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Abstract

Lattice materials are generated by tessellating a unit cell, composed of a

specific truss configurations, in an infinite periodicity to combine the effect

of bulk material properties and geometric periodicity. They offer enhanced

mechanical and dynamic properties per unit mass, and the ability to engi-

neer the material response by optimizing the unit cell. Characterizing lattice

properties through experiments can be a time consuming and costly process,

so analytical and numerical methods are crucial. Specifically, the Bloch-wave

homogenization approach allows one to characterize the effective static prop-

erties of the lattice unit cell while simultaneously analyzing wave propaga-

tion properties. While this analysis has been used for some time, a thorough

study of this approach on 3D lattice materials with different symmetries and

geometries is presented here. Using Bloch-wave homogenization, multiple

periodic lattices with cubic, transversely isotropic, and tetragonal symmetry,

including an auxetic geometry, over a wide range of relative densities are ana-

lyzed within a finite element framework. The effect of geometric parameters

on lattice properties is discussed and a comparison between lattices based

on their anisotropy index is presented. Method studied in this thesis can be

extended for designing multifunctional metamaterials with optimized static

and dynamic properties simultaneously. This work can also serve as the ba-

sis for nondestructive evaluation of metamaterials properties using ultrasonic

velocity measurements.
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1 Introduction

1.1 Lattice Materials

The word ‘lattice’ indicates the spatial repetition of a specific configuration.

This specific configuration is often refers to as a representative volume ele-

ment (RVE)) [1,2] or unit cell, which when repeated in space forms an infinite

array of structure. Lattice materials are alternatively refered as ‘phononic

crystals’ or ‘architectured materials’. These names are derived from their

counterpart - photonic crystals from electromagnetics. In general, archi-

tectured materials spans over a wide range of length scale but the lattice

materials are usually of 10−2m order. As discussed, lattice materials contain

spatial repetitions of a unit cell comprised of trusses connected in a specific

geometry or configuration, one such example is shown in Fig. 1. The overall

dimension of the lattice unit cell is termed as ‘Lattice Constant’. Two di-

mensional (2-D) lattice materials are tessellated along two directions within

a plane while the 3rd dimension is assumed to have continuous material.

On the other hand, three dimensional (3-D) lattice materials are repeated

in three directions as shown in Fig. 1. These lattice materials possess better

mechanical properties per unit mass compared to their parent bulk mate-

rial [3, 4] and the geometric periodicity of these structures often regulates

their static, dynamic, and wave propagation properties [5]. This unique fea-

ture of lattice materials opens up new areas in material property charts [6,7]

that has potential lightweight structural applications.

Lattice materials are classified based on their deformation pattern under

uni-axial loading. The scaling relation between elastic modulus and relative

density of the lattice materials determines whether the lattice is stretch-
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Figure 1: Schematics of (a) Two-dimensional square lattice unit cell and
tessellation within plane, (b) three-dimensional cubic lattice unit cell and
tessellation along three principal axis. Trusses are represented as bars and
junction locations are shown through solid circles.

ing dominated or bending dominated [8]. In stretching dominated lattice,

the elastic stiffness varies linearly with relative density whereas in bend-

ing dominated lattices, the elastic stiffness varies non-linearly. This non-

lieanr scaling follows a power law relationship with an exponent of 2 for

relative density. Bending-dominated lattices are less stiff and stronger than

stretching-dominated lattices for the same relative density [9]. One can do

such differentiation between lattices based on Maxwell’s rule. According to

this rule, a freely-supported pin-jointed lattice with number of bars, b, and

number of frictionless joints, j, is statically and kinematically determinate if

2



b = 2j − 3 for 2D lattices and b = 3j − 6 for 3D lattices [10, 11].

1.2 Lattice Properties and Applications

Beyond static and dynamic properties, lattice materials exhibits unique prop-

erties such as negative Poisson’s ratio [12,13], negative or zero thermal coef-

ficient of expansion [14], negligible shear stiffness [15,16], negative mass and

density [17, 18]. Along with high strength-to-weight ratio, the periodicity of

lattice materials supports bragg scattering phenomenon at the unit cell inter-

faces. This has been exploited to create bandgaps, frequencies that do not

transfer vibrations, that has potential applications as structural vibration

mitigation components [5,19–21]. Lattices with low or negative coefficient of

thermal expansions are useful in thermo-mechanical applications [14,22]. By

incorporating two or more such properties within a structure, lattice materi-

als can serve as multifunctional material in structures [23, 24]. Lattices also

exhibits enhanced energy absorption (impact mitigation ability) [21, 25, 26],

that can help us design blast-tolerant structures. Lattice materials can also

be used as implants [27] and biomaterials [28,29] due to their ability to gen-

erate low stresses inside cells. Some lattice materials behaves like a fluid as

they have negligible shear modulus; such lattices can steer waves and can

be used as cloak to make objects invisible against propagating waves [30].

Recent development on smart structures have introduced adaptive metama-

terials fundamnetally based on lattice unit cells that adapt to surrounding

environment [31, 32]. Overall, lattice materials are useful in wide engineer-

ing applications across various length scales from aerospace and automotive

component to transportation and earthquake engineering.
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1.3 Motivation

As discussed, the lattice geometry and truss configuration determines the

lattice effective properties. The performance of lattice materials strongly

depends on their effective properties, thus evaluating these properties is es-

sential but at the same time not quite straightforward, specifically when

the structure includes complexity in the form of symmetry and geometry.

The existing methods (discussed later in section 2) are either limited to

simple planar geometries or requires significant finite element calculations.

Further, for these lattice materials to be adopted in structural components

and applications, methods of nondestructively evaluating their properties

and degradation over operation is critical. Thus relating lattice wave veloc-

ities with their effective material properties is essential. In this thesis, the

Bloch-wave homogenization method for effective stiffness tensor evaluation

of 3D periodic lattices with different geometries, anisotropies, and densities

is outlined in detail. The lattice design parameters and relative densities

are parameterized and dependence of effective property on these variables

is studied. A comparison between various lattices based on their anisotropy

index is presented and a way to tune the overall anisotropy of the structure

is introduced.

1.4 Thesis Outline

The thesis is organized in ten sections. The organization of this thesis is

as follows: Section 2 summarizes the previous work on effective property

evaluation. This section highlights the overall approach being used for prop-

erty evaluation and their limitations. Section 3 covers the fundamental

engineering principles in the field of solid mechanics and elastic wave prop-
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agation. These concepts will be helpful while studying lattice materials

that possess crystal symmetries and anisotropy by virtue of their geome-

try. Section 4 briefly explains the different lattices under consideration.

The parametric studies and independent design variables are highlighted in

this section. Sections 5 and 6 review the elastostatic and Bloch-wave ho-

mogenization theories, respectively, and their corresponding FE simulation

setups. Theoretical concepts behind these methods are discussed first fol-

lowed by the finite element setup in commercial software. Section 7 presents

results of the prototypical cubically symmetric lattices as test cases to val-

idate the methods. Cubic symmetric lattices are compared in this section

and their individual deformation behavior is discussed. Section 8 presents

results of effective stiffness tensors of the tetragonally symmetric and trans-

versely isotropic test lattices. These lattices are compared to each other

based on their universal anisotropy index. An unusual wave propagation

is observed in auxetic lattice and mechanics behind that wave behavior is

discussed. In section 9, evaluated effective stiffness tensors of composite

structures using the Bloch-wave homogenization method are presented. The

thesis ends in section 10 with a set of conclusions and suggestions for future

work. An article is published in the Journal of Acoustical Society of America

(JASA) based on the work presented in this thesis. The article citations are

https://doi.org/10.1121/1.5091690.
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2 Literature Review

As discussed in previous section, evaluating lattice effective properties is

essential to study different lattice configurations and its dependence on ge-

ometric parameters. There have been many efforts in past years to develop

methodologies to evaluate lattice effective properties. Various numerical,

computational and experimental methods have been introduced. Each have

their own advantages and limitations. Some of the major contributions are

discussed in this section.

In the early developments, the effective mechanical properties of 2D hon-

eycomb and foam structures have been evaluated analytically by Gibson and

Ashby [3] and of a 3D octet lattice by Deshpande et al. [33]. They devel-

oped closed form expressions for the effective mechanical properties of lattice

structures. In initial analytical evaluations, lattice trusses were modeled as

slender bars to study axial deformation, or as Euler-Bernoulli and Timo-

shenko beams to study bending deformation [3,33]. These assumptions limit

the application of the theory to small relative densities. In their work, they

applied uniform force to the unit cell boundaries and solved the static prob-

lem using equilibrium equations. The deformation pattern is obtained by

evaluating moments and forces on each truss of the lattice unit cell. The

deformations are later used to evalute the strains and thereby effective prop-

erties. Later work by Chen [34] incorporated bending as well as twisting

deformation of 2D honeycomb cells using the generalized variational princi-

ple to accurately model flexural rigidity. To study the effects of height of

the 2D honeycomb, Hohe and Becker [35] used a strain energy based analyt-

ical method to evaluate the stiffness tensor. Even though there has been a

significant improvement in analytical methods for lattice effective property
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evaluation, their use remains limited as it becomes difficult to apply them

on complex 3D geometries over a wide range of densities.

To overcome the limitations and narrow feasibility band of analytical meth-

ods, finite element (FE) modeling has been explored. Scarpa et al. [36] con-

sidered 2D auxetic honeycomb structure with negative in-plane Poisson’s

ratio. They evaluated uniaxial Young’s modulus and Poisson’s ratio through

static FE by considering 2-node beam elements for each truss. Wallach and

Gibson [37] also used the static FE approach to evaluate the moduli of 3D

structures of various aspect ratios, by modeling them as spring and truss ele-

ments while incorporating periodic boundary conditions. They considered an

orthotropic lattice with 9 independent constants that needed 6 independent

simulations for the stiffness tensor evaluation. This same process has been

extended by Dalaq et al. [2], to evaluate the effective properties of triply pe-

riodic minimal surfaces (TPMS) but without beam modeling. The limitation

with the use of static FE simulation is its demand for the higher number of

simulations for anisotropic structures.

Wave propagation methods can simultaneously extract static effective prop-

erties and wave propagation properties of a material, condensing the com-

putation time. Elsayed and Pasini [38, 39] used the Bloch-wave method in

conjunction with the Cauchy-Born hypothesis (collectively called as ‘Bloch-

wave homogenization’ hereafer) to obtain the stiffness of 2D lattices with a

pin and rigid jointed architectures. Phani et al. [5] also used the Bloch-wave

homogenization method for 2D isotropic lattices such as triangular, hexago-

nal and kagome, by modeling the trusses as Timoshenko beams. Their work

was extended to anisotropic topologies by Chopra [40] and Lie et al. [41]

but was restricted to planar structures. Krodel et al. [42] applied this same

method to a 3D anisotropic auxetic lattice using 1D Timoshenko beam ele-

7



ments connected by rigid joints. Even though the wave propagation method

has been around for some time, its use for effective property evaluation has

not yet been fully applied and studied, specifically for 3D lattices. Mod-

eling 3D lattices in an FE framework with 3D truss elements and without

rigid joint assumptions is of prime importance in order to simulate more

realistic deformations of lattice materials. For the efficient use of this ap-

proach in the design process, the wave propagation method needs to be val-

idated on different geometries having higher anisotropy. There also exists

few other methods for evaluation of effective properties such as asymptotic

homogenization [9] (specifically for heterogeneous structures), homogeniza-

tion based on the equation of motion [9] and dynamic equivalent continuum

model [43] (incorporating microinertial effect of low density lattices) that has

their own advantages and limitations but are beyond the discussion of this

thesis. Further, researchers working in the field of nondestructive evaluation

have explored wave propagation in anisotropic materials to predict quality

(or condition) of the material through experimentally evaluated wave veloc-

ities [44–46]. However, applying this method to instead obtain the material

properties of 3D periodic lattice metamaterials from wave velocities has not

yet been fully explored.
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3 Preliminary Concepts

The lattice effective properties represents lattice behavior (deformation pat-

tern and directional stiffness) from a material perspective. Lattice, even if

its characteristics stems from its geometric configuration, it can still be con-

sidered as a material. At a very long wavelength, the lattice materials can

be assumed as homogeneous materials while their properties are termed as

effective properties. One can then apply governing principles of classical elas-

ticity theory to lattice materials. Hence, in this section, we briefly revise the

theoretical background about the fundamental theories of classical elasticity:

Hooke’s Law. We also discuss various crystal symmetries and corresponding

independent constants followed by relation between these constants and wave

velocities.

3.1 Elasticity and Material Symmetry

In this section, we will first investigate the stress-strain relations for anisotropic

materials. The in depth background about the concepts discussed here can

be found in references [47–49]. The general stress-strain relation for an ho-

mogeneous elastic media with small strain approximation can be written as

follows: σij = Cijklεkl, where σ and ε are the macroscopic stress and strain

tensors, respectively, C is a fourth order stiffness tensor, and indices i,j,k,l

take on values 1, 2, or 3. The equation is written in terms of index nota-

tions. The stiffness tensor Cijkl with 81 elements can be reduced to a simple

form as Cij (known as ”Voigt notation) due to the stress and strain tensors

symmetry. The strain component in Voigt notation εj is defined as,
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ε1 =
∂u1
∂x1

, ε2 =
∂u2
∂x2

, ε3 =
∂u3
∂x3

, (1)

ε4 =
1

2

(
∂u2
∂x3

+
∂u3
∂x2

)
, ε5 =

1

2

(
∂u3
∂x1

+
∂u1
∂x3

)
, ε6 =

1

2

(
∂u1
∂x2

+
∂u2
∂x1

)
, (2)

where u1, u2, and u3 represent the displacements in the x1, x2, and x3

directions, respectively. This simple form of stiffness matrix Cij now has 36

stiffness matrix constants. This reduction from 81 to 36 is because of the

symmetry of the stress and strain. This stiffness matrix itself is symmetric

due to strain energy density symmetry and thus has only 21 independent

constant. This full matrix form of the stiffness matrix is shown as,



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

SYM C55 C56

C66





ε1

ε2

ε3

ε4

ε5

ε6


(3)

This is the stress-strain relation for a most general anisotropic material

that has no plane of symmetry for the material properties. It should be

notated that the strain component corresponding to shear deformation are

one-half of the shear strains. Natural materials often exhibits some kind of

material symmetry. Such materials with symmetry planes for the material

10



properties will have the reduced number of independent constants. Material

with specific symmetry planes and their constitutive equations are discussed

below that we use later to analyze the lattice structure studied in this thesis.

For detailed description of symmetry planes refer [49].

For materials having a single plane of symmetry when the symmetry plane

coincides with the x1-x2 plane, the stress-strain relation is:



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0

SYM C55 0

C66





ε1

ε2

ε3

ε4

ε5

ε6


(4)

Material with two orthogonal symmetry planes, the stress-strain relation

is:



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

SYM C55 0

C66





ε1

ε2

ε3

ε4

ε5

ε6


(5)

These are “orthotropic materials” with 9 independent stiffness matrix con-

stants. All lattice materials are atleast orthotropic by virtue of their sym-

11



metries about principal axes. It should be noted that the stiffness matrix

diagonal elemnts can not be negative however off-diagonal elements can be,

which indicates negative Poisson’s ratio. Further if the two symmetry planes

are identical even after the material is rotated by 90 degrees, a material

in that case is called as “tetragonal symmetric material”. The stress-strain

relation in that case is:



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C11 C13 0 0 0

C33 0 0 0

C44 0 0

SYM C44 0

C66





ε1

ε2

ε3

ε4

ε5

ε6


(6)

If the material properties are independent of direction in one plane then

such materials are referred to as “transversely isotropic materials” and the

stress-strain relation in that case is:



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C11 C13 0 0 0

C33 0 0 0

C44 0 0

SYM C44 0

(C11 − C12)/2





ε1

ε2

ε3

ε4

ε5

ε6


(7)

If the material has a 45 degree symmetry in all planes, then it has a “cubic

12



symmetry” and its stiffness matrix has only 3 independent constant as shown

below:



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

C44 0 0

SYM C44 0

C44





ε1

ε2

ε3

ε4

ε5

ε6


(8)

The lattice structure discussed in this thesis are anisotropic and their sym-

metry is governed by the geometry of lattice unit cell. The lattice properties

are thus going to be direction dependent and will have more than two in-

dependent stiffness constant. Only isotropic materials has two independent

stiffness matrix constants.

3.2 Plane Wave Propagation and Christoffel’s Equation

In this section, we will use wave equation to derive Christoffel’s equation that

relates the wave velocity and material properties. We will use this equation

to reverse engineer the properties of our lattice material based on wave ve-

locities. The 3D wave equation for an elastic wave within an anisotropic

material in index notations is given as:

∂σij
∂xj

= ρ
∂2ui
∂t2

, (9)
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where σ denotes the stress tensor, u, the displacement vector and ρ, mass

density of the material. Substituting the stress-strain relation and strain

compatibility relation, discussed in previous section, we arrive at,

∂Cijkl
∂xj

∂uk
∂xl

+ Cijkl
∂2uk
∂xj∂xi

= ρ
∂2ui
∂t2

, (10)

As discussed previously, we will be dealing with spatially homogeneous

material. We will assume that effective medium of the lattice materials is

continuous and homogeneous. In that case, there is no Cijkl dependence on

spatial coordinates. The first term in the above equation is then trivial and

the equation reduces to,

Cijkl
∂2uk
∂xj∂xi

= ρ
∂2ui
∂t2

, (11)

We will now consider a point source that generates a spherical wave far

away from the material. With this assumption, by the time wave reaches

material it is a plane wave and we can assume plane wave solution in our

wave equation. The particle displacement, um of an harmonic plane wave

propagating in an anisotropic medium is given as:

um = Ume
[i(knxn−ωt)], (12)

where kn denotes the wavenumber for the xn direction that is the direction

of wave propagation and ω, the frequency while U − m, the amplitude of

14



the particle displacement in the xm direction that is the direction of particle

displacement also called as wave polarization. In case of an elastic medium,

there exists two types of wave polarization: Longitudinal and Transverse.

The particle displacement is parallel to propagation direction in the former

case whereas in later one the particle displacement is perpendicular to wave

propagation direction. By implementing harmonic wave displacement func-

tion we get,

k2Cijklnjnluk = ρω2ui, (13)

where we define the unit direction vector as

n = nx1 ı̂+ nx2 ̂+ nx3 k̂, (14)

This is the Christoffel equation, which can also be written as an eigenvalue

problem discussed later in section 6.
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4 Description of Lattice Geometries

The unit cells of lattice geometries studied are shown in Fig. 2. The lattices

of interest are cubic [50], foam, octet [51], and Kelvin [50,51] of cubic symme-

try; hexagonal [5] of transversely isotropic symmetry; and a modified octet

(termed ‘octet-A’) and bowtie [52] of tetragonal symmetry. An in-depth

analysis of the bowtie lattice, and the way its wave velocities and effective

properties evolve over a range of internal cell angle, α, (Fig. 2e) that cause

the lattice to vary from negative to positive Poisson’s ratio is presented.

The parent material of the lattices is modeled as polycarbonate with E

= 1 GPa, ν = 0.35, ρ = 1097 kg/m3, and is considered isotropic. The lat-

tice constant, L, is 8 mm, 7 mm and 4 mm for foam, bowtie, and all other

remaining lattices, respectively, and is kept constant throughout the geomet-

ric parameterization. The geometric parameterization includes internal cell

angle, α, for the bowtie lattice and truss thickness, t, for all other lattices

(Fig. 2d-e). The internal cell angle is varied from 55◦ to 90◦ with an interval

of 2.5◦, and truss thickness is varied from 0.1 to 1 mm at an interval of 0.1

mm. The internal cell angle of bowtie lattice is studied in order to evaluate

the lattice properties that span a negative to positive Poisson’s ratio.

By studying the geometry of the lattices, we can determine the symmetry of

the effective material. Fig. 3 shows planes of symmetry for cubic, tetragonal

and transversely isotropic materials in general. From the unit cell geometry

of bowtie lattice (Fig. 2b), it can be seen that it has 45◦ symmetry only in the

XY plane, making it a tetragonal structure. We design another tetragonal

unit cell by modifying the cubically symmetric octet lattice in such a way

that it will have 45◦ symmetry only in the XY plane. To do so, we remove

four internal horizontal trusses (Fig. 2c), and we refer to this unit cell as
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Cubic Foam

Kelvin

Hexagonal Bowtie

Octet Octet-A

t

α

(a) (b)

(c)

(d) (e)

XY

Z

Figure 2: Unit cells of (a) cubic symmetry lattices, and (b) lower symmetry
lattices. (c) Transformation of cubically symmetric octet lattice into a tetrag-
onal ‘octet-A’ lattice by removing four trusses (highlighted in magenta). The
coordinate system shown is used for all unit cell configurations. The effect
of lattice geometry parameterization is shown for (d) truss thickness, t, of
octet lattice, and (e) internal cell angle, α, of bowtie lattice.(Reproduced
from [https://doi.org/10.1121/1.5091690], with the permission of AIP
Publishing)

the ‘octet-A’ lattice. The hexagonal unit cell has infinite number of elastic

symmetries in the XY plane, thus it is transversely isotropic with Z-direction

being the out-of-plane axis. These unit cells are repeated spatially in 3D

space to form an infinite array of lattice materials as shown in Fig. 4.
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Figure 3: Planes of symmetry of a) cubic b) tetragonal and c) transversely
isotropic material. The red and green dashed line indicates 45◦ and 180◦

(orthotropic) plane of symmetry. Gray shaded region is isotropic plane with
infinite number of planes of symmetry.

a) b)

c) d)

Figure 4: Array of (a) cubic, (b) Kelvin, (c) octet, and (d) bowtie lattice.
These are are created by spatial three-dimensional repetition of the unit cells.
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5 Elastostatic Homogenization

In this section, we discuss the elasto-static homogenization method to evalu-

ate effective properties of lattice material. We used these results to validate

our results obtained from Bloch-wave homogenization method. Homogeniza-

tion technique is widely used to evaluate the effective properties of combined

materials. In this method the structure composed of different materials is

assumed as an equivalent effective continuum with same overall geometric

dimension; this is done so as to treat the structural response as a smooth

function of its geometry as illustrated in Fig. 5. In other words, one can say

that effective continuum will be the combined effect of weighted contribution

of parent materials. In case of lattices, the same theory can be applied while

the second material can be considered as an air having extremely compli-

ant mechanical properties. The weighted contribution because of the second

material in lattices thus will be negligible.

Figure 5: Concept of Equivalent Continuum: white and gray shaded regions
indicates two different materials and u is the response of the material under
uniaxial loading

We first calculate the effective properties of the lattice materials using ap-
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propriate static boundary conditions within a finite element method frame-

work. In an FE analysis, the PBC can be easily applied as nodal displace-

ment constraints that automatically guarantee traction continuity on the

RVE boundaries [9]. This continuity periodic boundary condition is essen-

tial since material that is periodic before deformation must also be periodic

after deformation [37]. To do this, we analyze a single unit cell and apply

both periodic boundary conditions on all unit cell boundaries and classical

boundary conditions of uniform displacement along the direction of interest.

The apparent properties of the unit cell obtained under classical boundary

conditions (displacement, traction or mixed) represent effective properties

when the periodicity of the structure is incorporated [2, 53]. We define the

periodic boundary condition as

u+n̂i − u−n̂i = εij
(
x+n̂j − x−n̂j

)
, (15)

where u is the average displacement of the faces defined by unit normal

vector, n̂. Positive and negative signs indicate that the normal vectors repre-

senting a pair of periodic faces are opposite to each other, one being a source

and other being a destination of the periodicity. ε and x are the macroscopic

strain and nodal coordinates, respectively, in given i and j direction. For

the above-mentioned elastostatics boundary value problem, the constitutive

equation for small strain deformation is σij = Cijklεkl, where σ and ε are

the macroscopic stress and strain tensor, respectively, C is a fourth order

stiffness tensor, and indices i,j,k,l take on values 1, 2, or 3. Our aim is to

solve for this stiffness tensor and thereby evaluate the effective properties.

To evaluate the stiffness tensor constants of an effective continuum associ-

ated with uniaxial loading, we apply uniaxial displacement on opposing faces
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and then evaluate macroscopic stresses as

σ∗ =

∫
A∗ dR∫
A∗ dA∗ , (16)

where σ∗ is the effective stress acting on the effective surface area, A∗, on

which the displacement, u, is applied, and R is the reaction force on that sur-

face [2]. Effective strain, ε∗, is evaluated as the ratio of applied displacement,

u, to the original length in that direction. We then use these macroscopic (or

effective) stress-strain values in the constitutive equation (stiffness tensor, C,

is now reduced to 3 non-zero independent constants due to uniaxial loading

and periodic BCs [54]) to evaluate the corresponding stiffness tensor con-

stant. For example, when the displacement is applied along the X-direction

with 3D periodicity then the stiffness tensor constants C∗
11, C

∗
12, and C∗

13 are

evaluated. We replicate this same procedure in other two directions, indepen-

dently, to evaluate remaining stiffness tensor constants (C∗
22, C

∗
23, and C∗

33).

We then simulate pure shear loading (displacement based) in all planes, inde-

pendently, to evaluate the stiffness tensor constants corresponding to shear

moduli (C∗
44, C

∗
55, and C∗

66). To simulate pure shear, we apply equal and

opposite displacement on a pair of two opposite faces of the unit cell with

planar boundary conditions on the third pair. We evaluate corresponding

effective shear stress using Eq. (16) and effective shear strain based on the

angle of deformation. The boundary conditions discussed here are shown in

Fig. 6

We performed elastostatic homogenization using commercial COMSOL

Multiphysics (4.3b) software with standard physics controlled fine mesh. We

used symmetric meshing on periodic faces for computational efficiency. We

applied continuity periodic boundary conditions in three directions to sim-
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Figure 6: Boundary conditions for elasto-static homogenization - a) Uniaxial
loading, and b) Pure shear loading. Addition to shown boundary conditions,
periodic boundary conditions are also applied on each side.

ulate geometric periodicity of the lattices. The displacement and planar

boundary conditions were applied using prescribed displacement. The strain

values within structure was limited within proportinality limit even though

the analysis was within linear environment. For cubic symmetry lattices,

two static simulations were needed to obtain the stiffness tensor with 3 inde-

pendent constants, whereas for transverse isotropy and tetragonal symmetric

lattice, four static simulations, two with uniaxial loadings and two with shear

loading, were required to obtain 6 and 5 independent stiffness tensor con-

stants, respectively [49]. To validate the obtained stiffness tensor, we check

the stiffness tensor positive definiteness governed by positive definiteness of

the strain energy density. For a tetragonal symmetric material following nec-

essary and sufficient conditions were verified [55,56]:

C11 > ‖C2‖

2C13
2 < C33(C11 + C12)

C44 > 0

C66 > 0
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6 Bloch-wave Homogenization

In this section, we apply the Bloch theorem to the elastostatics, where the

structure of interest is periodic in nature, and its unit cell, when tessellated,

will form an infinitely periodic structure. Bloch generalized Floquet’s 1D

mathematical result on to a 3D system to obtain the wave function that

relates a simple plane wave with the periodicity of the structure [57]. We

apply this concept to analyze the unit cell of an infinite lattice that eventually

tells us the behavior of the entire structure.

We consider a lattice structure with two points, P and Q, with position

vectors, ~rP and ~rQ, respectively, at a distance from each other such that

~rQ = ~rP + ~r. (17)

Here, we write position vector, ~r, in terms of the lattice constant as ~r = niêi,

where ni is unit cell number in the direction of unit vectors, êi (refer Fig. 7).

Assuming plane wave propagation, Bloch’s theorem relates the displacement

of any other point, Q, in any cell as

~uQ(~rQ, t) = ~uP e
−i[~k(~rQ−~rP )], (18)

where ~k is a wave vector. Since ~rQ-~rP is simply a function of the periodicity

constant, we can identify the displacement of any other point within the

lattice structure based on the analysis of a single unit cell for a known wave

vector. We assume ~k is real, i.e. we neglect the attenuation in this analysis.

One can further reduce the computational problem by restricting wave

vectors to the edges of the irreducible Brillouin zone (IBZ) [58] for band
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Figure 7: Lattice configurations used to to develop Bloch-wave equations.
Square geometry at lower-left corner is our unit cell of interest.

gap analysis of periodic structures [5]. However, in this paper, we analyze

the long-wavelength wave propagation only along certain directions that we

decide based on the number of independent stiffness tensor constants gov-

erned by the symmetry of the unit cell geometry. We then use the equations

of motion to solve the eigenvalue problem of the propagating wave for the

frequency, ω, at each combination of wave vectors. We obtain the disper-

sion curves (ω-k space) in the long wavelength limit, where the phase and

group velocities are equal (denoted ‘V ’ hereafter) and are independent of

frequency [47]. We use this wave velocity information to analyze the lattice

structures.

We determine the stiffness tensor constants, C∗
ijkl, of an effective continuum
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Input Output

Lattice Geometry

Wave Propagation Model
Floquet-Bloch Periodicity

Propagation Direction
Equation of Motion

Christoffel's Equation

Wave Propagation Characteristics

Modal
Displacements

Dispersion Curve
(ω-k)

Wave Polarization Wave velocity

Stiffness Tensor Constants

Effective Properties

Figure 8: Schematic of Bloch-wave homogenization method. (Reproduced
from [https://doi.org/10.1121/1.5091690], with the permission of AIP
Publishing)

from the obtained wave velocities, V , through the Christoffel’s equation [59]:

Γik = C∗
ijklnjnl, (19)

(
Γik − δikρ∗V 2

)
Pm = 0, (20)

where Γ is the acoustic tensor, ρ∗ is the effective density, ni is the direction

cosine, Pm is the component of the unit vector in the displacement direction

and δik is the Kronecker delta function. As each stiffness tensor constant

is related to a particular type of propagating wave, identifying the wave

polarization is essential (i.e. ni and Pm must be known). In an effective

elastic continuum, there exist three propagating waves within any structure:
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one longitudinal and two transverse. Generally, longitudinal velocities are

higher than the transverse for an isotropic structure [5] and are independent

of propagation direction. This is not always the case and it is non-trivial to

identify the wave polarization within anisotropic structures. We also observe

the existence of ‘quasi’ waves when the wave propagates along any direction

other than the principal axes in an anisotropic plane, and that the particle

displacement is neither parallel nor perpendicular to the wave propagation

direction [48, 60]. Thus, we evaluate the propagating modal displacements

to differentiate between the longitudinal and transverse waves. Further, for

anisotropic structures, the two transverse velocities may not be equal, hence

we use the wave propagation characteristics corresponding to a crystal sym-

metry in conjunction with the modal displacements and dispersion curves to

identify the wave polarization.

This Bloch-wave homogenization method for effective material property

evaluation is summarized in Fig. 8. We developed our wave propagation

model within COMSOL Multiphysics (4.3b) using Floquet-Bloch periodic

boundary conditions. We used physics controlled symmetric fine meshing for

all our simulations with a very small range of wave vector (< 1% of the lattice

constant (1/m)) to ensure the applicability of effective continuum theory in

long wavelength limit. We extracted the first 3 modes that correspond to

the lowest longitudinal and two transverse waves of the lattice structure and

calculated a best fit using least-squares regression to extract the wave veloc-

ities (Fig. 9). We used volume averaged modal displacement along principal

directions to identify the mode shapes and wave polarization.
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Figure 9: First three dispersion curve representing one longitudinal and two
transverse wave. A best linear regression fit is done to evaluate slope of the
curves. It can be seen that the the linear relationship is valid only for small
wave vector values. This curve do not inform about the polarization of the
wave.

27



7 Effective Properties of Cubic Symmetry Lattices

In this section, we present the Bloch-wave homogenization results of cubic

symmetry lattices, using the octet lattice as an example case. By virtue

of its geometry, the octet lattice has cubic symmetry and therefore three

independent effective stiffness tensor constants: C11, C12, and C66. The

asterisk sign, which represents effective property has been dropped hereafter

for convenience. These constants are related to corresponding wave velocities

through following reduced form of Christoffel’s equation:

Vxx =
√
C11/ρ, (21)

Vxy = Vxz =
√
C66/ρ, (22)

2ρV 2
45 = (C11 + C66)± (C12 + C66) , (23)

where for Vij, i indicates the direction of wave propagation and j indicates the

direction of particle displacement. For Vφ, φ indicates the wave propagation

angle with respect to principal axis. We evaluate the effective density, [3] ρ

(asterisk dropped for convenience) based on the relative volume of the lattice

and actual density of the parent bulk material. We use wave velocities along

principal directions i.e. longitudinal and transverse velocities to identify the

stiffness tensor diagonal elements, C11 and C66 using Eq. (21) and Eq. (22),

respectively. The off-diagonal stiffness tensor constant can be calculated from

waves propagating within any plane within the range of 0◦ < φ < 90◦ [59]. For
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Figure 10: Octet lattice (a) wave velocities (note: Vxy = Vxz = V45To) and
(b) independent stiffness tensor constants evaluated from static (red mark-
ers) and Bloch-wave (blue lines) homogenization method. (Reproduced from
[https://doi.org/10.1121/1.5091690], with the permission of AIP Pub-
lishing)

simplicity of algebraic calculation, we select wave propagation at 45◦ in the

XY plane (or 1-2 plane). We evaluate the off-diagonal constant using Eq. (23)

based on either longitudinal or in-plane transverse velocity, where the sign is

selected according to the type of polarization: positive for longitudinal wave

and negative for in-plane transverse wave [59].

The wave velocities and stiffness tensor constants of the octet lattice de-

rived from Bloch-wave homogenization are shown in Fig. 10 with respect to

relative density (lattice density normalized by bulk density). The evaluated

stiffness tensor constants agree well with the static homogenization results.

From the wave velocity results, one can observe that the transverse velocities

are identical (Vxy = Vxz) when waves propagate along the principal direction

but different (V45T i 6= V45To, where Ti and To stands for in-plane and out-

of-plane transverse polarization, respectively) when waves propagate at an

angle to the principal axes. This information is also useful in identifying the

lattice symmetry. The relation between the in-plane transverse wave veloc-
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ities along different directions (Vxy > V45T i) indicates that the octet lattice

is stronger in shear along the principal direction. On the other hand, the

relation between the longitudinal wave velocities along different directions

(V45L > Vxx, where L indicates longitudinal polarization) indicates that the

octet lattice is stronger in compression along the 45◦ axis.

We apply Bloch-wave homogenization to the cubic, foam and Kelvin lat-

tices, and their effective properties along with octet lattice are shown normal-

ized with respect to properties of the bulk material (Fig. 11). Results of the

Kelvin lattices are presented only up to truss thickness of 0.8 mm since the

geometry changes at higher values. We show the relationship between the

logarithm of the relative modulus and relative density of these lattices for low

relative densities in Fig. 11d-e. We then calculate the polynomial best fit of

initial five data points through least-squares regression and obtain the power

law relationship between the actual quantities as E/Es ∝ (ρ/ρs)
m and G/Gs

∝ (ρ/ρs)
n. The exponents, m and n, of the power laws correspond to the

slopes of the lines in log plots. An exponent of m,n = 1 signifies that the ge-

ometry is stretch-dominant, while an exponent of m,n = 2 indicates that the

geometry is bending-dominant [8]. We see that for the lower values of relative

densities, E/Es ∝ ρ/ρs and G/Gs ∝ ρ/ρs for the octet lattice as also shown

theoretically by Deshpande et al. [33], whereas for the Kelvin lattice, E/Es

∝ (ρ/ρs)
2 and G/Gs ∝ (ρ/ρs)

2 as shown experimentally by Zheng et al. [51].

The foam lattice effective properties also scales with (ρ/ρs)
2, whereas cubic

lattice shows combined behavior with E/Es ∝ ρ/ρs under uniaxial compres-

sion but G/Gs ∝ (ρ/ρs)
2 under shear loading. Consistent with much prior

work, at lower relative densities, the octet lattice is stretch dominant [8,51],

the foam and Kelvin lattices are bending dominant [51], and the cubic lattice

is stretch dominant in compression but bending dominant in shear. As the
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Figure 11: Normalized effective mechanical properties (a) uniaxial modu-
lus, (b) shear modulus, and (c) Poisson’s ratio of cubic symmetry lattices.
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and (e) for better visualization of low relative density results with numerical
values indicating slopes. (f) Zener anisotropy index of cubic symmetry lat-
tices. (Reproduced from [https://doi.org/10.1121/1.5091690], with the
permission of AIP Publishing)

relative density increases, the linear relation between relative modulus and

relative density of the octet lattice becomes non-linear (Fig. 11a-b) signifying
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the truss bending effect during deformation. Overall, the Kelvin lattice is

much weaker in uniaxial loading compared to cubic lattice as observed by

Hedayati et al. [61]. However, in contrast to their shear modulus predictions,

we find that the Kelvin lattice has a higher shear modulus compared to the

cubic lattice (truss beam modeling and rigid vertices are possibly making the

cubic lattice more shear resistant in Hedayati et al. [61]). The truss joints in

the Kelvin geometry are thus stronger than in the foam and cubic geometry.

We also see that the octet lattice almost maintains a constant Poisson’s

ratio (Fig. 11c) at low relative densities and deviates slightly at higher rela-

tive densities. The absolute value of the octet lattice Poisson’s ratio is also

almost same as that of the parent bulk material, which indicates that the

macroscopic deformation in octet lattice is analogous to bulk material de-

formation. For both cubic and foam lattices, there is a steep increase in

Poisson’s ratio initially, possibly due to negligible bending resistance con-

tributing to lateral deformation. For the cubic lattice, the increase in lateral

deformation is always higher than the uniaxial deformation (due to stretch

dominant behavior) and thus Poisson’s ratio increases throughout. Kelvin

and foam lattice, due to their bend dominant characteristic, offers significant

bending stiffness and thus as relative density increases, their Poisson’s ratio

decreases.

We compare these cubic symmetry lattices by evaluating their Zener anisotropy

index [62], ar = 2C44/(C11 − C12), shown in Fig. 11f. While the Zener

anisotropy index is limited to cubic symmetry lattices, it gives important

insights on the variation in Young’s modulus with direction, which is not

possible with other anisotropy indices such as the universal anisotropy in-

dex (UAI) discussed later in section 8. All the lattices have non-unity

anisotropy index, and as relative density increases they tend to become more
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isotropic. The cubic and foam lattices have an index less than unity, indi-

cating their maximum Young’s modulus is along the <100> direction and

minimum along the <111> direction. For Kelvin and octet lattice, the case is

reversed: the maximum Young’s modulus is along the <111> direction and

minimum along the <100> direction, as they have an index greater than

unity. In other words, the cubic and foam lattices are stronger in compres-

sion along principal axes but weaker along the space diagonal (the opposite

case is true for Kelvin and octet), as shown through normalized Young’s

modulus representational surface (of cubic and Kelvin) by Luxner et al. [50].

It should be noted that the anisotropy index of the octet lattice shown here

is consistent with Berger et al. [4], where they have evaluated reciprocal of

Zener anisotropy index.
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8 Effective Properties of Lower Symmetry Lattices

Here, we apply the Bloch-wave homogenization to evaluate effective proper-

ties of higher anisotropy structures. We consider the tetragonal and trans-

versely isotropic symmetry structures, which have 6 and 5 independent stiff-

ness tensor constants, respectively.

8.1 Tetragonal Symmetry Lattices
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Figure 12: Poisson’s ratio of (a) octet-A, and (b) bowtie lattice. Dashed red
line is zero reference line. (Reproduced from [https://doi.org/10.1121/
1.5091690], with the permission of AIP Publishing)

We analyze two tetragonal symmetry lattices: a new form of octet lattice,

termed ‘octet-A’, as discussed in section 4 (refer Fig. 2c), and a bowtie lattice

of tetragonal symmetry that can behave auxetically (negative Poisson’s ratio)

by virtue of its re-entrant truss structure. The Poisson’s ratios of these two

lattices obtained from static simulations are shown in Fig. 12. The octet-A

lattice has positive Poisson’s ratio in all planes whereas the bowtie lattice has

negative Poisson’s ratio that changes to positive as the internal cell angle,

α, (Fig. 2e) increases. There are also instances (87.5◦ ≥ α ≥ 80◦) for the
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bowtie lattice, where Poisson’s ratio is negative in two planes (XZ and YZ)

but positive in the other (XY). At α = 90◦, the bowtie lattice has positive

Poisson’s ratio throughout and thus loses its auxetic behavior. At 88◦ the

Poisson’s ratio in the XZ plane is independent of the loading direction as νxz

= νzx.

Figure 13: Tetragonal symmetry and wave velocity along material symmetry
propagation direction. Similar color indicates wave velocity with same speed.

To calculate the effective stiffness tensor diagonal elements, we first calcu-

late the wave velocities along the principal directions. To distinguish between

longitudinal and transverse waves, we exploit the symmetries of the tetrag-

onal structure, where one of the transverse X-direction waves has the same

velocity as that of the transverse Z-direction wave (refer Fig. 13). Once the

principal wave velocities are known, we use Christoffel’s equation to evalu-

ate the diagonal stiffness tensor constants. The diagonal constants C11, C33,

C44 and C66 are directly related to the following wave velocities through the
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Figure 14: Principal direction wave velocities of (a) octet-A and (b) bowtie
lattice. Evaluated diagonal stiffness tensor constants from static (red mark-
ers) and Bloch-wave (blue lines) homogenization of octet-A ((c) and (e)) and
bowtie ((d) and (f)) lattices. Bowtie lattice plots follow the same legend
scheme as that of octet-A plots.(Reproduced from [https://doi.org/10.
1121/1.5091690], with the permission of AIP Publishing)

reduced form of Christoffel’s equation:

Vxx =
√
C11/ρ, (24a)

Vzz =
√
C33/ρ, (24b)

Vxy =
√
C66/ρ, (24c)

Vzx =
√
C44/ρ. (24d)
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Note that Vxx = Vyy, Vxy = Vyx, and Vzx = Vxz = Vzy = Vyz by virtue of

the tetragonal symmetry. The obtained wave velocities and corresponding

stiffness tensor constants are shown in Fig. 14a-b and Fig. 14c-f, respectively.

We see that the diagonal stiffness tensor constants calculated from Bloch-

wave homogenization agree with that of static homogenization method for

both the lattices.

To evaluate the off-diagonal stiffness tensor constants, we calculate veloc-

ities of waves propagating at 45◦ to the principal axes. The angle 45◦ is

again selected to mathematically simplify the expressions, but any other an-

gle (0◦ < φ < 90◦) would work [59, 63]. For waves propagating in the XY

plane, there exist pure waves as properties are symmetric about 45◦ axes. In

the case of anisotropic plane XZ, we observe one quasi-longitudinal (QL) and

two quasi-transverse (QT) waves. To identify the polarization of waves prop-

agating at an angle to the principal axis, we use global modal displacement

corresponding to each mode shape. We differentiate between longitudinal,

in-plane transverse, and out-of-plane transverse waves based on the dominant

modal displacement corresponding to each mode (Fig. 16). The calculated

wave velocities at 45◦ in XY (V45XY ) and XZ (V45XZ) plane are shown in

Fig. 15a-d.

The generalized form of Christoffel’s equation to evaluate C12 of an or-

thotropic structure [59] for wave propagation at any angle, φ, in XY plane is

given as

C12 = −C66 ±

√
2ρV 2

φXY − χ1 − Γ2
1

4n2
1n

2
2

, (25)

where χ1 = C11n
2
1 +C66n

2
2 +C22n

2
2 +C66n

2
1 and Γ1 = C11n

2
1 +C66n

2
2−C22n

2
2−

C66n
2
1. The wave direction vectors are defined as n1=cosφ and n2=sinφ. The
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Figure 15: Non-principal directional wave velocities of octet-A lattice in (a)
XY plane and (c) XZ plane; and of bowtie lattice in (b) XY plane and (d)
XZ plane. L, Ti, To and Q stands for longitudinal, in-plane transverse,
out-of-plane transverse and quasi waves, respectively. Resulting off-diagonal
stiffness tensor constants of (e) octet-A and (f) bowtie lattice evaluated from
static (red markers) and Bloch-wave (blue lines) homogenization. Bowtie lat-
tice plots follow the same legend scheme as that of octet-A plots.(Reproduced
from [https://doi.org/10.1121/1.5091690], with the permission of AIP
Publishing)

term Vφij indicates the waves (1 longitudinal, 1 in-plane transverse and 1 out-

of-plane transverse) propagating in i-j plane at φ◦ to i axis. It is important

to note that either the longitudinal or in-plane transverse wave velocity can

be used to identify the corresponding stiffness tensor constants [59]; the sign

in front of the square root depends on the type of wave velocity used. For the
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Figure 16: Algorithm to evaluate polarization of wave in an anisotropic plane.
X and Y are material symmtery axis, S is wave propagation vector (or direc-
tion), and U is wave polarization vector (or particle displacement direction).

case of C12, the sign of the square root is positive when using the longitudinal

wave and negative when using the transverse wave; both lead to the same

solution of C12. Since the tetragonal structures have same properties along

X and Y direction, we further simplify Eq. (25) for φ = 45◦ as

C12 = 2ρV 2
45XY L − C11 − 2C66, (26a)

C12 = −2ρV 2
45XY Ti + C11. (26b)

The generalized form of Christoffel’s equation to evaluate C13 of an or-

thotropic structure for wave propagation at angle φ in the XZ plane is given

as

C13 = −C44 ±

√
2ρV 2

φXZ − χ2 − Γ2
2

4n2
1n

2
3

, (27)
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where χ2 = C11n
2
1 +C44n

2
3 +C33n

2
3 +C44n

2
1 and Γ2 = C11n

2
1 +C44n

2
3−C33n

2
3−

C44n
2
1. The wave direction vectors are defined as n1 = cosφ and n3 = sinφ.

In the case of C13, we determine the sign of the square root purely based

on the sign of XZ plane Poisson’s ratio (νzx) of the structure, and either

of the QL or in-plane QT velocities can be used. When the lattice has a

negative Poisson’s ratio, the off-diagonal stiffness tensor constant must be

negative, and vice versa. So, we use a positive root for octet-A lattice but

for bowtie, we use a negative sign up to α < 87.5◦. For the last two angles

studied, the Poisson’s ratio is either zero or positive, and taking positive root

is essential. The calculated off-diagonal stiffness tensor constants are shown

in Fig. 15e-f. For both the octet-A and bowtie lattices, the results agree

with static homogenization results. For the bowtie lattice, the off-diagonal

stiffness tensor constants change signs from negative to positive signifying

the change in the sign of Poisson’s ratio.

The bowtie lattice exhibits an unusual wave polarization transition. Specif-

ically, we observe a shift in faster wave polarization in both planes for the

bowtie lattice (Fig. 15b,d). For smaller values of α, transverse velocity is

higher, whereas for larger angles, the longitudinal velocity is higher. This

shift occurs at α = 70◦ for V45XY , and at α = 86.25◦ for V45XZ . To illustrate

this polarization shift, we show the wave velocity field of the bowtie lattice

in the XY plane through an iso-frequency contour (Fig. 17). For the bowtie

lattice geometry at α = 55◦, the in-plane transverse wave has a higher veloc-

ity than the longitudinal wave around 45◦ propagation direction. However,

for α = 90, the longitudinal wave propagates faster than the transverse wave

at all propagation angles. This wave polarization transition is not present

in the octet-A lattice within the parameters studied: the longitudinal wave

always remains faster than the transverse waves (Fig. 15a,c).
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This anomalous behavior has been discussed by Helbig and Schoenberg

[64] in a transversely isotropic structure through the analysis of slowness

surfaces. In general, for anisotropic materials with ν > 0, the longitudinal

wave propagates with a faster velocity because C12+C66 > 0 and C13+C44 >

0 [64,65]. If C12 or C13 are negative (a case of auxetic structure) and greater

than C66 and C44, respectively, then the respective transverse wave is faster

than the longitudinal wave. In our bowtie lattice, C12 + C66 < 0 when α <

70◦ and C13 +C44 < 0 when α < 86.25◦, thus the respective transverse waves

travel faster at angles less than these values, which our results clearly show

(Fig. 14f and Fig. 15b,d,f). The transverse and longitudinal wave velocities

are equal at the acoustic axes or singularities [66], when C12 = −C66 (α =

70◦) and C13 = −C44 (α = 86.25◦). This anomalous polarization behavior

has been observed in few natural materials such as calcium formate [67, 68],

and can be utilized in potential metamaterials applications such as mode

conversion [68].
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8.2 Transversely Isotropic Symmetry Lattice

The lattices discussed thus far have periodicity in three orthogonal directions.

In this section, we evaluate effective properties of a hexagonal lattice that

has periodicity in three directions: e1, e2 and e3, of which one pair is not

mutually perpendicular, e1 and e2, as shown in Fig. 18a. This hexagonal

lattice has five independent stiffness tensor constants. We obtain identical

wave propagation results in the XY plane irrespective of the direction of

wave propagation, since the hexagonal lattice has one isotropic plane (XY

in this case). The obtained effective properties are shown in Fig. 18b. The

stiffness tensor constant C12 calculated from the wave velocities, V45XY , using

Eq. (26a) or (26b) matches with the one calculated using characteristics of

transversely isotropic structure i.e. based on C11 and C66 (C12 = C11−2C66).
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8.3 Anisotropy Index of Lower Symmetry Lattices

In order to compare the lower symmetry lattices discussed in this section

as well as the cubic lattices discussed in section 7, we evaluate Universal

Anisotropy Index (UAI) [69] that quantifies the extent of anisotropy of any

symmetry material. The UAI is defined as

AU = 5
GV

GR
+
KV

KR
− 6. (28)
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Here, superscript V corresponds to Voigt estimates and R corresponds to

Reuss estimates of bulk, K, and shear, G, modulus. Specifically,

GV =
1

15

(
Cijij −

1

3
Ciijj

)
, (29a)

1

GR
=

2

5

(
Sijij −

1

3
Siijj

)
, (29b)

KV =
1

9
Ciijj, (29c)

1

KR
= Siijj, (29d)

which we calculate from the effective stiffness tensor, C, and compliance

tensor, S, where S = C−1.

The dependence of UAI on geometric parameters for all lattices is shown

in Fig. 19. The bowtie lattice has a higher anisotropy than both octet-A and

hexagonal, whereas hexagonal is much closer to the UAI value of 0 (zero UAI

indicates isotropic behavior as opposed to unity for Zener anisotropy index)

indicating more isotropic behavior than others. There is a sudden shift in

the extent of anisotropy for hexagonal lattice (also for cubic lattice) as truss

thickness increases from very small thicknesses. This is due to the fact that

at very low truss thickness the bending resistance from lattice trusses is

negligible, which becomes more prominent as thickness increases.
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9 Effective Properties of Composite Structures

Cubic Lattice Complementary Part Composite 

Bowtie Lattice Complementary Part Composite 

Figure 20: Composite structure solid modeling (complementary part is de-
signed by subtracting lattice geometry from bulk unit cell volume). (Repro-
duced from [https://doi.org/10.1121/1.5091690], with the permission of
AIP Publishing).

As a final demonstration of the Bloch-wave homogenization method, we de-

sign 3D periodic composite structures with lattice reinforcements and evalu-

ate their effective properties. We extend Bloch-wave homogenization method

to analyze periodic lattices embedded in a second solid material, referred to as

‘composite structures’. We manipulate these composite structures in terms of

their geometry, truss thickness, and bulk material properties to obtain vari-

ations in their elastic properties and anisotropy. We design these composite

structures by filling the volume surrounding to the lattice (within the unit

cell) with a second material. These composite structures enable us to obtain

properties that are a mixture of two bulk materials and the lattice geom-

etry. They are potential multifunctional metamaterials, as such structures
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have already shown enhanced macroscopic strength and energy absorption

properties [70]. Such composite structures can be readily fabricated by com-

mercial multi-material 3D printers. Once the lattice geometry is modeled,

we form the complementary part of this lattice within the unit cell using

Boolean operations and then combine these two designs to form a composite

structure (Fig. 20). We assume a complete bonded contact (no slip) between

the lattice and filler material surface. This ensures the displacement continu-

ity at the interface and satisfies mechanical compatibility during quasi-static

and Bloch-wave analysis.

Here, we study composites formed from cubic, octet and bowtie lattices.

We manipulate the properties and anisotropy of these composites by chang-

ing the modulus of the filler material. We keep the same lattice bulk material

properties as before, and consider three cases of the filler material with mod-

uli ratio (MR: ratio of filler bulk Young’s modulus to lattice bulk Young’s

modulus): 50% (Efiller = 0.5 GPa), 5% (Efiller = 0.05 GPa) and 0.5% (Efiller

= 0.005 GPa). To isolate the effect of modulus change, we model the density

and Poisson’s ratio of the filler material the same as that of the lattice bulk

material.

9.1 Effective Properties of Bowtie Composite Structures

As an example, we present the effective properties of the bowtie composite,

with filler moduli ratio of 0.5% (Fig. 21a) evaluated through Bloch-wave

homogenization. This bowtie composite structure is auxetic up until internal

cell angle, αaux = 80◦ (Fig. 21a) as opposed to pure bowtie lattice where αaux

≈ 87.5◦ (Fig. 15f). For the higher moduli ratios (5% and 50%), the bowtie

composite is no longer auxetic (within studied range of internal cell angles),
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is a zero-reference line), and (b) Poisson’s ratio of bowtie lattice (red)
compared to bowtie composite structure (black) (νxy, νxz, νzx are shown
in circle, square and diamond markers, respectively). Reproduced from
[https://doi.org/10.1121/1.5091690], with the permission of AIP Pub-
lishing)

as the filler material counteracts the deformation pattern of the re-entrant

trusses (results not shown). In the case of 0.5% MR, the change in faster wave

polarization is not observed even though the composite structure is auxetic,

since the magnitude of the diagonal stiffness tensor constants corresponding

to shear are always higher than the off-diagonal negative stiffness tensor

constants (Fig. 21a). The change in the sign of Poisson’s ratio is also observed

at a different lattice geometry (Fig. 21b): in the XY plane, αaux ≈ 65◦ (αaux

= 80◦ in the pure lattice), whereas in the XZ plane αaux ≈ 80◦ (αaux ≈ 87.5◦

in the pure lattice). The overall stiffness of the composite structure is also

higher than the pure bowtie lattice stiffness (Fig. 21a and Fig. 14f). These

results show that in addition to changing the geometric parameters, changing

the modulus of filler materials in composite structures can tune the overall

macroscopic elastic performance of the structure.
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Figure 22: (a) Zener anisotropy index of cubic symmetry lattices and com-
posites. Cubic and octet results are shown in black solid and blue dashed
linestyle, respectively, and lattice, 5% and 50% MR composites are shown in
cross, square and circle markers, respectively. (b) Universal anisotropy index
of bowtie lattice and composites. Lattice, 0.5%, 5% and 50% MR composites
are shown in cross, diamond, square and circle markers, respectively. 5% and
50% MR composites UAI values are overlapping and close to zero. (Repro-
duced from [https://doi.org/10.1121/1.5091690], with the permission of
AIP Publishing)

9.2 Anisotropy Index of Composite Structures

The cubic and octet composite structures are cubic in symmetry since both

lattice and filler are cubically symmetric. To observe the effect of filler ma-

terial on pure lattices, we evaluate Zener anisotropy index (Fig. 22a) for

moduli ratio of 5% and 50%. We observe that both cubic and octet com-

posite structures with 50% moduli ratio are nearly isotropic, specifically at

lower truss thicknesses. This is because the contribution of cubic and octet

lattices in the overall structural properties is comparatively negligible. As

lattice truss thickness increases, the composite structure deviates slightly

from this isotropic behavior. When the moduli ratio is 5%, the lattice plays

a more prominent role in the overall strength; the anisotropy of the compos-

ite structure is dominated by the lattice. The maximum anisotropy of these
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composites occurs at truss thickness, t, of 0.7 mm as opposed to 0.1 mm for

the pure lattices.

We compare the elastic behavior of the bowtie composites with the pure

lattice based on UAI evaluated through Eq. (28). For 50% and 5% mod-

uli ratio, the composite behaves almost isotropically (UAI = 0, Fig. 22b).

Again, here the stiffness is dominated by the filler material rather than the

lattice. For much softer filler material (0.5% moduli ratio), the bowtie lat-

tice maintains some anisotropy. These results show that we can decrease the

anisotropy of the composite structure by increasing the modulus of the filler

material.
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10 Conclusion

In this thesis, we reviewed the displacement-based elastostatic and Bloch-

wave homogenization methods within a finite element method framework for

effective property evaluation of 3D periodic lattices. We applied these meth-

ods to evaluate effective elastic properties of anisotropic lattices with cubic,

tetragonal and transversely isotropic symmetry, including an auxetic geome-

try. Results obtained from Bloch-wave homogenization agree well with static

homogenization results for different symmetries, relative densities, truss ori-

entations and non-principal periodicities. We compared various lattices based

on their anisotropic behavior through Zener and Universal anisotropy index.

We extended this approach to analyze composite structures with lattice rein-

forcements, and our results show that the anisotropy and elastic performance

of these structures can be manipulated without modifying the lattice geome-

try, but instead by modifying relative bulk material properties of the lattice

and surrounding material.

The Bloch-wave homogenization approach studied in this work will open

new directions to study the effect of change in geometry and bulk material

properties on the static as well dynamic properties of the structure simul-

taneously, and can accelerate the process of analyzing periodic structures

to achieve certain vibration characteristics such as band gaps, mode shapes,

and energy propagation, in addition to their static effective properties. By

changing the anisotropy of the structure, we show it is possible to control

the wave propagation in certain direction with or without minimal change

in other directions. Future work in this process will include experimental

verification of evaluated effective properties of lattices. This method can be

extended to develop multifunctional structural materials, where tailored vi-
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bration mitigation, high impact absorption, and optimum static properties

are required. The bridge between wave velocities and mechanical proper-

ties of lattice structures is also useful in nondestructive evaluation (NDE) of

metamaterials through wave velocity measurements. This analysis lays the

groundwork to explore NDE of lattice metamaterials in terms of quantifying

mechanical property degradation through ultrasonic velocity measurements.
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[66] V. Vavryčuk, Calculation of the slowness vector from the ray vector in
anisotropic media, Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 462 (2067) (2006) 883–896 (2006).
doi:10.1098/rspa.2005.1605.

[67] R. Ledbetter, H M; Kriz, Elastic- Wave Surfaces in Solids, Physica Sta-
tus Solidi 475 (114) (1982) 5–10 (1982).

[68] H. J. Lee, J. R. Lee, S. H. Moon, T. J. Je, E. C. Jeon, K. Kim,
Y. Y. Kim, Off-centered Double-slit Metamaterial for Elastic Wave
Polarization Anomaly, Scientific Reports 7 (1) (2017) 1–13 (2017).
doi:10.1038/s41598-017-15746-2.

[69] S. I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy
index, Physical Review Letters 101 (5) (2008) 3–6 (2008). doi:10.1103/
PhysRevLett.101.055504.

[70] L. Wang, J. Lau, E. L. Thomas, M. C. Boyce, Co-continuous composite
materials for stiffness, strength, and energy dissipation, Advanced Mate-
rials 23 (13) (2011) 1524–1529 (2011). doi:10.1002/adma.201003956.

58

https://doi.org/10.1098/rspa.2016.0738
https://doi.org/10.1002/jbm.b.33854
https://doi.org/10.1021/j150474a017
https://doi.org/10.1021/j150474a017
https://doi.org/10.1190/geo2014-0023.1
https://doi.org/10.1121/1.394527
https://doi.org/10.1111/1365-2478.12626
https://doi.org/10.1111/1365-2478.12626
https://doi.org/10.1098/rspa.2005.1605
https://doi.org/10.1038/s41598-017-15746-2
https://doi.org/10.1103/PhysRevLett.101.055504
https://doi.org/10.1103/PhysRevLett.101.055504
https://doi.org/10.1002/adma.201003956

	List of Figures
	Introduction
	Lattice Materials
	Lattice Properties and Applications
	Motivation
	Thesis Outline

	 Literature Review
	 Preliminary Concepts
	Elasticity and Material Symmetry
	Plane Wave Propagation and Christoffel's Equation

	 Description of Lattice Geometries
	 Elastostatic Homogenization
	 Bloch-wave Homogenization
	 Effective Properties of Cubic Symmetry Lattices
	 Effective Properties of Lower Symmetry Lattices
	Tetragonal Symmetry Lattices
	Transversely Isotropic Symmetry Lattice
	Anisotropy Index of Lower Symmetry Lattices

	 Effective Properties of Composite Structures
	 Effective Properties of Bowtie Composite Structures
	 Anisotropy Index of Composite Structures

	 Conclusion

	References

