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ABSTRACT

Image object detection networks that depend on region proposal networks

(RPN) have achieved state-of-art results. As RPN is trained to share convo-

lutional features with the actual classification layers in the network, features

learned by the convolutional backbones may have subtle impact on the RPN.

A successful approach comes from RGB-D image object detection, where the

convolutional layers learn not just RGB features, but also depth features.

In this thesis, we study the problem of simultaneously localizing objects as

well as estimating their depth. We propose to use one backbone network for

two tasks and show that multi-task learning with shared weights can have re-

ciprocating benefits. Our experiments show that when combined with depth

prediction in the network, the object detection branch in our model outper-

forms Faster-RCNN on the challenging KITTI detection benchmark and the

Cityscapes dataset. Likewise, the performance of our depth prediction branch

is slightly better compared with methods using the same depth prediction

architecture.
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CHAPTER 1

INTRODUCTION

Object detection within single images has a long history in computer vision.

With the rise of region proposal methods and region-based convolutional

neural networks (RCNN) [1], impressive progress has been made on this

challenging task. However, the performance of the state-of-art object detec-

tion is still not good enough compared to that of average humans. This is

because that, in general, only RGB information of images are used in these

methods. Humans, on the other hand, in addition to directly selecting re-

gions of interest (RoI) based on the appearance of the scene, perform depth

estimation to decide which RoI deserves more attention. Such a process is

used on monocular image scenes as well, since humans are adept at monoc-

ular depth estimation by using many abstract vision cues to understand the

scene of interest [2]. Research on human depth perception has also shown

that, when the human brain attempts to understand an image, it tries to

both predict scenery depth and recognize objects at the same time. It can

be observed that neurons working on each task share signals provided by the

visual cortex, and correspondence between the perception from each tasks

complement each other to get even more accurate results [3].

A more intuitive example is presented here to show that by estimating

depth map of the original RGB input, it is not challenging to use fundamental

clustering methods to categorize pixels into different depth ranges. As shown

in Figure 1.1, a depth map was estimated using the Monodepth [4] model

from the original RGB image. In order to calculate a histogram of pixel count

against their estimated depth, we group pixels into bins of size 30cm from

5m to 50m. The depth of each pixel is defined as the distance between the

real-world representative of the pixel and the camera that shot the photo. It

is obvious from the histogram shown in Figure 1.1 that most pixels fall within

20m from the camera, and there exist two major peaks which may indicate

the existence of objects around those depth ranges. By using the Gaussian
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Figure 1.1: The three diagrams from top to bottom are: (a) the original
RGB image, (b) the depth estimation generated by Monodepth [4] and (c)
histogram that counts pixels against their depth.

Figure 1.2: Pixels are grouped into three clusters. Starting from the left, we
show pixels from 5m to 13m as the first layer, pixels from 14m to 25m as
the second layer and pixels from 26m to 50m in the third layer.
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Figure 1.3: The image shows bounding boxes proposed by the selective
search algorithm [5] from each depth range in the original image. Green
boxes were proposed based on the first layer of depth, blue boxes from the
second layer of depth and red boxes from the third layer.

mixture model (GMM), we can cluster the pixels in the given example into

three groups. As illustrated in Figure 1.2, each group of pixels was drawn

in a different layer. We may observe that the pixels corresponding to the

cyclist lie in the first layer, while pixels of the car are in the second layer

and the rest of the background pixels are categorized into the third layer. If

methods such as selective search [5] and EdgeBoxes [6] algorithms are used

to generate regional proposals of object candidates in the separated layers

instead of the original images, it would require fewer proposals to cover all

objects of interest. Figure 1.3 shows that the top-30 regional proposals,

which were generated by the selective search algorithm using the three depth

layers, cover all objects of interest. In comparison, it would require ∼ 200

regional proposals for the same coverage if the same algorithm is applied to

the original RGB image.

However, procedures described in this example require human interaction,

such as deciding the best number of clusters of the GMM algorithm. It was

popularly known that before the emergence of convolution neural networks

(CNN), which were inspired by the principles of the human visual cortex,

it was challenging for traditional computer vision methods to identify hand-

tuned features for either image object detection or depth estimation. There-

fore, it is appealing to conduct research on deep learning approaches which

are known to have the potential of learning sophisticated features.

Based on this intuition, related work has been done using RGB-D images
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as input for image object detection over the past few years. Utilizing sensors

that collect depth information from their environment, such as sonar sensors,

the Microsoft Kinect range camera and LiDAR, an increasing number of

image detection datasets containing depth ground truth became available for

research purposes. However, certain constraints still exist due to the limited

quality of depth information provided by the aforementioned sensors.

In general, two major factors need to be considered when acquiring the

depth information of objects and environments: (1) density of depth (how

densely depth labels are assigned to each pixel), and (2) range of depth

(what is the largest depth that can be measured by the sensor). As for factor

(1), sensors like Kinect may provide high density for mapping the depth

label to each pixel captured by a camera. Datasets such as the RGB-D

object dataset [7] and the NYU V2 dataset [8] are great examples of using

Kinect to obtain very dense depth ground truth. However, they are limited

by the inability to provide depth information for anything more than short

range (≤ 6m). On the other hand, there are sensors which are laser-based

(e.g. LiDAR) for measuring depth in a very large range (≥ 30m). But

these sensors are expensive and typically they can only provide sparse depth

maps. Therefore, for tasks like providing depth information for self-driving

cars where both high density and large range of depth are preferred, solely

relying on sensor measurement is insufficient. As a result, learning based

methods are becoming a popular approach to obtain depth information.

Taking the above considerations into account, we ask the questions of

whether it is possible to design a deep learning model that can learn from

both object detection and depth estimation, and internally, if the parameters

learned by different tasks contribute to improving the performance of each

other. This thesis was inspired by the work of Mask RCNN [9], and proposed

a multi-task Depth-aware RCNN (DaRCNN) framework that performs both

object detection and depth prediction from a single RGB image input. In this

thesis, we will show that through an innovative method of sharing the feature

extraction backbone between the two tasks, and integrating depth estimation

parameters into the object detection task, the object detection task shows

improvements in both recall rate and precision, and outperforms models that

only conduct object detection on the KITTI detection benchmark [10]. We

will also show that the depth branch weights learned from KITTI datasets

can be generalized and improve object detection accuracy on images from
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Figure 1.4: Block diagram of Our Depth-aware RCNN (DaRCNN)
framework for object detection and depth prediction. The input image is
fed into CNN backbone structure, and the features extracted are shared
between object detection and depth estimation branches. Also, part of the
deconvolution layers (as shaded in yellow in the diagram) from the depth
estimation branch are fed into the detection branch.

the Cityscapes dataset [11], which has similar scene structures and object

classes with the KITTI dataset. A block diagram representing our proposed

model is shown in Figure 1.4.
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CHAPTER 2

RELATED WORK

2.1 Object Detection

Region-based CNN: There is a large literature that focusing on region-

based dense object detection from images. While some of the widely applied

object detection methods use region proposal methods (e.g. selective search

[5] or EdgeBoxes[6]) to propose region of interest (RoI) in the image in the

first step, and then use deep neural network to classify each RoI in bound-

ing boxes. Methods like Faster-RCNN [12] extract features of the image

through convolution layers, and then embed a regional proposal network in

and end-to-end architecture, and finally use the regional proposal to perform

RoIPooling on the extracted feature to perform the final classification (see

Figure 2.1). Mask RCNN [9] has built its extension based on the Faster-

RCNN’s efficient and robust framework. In their paper, He et al. proposed

to add a fully convolutional network (FCN[13]) branch in parallel to the re-

gion proposal and classification branch to output a binary segmentation mask

for each RoI. Further, they attempted adding keypoint detection branch to

predict human poses. Furthermore, they explored using a feature pyramid

network (FPN [14]) as the backbone architecture to obtain feature maps that

are semantically strong in different scales. Finally, they innovatively applied

the RoIAlign technique to reduce the effect of pixel misalignments caused by

the original RoIPooling layers.

RGB-D object detection: Another perspective of image object detec-

tion is to integrate depth as a complementary channel to the original RGB

image. For the purpose of detection, depth information may come in different

forms, such as a point cloud, voxel representation or encoded HHA format

[15]. Based on various formats, different approaches are required to perform

feature extraction from the inputs. In the case of using point clouds or voxel
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Figure 2.1: An illustration of Faster-RCNN. Image credit: the original
paper [12].

representation, where pixels of the original image can be directly mapped to

a 3D spatial coordinate in a given environment, methods such as [16, 17, 18]

use 3D convolution kernels to perform feature extraction from a 3D spatial

input. In other cases, the raw depth data may come in the form of using

a single value for each pixel to represent the distance between the physical

object and the depth sensor. Such depth information is represented as an

extra image channel, or can be further encoded into the HHA format [15], in

which it translates the depth map into three channels: embeds height above

the ground, horizontal disparity and angle with gravity for each pixel. Af-

ter encoding the depth information, standard convolutional network such as

VGG [19] and ResNet [20] can be applied to these extra channels to extract

features. Now with the feature extracted, methods introduced in previous

sections can be applied to predict the object bounding box and class. In

one of the most recent works, Wang et al. [21] further developed the idea

of extracting features from depth map by adding depth aware operations in

the convolutional network. By integrating checks on depth similarity between

pixels in the process of information propagation, they incorporated geometry

seamlessly into their CNN.
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2.2 Monocular Depth Estimation

Originally, depth prediction from image data relied on multi-view stereo

frames, structure from motions, or binocular frames. These methods aim to

recognize differences (normally the disparity or keypoint movements) within

pairs of consecutive views, and estimate depth through solving triangulation

geometry equations. Nevertheless, such methods assume that more than one

observation of the environment is available to the estimation model. It has

been studied that when a single image of the scenery is provided, average hu-

mans perform very well at monocular depth prediction by utilizing cues such

as perspective, size of familiar objects, occlusions in the scene, and lighting

conditions of object appearance [3].

Many approaches have been presented which try to perform monocular

depth estimation on a single-frame image. One of the earliest investiga-

tion studied monocular depth prediction by formatting the input image into

super-pixels, and inferring depth and 3D orientation of super-pixels through

learned plane coefficients combined with Markov Random Fields (MRF) [22].

In addition to this, there exist many related works [23, 24, 25] that depend

heavily on hand-tuned features. The major disadvantage of such methods

is they do not generate very realistic outputs because those manually tuned

features lack global context of the environment. Instead of using hand-tuned

features, Liu et al. [26], used CNN to extract features and formulated the

optimization as a Conditional Random Field (CRF) with variable potentials.

But this approach still relies on assumptions, such as similar RGB regions im-

ply also similar depth estimations, and are not always practical in real-world

applications.

More recently, a group of related works fully utilize deep learning models

for depth prediction. Eigen et al. [27] have shown that by training an end-to-

end deep neural network using depth map as ground truth, it is possible to

produce pixel-wise depth estimation. Unlike other previous related research,

methods fully using deep neural networks do not have strong assumptions of

the input image. Various works [4, 28, 29] were developed upon such logic

and designed networks that follow an encoding-decoding paradigm to perform

regression learning. Particularly, our depth estimation branch relies on the

work introduced by Laina et al. [28], which defines a fully convolutional

residual (FCR) up-convolution/up-projection blocks to deconvolve extracted
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features into a full resolution depth map.

2.3 Multitask Learning on Depth and Detection

In the work presented by Cao et al. [30], the authors proposed a two-stage

model for depth prediction and object detection tasks. The first stage con-

tains a deep neural network trained to predict depth from an RGB image,

while the second stage combines the predicted depth map with the original

RGB image and feeds them into an RGB-D detection network. One dis-

advantage of such design is that, the two networks in each stage have very

limited weights shared, and training on one task would not have effect on

the other task. As proven by works such as Mask-RCNN, multitask learning

frameworks may benefit from synergistic effects by sharing parameters among

different tasks. Research has been attempted to utilize multitask learning to

simultaneously perform object detection and image depth prediction from

RGB images. In a very recent work presented by Chen et al. [31], they

have proposed a DSPNet for joint detection, depth estimation and semantic

segmentation on driving scene images. In their design, the network produces

a single depth value in meter for each detected object, and the model uses

a single architecture for both detection and instance-level depth estimation.

This means that the final output of their network would not estimate depth

for backgrounds (such as roads and buildings) and objects that are not de-

tected by the network. Compared with their method, our model outputs

pixel-wise depth estimation, and we utilize two different network architec-

tures that can inference in parallel for the depth estimation and the object

detection tasks.
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CHAPTER 3

METHODOLOGY

In this chapter, details of the proposed architecture (see Figure 3.1) are

explained. For clarity, the convolutional backbone structure used to extract

features from the RGB input image are described in Section 3.1, and then

the task branch architectures for object detection and depth prediction are

presented in Sections 3.2 and 3.3 respectively. Finally, the loss functions

applied in the optimization of each task is shown in Section 3.4.

3.1 CNN Backbone

The CNN backbone performs as contraction layers with pyramidal struc-

tures. With such a design, features extracted in lower levels have smaller

receptive fields and are semantically weaker but come with higher resolu-

tion, while features extracted in higher levels have high receptive fields and

are semantically stronger but come with lower resolution. In this research,

we evaluate our network based on ResNet [20] of 101 layers (ResNet101).

Additionally, we evaluate a more effective backbone structure, the feature

pyramid network (FPN) [14], which through lateral connections, combines

low-resolution features with high-resolution features to obtain a feature pyra-

mid that is semantically strong at different scales.

Specifically, for Resnet101 [32] we denote the features extracted by each

stage’s last residual block, which are conv1, conv2, conv3, conv4 and conv5 as

{C1, C2, C3, C4, C5}. And for the FPN backbone, layers from ResNet101 and

the depth estimation branch are used as the bottom-up pathway. We use the

same notation as the original paper [14] and denote the final set of feature

maps to be {P2, P3, P4, P5}, where we do not use P1 which corresponds to

conv1 because of its large memory footprint.
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Figure 3.1: Network architecture. Our proposed model contains three
major parts. The CNN backbone encodes the input RGB image, and
features extracted here are used by the object detection branch and the
depth prediction branch. The detection branch utilizes FPN [14] and
RPN [12] for object detection, and the depth prediction branch uses
up-convolution/up-projection blocks [28] to decode features into depth. In
addition, we add skip connections to concatenate feature layers
conv3, conv4 with decoding layers up1, up2 respectively in the depth branch,
and forward the concatenated layers to the FPN in the detection branch.

Figure 3.2: Up-convolution and up-projection blocks. The diagram
shows more details of the referenced (a) up-convolution and (b)
up-projection blocks from [28].
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3.2 Depth Prediction Branch

Recent approaches of using deep neural network for monocular image depth

prediction have shown significant progress. Among those methods, many

have designed their networks that conform to the encoder-decoder paradigm

[27, 33, 4, 28, 29]. In our design, the CNN backbone which extracts image

features plays the role of encoder, and we explore two simple architectures

introduced in [28] for decoding as illustrated in Figure 3.2.

The first decoding architecture we explore is the up-convolution [28] struc-

ture. The up-convolution layers are divided into several blocks that share the

same layer sequence. In each up-convolution block, the input feature maps

are fed into the unpooling layer as described in [13], and is implemented with

a 1× 1 transpose convolution operation with stride equal to 2. This unpool-

ing layer doubles the size of input along both width and height. Then, the

unpooling layer is followed by a 5×5 convolution layer and a ReLU activation

layer to generate the output.

The second decoding architecture we evaluate is the up-projection networks

as described in [28]. Again, this architecture is divided into blocks. The

only difference between up-projection blocks and the up-convolution blocks

is that, up-projection blocks have projection residual connection from input

to output.

The depth branch of our final design stacks four of either up-convolution

or up-projection blocks. In this thesis, we denote the output layers from each

decoding blocks to be {U1, U2, U3, U4}. The final output size is 16x of the

scale of feature maps generated at C5/P5. Also, in addition to the original

design proposed in [28], we introduced skip connections from ResNet output

to the decoding layers. In our design, the inputs to generate U2 and U3 are

U1 + C4 and U2 + C3 respectively (see Figure 3.1).

3.3 Object Detection Branch

Our object detection branch follows the two-stage procedure used in the

Faster-RCNN detector [32]. In the first stage, a region proposal network

(RPN) is applied to propose bounding boxes which contain candidate objects.

Then for the next stage, the detection network uses RoIAlign which was
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proposed in Mask RCNN [9] to extract features from each bounding box, and

finally it performs classification and bounding box regression. Because there

exist a large number of small objects in the KITTI detection challenge dataset

[10], choosing RoIAlign instead of RoIPooling helps to reduce misalignment

when generating the final feature map for classification. For comprehensive

comparisons between Mask/Faster-RCNN and other detection frameworks,

please refer to [34, 9, 35]. The major difference in our design is that unlike

Mask-RCNN, whose FPN [14] is built based on only ResNet features, our

model may use both ResNet layers and depth decoding layers to build the

feature pyramid. When depth branch is disabled, the FPN in the detection

branch are fed with features from ResNet only. However, when depth branch

is enabled, P4 is generated from {P5, U1 + C4} and P3 is generated from

{P4, U2 + C3}. The second design allows high semantic features trained for

decoding depth to interact with the object detection task, which is similar to

add features extracted from the depth channel to the original RGB features.

3.4 Loss Function

As for training our model, two sets of loss functions are applied. For the

detection branch, the loss is calculated on each sampled RoI as LRoI = Lcls +

Lbox, which are identical to the classification loss Lcls and bounding box loss

Lbox defined in [34].

On the other hand, the regression loss Ldepth is defined as the squared l2

norm between prediction ŷ and y: ground truth:

Ldepth = ||ŷ − y||22 (3.1)

This loss function is reported to generate good results in [28] for the depth

prediction branch architecture.

In addition to using L2 loss for the depth estimation training, there exists

a more robust berHu [36] loss which can be used for the depth estimation

learning task. The berHu loss is defined as

xi = ŷi − yi (3.2)
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c =
1

5
max

i
|xi| (3.3)

B(xi) =

|xi|, if |xi| ≤ c

x2
i+c2

2c
, otherwise

(3.4)

In general, the berHu loss is a reversed L1-smooth loss, and is more sensitive

to small losses. We would like to further experiment with this loss for more

improvements in the future.
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CHAPTER 4

EXPERIMENTS

In this thesis, the effectiveness of both object detection and depth prediction

branches are evaluated, and the proposed model is compared with various

single-task methods focusing either on object detection or depth estimation.

Because the training of the proposed network requires ground truth of both

object labels and depth of the scenery, existing image datasets, such as [37,

38, 11] which only focus on image object detection, or datasets like [8] which

only focus on scenery depth prediction, are not suitable for training our

model. As an alternative, we evaluate our methods using the challenging

KITTI object detection dataset [10].

4.1 Network Configuration

In our network configuration, we resize the input images so that their longer

edge is set to 1024 pixels, and their shorter edge is first resized to preserve

the input image aspect ratio, and then padded with 0 so the final input

image has a resolution of 1024 × 512 pixels. One issue we observe with

this setup is that, even though the padding is necessary for the contraction

layers in the backbone to work, it introduces garbage features. Although

this would not cause a big issue for object detection training, as only regions

proposed containing objects will be examined, those unnecessary features

lead to meaningless depth prediction.

Therefore, in order to remove the effect of padding zeros for predicting

depth, the final output from the depth estimation branch is cropped back

to the original image racial, and the loss is only calculated from pixels that

have non zero depth ground truth. With the input image having resolution

1024× 512, the resolution of output image from depth estimation branch is

512 × 256, and after cropping, the final predicted depth map’s resolution is
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512× 160 to follow the original aspect ratio of raw KITTI images.

4.2 Training

Dataset. The KITTI detection benchmark [10] provides 7,481 training im-

ages and 7,518 testing images. For our analysis and evaluation on the task of

object detection, we follow the advice from [39] to split the provided training

images into 3,682 images and 3,799 images for training and validation respec-

tively. During training, images were randomly flipped horizontally for data

augmentation. For the depth prediction branch evaluation, we no longer use

the image provided in the detection benchmark, but focus our training on

the dataset for the depth prediction benchmark. We notice that although the

depth prediction dataset provides sparse depth ground truth generated by

LiDAR sensors, the provided labels are not dense enough to train our model.

Fortunately, training images released in this benchmark were captured from

the left camera mounted on a car, and each left image can be paired with an

image captured from the right camera as a stereo image pair. In this way, we

were able to obtain disparity maps for training images. By using the camera

calibration that came along with the benchmark, and align with the sparse

depth ground truth, we reconstruct a pixel-level dense depth map for each

training and validation image.

Training Parameters. Our model is trainable using only one Nvidia

1080TI GPU with a reasonable amount of time, and we choose to use a batch

size of two training image based on the given GPU memory. The training of

our model contains three stages in total to fully utilize different datasets for

each task branch, albeit these two branches can work in parallel to generate

results at inference time. The training procedure of our models can be spec-

ified using the following steps: (1) train only the depth prediction branch on

the KITTI depth prediction dataset until Ldepth converges, (2) train the ob-

ject detection branch with the depth branch disabled on KITTI 2D detection

dataset until Ldetection converges, and (3) train with both branches enabled

using a 2D detection dataset until Ldepth + Ldetection converge. In stage (1),

we use initial learning rate of 0.005, and weight decay of 10% after every

5k iterations. In stage (2), we follow the training procedure introduced in

[34]. Here we use the KITTI evaluation standard that, in order to be con-
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Table 4.1: Results of depth prediction between our method and benchmark.
For the reported evaluations RMSE, lower is better, where as for the
accuracies δi ≤ 1.25i, higher is better.

KITTI Train/Val Depth

Method RMSE δ1 δ2 δ3
Eigen et al.[27] 7.391 0.563 0.724 0.837
Monodepth [4] 4.471 0.635 0.789 0.872
FCR(up-conv) [28] 1.267 0.721 0.870 0.958
FCR(up-proj) [28] 1.011 0.758 0.906 0.964
DaRCNN(up-conv) 1.186 0.801 0.936 0.974
DaRCNN(up-proj) 0.922 0.828 0.948 0.986

sidered as a positive sample, it requires the intersection of union (IoU) ≥ 0.7

for cars, and IoU ≥ 0.5 for pedestrians and cyclists. We start our training

with pretrained ResNet101 weights on the COCO dataset [37]. The shared

CNN backbone is updated in stages (1) and (3), while the task branches’

weights are updated only when used for inference. The learning rate of the

detection branch is initialized at 0.001. We use the momentum 0.9 and the

weight decay 0.0001. And in the final stage, the two branches are enabled

simultaneously using an initial learning rate of 0.0005 with same momentum

and weight decay used in stage (2). The final model is obtained after 200K

iterations from all three stages, and it takes approximately 17 hours on a

single 1080TI GPU.

4.3 KITTI Depth Estimation Results

As the depth prediction branch in our DaRCNN is built based on the fully

convolutional residual architecture (FCR) proposed in [28], we mainly com-

pare our model with the original FCR model, and several other methods that

were used as comparison reported in [28] in Table 4.1. Some of the results

shown in this table are different from the number reported in their original

paper. This is due to the choice of dataset used for evaluation. In those

works, they have used the Eigen split on the KITTI raw dataset as described

in [27], which uses 687 test images and uses 22,600 images for training, which

is very different from the new train/validation split provided by the KITTI
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benchmark. From the comparisons in Table 4.1, we observe that when the

detection branch of our DaRCNN is disabled during training and inference,

the performance of this model is very close to the FCR implementation with

the same CNN backbone structure. This confirms that our depth prediction

branch can achieve the same performance as indicated by [28]. In compar-

ison, when we co-trained our depth branch with the detection branch, our

model achieved higher accuracy. This illustrates that using a shared back-

bone structure in our network design would not have any adverse effect on

the depth prediction branch.

4.4 KITTI Detection Results

We evaluate and compare our DaRCNN detection results on both the KITTI

detection test set and our own train/validation split. The comparison results

on train/validation split is in Tables 4.2, 4.3 and 4.4, and the results on

submitted KITTI test detection is shown in Table 4.5. Both instantiations

of our model (DaRCNN with up-conv or up-proj) outperform the baseline

model (Faster-RCNN + FPN [12, 14]) which our models are built based on.

Also, comparison of detection results between Faster-RCNN, DaRCNN

with up-projection and the depth prediction of DaRCNN are visualized in

Figure 4.1. By going through the validation image outputs, we noticed that

DaRCNN performs better detection on objects that are comparatively farther

away from the camera. These objects, such as pedestrians and cyclists that

are far away cover only very small regions of pixels in the original image,

and could be mistakenly recognized as background. But our visualization of

the depth prediction shows different depth on these regions compared to the

background. This verifies that the encoded features learned by depth branch

are activated on such objects. By sharing these features with RPN, it is more

likely to result in region proposals of these projects for the final classification

network. A comparison of recall rate of each object category is shown in

Table 4.6. Both of our models show a higher recall rate compared to the

baseline Faster-RCNN, especially in the pedestrian and cyclist categories.
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Table 4.2: Car detection results between different detection methods on our
train/validation set under three difficulties: easy, medium (med) and hard.

KITTI Train/Val Car Detection (AP%)

Methods Backbone easy med hard
Faster-RCNN 101 87.83 86.29 76.27
Faster-RCNN 101+FPN 88.74 87.21 77.64
DaRCNN(up-conv) 101+FPN 90.16 89.02 78.72
DaRCNN(up-proj) 101+FPN 90.47 89.52 80.26

Table 4.3: Pedestrian detection results between different detection methods
on our train/validation set under three difficulties: easy, medium (med) and
hard.

KITTI Train/Val Pedestrian Detection (AP%)

Methods Backbone easy med hard
Faster-RCNN 101 76.27 75.85 63.91
Faster-RCNN 101+FPN 77.64 77.48 66.17
DaRCNN(up-conv) 101+FPN 80.91 69.27 58.83
DaRCNN(up-proj) 101+FPN 90.47 89.52 80.26

Table 4.4: Cyclist detection results between different detection methods on
our train/validation set under three difficulties: easy, medium (med) and
hard.

KITTI Train/Val Cyclist Detection (AP%)

Methods Backbone easy med hard
Faster-RCNN 101 72.82 58.73 57.47
Faster-RCNN 101+FPN 74.82 59.09 59.93
DaRCNN(up-conv) 101+FPN 77.27 65.72 62.96
DaRCNN(up-proj) 101+FPN 77.91 68.20 62.79

Table 4.5: Detection results of medium level objects on the KITTI Test set.

KITTI Test medium objects results (AP%)

Method Car Pedestrian Cyclist
Faster-RCNN-FPN 86.83 66.92 63.82
DaRCNN(up-proj) 89.56 67.72 67.39
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Table 4.6: Results of medium level objects recall rate. The depth prediction
branch participates in the training, and improvements on the recall rate of
the final detected object can be observed.

KITTI Train/Val Medium Object Recall (%)

Method Car Pedestrian Cyclist
Faster-RCNN-FPN 88.62 60.45 55.74
DaRCNN(up-conv) 89.21 64.23 60.82
DaRCNN(up-proj) 90.76 64.82 61.04
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Figure 4.1: The left two columns show some detection results between
Faster-RCNN + FCN [12, 14] vs. DaRCNN (with up-projection) on KITTI
validation images. It is notable that our detection results can better
recognize objects which are relatively further away from the camera. The
third column shows the visualization of depth estimation by DaRCNN. The
depth maps shown above are resized and interpolated to the same scale of
input images.
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Table 4.7: Detection results for car, rider and person on the Cityscapes
dataset. The DaRCNN with depth uses up-projection for deconvolution.

Cityscapes Object Detection (AP%)

Methods Depth Car Rider Person
DSPNet [31] X 59.1 37.7 34.9

DaRCNN × 58.8 36.4 34.5
DaRCNN X 59.7 37.1 35.2

Figure 4.2: In the first three rows, DaRCNN with depth enabled performs
slightly better than with depth disabled. DaRCNN without depth enabled
mistakenly classified the rider in example (row) 3 into two riders, while
with depth enabled, our model mistakenly classified several persons in
example (row) 4 into a single bounding box.

4.5 Cityscapes Detection Results

To further show that the learned depth weights can be generalized to driving

scene in other datasets, we fine-tuned our model on the Cityscapes dataset

[11] without updating depth branch weights, and evaluated on classes similar

to those used in our KITTI evaluation with depth branch enabled. As shown

in Table 4.7, with the depth weights learned from the KITTI dataset, it

improves the performance of detection branch by an average ∼ 0.8% on each

category.

Some examples of DaRCNN with and without depth branch enabled are

shown in Figure 4.2. It is noticeable that the detection branch gets influence

21



by the shared depth weights as it tends to group objects clustered together

with very high occlusion into one bounding box. This leads to the correct

detection on the single rider in example 3, while the model without depth

enabled treats part of the back seat of the bike as another rider. However,

such behavior may also leads to mistakes such as grouping several person

with occlusion into one bounding box in example 4.
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CHAPTER 5

CONCLUSION

In this thesis, we presented a conceptually simple and flexible Depth Aware

RCNN (DaRCNN), which adds depth prediction as an extension to Faster-

RCNN [12]. In our experiments, we adopted Faster-RCNN network architec-

ture as the regional based detection branch, and used a fully convolutional

residual (FCR) [28] network with skip connections from the ResNet [20] for

our depth estimation branch. By allowing these two branches to share fea-

tures extracted from both the CNN backbone and part of the decoding layers,

we have shown that the object detection branch in our model outperforms

Faster-RCNN on the KITTI detection benchmark, and our depth estimation

branch achieves similar performance compared to the original FCR architec-

ture. Moreover, we showed that the learned trained depth estimation weights

can improve object detection accuracy on driving scenes from Cityscapes

datasets. We hope that our proposed multitask learning method provides

a new perspective which combines object detection and scenery depth esti-

mation, and a framework that future research in object detection and depth

prediction can help to improve.

As for our future work, we plan to focus on designing more sophisticated

and efficient network architectures for both object detection and depth pre-

diction branches. We will further confirm that our framework is robust and

can achieve better performance if new architectures are used.
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