∗ = 2 for m = 30 times, and obtained the following

results:

(n, q1, q2)
Christakis-Fowler Proposed method

< d∗ = d∗ > d∗ < d∗ = d∗ > d∗

(10, 0.3, 0.3) 2 15 13 3 21 6

(20, 0.2, 0.2) 3 17 10 2 24 4

(50, 0.15, 0.15) 1 14 15 1 22 7

(100, 0.1, 0.1) 2 14 14 2 22 6

(200, 0.05, 0.05) 4 13 13 3 22 5

(500, 0.015, 0.015) 2 18 10 2 24 4

Table 3.6: Results for different ways to detect the degrees of influence

From Table 3.6, we can see that our proposed procedure will be more likely to detect the

true social influence comparing with the Christakis-Fowler method. We will choose it as the

sequential hypothesis testing procedure when recovering the degree in the simulation study

and real data analysis.

3.5.2 Erdős-Rényi model simulations

We generated network from Erdős-Rényi model (n, pe), and set the marginal probability

of Yi (popularity) to be p = 0.3, and generated m = 1000 networks for each simulation. In
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general, for hypothesis testing H0 : d = d0 v.s. H1 : d = d1, we generated bootstrap samples

from H0, and set B1 = 100 and B2 = 200 to be the parameters of double bootstrap to obtain

p values. If the observed data is generated from d = d0, we can estimate the level of the

corresponding hypothesis testing by calculating the proportion of rejecting H0 among the

1000 trials. On the other hand, if the observed data is generated from d = d1, we can obtain

the power in a similar way.

Fix the edge probability pe

We first fix the edge probability pe to be 0.1, and consider some relatively small networks.

For each hypothesis test, we generate the observed data Y0 from either the null or the

alternative to calculate the corresponding levels and powers of the hypothesis testing.

1. We first consider the simplest case. For the hypothesis testing H0 : degree = 0 vs. H1 :

degree = 1, in addition to the randomization test, we can also use chi-squared test for

2-by-2 contingency table to determine whether the null hypothesis is true. Here, we

obtain the following results.

(n, q1) Level (randomization test) Level (chi-squared test)

(10, 0.1) 0.053 0.036

(10, 0.3) 0.064 0.038

(20, 0.1) 0.058 0.043

(20, 0.2) 0.051 0.031

(50, 0.1) 0.046 0.039

(50, 0.15) 0.054 0.045

(100, 0.1) 0.052 0.044

Table 3.7: Levels for hypothesis testing H0 : degree = 0 vs. H1 : degree = 1
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(n, q1) Power (randomization test) Power (chi-squared test)

(10, 0.1) 0.186 0.175

(10, 0.3) 0.275 0.223

(20, 0.1) 0.226 0.169

(20, 0.2) 0.302 0.234

(50, 0.1) 0.267 0.217

(50, 0.15) 0.287 0.233

(100, 0.1) 0.457 0.269

Table 3.8: Powers for hypothesis testing H0 : degree = 0 vs. H1 : degree = 1 (with α = 0.05)

From Table 3.7, we can see that our randomization test can always acquire the correct

pre-specified level α = 0.05, but the chi-squared test are conservative sometimes and

could not obtain the correct levels. From Table 3.8, our randomization test are always

more powerful than the chi-squared test for given values of n and q1. And when the

network size n increases, the powers for our proposed method are also increasing. For

two networks with same size n, it is easier to distinguish the null and the alternative

for the one with larger value of q1

2. For the hypothesis testing H0 : degree = 1 vs. H1 : degree = 2. In this case, the degrees

of influence under the null is greater than zero, so we need to use double bootstrap

method to obtain p values at each time. If the observed data Y0 is generated from

H0, no matter how we set the other parameters, the distribution for p-values is always

close to a uniform [0,1]. The following figure is one of the histograms of p-values.
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Figure 3.3: Histogram of p-value under H0

The following table shows the levels for hypothesis testing under different parameter

settings.

(n, q1, q2) Level (randomization test)

(10, 0.1, 0.1) 0.058

(10, 0.3, 0.3) 0.053

(20, 0.1, 0.1) 0.055

(20, 0.2, 0.2) 0.048

(50, 0.1, 0.1) 0.041

(50, 0.15, 0.15) 0.050

(100, 0.1, 0.1) 0.051

Table 3.9: Levels for hypothesis testing H0 : degree = 1 vs. H1 : degree = 2

From Table 3.9, we can see that our proposed method can still preserve the level of

the hypothesis testing after introducing the double bootstrap, and the type I error is

close to the pre-specified level α = 0.05.

If the observed data Y0 is generated from H1, then the p-value tends to be small

and the distribution of it will not be uniform [0, 1]. Here, we show the two following

histograms of p-values for different parameter settings:
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(a) (b)

Figure 3.4: (a): Histogram of p-value under H1 with n = 50, q1 = q2 = 0.15. (b): Histogram
of p-value under H1 with n = 100, q1 = q2 = 0.1

The following tables show the power for hypothesis test under different parameter

settings:

(n, q1, q2) Power (randomization test) (n, q1, q2) Power (randomization test)

(10, 0.1, 0.1) 0.236 (10, 0.1, 0.05) 0.215

(10, 0.3, 0.3) 0.322 (10, 0.3, 0.15) 0.315

(20, 0.1, 0.1) 0.266 (20, 0.1, 0.05) 0.273

(20, 0.2, 0.2) 0.315 (20, 0.2, 0.1) 0.296

(50, 0.1, 0.1) 0.389 (50, 0.1, 0.05) 0.352

(50, 0.15, 0.15) 0.456 (50, 0.15, 0.075) 0.416

(100, 0.1, 0.1) 0.587 (100, 0.1, 0.05) 0.569

Table 3.10: Powers for hypothesis testing H0 : degree = 1 vs. H1 : degree = 2 (with α = 0.05)

The two histograms in Figure 3.4 are right skewed, which mean the p-values tend to

be small under the alternative hypothesis. For most simulations, p-values we obtained

are smaller than the pre-specified level α. From Table 3.10, we can see that if we fix

the network size n and edge probability pe, then increasing qi (i = 1, 2, . . .) will make

the hypothesis test more powerful. In addition, our proposed hypothesis testing is also

more powerful when the network size n is larger.
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3. For the test H0 : degree = 2 vs. H1 : degree = 3, similar to the previous case, we can

generate the observed data Y0 from the model with degree 2 or 3. Then, we can obtain

the following results for both the levels and the powers of the tests:

(n, q1, q2, q3) Level (randomization test)

(10, 0.1, 0.1, 0.1) 0.053

(10, 0.3, 0.3, 0.3) 0.057

(20, 0.1, 0.1, 0.1) 0.047

(20, 0.2, 0.2, 0.2) 0.051

(50, 0.1, 0.1, 0.1) 0.059

(50, 0.15, 0.15, 0.15) 0.052

(100, 0.1, 0.1, 0.1) 0.047

Table 3.11: Levels hypothesis testing H0 : degree = 2 vs. H1 : degree = 3

(n, q1, q2, q3) Power (randomization) (n, q1, q2, q3) Power (randomization)

(10, 0.1, 0.1, 0.1) 0.296 (10, 0.1, 0.05, 0.025) 0.211

(10, 0.3, 0.3, 0.3) 0.363 (10, 0.3, 0.15, 0.075) 0.326

(20, 0.1, 0.1, 0.1) 0.389 (20, 0.1, 0.05, 0.025) 0.346

(20, 0.2, 0.2, 0.2) 0.402 (20, 0.2, 0.1, 0.05) 0.349

(50, 0.1, 0.1, 0.1) 0.491 (50, 0.1, 0.05, 0.025) 0.416

(50, 0.15, 0.15, 0.15) 0.587 (50, 0.15, 0.075, 0.0375) 0.528

(100, 0.1, 0.1, 0.1) 0.625 (100, 0.1, 0.05, 0.025) 0.546

Table 3.12: Powers for hypothesis testing H0 : degree = 2 vs. H1 : degree = 3 (with α = 0.05)

From Tables 3.11 and 3.12, we can see that the level for our hypothesis test will be

relatively stable with different network size, and we can always obtain the correct level
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for different correlation structure parameters qi (i = 1, 2, 3). Our test will be more

powerful for larger network when the edge probability pe is fixed. The power of the

hypothesis testing will be larger if we increase the correlation parameters qi.

Change pe with network size n

However, when the size of the network n is large, it is not proper to keep the edge

probability pe as a constant, so we assigned smaller values of pe for large n′s. Since we

know the true values of the correlation parameters q1, q2, q3 in this simulation study, the

columns contain true parameters shows the results using the true values of parameters in

hypothesis testing. However, in real data analysis, the true values of qi are not available,

and have to be estimated first. The columns contain estimated parameters indicates

the results for levels or powers by estimating the nuisance parameters and using double

bootstrap method. The following tables show the levels and powers of hypothesis tests

H0 : degree = 1 vs. H1 : degree = 2 for different values of (n, pe, q1, q2).

(n, pe, q1, q2) Level (estimated parameters) Level (true parameters)

(20, 0.1, 0.2, 0.2) 0.053 0.046

(50, 0.1, 0.15, 0.15) 0.047 0.061

(100, 0.1, 0.15, 0.15) 0.052 0.048

(200, 0.05, 0.15, 0.15) 0.048 0.052

(500, 0.05, 0.15, 0.15) 0.064 0.058

(1000, 0.025, 0.1, 0.1) 0.051 0.057

(2000, 0.025, 0.1, 0.1) 0.056 0.045

Table 3.13: Levels for hypothesis testing H0 : degree = 1 vs. H1 : degree = 2 for larger
networks
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(n, pe, q1, q2) Power (estimated parameters) Power (true parameters)

(20, 0.1, 0.2, 0.2) 0.325 0.315

(50, 0.1, 0.15, 0.15) 0.398 0.456

(100, 0.1, 0.15, 0.15) 0.473 0.532

(200, 0.05, 0.15, 0.15) 0.483 0.463

(500, 0.05, 0.15, 0.15) 0.490 0.505

(1000, 0.025, 0.1, 0.1) 0.542 0.564

(2000, 0.025, 0.1, 0.1) 0.536 0.593

Table 3.14: Powers for two hypothesis testing H0 : degree = 1 vs. H1 : degree = 2 for larger
networks (with α = 0.05)

From Table 3.13, our proposed method can preserve the levels for larger and sparser

networks. The type I errors for both methods are close to the pre-specified level no matter

using true parameters or estimated parameters. From Table 3.14, we can see that if we fix

the parameters for correlation structure, the power of hypothesis testing will increase when

the network size is larger. If we consider using the true parameter values, the power will

be larger than using the estimated values and double bootstrap in most cases. In real data

analysis, we can only consider the procedure with estimating the correlation parameters.

3.6 Real data analysis

3.6.1 Twitter data

Twitter (https://twitter.com) is an American online social media which provides a

platform for users to post message (’tweet’) and interact with other people. We analyzed a

network with 244 nodes, 2478 edges, and 200 features for each individual, and this network

is collected by Leskovec and Krevl (2014). For some of those features, their names start with

hashtag ’#’, which is used to index keywords or topics on Twitter, and it allows people to
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easily follow topics that they are interested in. For other features, their names start with

at (’@’), which can directly interact with some other users including people or institutions.

The following plot shows the network structure of this Twitter network.

Figure 3.5: Twitter network structure

Based on sequential hypothesis testing procedure, we obtain the following results, includ-

ing considering the Christakis-Fowler method and our proposed method. For the hypothesis

testing H0 : degree = d−1 vs H1 : degree = d, we set the double bootstrap parameters to be

B1 = 200 and B2 = 500. The frequency table of the degrees of influence is shown as follows.

Degrees of influence 0 1 2 3 4+

Number of features (Christakis-Fowler) 131 48 16 4 1

Number of features (proposed method) 125 36 31 5 3

Table 3.15: Degrees of influence of the Twitter data obtained from the Christakis-Fowler
and the proposed method

From Table 3.15, we can see that there are more than 60% of features whose degrees of

influence is 0, and only a few feature with degrees of influence greater than 3. In order to
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indicate the difference of results between the two methods, we use the following contingency

table to show the degrees of influences obtained from the Christakis-Fowler method and our

proposed method:

Christakis-Fowler

Proposed method 0 1 2 3 4+ total

0 121 7 3 0 0 131

1 3 29 16 0 0 48

2 1 0 12 2 1 16

3 0 0 0 3 1 4

4+ 0 0 0 0 1 1

total 125 36 31 5 3 200

Table 3.16: Comparing the degrees of influence between the Christakis-Fowler method and
the proposed method for the Twitter data

From Table 3.16, we can see that these two methods give us different results for some

features. After extracting some features with different degrees of influences, we obtain the

following table with feature names and the corresponding degrees of influence.

feature #appstore #oil @Cabel @DeanDMX #Android @Dropbox @BarackObama @Berkeley

Proposed method 1 1 1 1 1 2 2 3

Christakis-Fowler 2 2 2 2 2 4+ 3 4+

Table 3.17: Features with different degrees of influence for the Christakis-Fowler method
and the proposed method

Table 3.17 shows that the Christakis-Fowler method gives higher degrees of influence

sometimes. For features #appstore, #oil, @Cabel, @DeanDMX and #Android, the degrees of

influence obtained from our proposed method is 1, but using the Christakis-Fowler method

will lead the result to be 2. For the feature @Dropbox, the difference between the results

obtained from these two methods are relatively large.
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For the whole twitter data, Leskovec and Krevl (2014) provides more than 800 networks

in total, but for each network, the name and the number of features are various. All features

start with either ’#’ or ’@’, which indicate the users’ interest in some way. In general, our

proposed method gives smaller degrees of influences for some features comparing with the

Christakis-Fowler method.

3.6.2 Pokec data

Pokec (https://pokec.azet.sk) is the most popular on-line social network in Slovakia,

and its popularity has not changed even after the coming of Facebook. Pokec has been

provided for more than 10 years and connects more than 1.6 million people. The dataset

analyzed in this chapter is also from Leskovec and Krevl (2014), and it contains anonymized

data of the whole network. Also, friendships in Pokec are oriented (directed).

Since the original dataset is too large (with more than 1 million nodes), we only consider

a subset of the network, which only contains the people from a particular region Ceska. The

size of the smaller network is 18,216.

There are 65 features for each user, including gender, age, hair color, hobbies, inter-

ests, education level etc. Here, We only consider the following four features of interests:

relaition to smoke, relation to alcohol, like comedy, going to concerts. All of these fours

features are represented as binary variables, which indicate whether a person smokes, drinks

alcohol, likes comedy and goes to concerts. Since some users did not complete their profiles,

the original data contain missing values for some features. Here, we can choose to remove all

nodes with missing profiles and analyze a smaller dataset which contains 9825 nodes. The

following plot shows the network structure of this Pokec network.
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Figure 3.6: Pokec network structure

For our proposed method, we set B1 = 100 and B2 = 200 in the double bootstrap step

when obtaining the p-value at each step. The degrees of influence for the four features with

different methods are shown as follows.

Name of feature smoke alcohol comedy concert

Proposed method 1 2 2 1

Christakis-Fowler 2 3 2 1

Table 3.18: Degrees of influence of the Pokec data obtained from the Christakis-Fowler and
the proposed method

From Table 3.18, we can see that for features smoke, alcohol, our proposed method gives

smaller degrees of influence than the Christakis-Fowler method. Among these four features,

the degrees of influence for relation to alcohol is the largest one no matter which method

we use. In general, the two features going to concert and smoking have smaller degrees of

influence than drinking alcohols and liking comedies. The results also provide some evidence

that some bad habits could be influenced through a process in a network. For teenagers’
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parents, it is necessary for them to tell their children not being friends with others who

smoke or be addicted to alcohol.

3.7 Discussion

In this chapter, we build a multivariate Bernoulli model for static network with various

degrees of influence. Also, we proposal a sequential hypothesis testing procedure to explore

the degrees of influence with randomization test. Furthermore, we provide some theoretical

justifications to show that our proposed hypothesis testing is more powerful for large net-

works. The approach for exploring the degrees of influence performs well for both simulation

studies and real data analyses. We also find some features whose degrees of influence are

greater than zero, such as smoking, drinking alcohol, and the results indicate that people’s

behavior or habits could be affected by others.

For the future work, we can consider detecting the degrees of influence for dynamic

network, which means the status of each node and the network structure can be changed

with time. Another potential topic we can explore is to find some better ways to deal with

missing data in network.

3.8 Proofs

3.8.1 Notations

We define some symbols which will be used in the following proofs. For two sequences

{xn}∞n=1 and {yn}∞n=1, we write

• xn = O(yn), if ∃ M > 0, such that |xn/yn| ≤M for all large n

• xn � yn, if ∃M2 > M1 > 0, such that M1 ≤ |xn/yn| ≤M2 for all large n

• xn � yn, if xn = O(yn)
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3.8.2 Proof of Lemma 3.1

Proof. For any k + 1 different nodes (i0, i1, . . . , ik) in the graph, let X(i0, i1, . . . , ik) be the

indicator that all edges on the path (i0, i1, . . . , ik) are presented, so we have

X(i0, i1, . . . , ik) =


1 if aiu,iu+1 = 1 (u = 0, 1, . . . , k − 1)

0 otherwise

.

Then, X(i0, i1, . . . , ik) follows a Bernoulli distribution with parameter pke .

Let Yn be the total number of simple k-paths, then

Yn =
∑

all distinct choices of (i0,i1,...,ik)

X(i0, i1, . . . , ik),

and the expectation of Yn is

E(Yn) =
n!

(n− k − 1)!
pke � nk+1pke � λkn.

The variance of Yn is

V ar(Yn) =
∑

(i0,i1,...,ik)

∑
(j0,j1,...,jk)

Cov(X(i0, i1, . . . , ik), X(j0, j1, . . . , jk)).

Suppose there are m common edges between the two edge sets {(iu, iu+1), u = 0, 1, · · · , k−1}

and {(jv, jv+1), v = 0, 1, · · · , k − 1}, then

Cov(X(i0, i1, . . . , ik), X(j0, j1, . . . , jk)) = E[(X(i0, i1, . . . , ik)− pke)(X(j0, j1, . . . , jk)− pke)]

= E[X(i0, i1, . . . , ik)X(j0, j1, . . . , jk)]− p2k
e

= p2k−m
e − p2k

e .

Let Nm be the number of path pairs ((i0, i1, . . . , ik), (j0, j1, . . . , jk)) with m common edges,
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and it is bounded by

Nm ≤
n!

(n−m− 1)!
nk−mnk−m � n2k−m+1.

Then the variance of Yn is bounded by

V ar(Yn) =
k∑

m=0

(p2k−m
e − p2k

e )Nm � n
k∑

m=1

λ2k−m.

By Paley-Zygmund inequality (Paley and Zygmund, 1932), for any a ∈ (0, 1), we have

P (Yn > aE(Yn)) ≥ (1− a)2 (EYn)2

(EYn)2 + V ar(Yn)
≥ (1− a)2 1

1 +O(1/n)
� (1− a)2.

For any M > 0, let an = M
E[Yn]

, then P (Yn > M) ≥ (1 − a2
n). Since E[Yn] � λkn, we have

an → 0. So, P (Yn > M)→ 1 as n→∞, and then Yn goes to infinity in probability.

3.8.3 Proof of Theorem 3.2

Proof. For the hypothesis testing: H0 : degree = 0 v.s. H1 : degree = 1.

The test statistic is

T = P̂ (Yego = 1|Yalter1 = 1)− P̂ (Yego = 1|Yalter1 = 0)

Suppose there are Ns pairs of (ego, alter1) with Yalter1 = s (s = 0, 1). Under H0, since

Yego and Yalter1 are independent, we have

P (Yego = 1|Yalter1 = 1) = P (Yego = 1|Yalter1 = 0) = p,

for all pairs of (ego, alter1).

Given the following contingency table
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Yalter1 = 1 Yalter1 = 0

Yego = 1 a b

Yego = 0 c d

Table 3.19: Contingency table for hypothesis testing H0 : degree = 0 vs. H1 : degree = 1

we have

P̂ (Yego = 1|Yalter1 = 1) =
1

N1

(X1,1 + · · ·+X1,N1),

P̂ (Yego = 1|Yalter1 = 0) =
1

N0

(X0,1 + · · ·+X0,N0),

where X1,i
i.i.d.∼ Bernoulli(p) (i = 1, · · · , N1) and X0,j

i.i.d.∼ Bernoulli(p) (j = 1, · · · , N0). If

pe = O(λ/n), then the total number of edges in graph goes to infinity as n → ∞, and we

also have N1 →∞ and N0 →∞. From the law of large number, we have

P̂ (Yego = 1|Yalter1 = 1)
p→ p,

P̂ (Yego = 1|Yalter1 = 0)
p→ p,

as n → ∞. Thus T → 0 in probability under H0 as n → ∞, and then the critical value of

the hypothesis testing c∗ → 0 in probability.

Under H1, for each pair of (ego, alter1), we assume Corr(Yego, Yalter1) = q1.

P (Yego = 1, Yalter1 = 1) = E[YegoYalter1 ] = Cov(Yego, Yalter1) + E[Yego]E[Yalter1 ]

= q1 p(1− p) + p2,

P (Yego = 1, Yalter1 = 0) = P (Yego = 1)− P (Yego = 1, Yalter1 = 1)

= p− q1 p(1− p)− p2 = p(1− p)(1− q1),

P (Yego = 1|Yalter1 = 1) =
P (Yego = 1, Yalter1 = 1)

P (Yalter1 = 1)
= p+ q1 − pq1 , p̃1,

P (Yego = 1|Yalter1 = 0) =
P (Yego = 1, Yalter1 = 0)

P (Yalter1 = 0)
= p− pq1 , p̃0.
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We have

P̂ (Yego = 1|Yalter1 = 1) =
1

N1

(X1,1 + · · ·+X1,N1) , X̄1,

where X1,i ∼ Bernoulli(p̃1) (i = 1, · · · , N1), but they are not independent. Them, we have

V ar(X̄1) =
p̃1(1− p̃1)

N1

+
2

N2
1

∑
1≤i<j≤N1

Cov(X1,i, X1,j)

=
p̃1(1− p̃1)

N1

+
2

N2
1

q1 p̃1(1− p̃1)pe

(
N1

2

)
.

Since pe = O(λ/n), we have V ar(X̄1)→ 0. For any ε > 0, by Chebyshev’s inequality,

P (|X̄1 − p̃1|) > ε) ≤ V ar(X̄1)

ε2
→ 0.

then X̄1 → p̃1 in probability. Similarly, we have

P̂ (Yego = 1|Yalter1 = 0) =
1

N0

(X0,1 + · · ·+X0,N0) = X̄0,

and X̄0 → p̃0 in probability. For the test statistics T = X̄1 − X̄0
p→ p̃1 − p̃0 = q1 > 0. Thus,

the power P (T > c∗|H1)→ 1 as n→∞.

For the hypothesis testing H0 : degree = d− 1 v.s. H1 : degree = d, the test statistic is

T = P̂ (Yego = 1|Yalterd−1
= 1, Yalterd = 1)− P̂ (Yego = 1|Yalterd−1

= 1, Yalterd = 0)

+ P̂ (Yego = 1|Yalterd−1
= 0, Yalterd = 1)− P̂ (Yego = 1|Yalterd−1

= 0, Yalterd = 0).

Under H0, the degrees of influence is d − 1, so Yego and Yalterd are independent. Given

two contingency tables
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Yalterd = 1 Yalterd = 0

Yego = 1 a2 b2

Yego = 0 c2 d2

Table 3.20: Contingency table for hypothesis testing H0 : degree = d− 1 vs. H1 : degree = d
when Yalterd−1

= 1

Yalterd = 1 Yalterd = 0

Yego = 1 e2 f2

Yego = 0 g2 h2

Table 3.21: Contingency table for hypothesis testing H0 : degree = d− 1 vs. H1 : degree = d
when Yalterd−1

= 0

We have

P (Yego = 1|Yalterd−1
= 1, Yalterd = 1) = P (Yego = 1|Yalterd−1

= 1, Yalterd = 0) = p̃1,d−1,

P (Yego = 1|Yalterd−1
= 0, Yalterd = 1) = P (Yego = 1|Yalterd−1

= 0, Yalterd = 0) = p̃0,d−1,

where p̃1,d−1 = P (Yego = 1|Yalterd−1
= 1) = p+qd−1−pqd−1 and p̃0,d−1 = P (Yego = 1|Yalterd−1

=

0) = p− pqd−1.

Suppose there are Nst tuples of (ego, alterd−1, alterd) with Yalterd−1
= s and Yalterd = t,

where s = 0 or 1 and t = 0 or 1. From theorem 3.1, we have the number of pairs (ego, alterd)

goes to infinity as n → ∞. Since P (Yalterd = s, Yalterd = t) > 0 for all pairs of (s, t), we also

have Nst →∞. Similar to the previous part of the proof, we have

V ar(X̄st) =
p̃s,d−1(1− p̃s,d−1)

Nst

+
2

N2
st

qd−1 p̃s,d−1(1− p̃s,d−1)pe

(
Nst

2

)
→ 0.

By Chebyshev’s inequality, we have X̄st → p̃s,d−1 in probability. From T = X̄11−X̄10 +X̄01−

X̄00, T → 0 in probability under H0 as n → ∞. Then the critical value of the hypothesis
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testing c∗ → 0 in probability.

Under H1 : degree = d, so Yego and Yalterd are not independent, we have

P (Yego = 1|Yalterd−1
= 1, Yalterd = 1) > P (Yego = 1|Yalterd−1

= 1, Yalterd = 0),

P (Yego = 1|Yalterd−1
= 0, Yalterd = 1) > P (Yego = 1|Yalterd−1

= 0, Yalterd = 0),

We still have X̄st → P (Yego = 1|Yalterd−1
= s, Yalterd = t) in probability because of the fact

that Nst →∞. Since T = X̄11− X̄10 + X̄01− X̄00, we have the test statistic T
p→ E(T ) > 0.

Thus, the power P (T > c∗|degree = d)→ 1 as n→∞.
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Chapter 4

Higher-order motif spectral clustering
under a small-world dyads-triads
random graph model

4.1 Introduction

We propose a random graph model for undirected networks with small-world properties,

namely high clustering coefficient and low average path length. In the most basic form, the

proposed model is a superimposition of a regular Erdős-Rényi dyadic (edge based) random

graph Ge(n, pe) and a Erdős-Rényi triadic (triangle-based) random graph Gt(n, pt), where n

denotes the number of nodes and pe and pt denote the probability of an edge in the dyadic

graph and a triangle in the triadic graph respectively. A random graph from the model

can be generated as follows. We start with n unconnected vertices. The Gt(n, pt) graph

is generated by independently randomly placing a triangle in any of the

(
n

3

)
3-tuple of

vertices. The Ge(n, pe) graph is generated by randomly placing edges with probability pe in

an identical copy of the vertices. The two graphs are then superimposed to obtain the final

graph. We let the graph contain multiple edges between two nodes if and only if that edge

is involved in a triangle. We let an additional edge between two nodes for each triangle the

nodes together are involved in. (A possible variation could be to take only the vertices that

are not a vertex of a triangle and form ER edges in between those vertices. This circumvents

the problem of multiedges, but then we have to deal with non-independence)

4.2 Basic properties of our model

• Erdős-Rényi random graphs Ge(n, pe) and Gt(n, pt)
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• Expected number of edges:
(
n
2

)
pe + 3

(
n
3

)
pt

• Expected number of triangles:
(
n
3

)
p3
e +

(
n
3

)
pt

• Degree decomposition: d = de+dt, with de ∼ Binomial(n−1, pe) and dt ∼ 2 Binomial
((
n−1

2

)
, pt
)

• Expected degree of a node: (n− 1)pe + 2
(
n−1

2

)
pt = (n− 1)(pe + (n− 2)pt)

We choose d = O(λ), pe = O(λ/n) and pt = O(λ/n2).

• Expected number of triangles a node is connected to:
(
n−1

2

)
p3
e +

(
n−1

2

)
pt

4.3 Probability of multiedge

We fix the nodes i and j, there are two ways we can have a multiedge between these two

nodes. Suppose there are tij triangles in Gt with vertices i and j, then tij ∼ Binomial(n −

2, pt), and we use eij to denote whether there is an edge between i and j in Ge. We can

calculate the probability of multiedge in the following way:

P (multiedge) = P (eij = 1)P (tij ≥ 1) + P (eij = 0)P (tij ≥ 2)

= peP (tij ≥ 1) + (1− pe)P (tij ≥ 2)

= 1− P (tij = 0)− (1− pe)P (tij = 1)

= 1− (1− pt)n−2 − (1− pe)(n− 2)(1− pt)n−3pt

� 1− e(n−2) log(1−λ/n2) − (1− λ

n
)(n− 2)

λ

n2
e(n−3) log(1−λ/n2)

� 1− e−λ/n − (n− λ)λ

n2
= O(λ2/n2).

The expected number of edges who are multiedges in the graph is O(λ2).

We can compare it with the configuration model introduces the given degree for each

node is ki = λ (i = 1, . . . , n). For any fixed pair of nodes i and j, the probability that they

are connected is:

pij =
kikj

2n− 1
=

λ2

2n− 1
' λ2

2n
.
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Also, the probability that a second edge appears is p
(2)
ij = (ki− 1)(kj − 1)/2n = (λ− 1)2/2n.

The expected number of multiegdes in the configuration model will be

∑
i 6=j

pij p
(2)
ij =

(
n

2

)
λ2

2n

(λ− 1)2

2n
= O(λ4).

4.4 Local clustering coefficient analysis

The local clustering coefficient (also known as transitivity) of a node u defined as follows:

cc(u) =
number of pairs of neighbors of u connected by an edge

number of pairs of neighbors of u
.

Suppose there are cu triangles in Gt with vertex as u, then according to the previous defini-

tion, we have cu = dt
2

. From the definition of local clustering coefficient, it is easy to show

that:

cc(u) =

(
de
2

)
pe + dt

2(
de
2

)
+ dt

2

,
N

D
.

Also, we assume the two random variables de and dt are independent, where de ∼ Binomial(n−

1, pe),
dt
2
∼ Binomial

((
n−1

2

)
, pt
)
. Using first order Taylor expansion, assured by the concen-

tration of N and D around their means, we have

E[cc(u)] ' E[N ]

E[D]
+ op

(
E[N ]

E[D]

)
,

where op means convergence in probability.

Next, we will show the asymptotic properties of both the enumerator E[N ] and the
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denominator E[D] as follows:

E[N ] =
1

2
peE[de(de − 1)] +

1

2
E[dt] =

1

2
pe(E[d2

e]− E[de]) +
1

2
E[dt]

=
1

2
pe[(n− 1)pe(1− pe) + (n− 1)2p2

e − (n− 1)pe] +

(
n− 1

2

)
pt

=
1

2
(n− 1)(n− 2)p3

e +

(
n− 1

2

)
pt =

1

2
(n− 1)(n− 2)(p3

e + pt).

Analogously, we can calculate

E[D] =
1

2
E[de(de − 1)] +

1

2
E[dt] =

1

2
(E[d2

e]− E[de]) +
1

2
E[dt]

=
1

2
[(n− 1)pe(1− pe) + (n− 1)2p2

e − (n− 1)pe] +

(
n− 1

2

)
pt

=
1

2
(n− 1)(n− 2)p2

e +

(
n− 1

2

)
pt =

1

2
(n− 1)(n− 2)(p2

e + pt).

Hence, we have

E[cc(u)] � p3
e + pt
p2
e + pt

.

Since we choose d = O(λ), pe = O(λ/n) and pt = O(λ/n2), we have the expected local

clustering coefficient from ER dyads and triads is:

E[cc(u)] = O(
λ3/n3 + λ/n2

λ2/n2 + λ/n2
) = O(

λ3 + nλ

nλ2 + nλ
) = O(1).

The expected local clustering coefficient from regular ER random graph with comparable

degree density is O(λ/n). It is clear that our model has higher clustering coefficient for

comparable degree density.
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4.5 Phase transition analysis

4.5.1 Connectivity threshold

For the original ER model, suppose the probability for the emergence of an edge between

two nodes is p, then we have

P (connectivity)→ 0, if p <
log n

n
.

For our model, we have

P (connectivity)→ 0, if pe +
n

2
pt <

log n

n
.

Here, connectivity means there is no isolated node in the graph.

For a node i in the network, let I(i), Ie(i) and It(i) be Bernoulli random variables, which

are defined as follows

I(i) =


1 if node i is isolated in G,

0 otherwise.

Ie(i) =


1 if node i is isolated in Ge,

0 otherwise.

Ie(i) =


1 if node i is isolated in Gt,

0 otherwise.

A node i is isolated in G if and only if i is isolated in both Ge and Gt. We can calculate the

79



probability that a node is isolated as follows:

q , P (I(i) = 1) = P (Ie(i) = 1, It(i) = 1) = P (Ie(i) = 1)P (It(i) = 1)

= (1− pe)n−1 (1− pt)(
n−1
2 )

� e−npe−n
2pt

For two different nodes i and j, the covariance of I(i) and I(j) can be calculated as

follows:

Cov(I(i), I(j)) = E[I(i)I(j)]− E[I(i)]E[I(j)]

= P (I(i) = 1, I(j) = 1)− P (I(i) = 1)P (I(j) = 1)

= (1− pe)2(n−2)+1(1− pt)2(n−2
2 )+(n−2) − q2

=
q2

(1− pe)(1− pt)n−2
− q2

Let Xn be the total number of isolated nodes in G, then

Xn =
n∑
i=1

I(i).

The expectation of Xn is

E[Xn] =
n∑
i=1

E[I(i)] =
n∑
i=1

P (I(i) = 1) = nq.
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The variance of Xn is

V ar(Xn) = V ar

(
n∑
i=1

I(i)

)

=
n∑
i=1

V ar(I(i)) +
∑
i 6=j

Cov(I(i), I(j))

= nq(1− q) + n(n− 1)

(
q2

(1− pe)(1− pt)n−2
− q2

)
= nq − n2q2 + n(n− 1)q2(1− pe)−1(1− pt)−(n−2)

If pe + n
2
pt <

logn
n

, we have

E[Xn] = nq � en(
logn
n
−(pe+n

2
pt)) →∞,

V ar(Xn) � nq − n2q2 + n(n− 1)q2 � nq(1− q) � nq.

By the second moment inequality, we have

P (Xn > 0) ≥ (E[Xn])2

E[X2
n]

=
(E[Xn])2

V ar(Xn) + (E[Xn])2
=

1

1 + o(1)
� 1,

which implies

P (connectivity) = P (no isolated node in G) = P (Xn = 0)→ 0.

Thus, if pe + n
2
pt <

logn
n

, the graph is disconnected almost surely.

4.5.2 Giant component

We can also analyze the existence of giant component in our model. A giant component

is a connected sub-graph in a given random graph which contains a constant fraction of all

the vertices. In the original ER model, if p > 1
n
, the graph has a unique giant component;
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and if p < 1
n
, all the components in the graph are small ones, having size O(log n) with a

high probability.

For general undirected graph, we can determine whether the giant component exists or not

by using the degree distribution. Since the specificity of our model, sometimes multiedges

occurs between two nodes. But we need to count them only one time when considering

the degree distribution, and we will denote the distribution as d0, with the decomposition

d0 = de + dt − dm, where dm indicates the multiedge. It is enough for us to judge the the

existence of giant component, if we know the first and second moment of the random variable

d0. Let µi be the ith moment of d0, and ui =
∑∞

k=0 k
iP (d0 = k). According to Molloy and

Reed (1995), if µ2 > 2µ1, there exists a giant component in the graph.

In this case, we have de ∼ Binomial(n − 1, pe) and dt ∼ 2 Binomial
((
n−1

2

)
, pt
)
. Also,

0 ≤ d0 = de+dt−dm ≤ n−1 always holds. The first and second moments can be calculated

as follows:

µ1 = E[d0] = E[de] + E[dt]− E[dm] ≤ E[de] + E[dt],

µ2 = E[d2
0] = E[(de + dt − dm)2]

= E[d2
e] + E[d2

t ] + 2E[dedt] + E[dm(dm − 2de − 2dt)]

≥ E[d2
e] + E[d2

t ] + 2E[dedt]− E[dm(2(n− 1)− dm)]

≥ E[d2
e] + E[d2

t ] + 2E[dedt]− 2(n− 1)E[de + dt].

Since de and dt are independent, we have E[dedt] = E[de]E[dt]. In addition, the second

moments for de and dt are:

E[d2
e] = V ar(de) + (E[de])

2 = (n− 1)pe(1− pe) + (n− 1)2p2
e,

E[d2
t ] = V ar(dt) + (E[dt])

2 = (n− 1)(n− 2)pt(1− pt) + (n− 1)2(n− 2)2p2
t .
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Thus, the condition for existing giant component in our model is npe + (n− 1)(n− 2)pt > 1.

If we only consider Gt, people sometimes call it random hypergraph, which can be treated

as a generalization of the original Erdős-Rényi graph. Schmidt-Pruzan and Shamir (1985)

gives the claim that if (n− 1)(n− 2)pt > 1, Gt has a large giant component.
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Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60.

Fowler, J. H. and Christakis, N. A. (2008). Dynamic spread of happiness in a large social
network: longitudinal analysis over 20 years in the framingham heart study. The BMJ,
337:a2338.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (6):721–741.

Goyal, A., Bonchi, F., and Lakshmanan, L. V. (2011). A data-based approach to social
influence maximization. Proceedings of the VLDB Endowment, 5(1):73–84.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109.

Hofman, J. M. and Wiggins, C. H. (2008). Bayesian approach to network modularity. Physical
Review Letters, 100(25):258701.

Hughes, M. C. and Sudderth, E. (2013). Memoized online variational inference for Dirichlet
process mixture models. In Advances in Neural Information Processing Systems, pages
1133–1141.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to
variational methods for graphical models. Machine Learning, 37(2):183–233.
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