
c© 2018 Gohar Irfan Chaudhry

NETWORK ANALYSIS, INFERENCE AND VERIFICATION

BY

GOHAR IRFAN CHAUDHRY

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Associate Professor Matthew Caesar

ABSTRACT

Securely operating large-scale networks is a non-trivial task involving interactions between

various hardware devices, protocols, and configurations, all of which need to work in tandem

for the network to be secure and in the desired state that the network administrators want

it to be in. Misconfigurations or malicious activities in the network can disrupt it resulting

in dire effects including but not limited to outages of critical applications and breach of

sensitive information.

In this work, we propose a robust framework for diagnosing such anomalies across enter-

prise networks, and study their impact in terms of changes in routing behavior and reacha-

bility. To study the network as closely as possible to its actual behavior we perform analysis

on data plane features as they govern the journey of a packet during its life-cycle across the

network. We perform temporal analysis of the network as a whole and inspect the evolution

of various properties. We then determine the deviation of the network relative to its previous

states and identify as accurately as possible if the current state is anomalous. Given the

historic states of the network over some time, we also try to infer high-level policies and

invariants in the network. These allow for running various verification techniques on the

network. Finally, we propose a network verification tool designed to verify the network as a

dynamic, multi-layer distributed system. The richness of this tool’s network model allows it

to find network issues that are not detectable using state of the art tools which work solely on

either data plane states or control plane states without examining the interaction of the two

among themselves and temporally with the network environment. Building on this verifica-

tion tool, we propose a technique for high-coverage testing of end-to-end network correctness

using the real software that is deployed in these networks; our design is effectively a hybrid,

using an explicit-state model checker to explore all network-wide execution paths and event

orderings, but executing real software as subroutines for each device. We show that this

approach can detect correctness issues that would be missed both by existing verification

and testing approaches, and a prototype implementation suggests that the technique can

scale to larger networks with reasonable performance.

Thus, our framework provides an end to end solution for network analysis, inference and

verification.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I want to thank my advisor, Dr. Matthew Caesar, for encouraging me to work on chal-

lenging problems and providing me with constant help and guidance whenever I encountered

roadblocks. I would also like to thank the University of Illinois Computer Science Depart-

ment for providing me with access to invaluable resources enabling me to complete this

project and avail countless learning oppurtunities on the way.

I am also thankful to my peers and professors (especially Dr. Brighten Godfrey, Santosh

Prabhu and Hassan Shahid Khan) who helped me on this journey and contributed towards

various aspects of this project. Finally, I would not have been able to come this far without

the unconditional love and support from my parents, my sister, my fiancé, all my friends

and family.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vi

CHAPTER 1 INTRODUCTION . 1
1.1 Analysis & Inference . 1
1.2 Verification & Testing Softwarized Networks 1

CHAPTER 2 RELATED WORKS . 4

CHAPTER 3 DESIGN . 6
3.1 Analysis . 7
3.2 Inference . 10
3.3 Verification . 11

CHAPTER 4 TECHNIQUES & IMPLEMENTATION 14
4.1 Analysis . 14
4.2 Inference . 19
4.3 Verification . 23

CHAPTER 5 EVALUATION . 29
5.1 Network Evolution . 29
5.2 Anomaly Detection . 29
5.3 Inference . 36
5.4 Verification . 36

CHAPTER 6 PERFORMANCE . 42
6.1 Setup . 42
6.2 Performance Benchmarks . 42

CHAPTER 7 CONCLUSION & FUTURE WORK 50
7.1 Conclusion . 50
7.2 Future Work . 50

REFERENCES . 51

v

LIST OF FIGURES

3.1 Analysis Module . 7
3.2 Inference Module . 10
3.3 Plankton . 11
3.4 Plankton-neo . 12

4.1 Network Adjacency Matrices . 16
4.2 K-Dimensional Rectangle modeling three fields of a packet set 20

5.1 Network Reachability Evolution . 30
5.2 Network Adjacency Evolution . 31
5.3 NCD 100 Previous (Adjacency) . 32
5.4 NCD 100 Previous (Reachability) . 33
5.5 NCD Window Size Comparison . 34
5.6 Graph Diff . 37
5.7 NCD and Graph Diff Comparison . 38
5.8 Information reduction using our inference engine 39
5.9 Policy violations in VNFs . 39
5.10 Policy enforcement in a multi-tenant data center 40

6.1 NCD vs Graph Diff: Time and Memory . 43
6.2 Time taken by the inference engine . 44
6.3 Time and memory overhead for waypoint query on BGP DCs 45
6.4 Time taken for various policies under single link failure, with P = 1 and

P = 16 parallel threads. 45
6.5 Memory consumed for various policies under single link failure, with P = 1

and P = 16 parallel threads. 46
6.6 Comparison of Plankton with Minesweeper. 46
6.7 Single emulated device vs. one per middlebox 47
6.8 Measurements from data center experiment 48

vi

CHAPTER 1: INTRODUCTION

1.1 ANALYSIS & INFERENCE

Given the enormous amount of network data that is obtained every day in production

networks, it becomes a challenging task to anlayze all that data in a meaningful way to

ensure that the network meets the desired properties at all times. The challenge is two-

fold; firstly, it becomes difficult to statistically view how the network evolves over time and

whether any given state of the network is anomalous relative to previous seen states and

secondly, its a challenge to infer what the underlying invariants/policies in the network are

given the tremendous amount of historic network snapshots/logs. There has been a lot of

work done to study historic network data and find anomalies and a lot of work has been

done to infer network policies for specific kinds of devices.

However, what the state of the art does not address is a wholesome anlaysis and inference

of the network as one entity. To this end, we propose:

1. A set of statistical analysis methods that do not require specific knowledge of the

network and consume the data plane state at different times to study network evolution

and identify unusual states.

2. A policy inference mechanism which finds the most frequently observed kinds of packets

exchanged between pairs of devices.

3. A summarization technique to find the minimum amount of data units to describe

network policies extracted by the inference mechanism which can be further fed into

network tools like automated invariant checkers and verifiers.

1.2 VERIFICATION & TESTING SOFTWARIZED NETWORKS

Beyond statistical methods, we also provide formal verification techniques for ensuring

correctness of networks which is a difficult yet critical task. A growing number of network

verification tools are targeted towards automating this process as much as possible, thereby

reducing the burden on the network operator. Verification platforms have improved steadily

in the recent years, both in terms of scope and scale. Starting from offline data plane

verification tools like Anteater [1] and HSA [2], the state of the art has evolved to support

real-time data plane verification [3, 4], and more recently, analysis of configurations [5, 6, 7,

8].

1

Existing network verification techniques center around analysis of one or more individual

data plane states to verify policies of interest. In the case of data plane verifiers, a single data

plane state, often collected directly from the network, is presented as the network abstraction,

and is analysed for policy violations. While helpful, this approach does not verify the effect

of configuration prior to deployment. Configuration verification tools such as ERA, ARC

and Minesweeper start from the network configuration, but their approach is to encode the

control plane in models such as graphs or logical formulae, essentially designed to generate

one or more data plane states. These data plane states are computed as representation of

the outcome of the control plane execution. The actual analysis of the policy happens on

the individual data plane states that are generated in this manner.

But in reality, networks involve many dynamically moving parts. At the most basic level,

does the control plane converge? If so, can it converge to multiple states? How is traffic

affected as the system is being modified, either by a distributed control plane, or by SDN-

style software control of the data plane? Perhaps due to the sheer complexity of this network

system, verification tools have either ignored it altogether and focused on the results of the

control plane’s execution [6, 7, 8], or modeled specific forms of the dynamic behavior, such

as individual protocols [9, 10] or only the data plane [11].

As part of the final stage in the pipeline and as a solution to the aforementioned problems,

we propose Plankton, the first network verification platform that models the network as a

dynamic, multi-layer distributed system. This is a nontrivial goal. The system will have to

understand control plane dynamics, rather than simply computing a data plane output of

the control plane. However, the control plane does not exist in isolation; it must incorporate

data plane events, including perhaps sequences of multiple packets relevant to policies that

depend on actions across time. All of these cross-layer events may be woven together in

arbitrary order, creating exponential complexity as we scale to large networks.

Moving one step further, we realize that for a network incorporating extensive software

elements, assuming a network model becomes a serious limitation, for several reasons:

1. Implementation bugs: Given the highly specialized nature of middleboxes, there is

both a high likelihood of bugs, and also the risk of them being undiagnosed for a

significant length of time. These bugs (or simply implementation quirks) may cause

network policy violations even if the network operator has configured the middlebox

fully correctly. Writing a bug-for-bug faithful model of the software would be close to

impossible.

2. Lack of a model: Part of the point of building a softwarized network is to be able to

code custom features, behaviors, and even whole distributed systems. As such, we may

2

lack a starting point for a model, unlike data plane and control plane elements that

typically operate with standardized protocols (BGP, spanning tree, etc.).

To address these shortcomings, we pose the question: how close can we come to getting

the best of both worlds, with the faithfulness of real software and the high coverage of

verification?

We initiate an exploration of that question with a hybrid approach. Intuitively, to retain

high accuracy, we need to execute the actual running software with its actual configuration

for each individual component. But we use those components, and partial executions of them,

as building blocks to assemble and reassemble in an exhaustive exploration of network-wide

execution paths driven by an explicit-state model checker. Our key contributions in this

regard are as follows:

1. We propose a hybrid approach combining emulation-based testing and model-based

verification, and show through examples that it can find intent violations that would

be missed by each approach individually.

2. We design such a hybrid system, Plankton-neo, which builds on the Plankton network

verification platform but inserts invokation of real software network elements in its

execution loop, inserting packets and interpreting the results. Our design explores

how to invoke these devices efficiently by doing both: running parallel instances and

state restoration.

3. We implement and evaluate a prototype of Plankton-neo, showing that it can catch

actual problems that rise with the iptables software firewall on Linux, and that it can

validate a multi-tenant data center with 196 routers and 64 tenants under 80 minutes.

3

CHAPTER 2: RELATED WORKS

We use some of the techniques used for general purpose image similarity [12], video surveil-

lance [13] and measuring network complexity [14] as basis for our analysis module discussed

in Section 4.1. Some of the techniques used for network analysis and anomaly detection

involve traffic inspection [15, 16, 17, 18] however, the aim for our proposed technique was

to not require any form of packet inspection (headers or payload). There is recent literature

that focuses on specific kind of attack detection; like the problem of detecting Denial-of-

Service attacks has been modelled as a computer vision problem [19]. We aim to keep our

approach general enough so that any deviations in network state from the norm can be

identified.

In terms of network inference, as well, we aim to propose an all-encompassing technique

to detect network-wide policies and not limit the scope to specific network device types (for

example firewalls) as is done in some prior works [20, 21, 22].

Network verification has been thoroughly studied in the past body of works as well. The

earliest offline network verification techniques, such as Anteater [1] and HSA [2], evolved to

real-time tools such as Veriflow [3], NetPlumber [4] and DeltaNet [23]. However, these sys-

tems do not by themselves verify configurations prior to deployment. We compared Plankton

with existing configuration verifiers and compared experimentally to Minesweeper in Sec-

tion 6.2.3. There are also more specialized verifiers, such as Bagpipe [10] which verifies BGP

configurations for a single AS. Bagpipe avoids multi-AS dynamics, and does not incorporate

other control protocols or data plane behavior. CrystalNet [24] performs an emulation of

actual device virtual machines, and its results could be fed to a data plane verifier. How-

ever, this composition would not verify nondeterministic control plane dynamics, cross-layer

dynamics, or temporal policies. Simultaneously improving the fidelity of configuration ver-

ifiers in both dimensions (capturing dynamics as in Plankton and implementation-specific

behavior as in CrystalNet) appears to be a difficult open problem. Libra [25] is a divide-

and-conquer data plane verifier, which is related to our equivalence class-based partitioning

of possible packets. Topological symmetry in networks has also been explored in the con-

text of optimizing verification [26]. Plankton’s optimizations, though philosophically similar,

have been designed to accommodate protocol dynamics, unlike existing work which applies

these principles to data plane verification. Past approaches that used model checking in the

networking domain have focused almost exclusively on the network software itself, either

as SDN controllers, or protocol implementations [9, 27, 28]. We show how Plankton-neo

can help detect real issues in softwarized networks that would be missed by these existing

4

techniques. Work on verifying dataplane software [29, 30] has focused on the correctness

of the software component itself, rather than end-to-end correctness, which Plankton-neo is

designed to verify. Architecturally, it shares many similarities with NICE [9], but targets

middleboxes instead of OpenFlow.

5

CHAPTER 3: DESIGN

In this section we describe the complete design of our framework including all the com-

ponents in the pipeline. The first component of our framework is an analysis module which

ingests data plane state of the network at different time intervals and compares it with pre-

vious states of the network to inspect the evolution of the network over time. This enables

us to quantitatively identify if the network was in an anomalous state at a given time rela-

tive to previously witnessed states of the network. This module uses some approaches from

algorithmic information theory [31] in order to compute similarity of one network snapshot

with another to identify if one snapshot is deviating significantly from previous ones, acting

as a heuristic that signals that the network may need administrator attention. An in depth

discussion of how this is done is provided in Section 4.1.

Following this module, we present the policy inference engine, which given the data plane

state of the network at different time intervals, can output a minimum set of policies that

define the network. The policies describe which set of network devices mostly communicate

with which other set of network devices and over which packet sets. A lot of modern net-

working tools, like Veriflow [3], require the user to input some policies that help in describing

the network invariants before they can start performing any operations on the network, for

example verification of properties etc. When the network grows, it may be hard to exhaus-

tively describe the policies of the network for any such tools to optimally operate on the

network, and our policy inference engine aims to solve this problem. A detailed discussion

of the techniques applied in the inference and summarization of policies is done in Section

4.2.

Finally, we present our network verification tool. It uses principles of equivalence parti-

tioning along with explicit state model checking to reason about concurrency which, to the

best of our knowledge, the state of the art fails to address. Our tool does not treat a network

data plane or control plane in isolation, but, in fact, takes into account all the dynamically

moving parts of a network. It understands control plane dynamics rather than simply using

it to output a data plane and models the cross-layer events that may be woven together in

an arbitrary order creating exponential complexity of the network. As a result of applying

a suite of novel optimizations, including the use of some data structure optimizations and

parallelization of the system, it makes the process of dealing with such a complex system

efficient which we discuss in greater detail in Section 4.3.

6

3.1 ANALYSIS

Figure 3.1: Analysis Module

The analysis module (an overview of which is shown in Figure 3.1) operates on a series

of time ordered snapshots of the network. The snapshots can be of various forms and

are processed so that we can obtain pair-wise reachability information between devices of

the network. Having this reachability information, we perform temporal analysis on how

reachability within the network changes over time and whether at some point in time the

reachability of the network was deviating from the statistical norm.

3.1.1 Collector

As an entry point, we need to collect the network data over a period of time for which

we use a collector. The implementation of this component was not in the scope of this work

(hence shown in dotted-lines in Figure 3.1) and we design our pipeline such that various

third-party collectors can be hooked and invoked from our pipeline. We omit details on the

workings of these collectors but provide a high level overview of how this component fits

within our analysis module and the overall pipeline. Depending on the network environment

and context, (for example enterprise networks, Internet ASes etc.) the job of this component

is to periodically gather information from the network. The nature of this information varies

between different types of networks which may provide a different perspective on reachability

within the network.

For instance, working in an enterprise network it would query all routing devices and collect

the output of various show commands (for example show interface, show ip interface, show

access-list, show ip route etc.) from each device in the network. Each of these commands

describes a particular data plane feature from the stand-point of that particular device and

this information is aggregated from all devices into a single raw network snapshot.

7

Another example of the collection phase is of gathering global BGP peering information

from various vantage points including backbone routers on the Internet. This is done by

using data collected by Route Views [32] which provides an archive of a vast amount of histor-

ical BGP RIB (Routing Information Base) dumps and BGP UPDATE messages exchanged

between ASes.

3.1.2 Parser

After the collection of data is done from various heterogeneous network devices by different

vendors, running potentially different versions of the firmware and operating system, we

transform that information into a device agnostic format that we can use for our purposes.

Here again, we do not completely reinvent the wheel and choose not to develop our own

parsing component from scratch; instead we use the available tools and build on top of those.

We used a third-party parser that outputs a standardized device model representation for

each network feature of a routing device which works for most enterprise networks. Once

the data has been parsed and modeled, we use it to generate pair-wise reachability between

devices. This gives us information about the packet sets which this pair of devices can

exchange in the given state of the network and we use this information to generate an edge

list of reachability representing the entire network at this state.

For working with BGP data, we write a basic parsing component which ingests BGP RIB

format and outputs an edge list. We make use of libbgpdump [33] which is a C library

designed by RIPE NCC [34] to help with analyzing dump files produced by Zebra/Quagga

or MRT. Since the Route Views archives are in the Quagga format, this library is able to

open the dumps in a human readable format. We use Unix tools including cut and sed

along with some basic Python scripts to parse Route Views data after having passed it

through libbgpdump. An example input and output for BGP RIB is shown below along

with a minimal break down of the parsing steps:

1. Opening the BGP RIB dump through libbgpdump, a sample line of the output looks

like:

TABLE_DUMP|1201829525|B|149.20.65.198|1280|12.6.247.0/24

|1280 2828 7018 26456|IGP|149.20.65.198|0|30||NAG||

2. After the first pass of parsing this line using the command shown below, it becomes:

8

cut -d ’|’ -f 6,7 | sed -e ’s#{\(.*\)}#\\1#’ -e ’s## #’

12.6.247.0/24|1280 2828 7018 26456

3. Next, we interpret the output of the previous step and turn it into an edge list such

that if some AS, say AS1 can reach AS2 either directly or through one or more hops,

there would be a direct edge between AS1 and AS2 in the edge list.

1280;2828;12.6.247.0/24

1280;7018;12.6.247.0/24

1280;26456;12.6.247.0/24

2828;7017;12.6.247.0/24

2828;26456;12.6.247.0/24

7018;26456;12.6.247.0/24

3.1.3 Graph Generator

We implement a graph generation module which ingests the standardized edge list format

from the file system and produces an in-memory weighted graph corresponding to each

snapshot. As the number of snapshots can be very large in some cases (discussed in Sectionn

5.2.1), it presents a few interesting challenges. Firstly, sequential graph generation for each

snapshot is a time consuming process so we leverage multiple cores to do this in parallel

giving us significant improvement in time taken to perform this action. Secondly, storing all

historic snapshots of a network in memory is impractical given memory constraints in most

typical compute environments therefore we keep only a window of these graphs in memory in

a fixed size queue and follow a FIFO ordering to discard the oldest graph and bring in a new

one if the queue is full up to the specified window size. For our comparisons and analysis,

discarding some previous data is acceptable and we later discuss the impact of doing this in

Section 5.2.1. For some of the techniques we will later discuss in Section 4.1.3 we require an

image representation of each graph object which is also handled by this module. It creates

the images and stores them in the file system for later access.

9

3.1.4 Processor

The last stage of the analysis module is the processing of the generated graphs using

various techniques which will be discussed in Section 4.1. Each of the specific approaches we

use including Normalized Compression Distance (Section 4.1.3) on images and Graph Diff

(Section 4.1.1) are submodules which consume a set of graphs and output numeric metrics

corresponding to each snapshot.

Note that the analysis module is online in nature and any real time stream of network

data can be attached to this module. It will store a past window of network states in memory

and compare with the latest snapshot from the stream. This makes it highly practical for

use in production network environments.

3.2 INFERENCE

Figure 3.2: Inference Module

The inference engine is designed to load the data plane information from each snapshot of

the network and eventually insert that information in an R-Tree (the reasons for using this

particular data structure and how it is used are discussed in Section 4.2). The particular

format of the data plane that we use here is a list of packet sets that each pair of devices

in the network was able to exchange at a given snapshot. There are existing tools [3] that

can generate the particular packet sets which can be exchanged at particular snapshots by

processing the data plane state of the network so we do not discuss those specific details

here and make our module extensible to be able to consume this particular information from

other existing tools. We model the packet sets into K-dimensional objects (described

later in Section 4.2) that are later inserted into an R-Tree which is then used to query for

intersecting packet sets and eventually compute the frequently occuring packet sets in the

network. We implement this module entirely in C++ in favor of efficient performance and

make use of OpenMP [35] to parallelize various sections of the code including the loading

of snapshots, inserting them into an R-Tree and finding the intersections for various packet

sets.

10

After we have computed the frequent packet sets (which are the pair-wise low-level policies)

we reduce this informaiton and aggregate it such that it becomes easier to comprehend and

pass on to other tools. This is the final stage in our inference engine as can be seen in Figure

3.2.

3.3 VERIFICATION

3.3.1 Plankton

Figure 3.3: Plankton

Now we discuss the verification tool we implemented in this work, Plankton, and describe

various design choices that were made while implementing it.

The design decisions made in Plankton are aimed at tackling the challenges of cross-layer

dynamics, packet diversity, and event ordering. As illustrated in Figure 3.3, Plankton’s

model of the network is a collection of agents, each executing independently, making changes

to a shared global state of the network. The agent-based model allows Plankton to reason

accurately about the dynamics not only within the control plane, but also between the control

plane and the data plane. Given a configuration, Plankton formally analyzes its correctness

by interpreting it over the combined network model, and examining the behavior of the

model. To do so, Plankton uses an explicit-state model checker. The model checker is

designed to exhaustively search through the various interleaved executions of the agents,

and find any potential policy violations. However, naively modeling the individual agents

and passing them to a model checker does not suffice. Due to the large number of event

orderings, even a well-designed and mature model checker cannot scale to networks the

size of real world data centers or campus networks. In fact, past attempts to use model

checking even in settings significantly more restrictive than Plankton have failed to scale

11

beyond networks of approximately 20 devices [9, 27]. Plankton tackles this problem through

a collection of highly effective optimizations. These optimizations are designed to either

reduce the overall number of event orderings to be checked without affecting correctness, or

to increase the efficiency of the exploration so that more orderings can be covered.

3.3.2 High-coverage testing of softwarized networks

Figure 3.4: Plankton-neo

Figure 3.4 illustrates the organization of Plankton-neo. It builds upon Plankton, which

uses model checking to formally verify network models. In Plankton, each logical compo-

nent of the network, such as the data plane, control plane protocols and the environment are

modeled as agents, which operate together to change the state of the overall network system.

These agents are written manually to simulate the behavior of the actual network compo-

nents, but with one key difference — they are designed to operate on equivalence classes of

packets rather than a single packet at a time. For example, the model for a stateful firewall

may define its behavior with respect to request and reply classes. The control plane models

perform route computation for each equivalence class separately. The model for the data-

plane forward a single symbolic packet through the dataplane, based on the forwarding rules.

The overall state of the network is defined as the combination of the states of component

models, and every time a step is taken within a model, the overall system is considered to

have made a state transition. A step may be a link failing, a routing table change, for-

warding of the symbolic packet from one device to the next etc. Assuming that the models

are faithful to the actual network behavior, Plankton can be used to verify a wide range of

correctness policies, including protocol convergence, failure tolerance etc. The actual verifi-

cation of the policy done by an off-the-shelf explicit-state model checker, which exhaustively

12

explores every relevant execution of the overall network system, and locates any sequence of

events that can violate network correctness. As the name suggests, the explicit-state model

checker generates and checks each relevant state of the system separately.

The design we described in Section 3.3.2 uses a separate set of virtual interfaces for each

middlebox in the network. Alternatively, we can also have multiple middleboxes sharing

the same set of emulation setups. This is possible because the model checking algorithm

only checks the behavior of one middlebox at any given time. When the packet needs to be

injected into a particular middlebox, we run that middlebox over the virtual interfaces, and

use update replay to put the system in the required state. The performance implications of

this are discussed in Section 6.2.4.

We implemented a simple version of our technique over Plankton, with support for Linux-

based middleboxes. For emulating Virtualized Network Function (VNF) devices, we create

tap interfaces, and create separate routing tables in the kernel for the emulated middleboxes.

When the verification algorithm invokes packet injection, the representative is sent into the

appropriate tap interface. A special data payload is used to distinguish the injected packet

from any other packets that may originate from the kernel. If the packet does not make it

to any of the tap interfaces withing a configurable timeout, it is assumed to be dropped.

13

CHAPTER 4: TECHNIQUES & IMPLEMENTATION

4.1 ANALYSIS

This section describes several network analysis techniques that were explored and imple-

mented in the framework we propose.

For analyzing networks over time, we model them as graphs of two types. First, we model

the adjacency of network entities as is in the context of the network we are analyzing. For

example, if we are running this framework on a BGP network (let’s say on the AS level of the

Internet) then the adjacency graph would represent the direct BGP peer relations between

the ASes as we see them in the BGP RIB and BGP UPDATES. As another example, if

we are working on enterprise networks then this would be direct hops between routers; this

could be the result of static route configurations done by network administrators or running

routing algorithms like OSPF.

Second, we model the reachability of network entities as a result of running basic graph

algorithms on top of the adjacency graph. Initially we implemented Floyd-Warshall algo-

rithm [36] for computing shortest paths between all possible pairs of nodes in the graph,

however the time complexity for doing this is O(N3) in the number of nodes (N) in the

graph which posed a lot of scaling challenges. Given the size of data we were dealing with,

for example a set of AS level graphs with roughly 7716 nodes and 733 such graphs to process,

this particular approach seemed unfeasible due to the enormously large amount of time it

would require. Since we did not expect to have negative cycles in our graphs, we decided to

go with using Dijkstra’s algorithm [37] for computing the single-source shortest path to all

nodes from each possible source. Each run of this takes O(ElogN) time in the number of

nodes (N) and the number of edges (E) in the graph. However, running this for all sources

increases the time taken to complete significantly so this approach was also discarded. We

finally decided to use Bread First Search [38] from all source nodes in the graph and used

this to generate a reachability graph which had an edge between two nodes, say A → B if

there was at least one path in the network to reach B from A. We do not model protocol

specific reachability in this approach (for example we don’t take into account BGP peering

relationships like customer/peer/provider etc.) for now.

14

4.1.1 Graph Diff

As a baseline, we treat the generated graphs using existing techniques which work directly

on these graph representations. We partially follow the approach proposed by Bunke et al.

[39] in this regard. Given a time ordered series of graphs G1, G2, G3, ... , Gn we compute

pair-wise distances D(Gi, Gj) between these graphs such that i > j for all values of i and j

that obey this constraint. This translates into computing distances between all (or a subset

of all) graphs that precede graph Gi in time. The more this value turns out to be, the greater

the difference between the two graphs. We define the distance metric as follows:

D(Gi, Gj) = | Ni | + | Nj | − 2 | Ni ∩Nj | + | Ei | + | Ej | − 2 | Ei ∩ Ej |

where | Nx | is the number of nodes in graph x

and | Ex | is the number of edges in graph x

Computing this graph diff measure helps us visualize the evolution of networks over time

and any aberrations in this trend are indicators of sudden changes in the network state which

may need administrator attention. We compute this metric over a window of past network

states and compute the average over all those comparisons.

4.1.2 Image Representation of Network Reachability

We generate an adjacency matrix for each graph object and turn this into an image by

representing reachability between a pair of devices by the presence or absence of a pixel in

the appropriate position of the image. Each node would have some coordinate on the x-axis

of the image and some coordinate on the y-axis of the image. If two nodes, say A and B,

have some notion of reachability in the graph such that A can “reach” B, then on the image

we would produce a pixel to represent this information. Assuming that the position of A on

the x-axis and y-axis is posAx and posAy respectively and the position of B on the x-axis

and y-axis is posBx and posBy respectively then there would be a pixel on the coordinate

(posAx, posBy) in the image. If the notion of reachability is bidirectional then there would

also be a pixel in coordinate (posBx, posAy) in the image.

In some datasets, if we map the devices with their default identities on to our image

space, the resulting images may be really sparse and may consume a lot of space on disk

while storing the images causing more expensive I/O operations while processing them. For

example, using default AS numbers poses this problem as the entire AS number range has

15

not been used but AS numbers lie all across the space of the 16-bit number. Therefore, the

resulting matrix and the corresponding image is extremely sparse taking up more space than

is necessary. We apply sparsity reduction on this by mapping this AS number space range

on to a shrunk down version by re-assigning AS numbers to a smaller (minimum) range such

that all numbers are used. In the case of doing retrospective analysis, we do this by taking

a union of all the nodes present in the dataset. From this resulting set, we reassign each

node’s ID between 0 and the numbers of nodes in this union set, say N . This brings down

the matrix size and image sparsity significantly. The result of this can be seen in Figure

4.1 where the network adjacency images are shown before applying this sparsity reduction

optimization and after this. This has significant performance benefits as it brings down the

image size per network snapshot considerably; for instance in the network snapshot shown

the image size goes down from 2.3MB down to 1.7MB (26% decrease in file size). This

results in a lower memory footprint of the application (if some images are kept in-memory)

and also results in faster processing when comparing images and compressing images as will

be discussed later. From our benchmarks (discussed in Section 6.2.1), it is evident that

storing all images (network snapshots) in memory is not the bottleneck, it’s in fact the time

taken to compare that grows faster than memory consumption.

(a) (b)

Figure 4.1: Showing the image representation of network adjacency from AS-733 dataset
as of 21st November 1999. (a) shows the sparse matrix version with some data points seen
further away towards top right/bottom right/top left and (b) shows the optimized matrix
version after sparsity reduction.

16

4.1.3 Image Similarity

As described in Section 4.1.2 we can represent the binary reachability information at each

snapshot of the network using an image. We then explore some techniques widely used in

computer graphics to compute similarity of images, which translate into similarity in the

nature of reachability of devices in the network between a set of snapshots. This metric

helps us identify how much the reachability properties of the network vary in the current

snapshot being evaluated compared with the past set of snapshots that we are comparing

with. It proves to be a good network-wide statistical indicator of how the network compares

with a past state and given the usual nature of networks we explore, the variation in between

snapshots does not adversely affect the inferences we make from employing this technique.

The result of using this technique on some real world data will be discussed in Section 5.1.

Normalized Compression Distance

Lots of computer graphics problems have to use image similarity metrics for rendering,

determining visual quality of frames and so on. Thus, a vast body of work is present which

tries to address this but most of them work only for specific use-cases. An example is that

of using Mean Squared Error (MSE) which compares pixel-to-pixel for computing a certain

distance. This may not work in all cases, for example if the pixels are all shifted by a

constant factor in one image. To counter such challenges and have a more general robust

technique some work has been done in the field of algorithmic complexity and a new measure

of similarity has been proposed named Normalized Compression Distance (NCD) [40]

based on Kolmogorov Complexity [41]. We define Kolmogorov Complexity of a string w

with respect to L, denoted KL(w) as the shortest computer program on a universal computer

(such as a universal Turing Machine) written in language L which produces w as output.

The conditional Kolmogorov Complexity, which is of interest to us for comparing objects,

with respects to a string x, denoted KL(w | x) (spoken w given x, as in probability theory),

is the length of the shortest program which, when given x as input, outputs w [42]. Although

Kolmogorov Complexity is not computable, we will discuss in the following paragraph how

it can be approximated leading to the NCD.

Bennet et al. [43] define information distance between two (potentially unequal sized)

binary strings, as the length of transforming either string into the other (both ways). Li et

al. [40] propose a normalized version of the same metric called similarity metric which

like the previous metric, is also universal. As mentioned earlier, Kolmogorov Complexity

can only be approximated, we use real-world compressors to compute the NCD and use it

17

to compare images. As evaluated by Vázquez et al. [12] NCD works well on images under

certain constraints which we follow in our framework and discuss later on. Now we formally

present the definition of Normalized Compression Distance as:

NCD(X, Y) =
C(X, Y)−min{C(X), C(Y)}

max{C(X), C(Y)}
where C(F)is the size after compression of a file F

and XY is the concatenation of files X and Y.

Some other things to note about NCD (in context of our usage):

1. The values of NCD lie between [0,1.1]. Typically, similarity measure lies in the range

[0,1] but due to real-world compressor imperfections, NCD observes values a little

higher than this. Lower values signify a high similarity and higher values signify lower

similarity between the two given input objects.

2. Before using a compressor for NCD computation we need to ensure that it obeys the

properties analyzed by Cilibrasi et al. [44]. Most real-world compressors (like BZIP

[45], LZMA (Lempel Ziv Markov chain algorithm) [46] etc.) obey these.

Now that we have defined what the similarity metric used in our technique precisely is, we

discuss how we use this to analyze real-world networks. We operate on a time ordered set

of network images as described above and compare each of these images with a window of

previous images. For example, if we are at time T55 and the window size, which we denote

as W is equal to 10, then the two metrics we compute for the network at time T55 are as

follows:

NCDT55 = max{NCD(IT55 , IT54), NCD(IT55 , IT53), .., NCD(IT55 , IT45)}

AV G NCDT55 = mean{NCD(IT55 , IT54), NCD(IT55 , IT53), ..,

= NCD(IT55 , IT45)}

where ITx is the image corresponding to the network at time x

The first metric reports the maximum dissimilarity from among a window of previous

network states and the second metric reports how much the current state is dissimilar from

18

among a window of previous network states on average. Having both these metrics, we

are able to visualize, using trend lines, how the network evolves over time. We use various

parameters for the window size and compare the results in Section 5.5. The assumption

that is satisfied by most networks is that given an appropriate sampling period, the network

would not significantly deviate its reachability state on the scale of that sampling period.

If either of these metrics report otherwise (ignoring the minor deviations) then a potential

abnormality may have occurred (or in the process of occurring) and thus, manual intervention

and inspection may be required.

As part of this technique, we also employed a technique for computing Manhattan Dis-

tance between the images but the results of that were similar to the Graph Diff approach

discussed earlier so we omit the details for that. We also implemented an approach which

is a slight variation of NCD used in [13] the field of anomaly detection in surveilance of

video feeds however, the general trend of the results obtained using this formulation and the

implementation details are similar to the NCD technique therefore we also omit the details

for that in the interest of space.

4.2 INFERENCE

In this section we describe how our policy inference engine works. When we talk of network

policies we mean sets of conditions, constraints or properties that the network obeys at some

given state. These policies dictate access control within network and control the flow of traffic

between different entities.

As networks evolve over time, they undergo changes in terms of addition and removal

of devices, rules, configurations etc. To keep track of all these events in the networks’s

history proves to be a cumbersome task because the amount of information associated with

such events can be very large making processing that information a challenging problem.

On the other hand, this information is required to some extent in order to perform crucial

actions on the network like invariant verification and policy-based management to name a

few. The underlying assumption behind the proper execution of all these actions is correct

information about the network which we want to verify or manage. This brings us back to

the problem of how we can retain this information as the network itself grows larger and

keeps getting more complicated. In this section, we aim to propose a solution to inferring

valuable information about underlying network policies from a series of snapshots which can

be used for performing the aforementioned actions.

As was being done in the analysis stage, we ingest data plane state of the network at

different points in time. However, the output from this stage of the pipeline is a set of policies

19

that define the network. This includes low-level policies that tell us what packet sets are

exchanged between pairs/sets of devices and also high-level policies that are an accumulation

of similar low-level policies. As a first step to our approach, we aim to identify the most

frequently exchanged packet sets that were exchanged between pairs of devices and we do

this for all pairs in the network. A packet set is modeled as a K-dimensional shape where

each dimension is one field of the packet. For example, if we are considering the following

fields in the packet (from different layers of the OSI Model [47]):

Figure 4.2: K-Dimensional Rectangle modeling three fields of a packet set

1. ip dst

2. ip port

3. ether vlan

then each of these fields would be one dimension of our K-dimensional shape (which we

will call KD-Rectangle) that can be visualized as shown in Figure. 4.2.

20

Populate the R-Tree with all packet sets exchanged between

devices D1 and D2 and call it R
(4.1)

Initialize set Q equal to all packet sets in R (4.2)

Qres = {}(HashMap) (4.3)

Repeat steps 4.5 to 4.10 until Q is not empty (4.4)

Qnext = {} (4.5)

For all packet sets p ∈ Q, query for the intersecting packet sets

using the R-Tree R
(4.6)

Assume that for packet set p the intersecting packet sets are

stored in set S such that S ⊂ Q
(4.7)

Qres.insert(p, length(S)) (4.8)

For each packet set s in S, find the intersecting region between

s and p called q (another packet set); Qnext = Qnext ∪ {q}
(4.9)

Q = Qnext (4.10)

Sort Qres by value (4.11)

The algorithm shown previously (Algorithm 4.1) is an iterative approach to computing the

overlapping packet sets which appear most frequently across time between a pair of devices.

We start with the actual packet sets observed and insert all of them into an R-Tree [48]

data structure. The reason for using this particular data structure is that it is very efficient

for spacial access methods, that is for indexing multi-dimensional information such as our

K-Dimensional packet sets in space where time is an added dimension (signifying at what

particular times each of those packet sets was observed as being exchanged between a given

pair of devices.) The fundamental idea behind R-Trees is that they group nearby objects and

represent them using a minimum bounding rectangle. These minimum bounding rectangles

indicate whether or not a search query should search in a given subtree making this process

efficient. Searching time complexity for our practical purposes is on average logarithmic in

the number of nodes in the tree.

For each of the packet sets we have inserted in the R-Tree, we query the R-Tree to give

us the overlapping packet sets with the querying packet set. This, in the context of the

problem we are solving, gives us other packet sets that were seen at another time which have

21

at least some intersecting region with the current packet set being queried. Having access

to these overlapping packet sets, we identify which region of each of these packet sets has an

overlap with the queried packet set and use this overlapping part of the packet set (or the

inner packet set) in the next iteration to look for further intersections. Since we are trying

to find the most frequently exchanged packet sets, we keep narrowing down the size of our

packet sets and search for more dense or highly overlapping regions in our K-Dimensional

space and keep track of the number of intersections of each packet set in our HashMap

called Qres. Ultimately, when no more subsequent inner packet sets are found and we have

scanned all intersections, the querying iterations end. At this point, we sort Qres by value

and report the top k packet sets. This terminates the algorithm and we have extracted the

low-level pair-wise policies which have remained the most consistent in time. Of course, the

most frequent policies may not be the most up-to-date policies (since the administrator may

have just recently updated some policies which are still not frequent enough to be captured

by this algorithm) in which case we can put constraints on how far back in time we need

to query. We can also prevent the addition of the stale packet sets in the R-Tree at the

beginning of the algorithm. We may also choose to apply a filtering pass on the frequent

packet sets that the algorithm reports in the end to prune out those packet sets which have

some intersection with our blacklist of packet sets.

4.2.1 Reduction

Next, we use the pair-wise packet sets computed above (which we call the low-level policies)

to aggregate them into a more succint form of information that can be fed into other tools

or used for human inspection of the network policies.

The pair-wise policies computed earlier are of the following form (where A, B, C, ..., F

are devices and PS1, PS2, ... are unique packet sets):

{(A → B: PS1), (A → B: PS2), (A → B: PS3)}
{(A → D: PS1), (A → D: PS2), (A → D: PS3)}
{(C → D: PS1), (C → D: PS3)}
{(E → F: PS1), (E → F: PS3)}

On this, we apply the first phase of aggregation which is kind of a like a reverse index,

making a list of pairs for each unique packet set. The result is of the following form:

PS1 = {A → B, A → D, C → D, E → F}
PS2 = {A → B, A → D}
PS3 = {A → B, A → D, C → D, E → F}

Now we apply the second phase of aggregation which groups together similar pairs of

22

devices. This is done by searching for the longest intersecting set of device-pairs from the

above lists. For each of these sets, we enumerate the packet sets that they were picked from.

For example, considering the above list we see that the following set of pairs is the longest

set that is present in at least two lists (namely PS1 and PS3, in the previous example):

{(A → B), (A → D), (C → D), (E → F)}
Thus, we obtain a grouping from the above set as follows:

{A → B, A → D, C → D, E → F: PS1, PS3}
We keep doing this until we are unable to find any intersecting sets at which point we just

merge the remaining results into our grouping. Thus, the final groupinng of the previous

example would look like:

{A → B, A → D, C → D, E → F: PS1, PS3}
{A → B, A → D: PS2}

This results in a minimum bundle of devices obeying the same policies and we have

reduced the information (or data units) into a much smaller output size which is much more

comprehensible and can describe the network policies using this minimum set of data units.

4.3 VERIFICATION

Now we discuss the network verification tool in detail including discussion of packet equiv-

alnce classes, the explicit-state model checker used by the tool, the roles performed by the

various agents which model the various events executed in the network and how the policies

are verified as a result of all these components. We also discuss the hybrid approach of using

explicit-state model checking along with emulation-based testing and how we implement

that for our framework.

4.3.1 Packet Equivalence Classes

The first form of equivalence that Plankton relies on for scalable network verification is

packet equivalence. Plankton slices the network into Packet Equivalence Classes (PECs),

and explores the dynamics of each PEC (or a small number of PECs) separately. PECs have

been defined in various ways in existing verification literature. Dataplane verifiers such as

Veriflow [3] define them over data plane rules, whereas the configuration analysis tool ERA

[6] defines them over control plane message paths. Since Plankton checks not just the current

network state but also many possible future states with various changes, we define PECs to

guarantee that two packets that are in the same class in the original network state continue

to be so even after any topological or other changes that may be explored by Plankton. There

23

are multiple ways in which we can ensure this, and Plankton’s design does not mandate a

particular way of computation. One possible approach is to consider the prefixes described

in the network-wide protocol configuration, and compute boolean combinations (through

intersection & set difference) of these prefixes. This approach is similar to how a data plane

veriifier would compute data plane equivalence classes. Indeed, such a computation produces

a similar number of PECs as a data plane verifier such as Veriflow. Nevertheless, this set is

finer than necessary for ensuring Plankton’s correctness. In order to obtain a more compact

set, we can unify those PECs which have the same configuration network-wide. For example,

multiple prefixes originating from the same router can be treated as a single PEC, if their

behavior is identical throughout the network. This approach produces a relatively small

number of PECs, which are used to define the input to the explicit exploration component.

Our experiments are carried out using PECs defined in this manner.

For each PEC, Plankton defines a software model that encompasses the entire network and

its environment. It is these models that are checked by the second component of Plankton,

the model checker.

4.3.2 Explicit-state model checker

The explicit state model checker SPIN [49] provides Plankton its exhaustive exploration

ability. A model checker for software programs, SPIN verifies models written in the Promela

modeling language, which has constructs to describe possible non-deterministic behavior.

Plankton’s network model is essentially a software copy of the network written in Promela.

While the model is defined for each PEC, SPIN verifies only a small number n of them at

any given time, depending on the policy under verification. For most policies, n is 1, whereas

some policies may require two, or more. An example of a policy that requires more than one

PEC to be modeled is stateful reachability, which enforces that if a request is delivered,

the reply gets delivered too. The model consists of a collection of agents, each responsible

for one component of the network system. An agent may represent a protocol such as OSPF

or BGP, the data plane which forwards traffic, the failure agent that changes the topology

etc.

Plankton’s model of the network executes iteratively, making multiple non-deterministic

choices in each iteration. First, an agent is picked non-deterministically from among those

that are ready to execute. This is followed by non-deterministic choice of the network de-

vice or link where the agent shall make changes. Further non-deterministic choices may be

made as applicable in the protocol. For example, the forwarding agent non-deterministically

decides the next-hop to forward to, when multipath load balancing is in use. As we shall dis-

24

cuss later, for each non-deterministic selection, the possible set of choices is restricted by the

policy being verified. While such non-deterministic choices occur in simulation based anal-

ysis also, simulation explores network evolution only along one non-deterministic execution

path. The model checker in Plankton explores every possible non-deterministic execution

path, checking for policy violations along each of these paths. As the name suggests, the

explicit-state model checker performs this exploration one state at a time. This distinguishes

it from symbolic model checkers, which explore sets of states simultaneously. Unlike sym-

bolic model checkers, explict-state model checkers do not require the transition relation of

the system to be computed a-priori. SPIN’s exploration of program execution proceeds as

a traversal of the state transition graph. In the case of plankton, this traversal is made

practical through efficient state-keeping, and optimizations both inside SPIN (such as Bit-

state Hashing) as well as our own additional ones. SPIN checks the specified policy over the

paths that are observed while traversing the graph - an approach known as on-the-fly model

checking [50].

Agents

Agents in Plankton’s network model define the behavior of the various moving parts in the

network. In addition to the environment (topology changes) and control protocols, Plankton

defines an controller agent and a data plane agent. Each agent defines state variables that

become part of the overall system state, and actions that will update these state variables.

Protocol agents for standard control protocols are semantically quite straightforward. For

instance, the BGP agent defines BGP tables, import and export of routes, and the BGP

decision procedure. The OSPF agent performs shortest-path routing. The controller agent

installs an ordered stream of updates from an external entity to each switch, chosen in

non-determinsitc order. This agent is designed to capture the semantics of SDNs, manual

installation of static routes etc.

The agent that allows Plankton to check forwarding issues, including middleboxes, is the

data plane agent. For each equivalence class, the data plane agent moves exactly one packet

through the network. This is essentially a symbolic packet, intended to capture how the

data plane forwards and is affected by traffic. The forwarding agent adds two variables to

the overall network state: the starting point of the packet, and its current location. When a

packet reaches a dynamic data plane device, the data plane agent performs any updates that

are made by the device to the actual data plane. By interleaving execution of the forwarding

agent with others, Plankton can detect policy violations that are not present in any single

data plane state, but are experienced by specific packets.

25

Policies

Plankton allows a wide range of policies to be checked over individual packets, data plane

states or the control plane. Policies that describe the forwarding path of the packet are

expressed as Linear Temporal Logic (LTL) formulae. LTL is a logic system for describ-

ing execution paths of finite state machines, and is natively supported by SPIN. LTL in-

cludes operators to describe temporal behavior, such as G for Always, F for Future, and

U for Until. These operators are used to describe expected packet behavior in Plankton.

For example, loop freedom is expressed as G(packetLocation != startingPoint => (G

(packetLocation != startingPoint))) which stands for Once the packet location is not

equal to the starting point, it will always be not equal to the starting point. Since the start-

ing point is non-deterministically chosen by the forwarding agent, this policy covers any

forwarding loop in the data plane. Policies that do not involve interleaving of the control

plane and the data plane can be checked without a forwarding agent. The data plane state

is part of the overall network state, and a graph algorithm over the current data plane is

sufficient to check most of such policies. This approach, which is significantly faster than

having a forwarding agent, is similar in spirit to Veriflow. The policy definition will include

a callback that accepts the current network state as an argument, and after checking the

policy, sets appropriate flags to represent the outcome of the check. However, checking

the policy efficiently requires more than a fast analysis algorithm. Plankton relies on the

policy definition to supply any optimizations that may be safely applied to the exploration

process, without compromising the correctness of the check. In other words, when faced

with a set of non-deterministic choices, the policy must convey to Plankton which of those

must be necessarily checked, and which may be skipped, without missing a potential viola-

tion. This responsibility is assigned to the policy because in general, a policy may require

that one specific network state is not reached by the network, and a fully policy-agnostic

optimization scheme may eliminate that particular state from the exploration. In general,

policy-agnostic optimization would put restrictions on the set of policies that may be checked

using Plankton. Hence, we choose against that option.

Recall that Plankton’s network model performs successive iterations of agent selection,

location selection and agent execution. For each of the non-deterministic selection points in

an iteration, the policy needs to supply to the model checker a set of options to choose from,

through callbacks. Specifically, callbacks are defined for the following:

• Protocol selection: While a large number of protocols may be prepared to execute

at a given point of time, only a subset of them may be relevant to producing an

interesting execution path. The purpose of this callback is to prune the set of non-

26

deterministic choices to those that are indeed relevant. The callback is expected to set

flags corresponding to individual protocols, indicating that they may execute. Plankton

non-deterministically picks (in other words, exhaustively explores) one protocol from

among them to execute.

• Location selection: Similar to protocol selection, this callback is expected to prune

the set of nodes/links where the chosen protocol is allowed to make a change.

• Agent-specific callbacks: Individual agents may define additional callbacks, to op-

timize their execution. For example, the forwarding agent defines a callback to prune

the possible set of next-hops when there are multiple possible next-hops are defined in

the data plane (like in ECMP).

4.3.3 Hybrid: explicit-state model checking + emulation-based testing

Incorporating real software

In Plankton-neo, we leverage Plankton’s explicit-state model checking framework, but

adapt it for Network Functions Virtualization (NFV). While much of the network is still

represented using models operating on symbolic packets, middlebox software execute in

their original form. For each middlebox in the network, a “virtual device” is created, which

consists of virtual interfaces in one-to-one correspondence with the actual interfaces on the

middlebox, and running the same software. The configuration supplied to the middlebox is

updated to operate over the virtual interfaces rather than the original physical interfaces.

Since middlebox software can work only with concrete packets and not equivalence classes, a

fully instantiated representative is picked for each equivalence class. The difference between

a symbolic packet and a representative packet is subtle, but important. A symbolic packet is

a logical entity, that merely denotes an equivalence class, whereas a representative packet is

a real packet that can be processed by network devices, chosen from the many packets that

constitutes the equivalence class. We elaborate on the computation of equivalence classes

and the selection of the representatives later.

Similar to Plankton, the model checking algorithm exhaustively explores the various ex-

ecution paths of system, for each equivalence class. The distinction from Plankton lies in

behavior of the dataplane model. While it still defines a single symbolic packet and moves

it through the network, when the symbolic packet reaches a middlebox, the representative

packet for the equivalence class is injected into the appropriate interface of the emulated

copy of the middlebox. Then, the fate of the injected packet is observed, and the dataplane

27

model interprets the observation as an action performed on the symbolic packet. In essence,

each middlebox defines an “API” that allows verification algorithm to query for the outcome

of packets reaching one of the interfaces. Using such a system, we can verify a variety of

policies about end-to-end correctness of the network. Perhaps the most relevant are policies

that pertain to how the network changes its behavior in response to traffic. For example,

a network with a web-cache may state that No HTTP requests are sent to the server more

than once. The model checker that we inherit from Plankton natively supports such temporal

policies as was discussed in Section 4.3.2.

Saving and restoring middlebox state

As the model checking algorithm exhaustively searches through possible executions of the

network looking for policy violations, it will be required to perform packet injection into

various middleboxes many times, under various hypothetical scenarios. Each time such an

injection happens, the intention of the algorithm is to observe the fate of the packet if it was

to reach the middlebox under the specific circumstances that the algorithm has contrived.

So, we require the virtual middlebox to match the algorithm’s intended state before the

packet can be injected. In order to do so, we implement the network model in the following

way: In addition to the middlebox software running on the emulated interfaces, for each

middlebox, we define a model within the verifier itself. The purpose of the model is to

keep track of the state changes that occur to the middlebox during the execution of the

verification algorithm. Specifically, the state of this model is defined as the initial state,

plus a list of all updates that have been made to the middlebox. We define the model to

track two types of updates: any changes to the routing table, and any packets that were

previously injected, along with the interfaces where the injection happened. When a new

packet needs to be injected into a middlebox, we first match the emulator state with the

one in the model — by first restarting middlebox software with the initial configuration,

and then replaying all the historical updates that have supposedly happened in the past.

This approach of putting a middlebox into a desired state is attractive, because it does not

require any knowledge of the internal workings of the software. It is also more practical than

snapshotting the virtual memory of the middlebox in order to store its state. However, it

does assume that the software is deterministic, and has no dependency on timing. In other

words, starting from an initial state, replaying the same sequence of updates is guaranteed

to put the middlebox in the same final state.

28

CHAPTER 5: EVALUATION

5.1 NETWORK EVOLUTION

We use our image representation of adjacency and reachability graphs of the networks

to visualize how the networks evolve over time. These, of course, are not any quantitative

measure of reasoning about the network over time but still prove to be an interesting by-

product of the techniques we apply for further analysis. Figures 5.1 and 5.2 show how dense

the AS connectivity gets over time showing the addition of more entities in the network.

5.2 ANOMALY DETECTION

5.2.1 Normalized Compression Distance

One of the publicly available datasets that we use in this work is from the Stanford Large

Network Dataset Collection [51] called as-733 which is a dataset representing communication

networks of who-talks-to-whom from the BGP (Border Gateway Protocol) logs. The data

was collected from University of Oregon Route Views Project [32] data and reports. The

dataset contains 733 daily instances which span an interval of 785 days from November 8

1997 to January 2 2000 mostly on 24 hour intervals.

Figure 5.3 shows the NCD of the network adjacency graph. In the context of BGP,

this shows the difference in the direct connections that can be inferred from the BGP RIB

dumps of a given state relative to all previous states. As can be seen, there is a fair amount of

churn in these values on the sampling granularity of 1 snapshot per 24 hours. Lots of peering

relationships change. However, if the sampling is made more frequent and the number of

comparisons or the window size is changed accordingly, one can tweak the granularity and

the sensitivity at which one desires to see changes. The image also shows a few spikes where

significant changes in the network were observed. For example, on 29th December 1998 there

is a sharp decline in the number of nodes and edges that were observed, thus a large value

of NCD can be seen. Previously, the nodes were roughly 4500 and edges were roughly 17000

but at this date, nodes fell down to 493 and edges fell down to 2379. It is also interesting to

see the network slowly converge back to the desired state as the value of NCD goes back to

the normal trend line. This was clearly an anomaly that this technique was able to capture.

Figure 5.4 shows the NCD of the network reachability graph. As we describe earlier

in Section 4.1 that reachability is computed by performing Breadth First Search from all

29

(a) (b)

(c) (d)

(e)

Figure 5.1: Showing the image representation of network reachability from AS-733 dataset
at 6 month intervals from 8th November 1997 to 8th November 1999. Starting from top left
to bottom right, each image is the reachability between ASes on the Internet. The images get
more packed with pixels (i.e. more reachability relations are being added) with the passage
of time.

30

(a) (b)

(c) (d)

(e)

Figure 5.2: Showing the image representation of network adjacency from AS-733 dataset at
6 month intervals from 8th November 1997 to 8th November 1999. Starting from top left to
bottom right, each image is the adjacency between ASes on the Internet. The images get
more packed with pixels (i.e. more adjacency relations are being added) with the passage of
time as more ASes join the network.

31

(a)

(b)

Figure 5.3: Showing the NCD computed for adjacency graphs of the AS-733 dataset where
each network state is compared to 100 previous states (i.e. W = 100) (a) NCD vs Time. (b)
NCD vs Time (denoised)

nodes on the graph. The NCD between reachability across snapshots also varies varies by

some amount due to the constantly changing nature of the network but there are certain

significant spikes that correspond to anomalous changes in reachability across ASes. This is

also following the same trend as can be seen in the NCD for the adjacency graph from Figure

5.3; the spikes occur in the same times showing that both adjacency graph and reachability

32

(a)

(b)

Figure 5.4: Showing the NCD computed for reachability graphs of the AS-733 dataset where
each network state is compared to 100 previous states (i.e. W = 100) (a) NCD vs Time. (b)
NCD vs Time (denoised)

graph can be analyzed from anomalies. However, one thing to note is the NCD values

are lower for reachability graphs (shown in Figure 5.4) compared with the NCD values for

adjacency graphs (shown in Figure 5.3) showing that there is less change in reachability even

though adjacency changes more. This is because even if direct peering relationships change

between ASes on the Internet, there can still be some other route through which an AS can

33

send traffic to another AS thus keeping reachability intact even if direct adjacency has now

changed.

(a)

(b)

Figure 5.5: Comparing results obtained by using different values for the Window Size pa-
rameter

34

Window Size

Figure 5.5 shows the effect of varying the window size parameter which dictates how many

comparisons have to be made to determine the NCD of each network snapshot. It is clear

that a very small value (for example when W = 10) gives a lot of noise and variation in the

value for NCD. This is because on the time scale that network state has been captured for

this particular dataset (every 24 hours), the network state changes a lot due to a high traffic

of BGP exchange messages. Thus, the value for window size is highly tied with the nature of

the network as on the scale of the Internet, there would be a lot of churn expected as peering

relationships change and the paths keep switching. On the scale of, say an enterprise network

or a university network, the relationship between network devices and the reachability would

remain fairly constant and less churn would be observed. However, as we average out the

NCD with a larger previous window (for example W = 100 or W = ALL) the variation

between the values is much less and an upward trend can be observed which shows how the

network evolves over the years. The number of ASes increases, peering relationships grow

thus making the graph much denser in the number of edges; this gradual growth can be

visualized in the trend.

5.2.2 Graph Diff

Figure 5.6a shows the Graph Diff for two different window sizes on the same adjacency

network. It can be observed that a larger window size (or even all previous network states in

this particular demonstration) shows a growing trend in the network and hides the variations

on a smaller time scale. A smaller window size (of 10 previous comparisons in this particular

demonstrations) is able to capture much more accurately the difference of a state with some

previous states and is more sensitive to changes. Again, it depends on the requirement what

window size the user chooses to set as each poses its own nature of comparison and trade

offs. We also compare the Graph Diff values for adjacency and reachability graphs of the

same network (in Figure 5.6b) with the same window size (i.e. W = 10 in this example) and

notice that reachability changes are higher in value by orders of magnitude. This is because

the graph has more entities for reachability (more edges in particular) and the changes in

those are higher in number as a consequence. The trend of both these metrics, however, is

largely the same.

35

5.2.3 Comparing NCD with Graph Diff

It can be seen in Figure 5.7 that both NCD and Graph Diff techniques show the same

general trend across time. Whenever there is a drastic spike, indicating anomalous snapshots,

both of the techniques are able to convey this information. However, as can be noted that

the sensitivity to changes in the networks are different for both techniques; graph diff is not

able to capture the smaller changes in the networks because it only considers a change in

the number of entities in the network (i.e. the number of unique and common devices and

edges) whereas NCD is able to capture the difference in relation more closely by computing

how much loss of information occurs in the network as a whole across snapshots. Therefore,

depending on the sensitivity demands of the user, both techniques present valid use-cases.

5.3 INFERENCE

We test our inference engine on private data collected from a major enterprise network.

The dataset contained three years (2014-2016) worth of network snapshots with each snap-

shot consisting of approximately 200 - 400 routing devices belonging to a number of different

vendors. Using some techniques by Veriflow, we were able to determine the packet sets ex-

changed on each snapshot. We use those packet sets to isnert into our R-Tree and then

perform the techniques discussed in Section 4.2. The results are shown in Figure 5.8 which

demonstrate the reduction in information size as a result of our technique showing the in-

ferred low-level policies and high-level policies are much more easier to comprehend and feed

to other tools.

5.4 VERIFICATION

We implemented a prototype of Plankton including the equivalence class computation,

agents, and policies in 495 lines of Promela and 2,854 lines of C++ code, excluding the

SPIN model checker.

Using Plankton, we evaluated BGP in a data center setting, which is often employed to

provide layer 3 routing down to the rack level in modern data centers [52]. We configure

BGP as described in RFC 7938 [52] on fat trees of various sizes. Furthermore, we suppose

that the network operator intends that traffic should pass through any of a set of acceptable

waypoints on the aggregation layer switches. (This may be because the switches implement

certain middlebox functionality; we pick a random subset of aggregation switches as the

waypoints in each experiment.) However, we create a “misconfiguration” that prevents

36

(a)

(b)

Figure 5.6: Showing Graph Diff computed for AS-733 dataset. (a) shows the effect of varying
the window size and (b) shows the trend for Graph Diff on adjacency graphs and reachability
graphs of the same networks.

multipath from being used and fails to steer routes through the waypoints. Thus, in this

scenario, whether the selected path passes through a waypoint depends on the order in which

37

(a)

(b)

Figure 5.7: Showing NCD and Graph Diff computed for AS-733 dataset where each network
state is compared to 10 previous states (i.e. W = 10) . (a) shows the metrics on the
reachability graphs of the networks and (b) shows the same on the adjacency graphs.

updates are received at various nodes, due to age-based tiebreaking [53]. We check waypoint

policies which state that the path between two edge switches should pass through one of the

38

Figure 5.8: Information reduction using our inference engine

waypoints. Plankton evaluates various nondeterministic convergence paths in the network,

and determines a violating sequence of events.

To further exercise Plankton’s diverse policy capabilities in-real world settings, we run

Plankton on fat trees and AS topologies, running OSPF. For fat trees, the link weights are

assigned uniformly by us. Link weights for AS topologies were obtained from RocketFuel

[54]. We assume that each device can advertise a set of prefixes. We check two types of

policies - loop freedom for individual packets, and reachability in converged states. Both

of these policies are checked under single link failures. While violations are found for loop

freedom, in the case of reachability, due to the nature of the networks we chose and the fact

that this policy queries only the converged states, no violation was reported in any of the

runs. We perform each experiment both single threaded, as well as with 16 threads.

Figure 5.9: Policy violations in VNFs

39

As a test setup for Plankton-neo, we verify a network with 4 switches and a virtualized

iptables firewall, as illustrated in Figure 5.9 a. It shows a virtualized firewall running on a

server, configured to perform standard stateful filtering — block connection attempts from

outside the organization, but allow replies to past requests. Additionally, the dataplane rules

are installed such that requests and replies follow different paths, as shown. In this setup,

one may expect that requests originating from inside, and their replies should not be blocked.

An intuitive model-based verification platform may even declare that these conditions hold.

However, in the real world, when running a virtualized firewall using iptables on Linux,

the behavior of this setup depends on specific configuration variables in the kernel that runs

the firewall. For example, when the rp filter variable is enabled, the kernel performs

reverse-path filtering — for each packet it forwards, it constructs a hypothetical reply and

tries injecting it into the outgoing port for the current packet. If this hypothetical reply

does not go out the incoming interface of the current packet, the current packet is dropped.

This would cause the reachability requirements in our example to be violated. The policy we

verify is that the request and reply traffic reach their respective destinations. When reverse

path filtering is enabled, the firewall blocks the request traffic, causing the policy to fail.

However, when we disable reverse path filtering in the kernel, the policy passed.

Figure 5.10: Policy enforcement in a multi-tenant data center

To test our approach at scale, we perform an experiment inspired by [55]. We consider

a multi-tenant datacenter with varying number of tenants, with two types of traffic —

whitelisted or greylisted. Each tenant also has two types of servers — public or private.

Initially, each tenant allows all traffic to public servers, but for private servers, whitelisted

traffic is always allowed, and for greylisted traffic, only replies to past requests are allowed.

40

We use iptables running on Ubuntu 14.04 to enforce the policies, as shown in Figure 5.10.

This use of a real VNF implementation is what distinguishes our experiment from similar

experiments in past work [55]. In our test, we assume that some of the tenants now wish to

reclassify HTTP from greylisted to whitelisted . This change is implemented by updating

two routers. Naturally, at any point during the transition, the correctness spec for the

network states that no legitimate reply to a past request be dropped. In our experiments,

Plankton-neo finds the following violation. Access switch S1 gets updated before the request

packet reaches it. So, the request is forwarded directly to S2, without passing through the

firewall. The reply packet reaches S2, before S2 is updated with the new policy. Abiding by

the old policy, S2 forwards the reply to the iptables firewall. The firewall drops the reply,

since it has not observed the request.

41

CHAPTER 6: PERFORMANCE

6.1 SETUP

We used a Dell Precision Tower 5810. The machine was equipped with an Intel(R) Xeon(R)

CPU E5-2697 v3 @ 2.60GHz CPU with 14 cores and Intel(R) Hyper-Threading Technology

enabled to run up to 28 threads, a Seagate HDD (SATA 6.0Gb/s) and a Samsung 4 x

32GB DDR4 RAM. This machine was used to run all the experiments for the analysis and

the verification modules. However, a different machine was used for running the inference

module experiments with a 4 core Intel(R) i7 @ 3.40GHz and 32GB DDR3 RAM.

6.2 PERFORMANCE BENCHMARKS

6.2.1 Analysis

Figure 6.1 shows the time taken and memory usage to compute NCD and Graph Diff (for

adjacency graphs) in our experiments run on the AS-733 dataset. It can be seen that the

memory usage of Graph Diff approach is much higher because it keeps a window of graphs

in-memory uncompressed whereas the NCD approach at the beggining of computations

compresses all the image files and keeps them all in-memory. Also note that the time taken to

process a snapshot using Graph Diff is much lesser compared to performing NCD operations

(which involve a sufficient amount of computation when compressing the concatenation of

various image pairs.) Also, the time taken to generate graphs (one graph with about 3500

vertices and 13500 edges takes approximately 0.02s to generate, another one with about

5500 vertices and 22000 edges takes about 0.04s to generate) is lesser than the time taken

to generate the images (one image takes about 20s to generate) used by NCD. In order to

generate images, first the graph is generated and then mappings are performed to output a

2D matrix with appropriate cordinates computed to represent network devices on the image.

In practice, we make use of multiple cores to generate images in parallel as the nature of

this computation is embarrassingly parallel with no dependency of one image generation to

any other images in the dataset.

42

(a)

(b)

Figure 6.1: (a) Maximum time taken to process one AS-733 snapshot (b) Max resident
memory usage while processing all AS-733 snapshots

6.2.2 Inference

Figure 6.2 shows the time taken to run the inference engine on the enterprise network

mentioned in Section 5.3. It can be seen that using 4 cores through OpenMP gives a

significant boost to performance. We develop our framework such that adding packet sets

from multiple snapshots to the R-Tree can be done in parallel (with a couple of atomic

43

Figure 6.2: Time taken by the inference engine

operations) and the querying for intersections can be done in parallel as well. Since the

process of inference is not something that a network operator would want to do in real-time,

nor is it something that needs to be done frequently, the time taken for the process to finish

given enough compute resources is acceptable.

6.2.3 Plankton

Figure 6.3 illustrates the average and worst-case time taken by Plankton to finish the BGP

(in data center) check described in Section 5.4. Time and memory both depend somewhat

on the chosen set of aggregation switches.

The time taken and memory consumed to carry out the RocketFuel experiments described

in Section 5.4 are illustrated in Figures 6.4 and 6.5. For fat-trees of 1280 nodes, the reach-

ability check consumes 28.5GB of RAM, running single threaded. Given the symmetry of

the network, we expect a run with 16 threads to use close to 500GB of RAM. While this is

not unreasonable for a network this large, we avoid running the experiment ourselves.

We compare Plankton with Minesweeper; the former has an expanded scope of function-

ality, but on scenarios both are able to verify, we show 143× single-threaded speed improve-

ments, with both the basic architecture and the optimizations playing a significant role in

the speedup. Our experiments so far have focused on the correctness and effectiveness of

Plankton as a platform that enables new verification functionality (where, therefore, a direct

comparison with past work was not possible). We also wish to evaluate how Plankton com-

44

 0

 200

 400

 600

 800

 1000

 1200

 20 45 80 125 180 245 320
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Ti
m

e
 (

m
s)

M
e
m

o
ry

 (
M

B
)

Number of devices

Max. time
Avg. time

Max memory
Avg. memory

Figure 6.3: Time and memory overhead for waypoint query on BGP DCs

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

Fat Tree (N=20, E=32)

Fat Tree (N=45, E=108)

AS 3967 (N=79, E=147)

Fat Tree (N=80, E=256)

AS 6461 (N=141, E=374)

AS 1221 (N=153, E=108)

AS 1755 (N=161, E=87)

AS 3257 (N=161, E=328)

Fat Tree (N=320, E=2048)

Fat Tree (N=1280, E=16384)

Calculated from

(P=1) experiment

Ti
m

e
 (

s)

Reachability (P=1)
Reachability (P=16)

Loop (P=1)
Loop (P=16)

Figure 6.4: Time taken for various policies under single link failure, with P = 1 and P = 16
parallel threads.

45

 0.1

 1

 10

 100

 1000

Fat Tree (N=20, E=32)

Fat Tree (N=45, E=108)

AS 3967 (N=79, E=147)

Fat Tree (N=80, E=256)

AS 6461 (N=141, E=374)

AS 1221 (N=153, E=108)

AS 1755 (N=161, E=87)

AS 3257 (N=161, E=328)

Fat Tree (N=320, E=2048)

Fat Tree (N=1280, E=16384)

Calculated from (P=1) experiment

M
e
m

o
ry

 (
G

B
)

Reachability (P=1)
Reachability (P=16)

Loop (P=1)
Loop (P=16)

Figure 6.5: Memory consumed for various policies under single link failure, with P = 1 and
P = 16 parallel threads.

2* Experiment Plankton 2* Minesweeper

16 threads 1 thread

20-node Fat Tree 0.04 s 0.13 s 1.44 s

45-node Fat Tree 0.17 s 1.44 s 206.57 s

320-node Fat Tree 77.06 s 966.39 s ¿ 20 hours (stopped)

AS 1755 3.55 s 48.31 s 4046.74 s

AS 3967 2.56 s 35.08 s 6894.28 s

Figure 6.6: Comparison of Plankton with Minesweeper.

46

Experiment Single emulation Multiple Emulation

64 Tenants, no update 5835.52 s 4732.13 s

32 Tenants, no update 680.28 s 413.84 s

64 Tenants, all tenants update 29.22 s 27.73 s

Figure 6.7: Single emulated device vs. one per middlebox

pares to prior approaches, for use cases that do not require the full capabilities of Plankton.

To evaluate this, we solve the same verification problems using Plankton, and the current

state-of-the-art, Minesweeper. We verify the reachability policy in the converged states of

various networks under single-link failures. We choose the reachability policy because it is

usually not violated due to single link failures, meaning that the verifier needs to explore all

possible converged states of the system, and then conclude that the policy passes. Figure

6.6 illustrates the measurements we obtain from the various runs. In our experiments, we

observed that Minesweeper ran single-threaded except for parsing the input, possibly due to

a unified model for the entire network, unlike the partitioned model of Plankton. For a direct

comparison, we perform Plankton’s checks in single threaded mode also. Plankton performs

around two orders of magnitude better in all cases. For networks with high symmetry, the

larger the network, the higher the speedup, thanks to Plankton’s device-equivalence opti-

mization. However, the speedup in Plankton is not just due to symmetry. This is illustrated

by the higher performance observed for the RocketFuel AS topologies, which do not benefit

from the symmetry-based optimizations in Plankton, and indicating that our architectural

approach has benefits.

6.2.4 Plankton-neo

As described in Section 4.3.3 we restore the state of the middleboxes by replaying the

history of prior packets before injecting new packets. But doing so has an impact on per-

formance, due to the inherently high latency incurred in update replay (See Figure 6.8 b).

When using a separate emulation for each middlebox, there is a higher likelyihood that the

emulated middlebox is in the same state as expected by the verifier, and hence, does not

require additional state restoration. We empirically evaluate this design choice by repeating

the multi-tenant data center experiment using a single emulation setup for all middleboxes.

Figure 6.7 compares observations. For our test case, having separate emulation for each

middlebox produces as much as 39% improvement in the time spent. This can be further

improved by having multiple emulated devices to run the same middlebox. In general, the re-

lationship between the middleboxes in the network and the emulation setups in Plankton-neo

47

Figure 6.8: Measurements from data center experiment

can be many-to-many. A full exploration remains to be done.

We perform the experiment mentioned in Section 5.4 with different number of tenants,

with varying number of tenants performing the whitelisting change. Figure 6.8 a illustrates

the time and memory used by a single run of the test (Time and number of tenants axes

are logarithmic). When the fraction is 0, there are no changes being made, and hence, the

policy passes. When at least one tenant updates its policy, a violation of the policy exists,

and we correctly find it.

Figure 6.8 a provides some interesting insights into the nature of the problem. Intuitively,

the verification problem is hardest when there is no update happening in the network. This

is because the testing procedure has to exhaust every possible execution and finally declare

that the policy holds. This is reflected in the time and memory consumption.

Figure 6.8 b illustrates the CDF of the latency incurred in performing packet injection

and observing the outcome. It is clear that there exist two different groups of latency

measurements. The faster one indicates packet processing at line rate, without having to

restore middlebox state or wait for timeouts. This is the case where the emulated middlebox

is in the same state as the one the verifier requires it to be, and the packet that is newly

48

injected does not get dropped. The slower set of measurements may be caused due to timeout

or state restoration.

49

CHAPTER 7: CONCLUSION & FUTURE WORK

7.1 CONCLUSION

Modern day networks are evolving at a fast pace in terms of the number of devices,

complexity of interaction and the sophistication of policies enforced. This, though making

the networks extremely efficient and highly performant, poses high risks in terms of security

of the network infrastructure and the applications using it. As the complexity grows, the

attack surface along with the likelihood of unintentional misconfigurations of the network

also grows dramatically as can be seen in a lot of production networks in the recent past. This

opens up room for working towards efficient mechanisms of analysing the networks states over

time, making sure the network is obeying the specified invariants and no anomalous events

are occuring in the network. To achieve this end, we propose an end-to-end framework for

analysing existing networks, inferring from them the policies that have been enforced without

explicitly having to enumerate them all. Finally, we present a formal verification tool that

performs explicit-state verification of a network model defined over equivalence classes that

is capable of verifying control plane and cross-layer network dynamics, including properties

that are themselves temporal in nature.

7.2 FUTURE WORK

Most of the implementation and experimentation performed for the proposed techniques

has a lot of room for improvement before they can be used in production settings. This

involves making all the modules interact with each other efficiently, distribution of non-

dependent tasks to execute simultaneously and reducing the memory footprint to be able to

scale the system to larger networks. We also intend to evaluate the proposed framework on

more real-world datasets or production networks to better understand its effectiveness and

usefulness.

50

REFERENCES

[1] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King,
“Debugging the data plane with anteater,” in Proceedings of the ACM SIGCOMM
2011 Conference, ser. SIGCOMM ’11, New York, NY, USA, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2018436.2018470 pp. 290–301.

[2] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis: Static checking
for networks,” in Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). San Jose, CA: USENIX, 2012.
[Online]. Available: https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/kazemian pp. 113–126.

[3] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” in Presented as part of the 10th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 13), 2013, pp. 15–27.

[4] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte,
“Real time network policy checking using header space analysis,” in Presented
as part of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), Lombard, IL, 2013. [Online]. Available: https:
//www.usenix.org/conference/nsdi13/technical-sessions/presentation/kazemian

[5] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and
T. Millstein, “A general approach to network configuration analysis,” in Proceedings
of the 12th USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI’15. Berkeley, CA, USA: USENIX Association, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2789770.2789803 pp. 469–483.

[6] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar,
and G. Varghese, “Efficient Network Reachability Analysis Using a Succinct
Control Plane Representation,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), GA, 2016. [Online]. Available: https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz pp. 217–
232.

[7] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast control
plane analysis using an abstract representation,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2934872.2934876

[8] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach to network
configuration verification,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’17. New York, NY, USA: ACM,
2017. [Online]. Available: http://doi.acm.org/10.1145/3098822.3098834 pp. 155–168.

51

http://doi.acm.org/10.1145/2018436.2018470
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/kazemian
http://dl.acm.org/citation.cfm?id=2789770.2789803
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz
http://doi.acm.org/10.1145/2934872.2934876
http://doi.acm.org/10.1145/3098822.3098834

[9] M. Canini, D. Venzano, P. Pereš́ıni, D. Kostić, and J. Rexford, “A NICE
way to test openflow applications,” in Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12). San Jose,
CA: USENIX, 2012. [Online]. Available: https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/canini pp. 127–140.

[10] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and Z. Tatlock,
“Scalable verification of border gateway protocol configurations with an smt solver,” in
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA 2016. ACM,
2016. [Online]. Available: http://doi.acm.org/10.1145/2983990.2984012

[11] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker, “Verifying
reachability in networks with mutable datapaths,” in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). Boston, MA: USENIX
Association, 2017. [Online]. Available: https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/panda-mutable-datapaths pp. 699–718.

[12] P.-P. Vázquez and J. Marco, “Using normalized compression distance for image
similarity measurement: an experimental study,” The Visual Computer, vol. 28,
no. 11, pp. 1063–1084, Nov 2012. [Online]. Available: https://doi.org/10.1007/
s00371-011-0651-2

[13] C. E. Au, S. Skaff, and J. J. Clark, “Anomaly detection for video surveillance appli-
cations,” in 18th International Conference on Pattern Recognition (ICPR’06), vol. 4,
2006, pp. 888–891.

[14] “On measuring the complexity of networks: Kolmogorov complexity versus en-
tropy,” https://www.hindawi.com/journals/complexity/2017/3250301/, (Accessed on
04/03/2018).

[15] S. S. Kim and A. L. N. Reddy, “Statistical techniques for detecting traffic anomalies
through packet header data,” IEEE/ACM Transactions on Networking, vol. 16, no. 3,
pp. 562–575, June 2008.

[16] S. S. Kim and A. L. N. Reddy, “Modeling network traffic as images,” in IEEE Inter-
national Conference on Communications, 2005. ICC 2005. 2005, vol. 1, May 2005, pp.
168–172 Vol. 1.

[17] S. S. Kim and A. L. N. Reddy, “Image-based anomaly detection technique: Algorithm,
implementation and effectiveness,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 10, pp. 1942–1954, Oct 2006.

[18] S. S. Kim and A. L. N. Reddy, “A study of analyzing network traffic as images in real-
time,” in Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies., vol. 3, March 2005, pp. 2056–2067 vol. 3.

52

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
http://doi.acm.org/10.1145/2983990.2984012
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-mutable-datapaths
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-mutable-datapaths
https://doi.org/10.1007/s00371-011-0651-2
https://doi.org/10.1007/s00371-011-0651-2
https://www.hindawi.com/journals/complexity/2017/3250301/

[19] Z. Tan, A. Jamdagni, X. He, P. Nanda, R. P. Liu, and J. Hu, “Detection of denial-of-
service attacks based on computer vision techniques,” IEEE Transactions on Comput-
ers, vol. 64, no. 9, pp. 2519–2533, Sept 2015.

[20] A. Tongaonkar, N. Inamdar, and R. Sekar, “Inferring higher level policies from
firewall rules,” in Proceedings of the 21st Conference on Large Installation System
Administration Conference, ser. LISA’07. Berkeley, CA, USA: USENIX Association,
2007. [Online]. Available: http://dl.acm.org/citation.cfm?id=1349426.1349428 pp.
2:1–2:10.

[21] T. Benson, A. Akella, and D. Maltz, “Mining policies from enterprise network
configuration,” in Internet Measurement Conference. Association for Computing
Machinery, Inc., November 2009. [Online]. Available: https://www.microsoft.com/
en-us/research/publication/mining-policies-from-enterprise-network-configuration/

[22] S. Kandula, R. Chandra, and D. Katabi, “Whats going on? learning communication
rules in edge networks,” in ACM SIGCOMM. Association for Computing Machinery,
Inc., August 2008. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/whats-going-on-learning-communication-rules-in-edge-networks/

[23] A. Horn, A. Kheradmand, and M. Prasad, “Delta-net: Real-time network
verification using atoms,” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). Boston, MA: USENIX Association, 2017.
[Online]. Available: https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/horn-alex pp. 735–749.

[24] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, “Crystalnet: Faithfully emulating large
production networks,” in Proceedings of the 26th Symposium on Operating Systems
Principles, ser. SOSP ’17. New York, NY, USA: ACM, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3132747.3132759 pp. 599–613.

[25] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown, and
A. Vahdat, “Libra: Divide and conquer to verify forwarding tables in huge networks,”
in 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). Seattle, WA: USENIX Association, 2014. [Online]. Available: https:
//www.usenix.org/conference/nsdi14/technical-sessions/presentation/zeng pp. 87–99.

[26] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and G. Varghese,
“Scaling network verification using symmetry and surgery,” in Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837657 pp. 69–83.

[27] D. Sethi, S. Narayana, and S. Malik, “Abstractions for model checking SDN
controllers,” in 2013 Formal Methods in Computer-Aided Design. IEEE, oct 2013.
[Online]. Available: https://doi.org/10.1109/fmcad.2013.6679403

53

http://dl.acm.org/citation.cfm?id=1349426.1349428
https://www.microsoft.com/en-us/research/publication/mining-policies-from-enterprise-network-configuration/
https://www.microsoft.com/en-us/research/publication/mining-policies-from-enterprise-network-configuration/
https://www.microsoft.com/en-us/research/publication/whats-going-on-learning-communication-rules-in-edge-networks/
https://www.microsoft.com/en-us/research/publication/whats-going-on-learning-communication-rules-in-edge-networks/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/horn-alex
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/horn-alex
http://doi.acm.org/10.1145/3132747.3132759
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/zeng
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/zeng
http://doi.acm.org/10.1145/2837614.2837657
https://doi.org/10.1109/fmcad.2013.6679403

[28] M. Musuvathi and D. R. Engler, “Model checking large network protocol
implementations,” in Proceedings of the 1st Conference on Symposium on
Networked Systems Design and Implementation - Volume 1, ser. NSDI’04.
Berkeley, CA, USA: USENIX Association, 2004. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1251175.1251187 pp. 12–12.

[29] M. Dobrescu and K. Argyraki, “Software dataplane verification,” in 11th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 14). Seattle, WA:
USENIX Association, 2014, pp. 101–114.

[30] A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea, “A formally
verified nat,” in Proceedings of the SIGCOMM ’17. New York, NY, USA: ACM, 2017,
pp. 141–154.

[31] M. Hutter, “Algorithmic information theory,” Scholarpedia, vol. 2, no. 3, p. 2519, 2007,
revision #90953.

[32] “University of oregon route views project,” http://www.routeviews.org/, (Accessed on
03/22/2018).

[33] “Ripe ncc libbgpdump,” https://bitbucket.org/ripencc/bgpdump, (Accessed on
03/22/2018).

[34] T. McGregor, S. Alcock, and D. Karrenberg, “The ripe ncc internet measurement data
repository,” in Proceedings of the 11th International Conference on Passive and Active
Measurement, ser. PAM’10. Berlin, Heidelberg: Springer-Verlag, 2010. [Online].
Available: http://dl.acm.org/citation.cfm?id=1889324.1889336 pp. 111–120.

[35] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory
programming,” Computational Science & Engineering, IEEE, vol. 5, no. 1, pp. 46–55,
1998.

[36] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, no. 6, pp. 345–,
June 1962. [Online]. Available: http://doi.acm.org/10.1145/367766.368168

[37] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer.
Math., vol. 1, no. 1, pp. 269–271, Dec. 1959. [Online]. Available: http:
//dx.doi.org/10.1007/BF01386390

[38] E. Moore, The Shortest Path Through a Maze, ser. Bell Telephone System.
Technical publications. monograph. Bell Telephone System., 1959. [Online]. Available:
https://books.google.com/books?id=IVZBHAAACAAJ

[39] H. Bunke, P. Dickinson, A. Humm, C. Irniger, and M. Kraetzl, “Computer network
monitoring and abnormal event detection using graph matching and multidimensional
scaling,” in Proceedings of the 6th Industrial Conference on Data Mining Conference on
Advances in Data Mining: Applications in Medicine, Web Mining, Marketing, Image
and Signal Mining, ser. ICDM’06. Berlin, Heidelberg: Springer-Verlag, 2006. [Online].
Available: http://dx.doi.org/10.1007/11790853 45 pp. 576–590.

54

http://dl.acm.org/citation.cfm?id=1251175.1251187
http://dl.acm.org/citation.cfm?id=1251175.1251187
http://www.routeviews.org/
https://bitbucket.org/ripencc/bgpdump
http://dl.acm.org/citation.cfm?id=1889324.1889336
http://doi.acm.org/10.1145/367766.368168
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
https://books.google.com/books?id=IVZBHAAACAAJ
http://dx.doi.org/10.1007/11790853_45

[40] M. Li, X. Chen, X. Li, B. Ma, and P. M. Vitanyi, “The similarity metric,” IEEE
Trans. Inf. Theor., vol. 50, no. 12, pp. 3250–3264, Dec. 2004. [Online]. Available:
http://dx.doi.org/10.1109/TIT.2004.838101

[41] A. Kolmogorov, “On tables of random numbers,” Theoretical Computer Science, vol.
207, no. 2, pp. 387 – 395, 1998. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0304397598000759

[42] “Kolmogorov complexity a primer math programming,” https://jeremykun.com/
2012/04/21/kolmogorov-complexity-a-primer/, (Accessed on 03/22/2018).

[43] C. H. Bennett, P. Gács, M. Li, P. M. B. Vitányi, and W. H. Zurek,
“Information distance,” CoRR, vol. abs/1006.3520, 2010. [Online]. Available:
http://arxiv.org/abs/1006.3520

[44] R. Cilibrasi and P. M. B. Vitányi, “Clustering by compression,” CoRR, vol.
cs.CV/0312044, 2003. [Online]. Available: http://arxiv.org/abs/cs.CV/0312044

[45] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm,”
Tech. Rep., 1994.

[46] “Lzma sdk (software development kit),” https://www.7-zip.org/sdk.html, (Accessed on
03/22/2018).

[47] H. Zimmermann, “Innovations in internetworking,” C. Partridge, Ed. Norwood,
MA, USA: Artech House, Inc., 1988, ch. OSI Reference Model&Mdash;The ISO
Model of Architecture for Open Systems Interconnection, pp. 2–9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=59309.59310

[48] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
SIGMOD Rec., vol. 14, no. 2, pp. 47–57, June 1984. [Online]. Available:
http://doi.acm.org/10.1145/971697.602266

[49] G. J. Holzmann, “The model checker spin,” IEEE Trans. Softw. Eng., vol. 23, no. 5,
pp. 279–295, May 1997. [Online]. Available: http://dx.doi.org/10.1109/32.588521

[50] G. Holzmann, “On-the-fly model checking,” ACM Comput. Surv., vol. 28, no. 4es,
Dec. 1996. [Online]. Available: http://doi.acm.org/10.1145/242224.242379

[51] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset collection,”
http://snap.stanford.edu/data, June 2014.

[52] P. Lapukhov, A. Premji, and J. Mitchell, “Use of BGP for Routing in Large-Scale
Data Centers,” RFC 7938 (Informational), RFC Editor, Fremont, CA, USA, pp. 1–35,
Aug. 2016. [Online]. Available: https://www.rfc-editor.org/rfc/rfc7938.txt

55

http://dx.doi.org/10.1109/TIT.2004.838101
http://www.sciencedirect.com/science/article/pii/S0304397598000759
http://www.sciencedirect.com/science/article/pii/S0304397598000759
https://jeremykun.com/2012/04/21/kolmogorov-complexity-a-primer/
https://jeremykun.com/2012/04/21/kolmogorov-complexity-a-primer/
http://arxiv.org/abs/1006.3520
http://arxiv.org/abs/cs.CV/0312044
https://www.7-zip.org/sdk.html
http://dl.acm.org/citation.cfm?id=59309.59310
http://doi.acm.org/10.1145/971697.602266
http://dx.doi.org/10.1109/32.588521
http://doi.acm.org/10.1145/242224.242379
http://snap.stanford.edu/data
https://www.rfc-editor.org/rfc/rfc7938.txt

[53] P. Lapukhov, “Equal-Cost Multipath Considerations for BGP,” Internet Engi-
neering Task Force, Internet-Draft draft-lapukhov-bgp-ecmp-considerations-00, Oct.
2016, work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-lapukhov-bgp-ecmp-considerations-00

[54] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring isp topologies
with rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1, pp. 2–16, Feb. 2004.
[Online]. Available: http://dx.doi.org/10.1109/TNET.2003.822655

[55] S. Ghorbani and P. B. Godfrey, “Coconut: Seamless scale-out of network elements.” in
EuroSys, 2017, pp. 32–47.

56

https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-ecmp-considerations-00
https://datatracker.ietf.org/doc/html/draft-lapukhov-bgp-ecmp-considerations-00
http://dx.doi.org/10.1109/TNET.2003.822655

	List of Figures
	CHAPTER 1 Introduction
	Analysis & Inference
	Verification & Testing Softwarized Networks

	CHAPTER 2 Related Works
	CHAPTER 3 Design
	Analysis
	Collector
	Parser
	Graph Generator
	Processor

	Inference
	Verification
	Plankton
	High-coverage testing of softwarized networks

	CHAPTER 4 Techniques & Implementation
	Analysis
	Graph Diff
	Image Representation of Network Reachability
	Image Similarity

	Inference
	Reduction

	Verification
	Packet Equivalence Classes
	Explicit-state model checker
	Hybrid: explicit-state model checking + emulation-based testing

	CHAPTER 5 Evaluation
	Network Evolution
	Anomaly Detection
	Normalized Compression Distance
	Graph Diff
	Comparing NCD with Graph Diff

	Inference
	Verification

	CHAPTER 6 Performance
	Setup
	Performance Benchmarks
	Analysis
	Inference
	Plankton
	Plankton-neo

	CHAPTER 7 Conclusion & Future Work
	Conclusion
	Future Work

	REFERENCES

