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ABSTRACT

Reinforcement learning is a general and unified framework that has been proven promising

for many important AI applications, such as robotics, self-driving vehicles. However, current

reinforcement learning algorithms suffer from large variance and sampling inefficiency, which

leads to slow convergent rate as well as unstable performance. In this thesis, we manage to

alleviate these two relevant problems. For enormous variance, we combine variance reduced

optimization with deep Q-learning. For inefficient sampling, we propose novel framework

that integrates self-imitation learning and artificial synthesis procedure. Our approaches,

which are flexible and coud be extended to many tasks, prove their effectiveness through

experiments on Atari and MuJoCo environment.
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CHAPTER 1: INTRODUCTION

Interacting with the environment, when we talk about the nature of learning, is probably

the first idea that comes to us. Infants learn to walk by tumbling to the ground; eaglets learn

to fly through hopping between branches of trees. Although they do not have an explicit

teacher, they do have direct connections to the around environment. Reinforcement learning

(RL) is a computational approach to imitate the nature of learning from interactions. The

fundamental idea behind RL is learning what to do by trials, namely learn how to map

current situations to actions so as to achieve the final goal. However, an action does not

only affect current situation but also has lasting effects for future scenarios. The above

two characteristics, trial-and-error search and delayed rewards, are the two most important

features that make RL distinct from other approaches [Sutton and Barto, 2018].

1.1 ELEMENTS OF REINFORCEMENT LEARNING

In every discussion of a reinforcement learning system, besides the environment and agent,

there exist several key components: a policy, a reward, a value function and an optional model

of the environment. The general mechanism of the reinforcement learning system is depicted

in figure 1.1.

• Policy: a policy defines the agent’s reaction to the environment. Sufficiently, it deter-

mines the behaviour of the agent.

• Reward: the reward is the realistic representation of the learning process’s final goal.

In each iteration of the interaction, the environment gives the learning agent a numeric

value corresponding to the action agent takes. The general object of the agent is to

maximize the cumulative rewards.

• Value function: the value function indicates what is a good choice in the long-

term sense, compared to the reward, which is a feedback of the immediate situation.

Generally speaking, the value function of a situation / state, is the cumulative rewards

that the agent could gain starting from that situation / state.

• Model of environment: the model predicts what the environment will behave when

receiving the action from agent. This model is not necessary for a reinforcement learn-

ing system. Actually, if we have a model for environment, it is called a model-based

algorithm. Otherwise, the algorithm is a model-free one.
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Environment Agent

State & Reward

Decide Action with
Policy / Value Function / Model of Environment

Figure 1.1: General Reinforcement Learning System

1.2 DIFFERENCE BETWEEN VARIOUS MACHINE LEARNING FRAMEWORKS

Reinforcement learning is a kind of framework used in machine learning community and

it distinguishes itself from supervised learning and unsupervised learning.

Supervised learning is a kind of task that infers a function from labeled data and manages

to generalize the inference from training examples to unseen data. In general, supervised

learning requires domain knowledge for labeling the data. In reinforcement learning liter-

ature, there does not exist such expert knowledge which is external to the reinforcement

learning system.

On the other hand, unsupervised learning concentrates on finding hidden structure from

unlabeled data. Although reinforcement learning uses samples without label as well, its focus

is laid on maximizing the future cumulative rewards instead of discovering hidden structure.

Reinforcement learning has been studied in many other fields for a long time, such as game

theory [Lee, 2008], control theory [Bertsekas et al., 1995] and multi-agent system [Littman, 1994].

Recently, as the prevalence of deep learning [LeCun et al., 2015], there are plethora of work

that focuses on deep reinforcement learning (DRL). It has been proven promising that

DRL is able to achieve or even outperform human experts, such as Go [Silver et al., 2016,

Silver et al., 2017], Atari games [Mnih et al., 2015]. However, there also exist severe prob-

lems in DRL training scheme. The large variance results in slow convergence rate and the

extreme sample inefficiency makes that DRL is hard to be implemented in daily situation.

In this thesis, we propose two new algorithms that aim to alleviate such problems. One work

is based on variance reduced gradient descent [Zhao et al., 2019] and the other is developed

from self-imitation policies [Gangwani et al., 2018].

The rest of the thesis is organized as follows. Chapter 2 gives background and problem

definition of reinforcement learning. Chapter 3 introduces our new algorithm for variance re-

2



duction learning. A new algorithm for efficiently exploiting samples are explained in Chapter

4. Related work is discussed in Chapter 5. We conclude this study in Chapter 6.
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CHAPTER 2: REINFORCEMENT LEARNING BACKGROUND

In this chapter, as an overview, we talk about some basic algorithms that are used in

reinforcement learning field.

2.1 MARKOV DECISION PROCESS

Single agent reinforcement learning is usually formulated as a Markov decision process

(MDP). The definition involves state space S and agent’s action space A. The agent sequen-

tially interacts with the environment in discrete time steps t = 0, 1, 2, . . . . At every time step

t, the agent gets a state st ∈ S, which represents the situation of the environment. Based on

that state st, the agent uses a policy πθ to select the corresponding action at ∈ A, where θ

is the parameters of the policy. Hereafter, for simplicity, we omit θ. Policy π maps the state

st ∈ S to either a distribution over A (stochastic policy), or a single action at (deterministic

policy). Obviously, we have: ∑
at∈A

π(at|st) = 1,∀st ∈ S

As a consequence of the action at, the agent obtains a reward rt(st, at) : S × A 7→ R per

step. Besides, it will find itself in a new state st+1. The overall system is described in figure

2.1, which is a more explicit version of figure 1.1. Therefore, the interaction between agent

and environment will provide a trajectory τ :

τ = {s0, a0, r1, s1, a1, r2, s2, . . . }

Environment

Agent

Action
Reward State

Figure 2.1: Markov Decision Process System [Sutton and Barto, 2018]

We could define the discounted return of a trajectory as R(τ) =
T∑
t=1

γtr(st, at). Here T is
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the time horizon of the trajectory, which could be finite or infinite (T = ∞). We should

notice that γ ∈ [0, 1] is a discount factor. In mathematical perspective, it is used to bound

the infinite summation as T →∞. Meanwhile, from the practical perspective, it determines

the effect of the reward in every step. If γ = 1, every reward will be equally important.

However, if γ is small, only the recent rewards play important roles since γt → 0 as t→ T .

Based on R(τ), we could define the following functions:

V π(s)
.
= Eτ∼π[R(τ)|s0 = s] (2.1)

Qπ(s, a)
.
= Eτ∼π[R(τ)|s0 = s, a0 = a] (2.2)

Aπ(s, a)
.
= Qπ(s, a)− V π(s) (2.3)

where V π(s) is the value function at state s under policy π. Similarly, Qπ(s, a) is the

action value function at state s and action a under policy π. Aπ(s, a) is the advantage

function, which measures the advantage that the agent takes action a at state s over average

performance. τ ∼ π is a shorthand to indicate the trajectory distribution depends on π. If

we model the environment as an unknown system dynamics with p(st+1, rt+1|st, at) and an

initial state distribution p0(s). The trajectory distribution could be formulated as:

p(τ) = p0(s0)
T∑
i=0

π(at|st)p(st+1, rt+1|st, at)∑
st+1∈S

∑
rt+1∈R

p(st+1, rt+1|st, at) = 1,∀st ∈ S,∀at ∈ A

Hereafter, we assume that the reward is deterministic, namely p(st+1, r(st, at)|st, at) =

p(st+1|st, at). Now we could define the goal of the reinforcement learning in MDP settings.

In general, the agent aims to maximize the expected discounted sum of rewards:

max
θ

J(θ) = V π(s0) = Eτ∼π[R(τ)|s0] = Eτ∼π[
T∑
t=0

γtr(st, at)|s0] (2.4)

5



2.2 DEEP Q-LEARNING

From the Markov decision process definition, we have the following deduction:

V π(s) = Eτ∼π[R(τ)|s0 = s]

= Eτ∼π[r1 + γR(τ ′)|s0 = s]

=
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a) [r(s, a) + γE[R(τ ′)|s0 = s′]]

=
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a) [r(s, a) + γV π(s′)]]

= Ea,s′ [r(s, a) + γV π(s′)]

This is the Bellman equation [Bellman, 2010] for value function. Similarly, we have Bell-

man equation for action-value function as:

Qπ(s, a) = Es′ [r(s, a) + γEa′∼π[Qπ(s′, a′)]]

If we define the optimal value function and action-value function as following:

V π∗(s) = max
π

V π(s)

Qπ∗(s, a) = max
π

Qπ(s, a)

where π∗ is the optimal policy. The optimal action at state st is arg maxa π
∗(a|st) =

arg maxaQ
π∗(st, a). Thus, we have the Bellman optimality equation as:

V π∗(s) = max
a

Ea,s′
[
r(s, a) + γV π∗(s′)

]
(2.5)

Qπ∗(s, a) = Es′ [r(s, a) + γmax
a′

Qπ∗(s′, a′)] (2.6)

If we update the action-value function corresponding to equation 2.6 iteratively, we reach

core idea of the Q-learning algorithm [Watkins, 1989]:

Qπi+1(st, at) = Es′ [r(s, a) + γmax
a′

Qπi(s′, a′)] (2.7)

where Qπi is the action-value function in the ith iteration. If the policy πi is determined

by parameter θi, we could write Qπi(s, a) as Q(s, a; θi). The action-value function and policy

will converge Qπi → Qπ∗ , πi → π∗ as i→∞. In practice, it is impossible to directly compute

equation 2.7 since the action-value function in each iteration is estimated separately. In rein-
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forcement learning community, a function approximator is often used to estimate the Qπ∗ . If

we denote the target parameter as θ−, we could try to reach the optimal action-value function

by minimizing the mean squared error of Q(s, a; θi) with yi = r(s, a) + γmaxa′ Q(s′, a′; θ−i )

[Mnih et al., 2015]:

L(θi) = Es,a
[
(Es′ [yi|s, a]−Q(s, a; θi))

2
]

= Es,a,s′
[
(yi −Q(s, a; θi))

2
]

+ Es,a [Vars′(yi)]

∇θiL(θi) = Es,a,s′
[(
r(s, a) + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)
∇θiQ(s, a; θi)

]
Note that L(θi) changes between iterations and the target θ−i depends on the weights

θi, thus it is different from supervised learning. To make stable training and encourage

exploration, we integrate the above technique with experience replay [Lin, 1992] and ε-greedy

[Sutton and Barto, 2018] to reach algorithm 2.1.

Algorithm 2.1: Deep Q-network (DQN)

Initialize: replay memory D of capacity N
Initialize: action-value function Q with parameter θ
Initialize: target action-value function Q̂ with target θ− = θ

1 for episode = 1 to M do
2 Initialize state s1

3 for t = 1 to T do
4 if uniform probability < ε then
5 select a random action at
6 else
7 at = argmax

a
Q(st, a; θ)

8 end

9 end
10 Observe rt+1 and st+1

11 Store (st, at, rt+1, st+1) into D
12 Sample random minibatch of transitions (sj, aj, rj, sj+1) from D
13 if episode terminates at j + 1 then
14 yj = rj
15 else

16 yj = r(sj, aj) + γmaxa′ Q̂(sj+1, a
′; θ−)

17 end
18 Perform graident descent following equation 2.7 with respect to parameter θ

19 Every C steps reset Q̂ = Q

20 end

7



2.3 POLICY GRADIENT

In this section, different from the action-value method introduced in section 2.2, we want

to discuss an approach, policy gradient. Polciy gradient learns the policy parameter from the

gradient of a scalar policy performance measurement. In this setting, value function is not

necessary for selecting actions. Actually, all methods which align with the following formula

could be categorized as policy gradient:

θi+1 = θi + α∇̂F (θi)

where ∇̂F (θi) is an estimate for the gradient of the measurement. Recall from equation

2.4, J(θ) could be treated as the target measurement. We could prove the following Policy

Gradient Theorem [Sutton et al., 2000]:

Theorem 2.1. For any Markov decision process, we have:

∂J(θ)

∂θ
=
∑
s∈S

ρπ(s)
∑
a∈A

∂π(a|s)
∂θ

Qπ(a|s) (2.8)

= Es∼π

[∑
a∈A

∂π(a|s)
∂θ

Qπ(s, a)

]

where ρπ(s) =
T∑
t=0

γtp(st = s|s0, π). p(st = s|s0, π) is the probability that the agent reaches

state s at time step t when starting from state s0 under policy π. s ∼ π denotes the distri-

bution that state s is encountered under policy π.

Proof. First, for ∀s ∈ S, we have:

∂V π(s)

∂θ
=

∂

∂θ

∑
a∈A

π(a|s)Qπ(s, a)

=
∑
a∈A

{
∂π(a|s)
∂θ

Qπ(s, a) + π(a|s) ∂
∂θ
Qπ(s, a)

}

=
∑
a∈A

{
∂π(a|s)
∂θ

Qπ(s, a) + π(a|s) ∂
∂θ

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V π(s′)

]}

=
∑
a∈A

{
∂π(a|s)
∂θ

Qπ(s, a) + γπ(a|s)
∑
s′∈S

p(s′|s, a)
∂V π(s′)

∂θ

}
(2.9)

=
∑
x∈S

T∑
t=0

γtp(s→ x, t, π)
∑
a∈A

∂π(a|x)

∂θ
Qπ(x, a)

8



where p(s→ x, t, π) is the probability that going to state x at time step t when starting from

state s under policy π. The last equality comes from unrolling equation 2.9 several times.

Now we have:

∂J(θ)

∂θ
=

∂

∂θ
V π(s0)

=
∑
s∈S

T∑
t=0

γtp(s0 → s, t, π)
∑
a∈A

∂π(a|s)
∂θ

Qπ(s, a)

=
∑
s∈S

ρπ(s)
∑
a∈A

∂π(a|s)
∂θ

Qπ(s, a)

= Es∼π

[∑
a∈A

∂π(a|s)
∂θ

Qπ(s, a)

]

Now, let’s talk about a practical algorithm that derive from policy gradient theorem. Note

that:

Es∼π

[∑
a∈A

∂π(a|s)
∂θ

Qπ(s, a)

]
= Es∼π

[∑
a∈A

π(a|s)Qπ(s, a)
∂π(a|s)
∂θ

1

π(a|s)

]

= Es,a∼π
[
Qπ(s, a)

∂π(a|s)
∂θ

1

π(a|s)

]
= Es,a∼π

[
Qπ(a|s)∂ log π(a|s)

∂θ

]
= Es,a∼π

[
Eτ∼π [R(τ)|s, a]

∂ log π(a|s)
∂θ

]
= Es,a∼π

[
Eτ∼π

[
R(τ)

∂ log π(a|s)
∂θ

∣∣∣∣s, a]]
= Eτ∼π

[
R(τ |s, a)

∂ log π(a|s)
∂θ

]
where R(τ |s, a) denotes that trajectory τ starts from state s and action a. Now we have

the REINFORCE algorithm [Williams, 1992] in algorithm 2.2. The policy gradient theorem

could be generalized by adding an arbitrary baseline function b(s):

∂J(θ)

∂θ
=
∑
s∈S

dπ(s)
∑
a∈A

∂π(a|s)
∂θ

(Qπ(s, a)− b(s))

= Eτ∼π
[
(R(τ |s, a)− b(s)) ∂ log π(a|s)

∂θ

]

9



To see the correctness, we only need to notice that:

∑
a∈A

b(s)
∂π(a|s)
∂θ

= b(s)
∑ ∂π(s, a)

∂θ

= b(s)
∂

∂θ

∑
π(a|s)

= b(s)
∂

∂θ
1 = 0

Although baseline function does not change the expected values of the target, it does

reduce the variance of the update step in the learning process. In return, it will accelerate

the training procedure by adding a b(s) [Greensmith et al., 2004].

Algorithm 2.2: REINFORCE

Require: policy π with parameter θ
Require: learning rate α

1 for episode = 1 to M do
2 Generate a trejectory τ = {s0, a0, r1, s1, a1, . . . }
3 for t = 0 to T do

4 R =
T∑

k=t+1

γk−t−1rk

5 θ = θ + αR · ∂ log π(at|st)
∂θ

6 end

7 end

10



CHAPTER 3: VARIANCE REDUCTION OPTIMIZATION

In this chapter, we describe our work on variance reduction optimization for training rein-

forcement learning models [Zhao et al., 2019]. Large variance is one of the key problems that

hauls reinforcement learning from implementing in daily usage. We leverage the strength of

stochastic variance reduced gradient descent (SVRG) [Johnson and Zhang, 2013] to alleviate

it. We integrate it with Adam optimization [Kingma and Ba, 2014] to obtain a Stochastic

Variance Reduction for Deep Q-learning (SVR-DQN).

The remaining of this chapter are organized as two parts. First, we present our approach,

including the algorithm description and analysis. Second, we present our experiment exper-

imental results. This includes experiment settings, evaluation metrics and performance.

3.1 STOCHASTIC VARIANCE REDUCED GRADIENT DESCENT

Many machine learning problems are considering a finite sum optimization problem as

following:

min
w
f(w) =

1

n

n∑
i=1

fi(w)

Let w∗ = arg minw f(w) be the optimal solution, researchers are motivated to find a value

w such that |f(w)− f(w∗)| < ε, where ε is the accuracy measurement. In order to develop

fast stochastic first-order methods, we should make sure that when the w gets closer to

optimum as the training iterates, the variance of randomized updating direction decreases.

A popular approach is gradient descent:

wt = wt−1 − ηt∇f(wt−1)

= wt−1 −
ηt
n

n∑
i=1

∇fi(wt−1)

where wt and ηt are the parameter and learning rate at iteration t. However, it is expensive

to evaluate all the n functions / samples in each iteration. We could use stochastic gradient

descent (SGD) instead:

wt = wt−1 − ηt ·
1

m

m∑
j=1

∇fi(t,j)(wt−1) (3.1)

11



where m is the size of mini-batch sampled from total n instances and i(t,j) ∈ {1, 2, . . . , n}
is a randomly chosen index at iteration t. Actually, it is generalized to write in the following

formation:

wt = wt−1 − ηtgt(wt−1, ξt)

where ξt is a random variable that may depend on wt−1 , and the expectation Eξt(g(wt−1, ξt)|wt−1) =

1
n

n∑
i=1

∇fi(wt−1). Large variances come from the randomness encoded in gt(wt−1, ξt). To al-

leviate this, stochastic variance reduced gradient descent (SVRG) maintains a snapshot of

an estimated w̃, which is close to optimal w∗, every certain iterations. Moreover, an average

gradient µ̃ is calculated:

µ̃ =
1

n

n∑
i=1

∇fi(w̃) (3.2)

which goes through all training samples. Obviously, the expectation µ̃− 1
m

m∑
j=1

∇fi(t−1,j)
(w̃)

is zero. We extend equation 3.1 as:

wt = wt−1 − ηt

(
1

m

m∑
j=1

∇fi(t,j)(wt−1)− 1

m

m∑
j=1

∇fi(t,j)(w̃) + µ̃

)
(3.3)

E[wt|wt−1] = wt−1 − ηtf(wt−1)

This is the core step of SVRG. Note that when w is close to w̃, the difference f(w)− f(w̃)

is small. When both wt and w̃ converge to the same optimal parameter w∗, then µ̃→ 0 and

f(w)→ f(w̃). Therefore, the variance of SVRG in update rule equation 3.3 is reduced and

SVRG can find the more accurate gradient direction estimation.

3.2 STOCHASTIC VARIANCE REDUCTION DQN

In order to improve the performance of Adam optimization, we apply SVRG to find the

accurate gradient direction based on the small stochastic training subset and propagate the

optimized first-order information to Adam. The details of algorithm are listed in algorithm

3.1. Note that the ideal selection of mini-batch size b and SVRG inner loop iteration number

m should satisfy the constraint: b×m ≥ B. Meanwhile, it is unnecessary to rescale gs , since

effective step size in Adam is invariant to the scale of the gradients [Kingma and Ba, 2014].
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Algorithm 3.1: Stochastic Variance Reduction for Deep Q-network Optimization

Require: B: size of training batch size
Require: b: mini-batch size
Require: η: learning rate
Require: m: inner loop iterations
Require: α: Adam step size
Require: β1, β2 ∈ [0, 1): Exponential decay rate for moment estimates

1 Initialize w̃1 (parameter vector)
2 Initialize m1 = 0 (first moment vector)
3 Initialize v1 = 0 (second moment vector)
4 for episode s = 1 to M do
5 Sample batch of size B from all samples (for simplicity, we just denote samples as

1, 2, . . . , B)

6 µ̃s = 1
B

B∑
i=1

∇fi(w̃s)

7 w1 = w̃s
8 for t = 1, . . . , m do
9 Uniformly sample a mini-batch {i(t,1), . . . , i(t,b)}

10 wt = wt−1 − η(1
b

b∑
j=1

∇fi(t,j)(wt−1)− 1
b

b∑
j=1

∇fi(t,j)(w̃s) + µ̃s)

11 end
12 gs = wm − w̃s
13 ms+1 = β1 ·ms + (1− β1) · gs (Update biased first moment estimate)
14 vs+1 = β2 · vs + (1− β2) · g2

s (Update biased second raw moment estimate)
15 m̂s+1 = ms+1/(1− βs+1

1 ) (Compute bias-corrected first moment estimate)
16 v̂s+1 = vs+1/(1− βs+1

2 ) (Compute bias-corrected second raw moment estimate)

17 w̃s+1 = w̃s − α · m̂s+1/(
√
v̂s+1 + ε) (Update parameters)

18 end

3.3 APPROXIMATION GRADIENT ERROR VARIANCE REDUCTION

The Approximation Gradient Error(AGE) is the error in the gradient direction estimation

of cost function f(w̃), where w̃ is the hyper-parameters of this function, which are optimized

with gradient descent methods iteratively by minimizing the DQN loss (line 17 in algorithm

3.1). Given the certain learning samples preserved in experience buffer, the ideal gradient

estimation of loss function is supposed to give the accurate learning direction (derivation

value) leveraging the current information provided by those learning samples, thus the agent

(DQN) can quickly converge to policy optimum by optimizing hyper-parameter at the gra-

dient direction. However, AGE appears in gradient estimation process.

AGE is a result of several factors: Firstly, the sub-optimality of current hyper-parameters

w̃ due to inexact minimization. Secondly, the constrained representing strength of DQN.
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Thirdly, the limited representation number of the samples we used for deriving the gradients.

Lastly, representation error due to unseen(un-stored) state transitions and policies caused by

nite storage of Experience-Replay buffer. The AGE can cause the distortion of the gradient

estimation, thus derive the agent policy to a worse one. The AGE can also cause a large

variability of DQN performance and postpone the process when DQN gets to local optima.

To analyze the AGE variance we first propose the variance of approximation gradient for

one single sample.

We suppose the gradient estimation from one single sample is ∇fi(w̃) = AGEi +∇fi(w∗),
where i is one training sample from the replay buffer and w∗ denotes the exact minimized

parameter from current stored samples. We also denote that ∇f(w∗) is the optimal gradient

direction given current stored samples, E(AGEi) = 0 and Var(AGEi) = σ2. We have:

Var(∇fi(w̃)) = Var (AGEi +∇fi(w∗)))

= Var(AGEi) + Var(∇fi(w∗))

= σ2

Suppose that ∇fi is L-Lipschitz continuous, namely:

fi(w̃) ≥fi(w∗) + 〈∇fi(w̃), w̃ − w∗〉+
1

2L
‖∇fi(w̃)−∇fi(w∗)‖2

by summing this inequality above over all the training sample i, and divide LHS and RHS

by n, we obtain the bound of approximation gradient error variance Var(∇fi(w̃)) that:

1

n

n∑
i=1

‖∇fi(w̃)−∇fi(w∗)‖2 ≤ 2L (f(w̃)− f(w∗)) (3.4)

Recall that in algorithm 3.1, we have:

gSV R−DQN = wm − w̃

= wm−1 − η ·

(
1

b

b∑
i=1

∇fi(wm−1)− 1

b

b∑
i=1

∇fi(w̃) + µ̃

)
− w̃

= w0 −
m−1∑
i=0

κi − w̃

= −
m−1∑
i=0

κi
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where κi = η ·
(

1
b

b∑
i=1

∇fi(wm−1)− 1
b

b∑
i=1

∇fi(w̃) + µ̃

)
and the last equality comes from

that w0 = w̃. Note that at each iteration, mini-batch is uniformly sampled, for i 6= j,

Cov(κi, κj) = 0. Thus, we have:

Var(gSV R−DQN) = Var(−
m−1∑
i=0

κi)

=
m−1∑
i=0

Var(κi)

≤
m−1∑
i=0

E(‖κi‖2)

The last inequality results from that for any random variable X, E[(X − Y )2] reaches its

minimum only if Y = E(X). From equation 3.2, we know that µ̃ = Ei(∇fi(w̃)), where Ei
denotes take expectation over all instances. Based on the fact that ∇fi(w∗) = 0, we could

write:

µ̃ = Ei[∇fi(w̃)−∇fi(w∗)]

Now, we could derive the bound:

E(‖κi‖2) = E

[∥∥∥∥η ·
(

1

b

b∑
j=1

∇fj(wi)−
1

b

b∑
j=1

∇fj(w̃) + µ̃

)∥∥∥∥2
]

= η2 · E

[∥∥∥∥1

b

b∑
j=1

(∇fj(wi)−∇fj(w∗) +∇fj(w∗)−∇fj(w̃) + µ̃)

∥∥∥∥2
]

≤ 2η2

b2

b∑
i=1

E
∥∥∥∥∇fj(wi)−∇fj(w∗)∥∥∥∥2

+
2η2

b2

b∑
i=1

E
∥∥∥∥∇fj(w̃)−∇fj(w∗)− µ̃

∥∥∥∥2

=
2η2

b2

b∑
i=1

E
∥∥∥∥∇fj(wi)−∇fj(w∗)∥∥∥∥2

+

2η2

b2

b∑
i=1

E
∥∥∥∥∇fj(w̃)−∇fj(w∗)− E [∇fj(w̃)−∇fj(w∗)]

∥∥∥∥2

≤ 2η2

b2

b∑
i=1

E
∥∥∥∥∇fj(wi)−∇fj(w∗)∥∥∥∥2

+
2η2

b2

b∑
i=1

E
∥∥∥∥∇fj(w̃)−∇fj(w∗)

∥∥∥∥2

≤ 4Lη2

b
(∇f(wi)−∇f(w∗)) +

4Lη2

b
(∇f(w̃)−∇f(w∗)) (3.5)
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≤ 8Lη2

b
(∇f(w̃)−∇f(w∗)) (3.6)

Inequality 3.5 follows the equation 3.4 and inequality 3.6 follows that f(wi) − f(w∗) ≤
αi(f(w̃)− f(w∗)) [Johnson and Zhang, 2013]. Therefore, we have:

Var(gSV R−DQN) ≤
m−1∑
i=0

E(‖κi‖2)

≤ 8Lmη2

b
(f(w̃)− f(w∗)) (3.7)

This shows that SVR-DQN is theoretically more efficient in AGE variance reduction than

traditional DQN.

3.4 EXPERIMENTS

3.4.1 Experiment Settings

To demonstrate our methods effectiveness, we evaluate our proposed algorithm on a col-

lection of 20 games from Arcade Learning Environment [Bellemare et al., 2013]. Due to the

environment’s complexity, it is extremely demanding to nd a good learning algorithm which

is generally effective across all 20 games with game-specific hyperparameter tuning.

Similar to the previous work [Mnih et al., 2015], we utilize a neural network as the ap-

proximation of action value, taking raw images as input. The network architecture is a

convolutional neural network with three convolutional layers and a fully-connected layer.

The filter sizes of three convolutional layers are 8× 8, 4× 4 and 3× 3 and the strides are 4,

2 and 1, respectively. All the convolutional layers are followed by a rectifier nonlinear layer

[Hahnloser et al., 2000, Hahnloser and Seung, 2001]; The fully-connected layer contains 512

hidden units. To preprocess the raw image, we rescale it into 84× 84 from the extracted Y

channel.

Following the paper [Mnih et al., 2015], we use the ε-greedy scheme for exploration ,where

ε is annealed linearly from 1.0 to 0.1 over the rst million frames. All the simulated transitions

are stored in a sliding replay memory, and the algorithm performs gradient descent on mini-

batches of 512 transitions sampled uniformly from the reply memory. We set the learning

frequency to 128, which means the training process repeats every 128 mini-batches. We

also apply a frame-skipping strategy where the network takes the four frames as an input.

All experiments are performed on an NVIDIA GTX Titan-X 12GB graphics card. In this

paper, we utilize the tunned version of Double DQN algorithm [Van Hasselt et al., 2016], as
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it somehow resolves the over-estimation issue in Q-learning.

3.4.2 Evaluation

Our proposed algorithm can obtain more accurate gradient estimation through the same

batch of training samples compared to baseline, and we assume that more accurate gradient

evaluation should result in more aggressive learning curves in the initial training stage.

Though the previous work [Mnih et al., 2015] trained their agent using 200 million (200M)

frames or 50M training iteration for each game, we choose to train our agent within only 40M

frames or 10M training iterations, due to time constraints. Note that regarding evaluating

the performance of SVR-DQN, our main concerns focus on the performance in initial stage.

Instead of using Double DQN baseline results for those 20 games published from previous

work, to obtain fair comparison, we replicate the baseline results using the same hyper-

parameter setting, code base, and random seed initialization as SVR-DQN for 10M training

frames. The only difference is that the our gradient estimator could lead to a smaller variance.

Our experiments could be nished within two days.

Our evaluation procedure follows the description by [Mnih et al., 2015], at the beginning

of each episode, the starting states are randomized by executing a random number special of

no-op actions, which have no effect on the environment, for 30 times. This procedure is often

referred as ‘30 no-op evaluation’ to provide different starting points for the agent. Our agent

is evaluated after a maximum of 5-minute game play, which contains 18,000 frames, with the

usage of ε-greedy policy where ε = 0.05. The rewards are averaged from 100 episodes. For

each game, our agent is evaluated at the end of every epoch (160 epochs in total), and we

select the best performance as the agents final result. To compare the performance of our

algorithm to the Double DQN baseline across games, we apply the normalization algorithm

proposed by [Van Hasselt et al., 2016] to obtain the normalized improvement score in percent

as follows:

scorenormalized =
scoreagent − scorerandom

|scoreDouble-DQN − scorerandom|
(3.8)

The detailed results could be found in figure 3.1 and 3.3

In summary, we adopt the Double DQN and random score reported by [Mnih et al., 2015]

, the results are demonstrated in figure 3.1. We observe a better performance on 19 out of

20 games, which demonstrates the effectiveness of our proposed algorithm. We also give the

summary statistics in terms of mean and median score in table 3.1. Compared to Adam,

the median performance across 20 games increases from 63.13% to 118.02% and the mean
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Figure 3.1: Normalized score on 20 Atari games, tested for 100 episodes per game. The blue bars denotes
our SVR-DQN while the white bars denote the Adam optimizer, which is a baseline.

performance increases from 92.48% to 139.75%. Noteworthy examples include Seaquest

(from 27.42% to 267.94%), Gopher (from 53.22% to 145.42%).

Mean Median
Double DQN 92.48% 63.13%
SVR-DQN 139.75% 118.02%

Table 3.1: Mean and median normalized scores.

We also conduct a comparison of the sample efciency and results could be found in figure

3.2. We observe that SVR-DQN boosts the performance on almost all games, and the sample

efficiency of SVR-DQN is nearly twice as fast as original Double-DQN with Adam optimizer.

Also, the performances of three representative games are reported in figure 3.3. The three

games include ‘BeamRider’, ‘Freeway’, ‘Riverraid’. As can be seen in figure 3.3 that our

proposed SVR-DQN method results in significant lower average gradient estimates, and the

variance of gradient is largely reduced. We also observe that our method outperforms the

baselines with a significant margin on the majority of the games, and SVR-DQN leads to
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Figure 3.2: Summary plots of sample efficiency. Median over 20 games of the normalized score achieved so
far. The normalized score is calculated in equation 3.8.

less variability between the runs of independent learning trials. For the game of Freeway,

we see that the divergence of Double-DQN can be prevented by SVR-DQN. On the other

hand, the performance of Double-DQN with Adam optimizer has a sudden deterioration in

4M iteration where the gradient variance suddenly increases.
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Figure 3.3: The left column shows the learning curves (in raw score) for the Double DQN with Adam
optimizer (blue), SVR-DQN optimizer (yellow), on 3 games of the Atari benchmark suite. The bold lines
are averaged over 6 independent learning trials (6 different seeds). The performance test using ε-greedy
policy with 10 million iterations. The shaded area presents one standard deviation. The right column shows
that when applied SVR-DQN, the variance of averaged gradient estimation is largely reduced, performance
improves, and less variability is observed. 30 no-op evaluation is used and moving average over 4 points is
applied. Here x-axis denotes the number of training frames while y-axis denotes the evaluation score in the
game.
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CHAPTER 4: ARTIFICIAL TRAJECTORIES DIVERGENCE MINIZATION

In this chapter, we describe our work on improving sample efficiency for training reinforce-

ment learning models. Extreme inefficiency is another key problem that prevents reinforce-

ment learning from large scale usage. We leverage the advantages of self-imitation policies

[Gangwani et al., 2018] and the idea of Monte Carlo policy evaluation [Fonteneau et al., 2010,

Fonteneau et al., 2013] to improve the training procedure.

The remaining of this chapter are organized as two parts. First, we present our approach,

including the algorithm description and analysis. Second, we present our experiment exper-

imental results. This includes experiment settings, evaluation metrics and performance.

4.1 SELF-IMITATION POLICIES

Recall in the proof of policy gradient theorem (equation 2.8), we have defined the value

p(st = s|s0, π), denoting the probability that arriving state s when starting from state

s0 under policy π. Hereafter, we assume the initial state s0 is fixed and we could omit

the state s0 in the notation as p(st = s|π). Same as the policy gradient theorem, we could

define the unnormalized γ-discounted state visitation distribution and state-action visitation

distribution as:

ρπ(s) =
T∑
t=0

γtp(st = s|π)

ρπ(s, a) = ρπ(s)π(a|s)

Although the policy π(a|s) is given as a conditional distribution, the behaviour of policy is

characterized by the state-action visitation distribution, which fully determines the expected

return Eρπ(s,a)[r(s, a)]. Therefore, it is a intuitive idea to learn a policy with good performance

from an ‘expert’ by mimicing the expert’s action-state visitation distribution. Generative

adversarial imitation learning (GAIL) [Ho and Ermon, 2016] extracts a policy from data as

if it were obtained by following inverse reinforcement learning (IRL) [Ng et al., 2000]. More

efficiently, previous work forgoes the external supervision and uses the past experience of

the agent itself as the demonstration data [Gangwani et al., 2018]. To be specific, suppose

we have the access to an expert policy πE. In order to make the agent’s policy π similar

to expert’s policy πE, it is natural to minimize the divergence for the improvement of the
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agent’s policy since D(ρπ, ρπE) captures the similarity between the two policies:

min
π
D(ρπ, ρπE)

In practice, we could not have actual access to any ‘expert’ policies. However, we could

maintain a set ME which consists of selected trajectories with high returns in previous

roll-outs. Instead, we could try to minimize the difference between ρπ(s, a) and the non-

parametric empirical distributions {(s, a)}ME
:

min
π
D(ρπ, {(s, a)}ME

)

A good choice for such divergence will be Jensen-Shannon divergence DJS similar to

generative adversarial network (GAN) [Goodfellow et al., 2014]:

DJS(ρπ, ρπE) = max
dπ(s,a),dπE (s,a)

Eρπ
[
log

dπ(s, a)

dπ(s, a) + dπE(s, a)

]
+ EρπE

[
log

dπE(s, a)

dπ(s, a) + dπE(s, a)

]
(4.1)

where dπ(s, a) and dπE(s, a) are empirical estimation of ρπ and ρπE . To optimize the

equation 4.1, we have the following theorem in [Gangwani et al., 2018]:

Theorem 4.1. (Gradient Approximation) Let ρπ(s, a) and ρπE(s, a) be the state-action

visitation distribution induced by two policies π and πE respectively. Let dπ and dπE be the

surrogates to ρπ and ρπE , respectively, obtained by solving equation 4.1. If the policy π is

parameterized by θ, the gradient of DJS(ρπ, ρπE) with respect to policy parameters (θ) can be

approximated as:

∇θDJS(ρπ, ρπE) ≈ Eρπ
[
∇θ log πθ(a|s)Q̃π(s, a)

]
where Q̃π(s, a) = Eρπ(s,a)

[
T∑
t=0

γt log
dπ(st, at)

dπ(st, at) + dπE(st, at)

∣∣∣∣s0 = s, a0 = a

]
(4.2)

The proof follows the principles in [Sutton et al., 2000] and could be found in [Gangwani et al., 2018].

Since the equation 4.2 is similar to policy gradient theorem (equation 2.8), we interpolate
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them together as:

∇J(θ) = (1− ν)Eρπ(s,a) [∇θ log πθ(a|s)Qr(s, a)]− ν∇θDJS(ρπ, ρπE) (4.3)

= Eρπ(s,a)

[
∇θ log πθ(a|s)

[
(1− ν)Qr(s, a) + νQrφ(s, a)

]]
where Qrφ(s, a) = −Eτ∼π

[
T∑
t=0

γt log rφ(st, at)|s0 = s, a0 = a

]

rφ(s, a) =
dπ(s, a)

dπ(s, a) + dπE(s, a)
(4.4)

Note that − log rφ(s, a) is high in the position of S×A where expert policy πE visits more

frequently than the agent’s policy π. Equation 4.3 is the major updating step for training

self-imitation policy.

4.2 MONTE CARLO POLICY EVALUATION

Suppose we have a set of transitions Fn = {(sl, al, rl, s′l}nl=1 from previous roll-outs under

a fixed policy π. Note that here the subscription l only indicates the index instead of a

timestep. We want to estimate the performance J(π) from such a transition set. Under

closed loop, the possibilities of utilizing model-free Monte Carlo-like approaches to solve this

problem have been proven effective [Fonteneau et al., 2010, Fonteneau et al., 2013]. The

main idea is to synthesize p artificial trajectories from the “broken trajectory” set Fn and

average the returns of synthetical ones to estimate the policy performance:

R(Fn) =
1

p

p∑
i=1

T−1∑
t=0

rlit (4.5)

where lit ∈ {1, 2, . . . , n}. Now consider that s′l and rl are determined by sl, al and ψl, where

ψl is a random variable from an unobservable random process Ψ. The system dynamics could

be written as:

s′l+1 = f(sl, al, ψl)

rl = g(sl, al, ψl)

where f and g are time-invariant functions. Let Pn = {(sl, al)} ∈ (S×A)n be state-action
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pairs extracted from Fn. We could construct an ensembled set of samples:

F̃n = {(sl, al, f(sl, al, ψ̃l), g(sl, al, ψ̃l)}

where ψ̃l is a disturbance of ψl. At this point, we define the expected value as:

Eπ
Pn = EΨ[R(F̃)]

Now, for ∀(s, s−, a, a−, ψ) ∈ S2 ×A2 ×Ψ, we define Lipcshitz continuity conditions as:

‖f(s, a, ψ)− f(s−, a−, ψ−)‖S ≤ Lf
(
‖s− s−‖S + ‖a− a−‖A

)
|g(s, a, ψ)− g(s−, a−, ψ−)| ≤ Lg

(
‖s− s−‖S + ‖a− a−‖A

)
‖a− a−‖A ≤ LA

(
‖s− s−‖S + ‖a− a−‖A

)
where ‖ · ‖S and ‖ · ‖A denote the selected norm over state or action space. Actually,

the distance metric between state-action pair could be written as ∆((s, a), (s−, a−)) = ‖s−
s−‖S + ‖a− a−‖A. Based on the distance metric, we define the k-sparsity as:

αk(Pn) = sup
(s,a)∈Pn

∆k(s, a)

where αk(s, a) represents the distance between (s, a) and its k-nearest neighbour. To this

end, we list the main theorem [Fonteneau et al., 2010]:

Theorem 4.2. Bias of the Monte Carlo Policy Evaluation:

|J(π)− Eπ
Pn| ≤ CαpT (Pn)

where C = Lg

T−1∑
t=0

T−i−1∑
i=0

[Lf (1 + LA)]i

Theorem 4.3. Variance of the Monte Carlo Policy Evaluation:

VarπPn = EΨ

[(
R(F̃)− Eπ

Pn

)2
]

≤
(
σ(R)
√
p

+ 2CαpT (Pn)

)2

where C = Lg

T−1∑
t=0

T−i−1∑
i=0

[Lf (1 + LA)]i

Here σ(R) = EΨ[R(τ)].
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4.3 SELF-IMITATION LEARNING WITH ARTIFICIAL TRAJECTORIES
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Figure 4.1: Pipeline for self-imitation learning with artificial trajectories. The whole pipeline consists of two
parts, generative adversarial training and imitation learning.

To efficiently exploit roll-out samples, we utilize the idea behind Monte Carlo policy evalua-

tion approach to generate artificial trajectories for representing empirical expert state-action

visitation distribution. From the previous section, we know that if the discrepancy in the syn-

thesis procedure is controlled well, the synthesized trajectories will be a good representation

of expert policy.

To be more specific, we describe the pipeline for our approach in figure 4.1. It consists of

two main components:

• Generative adversarial training: in each iteration of training, at first, the agent

interacts with the environment with the current policy to get natural trajectories and

true rewards. Then, we get the surrogate reward in equation 4.4 by feeding the natural

trajectories into the generative adversarial discriminator. Next, we calculate the policy

gradient∇ log π(a|s)Qπ(s, a) with respect to true rewards. Meanwhile, we compute the

policy gradient in equation 4.1 with respect to surrogate rewards. Finally, we update

the parameters of policy according to equation 4.3 with weighted summation of two

gradients computed before. The details of this component is introduced in algorithm

4.3.

• Imitation learning: within each learning circle, at first, we add the simulated natural

transitions into replay buffer. Then, we use dynamic programming to calculate the
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empirical Q-value for each state-action pairs. Actually, the empirical Q-value is defined

as the following:

Q̂(s, a) = r + max
(s−,a−)∈H

{
Q̂(s−, a−)

}
where H = {(s−, a−) | ∆(s, s−) ≤ δ,∀(s−, a−) ∈ F}

Here F represents the replay buffer. (s, a, r, s′) and (s−, a−, r−, s−′) are both transitions

from natural trajectories. Although the form seems similar to action value function,

the meaning is totally different since s′ 6= s−. The details of the dynamic programming

are shown in algorithm 4.1. Next, we utilize the empirical Q-value matrix to generate

artificial trajectories with ε-greedy exploration. This step is described in algorithm 4.2.

Note that we do not consider action element in the distance measurement. The reason

is that we want to minimize the discrepancy as well as encourage the exploration in

the generation procedure. Similarly to GAN [Goodfellow et al., 2014], we could train

the discriminator with transitions from both natural and synthetical trajecoties.

Algorithm 4.1: Dynamic Programming for Empirical Q-values

Require: F ∼ replay buffer for transitions
Require: δ ∼ the threshold for distance measure
Require: T ∼ the maximum length of trajectory
Require: ∆ ∼ the distance measure between two one-step transitions

1 Initialize the set B = {} for potential artificial trajectory initial state pair
2 Initialize the matrix M with size |F| × T , where |F| is the cardinality of replay buffer
3 for i = 1, . . . , |F| do
4 if (si, ai, ri, s

′
i) is the last transition in its corresponding natural trajectory then

5 M [i, T ] = ri
6 end

7 end
8 for t = T − 1, . . . , 1 do
9 for i = 1, . . . , |F| do

10 Compute H = {j | ∆(si, sj) < δ}
11 M [i, t] = ri + max

j∈H
{M [j, t+ 1]}

12 if t = 1 or (si, ai) is the initial transition in natural trajectory then
13 B = B ∪ {(si, t)}
14 end

15 end

16 end
17 return matrix M and B
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Algorithm 4.2: Synthesize Trajectory (SynTraj)

Require: π ∼ current policy
Require: δ ∼ the threshold for distance measure
Require: ε1, ε2 ∼ the probability for ε-greedy, ε1 < ε2
Require: s0 ∼ starting state
Require: N ∼ the number of trajectories
Require: T ∼ the maximum length of trajectory
Require: F ∼ set of n one-step transitions
Require: ∆ ∼ the distance measure between two one-step transitions
Require: M ∼ the empirical Q-value matrix
Require: B ∼ the potential initial pair for artificial trajectory

1 Initialize i = 0 (counter for number of trajectories)
2 for (s0, t) ∈ B do
3 G = F , where G is the set of not yet used one-step transition in F
4 sit = s0

5 while t < T do
6 Set ait = arg maxπ(a|sit)
7 Compute H = {j | ∆(sj, s

i
t) < δ,∀(sj, aj, rj, s′j) ∈ F}

8 Let jmax = argmax
j∈H

M [j, t+ 1]

9 ε =

{
ε1, (sjmax , ajmax , rjmax , s

′
jmax

) ∈ G
ε2, o.w.

10 if uniform random value < ε then
11 lit = uniformly random select from H
12 else
13 lit = jmax

14 end
15 sit+1 = s′

lit

16 G = G \ {(slit , alit , r(slit , alit), s
′
lit
)}

17 t = t+ 1

18 end
19 i = i + 1

20 end

21 return {(slit , alit , r(slit , alit), s
′
lit
)}t=T−1
t=0
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Algorithm 4.3: Synthetic Trajectory self-Imitation LEarning (STILE)

Require: θ ∼ initial policy parameters
Require: φ ∼ initial discriminator parameters
Require: Any inputs needed for SynTraj in Algorithm 4.2

1 F = {}, empty one-step transition set
2 MS = {}, empty replay memory for synthesis
3 for each iteration do
4 Generate batch of trajectories {τ}b1 with two rewards for each transition:

r1 = r(s, a) and r2 = − log rφ(s, a)
5 Add {τ}b1 into F
6 Synthesize trajectories J = SynTraj(πθ, ε, s0, N, T,F ,∆)
7 Choose the top N artificial trajectories {τ s}N1 from J
8 Update MS using {τ s}N1 with priority queue threshold

// Update policy θ
9 for each minibatch do

10 Compute g1 = ∇θη
r1(πθ) using r1 with PPO objective

11 Compute g2 = ∇θη
r2(πθ) using r2 with PPO objective

12 Update θ with (1− ν)g1 + νg2 using ADAM

13 end
// Update self-imitation discriminator φ

14 for each epoch do
15 s1 ← Sample mini-batch of (s, a) from MS

16 s2 ← Sample mini-batch of (s, a) from {τ}b1
17 Update φ with log-loss objective using s1, s2

18 end

19 end

4.4 EXPERIMENTS

4.4.1 Experiment Settings

To demonstrate the efficiency of our approach, we evaluate proposed algorithm in the simu-

lation environment MuJoCo [Todorov et al., 2012] with OpenAI Gym [Brockman et al., 2016].

Due to its high-dimensional and continuous control setting, it is difficult to learn an agent

with good performance. Following the pipeline of OpenAI Baselines [Dhariwal et al., 2017],

we have all feed-forward networks with two layers of 64 hidden units and each of them has

tanh non-linearity. We use the proximal policy optimization (PPO) [Schulman et al., 2017]

of the clipped-surrogate version. The hyperparameters are as following:

• Horizon T = 1000

• Discount factor γ = 0.99
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• GAE parameter [Schulman et al., 2015] λ = 0.95

• PPO internal epochs is 5

• PPO learning rate is 1× 10−4

• PPO mini-batch is 64

• Self-imitation learning policy weight factor ν = 0.8

• Size of one-step transition set n = 2048

4.4.2 Evaluation

Figure 4.2: Distribution for distance between states within a same transition of environment Walker2d-v2.

Our proposed algorithm integrating self-imitation and artificial synthetical trajectories

can obtain better or comparative performance from same data usage. The performance

comparison are shown in figure 4.4. In each sub-figure, the learning curve are averaged on

three random initiations (seeds). The shaded area depicts the standard deviation. Because

different simulation environments have different characteristics, we fine-tune the distance

measurement threshold δ for each environment. We found that artificial trajectories with

much larger synthetical returns do not help training. We hypothesize the reason is the state-

action visitation distribution is too far away from agent’s natural policy. A good choice of

distance threshold should make a balance between encouraging more acceptable connections

between transitions (large threshold) and minimizing the discrepancy from natural trajec-

tories (small threshold). In figure 4.3, we show the l2 distance values of ‖s − s′‖2, where

(s, a, r, s′) is a transition from natural trajectory. Meanwhile, in figure 4.2, we plot the dis-

tribution of l2 distance between different transitons from natural trajectories. The purpose

is to know the rough statistics of distance and to make a good selection of distance thresh-

old. Finally, we choose the threshold of 1.0, 1.5 and 0.1 for Ant-v2, HalfCheetah-v2 and

Hopper-v2 respectively, which yields similar but better synthetical returns.
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Figure 4.3: Distribution for distance between states from different transitions of environment Walker2d-v2.

For distance metric, we evaluate l2 and l∞ norm separately. Actually, we set the constraints

as: √√√√ |S|∑
j=1

(sj − s−j )2 ≤ δ, for l2√
|S|max

j
{|sj − s−j |2} ≤ δ, for l∞

where s ∈ S, s− ∈ S and |S| represents the dimension of state space. We found that l∞

performs better than l2 norm. This probably comes from that l∞ constraint is more strict

than l2. It constrains the difference between each element instead of just a summation. Thus,

l∞ makes the discrepancy between natural and artificial trajectories really small.

In addition, it is obvious that our approach has a much stable training performance since

the variance is really small. We think the benefits come from that the artificial trajectories

are similar to each other. As the training proceeds, the agent manages to minimize the

divergence between its own policy and the ‘expert’ policy. Thanks to the similarity between

‘expert’ trajectories, the agent will not encounter big shift in the distribution and will not

go through big variance.
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(a) Ant, l2 norm with δ = 1.0
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(b) Ant, l∞ norm with δ = 1.0
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(c) HalfCheetah, l2 norm with δ = 1.5
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(d) HalfCheetah, l∞ norm with δ = 1.5
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(e) Hopper, l2 norm with δ = 0.1
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(f) Hopper, l∞ norm with δ = 0.1

Figure 4.4: Evaluation on OpenAI Gym Ant-v2, HalfCheetah-v2 and Hopper-v2 environment, which are
based on MuJoCo simulation engine.
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CHAPTER 5: RELATED WORK

In this chapter, we discuss the related work for the proposed approaches, including variance

reduction in optimization and reward learning.

5.1 VARIANCE REDUCTION IN DEEP REINFORCEMENT LEARNING

In recent years, numerous techniques have been proposed to improve the convergence

and stability of deep reinforcement learning and optimization method plays a critical role.

To accelerate the convergence rate and solve the challenges aforementioned, some impor-

tant improvements are explored. AdaGrad [Duchi et al., 2011] adapts learning rate with

respect to the frequency of parameters, and is well-suited for dealing with sparse data.

RMSprop [Tieleman and Hinton, 2012] improves AdaGrad by resolving its radically dimin-

ishing learning rates. Adaptive Moment Estimate (Adam) [Kingma and Ba, 2014] combines

the advantage of both AdaGrad and RMSprop while keeping momentum technique, em-

pirically outperforming other adaptive learning method algorithms. Under the mechan-

ics of variance control, representative methods such as SAG [Roux et al., 2012] and SDCA

[Shalev-Shwartz and Zhang, 2013] are proposed. Recently, second-order statistics optimiza-

tion algorithms are adopted [Battiti, 1992, Wang and Zhang, 2017]. However, second-order

methods are infeasible in practice for high-dimensional training, such as neural network.

Since the existence of variance in deep Q learning procedure can largely deteriorate the

performance of the network, there have been a number of techniques proposed to reduce

varieties of variance in deep Q learning, such that the convergence, running time and sta-

bility are enhanced. The well-known variance in DQN is the Q learning overestimation

error, which is first investigated by [Baird III, 1993], who has showed that since action

values contain random errors distributed in the interval [−ε, ε]. Since the DQN target

is obtained using max operator, the expected overestimation errors are bound by n−1
n+1

,

where n is the applicable action numbers given current state s. the intuition nature of

overestimation error is that it can cause asymptotically sub-optimal policies, as shown by

[Baird III, 1993] and later by [Van Hasselt et al., 2016] that noisy in Arcade Learning Envi-

ronment [Bellemare et al., 2013] can lead to overestimation. The Double DQN is a possible

way to tackle overestimation error which replaces the positive bias with a negative one,

where two Q-network are applied for Q action selection and Q function value calculation

respectively.

Another variance in DQN is the Target Approximation Error (TAE), which is investigated

by [Anschel et al., 2017] that if we denote the term of gap between optimal estimated Q∗
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value and current Q value Q(s, a; θ)−Q∗(s, a), and decompose it as Q(s, a; θ)− ys,a + ys,a−
ŷs,a + ŷs,a − Q∗(s, a), where ys,a is the DQN target and ŷs,a is the true target. TAE is the

gap between Q(s, a; θ) and ys,a. The TAE is a result of sub-optimality of θ due to inexact

minimization and limited representation power of DQN. An eficient method to reduce TAE

variance is Average DQN [Anschel et al., 2017], the key idea is to use the K previously

calculated Q-values to estimate the current action-value estimate. The averaging reduces

the TAE variance and leads to more stability in learning process.

In addition to the aforementioned kinds of variance in deep Q learning, a recent explored

variance is caused by noisy in reward signals in real experiment settings, which is investigated

by [Romoff et al., 2018]. In order to reduce reward signal variance, a direct reward estimator

R̂(st) is proposed to update the discounted value function instead of sampled reward. Note

that in discrete tabular case, the reward estimator is corresponding to using sampled mean.

Our stochastic variance reduction for deep Q learning method differs from all of the afore-

mentioned approaches. The key idea of our method is to reduce the variance caused by

approximate gradient estimation, and thus greatly improve the efciency and performance.

5.2 POLICY LEARNING WITH DIVERGENCE MININIZATION

Plenty of algorithms have been proposed through divergence minization. In order to mini-

mizing the information loss between policy updates, Relative Entropy Policy Search (REPS)

[Peters et al., 2010] restricts the KL-divergence between distribution of old and new policy

state-action pairs. Being formulated in EM framework, policy search has several interesting

approaches, for example RWR [Peters and Schaal, 2007]. As stated in a comprehensive ex-

position [Deisenroth et al., 2013], the M-step here mimics an imitation weighted by returns

through minimizing trajectory distribution KL-divergence. Meanwhile, in the transfer learn-

ing field, adversarial training has been used to reduce gap between physical and simulated

agents [Wulfmeier et al., 2017].

Usually, imitation learning, which trains a policy to produce similar trajectory distribu-

tion to demonstrator, requires an external supervision. Human-expert experience is used in

autonomous driving [Bojarski et al., 2016] and drone control [Ross et al., 2013]. Combined

with human expertise, better performance has been achieved in Atari [Hester et al., 2018]

and robotics [Nair et al., 2018]. In the field of inverse reinforcement learning [Ng et al., 2000],

human demonstration is also utilized to learn cost functions [Ho and Ermon, 2016]. In ad-

dition, non-human knowledge demonstration are as well being exploited, such as MCTS

[Silver et al., 2016].

Exploration plays an important role in the success of reinforcement learning models. Meth-
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ods based on state-action visitation count N(s, a) assign extra bonus for rarely visited pair

[Strehl and Littman, 2008]. However, for space with high dimension, function approxima-

tion is needed for estimation of pseudo-count based exploration [Fu et al., 2017]. Hindsight

Experience Replay [Andrychowicz et al., 2017] combines Q-learning with additional goals,

which represented extra rewards.

Our self-imitation learning approach from previous work by incorporating synthesis pro-

cedure. The artificial generation process encourages exploration and enjoy the benefits of

past expriences.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

In this thesis, we study approaches to improve the efficiency for reinforcement learning.

By utilizing stochastic variance reduced gradient descent, we improve the Adam optimizer’s

convergence rate and stable performance. On the other hand, we integrating self-imitation

policies with artificial trajectories to exploit roll-out samples efficiently. Evaluation results

of these two algorithms demonstrate significant improvement on digital games as well as

physical simulation tasks.

Interesting future work includes integrating artificial trajectories with various exploration

techniques in reinforcement learning community, such as curiosity-driven exploration. In

addition, it is promising to extend synthetical trajectories idea to zeroth order framework,

such as evolution strategies framework [Salimans et al., 2017]. Finally, one can combine

variance reduction technique with artificial trajectories idea to further improve the agent’s

performance.
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