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ABSTRACT

The technology today makes it unprecedentedly easy to collect and store massive text

data in various domains such as online social networks, medical records and news reports. In

contrast to the gigantic volume of text data, human capabilities to read and process text data

is limited. Hence, there is an emerging demand for automatic text mining tools to analyze

massive text data.

Word embedding is an emerging text analysis technique that leverages the fine-grained

statistics of context information to map each word to a vector in the embedding space which

reflects the semantic proximity between words. Embedding techniques not only enrich the

statistical signals to utilize in downstream text mining applications, but also provide the

possibility to characterize and represent higher-level objects in the embedding space, such as

sentences, documents or topics.

This study integrates word embedding techniques into a series of text mining approaches

and models. The general idea is to take a text object such as a document or a sentence

as a bag of embedding vectors and characterize their distributions in the embedding space.

Specifically, this study focuses on two tasks: outlier analysis and weakly-supervised sentiment

analysis.

Outlier analysis aims to identify documents that topically deviate from the majority of

a given corpus. We develop an unsupervised generative model to identify frequent and

representative semantic regions in the word embedding space to represent the given corpus.

Then we propose a novel outlierness measure to identify outlier documents. We also study

the cost-sensitive scenario of outlier analysis.

Sentiment analysis typically identifies the subjective opinion (e.g., positive vs. negative) in

a piece of text. Despite being extensively studied as a supervised learning task, we tackle the

problem in a weakly-supervised fashion, where users only provide a small set of seed words

as guidance. We study to identify aspects and corresponding sentiments at both document

and sentence level.
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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

The volume of text data in numerous domains is explosively growing thanks to the recent

progress in technology. The emergence of multiple novel infrastructures and platforms such

as cloud service and online social networks substantially facilitates the creation and storage

of text data for users. Regarding the gigantic size of text data available, it is intractable to

rely on human effort to digest the entire corpus and extract knowledge of interest. Instead, it

becomes increasingly important to develop automatic tools to mine essential insights from

massive text data. There are a series of studies on text mining techniques such as document

clustering [4], summarization [56] and topic modeling [13, 31].

Traditional text mining techniques take each word as an isolated unit and calculate their

frequencies and correlations of occurrences to identify valuable patterns. For example, classical

topic models [13, 31] represent each input document by the bag-of-word representation and

derive topics represented as a multinomial distribution over all the possible words. However,

the semantic proximity between words is largely neglected. For example, the word “good”

and the word “great” carry very similar semantic meaning, but are treated as two isolated

units while calculating their frequencies.

Recent progress in word embedding [61, 67, 66] provides a promising tool to address this

issue, where each word can be mapped to a vector in a continuous embedding space. The

mapping is optimized by ensuring a specific similarity measure (e.g., cosine similarity) can

properly reflect the semantic proximity between words. For example, the embedding vectors

of “good” and “great” should be close to each other in the embedding space. The word

embedding technique actually encodes the statistics of context information for each word

into its embedding vector to serve higher-level text mining techniques.

We integrates word embedding to develop novel text mining techniques. Instead of

characterizing a text object such as a sentence, a document or a corpus by discrete word

distributions, we propose to leverage continuous distributions in the embedding space as the

representation. This philosophy is capable of merging the frequencies of words with similar

meanings and smoothing the sparsity of rare words.

The modeling principle benefits various downstream applications. It improves the un-

supervised text modeling and therefore benefits tasks like outlier detection. Moreover, it

enables some traditionally supervised tasks to be performed with few supervision, such as

aspect-based sentiment analysis.
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1.2 RESEARCH PROBLEMS AND CHALLENGES

We study to leverage word embedding in different text mining scenarios. First, we utilize

word embedding to strengthen unsupervised text mining tasks. We apply word embedding in

a novel unsupervised text mining task: identifying outlier documents. Then, we explore to

attack tasks which traditionally require a lot of labeled data with very few user guidance by

taking advantage of the word embedding space. Specifically, we study to perform sentiment

analysis with only few keywords provided by users as guidance.

In the following subsections, we describe the two tasks we study as well as their major

challenges.

1.2.1 Topically deviating document outliers

Outlier documents, which substantially deviate from the semantic focuses of the given

corpus, can provide valuable insights or imply potential errors. For example, an outlier health

record from records of the same disease could indicate a new variation of the disease if it has an

abnormal symptom description, or a medical error if it has an abnormal treatment description.

A previous study [26] uses structured data in health records to show the importance of this

application, and points out that further improvement should be achieved by leveraging text

data.

Existing work has studied a related albeit different task, novel document detection [40, 39,

95, 93], where one aims to identify from a document stream if a newly arriving document is

novel or redundant. In other words, this task assumes all the previous documents are known to

be “normal”, and only checks if a new document is novel. In our task, no document is known

to be normal, and there could be multiple outliers in the corpus. Outlier detection [16, 30] is

a popular topic in data mining but few focus on text data. A study [25] identifies anomalous

text segments in a document, but mainly based on writing styles. We focus on studying

topically deviating documents.

Figure 1.1 briefly illustrates a real world example. Suppose the analyst is reviewing a set

of health records. The left figure shows the input, which is a given set of documents majorly

focusing on cardiovascular diseases while some documents are more relevant to urology. Such

records are worth more attention as they might indicate abnormal complications or medical

errors. The right figure presents the output where documents are ranked based on there

outlierness. By examining the ranked list of outlier documents, one can identify valuable

insights from the health records without exhaustively reading all the health records.

The problem of detecting outlier documents has its unique challenges. First, different words
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Input: a set of documents Output: a ranked list of 
outlier documents

cardiac
chest

precordial
inflammation

vascular
chest

kidney
urea

kidney
urea

vascular
chest

…

1.

2.

3.

Figure 1.1: An example of mining outlier documents in a given corpus. The left figure shows
data input: a set of health records on cardiovascular diseases. The right figure shows a set of
outlier records relevant to urology.

or phrases may be used to indicate the same semantic meaning, which introduces lexical

sparsity. Second, finding proper words or phrases to characterize the corpus is non-trivial.

Some frequent words or phrases can be too general or too vague. Third, a document can

carry extremely rich and noisy signals, most of which are not helpful to determine whether it

is an outlier.

1.2.2 Sentiment analysis with minimal guidance

Sentiment analysis, which aims to identify the subjective opinion (e.g. positive vs. negative)

of a given piece of text, is an essential task of text understanding with a broad range of

applications, such as recommendations [12, 18], stock prediction [76, 65] etc. Aspect-based

sentiment analysis [74] takes a further step to identify the target aspect of sentiment in a

given sentence. For example, sentences from restaurant reviews “The food is good” and “The

servers are friendly” both convey a positive sentiment, while the first sentence should be

identified as a comment on the Food aspect and the second on the Service aspect.

The majority of studies on aspect-based sentiment analysis adopt a supervised frame-

work [47, 57, 99, 34, 28, 51, 80, 86, 87] where a significant number of labeled sentences

are required to train the model. Nevertheless, such labels are extremely expensive and

difficult to obtain, especially for a new domain or a new language. Another thread of stud-

ies [32, 63, 38, 55, 70, 71, 52, 7] focus on weak supervision or distant supervision to perform
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Restaurant 
reviews

1. Food: “food”, “chicken”, “appetizer”
2. Service: “server”, “staffs”, “waiter”
3. Ambience: “ambience”, “dj”, “décor”
4. Location: “location”, “place”, “view”
5. Drinks: “wines”, “martinis”, “beer”

Positive: “good”, “great”, “nice”
Negative: “gross”, “bad”, “terrible”

Aspect seeds

Sentiment seeds

1. “The rice was also good.”
Output

Training

Unlabeled corpus

Model

Input

2. “The decor is vibrant.”

3. “The hostess is rude to the 
point of being offensive.”

1. (Food, Positive)

2. (Ambience, Positive)

3. (Service, Negative)

Figure 1.2: An example of aspect-sentiment analysis with minimal guidance. Users only
provide small sets of aspect and sentiment words. The algorithm outputs the identified aspect
and sentiment class for each sentence.

aspect-based sentiment analysis. However, some of them either rely on external language

resource such as thesaurus information [32, 63, 38, 55, 70, 7] or syntactic structures generated

by well-trained NLP tools [71, 52]. In reality, such information is not always available or

accurate in new domains or low-resource languages.

We aim to develop an aspect-based sentiment analysis tool merely from the massive

unlabeled text data without heavy external language resource or syntactic structures other

than a few seed words from users. More specifically, users only need to provide a small set

of seed words for each aspect class and a set of seed words for each sentiment class. The

objective is to build a model to identify the aspect class and sentiment class for any sentence

expressing an opinion on a target aspect class. Comparing to most previous studies on weakly

supervised aspect-based sentiment analysis, our setting requires significantly less effort or

resource from users.
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Figure 1.2 presents an example, where a user needs to conduct aspect-based sentiment

analysis on a set of restaurant reviews. The aspect classes are known for the restaurant

domain, which are Food, Service, Ambience, Location and Drinks. The user only needs

to provide a small set of seed words for each aspect class, a small set of seed words for

each sentiment class, and the unlabeled corpus. For example, the user can specify {“food“,

“chicken”, “appetizer”} for Food aspect, {“server”, “staffs”, “waiter”} for Service aspect etc.,

while {“good”, “great”, ”nice} and {“gross”, “bad”, ”terrible} for Positive and Negative

sentiment class respectively. Based on the user-provided seed words and the corpus, our aim

is to train a model to identify the aspect and sentiment class for any given sentence. For

example, given a sentence “The rice was also good”, the model should output its aspect class

as Food and sentiment class as Positive.

There are several research challenges in this problem. The first is how to model the aspect

and sentiment perspectives of sentences in the unlabeled corpus. The second is how to utilize

the user-provided seed words to guide the aforementioned modeling process, such that the

learned model can be well aligned with user intention.

5



CHAPTER 2: LITERATURE REVIEW

Text embedding and applications. Word embedding aims to learn a distributed

representation vector for each word/phrase as a compact representation. A series of work is

done to derive word embedding by leveraging neural networks [21, 62, 83]. The seminal work

by Mikolov et al. [61] propose to learn vector representations of words by fitting a skip-gram

model to a corpus. Specifically, they aim to derive a vector representation for each word

such that the surrounding words of its occurrence in a sentence or a document can be best

predicted. They also propose several tricks in training such as negative sampling. They show

that the learned vector presents interesting properties like additive composition, where simple

arithmetic operation produces meaningful results.

There are a series of studies addressing limitations of the proposed word embedding

technique. Pennington et al. [67] further incorporate global information in addition to the

local context. Neelakantan et al. [64] learns multiple vector representations for words with

multple senses. Bojanowski et al. [14] use subword information to enrich the word embedding,

while Wieting et al. [89] similarly use character-level information to improve the learned

embedding. Nickel et al. [66] derive word embedding in a hyperbolic space to reflect the

hierarchical structure of words. In addition, some studies also focus on deriving contextualized

word embedding, which does not assign a fixed embedding vector for each word in a lexicon,

but outputs the vector representation for each word occurrence based on its context. Peters et

al. [68] propose ELMo, a word representation based on the internal states of a pretrained

bi-directional language model.

Le et al. [46] also propose to derive embedding vector representations for paragraphs and

documents by concatenating embedding of words in the context window and a document

vector to be learned. Kiros et al. [42] propose an encoder-decoder model to derive vector

representation for sentences by reconstructing surrounding sentences. Recent studies such

as ELMo [68] and BERT [23] on unsupervised language model can also provide vector

representation for sentences.

Word embedding greatly boosts the performance of multiple downstream text-related tasks

from syntactic parsing [77, 17] and entity typing [91] to machine reading comprehension [54]

and machine translation [37, 10]. Massive labeled data is still required for these tasks,

but word embedding improves the performance comparing to traditional methods with

similar supervision. On the other hand, word embedding also benefits some unsupervised or

weakly-supervised tasks including topic modeling [22, 11], set expansion [72, 75], taxonomy

construction [92] etc.
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Outlier document. Outlier detection is an essential task studied in data mining [16, 30].

There have been extensive studies on outlier detection in data mining community [15, 48, 43,

44, 35, 78]. Few studies explicitly focus on detection of document outliers. Wang et al. [88]

study outlier document detection leveraging domain ontologies but mainly focus on short text;

Aouf et al. [9] utilize the TF-IDF representation and propose a random projection method

to approximate the outliers. Guthrie [25] studies identifying anomalous text segments, but

basically based on writing styles, while the problem we discuss focuses more on topical

outliers. Aggarwal et al. [2] also provides a brief review of relevant studies on outlier analysis

in text.

The most relevant stream of research focuses on novel document detection [40, 39, 95, 93],

where one aims to identify from a document stream if a newly arriving document is novel or

redundant. However, novel document detection is a fundamentally differed problem. Novel

document detection only judges if the arriving document is novel as compared to older

documents, and time factor is usually used to define the norm, whereas in outlier document

detection, any document in the given corpus could be an outlier.

Sampling for outlier detection. Sampling techniques have been used for detecting outlier

data points from observed data points for different purposes. In [1], outlier detection is

reduced to a classification problem and an active learning algorithm is proposed to selectively

sample data points for training the outlier detector. In [79, 90], a subset of data points is

uniformly sampled to accelerate the outlier detector. [45] propose a biased sampling strategy.

[98, 49] use a subsampling technique to introduce diversity in order to apply ensemble methods

for better outlier detection performance.

There are also studies on outlier detection when uncertainty of data points is considered [3,

33]. However, these algorithms do not attempt to actively request more information about

data points to reduce the uncertainty.

Weakly-supervised aspect-based sentiment analysis. A series of studies on aspect-

based sentiment analysis utilize aspect and/or sentiment lexicons. Some methods directly

leverage an existing lexicon from an external source, such as [63] which uses a sentiment

lexicon. Other methods develop algorithms to automatically build the aspect and/or sentiment

lexicons.

Frequency-based methods construct the lexicons by counting the frequencies of each word

in a given corpus and developing reasonable measures to distinguish aspect/sentiment words

from others. Hu et al. [32] use a frequency-based method to identify frequent nouns to

build the aspect lexicon. Then, they extract adjectives adjacent to the identified aspect

words to build the sentiment lexicon. This method relies on part-of-speech (POS) tags of

7



words in sentences. Popescu et al. [70] develop another frequency-based method and achieve

improvement from [32], but they rely on more external resource such as the web statistics

data. Scaffidi et al. [73] also propose a frequency-based method developed from a statistical

test to construct the aspect lexicon but still requires the POS tags.

Syntax-based methods further leverage the syntactic structure of each word occurrence in

the lexicon construction process. Qiu et al. [71] choose to build the lexicons from some seed

aspect or sentiment words by syntactic rules. They first obtain the dependency structure of

each sentence in the corpus. Then they start from the given seed words to add new words

that follow certain expert-given syntactic rules. However, the quality of their method heavily

rely on the accuracy of the dependency parser, which can be low on a new domain without

training data. Moreover, the method requires users to specify syntactic rules, while users are

not necessarily familiar with linguistic knowledge. Although there are some follow-up studies

to improve this algorithm, they still suffer from these drawbacks [52, 53]. Zhang et al. [94]

also utilize similar ideas, with a different set of rules, as well as a HITS-based algorithm to

rank the aspects. Zhao et al. [96] study to generalize some syntactic structures for better

coverage on aspect extraction.

Generative topic models are also frequently adopted to model the aspect and sentiment

data. A series of work by Wang et al. [84, 85] propose generative models to predict rating

on each aspect. Nevertheless, their work rely on additional overall rating data for each

review. Titov and McDonald [82] also propose a multi-aspect sentiment model to jointly

characterize aspect occurrences and sentiment ratings of users. Similarly, they rely on the

rating as supervision. Mei et al. [60] study a topic model for the general sentiment as well as

the dynamics of topics. They focus more on corpus level summarization, while our objective

is aspect-based sentiment analysis.

Jo and Oh [36] propose a sentence-level generative topic model. They use a mixture of

joint aspect-sentiment topics to model each sentence with a seed set of sentiment words.

Their model is capable of performing sentence-level aspect-based sentiment analysis from

similar input as ours. However, they only leverage the co-occurrence signals between words

for semantic proximity, without enjoying the benefit of recent progress on word embedding.

Recently, there are also some neural-network-based methods focusing on unsupervised or

weakly supervised aspect-based sentiment analysis. He et al. [27] propose an unsupervised

neural model to extract aspects by an attention mechanism. However, their method requires

a manual step to map the learned aspects to the desired aspect classes. They focus more on

aspect extraction, and do not study sentiment analysis. Angelidis et al. [7, 6] also explore

to use seed aspect words as user guidance and perform aspect extraction and sentiment

prediction, but they again require overall sentiment rating as supervision.
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CHAPTER 3: UNSUPERVISED TEXT MINING FOR OUTLIER ANALYSIS

3.1 OVERVIEW

In this chapter, we describe an unsupervised modeling technique to characterize text data

in the embedding space with word embedding by studying the application of identifying

topically deviating outlier documents from a given corpus.

We tackle the problem of mining outlier documents in the following steps. We leverage

word embedding [61] to capture the semantic proximities between words and/or phrases, in

order to solve the sparsity issue. Then we propose a generative model to identify semantic

regions in the embedded space frequently mentioned by documents in the corpus. The

model represents each semantic region with a von Mises-Fisher distribution. We also learn a

concentration parameter for each region with our model, and develop a selection method to

identify semantically specific regions which can better represent the corpus, and filter regions

with largely uninformative words.

As the final step, we design a robust outlierness measure emphasizing only the words or

phrases in a document relatively close to the semantic focuses identified, and eliminating the

noises and redundant information.

3.2 PRELIMINARIES

In this section, we formalize the problem and then briefly describe the preprocessing step.

3.2.1 Notations

The notations used in this study are introduced here. A document is represented as a

sequence di = (wi1, wi2, · · · , wini), where each wij ∈ V represents a word or phrase from a

given vocabulary V and ni denotes the length of the di. We refer to a set of documents as a

corpus, represented as D = {di}|D|i=1.

Notice that wij may refer to a unigram word or a multi-gram phrase. Although it is

non-trivial to appropriately segment a document into a mixed sequence of words and phrases,

it is not the focus of our paper. A recently developed phrase mining technique [50] is used to

extract quality phrases and to segment the documents.

Word embedding provides vectorized representations of words and phrases to capture their

semantic proximity. We assume there is an effective word embedding technique (e.g. [61]),

9



f : V 7→ Rν , where f is the transforming function that takes a word or a phrase as input

and projects it into a ν-dimensional vector as its distributed representation. The semantic

proximity between two words or phrases w and w′ can be preserved by the cosine similarity

between their embedded vectors:

sim
(
f(w), f(w′)

)
=

f(w) · f(w′)

‖f(w)‖ × ‖f(w′)‖ (3.1)

This work studies how to effectively rank documents in a corpus based on how much they

deviate from the semantic focuses of the corpus. More formally,

Problem 3.1. Given a set of documents D, our objective is to design an outlierness measure

Ω : D 7→ R, such that documents with larger outlierness Ω(d) is more semantically deviating

from the majority of the corpus D.

3.2.2 Preprocessing

We perform several steps of preprocessing to derive the input representation of each

document in a given corpus.

Phrase mining. SegPhrase, a recently developed phrase-mining method [50], is utilized

to automatically identify quality phrases in a corpus. After being trained in one corpus,

SegPhrase is also capable of segmenting unseen documents into chunks of phrases with mixed

lengths. We train SegPhrase on an external corpus De to obtain the list of quality phrases.

Then for each corpus D given for outlier detection, we employ the trained SegPhrase to

chunk each document into a sequence of words and quality phrases.

Word embedding. We adopt word embedding as a preprocessing step to capture the

semantic proximity between words/phrases. Instead of using the raw text, similar to [50],

we use the sequence derived from SegPhrase as input to the word embedding algorithm. In

particular, word2vec [61] is utilized in our experiments, but can be seamlessly replaced by

any other embedding results.

We run the embedding algorithm based on the external corpus De, the same corpus used

in phrase mining. As De is sufficiently large, there are only few words or phrases in D which

never appear in De, and they are simply discarded in the experiments.

Stop words removal. We remove stop words, as well as the words or phrases ranked high

within a certain quantile in terms of document frequency1 (DF) in the external corpus De.

1Document frequency of a word (or phrase) is defined as number of documents where this word or phrase
appears.
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Such words or phrases usually carry background noise, and obstruct outlier detection.

3.3 MINING OUTLIER DOCUMENTS

Our framework consists of the following steps. First, we leverage a generative model to

identify semantic “regions” in the word embedding space frequently mentioned by documents

in the given corpus. Second, we develop a selection method to further remove semantics

regions that are too general to properly characterize the given corpus and only keep regions

both frequent and semantically specific, denoted as “semantic focuses”. Finally, we calculate

the outlierness measure for each document based on the mined semantic focuses. We design

a robust outlierness measure which is less sensitive to noisy words or phrases in documents.

3.3.1 Embedded von Mises-Fisher Allocation

We start with a generative model to identify the frequent semantic regions in the word

embedding space.

Since we use cosine similarity to capture the semantic proximities between two words or

phrases, the magnitude of the embedding vector of each word can be omitted in this part.

We use xij = f(wij)/‖f(wij)‖ to represent the unit vector with the same direction as the

embedded vector of wij, and use X to represent the collection of all xij where 1 ≤ i ≤ |D|
and 1 ≤ j ≤ ni.

In order to characterize a semantic region in the embedded space, we introduce von

Mises-Fisher (vMF) distribution. The von Mises-Fisher (vMF) distribution is prevalently

adopted in directional statistics, which studies the distribution of normalized vectors on

a spherical space. The probability density function of the vMF distribution is explicitly

instantiated by the cosine similarity. It is an ideal distribution for our task because we

use cosine similarity to measure the semantic proximity. Moreover, as we will see later, it

empowers us to characterize how specific each semantic region is, which is helpful in further

identification of semantic focuses for outlier detection.

We first introduce the formalization of the von Mises-Fisher distribution.

Von Mises-Fisher (vMF) distribution. A ν-dimensional unit random vector x (i.e. x ∈
Rν and ‖x‖ = 1) follows a von Mises-Fisher distribution vMF(·|µ, κ) if the probability density

function follows:

p(x) = Cν(κ) exp
(
κµ>x

)
(3.2)
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where Cν(κ) = κν/2−1
/

(2π)ν/2Iν/2−1(κ); and Iν/2−1(·) is the modified Bessel function of the

first kind; (ν/2− 1) is the order.

The two parameters in the vMF distribution are the mean direction µ and the concentration

parameter κ respectively, where µ ∈ Rν , ‖µ‖ = 1 and κ > 0. The distribution concentrated

around the mean direction µ, and is more concentrated if the concentration parameter κ is

larger.

Embedded von Mises-Fisher allocation. We propose a generative model by regarding

each document as a bag of normalized embedded vectors, analogous to the bag-of-word

representation of documents utilized in typical topic model (e.g., LDA [13]). The major

difference is that the data to be generated is now a bag-of-vector representation for each

document, which should be generated from a mixed vMF distribution instead of a mixed

multinomial distribution.

A formalized description of the model is summarized as follows:

µt ∼ vMF(·|µ0, C0), t = 1, 2, · · · , T
κt ∼ logNormal(·|m0, σ

2
0), t = 1, 2, · · · , T

πi ∼ Dirichlet(·|α), i = 1, 2, · · · , |D|
zij ∼ Categorical(·|πi), j = 1, 2, · · · , |di|
xij ∼ vMF(·|µzij

, κzij), j = 1, 2, · · · , |di|

where T > 0 is an integer indicating the number of semantic regions, namely the number of

vMF distributions in our mixture model.

We regularize the vMF parameters by the following prior distributions. We assume the

mean direction µt of each vMF distribution is generated from a prior vMF distribution

vMF(·|µ0, C0), while the concentration parameter κt is generated from a log-normal prior

logNormal(·|m0, σ
2
0). A similar design is also adopted in [24].

Parameter inference. We infer the parameters by Gibbs sampling. Because both the

von Mises-Fisher distribution and the Dirichlet distribution have conjugate priors, we can

integrate out parameters µt and πi and develop a collapsed Gibbs sampler of zij:

P (zij = t|Z−ij,X,κ;α,m0, σ
2
0,µ0, C0)

∝
(
n−ijit + 1 + α(t)

)
Cν(κt)Cν

(∥∥C0µ0 + κtx
−ij
·t
∥∥)

Cν

(∥∥∥∥C0µ0 + κt
(
x−ij·t + xij

)∥∥∥∥) (3.3)
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where n−ijit =
∑|di|

j′ δ(zij′ = t) − δ(zij = t) is the number of words in the i-th document

being assigned to the t-th von Mises-Fisher distribution without taking wij into account;

x−ij·t =
∑|D|

i′
∑|di|

j′ xi′j′δ(zi′j′ = t)− δ(zij = t) is the sum of word vectors assigned to semantic

region t without counting wij. Here δ(·) is the indicator function.

We can also derive a collapsed Gibbs sampler for concentration parameters κt’s:

P (κt|Z,X,κ−t;α,m0, σ
2
0,µ0, C0)

∝ Cn·t
ν (κt)

Cν
(
‖C0µ0 + κtx·t‖

) logNormal(κt|m0, σ
2
0) (3.4)

where n·t is the number of words in semantic region t.

While sampling zij is relatively trivial, sampling κt is not straightforward. Similar difficulty

is also mentioned in [24]. We employ a Metropolis-Hasting algorithm with another log-normal

distribution centered at the current κt value as the proposal distribution.

After obtaining a sample from the posterior distribution of zij’s and κt’s, we can easily

obtain the MAP estimate of mean directions µt’s and the mixing distribution of each

documents πi:

µ̂t =
C0µ0 + κtx·t
‖C0µ0 + κtx·t‖

, π̂i =
nit + α(t)

ni· +
∑

tα
(t)

Discussions. We notice that there are some topic models [22, 11] proposed for similar data,

where words are represented as embedding vectors. Our model is proposed independently

for the purpose of identifying semantic focuses, which serves the task of outlier detection.

Existing models may lack signals for the following outlier detection steps and hence cannot

be directly plugged in. However, it is possible to adapt certain models to the outlier detection

task.

3.3.2 Identifying Semantic Focuses

The semantic regions learned from the Embedded vMF Allocation model provide a set

of candidates frequently mentioned by documents in the corpus. However, not all of them

are semantic focuses of the corpus — some are too general to distinguish outlier and normal

document.

We notice that uninformative semantic regions (e.g. a semantic region containing {“percent”,

“average”, “compare”, ...}) tend to have more scattered distribution over embedded vectors,

possibly because of the diverse context of their usage. In contrast, corpus-specific semantic
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regions are more concentrated, (e.g. a semantic region containing {“drugs”, “antidepressant”,

“prescription”, ...}). Modeling semantic regions by vMF distributions provides us with a par-

simonious signal to characterize how concentrated a semantic region is, i.e. the concentration

parameter κt. This allows us to simply filter unqualified semantic regions with too small

concentration parameters and obtain high-quality semantic focuses. Let a binary variable φt

(t = 1, 2, · · · , T ) indicate whether the t-th vMF distribution is a semantic focus. Suppose

a user specifies a threshold parameter 0 ≤ β ≤ 1. We can determine φt by estimating the

log-normal distribution that generates all κt’s, logNormal(m̂, σ̂
2), where

m̂ =
1

T

∑
t

log(κt), σ̂
2 =

1

T

∑
t

(
log(κt)− m̂

)2
Set F̂κ(·) to be its cumulative distribution function. We assign φt = 1 for semantic regions

with κt ≥ F−1κ (β), and filter all the other semantic regions as φt = 0.

Although parameter β needs to be set manually, our experiments suggest that the perfor-

mance is not quite sensitive to its value.

3.3.3 Document Outlierness

In this subsection, we start with a straightforward definition of outlierness based on the

mined semantic focuses. Then we present several refinements to improve its robustness.

Baseline outlierness measure. A straightforward intuition is to assume outlier documents

averagely have fewer words or phrases drawn from semantic focuses. To estimate this, we

first need to calculate the probability of each word being drawn from the semantic focuses.

P
(
φzij = 1|xij,πi

)
=

∑
t φtπ

(t)
i vMF(xij|µt, κt)∑

t π
(t)
i vMF(xij|µt, κt)

It is then possible to estimate the expected percentage of words not drawn from semantic

focuses in each document as the outlierness:

Ωsf(di) = 1− 1

|di|

|di|∑
j=1

P (φzij = 1|xij,πi) (3.5)

However, due to the noisiness in text data, this assumption oversimplifies the characteriza-

tion of outlier documents. In practice, we observe the following two issues: lexically general

words/phrases, and noisy content in documents.
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Penalizing lexically general words and phrases. Not all words or phrases close to

semantic focuses are strong indicators of normal documents. General words (e.g. “science”)

can happen to be semantically close to a semantic focus, but are not as specific as most other

words close to it (e.g. “medical research”). Therefore, we utilize a background corpus Dbg

to calculate the specificity of the word. Assuming the actual mention of the word can be

chosen from either the general background or a corpus-specific vocabulary, we write down

the probability that a word is corpus-specific to be:

P
(
λij|wij

)
=

nd(wij)/|D|
nd(wij)/|D|+ ndbg(wij)/|Dbg|

where nd(w) = |{di|w ∈ di, di ∈ D}| is the number of documents in D containing word w;

ndbg(w) = |{di|w ∈ di, di ∈ Dbg}| is the number of documents containing word w in the

background corpus Dbg; λij is a binary random variable indicating whether wij is specific

enough.

For each word, we define that a word is orthodox if the word is not only semantically close

to a semantic focus of the corpus, but also sufficiently specific. We then define the probability

that a word or phrase wij in document di is orthodox as:

P (ϕij|xij,πiwij) = P
(
φzij |xij,πi

)
P
(
λij|wij)

where ϕij = 1 indicates that wij (or equivalently xij) is orthodox.

Now, we can define a second outlierness measure as the expected percentage of words that

are not orthodox.

Ωe(di) = 1− 1

|di|

|di|∑
j=1

P (ϕij|xij,πi, wij) (3.6)

Noisy content in documents. We present the second issue of normal documents with an

example. We compare a normal document in a corpus of New York Times news articles with

tag “Health”, to another document originally from another corpus, but with its outlierness

calculated with regard to the semantic focuses of the “Health” corpus.

In Figure 3.1(a), we show the distribution of inferred orthodox probability P (ϕij =

1|xij, wij) by ranking the words or phrases according to their probability value. We can

observe that the outlier document barely has any words or phrases surely orthodox, while the

normal document has 5% of words or phrases with a probability no less than 0.8 to be orthodox.

However, if we simply take the average, these two documents become indistinguishable as
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Figure 3.1: Comparison of a normal document and an outlier document in a news corpus
(“Health” topic).

the average is substantially dominated by the “tail” where most words or phrases in either

documents are clearly not orthodox. Let nϕi be a random variable indicating the true number

of orthodox words or phrases in document di. Since nϕi follows a Poisson-Binomial distribution,

we can plot the probability distribution of nϕi normalized by the length of the document,

as shown in Figure 3.1(b). It can be observed that the difference between the normalized

expectation E[nϕi ]/di of two documents is insignificant. Therefore, the measure described in

Eq. (3.6) will be unable to tell the difference between these two documents.

This example illustrates why the strategy of taking the average over the whole document

can make mistakes, and also provides an important insight. As long as a document has a

(potentially small) portion of words or phrases that are highly certain to be orthodox, it

should not be considered as an outlier. Based on the above observation, we propose a third

outlierness measure.

Orthodox quantile outlierness. We define a quantile-based outlierness definition to rank

document outliers. Notice that the distribution of random variable nϕi follows a Poisson-

Binomial distribution, which is the total number of success trials when one tosses a coin for

each word or phrase in the document to determine whether it is orthodox with probability

P (ϕij|xij, wij).
Moreover, we define the first 1

1−θ -quantile of the Poisson-Binomial distribution of nϕi as:

qθ(n
ϕ
i ) = sup

q
{q : P (nϕi ≥ q) ≥ θ} (3.7)
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where 0 < θ < 1 is a given parameter close to 1. Intuitively, it measures the maximum lower

bound of nϕi we can guarantee with confidence θ.

Based on Eq. (3.7), we can give a formalized definition of our proposed outlierness:

Ωθ-q(di) = 1− qθ(n
ϕ
i ) + 1

|di|+ 1
(3.8)

where the 1
1−θ -quantile is normalized by the document length with a smoothing constant.

The cumulative probability distribution of a Poisson-Binomial distribution can be efficiently

calculated by dynamic programming [19].

The advantage of the last proposed outlierness measure is that it emphasizes more on

the highly orthodox words or phrases and eliminates the noise from a number of relatively

uncertain ones.

3.4 EXPERIMENT SETUP

3.4.1 Data Sets

New York Times News (NYT). We collected 41,959 news article published in 2013 from

The New York Times API2. Each article is assigned with a unique label indicating in which

section the article is published, such as Arts, Travel, Sports, and Health. There are totally

9 section labels in our collected data set. We treat papers in each section as a corpus D.

Thereby we have a set of corpora D = {Ds}, without overlapping documents. We also have

an external news data set De crawled from Google news, with 51,114 news article published

in 2015 without any label information.

ArnetMiner Paper Abstracts (ARNET). We employ abstracts of papers published in

the field of computer science up to 2013, collected by ArnetMiner [81], and assign each paper

into a field, according to Wikipedia3. We use papers from a set of domains to serve as an

external corpus De, while papers in other domains form different corpora D = {Ds}. Each

domain (e.g., data mining, computational biology, and computer graphics) forms a corpus Ds

respectively. Again, notice that the corpora do not have overlapping documents with each

other.

A summary is presented in Table 3.1.

2http://developer.nytimes.com/docs
3https://en.wikipedia.org/wiki/List_of_computer_science_conferences
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Table 3.1: Data set statistics.

Data set
Corpus D External corpus De

Avg. |D| Avg. |d| |De| Avg. |d|
NYT 4,662.11 592.66 52,114 471.63

ARNET 2,930.60 137.21 11,463 152.17

Benchmark generation. Since we do not have true labels for outliers in a corpus, we use

injection method to generate outlier detection benchmark. For each data set, we randomly

select a corpus Ds ∈ D and mark all of its document as “normal documents”. We then

randomly select another corpus D′s ∈ D, D′s 6= Ds, to inject ω documents from D′s into Ds

and mark them as outliers. We confine ω to be a small integer less than 1% of the size of

|Ds|. More concretely, ω is an integer uniformly sampled from (0, 0.01|Ds|].
For each data set, we randomly generate 10 outlier detection benchmarks, and evaluate

the overall performance by the average performance on all the benchmarks.

3.4.2 Methods Evaluated

We compare the performances of the following methods.

Cosine similarity-based. We characterize each document as a vector, and use the

negative average cosine similarity between each document and the corpus as outlierness. We

use two different ways to vectorize documents: TF-IDF weighted, and paragraph2vec [46].

The two methods are denoted as TFIDF-COS and P2V-COS respectively.

KL divergence-based. We represent each document as a probability distribution, and the

entire corpus as another probability distribution. Then we use the KL-divergence between

each document and the entire corpus as the outlierness. We also use two different ways

to calculate the probability distribution. The first is to estimate the unigram distribution

for each document and the entire corpus respectively, denoted as UNI-KL. The other is to

first perform LDA on the entire corpus with 10 topics, and then infer topical allocation

distribution of each document and the entire corpus. This method is represented as TM-KL.

Our method Our quantile based method is denoted as VMF-Q. We also provide two

baselines derived from our own method as an ablation analysis. One method abandons

the quantile based outlierness but use the expected orthodox percentage as Equation (3.6),

denoted as VMF-E. The other method further removes the penalty on lexical general words

and phrases, using Equation (3.5), denoted as VMF-SF.

18



3.4.3 Evaluation Measures

In most outlier detection applications, people are more concerned with recall. We measure

the performance by recall at a certain percentage. More specifically, we compute the recall of

outlier detection if the user checks a certain percentage r of the top-ranked documents in

the output results. Since in our benchmark generation, the percentage of outliers does not

exceed 1%. Therefore, the perfect results for any r ≥ 1% should be 1.0.

We choose r to be 1%, 2%, and 5% respectively and evaluate different methods with recall

at top-r (percentage). We also report the performance in terms of mean average precision

(MAP).

3.4.4 Parameter Configurations

All benchmark data sets are preprocessed as described in Section 3.2. In the NYT data

set we remove words or phrases within top 20% with respect to document frequency, while

in the ARNET data set we remove the top 10%. The document frequency is calculated

based on a background corpus Dbg, which is the same as the external corpus of NYT. Word

embedding are trained on the external data set De using code of Mikolov et al. [61] with

default parameter configurations, where the embedded vector length is set to 200. For

paragraph2vec, we learn the length-100 vectors for each document along with the external

data set to guarantee sufficient training data.

For the prior vMF distribution, we set C0 = 0.1, a sufficiently small number so the prior

distribution is close to a uniform distribution. µ0 is set as a normalized all-1 vector. We also

set m0 = log(100), and σ2 = 0.01. The total number for Gibbs sampling is set to be 50 times

of the total count of zij’s (i.e. η = 50). The number of vMF distributions T is set to 20 in

the NYT data set and 10 in the ARNET data set respectively, due to the smaller sizes of

corpora in the ARNET data set.

To determine semantic focuses, we set threshold parameter β = 0.55 for both data sets.

The confidence parameter θ in outlierness calculation is set to 0.95 in both data sets. Our

experiments later will show the performance is relatively robust to different configurations of

both parameters.

3.5 RESULTS

We present the experimental results in this section.

Performance comparison. Table 3.2 shows performance of different outlier document
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Table 3.2: Performance comparison of different outlier document detection methods. All
results are shown as percents.

Data set Method MAP Rcl@1% Rcl@2% Rcl@5%

NYT

TFIDF-COS 05.03 04.73 06.72 14.72
P2V-COS 22.07 23.45 44.64 66.18
UNI-KL 10.28 11.92 16.32 31.34
TM-KL 14.51 16.50 16.50 24.67
VMF-SF 33.70 31.03 44.45 62.60
VMF-E 36.57 35.91 49.41 67.56
VMF-Q 41.88 56.99 63.29 79.23

ARNET

TFIDF-COS 08.99 15.40 18.75 30.23
P2V-COS 07.39 10.51 14.78 24.14
UNI-KL 07.46 14.13 22.26 39.40
TM-KL 10.09 12.04 15.37 20.24
VMF-SF 10.69 12.05 22.58 44.51
VMF-E 10.51 12.67 25.92 45.37
VMF-Q 19.74 22.40 34.40 53.87

detection methods. It can be observed that our method outperforms all the baselines in both

data sets. In both data sets, VMF-Q can achieve a 45% to 135% increase from baselines in

terms of recall by examining the top 1% outliers. Generally, performances of most methods

are lower in the ARNET data set comparing to NYT, potentially because the relatively short

document lengths and more technical terminologies in ARNET.

In the NYT data set, by examining the top 1% of outlier documents ranked by VMF-Q,

one can find 56% of injected outliers, In contrast, the best performing baseline P2V-COS

only achieves 23%, indicating the difficulty of the problem.

In the ARNET data set, VMF-Q achieves 22-34% recall when the top 1-2% of ranked

outlier documents are examined, while other methods can barely have a recall greater than

15% if only top-1% of outlier documents are reviewed.

Generally, performances of most methods are lower in the ARNET data set comparing

to NYT, potentially because the relatively short document lengths and more technical

terminologies in ARNET.

Ablation analysis. Both refinements of the outlierness measure benefits the performance.

Specifically, by changing the average based outlierness to quantile based outlierness, the

recall@1% can be improved by 50-75%, and the recall@5% can also be improved by more

than 17%.

Sensitivity studies of parameters. We study if our proposed method is sensitive to the
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Figure 3.2: Performance of outlier document detection with different parameter configura-
tions.

confidence parameter θ and filtering threshold parameter β. We compare the performance of

VMF-Q by varying each parameter on both data sets. Figure 3.2(a) and 3.2(b) show that

the performance is not very sensitive to different values of θ, as long as θ is sufficiently large

(close to 1). Figure 3.2(c) and 3.2(d) show that the performance is relatively stable when β

is between 0.5 and 0.7, but drops a little when β is set to larger value.

Human judgments. We compare VMF-Q to VMF-E and P2V-COS respectively by

crowdsourcing, without artificially inserting “outliers”. We conduct this experiments on two

corpora in NYT data sets with topic “Health” and “Art” respectively. To compare two

methods, we randomly select pairs of documents di and dj such that both are ranked as

top-10% outliers by at least one method, but their orders in the two rankings disagree. We

conduct the experiments on CrowdFlower. Online crowd workers are given di and dj as well
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Figure 3.3: Crowd evaluation to compare different outlier detection methods on two corpora
in NYT data set.

as other documents in the corpus, and are asked to judge which one of di and dj deviates

more from the corpus. For each corpus, we select 200 pairs of documents.

Before taking the questions, each crowd worker needs to go through at least 10 “test

questions” which we know the correct answer. These questions are constructed by taking one

document from the corpus as di and another document not from the corpus as dj . Therefore,

the one not from the corpus should be the answer. A crowd worker needs to achieve no less

than 80% of accuracy to be eligible to work on actual questions, and the accuracy needs to

be maintained over 80% during the work, which is measured by “test questions” hidden in

actual questions. Each question is answered by 3 workers. The final answer is determined by

majority voting.

Figure 3.3 presents the results. On both corpora, there are significantly more workers tend

to agree with VMF-Q comparing to P2V-COS, with significance level α = 0.05. This further

verifies that our method VMF-Q can achieve better performance than the P2V-COS baseline.

On the other hand, on both data sets we can still observe more workers favoring VMF-Q than

VMF-E, but the difference is not as large as the difference between VMF-Q and P2V-COS.

Case study. We also conduct a case study to show how our proposed method outperforms

other baselines. Table 3.3 shows two pairs of documents in “Health” corpus of NYT data

set. The left two columns show some comparing methods and their higher ranked outlier

documents. The row of “Crowds” shows the outlier document chosen by human workers

from the crowdsourcing platform, with a consensus of opinions from multiple workers.

In the first document pair, document A is about gun control policy and is substantially

irrelevant to “Health” topic, while document B is about lung infection cases. Document
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Table 3.3: Case study of documents in “Health” corpus of NYT data set. We present several
pairs of documents and how different methods rank the pair. The “Outlier” column indicates
the document ranked higher in the outlier document ranking generated by the corresponding
methods, and the row “Crowds” shows the ranking given by human evaluators.

Method Outlier Document A Document B

P2V-COS Doc B States with the most gun control laws
have the fewest gun-related deaths, ac-
cording to a study that suggests sheer
quantity of measures might ...

A prominent Scottish bagpiping school
has warned pipers around to world to
clean their instruments regularly after
one of its longtime members ...

VMF-E Doc A
VMF-Q Doc A
Crowds Doc A

P2V-COS Doc B There’s more evidence that U.S. births
may be leveling off after years of decline.
The number of babies born last year only
slipped a little, ...

Young men in a state prison for juveniles
and professors of library science from the
University of South Carolina have joined
forces to fight AIDS with a graphic novel

VMF-E Doc B
VMF-Q Doc A
Crowds Doc A

A is a significant outlier, and VMF-Q and VMF-E also agree with our intuition. However,

paragraph2vec (P2V) ranks document B higher, probably because it tries to summarize the

entire document.

In the second document pair, document B is clearly not an outlier as the story is about

a new book of AIDS. In comparison, document A discussing U.S. population is an outlier.

However, a great part of document B is about the content of the book, which confuses

baselines P2V and VMF-E, as both methods tend to summarize the entire document and

highly relevant words like “AIDS” are overwhelmed by the majority of the document. The

only method that agrees with human annotators is VMF-Q.

3.6 SUMMARY

In this chapter, we propose a novel task of detecting document outliers from a given corpus.

We propose a generative model to identify semantic focuses of a corpus, each represented as a

vMF distribution in the embedded space. We also design a document outlierness measure. We

experimentally verify the effectiveness of our methods. We hope this work provides insights

for further studies on outlier document texts in specific domains, and in more challenging

settings such as detecting outliers from crowdsourced data.
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CHAPTER 4: COST-SENSITIVE OUTLIER DETECTION

4.1 OVERVIEW

In this chapter, we study the efficiency of identifying outliers. In some real-world scenarios,

the cost of identifying outliers may not be negligible. For example, if a data analyst needs

to perform interactive outlier analysis of text data with keywords, she will expect real-time

response from the outlier detection system. However, the calculation for detecting outliers

may not meet the latency requirements while handling gigantic text data sets. On the other

hand, if the system is requesting data from a third party, the monetary cost may be another

concern.

We study to minimize the cost of identifying outliers. We study a simplified but more

general version, where the problem is formalized as a variation of the multi-armed bandit

problem. We make the following major contributions:

• We propose a Round-Robin sampling algorithm, with a theoretical guarantee of its

correctness as well as a theoretical upper bound of its total number of pulls.

• We further propose an improved algorithm Weighted Round-Robin, with the same

correctness guarantee, and a better upper bound of its total number of pulls.

• We verify our algorithms on both synthetic and real data sets. Our Round-Robin

algorithm has near 100% accuracy, while reducing the cost of a competitive baseline

up to 99%. Our Weighted Round-Robin algorithm further reduces the cost by around

60%, with even smaller error.

4.2 PROBLEM DEFINITION

In this section, we describe the problem of identifying outlier arms in a multi-armed bandit.

We start with recalling the settings of the multi-armed bandit model.

Multi-armed bandit. A multi-armed bandit (MAB) consists of n-arms, where each

arm is associated with a reward distribution. The (unknown) expectation of each reward

distribution is denoted as yi. At each iteration, the algorithm is allowed to select an arm i to

play (pull), and obtain a sample reward x
(j)
i ∈ R from the corresponding distribution, where

j corresponds to the j-th samples obtained from the i-th arm. We further use xi to represent

all the samples obtained from the i-th arm, and y to represent the configuration of all the

yi’s.
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Problem formalization. We study to identify outlier arms with extremely high reward

expectations compared to other arms in the bandit. To define “outlier arms”, we adopt a

general statistical rule named k-sigma: The arms with reward expectations higher than the

mean plus k standard deviation of all arms are considered as outliers. Formally, we define

the mean of all the n arms’ reward expectations as well as their standard deviation as:

µy =
1

n

n∑
i=1

yi, σy =

√√√√ 1

n

n∑
i=1

(yi − µy)2

We define a threshold function based on the above estimators as:

θ = µy + kσy

An arm i is defined as an outlier arm iff yi > θ and is defined as a normal (non-outlier) arm

iff yi < θ. We denote the set of outlier arms as Ω = {i ∈ [n]|yi > θ}.
In a multi-armed bandit setting, the value of yi for each arm is unknown. Instead, the

system needs to pull one arm at each iteration to obtain a sample, and estimate the value

yi for each arm and the threshold θ from all the obtained samples xi,∀i. We introduce the

following estimators:

ŷi =
1

mi

∑
j

x
(j)
i , µ̂y =

1

n

n∑
i=1

ŷi, σ̂y =

√√√√ 1

n

n∑
i=1

(ŷi − µ̂y)2, θ̂ = µ̂y + kσ̂y

where mi is the number of times the arm i is pulled.

We focus on the fixed confidence setting. The formal definition of our problem can be

described as:

Problem 4.1. Given a n-arm bandit where each arm i has an unknown expectation yi and

a small tolerance constant 0 < δ < 1, we aim to design an efficient pulling strategy such that

the strategy can return the set of outlier arms Ω with the probability of being exactly correct

no smaller than 1− δ.

The fewer total number of pulls, i.e. T =
∑

imi, the better, because each pull has a

economic or time cost. Note that this is a pure exploration setting, i.e., the reward incurred

during exploration is irrelevant to the cost.
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4.3 ALGORITHMS

In this section, we propose several algorithms, and present the theoretical guarantee of

each algorithm.

4.3.1 Round-Robin Algorithm

The most simple algorithm is to pull arms in a round-robin way. That is, the algorithm

starts from arm 1 and pulls arm 2, 3, · · · respectively, and goes back to arm 1 after it iterates

over all the n arms. The process continues until a certain termination condition is met.

Intuitively, the algorithm should terminate when it is confident about whether each arm is

an outlier. We achieve this by using the confidence interval of each arm’s reward expectation

as well as the confidence interval of the outlier threshold. If the significance levels of

these intervals are carefully set, and each reward expectation’s confidence interval has no

overlap with the threshold’s confidence interval, we can safely terminate the algorithm while

guaranteeing correctness with desired high probability. In the following, we first discuss the

formal definition of confidence intervals, as well as how to set the significance levels. Then

we present the formal termination condition.

Confidence intervals. We provide a general definition of confidence intervals for ŷi and θ̂.

The confidence interval for ŷi at significance level δ′ is defined as [ŷi−βi(mi, δ
′), ŷi+βi(mi, δ

′)],

such that:

P(|ŷi − yi| > βi(mi, δ
′)) < 2δ′

Similarly, the confidence interval for θ̂ at significance level δ′ is defined as [θ̂−βθ(m, δ′), θ̂+

βθ(m, δ′)], such that:

P(|θ̂ − θ| > βθ(m, δ′)) < 2δ′

The concrete form of confidence interval may vary with the reward distribution associated

with each arm. We defer the discussion of concrete form of confidence interval to Section 4.3.3.

In our algorithm, we update the significance level δ′ for the above confidence intervals at

each iteration. After T pulls, the δ′ should be set as:

δ′ =
3δ

π2(n+ 1)T 2
(4.1)

In the following discussion, we omit the parameters in βi and βθ when they are clear from
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Input: n arms, outlier parameter k
Output: A set Ω̂ of outlier arms

1 Pull each arm i once ∀i ∈ [n]; // Initialization

2 T ← n;

3 Update ŷi,mi, βi,∀i ∈ [n] and θ̂, βθ;
4 i← 1;
5 while A 6= ∅ do
6 i← i%n+ 1; // Round-robin

7 Pull arm i;
8 T ← T + 1;

9 Update ŷi,mi, βi and θ̂, βθ;

10 return Ω̂ according to Eq. (4.3);

Algorithm 4.1: Round-Robin Algorithm (RR)

the context.

Active arms. At any time, if ŷi’s confidence interval overlaps with θ̂’s confidence interval,

then the algorithm cannot confidently tell if the arm i is an outlier or a normal arm. We call

such arms active, and vice versa. Formally, an arm i is active, denoted as ACTIVEi = TRUE,

iff ŷi − βi < θ̂ + βθ, if ŷi > θ̂;

ŷi + βi > θ̂ − βθ, otherwise.
(4.2)

We denote the set of active arms as A = {i ∈ [n]|ACTIVEi = TRUE}. With this definition,

the termination condition is simply A = ∅. When this condition is met, we return the result

set:

Ω̂ = {i|ŷi > θ̂} (4.3)

The algorithm is outlined in Algorithm 4.1.

Theoretical results. We first show that if the algorithm terminates with no active arms,

the returned outlier set will be correct with high probability.

Theorem 4.1 (Correctness). With probability 1 − δ, if the algorithm terminates after a

certain number of pulls T when there is no active arms i.e. A = ∅, then the returned set of

outliers will be correct, i.e. Ω̂ = Ω.

We can also provide an upper bound for the efficiency of the algorithm in a specific case

when all the reward distributions are bounded within [a, b] where b− a = R. In this case, the
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confidence intervals can be instantiated as discussed in Section 4.3.3. And we can accordingly

obtain the following results:

Theorem 4.2. With probability 1− δ, the total number of pulls T needed for the algorithm

to terminate is bounded by

T ≤ 8R2HRR

[
log

(
4R2π2(n+ 1)HRR

3δ

)
+ 1

]
+ 4n (4.4)

where

HRR = H1

(
1 +

√
l(k)

)2
, H1 =

n

mini∈[n](yi − θ)2
,

l(k) =

[√
(1 + k

√
n− 1)2

n
+

√
k2

2 log
(
π2n3

3δ

)]2

4.3.2 Weighted Round-Robin Algorithm

The round-robin algorithm evenly distributes resources to all the arms. Intuitively, active

arms deserve more pulls than inactive arms, since the algorithm is almost sure about whether

an inactive arm is outlier already.

Based on this idea, we propose an improved algorithm. We allow the algorithm to sample

the active arms ρ times as many as inactive arms, where ρ ≥ 1 is a real constant. Since ρ

is not necessarily an integer, we use a method similar to stride scheduling to guarantee the

ratio between number of pulls of active and inactive arms are approximately ρ in a long run.

The algorithm still pulls by iterating over all the arms. However, after each arm is pulled, the

algorithm can decide either to stay at this arm for a few “extra pulls,” or proceed to the next

arm. If the arm pulled at the T -th iteration is the same as the arm pulled at the (T − 1)-th

iteration, we call the T -th pull an “extra pull.” Otherwise, we call it a “regular pull.” We

keep a counter ci for each arm i. When T > n, after the algorithm performs a regular pull

on arm i, we add ρ to the counter ci. If this arm is still active, we keep pulling this arm until

mi ≥ ci or it becomes inactive. Otherwise we proceed to the next arm to perform the next

regular pull.

This algorithm is named Weighted Round-Robin, and outlined in Algorithm 4.2.

Theoretical results. Since the Weighted Round-Robin algorithm has the same termination

condition, according to Theorem 4.1, it has the same correctness guarantee.

We can also bound the total number of pulls needed for this algorithm when the reward
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Input: n arms, outlier parameter k, ρ
Output: A set of outlier arms Ω̂

1 Pull each arm i once ∀i ∈ [n]; // Initialization

2 T ← n;

3 Update ŷi,mi, βi,∀i ∈ [n] and θ̂, βθ;
4 ci ← 0, ∀i ∈ [n];
5 i← 1;
6 while A 6= ∅ do
7 i← i%n+ 1 ; // Next regular pull

8 ci ← ci + ρ;
9 repeat

10 Pull arm i;
11 T ← T + 1;

12 Update ŷi,mi, βi and θ̂, βθ;

13 until i /∈ A ∨
mi ≥ ci;

14 return Ω̂ according to Eq. (4.3);

Algorithm 4.2: Weighted Round-Robin Algorithm (WRR)

distributions are bounded.

Theorem 4.3. With probability 1− δ, the total number of pulls T needed for the Weighted

Round-Robin algorithm to terminate is bounded by

T ≤ 8R2HWRR

[
log

(
2R2π2(n+ 1)HWRR

3δ

)
+ 1

]
+ 2(ρ+ 2)n (4.5)

where

HWRR =

(
H1

ρ
+

(ρ− 1)H2

ρ

)(
1 +

√
l(k)ρ

)2

, H2 =
∑
i

1

(yi − θ)2

Determining ρ. One important parameter in this algorithm is ρ. For bounded reward

distributions, we have a closed form upper bound of T as O(HWRR log HWRR

δ
). The lower

bound of T is independent of ρ. We conjecture the lower bound to be Ω(H2 log H2

δ
). We

aim to find the ρ that minimizes the gap between the upper bound and the lower bound.

We formalize the objective as finding a ρ to minimize HWRR/H2. Since we do not know the

reward distribution configuration y, we use the minimax principle to find ρ∗ that optimizes

the most difficult configuration y, namely

ρ∗ = argmin
ρ≥1

sup
y

HWRR

H2
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Since H1

n
≤ H2 ≤ H1, and HWRR

H2
is monotonically increasing with regard to H1

H2
, we can

obtain the optimal value ρ∗ as

ρ∗ =
(n− 1)

2
3

l
1
3 (k)

(4.6)

Theoretical comparison with RR. We compare theses two algorithms by comparing

their upper bounds. Essentially, we study HWRR/HRR since the two bounds only differ in

this term after a small constant is ignored. We have

HWRR

HRR

=

(
1

ρ
+
ρ− 1

ρ

H2

H1

)(
1 +

√
l(k)ρ

1 +
√
l(k)

)2

(4.7)

The ratio between H2 and H1 indicates how much cost WRR will save from RR. Notice

that 1
n
≤ H2

H1
≤ 1. In the degenerated case H2/H1 = 1, WRR does not save any cost from

RR. This case occurs only when all arms have identical reward expectations, which is rare

and not interesting. However, if H2/H1 = 1/n, by setting ρ to the optimal value in Eq. (4.6),

it is possible to save a substantial portion of pulls. In this scenario, the RR algorithm will

iteratively pull all the arms until the arm closest to the threshold i∗ confidently determined

as outlier or normal. However, the WRR algorithm is able to invest more pulls on arm i∗ as

it remains active, while pulling other arms for fewer times, only to obtain a more precise

estimate of the outlier threshold.

4.3.3 Confidence Interval Instantiation

With different prior knowledge of reward distributions, confidence intervals can be instanti-

ated differently. We introduce the confidence interval for a relatively general scenario, where

reward distributions are bounded.

Bounded distribution. Suppose the reward distribution of each arm is bounded in [a, b],

and R = b− a.

According to Hoeffding’s inequality and McDiarmid’s inequality, we can derive the confi-

dence interval for yi as

βi(mi, δ
′) = R

√
1

2mi

log

(
1

δ′

)
, βθ(m, δ′) = R

√
l(k)

2h(m)
log

(
1

δ′

)
where mi is the number of pulls of arm i so far, and h(m) is the harmonic mean of all the
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mi’s.

Bernoulli distribution. In many real applications, each arm returns a binary sample 0 or

1, drawn from a Bernoulli distribution. We use the following confidence intervals heuristically.

We leverage a confidence interval presented in [5], defined as

βi(mi, δ
′) = zδ′

√
p̃(1− p̃)
mi

, βθ(m, δ′) =

√√√√∑
i

(
kŷi

n
√
σ̂y

+
1

n

)2

β2
i

where

p̃ =
m+
i +

z2
δ′
2

mi + z2δ′
, zδ′ = erf−1(1− δ′)

m+
i is the number of samples that equal to 1 among mi samples, and zδ′ is value of the

inverse error function.

4.4 EXPERIMENTAL RESULTS

In this section, we present experiments to evaluate both the effectivenss and efficiency of

proposed algorithms.

4.4.1 Datasets

Synthetic. We construct several synthetic datasets with varying number of arms n =

20, 50, 100, 200, and varying k = 2, 2.5, 3. There are 12 configurations in total. For each

configuration, we generate 10 random test cases. For each arm, we draw its reward from a

Bernoulli distribution Bern(yi).

Twitter. We consider the following application of detecting outlier locations with respect

to keywords from Twitter data. A user has a set of candidate regions L = {l1, · · · , ln},
and is interested in finding outlier regions where tweets are extremely likely to contain a

keyword w. In this application, each region corresponds to an arm. A region has an unknown

probability of generating a tweet containing the keyword, which can be regarded as a Bernoulli

distribution. We collect a Twitter dataset with 1, 500, 000 tweets from NYC, associated with

its latitude and longitude. We divide the entire space into regions of 2′′ × 2′′ in latitude and

longitude respectively. We select 47 regions with more than 5, 000 tweets as arms and select
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20 keywords as test cases.

4.4.2 Setup

Methods for comparison. Since the problem is new, there is no directly comparable

solution in existing work. We design two baselines for comparative study.

• Naive Round-Robin (NRR). We play arms in a round-robin fashion, and terminate as soon

as we find the estimated outlier set Ω̂ has not changed in the last consecutive 1/δ pulls. Ω̂

is defined as in Eq. (4.3). This baseline reflects how well the problem can be solved by RR

with a heuristic termination condition.

• Iterative Best Arm Identification (IB). We apply a state-of-the-art best arm identification

algorithm [20] iteratively. We first apply it to all n arms until it terminates, and then

remove the best arm and apply it to the rest arms. We repeat this process until the current

best arm is not in Ω̂, where the threshold function is heuristically estimated based on the

current data. We then return the current Ω̂. This is a strong baseline that leverages the

existing solution in best-arm identification.

Then we compare them with our proposed two algorithms, Round-Robin (RR) and Weighted

Round-Robin (WRR).

Parameter configurations. For both of our algorithms, we derived the confidence

intervals based on Bernoulli distribution. Since some algorithm takes extremely long time to

terminate in certain cases, we place a cap on the total number of pulls. Once an algorithm

runs for 107 pulls, the algorithm is forced to terminate and output the current estimated

outlier set Ω̂. We set δ = 0.1.

For each test case, we run the experiments for 10 times, and take the average of both the

correctness metrics and number of pulls.

4.4.3 Results

Performance on Synthetic. Figure 4.1(a) shows the correctness of each algorithm when

n varies. It can be observed that both of our proposed algorithms achieve perfect correctness

on all the test sets. In comparison, the NRR baseline has never achieved the desired level

of correctness. Based on the performance on correctness, the naive baseline NRR does not

qualify an acceptable algorithm, so we only measure the efficiency of the rest algorithms.

32



20 50 100 200
n

0.0

0.2

0.4

0.6

0.8

1.0

%
C

or
re

ct

1− δ
NRR
IB
RR
WRR

(a) % Exactly Correct

20 50 100 200
n

103

104

105

106

107

#P
ul

ls

IB
RR
WRR
Cap

(b) Avg. #Pulls vs. n

0.0 0.2 0.4 0.6 0.8 1.0

Cost Reduction Percentage
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
of

Te
st

C
as

es

(c) WRR’s Cost Reduction wrt RR

Figure 4.1: Effectiveness and efficiency studies on Synthetic data set. Cap indicates the
maximum number of pulls we allow an algorithm to run.
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Figure 4.2: Effectiveness and efficiency studies on
Twitter dataset.
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We plot the average number of pulls each algorithm takes before termination varying with

the number of arms n in Figure 4.1(b). On all the different configurations of n, IB takes a

much larger number of pulls than WRR and RR, which makes it 1-3 orders of magnitude as

costly as WRR and RR. At the same time, RR is also substantially slower than WRR, with

the gap gradually increasing as n increases. This shows our design of additional pulls helps.

Figure 4.1(c) further shows that in 80% of the test cases, WRR can save more than 40% of

cost from RR; in about half of the test cases, WRR can save more than 60% of the cost.

Performance on Twitter. Figure 4.2(a) shows the correctness of different algorithms on

Twitter data set. As one can see, both of our proposed algorithms qualify the correctness

requirement, i.e., the probability of returning the exactly correct outlier set is higher than

1− δ. The NRR baseline is far from reaching that bar. The IB baseline barely meets the bar,

and the precision, recall and F1 measures show that its returned result is averagely a good

approximate to the correct result, with an average F1 metric close to 0.95. This once again

confirms that IB is a strong baseline.

We compare the efficiency of IB, RR and WRR algorithms in Figure 4.2(b). In this figure,

we plot the cost reduction percentage for both RR and WRR in comparison with IB. WRR
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(a) Ground-truth yi’s (b) # pulls by RR (c) # pulls by WRR

Figure 4.4: Case study on Twitter dataset for keyword “stadium.” Each plotted square
represents a region regarded as an arm in our experiments. Darker color indicates higher
value.

is a clear winner. In almost 80% of the test cases, it saves more than 50% of IB’s cost,

and in about 40% of the test cases, it saves more than 75% of IB’s cost. In contrast, RR’s

performance is comparable to IB. In approximately 30% of the test cases, RR is actually

slower than IB and has negative cost reduction, though in another 40% of the test cases, RR

saves more than 50% of IB’s cost.

Tuning ρ. In order to experimentally justify our selection of ρ value, we test the performance

of WRR on a specific setting of synthetic data set (n = 15, k = 2.5) with varying preset

ρ values. Figure 4.3 shows the average number of pulls of 10 test cases for each ρ in

{1.5, 2, . . . , 5}, comparing to the performance with ρ = ρ∗ according to Eq. (4.6). It can be

observed that the performance of ρ = ρ∗ is very close to the best performance when ρ = 3. A

further investigation reveals that the H1

H2
of these test cases vary from 3 to 14. Although we

choose ρ∗ based on an extreme assumption H1

H2
= n, its average performance is found to be

close to the optimal even when the data do not satisfy the assumption.

Case study. We conduct a detailed case study to compare the behavior of RR and WRR.

For keyword “stadium”, Figure 4.4(a) presents the parameters yi’s of different regions

(arms). The largest value appears at a football stadium, which is MetLife stadium, followed

by two baseball fields (Yankee stadium and Citi field) and a historic stadium site (Forest

Hill). However, only the region containing MetLife stadium is an outlier by 2σ rule, probably
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due to the difference of the size between a football stadium and a baseball field, and the

tweeting frequency.

Figure 4.4(b) shows the number of pulls on each arms when the RR algorithm terminates.

As expected, all the arms are pulled for almost the same number, which is more than 500.

In comparison, as shown in Figure 4.4(c), when WRR terminates, only the arm containing

Yankee stadium is pulled for around 500 times, while all the other arms are only pulled for

fewer than 200 times. This is because the WRR algorithm focuses more on the arms closer

to the outlier threshold, which are harder to be determined as outlier or normal. It saves a

lot of iterations on other arms.

4.5 THEORETICAL ANALYSIS

4.5.1 Correctness (Theorem 4.1)

We start by confining our discussion into an event, where yi and θ do not fall out of the

given confidence intervals.

Lemma 4.1. Suppose we are given confidence interval functions βi(mi, δ
′) for ∀i and βθ(m, δ′)

related to the number of pulls and an arbitrary error probability 0 < δ′ < 1. They satisfy

P(|ŷi − yi| > βi(mi, δ
′)) < 2δ′

P(|θ̂ − θ| > βθ(m, δ′)) < 2δ′

Define the random event

E =

{
|ŷi − yi| ≤ βi(T,mi)

∧
|θ̂ − θ| ≤ βθ(T,m),∀i, ∀T

}
Suppose a sequence S = [I1, I2, . . .] is an infinite sequence where 1 ≤ It ≤ n is a integer,

representing the arm pulled at iteration t. If we properly set the tolerance of confidence

intervals δ′ according to the current number of iterations, namely

δ′(T ) =
3δ

π2(n+ 1)T 2

then for any S, we have

P(E|S) ≥ 1− δ
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Proof.

1− P(E|S) ≤
∞∑
T=1

[
6δ

π2(n+ 1)T 2
+

n∑
i=1

6δ

π2(n+ 1)T 2

]
=

6

π2

∞∑
T=1

δ

T 2
= δ

Based on this, it is straightforward to prove Theorem 4.1.

4.5.2 Confidence Intervals of Bounded Reward Distributions

In this subsection, we show an instantiation of confidence interval when all the reward

distributions are bounded. Without loss of generality, suppose they are bounded in [a, b] and

R = b− a.

We start by a direct application of Hoeffding’s inequality to depict the concentration of

each arm’s expectation estimate.

Lemma 4.2 (Hoeffding). The probability that the difference between ŷi and yi is larger than

a given constant t can be bounded as:

P(|ŷi − yi| ≥ t) ≤ 2 exp

(−2mit
2

R2

)
(4.8)

We then apply McDiarmid’s inequality to describe the concentration of the threshold

function estimator.

Lemma 4.3. The probability that the difference between the estimated threshold function and

the expected estimation of the value of the threshold function is larger than a given constant t

can be bounded as:

P(|θ̂ − Eθ̂| ≥ t) ≤ 2 exp

(−2h(m)t2

R2g(k)

)
(4.9)

where g(k) = (1 + k
√
n− 1)2/n.

Proof. Consider µ̂y to be a function of all the samples µ̂y(x1, · · · ,xn). Since

µ̂y(x1, · · · ,xn) =
1

n

∑
i

∑
j

x
(j)
i

mi

(4.10)
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Hence

sup
x
(j)
i

µ̂y(x1, · · · ,xn)− inf
x
(j)
i

µ̂y(x1, · · · ,xn) ≤ b− a
nmi

=
R

nmi

(4.11)

Consider σ̂y to be a function of all the samples σ̂y(x1, · · · ,xn). For any given pair of i and

j, let

Ai =
1

n− 1

∑
i′ 6=i

ŷ2i′

Bi =
1

n− 1

∑
i′ 6=i

ŷi′

Mij =
1

mi − 1

∑
j′ 6=j

x
(j)
i

where Bi is the mean of all the estimated ŷi′ other than ŷi′ ; (Ai − Bi)
2 is their standard

deviation and therefore is no less than 0; Mij is the mean of all but the j-th samples from

the i-th arm.

We represent the estimated standard deviation σ̂y as a function of random variable x
(j)
i

and the variables above:

σ̂y(x1, · · · ,xn) =

√∑
i ŷ

2
i

n
−
(∑

i ŷi
n

)2

=

√
Ai(n− 1) + ŷ2i

n
−
(
Bi(n− 1) + ŷi

n

)2

=

√(
1− 1

n

)(
1

n
(ŷi −Bi)2 + (Ai −B2

i )

)

=

√
1− 1

n

√
1

n

(
(mi − 1)Mij + x

(j)
i

mi

−Bi

)2

+ (Ai −B2
i )

For any given x, we want to bound the maximum possible difference of this function by

keeping all variables fixed but only adjusting x
(j)
i

Let x1, x2 be the value of xji when σ̂y has the maximum and minimum value respectively.
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For any given x1 · · · ,xn except xji , we have,

sup
x
(j)
i

σ̂y(x1, · · · ,xn)− inf
x
(j)
i

σ̂y(x1, · · · ,xn)

≤
√

1− 1

n

[√
1

n

(
(mi − 1)Mij + x1

mi

−Bi

)2

−
√

1

n

(
(mi − 1)Mij + x2

mi

−Bi

)2
]

≤
√

1

n

(
1− 1

n

)[∣∣∣∣(mi − 1)Mij + x1
mi

−Bi

∣∣∣∣− ∣∣∣∣(mi − 1)Mij + x2
mi

−Bi

∣∣∣∣]

≤
√

1

n

(
1− 1

n

)(
x1 − x2
mi

)
≤b− a
nmi

√
n− 1 =

R

nmi

√
n− 1

Since the threshold function is a linear combination of µ̂y and σ̂y, it also has bounded

difference:

sup
x
(j)
i

θ̂(x1, · · · ,xn)− inf
x
(j)
i

θ̂(x1, · · · ,xn)

≤ sup
x
(j)
i

µ̂(x1, · · · ,xn)− inf
x
(j)
i

µ̂(x1, · · · ,xn) + sup
x
(j)
i

kσ̂(x1, · · · ,xn)− inf
x
(j)
i

kσ̂(x1, · · · ,xn)

≤ R

nmi

(
1 + k

√
n− 1

)
(4.12)

Let cij = R
nmi

(
1 + k

√
n− 1

)
. We can have

∑
i

∑
j

c2ij =
∑
i

mi
R2

n2m2
i

(
1 + k

√
n− 1

)2
=
(
1 + k

√
n− 1

)2R2

n2

∑
i

1

mi

According to McDiarmid’s inequality, we can have the following concentration guarantee:

P(|θ̂ − Eθ̂| ≥ t) ≤ 2 exp

( −2t2∑
i

∑
j c

2
ij

)
= 2 exp

( −2n2t2

R2
(
1 + k

√
n− 1

)2∑
i

1
mi

)
= 2 exp

(−2h(m)t2

R2g(k)

)
(4.13)

where g(k) = (1 + k
√
n− 1)2/n.
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And since Eθ̂ is a biased estimator, we also need to bound its bias |Eθ̂ − θ|.

Lemma 4.4. The bias of the threshold function estimator can be bounded as:

∣∣∣Eθ̂ − θ∣∣∣ ≤ kR

√
n− 1

4n

1

h(m)
(4.14)

Proof. Notice that

Eθ̂ − θ = Eµ̂y − µy + kEσ̂y − kσy = k
(
Eσ̂y − σy

)
We only need to upper bound

∣∣∣Eσ̂y − σy∣∣∣. Let êi = ŷi − yi, and µ̂e = µ̂y − µy, we have:

Eσ̂y = E
√

1

n

∑
i

(
yi − µy + êi − µ̂e

)2

= E

√√√√ 1

n

[∑
i

(yi − µy)2 +
∑
i

2(yi − µy)(êi − µ̂e) +
∑
i

(êi − µ̂e)2
]

According to the CauchySchwarz inequality,∣∣∣∣∣∑
i

(yi − µy)(êi − µ̂e)
∣∣∣∣∣ ≤

√∑
i

(yi − µy)2 ·
√∑

i

(êi − µ̂e)2

Therefore, we can obtain the upper bound for Eσ̂y as

Eσ̂y ≤ E

√√√√ 1

n

[∑
i

(yi − µy)2 + 2

√∑
i

(yi − µy)2 ·
√∑

i

(êi − µ̂e)2 +
∑
i

(êi − µ̂e)2
]

= E

√√√√√ 1

n

(√∑
i

(yi − µy)2 +

√∑
i

(êi − µ̂e)2
)2

=

√
1

n

∑
i

(yi − µy)2 + E
√

1

n

∑
i

(êi − µ̂e)2

= σy + E
√

1

n

∑
i

(êi − µ̂e)2
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Symmetrically, we can obtain the lower bound for Eσ̂y as

Eσ̂y ≥ σy − E
√

1

n

∑
i

(êi − µ̂e)2

Therefore, we only need to bound the term E
√

1
n

∑
i(êi − µ̂e)2. By applying Jensen’s

inequality:

E
√

1

n

∑
i

(êi − µ̂e)2 ≤
√

1

n

∑
i

E(êi − µ̂e)2

=

√
1

n

∑
i

E(ŷi − yi)2 − E
(∑

i

ŷi − yi
n

)2
Assuming the variance of the i-th arm’s distribution is σ2

i , when there are mi samples collected

to estimate ŷi, we have E[ŷ2i ] = y2i +
σ2
i

mi
. Therefore, the equation becomes

√
1

n

∑
i

E(êi − µ̂e)2 =

√
n− 1

n2

∑
i

σ2
i

mi

Further, since we have assume all the distributions are bounded, we can apply Popoviciu’s

inequality on variances, which states σ2
i ≤ R2/4. Hence,√

n− 1

n2

∑
i

σ2
i

mi

≤ R

√
n− 1

4n

1

h(m)

Combining the above equations, we have

σy −R
√
n− 1

4n

1

h(m)
≤ Eσ̂y ≤ σy +R

√
n− 1

4n

1

h(m)
(4.15)

From Lemma 4.3, we can derive with probability 1− δ′,

|θ̂ − Eθ̂| ≤ R

√
l(k)

2h(m)
log

(
1

δ′

)
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From Lemma 4.4, we have

|Eθ̂ − θ| ≤ kR

√
n− 1

4n

1

h(m)

Combining these two equations, we have (with probability 1− δ′)

|θ̂ − θ| ≤ |θ̂ − Eθ̂|+ |Eθ̂ − θ|

= R

√
g(k)

2h(m)
log

(
1

δ′

)
+ kR

√
n− 1

4n

1

h(m)

≤ R

√
1

2h(m)
log

(
1

δ′

)(√
g(k) +

√
k2

2 log
(
1
δ′

))

In our algorithm, the error δ′ is set according to a function δ′(T ) to guarantee the validity

of the confidence interval through the entire sampling process. According to Eq. (4.1), we

substitute its definition into the inequality above:

|θ̂ − θ| ≤ R

√
1

2h(m)
log

(
1

δ′(T )

)(√
g(k) +

√
k2

2 log
(π2(n+1)T 2

3δ

))

Notice that we pull each arm at least once as initialization, so T ≥ n. Therefore, we can

further obtain:

|θ̂ − θ| ≤ R

√
1

2h(m)
log

(
1

δ′(T )

)(√
g(k) +

√
k2

2 log
(
π2n3

3δ

))

≤ R

√
l(k)

2h(m)
log

(
1

δ′(T )

)
with probability 1− δ′.

4.5.3 Upper Bound of Round-Robin Algorithm (Theorem 4.2)

We start by a lemma indicating how small the confidence intervals should be could we

guarantee a certain arm is inactive.
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Lemma 4.5. At the T -th iteration, if E happens, and arm i is active, then

βi + βθ ≥
1

2
∆i (4.16)

where ∆i = |yi − θ|.

Proof. If arm i is active, then according to the algorithm, it satisfies the condition thatŷi − βi < θ̂ + βθ, if ŷi > θ̂;

ŷi + βi > θ̂ − βθ, otherwise.
(4.17)

Furthermore, if event E happens, we should have

ŷi − βi ≤ yi ≤ ŷi + βi

θ̂ − βθ ≤ θ ≤ θ̂ + βθ

If ŷi > θ̂, then we have

yi − θ ≤ ŷi + βi − (θ̂ − βθ)
= ŷi − θ̂ + βi + βθ

≤ 2βi + 2βθ (4.18)

Hence,

βi + βθ ≥
1

2
∆i (4.19)

Symmetrically, for ŷi ≤ θ̂ we can also obtain the same result.

Now we can give a proof of Theorem 4.2.

Proof. In Round-Robin algorithm, at any iteration, we have

|mi −mj| ≤ 1,∀1 ≤ i, j ≤ n (4.20)

where i and j are integers. According to Lemma 4.5, if E happens and arm i is still active,

we have

βi + βθ ≥
1

2
∆i (4.21)
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Substituting the confidence intervals by their definitions,

1

2
∆i ≤ R

√
1

2mi

log

(
1

δ′(T )

)
+R

√
l(k)

2h(m)
log

(
1

δ′(T )

)

∆i ≤ R

√
2 log

(
1

δ′(T )

)(√
1

mi

+

√
l(k)

h(m)

)

≤ R

√
2 log

(
1

δ′(T )

)(√
1

m∗
+

√
l(k)

m∗

)

≤ R

√
2 log

(
1

δ′(T )

)(√
1

m∗
+

√
l(k)

m∗

)
(4.22)

where m∗ = mini′mi′ . By organizing the above inequality, we can obtain

m∗ ≤ 2R2

∆2
i

log

(
1

δ′(T )

)(
1 +

√
l(k)

)2

(4.23)

Hence, if the algorithm is not yet terminated, then there must be at least an arm i where

the condition above holds.

And since in Round-Robin algorithm, for any i at any time we have mi ≤ m∗ + 1, we can

obtain

T =
∑
i

mi ≤ n(m∗ + 1) (4.24)

We analyze the situation when the algorithm is about to terminate. Right before the

algorithm’s last pull, denote the minimum number of pulls of a certain arm as m̃∗. Notice

that the algorithm is not yet terminated, so we still have

m̃∗ ≤ 2R2

∆2
i

log

(
1

δ′(T )

)(
1 +

√
l(k)

)2

≤ 2R2

∆2
i∗

log

(
1

δ′(T )

)(
1 +

√
l(k)

)2

where ∆i∗ = mini′ ∆i′ .

After the last pull, the minimum number of pulls of a certain arm m∗ ≤ m̃∗ + 1. So we
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have

T ≤ n(m∗ + 1) ≤ n(m̃∗ + 2)

≤ 2nR2

∆2
i∗

log

(
π2(n+ 1)T 2

3δ

)(
1 +

√
l(k)

)2

+ 2n

= 2H1R
2 log

(
π2(n+ 1)T 2

3δ

)(
1 +

√
l(k)

)2

+ 2n

According to Lemma 8 in [8], we have

T ≤ 8R2HRR

[
log

(
4R2π2(n+ 1)HRR

3δ

)
+ 1

]
+ 4n (4.25)

4.5.4 Upper Bound of Weighted Round-Robin Algorithm (Theorem 4.3)

Lemma 4.6. Suppose after T iterations of the algorithm WRR, the (T + 1)-th iteration will

be a regular pull. If random event E happens, and arm i has no less than T ′i additional pulls,

then arm i is not in active set A (i /∈ A). T ′i is defined as:

T ′i =
ρ− 1

ρ

2R2

∆2
i

log

(
1

δ′(T )

)(
1 +

√
l(k)ρ

)2

(4.26)

where ∆i = |yi − Eθ̂|.

Proof. According to Lemma 4.5, if arm i is active and E happens, we have βi + βθ ≥ ∆i/2.

By substituting the confidence intervals by their definitions, we have:

1

2
∆i ≤ R

√
1

2mi

log

(
1

δ′(T )

)
+R

√
l(k)

2h(m)
log

(
1

δ′(T )

)

∆i ≤ R

√
2 log

(
1

δ′(T )

)(√
1

mi

+

√
l(k)

h(m)

)

≤ R

√
2 log

(
1

δ′(T )

)(√
1

mi

+

√
l(k)

m∗

)
(4.27)

where m∗ = mini′mi′ . Among the mi pulls for arm i, suppose mi,r are regular pulls, and

mi,a are additional pulls, mi,r + mi,a = mi. According to the algorithm, when the flag of
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additional pull is cleared, and if arm i is still in the active set, then there must be

ρ(mi,r − 1) ≤ mi = mi,r +mi,a < ρ(mi,r − 1) + 1 (4.28)

And since the regular pulls follow a round-robin strategy, we should have m∗ ≥ mi,r − 1.

Hence,

∆i ≤ R

√
2 log

(
1

δ′(T )

)(√
1

mi

+

√
l(k)

mi,r − 1

)

≤ R

√
2 log

(
1

δ′(T )

)(√
1

mi

+

√
l(k)ρ

mi

)
mi ≤

2R2

∆2
i

log

(
1

δ′(T )

)(
1 +

√
l(k)ρ

)2

From Eq. (4.28) we can have

mi,a <
ρ− 1

ρ
mi (4.29)

which leads to

mi,a <
ρ− 1

ρ

2R2

∆2
i

log

(
1

δ′(T )

)(
1 +

√
l(k)ρ

)2

= T ′i (4.30)

This is a contradiction to the condition mi,a ≥ T ′i . Therefore arm i should not be pulled

additionally in the next iteration.

Next we bound the number of regular pulls for each arm. For the convenience of analysis,

we analyze the situation when the algorithm just finishes a “total iteration”, when the next

(T + 1)-th iteration will be a regular pull for arm 1. In this case the number regular pulls

for all arms will be the same, denoted as mr. Let i∗ = arg mini ∆i, we have the following

theorem.

Lemma 4.7. Suppose after T iterations the (T + 1)-th iteration will be a regular pull for arm

1. If the algorithm is not yet terminated and event E happens, then the number of regular

pulls for any arms should be no more than T ′r, where

T ′r =
1

ρ

2R2

∆2
i∗

log

(
1

δ′(T )

)(
1 +

√
l(k)ρ

)2

+ 1 (4.31)

Proof. Since the algorithm is not yet terminated, then the active set of arms A is non-empty.
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Suppose arm i ∈ A, then

mi ≤
2R2

∆2
i

log

(
1

δ′(T )

)(
1 +

√
l(k)ρ

)2

And since the (T + 1)-th iteration will be a regular pull, the inequality of Eq. (4.28) stands.

Hence,

mr = mi,r ≤
mi

ρ
+ 1

≤ 1

ρ

2R2

∆2
i

log

(
1

δ′(T )

)(
1 +

√
l(k)ρ

)2

+ 1

≤ 1

ρ

2R2

∆2
i∗

log

(
1

δ′(T )

)(
1 +

√
l(k)ρ

)2

+ 1

Now we prove Theorem 4.3

Proof. According to Theorem 4.1, as long as event E happens, the returned results will be

correct. And since for any possible pulling sequences, the probability of event E is no less

than (1− δ), thus the returned result will be correct with probability (1− δ).
As for bounding the total number of pulls T . Notice that

T =
∑
i

mi =
∑
i

mi,a +
∑
i

mi,r (4.32)

we bound the number of additional and regular pulls respectively.

We start by bounding the final number of additional pulls for each arm. For any arm i,

when the algorithm terminates, denote the iteration of its last regular pull when it is in the

active set as Ti,a. Then we can apply Lemma 4.6 to the (Ti,a − 1)-th iteration, as well as the

fact that the following last several additional pulls on arm i will not exceed ρ, thus

mi,a ≤
ρ− 1

ρ

2R2

∆2
i

log

(
1

δ′(Ti,a − 1)

)(
1 +

√
l(k)ρ

)2

+ ρ

≤ ρ− 1

ρ

2R2

∆2
i

log

(
1

δ′(T )

)(
1 +

√
l(k)ρ

)2

+ ρ

We then bound the final number of regular pulls for each arm. Since the regular pulls

follow the round-robin strategy, we denote the iteration of the last regular pull on arm 1

as T1,r. Then we apply Lemma 4.7 to the (T1,r − 1)-th iteration, and using the fact that
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there will be no more than 1 more regular pulls for each arm before the algorithm terminates.

Thereby we obtain

mr,a ≤
1

ρ

2R2

∆2
i∗

log

(
1

δ′(T1,r − 1)

)(
1 +

√
l(k)ρ

)2

+ 2

≤ 1

ρ

2R2

∆2
i∗

log

(
1

δ′(T )

)(
1 +

√
l(k)ρ

)2

+ 2

Thus, when the algorithm terminates, we should have

T =
∑
i

mi,a +
∑
i

mi,r

≤
(

H1

ρ
+

(ρ− 1)H2

ρ

)
2R2 log

(
1

δ′(T )

)(
1 +

√
l(k)ρ

)2

+ (ρ+ 2)n

Substituting δ′(T ) by its definition, we have

T ≤
(

H1

ρ
+

(ρ− 1)H2

ρ

)
2R2 log

(
π2(n+ 1)T 2

3δ

)(
1 +

√
l(k)ρ

)2

+ (ρ+ 2)n

= 2R2HWRR log

(
π2(n+ 1)T 2

3δ

)
+ (ρ+ 2)n

Therefore, according to Lemma 8 in [8], we have

T ≤ 8R2HWRR

[
log

(
4R2π2(n+ 1)HWRR

3δ

)
+ 1

]
+ 2(ρ+ 2)n (4.33)

4.5.5 Confidence Intervals of Bernoulli Reward Distributions

In many real applications, each arm returns a binary sample 0 or 1, drawn from a Bernoulli

distribution. In this subsection, we show an heuristic instantiation of confidence interval

when all the reward distributions are Bernoulli distributions. We optimize the confidence

interval on this specific case with some approximation.

We leverage a confidence interval presented in [5], defined as

βi(mi, δ
′) = zδ′

√
p̃(1− p̃)
mi

(4.34)
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where

p̃ =
m+
i +

z2
δ′
2

mi + z2δ′

m+
i is the number of samples that equal to 1 among mi samples, and zδ′ is value of the

inverse error function:

zδ′ = erf−1(1− δ′)

As for the confidence interval of the outlier threshold, we simply apply the propagation of

uncertainty, where

βθ(m, δ′) =

√√√√∑
i

(
∂θ

∂yi

)2

β2
i

=

√√√√∑
i

(
kyi
n
√
σy

+
1

n

)2

β2
i

≈

√√√√∑
i

(
kŷi

n
√
σ̂y

+
1

n

)2

β2
i

4.6 SUMMARY

In this chapter, we study a novel problem of identifying the outlier arms with extremely

high/low reward expectations compared to other arms in a multi-armed bandit. We propose a

Round-Robin algorithm and a Weighted Round-Robin algorithm with correctness guarantee.

We also upper bound both algorithms when the reward distributions are bounded. We

conduct experiments on both synthetic and real data to verify our algorithms.

A future direction worth exploring is to adapt the algorithm to identifying outlier text

objects where the text object is represented by a multi-dimensional vector in the embedding

space, instead of a single numerical value. Other further extensions of this work include

deriving a lower bound of this problem or extending the problem to a PAC setting.
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CHAPTER 5: WEAKLY-SUPERVISED TEXT MINING FOR
ASPECT-BASED SENTIMENT ANALYSIS

5.1 OVERVIEW

With word embedding, some text mining applications that traditionally rely on massive

labeled data can potentially be handled with much less supervision, such as some seed words

with labels. The semantic proximity of words captured by word embedding provides the

signals necessary for performing the task.

In this chapter, we study a typical task, which is sentiment analysis. Identifying and

classifying sentiment within documents is one of the most important text mining tasks,

empowering numerous applications in recommendations [12, 18], stock prediction [76, 65] etc.

Aspect-based sentiment analysis [74] provides a fine-grained view of sentiment within

documents. It aims to extract different aspects of the entity being reviewed and to determine

the sentiment corresponding to each aspect individually. For example, “The hotel has a

reasonable price but the room is small” presents two aspects: “price” and “room”, with

positive and negative sentiment respectively.

While many studies on this task adopt supervised methods [47, 57, 99, 34, 28], aspect-

level sentiment labels are usually expensive to obtain. This triggers another series of

research effort on weakly or distant supervised aspect-based sentiment analysis. However,

most of the previous work utilizes external language resource or tools such as thesaurus

information [32, 63, 38, 55, 70] or dependency parser [71, 52]. In reality, such resource is not

always available or accurate in new domains or low-resource languages.

Therefore, we propose to study aspect-based sentiment with minimal user guidance. The

goal is to perform aspect-based sentiment analysis without direct or indirect usage of training

data or external language resource, but only a massive target corpus and very little user effort.

More concretely, users are only required to provide a small set of seed aspect words and a

small set of seed sentiment words with sentiment polarity. The objective is to output identified

aspect mentions from each review document, as well as their corresponding sentiment polarity

(positive or negative).

Example 5.1. Figure 5.1 shows an example. With a massive set of hotel reviews, users only

need to provide a small set of seed aspect words like {“room”, “price”, . . .} as well as a small

set of seed sentiment words {“good“, “terrible”, . . .}. Users also need to provide sentiment

polarity labels for the seed sentiment words ( e.g. “good” is positive and “terrible” is negative).

For each review document, the algorithm should be able to identify aspect mentions within
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Hotel 
Reviews

“room”, 
“price”, 
“service”, 
“food”

(“good”: +), 
(“great”: +), 
(“bad”: -), 
(“terrible”: -)

Aspect 
seeds

Sentiment 
seeds

“The staff is friendly and 
attentive! Great location 
right off the interstate.”

“staff”: positive  
“location”: positive

“Nice room, but rude staff.”

“room”: positive 
“staff”: negative

Output

Output

“Perfect food and service.”

“food”: positive 
“service”: positive

Output

Figure 5.1: An example of aspect sentiment analysis with minimal guidance.

the document and output sentiment polarity label for each identified aspect mention. For

example, for a review document “ Nice room, but rude staff”, the algorithm should output

two identified aspect words “room” and “staff”, even if “staff” is not a seed aspect word. The

algorithm should also assigns positive label to “room” and negative label to “staff”.

This setting is usual when one needs to develop an aspect-based sentiment analysis tool for

a new domain, such as online forums of a certain field. It is expensive to produce sufficient

labeled data for training a supervised model. External language resource is usually only

created for general field and thus does not necessarily have good coverage. Existing NLP

tools are often inaccurate on specific domain without extra learning, especially for informal

corpus like user generated content. However, our setting is much more realistic as users only

need to specify around 10 seed aspect and sentiment words.

The challenges in this problem setting are: 1) how to leverage the limited user guidance to

identify aspects as complete as possible; 2) how to classify sentiment for each aspect in a

document with limited user guidance. The only signals we can leverage for both tasks are

the user provided seed sets and the corpus.

We make the following contributions. First, we develop a method to expand the aspect

and sentiment lexicons from given set of seed words based on features extracted by frequent

pattern mining. Second, we propose a generative model to characterize the generation of
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aspect and sentiment mentions, represented by their word embedding. By inferring the

model, we can assign sentiment polarity to words in the sentiment lexicon. Finally, we

can accordingly perform aspect-based sentiment analysis on each document. We verify the

effectiveness on two real world data sets.

We present the detail of our work below.

5.2 PRELIMINARIES

In this section, we formalize the research problem, and briefly introduce the framework of

our pipeline.

5.2.1 Problem formalization.

We denote a set of documents as D = {di}ni=1. A document di consists of a sequence of

sentence di = (s1, · · · , s|di|). Each sentence sj can be represented as a sequence of tokens

sj = (w1, · · · , w|sj |), where each wk takes a value from a vocabulary V .

For each word w in the vocabulary V, one can derive an embedding vector from word

embedding technique (e.g. [61]). Recall that word embedding provides a function f : V 7→ Rν ,

where ν is the number of dimensions of the embedding space. The semantic proximity

between two words can be reflected by the cosine similarity of their embedding vectors,

defined in Eq. (3.1).

Notice that each w ∈ V is not necessarily a unigram word, but may also refer to a multigram

phrase (e.g. “air conditioner”, “mini bar”), or a subword like “n’t” in “don’t”. We will use

the term “word” to refer to any elements from the vocabulary V unless otherwise noted.

Each document di usually contains a few aspect mentions ai = {a1, · · · , a|ai|}, where each

aspect mention is a token in di. Each aspect mention is associated with a sentiment label,

which can be represented as yi = {y1, · · · , y|ai|} collectively, where yk ∈ Y represents the

sentiment label for aspect mention ak. In this chapter, we only focus on a binary setting,

namely Y = {0, 1}, where 0 stands for negative sentiment, and 1 stands for positive sentiment.

Users can provide guidance as seed aspect and sentiment words, which are essentially

subsets of the vocabulary, denoted as V(0)
A ,V(0)

S ⊂ V respectively. Moreover, for each seed

sentiment word w ∈ V(0)
S , users also provide its sentiment label, denoted as r0(w) ∈ Y .

The problem can be formalized as:

Problem 5.1. Given a corpus D, a small set of seed aspect words V(0)
A and a small set of seed

sentiment words V(0)
S with their labels r0 : V(0)

S 7→ Y, we aim to identify the aspect mentions
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ai as well as their sentiment labels yi for each di ∈ D.

Notice that there are studies in which an aspect is defined as a set or a distribution of

aspect words. Although our output is only formalized as aspect mentions, we can always

perform a clustering method to aggregate aspect words into more abstract aspects. However,

this is beyond the scope of our study and we would address this in our future work.

5.2.2 Framework.

We tackle the problem in two steps. First, we expand the aspect and sentiment lexicons

from very small sets of seed words. Second, we identify the aspect and sentiment mentions in

each document and classify the sentiment polarity.

Lexicon expansion. Aspect and sentiment lexicons serve as strong tools to identify the

most essential signals for aspect-based sentiment analysis.

For a given domain of reviews, the aspect lexicon VA ⊂ V should contain all the words

characterizing possible factors of the entity to be reviewed, such as “location”, “price”,

“service” in hotel reviews.

The sentiment lexicon VS ⊂ V should have all the words that express or imply an attitude or

emotion. General sentiment words include “good”, “great”, “terrible”, while some sentiment

words can also be domain dependent. For example, words like “renovated”, “air conditioned”

imply positive sentiment in hotel reviews but not necessarily in other domains.

The goal of this stage is to construct the aspect lexicon VA and the sentiment lexicon VS
from a given review corpus D as precise and complete as possible merely from the seeds V(0)

A

and V(0)
S .

Sentiment classification. With the aspect and sentiment lexicons available, we can

identify aspect and corresponding sentiment mentions from documents. However, we do

not have sentiment polarity labels for most of the sentiment words in VS. Hence, we need

to perform sentiment polarity assignment before we can conduct sentiment classification of

documents.

The objective is to derive a mapping function r : VS 7→ [0, 1], which assigns sentiment

polarity rating r(w) for all the words w ∈ VS. Again, only sentiment words in the seed set

V(0)
S are given polarity labels as input by r0(·), while other sentiment words mined from the

previous stage remain unlabeled.

Once we obtain the sentiment polarity for the entire sentiment lexicon, we can generate

sentiment labels yi for aspect mentions ai in each document di.
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5.3 LEXICON EXPANSION

In this section, we introduce a method based on frequent pattern mining to expand aspect

and sentiment lexicons from given seed words V(0)
A and V(0)

S .

The general idea is to select a few context patterns as features to characterize each word

w. Then, we can train classifiers to extract new aspect and sentiment words iteratively.

There are three modules of our method:

• Pattern feature mining. Mining and selecting pattern features that can effectively

characterize aspect and sentiment words.

• Aspect lexicon expansion. Using pattern features and currently mined sentiment lexicon

to expand aspect lexicon.

• Sentiment lexicon expansion. Using pattern features and currently mined aspect lexicon

to expand sentiment lexicon.

Notice that our method does not rely on NLP parsing tools such as Part of Speech (PoS)

tagging or dependency parsing. Although NLP tools may provide strong syntactic signals

in this task, they are usually trained on a more general corpus and often suffer from higher

error rate on user generated review data. Furthermore, applying NLP pipeline is much slower

than frequent pattern mining.

We will introduce each module in detail.

5.3.1 Pattern feature mining.

An important category of signals to characterize whether a word w is in aspect/sentiment

lexicon are the frequencies of specific context patterns around w. For example, if the pattern

“the w is great” occurs sufficiently frequent, w will probably be in the aspect lexicon. Similarly,

if the pattern “a very w bed” is frequent, then w should be in the sentiment lexicon.

Precisely, a pattern feature p is an ordered sequence of tokens or aliases, represented as

p = (t1, · · · , tl), where ti is either a word from V or an alias that could be substituted by any

from a set of words. In our setting, possible aliases are “[aspect]” or “[sentiment]”, which

can be substituted by any currently known aspect or sentiment words respectively.

It is intractable to enumerate all the possible context patterns of a word w, and most of

them are not necessarily informative in determining whether w is in the aspect/sentiment

lexicon. Apparently, patterns such as “a w” or “w of” are not very useful. Therefore, we

adopt the following mechanism to mine and select informative pattern features, denoted as

P = {p1, p2, · · · }.
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“room”, 
“price”, 
“service”, 
“food”

“good”, 
“great”, 
“bad”, 
“terrible”

Aspect 
seeds

Sentiment 
seeds

“[sentiment] [aspect]”
“the [aspect] is [sentiment]”

“The room is terrible”
“The price is great”
“The service is good”
“A great room”
“Great price”
“Terrible service”
…

Documents

Pattern features

Figure 5.2: An example of mining pattern features.

Frequency. Intuitively, frequent patterns containing both (currently known) aspect and

sentiment words would be a good candidate pool.

In order to mine such frequent patterns, we build a subset of sentences S containing

both aspect and sentiment words from the seed set. As shown in Figure 5.2, only sentences

containing words from both the aspect seeds and the sentiment seeds are selected.

Moreover, we treat all aspect (sentiment) words as a unified alias (“[aspect]”, “[sentiment]”)

and turn all the words into lower case so that similar patterns can be merged together. As

an example in Figure 5.2, the first three sentences “The room is terrible”, “The price is

great” and “The service is good” would all be converted into the same pattern “the [aspect]

is [sentiment]”.

We then perform a contiguous sequential frequent pattern mining algorithm based on the

derived set S. The relative minimum support is set to θ = 0.005, namely only patterns with

frequency larger than or equal to θ|S| would be mined.

Representativeness. Some frequent patterns do not contain any aspect or sentiment

aliases ( e.g. “is a”), which cannot serve as pattern features in the following modules.

Therefore, we only keep the patterns containing both a sentiment alias and an aspect alias.

Patterns crossing multiple clauses usually do not serve as good features. Sometimes

patterns like “[sentiment], [aspect] is” would be mined as frequent patterns while they do
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not necessarily reflect any interplay between the aspect and the sentiment word. We simply

remove any patterns containing non-alphabetic tokens.

Concordance. Sometimes a pattern is frequent only because it has a frequent sub-pattern

and does not necessarily provide novel information. For example, “[sentiment] [aspect]” is

frequent and informative, but “[sentiment] [aspect] on” may be redundant even if it is frequent.

The latter becomes frequent only because the former is so frequent that a co-occurred random

word would produce another frequent pattern.

Therefore, we perform a test of independence to filter such redundant patterns. For each

mined frequent pattern p, we test against the null hypothesis that it is merely generated

randomly by attaching a word w to its immediate sub-pattern p′. By “immediate”, we mean

p and p′ only differs by one word at the boundary, namely p = p′⊕w or p = w⊕ p′, where ⊕
means concatenation. We calculate a z-score as a test of independence [59]:

z(p, p′) =
c(p)− c(p′)P(w)√
c(p′)P(w)(1− P(w))

(5.1)

where P(w) is the relative frequency of w in D.

We filter pattern p and all of its super-patterns if there exists any sub-pattern p′ such that

z < Φ−1(1−α) where Φ−1 is the probit function (i.e. inverse cumulative distribution function

of a standard Gaussian distribution). We set α = 10−3 in our experiments.

Only patterns satisfying all the above criteria will be selected as pattern features in P .

5.3.2 Aspect/Sentiment Lexicon Expansion.

The basic idea of this module is to utilize the mined pattern features P to build a classifier

to determine if a word is an aspect/sentiment word. We can then run the aspect lexicon

expansion and sentiment lexicon expansion iteratively until convergence.

Both lexicons can be expanded in a similar mechanism. We only focus on describing aspect

lexicon expansion below, while the sentiment lexicon expansion is symmetric.

Suppose we are at the t-th iteration and with mined aspect and sentiment lexicons V(t)
A and

V(t)
S . Our first step is to extract a set of candidate aspect words U (t+1)

A , where each candidate

aspect word occurs at least once with a pattern feature pi ∈ P , i.e. ∃pi ∈ P, c(pi(w)) > 0,

where c(·) counts the frequency in D and pi(w) is a pattern by substituting w into “[aspect]”

(“[sentiment]” for sentiment lexicon expansion) in pi.

Then we adopt a supervised classifier to determine which candidate words in U (t+1)
A should

be an aspect word. We build feature vectors xj for each word wj by counting relative
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𝑝": “[sentiment] [aspect]”
𝑝#:“the [aspect] is [sentiment]”

Pattern features

“The room is terrible”
“The price is great”
“A great room”
“Great price”
“The food is good”
“They have pretty good food”
“Good luck finding your room”

Documents

Training
Words 𝑦 𝑝" 𝑝#
room 1 0.33 0.33
price 1 0.5 0.5

great 0 0.0 0.0

… … … …

Prediction
Words 𝑦% 𝑝" 𝑝#
food 0.9 0.5 0.5

luck 0.1 1.0 0.0

Figure 5.3: An example of expanding aspect lexicons from pattern features. Notice that y
and ŷ here represents whether a word is in the aspect lexicon. It is not its sentiment polarity
label.

frequencies of all the patterns pi in P with regard to wj, namely xj = [
c(pi(wj))

c(wj)
]pi∈P .

We treat words in V(t)
A as positive samples and words in V(t)

S as negative samples to train

a random forest classifier. Then we apply the classifier to words in U (t+1)
A to obtain the

predicted value Ŷ
(t+1)
A , where 0 ≤ ŷj ≤ 1 is the classifier’s confidence value that candidate wj

is an aspect word.

Finally, we expand those candidate words wj with ŷj ≥ τ into the aspect lexicon V(t+1)
A ,

where τ = 0.8 is a threshold. We also add candidate words wj with embedding vectors close to

any known aspect words wj′ ∈ V(t)
A into the expanded lexicon, as long as sim(f(wj), f(wj′)) ≥

β and ŷj ≥ 0.5, where β is another threshold.

Example 5.2. Figure 5.3 shows an example. With the given pattern features, we can first

extract the candidate aspect words “food” and “luck” as they fit into the pattern features’

aspect alias for at least once. We then build feature vectors for all the candidates and known

aspect/sentiment words. We treat known aspect words (“room”, “price”, ...) as positive

samples and sentiment words (“great”, ...) as negative samples to train a random forest

classifier. Finally, we can obtain the prediction results ŷ’s for candidate aspect words.

The sentiment lexicon expansion module is symmetric to the aspect one.
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5.3.3 Iterative expansion.

With a given set of pattern features P , we can perform aspect and sentiment lexicon

expansion. Moreover, with the newly expanded aspect words, more candidate sentiment

words can be extracted and values of pattern features for candidate sentiment words can be

updated. This may trigger more sentiment words to be expanded and vice versa. Therefore,

we iteratively perform aspect and sentiment word expansion until convergence.

5.4 ASPECT-BASED SENTIMENT CLASSIFICATION

In this section, we leverage the aspect and sentiment lexicons to perform aspect-based

sentiment classification on documents.

The general idea is to utilize the embedding vector of sentiment words. First, we try to

derive a “positive vector” and a “negative vector” in the semantic space modeled by word

embedding based on the seed sentiment words and the corpus. Then, we can assign sentiment

polarity to words in the sentiment lexicon VS based on how close they are to the positive

or the negative vector. Finally, polarity of sentiment mentions in each document can be

aggregated to obtain sentiment classification results.

5.4.1 A simple baseline.

We start by introducing a relatively straightforward baseline.

Polarity assignment in sentiment lexicon. We introduce a näıve way to assign polarity

labels to words in sentiment lexicon. Notice that for each word in the seed sentiment lexicon

wj ∈ V(0)
S , a polarity label r0(wj) ∈ {0, 1} is given. We use V(0)

S+ and V(0)
S− to represent subset

of seed sentiment words with positive and negative polarity labels respectively.

We can derive a “positive vector” v+ and a “negative vector” v− by taking the average

embedding vectors of words with positive and negative labels respectively:

v+ =
1

|V(0)
S+|

∑
wj∈V

(0)
S+

f(wj), v− =
1

|V(0)
S−|

∑
wj∈V

(0)
S−

f(wj)

where f(wj) represents the embedding vector of word wj, as mentioned in Section 5.2.

Intuitively, words with embedding vector closer to v+ are more likely to convey positive

sentiment, while words with embedding vector closer to v− would be more likely negative.

Therefore, we can assign sentiment polarity scores to all the other words in the sentiment
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lexicon. Suppose for a word wj ∈ VS \ V(0)
S , we can assign a sentiment rate r(wj) ∈ [0, 1]:

r(wj) = ϕ
(
sim(v+, f(wj))− sim(v−, f(wj))

)
where ϕ(·) is the standard logistic function. Meanwhile, if a word wj is in seed sentiment

words, it will still keep its ground-truth label r(wj) = r0(wj).

Based on the polarity scores of sentiment lexicon, we can further obtain the sentiment

classification label of each document.

Aspect-based sentiment classification. For each document di, we extract all of the

mentions of words in aspect lexicon, denoted as ai = {ak ∈ di|ak ∈ VA}. We also extract all

of the sentiment mentions and map them into the closest aspect mention within the same

sentence. Therefore, for the k-th aspect mention ak, there is a set of sentiment mentions oik.

Aspect mentions with |oik| = 0 are not included in practices.

We can aggregate the sentiment polarity scores for each aspect mentions ak ∈ ai. We

calculate yk as the sentiment polarity score of the k-th aspect mention ak in document di by

averaging the sentiment polarity scores for all the words in oik:

yk = I
[ 1

|oik|
∑
oj∈oik

r(oj) > 0.5
]

where I(·) is an indicator function.

Thereby we can obtain final output ai and yi = {yk}|ai|k=1 for document di.

5.4.2 Rectification of polarity assignment.

The positive and negative vectors v+, v− utilized above are derived from a very small

labeled lexicon. Hence, they may not be sufficiently accurate to reflect the actual distribution

of positive and negative sentiment words in the embedding space.

We utilize a novel model to rectify their directions. We propose a graphical model to

characterize the generation of aspect and sentiment words in review data, where the means of

the two hidden sentiment word distributions corresponds to the “real” positive and negative

vectors. By inferring the model, we can obtain more accurate positive and negative vectors.

Instead of using a mixture of multinomial distributions to generate words, we model the

generation of each word’s embedding vector directions by a mixture of von-Mises Fisher

distributions. The von Mises-Fisher (vMF) distribution is a widely adopted distribution

in directional statistics to model unit vectors in a spherical space and shows stronger
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power [11, 97] than Gaussian in modeling embedding vectors in different applications. Its

formalized definition can be found in Eq. (3.2).

Model. Our model assumes T hidden aspect vMF distributions and 2 hidden sentiment

vMF distributions. For each document di, an aspect multinomial distribution θAi and T

sentiment multinomial distributions {θSi,t}Tt=1 will be generated respectively. Each aspect

mention ak ∈ ai will be assigned with a label zk generated from θAd , while each associated

sentiment mention oj ∈ oik will be generated from θSi,zk . Then, the unit vector of each word

will be generated from corresponding vMF distributions as indicated by their labels.

To summarize:

θAi ∼ Dirichlet(·|αA), di ∈ D
θSi,t ∼ Dirichlet(·|αS), di ∈ D, t ∈ [T ]

zk ∼ Categorical(·|θAi ), ak ∈ ai

yj ∼ Categorical(·|θSi,zk), oj ∈ oik

xak ∼ vMF(·|µA
zk
, κAzk), ak ∈ ai

xoj ∼ vMF(·|µS
yj
, κSyj), oj ∈ oik

We infer the model by Gibbs sampling. Since both the vMF distribution and the Dirichlet

distribution have conjugate priors, we can accordingly develop a collapsed Gibbs sampler for

labels zk and yj by integrating out parameters µA,t, µS,y, θ
A
i and θSi,t.

We can sample zk according to:

P(zk = t|Z−ik,Y−ik•,X,κ; Φ)

∝
(
n
(t)
i,−k + α

(t)
A

)
×

Γ
(∑

y(m
(t,y)
i,−k + α

(y)
S )
)

Γ
(∑

y(m
(t,y)
i,−k +m

(•,y)
i,k + α

(y)
S )
)

×
∏
y∈Y

Γ(m
(t,y)
i,−k +m

(•,y)
i,k + α

(y)
S )

Γ(m
(t,y)
i,−k + α

(y)
S )

×
Cν(κ

A
t ) · Cν(‖CAµA + κAt x−ikA,t ‖)

Cν
(∥∥CAµA + κAt (x−ikA,t + xak)

∥∥)
where Φ = [µA CA µS CS mA σ2

A mS σ
2
S αA αS] is the collection of all prior parameters;

n
(t)
i,−k is the count of aspect mentions in document di with hidden variable zk = t, without

considering the k-th aspect mention in di; m
(•,y)
i,k is the count of sentiment mentions associated
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to the k-th aspect mention with hidden variable yj = y; m
(t,y)
i,−k is the count of sentiment

mentions associated with any aspect mentions with z′k = t but the k-th aspect mention, and

with their own hidden sentiment variable as y; x−ikA,t is the sum of unit embedding vectors of

aspect mentions with hidden variable zk = t.

We can sample yj according to:

P(yj = y|Z,Y−ikj,X,κ; Φ)

∝
(
m

(t,y)
ik,−j + α

(y)
S

)Cν(κSy ) · Cν(‖CSµS + κSyx−ikjS,y ‖)
Cν
(∥∥CSµS + κSy (x−ikjS,y + xoj)

∥∥)
where m

(t,y)
ik,−j is the count of sentiment mentions with their hidden variable as y and their

associated aspect mentions’ hidden variable as t, but without considering the j-th sentiment

mentions of the k-th aspect in document i; and x−ikjS,y is the sum of unit embedding vectors of

sentiment mentions with hidden variable as y but without considering the current sentiment

mention.

We specify the prior for sentiment vMF distribution’s mean vector µS
y as vMF centered as

the mean direction of seed sentiment words with label y as a guidance.

By estimating the mean direction µ̂S
y for the sentiment vMF distributions, we can derive

the rectified positive and negative vectors v+ = µ̂S
1 and v− = µ̂S

0 :

v+ =
CSµS + κSyxS,1∥∥CSµS + κS1xS,1

∥∥ , v− =
CSµS + κS0xS,1∥∥CSµS + κS0xS,0

∥∥
where xS,1 and xS,0 are the sum of unit embedding vector of sentiment mentions with inferred

hidden variable as 1 and 0 respectively.

We can use these rectified vectors to perform polarity assignment for sentiment lexicon

and aspect-based sentiment classification as the baseline.

5.5 EXPERIMENTS

In this section, we verify the effectiveness of our proposed methods on real world review

data sets.

5.5.1 Data set.

We introduce the data sets used in our experiments.
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Table 5.1: Performance comparison of aspect lexicon expansion (%).
Data set Method P R F1

Hotel
HU 60.95 43.90 51.04
DP 51.56 99.89 68.01
PF 80.27 72.99 76.46

Restaurant
HU 85.80 35.39 50.11
DP 57.54 99.37 72.88
PF 87.88 68.25 76.83

Table 5.2: Performance comparison of sentiment lexicon expansion (%).
Data set Method P R F1

Hotel
HU 48.43 95.37 64.24
DP 70.75 84.30 76.93
PF 84.83 75.94 80.14

Restaurant
HU 38.37 97.33 55.04
DP 59.36 93.27 72.55
PF 84.71 70.58 77.00

Hotel. We utilize a hotel review data set from [84, 85]. In the hotel data, reviewers can

provide 1 to 5 star ratings on several aspects such as room, service etc. We utilize reviews

from 181 hotels, as hotels with less than 50 reviews are removed, which results in 17, 865

reviews.

Restaurant. We create a randomly sampled subset of 10, 000 public Yelp1 restaurant

reviews. For the purpose of evaluation, we also include 6,060 labeled sentences from restaurant

reviews [28], where each sentence is labeled with a set of aspect mentions along with

their corresponding sentiment orientation. Sentences without aspect words or with neutral

sentiment are removed in our evaluation.

Similar to previous chapters, for both data sets, we preprocess with phrase mining [50]

and then train a 200 dimension word embedding by word2vec [61]. Details can be found in

Section 3.2.

5.5.2 Lexicon expansion.

We first evaluate the task of lexicon expansion.

Methods evaluated. We compare the following lexicon expansion methods.

• Frequency-based method (HU). A lexicon expansion method based on word frequencies

1https://www.yelp.com/dataset/challenge
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and their PoS tags, proposed by Hu et al. [32]. We use an NLP pipeline2 to parse

sentences.

• Double propagation (DP). A double propagation method proposed by Qiu et al. [71]

that relies on hand-crafted rules based on dependency information. We use the same

NLP pipeline as above to obtain the syntactic information.

* Pattern features (PF). Our proposed method based on pattern feature mining.

Evaluation metrics. We use a pooling strategy to generate the ground-truth. We obtain

the aspect and sentiment lexicons generated by all the evaluated methods, and label the

union of all the lexicons. We only label words with frequency no less than 50 due to the

large lexicon size. We evaluate the performance by weighted versions of precision (P), recall

(R) and F1-score (F1), where each word is weighted by its frequency in the corpus. Similar

measures are adopted in [53].

Experiment setup. We use 10 seed aspect words and 10 seed sentiment words for each

data set. Notice that the size of seed in our experiments is substantially smaller than the

seed sets in previous studies such as [71], where more than 1,000 seed sentiment words are

used. We set β to 0.7 for both data sets.

Results. We present the results in Table 5.1 and Table 5.2. It can be observed that our

method outperforms baselines in terms of F1 score on both tasks and both data sets. While

DP generally has higher recall, its rules are developed for product reviews and are likely to

generate a lot of false positives. In comparison, our method does not rely on domain specific

rules. We achieve the highest precision in both data sets and both tasks by our relative

prudent expansion method, while keeping a decent recall.

5.5.3 Sentiment classification.

We also evaluate the performance of aspect-based sentiment classification.

Methods evaluated. The following methods are compared in our experiments.

• Double propagation (DP). The method proposed in [71], which includes both lexicon

expansion and polarity assignment.

• Aspect and sentiment unification model (ASUM). The method proposed by [36].

2https://spacy.io/
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Table 5.3: Performance comparison of aspect-based sentiment classification (%)
Data set Method P R F1

Hotel

DP 37.17 8.45 13.77
ASUM 24.82 74.41 37.23

HU+EMB+R 16.05 57.43 25.08
DP+EMB+R 45.58 33.72 38.76

PF+EMB 37.44 50.02 42.83
PF+EMB+R 44.60 52.04 48.03

Restaurant

DP 57.45 5.31 9.72
HU+EMB+R 58.33 22.03 31.98
DP+EMB+R 74.47 22.95 35.09

PF+EMB 78.89 22.30 34.76
PF+EMB+R 74.41 26.69 39.29

• HU/DP+EMB+R. Feeding the lexicon constructed by a previously mentioned baseline

into our sentiment classification method.

• PF+EMB. Our proposed baseline method merely using embedding vector and seed

sentiment words.

* PF+EMB+R. Our proposed method with rectified polarity assignment of sentiment

lexicon.

Evaluation metrics. For Hotel data set, we label documents with 1 or 2 star rating as

negative sentiment, while 4 or 5 star rating as positive sentiment for each ground-truth aspect.

Since user rating ground-truth is only available for more “general” aspects, we carefully pick

a set of frequent aspect words Ak for each ground-truth aspect k. In evaluation, we take the

average of the output sentiment polarity labels of aspect mentions corresponding to the same

ground-truth aspect as the aggregated output.

If a document does not have user rating on ground-truth aspect k or does not contain

words from Ak, then it is not evaluated on ground-truth aspect k. Moreover, documents with

3-star rating on k are also not evaluated on ground-truth aspect k.

We evaluate the performance by precision (P), recall (R) and F1-score (F1). Notice that

reviews with positive sentiment are overwhelmingly more than reviews with negative sentiment

in our data set, which makes the prediction a relatively trivial task. Hence we treat negative

sentiment as “positive” label while calculating the evaluation measures.

Results. The results are shown in Table 5.3. It can be observed that our method performs

the best in terms of F1-score. On both data sets, our method constantly achieves around

+5% improvement over the best performed baselines.
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Figure 5.4: Performance w.r.t several parameters.

The results confirm that our lexicons are better than lexicons constructed by other baselines.

Our method achieves +5-10% improvement in terms of F1 on both data sets comparing to

the same method with other baseline lexicons.

Another observation is that our rectification step substantially improves the performance.

On both data sets, it achieves around +4% of improvement. This is because it combines the

embedding signals with the information from the corpus.

Notice that our evaluation setting is much more challenging due to the minimal supervision

and imbalance distribution of sentiment labels. Thus the performance is generally lower than

typical sentiment analysis.

Parameter analysis. We first study the sensitivity of threshold parameter β in lexicon

expansion. We measure the performance of aspect-based sentiment classification on Hotel

data set based on lexicon constructed with β set to different values between 0.5 to 0.8. As

Figure 5.4(a) suggests, the performance remains stable. The difference of F1-score is within

1%.

We also study how the performance change w.r.t. the size of seed set. As Figure 5.4(b)

shows, with only 5 seeds for each lexicon, the performance of our method is higher than our

baseline with 50 seeds. This shows the power of our rectification method in the sentiment

classification stage.

Case study. Table 5.4 shows a case study to provide an in-depth analysis of how our

method outperforms other method. We majorly compare our PF+EMB+R method with our

proposed baseline PF+EMB, as well as a variation with lexicon built by DP.

The first two sentences in Table 5.4 show how our rectification method improves the

performance. In the first sentence, our method with sentiment rectification can correctly

assign a positive polarity score to “large”, while the baseline without rectification mistakenly
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Table 5.4: Case study. For each sentence, we show the identified aspect mentions, sentiment
mentions and their sentiment polarity assignment for each method.

Method Aspect (Sentiment, Polarity)

Sentence The bathroom is large.
PF+EMB+R bathroom (large, +)

PF+EMB bathroom (large, −)

Sentence Quiet room.
PF+EMB+R room (quiet, +)

PF+EMB room (quiet, −)

Sentence We found our bedding sooooo awful!
PF+EMB+R bedding (awful, −)
DP+EMB+R bedding (sooooo, +), (awful,−)

Sentence Reception staff were not friendly and occasion quite rude.
PF+EMB+R staff (not friendly, −), (rude, −)
DP+EMB+R occasion (not friendly, −), (rude, −)

mark it as negative. Similarly, the baseline recognizes “quiet” as a negative sentiment word,

while the rectified version correctly identifies it as positive.

The other two sentences shows how the lower precision of lexicon affects the overall

sentiment classification performance. In the sentence “We found our bedding sooooo awful!”,

the lexicon constructed by DP mistakenly take “sooooo” as a sentiment word, while it actually

should be an intensifier with informal spelling. In the last sentence, the misspelled “occasion”

is identified as an aspect mention by DP lexicon. It steals the sentiment mentions “friendly”

and “rude” from the actual aspect mention “staff” in this sentence as we assign sentiment

mentions to the closest aspect mention. However, our lexicon correctly outputs the only

aspect mention “staff” in this sentence.

5.6 SUMMARY

We study to perform aspect-based sentiment analysis with minimal user guidance. We

start with a lexicon expansion step and then develop a generative model to improve sentiment

classification based on word embedding. Our experiments show the effectiveness of our

method. This facilitates building a sentiment analysis tool for domains with limited resource.

In principle, this work is language agnostic and can be seamlessly extended to other language,

which would be an interesting direction for future work.
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CHAPTER 6: JOINT WEAKLY-SUPERVISED TEXT MINING FOR
ASPECT AND SENTIMENT ANALYSIS

6.1 OVERVIEW

In this chapter, we further study the aspect-based sentiment analysis, but further considering

the joint classification of both the aspect and the sentiment. Different from the previous

chapter which only outputs the aspect mentions with sentiment classes, we allow users

to also provide seed words for each aspect, and output the aspect classes along with the

corresponding sentiment classes. We focus on sentence-level analysis since each sentence

usually belongs to an aspect.

The basic idea to attack the problem is to utilize an autoencoder to discover the aspect and

sentiment structure hidden in sentences. By training the autoencoder to reconstruct sentences

in the unlabeled corpus, we can learn a “dictionary” where each aspect and each sentiment

can be characterized by a vector in the embedding space, reflecting the frequent words of the

corresponding aspect and sentiment. We also design a regularization on the dictionary to

instill the user guidance, such that the learned vectors in the dictionary remain close to the

seed words in the embedding space. Moreover, we adapt the autoencoder structure so that

the model is capable of learning a sentiment dictionary for each aspect, characterizing the

aspect-specific sentiment in the embedding space.

More concretely, we make the following contributions:

• Modeling the aspect and sentiment of sentences with user guidance. We employ a

structure with two parallel autoencoder to learn the aspect dictionary and sentiment

dictionary of the corpus by reconstructing unlabeled sentences. We propose a regular-

ization method to integrate user guidance into the modeling process. We also attach

an attention layer to identify aspect and sentiment words in sentences.

• Characterizing aspect-specific sentiment words. We adapt the model by joining the

aspect and sentiment encoder to reconstruct the sentiment of sentences. Thereby

we can learn a sentiment dictionary for each aspect which captures the signals from

aspect-specific sentiment words.

• Conducting experiments on real data sets. We verify the effectiveness of our proposed

methods on two real world data sets from different domains.

We introduce the details of our studies below.
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6.2 PRELIMINARIES

In this section, we start by introducing basic notations of our data set. Then we move on

to formalize the research problem.

6.2.1 Notations

We represent a given corpus as a set of documents D = {di}ni=1, where each document di

can be represented as a sequence of sentences di = (s1, . . . , s|di|). A sentence sj consists of a

sequence of words sj = (w1, . . . , w|sj |), where each word wk takes a value from a vocabulary

V .

Again, each “word” wk ∈ V can be a unigram word, a multigram phrase (e.g., “battery

life”, “chocolate cake”) or a subword like “n’t” in “don’t”. We simply use the term “word”

for simplicity.

In this chapter, we denote the normalized word embedding of word w as ew, while the

cosine similarity between word embedding is still denoted as sim
(
ew, ew′

)
, as defined in

Eq. 3.1.

In addition, there are K aspects in the given domain. Each sentence sj in the corpus

corresponds to a set of aspects aj ⊂ {1, . . . , K}. In principle, aj can be an empty set or

a set with size larger than one, corresponding to no aspect mentioned or multiple aspects

mentioned respectively. However, sentences without aspect mentioned are not targeted in

this task, and sentences with multiple aspects are rare in the real world data. Hence, we

assume that each sentence sj can be classified into one and only one aspect aj.

Moreover, each sentence sj is also associated with a sentiment label yj, where yj ∈ {0, 1}.
0 stands for Negative sentiment, and 1 stands for Positive sentiment.

6.2.2 Problem Formalization

Based on the above notations, we describe our problem definition in a formalized way.

First, an unlabeled corpus of reviews D from a specific domain should be given. A domain

refers to a relatively consistent category of products or services, such as the hotel domain,

the restaurant domain, and the laptop domain. We assume users have a relatively complete

set of aspects of interest in the given domain. For example, in the restaurant domain, the set

of aspects would be {Food, Service, Ambience, Location, Drinks}, corresponding to aspects 1

to K respectively.

Users can provide some seed aspect words and seed sentiment words as guidance. Seed
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aspect words are a group of word sets VA1 , . . . ,VAK , where each word set VAt ⊂ V corresponds

to an aspect. Similarly, seed sentiment words can be denoted as VS0 and VS1 , corresponding

to Negative and Positive sentiments.

Notice that we do not require a ridiculously large set of seed words. For example, only

5 words for each aspect or each sentiment class would be sufficient. This setting can be

easily fulfilled within minutes by any regular user with reasonable knowledge about the data

without requiring any additional linguistic knowledge, language resources or exhaustive labor.

The problem can be formalized as:

Problem 6.1. Given a corpus of review documents D, some seed aspect words VA1 , . . . ,VAK
for each of the K aspects, and seed sentiment words VS0 ,VS1 for Negative and Positive

sentiments, we aim to develop a classifier such that for any sentence sj, we can output its

aspect label and corresponding sentiment labels (aj, yj).

6.3 ASPECT SENTIMENT AUTOENCODER

In this section, we describe a neural model to characterize the aspect and sentiment for

each sentence in a given corpus.

6.3.1 Overview

The model contains two major components: an attention module and an autoencoder

module. Aspect and sentiment are modeled in two parallel autoencoders with attention.

The first part is the attention module, which aims to emphasize specific parts of the given

sentence for aspect or sentiment classification. For example, in a simple sentence “The food

is good”, the word “food” should be emphasized more in terms of aspect classification, while

the word “good” should be given more attention in sentiment classification.

The second part is the autoencoder structure to reconstruct the attention-weighted sentence

representations of aspect and sentiment from two low dimension “dictionaries” initiated and

regularized by user-provided seed words. Each row of the aspect or sentiment dictionary is a

vector in the embedding space representing an aspect class or a sentiment class. By reduction

and reconstruction of sentences, we can learn the dictionary which reflects the frequent words

in each aspect and each sentiment. Meanwhile, the regularization from seed words maintains

the learned dictionary to be well aligned with aspect classes and sentiment classes of interest.

After the model is trained, we can obtain the classification results for any sentence from this

module.
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We describe the details of each module below.

6.3.2 Sentence Representation with Attention

For each sentence sj, we first construct its vector representations for aspect and sentiment

respectively, denoted as zAj and zSj . The aspect vector representation zAj aims to summarize

the aspect relevant information from the sentence in the embedding space, while the sentiment

vector representation zSj should capture the sentiment related information.

Both vectors zAj and zSj are defined as a weighted summation of word embedding vectors

ewk for wk ∈ sj where wk is valid, i.e. not a stop word, a number or a punctuation. More

precisely,

zAj =
∑
k

αAk ewk , zSj =
∑
k

αSkewk

where the weights αAk and αSk are non-negative attention scores derived from attention models.

Generally, the weights αAk and αSk can be regarded as the probabilities of whether wk should

be focused on to determine the aspect and sentiment class respectively. Take aspect attention

as example, the aspect attention weight αAk can be calculated based on the embedding of

word wk as well as the global context of the entire sentence. More concretely:

αAk =
exp(uk)∑
k exp(uk)

uk = e>wkMAxj

xj =
1

|mj|
∑
k

ewk

where xj is the unweighted average word embedding, and mj is the number of valid words in

sj. The matrix MA ∈ Rν×ν can be learned during the training process.

The attention for sentiment is similar, while the transformation matrix is replaced by

another matrix MS.

6.3.3 Sentence Reconstruction

We have two vector representations zAj and zSj of the sentence sj, which emphasize on

the aspect and the sentiment of the sentence respectively. Now we learn to reconstruct

these two representations zAj and zSj from the aspect dictionary and the sentiment dictionary

respectively. A dictionary is a matrix where each row is a vector in the embedding space,
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Figure 6.1: A graphical illustration of the aspect sentiment autoencoder model. Each word
wk is represented by its embedding ewk . The aspect and sentiment representation of sentence
zAj and zSj are weighted average of ewk ’s from two attention mechanisms. pAj and pSj are
probability distributions over aspect and sentiment classes respectively. rAj and rSj are the
reconstructed representations from aspect dictionary DA and sentiment dictionary DS.

representing an aspect or a sentiment class. Learning the dictionary that best recovers

sentences in the corpus is essentially capturing the most frequent semantic regions in the

embedding space, which serves as a good summary of the corpus. Moreover, since the

dictionary shares the same embedding space with words, it makes it straightforward to

introduce regularization on the dictionary from user-provided seed words. The regularization

will be introduced in Section 6.3.4.

Reconstructing the aspect vector. We first reduce the aspect vector representation zAj

to a K-dimension vector by:

pAj = softmax(WA · zAj ) (6.1)

where WA ∈ RK×ν are model parameters to be learned. The softmax activation introduces

non-linearity and ensures the resulting compressed vector pAj is non-negative with the `1-norm

of 1.

The vector pAj can be viewed as a distribution over different aspects where each element

represents the probability of whether the sentence sj should belong to the corresponding

aspect. In order to enforce this property, we try to reconstruct the original aspect vector
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representation of the sentence zAj from pAj , with the help of an aspect dictionary DA:

rAj = D>A · pAj (6.2)

where DA ∈ RK×ν is the aspect dictionary to be learned. Each row of DA can be regarded

as an embedding vector of an aspect in the embedding space. Ideally, the vector of an aspect

should be close to representative words frequently mentioned in this aspect.

Reconstructing the sentiment vector. Similarly, the sentiment vector reconstruction

starts by reducing the sentiment vector representation zSj to a 2-dimension vector:

pSj = softmax(WS · zSj ) (6.3)

where the model parameters WS ∈ R2×ν can be trained.

We then reconstruct the sentiment vector zSj from a sentiment dictionary DS:

rSj = D>S · pSj (6.4)

Some studies [27, 7] also adopt a similar autoencoder structure to learn the aspect dictionary.

However, they do not separate the reconstruction of aspect and sentiment in sentences. They

also do not utilize regularization to confine the learned dictionary to be aligned with user

guidance, which will be described below.

6.3.4 Regularization

We place several regularization terms on the decoder parameters DA and DS to leverage

the user-provided seed words.

Seed regularization. We leverage the information from seed words by applying a

regularization on the dictionary parameters.

First, we describe the regularization on the aspect dictionary matrix DA. We create a

“prior” matrix RA ∈ RK×ν with the same size as parameter DA. The t-th row of RA is

assigned with the average embedding of seed words in the corresponding aspect, namely

R
(t)
A =

∑
w∈VAt

e>w

‖∑w∈VAt
e>w‖

(6.5)

The objective is to penalize when the learned embedding of the t-th aspect (represented

by the t-th row of DA) deviates too far away from the average embedding of seed words.
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Accordingly, the regularization term can be written as:

CA(θ) =
K∑
t=1

[
1− sim

(
R

(t)
A ,D

(t)
A

)]
(6.6)

where R
(t)
A and D

(t)
A represents the t-th row of RA and DA respectively.

Similarly, the prior matrix for sentiment dictionary is a 2× ν matrix, where

R
(y)
S =

∑
w∈VSy

e>w

‖∑w∈VSy
e>w‖

, ∀y ∈ {0, 1} (6.7)

and the regularization term on the sentiment dictionary matrix is

CS(θ) =
∑

y∈{0,1}

[
1− sim

(
R

(y)
S ,D

(y)
S

)]
(6.8)

Redundancy regularization. Another regularization typically adopted is the penalty on

redundancy of learned aspect or sentiment dictionary. The intuition is to prevent the learned

dictionary matrix from having almost identical rows. As an example, for a learned dictionary

matrix D, the redundancy regularization term is:

X(D) = ‖DnD
>
n − I‖ (6.9)

where Dn is D with each row normalized to a unit length vector, and I is the identity matrix.

This term is also utilized in [27].

In our work, we can apply the redundancy regularization term on all the dictionary matrices.

We simply define XA(θ) = X(DA) and XS(θ) = X(DS).

6.3.5 Training Objective

The overall objective is to minimize the loss between the reconstructed vectors and the

sentence representation vectors for both aspect and sentiment. The similarity between

two vectors are measured by cosine similarity. For each sentence, we aim to maximize the

similarity between the derived sentence representation vectors and the reconstructed vectors.

In addition, we randomly sample m sentences as negative samples and minimize the similarity

between the vector representations of negative samples and the reconstructed vectors. The
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loss is formalized in a similar way to the objective functions proposed in [27]:

LA(θ) =
∑
sj∈D

m∑
i=1

max
(
0, 1− sim(rAj , z

A
j ) + sim(rAj ,xni)

)
(6.10)

LS(θ) =
∑
sj∈D

m∑
i=1

max
(
0, 1− sim(rSj , z

S
j ) + sim(rSj ,xni)

)
(6.11)

where xni are the average embedding of words in the i-th randomly sampled sentence.

The final training objective is to minimize the overall loss along with the regularization

term:

L(θ) = LA(θ) + LS(θ) + λ1
(
CA(θ) + CS(θ)

)
+ λ2

(
XA(θ) +XS(θ)

)
(6.12)

where λ1 and λ2 are two hyperparameters given by users to weigh the effect of different

regularization terms.

6.4 JOINT ASPECT SENTIMENT AUTOENCODER

The model described above consists of two parallel autoencoder structures for aspect and

sentiment respectively. However, the occurrences of aspect and sentiment words in sentences

are correlated.

In this section, we describe a joint autoencoder for aspect and sentiment in sentences. The

model is designed based on the observation that some sentiment words specifically used for a

certain aspect. For example, “delicious” is specifically used to express positive sentiment on

Food aspect, while “rude” is often used to express negative sentiment on Service aspect.

We capture the aspect-specific sentiment words by expanding the universal sentiment

dictionary into several aspect-based sentiment dictionaries. To learn the dictionaries, we

join the aspect and sentiment encoder to generate the distributions over the space of aspect-

sentiment pairs. Then we accordingly reconstruct the sentiment representation of sentences.

Since the attention and aspect reconstruction part is identical to the model described in

Section 6.3, we only present the different parts of the model.
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Figure 6.2: A graphical illustration of the joint aspect sentiment autoencoder model. The
difference from Figure 6.1 is the joining operation of pAj and pSj which outputs a distribution
pASj over pairs of aspect and sentiment classes. Also, an aspect-specific sentiment dictionary
DAS is introduced to recover the sentiment representation.

6.4.1 Sentence Reconstruction

In this subsection, we only focus on the joint reconstruction of sentiment representation

vector.

The intuition is to capture the aspect-specific sentiment words in sentiment dictionaries

of each aspect. The occurring probability of an aspect-specific word in a sentence sj is not

only related to the sentiment class of the current sentence, but also the aspect class of the

current sentence. Therefore, We start by joining the aspect distribution pAj and the sentiment

distribution pSj .

We derive the joint encoded vector pASj by taking the outer product of pSj and pAj and

then flattening it into a vector:

pASj = vec
(
pSj ⊗ pAj

)
(6.13)

where pASj will be a 2K-dimension vector. The 2t-th element of pASj can be interpreted as

the probability that sentence sj expresses Negative sentiment on the t-th aspect, while the

(2t+ 1)-th correspond to Positive sentiment on the t-th aspect.
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In order to reconstruct the sentiment representation from the joint aspect and sentiment

distribution pASj , we need to learn a larger sentiment dictionary. More specifically, the

sentiment dictionary has to be aspect-specific. Each aspect has its own sentiment dictionary.

We denote the aspect-specific dictionary as DAS ∈ R2K×ν , where the 2t-th and (2t+ 1)-th

row form a sentiment dictionary for the t-th aspect.

Now we can reconstruct the sentiment vector zSj from the joint distribution over aspect

and sentiment by:

rSj = D>AS · pASj (6.14)

By minimizing the loss between rSj and zSj , the 2t-th and (2t+ 1)-th row of DAS should

become the vector representation of the Negative and Positive sentiment for the t-th aspect

in the embedding space respectively. Notice that the learned sentiment dictionary for each

aspect summarizes all possible sentiment words co-occurred with the aspect, which include

both aspect-specific sentiment words as well as general sentiment words. For example, the

embedding for Positive sentiment on Food aspect should still be close to general words like

“good” and “great”, while also relatively close to aspect-specific words like “delicious” and

“yummy”.

6.4.2 Regularization

Since we are learning the aspect-specific sentiment dictionary DAS, the regularization on

the dictionary needs to be adapted accordingly. We construct an expanded prior matrix

RAS ∈ R2K×ν by repetitively tiling the prior matrix we utilized in Eq. (6.7) into the new

prior matrix RAS. More specifically,

RAS = [R
(0)>
S R

(1)>
S R

(0)>
S R

(1)>
S · · · R

(1)>
S ]> (6.15)

Essentially, if we regard every two rows in DAS as a sentiment dictionary for each aspect,

then each of them is regularized in the same way as the general sentiment dictionary DS.

However, if users are willing to give some seed words for each aspect-specific sentiment, one

can easily instantiate a more informative prior regularization within this framework. We

leave this idea for future extensions.
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The regularization term on DAS is similar:

CAS(θ) =
2K∑
r=1

[
1− sim

(
R

(r)
AS,D

(r)
AS

)]
(6.16)

6.4.3 Training Objective

The overall loss function of this model would be:

L(θ) = LA(θ) + LS(θ) + λ1
(
CA(θ) + CAS(θ)

)
+ λ2

(
XA(θ) +XAS(θ)

)
(6.17)

where XAS(θ) = X(DAS), which is defined in Eq. (6.9).

Although the major difference of the model structure is only reflected in the sentiment

reconstruction part, the training results show substantial differences in the aspect reconstruc-

tion. The current model structure allows the aspect encoder to contribute substantially to the

reconstruction of sentiment representations, especially those with aspect-specific sentiment

words. As the model minimizes the reconstruction loss, the aspect autoencoder will also shift

some attention to such words and utilize them in the aspect classification. We present some

concrete examples in Section 6.5.

6.5 EXPERIMENTAL RESULTS

In this section, we verify the effectiveness of our proposed methods on real world review

data sets.

6.5.1 Data Sets

We introduce the data sets used in our experiments.

Restaurant. We collect 47, 239 unlabeled reviews on restaurants from a public Yelp data

set1. For the purpose of evaluation, we utilize sentences from SemEval-2016 [69] in the

restaurant domain as ground-truth, where each sentence is labeled with target entities, entity

types and attributes, as well as corresponding sentiment polarity (Positive, Negative and

Neutral). We regard the entity types as aspect classes, while neglecting the entity type

“Restaurant” since such sentences do not express aspect-specific opinions and are not our

1https://www.yelp.com/dataset/challenge
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targets. We ignore the attributes of entities since they provide more fine-grained information.

We also remove sentences with Neutral sentiment class to simplify the problem, but it can be

seamlessly added with an extra set of seed words.

Laptop. We utilize 14, 683 unlabeled Amazon reviews on merchandises in the laptop

category, collected by [58, 29]. We also use labeled sentences on the laptop domain from

SemEval-2016 [69] for evaluation. Similar to the Restaurant data set, each sentence is labeled

with target entities, entity types, attributes and sentiment polarity. There are originally

21 different entity types. We remove some rare entity types and only keep the following 8

entity types as aspect classes: Support, OS, Display, Battery, Company, Mouse, Software and

Keyboard. Again, we ignore the attributes and remove sentences with neutral sentiment.

6.5.2 Experiment Setup

Preprocessing. The unlabeled review documents serve as the training corpus D. We use

the sentences tokenizer and word tokenizer provided by NLTK 2 to tokenize the documents

into list of sentences and to further tokenize each sentence into a list of words. We also

tokenize the labeled sentences into lists of words with the same tool.

Next, we adopt a phrase mining technique, SegPhrase [50], to discover phrases such as

“mini bar” and “front desk”, such that they can be treated as a single semantic unit instead

of several. SegPhrase can automatically segment sentences into chunks of unigram words

and multigram phrases.

We then derive the word embedding by training word2vec [61] on our unlabeled set of

documents. Therefore for each data set we train a different set of word embedding. Notice

that the corpus used for word embedding contains multigram phrases from SegPhrase. Thus

each multigram phrase has its own embedding. This is coherent with [50]. Notice that our

method does not rely on a specific word embedding algorithm so it can be seamlessly replaced

by any other embedding methods.

Methods evaluated. We compare the following methods.

• Cosine similarity (CosSim). Performing aspect and sentiment classification by simply

calculating the cosine similarity between the average embedding of all words in the

given sentence and the average embedding of the seed words of each aspect/sentiment

class. Classifying the sentence into the aspect/sentiment class with the highest cosine

similarity.

2https://www.nltk.org/
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• Aspect Sentiment Unification Model (ASUM). A topic model specifically proposed for

aspect-based sentiment analysis by Jo et al. [36]. The model also takes seed aspect and

seed sentiment words as guidance.

? Aspect Sentiment Autoencoder (ASA). Our model described in Section 6.3 with two

parallel regularized autoencoder structures for aspect and sentiment.

? Joint Aspect Sentiment Autoencoder (JASA). Our proposed model in Section 6.4 with

a joint autoencoder for aspect and sentiment.

Evaluation measures. We evaluate the performance of aspect and sentiment classifica-

tion respectively. For both the aspect and sentiment classification task, we evaluate the

performance by accuracy (A), precision (P), recall (R) and F1-score (F1). To clarify, for the

multi-class aspect classification task, we employ macro-averaged precision, macro-averaged

recall and macro-averaged F1-score as the evaluation measures.

For our neural network model, we run the experiments 10 times for each method on each

data set and report the average performance to reduce the effect of randomness.

Configurations. For both data sets, we provide 5 seed words for each aspect and for each

sentiment class. We utilize Adam [41] with default parameter setting to optimize the model.

For both data sets, we set the weights for prior regularization and redundancy regularization

to λ1 = 10 and λ2 = 0.1 respectively. The model is trained for 15 epochs, where each epoch

contains 1, 000 batches. Each batch contains 50 randomly sampled sentences. Each randomly

sampled sentence is paired with m = 20 negative sentences as negative samples.

6.5.3 Results

Now we present the experiment results.

Performance comparison. We proceed to evaluate the performance of aspect classification

and sentiment classification separately on both Restaurant and Laptop data sets. The overall

performance of aspect classification results are in Table 6.1 and the sentiment classification

results are in Table 6.2.

In the task of aspect classification, both of our proposed methods ASA and JASA are

able to achieve the best overall performances in terms of F1 score, accuracy and recall. ASA

and JASA achieve over 80% of accuracy in Restaurant data set and 76-77% of accuracy in

Laptop data set. In comparison, the topic model-based baseline ASUM fails to identify most

of the aspects and therefore has poor overall performance on both data set. CosSim achieves
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Table 6.1: Performance of aspect classification (%).
Data set Method A P R F1

Restaurant

CosSim 78.67 65.47 57.39 59.83
ASUM 30.79 27.01 26.25 24.75
ASA 80.19 62.95 82.50 66.96
JASA 80.83 63.67 82.57 67.70

Laptop

CosSim 55.81 67.46 60.35 56.81
ASUM 34.24 26.81 32.01 28.21
ASA 76.03 76.70 78.94 76.87
JASA 77.16 77.76 79.81 77.97

78% accuracy in Restaurant data set with fewer aspects, but only reaches 55% of accuracy in

Laptop data set which has more aspects.

Notice that JASA with the joint autoencoder structure can further improve the aspect

classification performance on both data sets for +0.7% to +1.1% from the ASE model

with parallel autoencoder structures. In order to measure the statistical significance of the

improvement, we also compare the overall accuracy of both aspect and sentiment classification

by JASA and ASA with 5 different seed sets. For each seed set we run the experiments for 5

times. We perform a paired Student’s t-test and shows that the improvement from ASA to

JASA is statistically significant on Restaurant and Laptop data set with significance level

0.1% and 0.5% respectively. This shows the benefit of exploiting the correlation between

aspect and sentiment words in sentences.

For sentiment classification, our methods ASA and JASA still outperform all the other

baselines in both data sets, in terms of all the evaluation measures. Both methods achieve

more than 82% of accuracy in Restaurant data set and 74% of accuracy in Laptop data set,

with +1% to +5% improvement from baseline methods.

Notice that our reported results are average measures of 10 different results. The reported

F1-score is not directly calculated from the reported precision and recall.

Visualizing aspect-specific sentiment dictionary. We compare learned aspect-specific

sentiment dictionary DAS to the seed words to understand the effect of our dictionary learning

module. For the t-th aspect with the sentiment y ∈ {0, 1}, we denote the average embedding

of seed sentiment word R
(y)
S as v, and the learned embedding in the aspect-specific dictionary

D
(2t+y)
AS as v′.

Figure 6.3 shows the visualization of v and v′ for Food aspect on both Positive and

Negative sentiment. It can be observed that the learned embedding v′ in the aspect-specific

dictionary shifts towards the embedding of aspect-specific sentiment. For Positive sentiment,
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Table 6.2: Performance of sentiment classification (%).
Data set Method A P R F1

Restaurant

CosSim 77.23 75.57 74.92 75.20
ASUM 71.31 69.47 70.16 69.72
ASA 82.06 80.73 80.64 80.68
JASA 82.34 80.95 81.31 81.12

Laptop

CosSim 73.03 74.31 74.40 73.03
ASUM 67.26 66.67 66.75 66.70
ASA 74.30 74.83 75.23 74.26
JASA 74.42 74.46 74.94 74.30
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Figure 6.3: Visualization of learned embedding v′ in the dictionary DAS on certain aspect
and sentiment comparing to the average embedding of seed words v.

as presented in Figure 6.3(a), v′ drifts towards words like “delicious”, “tasty” and “yummy”,

which are specifically used to compliment Food aspect. For Negative sentiment (Figure 6.3(b)),

v′ is more close to words like “bland” and “flavorless”, which are common words to criticize

Food aspect. On the other hand, v′ does not completely distance itself from the average seed

embedding v due to the regularization. This is because v′ still needs to reflect the general

sentiment words like “good” or “terrible”.

We also try to identify the sentiment words that gain the most “density” by learning the

aspect-specific sentiment dictionary. To be specific, we find words with the most boosted

density from a kernel function centered at v to another kernel function centered at v′. We

instantiate the kernel function as

Kv(e) = exp
(

sim(e,v)
)
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Figure 6.4: Example of how δw is calculated in the embedding space. Suppose the word
w is “delicious”. The black vector represents the embedding vector ew. The blue and red
vectors represent the average embedding of seed words v and the learned embedding in the
dictionary v′ respectively. The boosted density δw is calculated by the difference between
two kernel functions centered at v′ and v.

which is proportional to the probability density function of a von Mises-Fisher distribution

with the concentration parameter as 1. For each word w ∈ V , we calculate the difference of

densities by:

δw = Kv′(ew)−Kv(ew)

and rank the words by δw from the largest to the smallest.

Table 6.3 presents the top-3 words for each aspect-sentiment pair. As one can see, many

words are aspect-specific sentiment words. For example, for aspect Food with Positive

sentiment, the top-ranked words are “delicious”, “tasty” and “yummy”, while for its Negative

sentiment, words like “bland”, “flavorless” are ranked high.

Case study. We compare the output of JASA and ASA to take an in-depth look at how

JASA outperforms ASA. Figure 6.5 shows the aspect attention weights αAk ’s on two sentences

where JASA makes the correct classification while ASA fails.

The first sentence is “Be sure to try the seasonal, and always delicious, specials.” As

Figure 6.5(a) shows, ASA places the most attention on the word “specials”, which is sufficient

to narrow down the possible aspect classes to Food or Drinks, but not enough to pinpoint the

correct aspect class. In contrast, JASA places much more attention on the word “delicious”,

which is usually a sentiment word, but can also imply the aspect class since it is specifically
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Table 6.3: Comparing the learned embedding in dictionary DAS and the average seed
embedding. The table lists words with the most boosted densities δw in a cosine-similarity-
based kernel function by moving the center from the average embedding of seed words v to
the learned embedding in the dictionary v′.

Aspect Sentiment Words with largest δw

Location
Positive cozy, sultry, nice
Negative ventured, seattle, resident

Drinks
Positive awesome, huckleberry, boozy
Negative vomit, substance, clump

Food
Positive delicious, tasty, yummy
Negative yuck, bland, flavorless

Ambience
Positive nice, cool, clean
Negative vomit, enemy, dishonest

Service
Positive friendly, courteous, personable
Negative frustrated, time, acknowledgement

used to describe food. Hence, JASA correctly classify the sentence into Food aspect class with

a high confidence (with predictive probability of 0.99). This is because the joint structure of

aspect and sentiment in JASA allows the aspect attention mechanism and reconstruction

mechanism to fit the training objective of sentiment representation reconstruction, which

enables the aspect-specific sentiment words to benefit the aspect classification in such cases.

Another example is the sentence “It is a lot of fun with live entertainment and all kinds

of Disney type special effects.” This sentence is labeled with the Ambience aspect and

the Positive sentiment. Figure 6.5(b) shows that ASA does not have a particularly strong

attention on one specific word. Instead, its attention scores almost evenly distributed on

words “fun”, “live” and “entertainment”, and mistakenly classifies the sentences into Location

aspect. Again, JASA shifts more attention on the word “fun”. Since “fun” is more frequently

related to the Ambience aspect, JASA is able to output the correct aspect label Ambience.

6.6 SUMMARY

In this chapter, we study to develop sentence-level aspect-based sentiment analysis with

minimal user guidance, where users only need to provide a small set of seed words for each

aspect class and each sentiment class as well as an unlabeled corpus of reviews. We utilize the

autoencoder structure with its dictionary regularized by user-provided seed words for both

aspect and sentiment modeling. We also propose a model with joint aspect and sentiment

encoder to capture aspect-specific sentiment words. The experimental results show the

effectiveness of our model on two real world data sets.
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Figure 6.5: Case study on aspect attention.

There are also numerous applications. For example, one can develop an aspect-based

sentiment outlier analysis tool to discover potential outbreak of complaints from customer

feedback of a certain product on a specific aspect.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

We propose to leverage word embedding — a technique that maps each word to a vector

representation — in multiple text mining scenarios. We propose several models based on

word embedding to characterize the corpus and to extract meaningful knowledge from the

text data. The models are designed for different scenarios, but share the following designing

principles:

1. Representing each text object as a bag of embedding vectors. Instead of using the

bag-of-word representation, leveraging the embedding vectors can provide more signals

about the semantic proximity between words and allow more flexible corpus modeling

in the embedding space.

2. Focusing on the most informative part of the text data and filtering the noise. Text

data usually carries rich information, but not necessarily all signals are helpful for the

target application.

3. Identifying a mixture of vectors in the embedding space that can best represent the corpus.

They are usually derived by identified by maximizing the likelihood or minimizing

the loss of recovering the corpus from these vectors. The identified vectors indicate

the regions where embedding vectors in the corpus most frequently appear. If the

target application has a given target class space (e.g. positive v.s. negative in sentiment

analysis), each identified vector can be mapped to a target class.

A benefit of integrating word embedding into text mining tasks is the better handling of

words with similar semantics. In traditional text mining, the frequencies of words with similar

semantic meanings will be calculated separately. With word embedding, their frequencies

can be considered collectively, leading to better modeling. On the other hand, the corpus

representation in the embedding space allows words that are unseen in the modeling corpus

to have nontrivial predictive probabilities determined by their positions in the embedding

space.

Another benefit is that the embedding space provides a natural bridge for users to provide

word-level supervision. The supervision usually serves as a guidance to shape the learned

structure to be more aligned with human knowledge. Since the corpus representation and

the user-provided words are both in the same embedding space, it is intuitive to leverage
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word-level supervision from users in text mining tasks. Even with only few words from users,

with the semantic similarity captured by word embedding as well as the frequency signals

from the corpus, we can still develop text mining methods to achieve certain text mining

tasks that traditionally requires massive labeled data for training.

We found that the three modules of representing text as bag of word embedding, filtering

noise from textual signal, and representing corpus by a mixture of vectors in the embedding

space serve as a pragmatic guideline to get rapid traction for novel or traditionally difficult

text mining tasks. Notice that this three modules do not need to be performed specifically in

order. Multiple parts can be jointly performed.

Discussions. The notation of “topic” in traditional text mining techniques is usually

instantiated by a multinomial distribution over all the possible words. Words with different

semantic meaning can have high probabilities in the same topic as long as they frequently

co-occur in the same document. For example, “health” and “insurance” are not necessarily

close in semantics, but may still appear in the same topic as they are related. However, the

mixture of vectors representing the corpus in the embedding space usually depict several

more fine-grained and specific clusters of words. More often, synonyms or words within the

same category will be grouped together. For example, “health” and “fitness” will be grouped

together.

This property helps in some text mining tasks such as lexicon expansion, while it may

also imply potential “non-informative” vectors such as a vector close to “monday”, “tuesday”

and “friday”. We emphasize the importance of focusing on the words relevant to the task by

various methods, including removing non-informative semantic regions, or constructing and

utilizing lexicons as filters.

Most of our proposed methods are not designed for a specific text object or domain, which

means they can be applied to any text objects (such as sentences, paragraphs or documents)

in any domains. In general, with a sufficiently large unlabeled corpus, it is always possible to

train reasonable quality word embedding and perform our methods. Some specific technical

part might target problems of a specific type of text object. For example, the outlierness

measure specifically tackles the noise issue in longer text objects like documents.

7.2 FUTURE WORK

There are a number of interesting directions to explore in utilizing word embedding for

text mining tasks. First, there could be a better way to handle words that are unseen in

word embedding training corpus and hence do not have embedding vectors. Instead of simply
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discarding these words, it might be more reasonable to estimate their embedding vectors by

their surrounding words. Second, it might be worth to utilize a general background corpus to

capture those corpus-specific informative words. Some words like “monday”, “friday” likely

have similar occurring probabilities in the background corpus as in the given corpus and

therefore should be regarded as non-informative. Moreover, it is also worthwhile to explore

the potential to generalize our methods for different tasks into one formalized framework,

which could greatly facilitate the development of text mining algorithms for other tasks.

Specifically in the task of outlier document detection, there are also some potential future

work. For example, if the algorithm can automatically generate an explanation for each

mined outlier document, it may greatly help analysts understand the insights. In addition,

there are also various downstream applications of outlier document detection to be explored.

It may benefit fraud detection or spam filtering by enabling better exploitation of text data,

or serve as an interesting exploration application.

For sentiment analysis, our methods are yet to leverage all the signals from the unlabeled

corpus that can potentially benefit the aspect-based sentiment analysis. We list some possible

future directions: 1) Leveraging the frequent patterns between aspect and sentiment words

in the form of a sequence of word embedding vectors. Since aspect and sentiment words

usually appears with semantically similar patterns (e.g., [aspect] is [sentiment], [aspect] was

[sentiment]), utilizing these signals to enhance the traditional frequent pattern would be

promising. 2) Fine-grained dictionary for aspect: With the improvement we observed by

expanding the sentiment dictionary into aspect-specific sentiment dictionary, it is natural

to consider the idea of further expanding the aspect dictionary to be more fine grained. In

some cases, a user-defined aspect contains multiple concepts in the embedding space (e.g.,

hardware aspect of laptop may include mouse, keyboard, graphic, CPU, etc.). This can be

better characterized by a fine-grained aspect dictionary.
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