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Abstract

This dissertation is devoted to multivariate analytic characteristic functions inversion

and applications in option pricing, option sensitivities estimation, and some electronic

engineering problems. We will show that under certain analytic conditions for charac-

teristic functions, the underlying pdfs and cdfs have exponential tails. The inversion

from multivariate characteristic functions to the corresponding pdfs and cdfs can be

approximated by the trapezoidal rule conveniently with great accuracy. Monte Carlo

methods can be applied for option sensitivity analysis. Under multi-dimensional mod-

els, acceptance-rejection method is desirable. Simulating from a distribution without

explicit pdf or CDF is then transformed to sampling from an easy-to-simulate distri-

bution. Detailed algorithms are provided and comparisons against classical methods

in terms of accuracy and efficiency are included.
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Chapter 1

Introduction

As the most widely used option pricing model, Black-Scholes-Merton model [12], [38]

assumes that the asset price process follows a geometric Brownian motion, St =

S0e
µt+σWt , where the initial asset price is denoted by S0, andWt represents the standard

Brownian motion. A major reason behind the popularity of the Black-Scholes-Merton

model is that it provides a closed-form expression for the price of a European option.

Numerical methods can be conveniently implemented in pricing American or exotic

options. From the trading and risk management perspective, European option Greeks

can be derived explicitly.

However, Black-Scholes-Merton model has its own limitations since it fails to cap-

ture some market phenomena. Black-Scholes-Merton model assumes constant volatil-

ity, σ, across different strikes and maturities, and thus, leads to a flat volatility curve

and surface. In reality, an option’s implied volatility varies by moneyness, the distance

between the strike and the current underlying asset price, and maturity. Such phe-

nomenon is called volatility smile or skew. Volatility smile is common on the foreign

currency options market, while volatility skew appears frequently on index and equity

options market.

1



Non-Gaussian Lévy processes, including pure jump and jump-diffusion asset pricing

models based on Lévy processes, have then enjoyed their remarkable popularity. They

not only explain volatility smile and skew in a reasonable way [1], but also provide

better fit to time series data of financial assets including equities, commodities, and

foreign currencies.

To capture extreme price movements in asset prices, Merton’s Jump-Diffusion

Model [39] models the arrivals of important information with a compound Poisson

process and the magnitude of the random jump with a normal distribution. Another

Lévy process-based model is Kou’s double exponential jump model [31–33], of which

the jump component is composed of asymmetric double exponential jumps driven by

a Poisson process.

The variance gamma (VG) model of Madan and Seneta [37], Madan and Milne [36]

and Madan, Carr, and Chang [35] results from a normal distribution conditional on a

variance that is distributed as a gamma variable. Besides, the normal inverse Gaussian

(NIG) model [8], the Carr, Geman, Madan and Yor (CGMY) model [13], and the finite

moment log-stable model [16] are other infinite activity pure jump models.

By allowing the instantaneous variance of the diffusion part of the price process to

be random, many stochastic volatility models have been proposed. In the Heston [29]

model, the variance is modeled by a Cox-Ingersoll-Ross (CIR) square-root process.

Based on the Heston model, the stochastic volatility jump (SVJ) model proposed by

Duffie [9] includes jumps in the asset return process. This model was then extended

by the SVCJ model [23] by allowing contemporaneous and correlated jumps in both

return and variance processes.

One major reason behind the popularity of non-Gaussian Lévy processes is that even

though the majority of these models do not have closed-form expressions for the pdfs

and cdfs, by the Lévy-Khintchine formula, they admit explicit characteristic functions
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with certain analyticity, leading to the tractability of the processes and exponential tail

behaviors of the underlying pdfs and cdfs [34]. One can easily obtain volatility smiles

or skews from these models.

The thesis starts with the discussion in univariate cases in Chapter 2, with the

classical definition of the characteristic function on the real axis. Then we extend the

definition to complex variables since we are interested in its analyticity in the complex

plane, or more specifically, its analyticity in a horizontal strip including the real axis . In

Section 2.1, we analyze the relations between analyticity of the characteristic function

in the horizontal strip and tail behaviors of the underlying pdf and cdf. This lays

theoretical foundations for our acceptance-rejection simulation [17] and approximation

for option prices. By inverting analytic characteristic functions, one can approximate

pdfs and cdfs conveniently with great accuracy by the trapezoidal rule. The total

approximation error bounds are provided in Section 2.4.

The analysis for bivariate cases is presented in Chapter 3. We obtain expressions for

the bivariate cdf and pdf approximations in Section 3.2 and analyze the total approxi-

mation error bounds. Numerical experiments are performed in Section 3.3. In pricing

2d European options, one needs to approximate expectations involving indicator func-

tions. We provide alternative expressions and approximations for such representations.

We also price a 2d European call option under the bivariate NIG model in the numerical

experiments part.

For pricing non-European options, especially for path-dependent contracts, and in

estimating option Greeks, Monte Carlo methods are often attractive. In Chapter 4, we

propose a tabulation method based on LRM, which estimates sensitivities by differenti-

ating the probability density function inside the pricing integral. Even though that pdfs

of some widely used financial models, including Lévy process models [8], [13], [29], and

jump-diffusion models [23], may not be available, their characteristic functions are often
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accessible to us. In [27], cumulative distribution functions (cdfs) and their derivatives

with respect to certain parameters are inverted and approximated through Laplace

transform on selected grid points. Then the approximated cdf and its derivative are

constructed by linear interpolation and hence are piecewise linear. Differentiating these

functions with respect to a specific parameter gives piecewise constant approximations

for both the probability density function and its derivative. One then simulates and

estimates sensitivities by the inverse transform method [28]. In this way, the total bias

is consisted of three parts: the linear interpolation of order O(η2), the inverse Laplace

transform discretization error of the magnitude O(exp(−c/h)) for some positive con-

stant c, and the truncation error incurred by the distribution approximation depending

on the decay of the Laplace transform, where η is the grid size in tabulation, and h is

the discretization level in approximation. One can re-run the simulation procedure by

updating these parameter values until the estimation bias decreases proportionally.

Our method in this thesis combines the method in [28] with an extension from [19].

We tabulate the cdf and the derivative of the pdf with respect to a parameter on

discrete grid points. The cdf values are computed through Hilbert transforms of the

characteristic function, while the derivative of density is obtained through the inverse

Fourier transforms. When the characteristic function is in a certain analytic class,

the approximation of the tabulated quantities is highly accurate with exponentially

decaying discretization errors, and admits explicit and computable error estimates.

Using results from [26], we obtain explicit and computable bounds for the estimation

bias in one dimensional problems. This allows us to determine the simulation support,

the fineness of the grid, and the numerical parameters for inverting the characteristic

function given any bias tolerance level. Random numbers are then generated from the

tabulated and linearly interpolated cdf through inverse transform method as in [19].

The derivative of the pdf is then calculated by linear interpolation. In this way, the
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bias of the estimator is composed of three parts. The first part, the truncation error, is

due to the truncation of the support of the distribution. The second part is caused by

linear interpolation, which is quadratic in terms of the step size of the grid. The third

part comes from the approximation of the derivative of the density. Consequently,

we determine the grid setting, and the approximation parameters in one-dimensional

cases. This error analysis can be extended to multi-dimensions.

Section 4.1 introduces the basic idea of likelihood ratio method, how to tabulate

from characteristic functions, and how to apply the likelihood ratio method based

on the tabulated data. In Section 4.1.4, we derive an explicit upper bound for the

estimation bias in one dimensional cases, and explain how to control bias through

tuning the fineness of the grid and adjusting the approximation parameter values. We

also describe how to control bias in multi-dimensional cases. Section 4.2 implements

the likelihood ratio method in estimating European and Asian option deltas under the

CGMY model. We verify our theoretical results through numerical experiments.

In many financial models, close-form probability density functions (pdfs) or cumu-

lative distribution functions (cdfs) are not available, while characteristic functions are.

Thus, from simulation perspective, the inverse transform method, which needs explicit

expression for the cdf, is not applicable directly. One way to simulate Lévy processes

is by inverting characteristic functions [20]. Extensions include estimating option sen-

sitivities [28]. When the characteristic function is known, the Gil-Pelaez Formula is

widely used in computing the cdf [6,7], and inverse Fourier transform is a general way

in calculating the pdf. But according to [14, 15, 18], for extreme inputs, there arise

large pricing errors when the inverse Fourier transform is discretized by Simpson’s

rule. [26] also applies inverse Fourier transform in pdf calculation and expresses a cdf

by means of a Hilbert transform, but it uses the trapezoidal rule in the approximation,

which is convenient, accurate and stable. This methodology can then be extended to
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multivariate cases.

In this thesis, we focus on inverting analytic characteristic functions for bivariate

models to estimate bivariate cdfs and some expectations involving indicator functions.

With an explicit characteristic function, to estimate the corresponding bivariate cdf,

we represent it by a double integral and discretize it to an infinite double series. We

then truncate the infinite series representation. In this way, an explicit error estimate

as a function of the discretization stepp size and truncation level is especially important

in bounding the total estimation error. Dominating terms in the approximation error

bound are decaying exponentially in 1/h1, 1/h2, c1(M1h1)ν1 , and c2(M2h2)ν2 , where

h1, h2 are the discretization step sizes for the first and the second dimension respectively,

and M1h1 and M2h2 are the truncation levels. We present ways to choose M2 based

on M1, and select h1, h2 as functions of M1,M2, such that all the dominating terms

are decaying exponentially at the same rate. Therefore, one just needs to select M1

to bound the total estimation error to a target level, instead of selecting the four

parameters separately.

For many derivative securities, Monte Carlo methods are preferred. One simulation

method that is widely used is the inverse transform method [21]. To apply the in-

verse transform method, one needs to generate a uniform random variable, U ∼ U [0, 1]

and find the corresponding x such that U = F (x). By tabulation, the inverse trans-

form method is quite efficient and convenient in univariate cases. By following this

methodology, in simulating multivariate random processes, one needs to generate X1

from F (X1), then X2 from F (X2|X1), X3 from F (X3|X1, X2), and so on. Every time,

the simulation grid varies because different values are generated from the previous di-

mension. Therefore, the inverse transform method is hard to be generalized to higher

dimensions if close-form cdfs or conditional cdfs are not accessible. However, when the

characteristic function lies in a specific analyticity class such that it is analytic in a
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horizontal strip in every dimension with all other dimensions fixed, the underlying con-

ditional pdfs admit exponential tail behavior. Covering the underlying pdf with a scaled

multi-variate exponential distribution, instead of simulating from a multi-variate dis-

tribution without closed-form pdf, one can generate samples from an easy-to-simulate

distribution and apply multi-variate acceptance-rejection method. With careful selec-

tion of the parameters in the multi-variate exponential distribution, the acceptance

rate can be optimized. In Chapter 5, we apply acceptance-rejection method on uni-

varite and bivariate models with certain analytic characteristic functions. The classical

algorithm proposed by [22] is compared with our improvements in terms of running

time (acceptance rate) and estimation error in Section 5.1.3.

In addition to traditional financial engineering application, our analysis on models

with certain analytic characteristic functions also applies to other fields like electrical

engineering.

A defining characteristic of the wireless channel is the variations of the channel

strength over time, known as channel fading. The channel fading amplitude at a

particular time can be probabilistically modeled as a random variable with Rayleigh,

Nakagami-m or Nakagami-n(Rice) distribution. Receiver diversity reception is an ef-

fective technology to combat channel fading. The performance of a diversity reception

scheme is evaluated by taking average of the conditional error probability (CEP) over

the fading amplitudes, which is the average symbol error rate (SER). Equal gain com-

bining (EGC) is one commonly used diversity reception scheme due to its comparable

performance to optimal maximal-ratio combining (MRC) but with much greater sim-

plicity and more economical hardware cost [4]. However, research on the performance

analysis for EGC receivers is relatively fewer compared to those for other diversity

combining schemes, such as MRC.

For the MRC scheme, reseachers proposed an unified approach based on moment
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generation function (MGF) technique that can be used for a broad class of modula-

tions under different channel fading [43,44]. However, the MGF approach doesn’t work

as well for EGC receivers due to the cross-product terms in its output signal-to-noise

ration (SNR) . Instead, most of the existing studies on performance analysis for EGC

receiver are focusing on a particular distributed channel fading. In [4, 10, 11], authors

analyzed the performance for EGC receivers in Rayleigh, Nakagami-m and Nakagami-

n(Rice) channels, respectively, by using Fourier series techniques to approximate the

probability density function (pdf) for a sum of independent random variables. The au-

thor in [45] provided some closed-form solutions for binary error rate of EGC receivers

in Rayleigh fading. Authors in [3, 42] studied EGC performance in a Nakagami-m

channel. An approximation for SER for EGC receivers in Rice and Hoyt fading chan-

nels are proposed in [30, 46], by finding an approximation for the MGF of the output

SNR. Authors in [4] obtained a rapidly converging series representation for the EGC

performance in Nakagami channels.

In Chapter 6, we propose a unified SER closed-form computation approach for EGC

receivers under any channel fading with an explicit characteristic function and for any

modulations whose CEP can be writen as

Ps(ε|γ) = a · erfc(√pγ) + b · erfc2(
√
pγ), (1.1)

by employing a transform-based and exponentially error-decay approximation of erfc(·),

which is a summation of exponential terms and turns out to be the characteristic

functions of channel fadings after multiplying by channel fadings’ pdf and then taking

integral. The approximation error for the proposed method is proved to be bounded

and the upper bound is exponentially decaying as a the number of terms considered

increase.
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There are several existing works studying general methods for the performance

analysis of EGC receivers. Authors in [2] derived analytical expressions for the EGC

receiver performance in general fading channels in terms of the Appell hypergeometric

function, which involves evaluating multiple infinite series. In [2,5], authors proposed a

characteristic functions method for calculating SER of a broad class of channel fadings

for EGC explicit reciever based on Parsevals theorem, with the requirement of explicit

characteristic functions for both the CEP and channel fadings. In this work, the

obtained closed-form approximation for SER only involves a finite series calculation,

and the approximation error is proved to be bounded and exponentially decay with the

number of terms considered in the finite series. The only requirement in our method is

the knowledge of the characteristic function for the channel fading distribution, which

is very easily obtained, as provided in [5]
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Chapter 2

Univariate Analytic Characteristic

Functions and Their Inversion

Let R denote the set of all real numbers, and C the set of all complex numbers.

Definition 2.1. The characteristic function of a random variable X with cumulative

distribution function (cdf) F is defined to be

φ(ξ) = E[eiξX ] =

∫ ∞
−∞

eiξx dF (x)

for all such ξ ∈ C that the above is finite.

We extend the classical definition of the characteristic function to include complex

values for ξ since we are interested in its analyticity on the complex plane. The char-

acteristic function is well defined for all ξ ∈ R. Whether it is well defined for non-real

ξ depends on the underlying distribution F . When φ(ξ) is well defined for complex ξ,

we study the relations between the analyticity of φ and the tail behavior of F (x).
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2.1 Analyticity of Univariate Characteristic Functions

We, first of all, denote the real part of a complex number ξ by <(ξ) and the imaginary

part by =(ξ) and show that the analyticity of the characteristic function in a horizontal

strip in the complex plane is equivalent to the existence of exponential moments.

Proposition 2.2. The characteristic function of a random variable X is analytic in a

strip D(d−,d+) := {ξ ∈ C : d− < =(ξ) < d+}, −∞ < d− < 0 < d+ < +∞, if and only if

E[e−bX ] is finite for any b ∈ (d−, d+).

Proof. For the necessity, suppose that φ is analytic in the strip D(d−,d+). Then, for any

ξ = a+ ib with a ∈ R and d− < b < d+, φ(ξ) is finite. In particular,

E[e−bX ] = φ(ib) < +∞.

For the sufficiency, suppose that E[e−bX ] is finite for any d− < b < d+. Then for

any ξ = a+ ib with a ∈ R and d− < b < d+, φ(ξ) is finite because

|φ(ξ)| = |E[ei(a+ib)X ]| ≤ E[e−bX ] < +∞.

Moreover, for any d− < b < d+, E[|X|e−bX ] < +∞. To see this, let ε > 0 be such

that d− < b± ε < d+. Then

E[|X|e−bX ] = E[Xe−εXe−(b−ε)X1{X≥0}] + E[−Xe−ε(−X)e−(b+ε)X1{X<0}]

≤ 1

ε
(E[e−(b−ε)X1{X≥0}] + E[e−(b+ε)X1{X<0}]) (2.1)

≤ 1

ε
(E[e−(b−ε)X ] + E[e−(b+ε)X ]) < +∞.

To show the analyticity of φ in D(d−,d+), it suffices to show that φ is differentiable
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at any point ξ0 = a0 + ib0 with d− < b0 < d+. Let δ > 0 be such that Bδ(ξ0) := {ξ ∈

C : 0 < |ξ − ξ0| < δ} ⊂ D(d−,d+). For such a δ, d− < b0 − δ < b0 + δ < d+. Note that

lim
ξ→ξ0

φ(ξ)− φ(ξ0)

ξ − ξ0

= lim
ξ→ξ0

E
[eiξX − eiξ0X

ξ − ξ0

]
.

Let ξ ∈ Bδ(ξ0). For any x ∈ R, by the complex mean value theorem [25], there

exist ω1, ω2 that are on the line connecting ξ and ξ0 such that

<
(eiξx − eiξ0x

ξ − ξ0

)
= <(ixeiω1x), =

(eiξx − eiξ0x
ξ − ξ0

)
= =(ixeiω2x).

Note that b0 − δ < =(ω1),=(ω2) < b0 + δ. We thus have

∣∣∣eiξx − eiξ0x
ξ − ξ0

∣∣∣ ≤ |x|e−=(ω1)x + |x|e−=(ω2)x

≤ 2|x|(e−x(b0−δ)1{x≥0} + e−x(b0+δ)1{x<0})

≤ 2|x|(e−x(b0−δ) + e−x(b0+δ)). (2.2)

Since x is arbitrary and the expression in (2.2) doesn’t depend on ω1, ω2, we have

that ∣∣∣eiξX − eiξ0X
ξ − ξ0

∣∣∣ ≤ 2|X|(e−X(b0−δ) + e−X(b0+δ))

for any ξ ∈ Bδ(ξ0). By (2.1), 2|X|(e−X(b0−δ) + e−X(b0+δ)) has a finite expectation. We

thus have the following by the dominated convergence theorem:

lim
ξ→ξ0

φ(ξ)− φ(ξ0)

ξ − ξ0

= lim
ξ→ξ0

E
[eiξX − eiξ0X

ξ − ξ0

]
= E

[
lim
ξ→ξ0

eiξX − eiξ0X

ξ − ξ0

]
= E[iXeiξ0X ],

where the last expectation is well defined with |E[iXeiξ0X ]| ≤ E[|X|e−b0X ] < +∞. φ is

thus differentiable at ξ0. This finishes the proof.
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2.2 Analyticity of Characteristic Functions and Tail

Behaviors of PDFs

Characteristic function of a distribution can be treated as the Fourier transform of the

underlying probability density function (pdf). Characteristic function with certain an-

alyticity indicates how the corresponding pdf behaves at extreme values. The following

theorem discusses the relations between analyticity of a function’s Fourier transform

and tail behavior of this function itself.

Theorem 2.3. Let ξ = a+ ib, if

• f̂(ξ) is analytic for d− < b < d+,

• f̂(·+ ib) ∈ L1(R) in the analyticity strip,

• lima→±∞
∫ d+

d−
|f̂(a+ ib)| db = 0,

then

f(x) =


O(e(d−+ε)x), x→∞

O(e(d+−ε)x), x→ −∞
.

Proof. Function f can be obtained from f̂ by inverse Fourier transform:

f(x) =
1

2π

∫ +∞

−∞
f̂(a)e−iax da = lim

R→+∞

1

2π

∫ +R

−R
f̂(a)e−iax da.

Consider the following contour integral:

∫
γ

f̂(ξ)e−iξx dξ =

∫
γ1+γ2+γ3+γ4

f̂(ξ)e−iξx dξ,
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where γ is a closed contour (d− < t < d+) consisting of:

γ1 = {a : a goes from −R to R},

γ2 = {R + ib : b goes from 0 to t},

γ3 = {a+ it : a goes from R to −R},

γ4 = {−R + ib : b goes from t to 0}.

According to Cauchy’s theorem, when f̂(ξ)e−iξx is analytic on and inside the closed

contour γ,
∫
γ
f̂(ξ)e−iξx dξ = 0.

Combined with

|
∫
γ2

f̂(ξ)e−iξx dξ| = |i
∫ t

0

f̂(R + ib)e−i(R+ib)x db| ≤ e|tx|
∫ t

0

|f̂(R + ib)| db

≤ e|tx|
∫ d+

d−

|f̂(R + ib)| db→ 0 as R→∞,

and

|
∫
γ4

f̂(ξ)e−iξx dξ| = |i
∫ 0

t

f̂(−R + ib)e−i(−R+ib)x db| ≤ e|tx|
∫ t

0

|f̂(−R + ib)| db

≤ e|tx|
∫ d+

d−

|f̂(−R + ib)| db→ 0 as R→∞,

then

f(x) =
1

2π

∫ +∞

−∞
f̂(a)e−iax da =

1

2π

∫ +∞

−∞
f̂(a+ it)e−i(a+it)x da, for d− < t < d+.
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Since f̂(·+ ib) ∈ L1(R) for d− < b < d+,

|f(x)| = 1

2π
|
∫ +∞

−∞
f̂(a+ it)e−i(a+it)x da| ≤ 1

2π
etx
∫ +∞

−∞
|f̂(a+ it)| da = O(etx).

When x→ +∞, let t be arbitrarily close to d−, then f(x) = O(e(d−+ε)x).

When x→ −∞, let t be arbitrarily close to d+, then f(x) = O(e(d+−ε)x).

According to Theorem 2.3, exponential tail behavior of f can be obtained by certain

analyticity of its Fourier transform in a horizontal strip. Specifically, exponential de-

caying rate of f on the right-hand-side is decided by the lower bound of this analyticity

strip, while the decaying rate on the left-hand-side corresponds to the upper bound of

the strip. Moreover, certain analyticity together with exponential tail behavior of a

function and similar properties of the function’s Fourier transform indicates each other,

as included in the following theorem.

Theorem 2.4. (Theorem 26 in [24]) Let c+, d+ > 0, c−, d− < 0. Then f̂(ξ) is analytic

in the strip {ξ = a+ ib ∈ C : d− < b < d+}, and

f̂(ξ) =


O(e−(c+−ε)a), a→ +∞

O(e−(c−+ε)a), a→ −∞

for every positive ε, if and only if f(z) is analytic in the strip {z = x + iy ∈ C : c− <

y < c+}, and

f(z) =


O(e(d−+ε)x), x→ +∞

O(e(d+−ε)x), x→ −∞

for every positive ε.

15



Proof. Here we only prove the necessary condition, while the proof of the sufficient

condition follows the same methodology.

First of all, we prove the analyticity of f(z) in the strip by proving its uniform

convergence in the same strip.

Let fθ(z) = 1
2π

∫ θ
−θ f̂(a)e−iaz da, where θ > 0, then

|fθ(z)− f(z)| =
1

2π
|
∫ −θ
−∞

f̂(a)e−iaz da+

∫ +∞

θ

f̂(a)e−iaz da|

≤ 1

2π

( ∫ −θ
−∞
|f̂(a)|eay da+

∫ +∞

θ

|f̂(a)|eay da
)
.

Choose ε > 0, such that c− < y − ε < y + ε < c+. By the exponential tail behavior

of f̂(ξ), there exist a1, a2, C1, and C2 > 0, such that


|f̂(ξ)| ≤ C1e

−(c+−ε)a, a ≥ a1

|f̂(ξ)| ≤ C2e
−(c−+ε)a, a ≤ −a2

.

If θ ≥ max(a1, a2),

|fθ(z)− f(z)| ≤ 1

2π

( ∫ −θ
−∞

C2e
(−c−−ε+y)a da+

∫ +∞

θ

C1e
(−c++ε+y)a da

)
=

1

2π

( C2

−c− − ε+ y
e−θ(−c−−ε+y) +

C1

c+ − ε− y
e−θ(c+−ε−y)

)
≤ 1

2πs
(C1 + C2)e−θs,

where s = min(−c− − ε+ y, c+ − ε− y) > 0.

Therefore, ∀δ > 0, when θ > max(1
s

ln(C1+C2

2πδs
), a1, a2), |fθ(z)−f(z)| < δ. Then f(z)

is uniformly convergent, hence analytic, in the strip {z = x+ iy ∈ C : c− < y < c+}.
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Now we move onto the exponential tail behavior of |f(z)|. By inverse Fourier

transform, f(z) = 1
2π

∫ +∞
−∞ f̂(a)e−iaz da. Consider the following contour integral:

∫
γ

f̂(ξ)e−iξz dz =

∫
γ1+γ2+γ3+γ4

f̂(z)e−iξz dz,

where γ is defined in Theorem 2.3.

By its analyticity in the strip,
∫
γ
f̂(z)e−iξz dz = 0. And it can be easily proved that∫

γ2
f̂(z)e−iξz dz → 0(R→∞) and

∫
γ4
f̂(z)e−iξz dz → 0(R→∞). Then

f(z) =
1

2π

∫ +∞

−∞
f̂(a+ ib)e−i(x+iy)(a+ib) da =

ebx+iby

2π

∫ +∞

−∞
f̂(a+ ib)e(ay−iax) da,

and

|f(z)| ≤ ebx

2π

∫ +∞

−∞
|f̂(a+ ib)|eay da,

Taking b arbitrarily close to d− or d+,

f(z) =


O(e(d−+ε)x), x→∞

O(e(d+−ε)x), x→ −∞.

This finishes the proof.

2.3 Analyticity of Characteristic Functions and Tail

Behaviors of CDFs

By investigating analyticity of univariate characteristic function, we can obtain certain

exponential tail behavior of the underlying pdf. Moreover, the analyticity of the char-

acteristic function also indicates certain tail behavior of the corresponding cdf, as in
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the following theorem.

Theorem 2.5. The characteristic function φ(ξ) of a distribution function F (x) is

analytic in the strip {ξ = a+ ib ∈ C : d− < b < d+}, if and only if

1− F (x) = O(e−rx)

as x→∞, for 0 < r < −d−, and

F (−x) = O(e−rx)

as x→∞, for 0 < r < d+.

Proof. We first prove the sufficient condition.

Choose r, b ∈ R, such that 0 < b < r < d+. By F (−x) = O(e−rx) as x → ∞,

for 0 < r < d+, there exists a constant c1 > 0 and a positive integer K1, such that

F (−x) ≤ c1e
−rx when x ≥ K1. Then

∫ −K1

−∞
e−bx dF (x) =

∞∑
k=K1

∫ −k
−k−1

e−bx dF (x) ≤
∞∑

k=K1

c1e
(b−r)k+b =

c1e
(b−r)K1+b

1− eb−r
< +∞.

Combined with the fact that

∫ +∞

−K1

e−bx dF (x) ≤ ebK1(1− F (−K1)) < +∞,

E[e−bX ] =
( ∫ −K1

−∞
+

∫ +∞

−K1

)
e−bx dF (x) < +∞, for 0 < b < d+.

Choose r, b ∈ R, such that d− < −r < b < 0. By 1 − F (x) = O(e−rx) as x → ∞,

for 0 < r < −d−, there exists a constant c2 > 0 and a positive integer K2, such that
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1− F (x) ≤ c2e
−rx when x ≥ K2. Then

∫ +∞

K2

e−bx dF (x) =
∞∑

k=K2

∫ k+1

k

e−bx dF (x) ≤
∞∑

k=K2

c2e
−(b+r)k =

c2e
−(b+r)K2

1− e−(b+r)
< +∞.

And

∫ K2

−∞
e−bx dF (x) ≤ e−bK2F (K2) ≤ e−bK2 < +∞.

Hence,

E[e−bX ] =
( ∫ K2

−∞
+

∫ +∞

K2

)
e−bx dF (x) < +∞, for d− < b < 0.

It is obvious that E[e−bX ] = 1 < +∞ for b = 0. Consequently, E[e−bX ] <

+∞ for d− < b < d+. By Proposition 2.2, φ(ξ) is analytic in the strip {ξ = a + ib ∈

C : d− < b < d+}.

Now we move onto the proof for the necessary condition.

As φ(ξ) is analytic in the strip {ξ = a+ ib ∈ C : d− < b < d+}, we have E[e−bX ] <

+∞ for d− < b < d+, which gives that:

∫ −x̃
−∞

e−bx dF (x) < c3 for some c3 > 0 when 0 < b < d+,

∫ +∞

x̃

ebx dF (x) < c4 for some c4 > 0 when 0 < b < −d−,

for x̃ > 0.

Therefore, ebx̃F (−x̃) ≤ c3(0 < b < d+) and ebx̃(1− F (x̃)) ≤ c4(0 < b < −d−).

This finishes the proof.
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By change of measure, the European option price can be expressed in terms of cdfs

of the underlying return process under different measures. The behavior of option price

with extreme strikes can be demonstrated by analyticity of the characteristic function.

Define St as the price of an underlying asset at time t, T as the maturity of the

options, and C(K) and P (K) as European call and put prices as functions of the strike

price K. The following corollary studies the tail behaviors of the option prices when

K takes extreme values.

Corollary 2.6. (Corollary 2.2 in [34]) If E[Sp+1
T ] < ∞, then C(K) = O(K−p) as

K →∞. If E[S−qT ] <∞, then P (K) = O(K1+q) as K → 0.

Proof. ST = S0e
XT , where XT = ln(ST/S0). Let f̂(z) be the characteristic function of

XT . By Proposition 2.2, E[Sp+1
T ] < ∞ and E[S−qT ] < ∞ imply that f̂(ξ) is analytic in

the strip −(p+ 1) ≤ =(ξ) ≤ q.

The option prices can be expressed by linear operations of cdfs under different

measures:

C(K) = e−rTE[max(ST −K, 0)]

= S0e
−qTP∗(XT ≥ ln(K/S0))−Ke−rTP(XT ≥ ln(K/S0))

= S0e
−qT (1− F ∗(ln(K/S0)))−Ke−rT (1− F (ln(K/S0))),

and

P (K) = Ke−rTF (ln(K/S0))− S0e
−qTF ∗(ln(K/S0)).

f̂ ∗(ξ) = f̂(ξ − i)/f̂(−i) is the characteristic function of XT under measure P∗. By
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Theorem 2.5, 1 − F (x) = O(e−(p+1)x) , 1 − F ∗(x) = O(e−px), F (−x) = O(e−qx), and

F ∗(−x) = O(e−(q+1)x), as x → ∞. Substituting x with ln(K/S0) in the first two

equations and with − ln(K/S0) in the last two, we reach exactly the same conclusion.

2.4 Inverting Univariate Analytic Characteristic Func-

tions

In the following, we only discuss models with characteristic function defined in the

following group and with exponential tails, |φ(a+ ib)| ≤ κ exp(−c|a|ν), where κ, c, and

ν are independent of a:

Definition 2.7. A function g(ω) ∈ H(D(d−,d+)) if:

• g(ω) is analytic in H(D(d−,d+)) = {ω ∈ C : =(ω) ∈ (d−, d+)}, d− < 0, d+ > 0,

•
∫ d+

d−
|g(u+ iv)| dv → 0, u→ ±∞,

• ‖g‖+ =
∫
R |g(u+ id+)| du <∞, ‖g‖− =

∫
R |g(u+ id−)| du <∞.

The underlying pdf and cdf then can be approximated by inverting the analytic

characteristic function by trapezoidal rule with great accuracy [26].

The characteristic function can be treated as the Fourier transform of the underlying

pdf. Alternatively, the pdf can be obtained by inverting the characteristic function.

Therefore, the pdf f(x) = 1
2π

∫
R e
−iξxφ(ξ) dξ is approximated by:

fh,M,a(x) =
1

2π

M∑
m=−M

e−ix(mh+ia)φ(mh+ ia)h, (2.3)

for a ∈ (d−, d+), with discretization level h and truncation level Mh.
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The cdf can be represented by a Hilbert transform with parameter zero: F (x) =

1
2
− i

2
H(e−iξxφ(ξ)(0). And it can approximated similarly by truncating and discretizing

the integral in the transform:

Fh,M(x) =
1

2
+
i

2

M∑
m=−M

e−ix(m− 1
2

)hφ((m− 1
2
)h)

(m− 1
2
)π

, h > 0,M ≥ 1. (2.4)

The total approximation errors of the pdf and cdf are bounded by:

|f(x)− fh,M,a(x)| ≤ κeax

πνc(ν+1)/ν
Γ(

1

ν
, c(Mh)ν)

+
e2πd−/h‖φ‖−

2π(1− e2πd−/h)
+

e−2πd+/h‖φ‖+

2π(1− e−2πd+/h)
, (2.5)

and

|F (x)− Fh,M(x)| ≤ 4κ

πν
Γ(0, c(Mh)ν)

+
e2πd−/h+xd−‖φ‖−

2π|d−|(1− e2πd−/h)
+

e−2πd+/h+xd+‖φ‖+

2πd+(1− e−2πd+/h)
. (2.6)

The first terms in both 2.4 and 2.4 define the approximation error from truncation,

and the last two terms combined represent the discretization error of the approximation.

With constant ‖φ‖±, the discretization error is decaying exponentially in terms of 1/h

and the truncation error is decaying exponentially in the truncation level, Mh. By

careful selection of M as a function of h, to control the total approximation error, one

only needs to adjust the values of the discretization level h.
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Since the European option price can be represented by certain expectation in terms

of indicator functions, one can price the European option by applying this approxima-

tion representation [26].
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Chapter 3

Bivariate Characteristic Functions and

Their Inversion

In Chapter 2, we discuss the analyticity of univariate characteristic function and how

it is applied in the analysis of the underlying pdf and cdf. Such conclusions can be

partially extended to bivariate models, which is the goal of this section. In this section,

we begin with defining a special class of bivariate complex functions. For such functions,

we approximate their integrals by simple trapezoidal rule. We derive and present the

approximation error bound. These results lay the foundations for approximating cdf

in Section 3.2 and numerical experiments in Section 3.3.

First of all, for −∞ < d−j < 0 < d+
j < +∞ (j = 1, 2), we define a horizontal strip

in the j-th dimension: D(d−j ,d
+
j ) = {zj = xj + iyj| − ∞ < xj < +∞, d−j < yj < d+

j }.

Then we define a special class of bivariate analytic functions:

Definition 3.1. A bivariate function g is in H(D((d−1 ,d
+
1 )×(d−2 ,d

+
2 ))) if it is analytic in

D(d−j ,d
+
j ), j = 1, 2, when we fix the other dimension, and satisfies

∫ d+
1

d−1

|g(u1 + iv1, z2)| dv1 → 0, as u1 → ±∞,∀z2, (3.1)

24



∫ d+
2

d−2

|g(z1, u2 + iv2)| dv2 → 0, as u2 → ±∞,∀z1, (3.2)

||g||+,+ =

∫ +∞+id+
1

−∞+id+
1

∫ +∞+id+
2

−∞+id+
2

|g(z1, z2)| dz2 dz1 < +∞, (3.3)

||g||+,− =

∫ +∞+id+
1

−∞+id+
1

∫ +∞+id−2

−∞+id−2

|g(z1, z2)| dz2 dz1 < +∞, (3.4)

||g||−,+ =

∫ +∞+id−1

−∞+id−1

∫ +∞+id+
2

−∞+id+
2

|g(z1, z2)| dz2 dz1 < +∞, (3.5)

||g||−,− =

∫ +∞+id−1

−∞+id−1

∫ +∞+id−2

−∞+id−2

|g(z1, z2)| dz2 dz1 < +∞. (3.6)

In this chapter, we only discuss g ∈ H(D((d−1 ,d
+
1 )×(d−2 ,d

+
2 ))) satisfying the following

inequality:

|g(u1 + iv1, u2 + iv2)| ≤ κ|u1|n1|u2|n2 exp(−c1|u1|ν1 − c2|u2|ν2), (3.7)

for some κ > 0, c1, c2, ν1, ν2, n1, n2 > 0. In this way, with one dimension fixed, g(u1 +

iv1, u2 + iv2) has exponential tail along the other dimension.

3.1 Trapezoidal Rule for Analytic Bivariate Integrals

For g ∈ H(D((d−1 ,d
+
1 )×(d−2 ,d

+
2 ))), we are often interested in its integration along R2. Ap-

plying the Cauchy integral theorem, for any a1 ∈ (d−1 , d
+
1 ) and a2 ∈ (d−2 , d

+
2 ), the
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integration
∫
R2 g(x1, x2) dx2 dx1 can be approximated by the trapezoidal rule:

Th1,h2,M1,M2(g, a1, a2) =

M1∑
m1=−M1

M2∑
m2=−M2

g(m1h1 + ia1,m2h2 + ia2)h1h2. (3.8)

Denote the total approximation error by

ET
h1,h2,M1,M2

(g, a1, a2) =

∫
R2

g(x1, x2) dx2 dx1 − Th1,h2,M1,M2(g, a1, a2).

We then have the following results for ET
h1,h2,M1,M2

(g, a1, a2):

Theorem 3.2. Suppose g ∈ H(D((d−1 ,d
+
1 )×(d−2 ,d

+
2 ))) and satisfies (3.7). Then for a1 ∈

(d−1 , d
+
1 ) and a2 ∈ (d−2 , d

+
2 ),

|ET
h1,h2,M1,M2

(g, a1, a2)|

≤ e−πd
1
a/h1−πd2

a/h2

(1− e−πd1
a/h1)(1− e−πd2

a/h2)

(
||g||−,− + ||g||−,+ + ||g||+,− + ||g||+,+

)
+

e−πd
1
a/h1

(1− e−πd1
a/h1)

(
||g||−,+ + ||g||+,+

)
+

e−πd
2
a/h2

(1− e−πd2
a/h2)

(
||g||+,− + ||g||+,+

)
+ 4(M1 + 1)h1

( n1

c1ν1

)n1
ν1 exp(−n1

ν1

)
1

ν2c
(n2+1)/ν2

2

Γ
(n2 + 1

ν2

, c2(M2h2)ν2
)

+ 4(M2 + 1)h2

( n2

c2ν2

)n2
ν2 exp(−n2

ν2

)
1

ν1c
(n1+1)/ν1

1

Γ
(n1 + 1

ν1

, c1(M1h1)ν1
)

+
4

ν1ν2c
(n1+1)/ν1

1 c
(n2+1)/ν2

2

Γ
(n1 + 1

ν1

, c1(M1h1)ν1
)
Γ
(n2 + 1

ν2

, c2(M2h2)ν2
)
, (3.9)

where d1
a = 2 min(d+

1 − a1, a1 − d−1 ) and d2
a = 2 min(d+

2 − a2, a2 − d−2 ).

Choose M1,M2 > 0, and let hj = hj(Mj) = (πdja/cj)
1

1+νjM
−

νj
1+νj

j , j = 1, 2, such

that M1h1(M1) ≥ (n1/(c1ν1))1/ν1, and M2h2(M2) ≥ (n2/(c2ν2))1/ν2, then there exist

constant C1, C2, C3 > 0 independent of M1 and M2, such that the total error is bounded
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by:

|ET
h1(M1),h2(M2),M1,M2

(g, a1, a2)|

≤ C1M2M
n1+1−ν1

1+ν1
1 exp(−c

− 1
1+ν1

1

(
πd1

aM1

) ν1
1+ν1 ) + C2M1M

n2+1−ν2
1+ν2

2 exp(−c
− 1

1+ν2
2

(
πd2

aM2

) ν2
1+ν2 )

+ C3M
n1+1−ν1

1+ν1
1 M

n2+1−ν2
1+ν2

2 exp(−c
− 1

1+ν1
1

(
πd1

aM1

) ν1
1+ν1 − c

− 1
1+ν2

2

(
πd2

aM2

) ν2
1+ν2 ). (3.10)

Proof. First of all, we investigate the discretization error ET
h1,h2,∞,∞(g, a1, a2). Let

N1, N2 > 0 be integers. Construct the following contour:

γ1
1 = {u1 + id−1 , u1 goes from − (N1 +

1

2
)h1 to (N1 +

1

2
)h1},

γ1
2 = {(N1 +

1

2
)h1 + iv1, v1 goes from d−1 to d+

1 },

γ1
3 = {u1 + id+

1 , u1 goes from (N1 +
1

2
)h1 to − (N1 +

1

2
)h1},

γ1
4 = {−(N1 +

1

2
)h1 + iv1, v1 goes from d+

1 to d−1 },

γ2
1 = {u2 + id−2 , u2 goes from − (N2 +

1

2
)h2 to (N2 +

1

2
)h2},

γ2
2 = {(N2 +

1

2
)h2 + iv2, v2 goes from d−2 to d+

2 },

γ2
3 = {u2 + id+

2 , u2 goes from (N2 +
1

2
)h2 to − (N2 +

1

2
)h2},

γ2
4 = {−(N2 +

1

2
)h2 + iv2, v2 goes from d+

2 to d−2 },

γ1 = γ1
1 ∪ γ1

2 ∪ γ1
3 ∪ γ1

4 ,

γ2 = γ2
1 ∪ γ2

2 ∪ γ2
3 ∪ γ2

4 .
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And consider the following contour integral:

∫
γ1×γ2

g(z1, z2)

(e2πi(z1−ia1)/h1 − 1)(e2πi(z2−ia2)/h2 − 1)
dz2 dz1

=

∫
γ1

1+γ1
2+γ1

3+γ1
4

∫
γ2

1+γ2
2+γ2

3+γ2
4

g(z1, z2)

(e2πi(z1−ia1)/h1 − 1)(e2πi(z2−ia2)/h2 − 1)
dz2 dz1.

Fix z1 ∈ γ1, the integrand has poles of order 1 at m2h2 + ia2 for m2 ∈ Z. The

residue for each such point is given by

lim
z2→m2h2+ia2

(z2 −m2h2 − ia2)
g(z1, z2)

(e2πi(z1−ia1)/h1 − 1)(e2πi(z2−ia2)/h2 − 1)

=
1

2πi

g(z1,m2h2 + ia2)h2

(e2πi(z1−ia1)/h1 − 1)
.

Extending to the first dimension, we then have the following expression:

∫
γ1×γ2

g(z1, z2)

(e2πi(z1−ia1)/h1 − 1)(e2πi(z2−ia2)/h2 − 1)
dz2 dz1

=

∫
γ1

1

e2πi(z1−ia1)/h1 − 1

( N2∑
m2=−N2

g(z1,m2h2 + ia2)h2

)
dz1

=

N1∑
m1=−N1

N2∑
m2=−N2

g(m1h1 + ia1,m2h2 + ia2)h1h2, (3.11)
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By Assumption (3.1) and (3.2), and taking N1 and N2 to +∞, we have:

(∫ +∞+id−1

−∞+id−1

∫ +∞+id−2

−∞+id−2

−
∫ +∞+id−1

−∞+id−1

∫ +∞+id+
2

−∞+id+
2

−
∫ +∞+id+

1

−∞+id+
1

∫ +∞+id−2

−∞+id−2

+

∫ +∞+id+
1

−∞+id+
1

∫ +∞+id+
2

−∞+id+
2

)
g(z1, z2)

(e2πi(z1−ia1)/h1 − 1)(e2πi(z2−ia2)/h2 − 1)
dz2 dz1

=
+∞∑

m1=−∞

+∞∑
m2=−∞

g(m1h1 + ia1,m2h2 + ia2)h1h2. (3.12)

Due to the fact that

−
∫ +∞+id+

2

−∞+id+
2

g(z1,z2)

e2πi(z2−ia2)/h2−1
dz2

=
∫ +∞+id+

2

−∞+id+
2

g(z1, z2) dz2 +
∫ +∞+id+

2

−∞+id+
2

g(z1,z2)

e−2πi(z2−ia2)/h2−1
dz2,

29



and by applying the results similarly to the first dimension, we thus obtain the

discretization error:

ET
h1,h2,∞,∞(g, a1, a2)(x1, x2)

=−
(∫ +∞+id−1

−∞+id−1

∫ +∞+id−2

−∞+id−2

g(z1, z2)

(e2πi(z1−ia1)/h1 − 1)(e2πi(z2−ia2)/h2 − 1)
dz2 dz1

+

∫ +∞+id−1

−∞+id−1

∫ +∞+id+
2

−∞+id+
2

g(z1, z2)

(e2πi(z1−ia1)/h1 − 1)
dz2 dz1

+

∫ +∞+id−1

−∞+id−1

∫ +∞+id+
2

−∞+id+
2

g(z1, z2)

(e2πi(z1−ia1)/h1 − 1)(e−2πi(z2−ia2)/h2 − 1)
dz2 dz1

+

∫ +∞+id+
1

−∞+id+
1

∫ +∞+id−2

−∞+id−2

g(z1, z2)

(e2πi(z2−ia2)/h2 − 1)
dz2 dz1

+

∫ +∞+id+
1

−∞+id+
1

∫ +∞+id−2

−∞+id−2

g(z1, z2)

(e−2πi(z1−ia1)/h1 − 1)(e2πi(z2−ia2)/h2 − 1)
dz2 dz1

+

∫ +∞+id+
1

−∞+id+
1

∫ +∞+id+
2

−∞+id+
2

g(z1, z2)

(e−2πi(z1−ia1)/h1 − 1)
dz2 dz1

+

∫ +∞+id+
1

−∞+id+
1

∫ +∞+id+
2

−∞+id+
2

g(z1, z2)

(e−2πi(z2−ia2)/h2 − 1)
dz2 dz1

+

∫ +∞+id+
1

−∞+id+
1

∫ +∞+id+
2

−∞+id+
2

g(z1, z2)

(e−2πi(z1−ia1)/h1 − 1)(e−2πi(z2−ia2)/h2 − 1)
dz2 dz1

)
.

(3.13)

It follows that

|ET
h1,h2,∞,∞(g, a1, a2)(x1, x2)|

≤ e−πd
1
a/h1−πd2

a/h2

(1− e−πd1
a/h1)(1− e−πd2

a/h2)

(
||g||−,− + ||g||−,+ + ||g||+,− + ||g||+,+

)
+

e−πd
1
a/h1

(1− e−πd1
a/h1)

(
||g||−,+ + ||g||+,+

)
+

e−πd
2
a/h2

(1− e−πd2
a/h2)

(
||g||+,− + ||g||+,+

)
. (3.14)

Now we move on to the truncation error part. The truncation error is then bounded
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as:

|Th1,h2,∞,∞(g, a1, a2)− Th1,h2,M1,M2(g, a1, a2)|

≤4
( ∞∑
m1=M1

M2∑
m2=0

|g(m1h1 + ia1,m2h2 + ia2)|h1h2

+

M1∑
m1=0

∞∑
m2=M2

|g(m1h1 + ia1,m2h2 + ia2)|h1h2

+
∞∑

m1=M1

∞∑
m2=M2

|g(m1h1 + ia1,m2h2 + ia2)|h1h2

)
≤4κ

( ∞∑
m1=M1

M2∑
m2=0

+

M1∑
m1=0

∞∑
m2=M2

+
∞∑

m1=M1

∞∑
m2=M2

)
(m1h1)n1(m2h2)n2 exp−c1(m1h1)ν1−c2(m2h2)ν2 h1h2, (3.15)

if g satisfies (3.7). yn exp(−cyν) reaches its maximum, (n/(cν))n/ν exp(−n/ν), when

y = (n/(cν))1/ν .

When M1h1 ≥ (n1/(c1ν1))1/ν1 , and M2h2 ≥ (n2/(c2ν2))1/ν2 ,

Mj∑
mj=0

(mjhj)
nj exp(−cj(mjhj)

νj)hj ≤ (Mj + 1)hj
( nj
cjνj

)nj
νj exp(−nj

νj
),

and

∑∞
mj=Mj

(mjhj)
nj exp(−cj(mjhj)

νj)hj ≤ τMjhj

= 1

νjc
(nj+1)/νj
j

Γ
(nj+1

νj
, cj(Mjhj)

νj
)
, j = 1, 2.

The incomplete Gamma function Γ(s, b) is bounded by a multiple of bs−1e−b.

Combining the discretization error and the truncation error, the total error bound

will be found as (3.9). (3.10) can be obtained consequently by adding selection rules
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of h1 = h1(M1) and h2 = h2(M2).

By selecting h1 and h2 byM1 andM2, the total approximation error is then bounded

by a function of M1 and M2. The first term of (3.10) decays exponentially in terms of

M
ν1

1+ν1
1 , while the second decays exponentially in terms of M

ν2
1+ν2

2 . The last term decays

in the fastest way, thus, is dominated by the first two terms. To control the decaying

rate of the total error bound, one just needs to adjust values of M1 and M2.

3.2 Analytic Bivariate Characteristic Function Inver-

sion

In this section, we present approximation representations for bivariate cdf with charac-

teristic functions in the analytic function class defined in Section 3.1. We then extend

our results to expectations associated with indicator functions, which can be applied

in option pricing.

3.2.1 Bivariate cdf approximation

Consider a continuous bivariate random variable (X1, X2). Denote its cdf by F (x1, x2).

[26] has proved that for univariate cases with φ ∈ L1(R), cdf can be represented in

terms of Hilbert Transform. On the basis of this result, the following theorem shows

an alternative representation for F (x1, x2):

Theorem 3.3. Let F (x1, x2) and φ(ξ1, ξ2) be the cdf and the characteristic function of a

bivariate continuous distribution. Suppose that φ ∈ L2(R2) and φ ∈ H(D((d−1 ,d
+
1 )×(d−2 ,d

+
2 ))).

Then for any a1 ∈ (0, d+
1 ) and a2 ∈ (0, d+

2 ),

F (x1, x2) = − 1

4π2

∫ +∞+ia1

−∞+ia1

∫ +∞+ia2

−∞+ia2

e−ix1ξ1−ix2ξ2φ(ξ1, ξ2)

ξ1ξ2

dξ2 dξ1 (3.16)
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Proof. Denote the underlying bivariate pdf as f(x1, x2).

F (x1, x2) =

∫
R

∫
R

1(−∞,x1](y1)1(−∞,x2](y2)f(y1, y2) dy2 dy1

=

∫
R

1(−∞,x1](y1)F(1(−∞,x2](·)f(y1, ·))(0) dy1

=

∫
R

1(−∞,x1](y1)
(1

2
f(y1)− i

2
H(e−iξ2x2φ2(y1, ξ2))(0)

)
dy1

=
i

2π

∫
R

1(−∞,x1](y1)

∫ +∞+ia2

−∞+ia2

e−ix2ξ2φ2(y1, ξ2)

ξ2

dξ2 dy1

= − 1

4π2

∫ +∞+ia1

−∞+ia1

∫ +∞+ia2

−∞+ia2

e−ix1ξ1−ix2ξ2φ(ξ1, ξ2)

ξ1ξ2

dξ2 dξ1, (3.17)

where φ2(y1, ξ2) =
∫
R e

iξ2y2f(y1, y2) dy2. The third and the fourth equality follows di-

rectly from the following relationship between Fourier transform and Hilbert transform:

F(1(−∞,b) · f)(ξ) =
1

2
f̂(ξ)− i

2
eibξH(e−ib·f̂(·))(ξ).

The bivariate cdf F (x1, x2) can then be approximated by:

Fh1,h2,M1,M2(x1, x2)

= − 1

4π2

M1∑
m1=−M1

M2∑
m2=−M2

h1h2e
−is1x1−is2x2φ(s1, s2)

s1s2

, (3.18)

where s1 = m1h1 + ia1, and s2 = m2h2 + ia2.

By applying the results of Theorem 3.2, the bound for the cdf approximation error

can be obtained by the following corollary:

Corollary 3.4. Suppose φ ∈ H(D((d−1 ,d
+
1 )×(d−2 ,d

+
2 ))) and satisfies (3.7). Then for a1 ∈

(d−1 , d
+
1 ) and a2 ∈ (d−2 , d

+
2 ),

denote h(ξ1, ξ2) = φ(ξ1+ia1,ξ2+ia2)
(ξ1+ia1)(ξ2+ia2)

∈ H(D((−a1,d
+
1 −a1)×(−a2,d

+
2 −a2))),
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|EF
h1,h2,M1,M2

(φ, a1, a2)|

≤ e−πd
1
a/h1−πd2

a/h2

4π2(1− e−πd1
a/h1)(1− e−πd2

a/h2)(
||h||−,− + ed

+
2 x2||h||−,+ + ed

+
1 x1 ||h||+,− + ed

+
1 x1+d+

2 x2||h||+,+
)

+
e−πd

1
a/h1

4π2(1− e−πd1
a/h1)

(
ed

+
2 x2||h||−,+ + ed

+
1 x1+d+

2 x2 ||h||+,+
)

+
e−πd

2
a/h2

4π2(1− e−πd2
a/h2)

(
ed

+
1 x1||h||+,− + ed

+
1 x1+d+

2 x2 ||h||+,+
)

+
1

π2
(M1 + 1)h1

(n1 − 1

c1ν1

)n1−1
ν1 exp(−n1 − 1

ν1

)
ea1x1+a2x2

ν2c
n2/ν2

2

Γ
(n2

ν2

, c2(M2h2)ν2
)

+
1

π2
(M2 + 1)h2

(n2 − 1

c2ν2

)n2−1
ν2 exp(−n2 − 1

ν2

)
ea1x1+a2x2

ν1c
n1/ν1

1

Γ
(n1

ν1

, c1(M1h1)ν1
)

+
ea1x1+a2x2

π2ν1ν2c
(n1+1)/ν1

1 c
(n2+1)/ν2

2

Γ
(n1 + 1

ν1

, c1(M1h1)ν1
)
Γ
(n2 + 1

ν2

, c2(M2h2)ν2
)
, (3.19)

where d1
a = 2 min(d+

1 − a1, a1) and d2
a = 2 min(d+

2 − a2, a2).

Choose M1,M2 > 0, let h1 = h1(M1) = (πd1
a/c1)

1
1+ν1M

− ν1
1+ν1

1 ,

h2 = h2(M2) = (πd2
a/c2)

1
1+ν2M

− ν2
1+ν2

2 , such that M1h1(M1) ≥ (n1/(c1ν1))1/ν1, and

M2h2(M2) ≥ (n2/(c2ν2))1/ν2, then there exist constant C1, C2, C3 > 0 independent of

M1 and M2, such that the total error is bounded by:

|EF
h1(M1),h2(M2),M1,M2

(φ, a1, a2)|

≤ C1(ed
+
2 x2 + ed

+
1 x1+d+

2 x2 + ea1x1+a2x2M2M
n1+1−ν1

1+ν1
1 ) exp(−c

− 1
1+ν1

1

(
πd1

aM1

) ν1
1+ν1 )

+ C2(ed
+
1 x1 + ed

+
1 x1+d+

2 x2 + ea1x1+a2x2M1M
n2+1−ν2

1+ν2
2 ) exp(−c

− 1
1+ν2

2

(
πd2

aM2

) ν2
1+ν2 )

+ C3

(
ea1x1+a2x2M

n1+1−ν1
1+ν1

1 M
n2+1−ν2

1+ν2
2 + ed

+
2 x2

+ ed
+
1 x1 + ed

+
1 x1+d+

2 x2) exp(−c
− 1

1+ν1
1

(
πd1

aM1

) ν1
1+ν1 − c

− 1
1+ν2

2

(
πd2

aM2

) ν2
1+ν2 )

)
. (3.20)
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One can also select M2 by a function of M1: M
ν1/(1+ν1)
1 = M

ν2/(1+ν2)
2 , M2(M1) =

M
ν1(1+ν2)
ν2(1+ν1)

1 such that the first two terms in the error bound decay at the same rate. In

stead of selecting h1, h2,M1, andM2 separately, one just needs to chooseM1 to control

the total error decaying rate. The total computational cost is then O(M
1+

ν1(1+ν2)
ν2(1+ν1)

1 ).

3.2.2 Expectations involving indicator functions

In the previous section, we present how to approximate F (x1, x2), which is basically

the expectation of I(X1 <= x1, X2 <= x2). In this section, we present how to derive

representations for some expectations involving indicator functions. The representa-

tions lead to the expressions of 2d European option prices, which will be demonstrated

in Section 3.3.3.

Theorem 3.5. Let φ(ξ1, ξ2) be the characteristic function of a bivariate random vari-

able X = (X1, X2). Suppose that φ ∈ H(D((d−1 ,d
+
1 )×(d−2 ,d

+
2 ))). Then for any b1 ∈ (d−1 , d

+
1 ),

b2 ∈ (d−2 , d
+
2 ), c1, c2 ∈ R,

E
[
e−b1X1−b2X21{X1≤c1,X2≤c2}

]
=− φ(ib1, ib2)

4π2

∫ +∞+ia1

−∞+ia1

∫ +∞+ia2

−∞+ia2

e−ic1ξ1−ic2ξ2φ∗b1,b2(ξ1, ξ2)

ξ1ξ2

dξ2 dξ1, (3.21)

where

φ∗b1,b2(ξ1, ξ2) =
φ(ξ1 + ib1, ξ2 + ib2)

φ(ib1, ib2)
,

for −b1 < a1 < d+
1 − b1,−b2 < a2 < d+

2 − b2.

Proof. Define a new probability measure P∗b1,b2 by:

Z =
e−b1X1−b2X2

φ(ib1, ib2)
=

dP∗b1,b2
dP

.
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The characteristic function associated with measure P∗b1,b2 is then φ∗b1,b2 .

By change of measure, this expectation is converted to a cdf under P∗b1,b2 .

E
[
e−b1X1−b2X21{X1≤c1,X2≤c2}

]
= φ(ib1, ib2)E

[
Z1{X1≤c1,X2≤c2}

]
= φ(ib1, ib2)E∗

[
1{X1≤c1,X2≤c2}

]
= φ(ib1, ib2)P∗b1,b2(X1 ≤ c1, X2 ≤ c2)

= −φ(ib1, ib2)

4π2

∫ +∞+ia1

−∞+ia1

∫ +∞+ia2

−∞+ia2

e−ic1ξ1−ic2ξ2φ∗b1,b2(ξ1, ξ2)

ξ1ξ2

dξ2 dξ1.

The last equality comes from Theorem 3.3.

The conclusion can be extended to similar expectations involving indicator func-

tions:

E
[
e−b1X1−b2X21{X1>c1}

]
=φ(ib1, ib2)P∗b1,b2(X1 > c1) = φ(ib1, ib2)

(
1− P∗b1,b2(X1 ≤ c1)

)
=φ(ib1, ib2)

(
1− i

2π

∫ +∞+ia1

−∞+ia1

e−ic1ξ1φ∗b1,b2(ξ1, 0)

ξ1

dξ1

)
,

and

E
[
e−b1X1−b2X21{X1>c1,X2>c2}

]
=φ(ib1, ib2)P∗b1,b2(X1 > c1, X2 > c2)

=φ(ib1, ib2)
(
1− P∗b1,b2(X1 ≤ c1)− P∗b1,b2(X2 ≤ c2) + P∗b1,b2(X1 ≤ c1, X2 ≤ c2)

)
=φ(ib1, ib2)

(
1− i

2π

∫ +∞+ia1

−∞+ia1

e−ic1ξ1φ∗b1,b2(ξ1, 0)

ξ1

dξ1 −
i

2π

∫ +∞+ia2

−∞+ia2

e−ic2ξ2φ∗b1,b2(0, ξ2)

ξ2

dξ2

− 1

4π2

∫ +∞+ia1

−∞+ia1

∫ +∞+ia2

−∞+ia2

e−ic1ξ1−ic2ξ2φ∗b1,b2(ξ1, ξ2)

ξ1ξ2

dξ2 dξ1

)
. (3.22)
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Next we derive expressions for some other useful indicator functions related expec-

tations.

Theorem 3.6. Let φ(ξ1, ξ2) be the characteristic function of a bivariate random vari-

able X = (X1, X2). Suppose that φ ∈ H(D((d−1 ,d
+
1 )×(d−2 ,d

+
2 ))). Then for any b1 ∈ (d−1 , d

+
1 ),

b2 ∈ (d−2 , d
+
2 ), c1, c2 ∈ R,

E
[
e−b1X1−b2X21{X1≤c1,X2−X1≤c2}

]
=− φ(ib1, ib2)

4π2

∫ +∞+ia1

−∞+ia1

∫ +∞+ia2

−∞+ia2

e−ic1ξ1−ic2ξ2φ̃∗b1,b2(ξ1, ξ2)

ξ1ξ2

dξ2 dξ1, (3.23)

where

φ̃∗b1,b2(ξ1, ξ2) =
φ(ξ1 − ξ2 + ib1, ξ2 + ib2)

φ(ib1, ib2)
,

for −b1 < a1 < d+
1 − b1,−b2 < a2 < d+

2 − b2.

This theorem can be proved by defining:

(X̃1, X̃2) = (X1, X2 −X1).

Hence,

φ̃(ξ1, ξ2) = E[eiξ1X1+iξ2(X2−X1)] = φ(ξ1 − ξ2, ξ2).

Corollary 3.7. Let φ(ξ1, ξ2) be the characteristic function of a bivariate random vari-

able X = (X1, X2). Suppose that φ ∈ H(D((d−1 ,d
+
1 )×(d−2 ,d

+
2 ))). Then for any b1 ∈ (d−1 , d

+
1 ),

b2 ∈ (d−2 , d
+
2 ), c1, c2 ∈ R,

E
[
e−b1X1−b2X21{X1−X2≤c1,X2≤c2}

]
=− φ(ib1, ib2)

4π2

∫ +∞+ia1

−∞+ia1

∫ +∞+ia2

−∞+ia2

e−ic1ξ1−ic2ξ2φ̄∗b1,b2(ξ1, ξ2)

ξ1ξ2

dξ2 dξ1, (3.24)
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where

φ̄∗b1,b2(ξ1, ξ2) =
φ(ξ1 + ib1, ξ2 − ξ1 + ib2)

φ(ib1, ib2)
,

for −b1 < a1 < d+
1 − b1,−b2 < a2 < d+

2 − b2.

Expectations above can all be inverted conveniently and efficiently by the trape-

zoidal rule when the characteristic function lies in our analytic class.

3.3 Numerical Experiments

In this section, we exhibit cdf approximation and 2d European option pricing under a

bivariate NIG model through some numerical experiments. The numerical experiments

are performed in C++ on a MacBook Pro with 16GB Memory and 2.5GHz CPU.

A bivariate NIG (Normal Inverse Gaussian) process is a Lévy process with charac-

teristic function:

φX(ξ) = exp
(
iTµT ξ + δT

√
α2 − βTΓβ − δT

√
α2 − (β + iξ)TΓ(β + iξ)

)
,

where α > 0, β ∈ R2, δ > 0, T > 0, µ = [µ1 µ2]T ∈ R2, and Γ ∈ R2∗2 is

positive semi-definite with determinant 1.

The analyticity strip for φX(ξ) contains the strip in which the real part of (β +

iξ)TΓ(β + iξ) − α2 is negative. One sufficient condition is {ξ ∈ C2|(β − =(ξ))TΓ(β −

=(ξ)) ≤ 0}.

To find a two-dimensional strip with constant boundaries, one just needs to find a

rectangle contained in the stretched ellipse. Each dimension represents the imaginary

part of the corresponding dimension in ξ. To be accurate and efficient enough, the

rectangle has to be as large as possible.
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A reasonable parameter setting is as follows:

µ = [0.149752 0.227841]T , α = 15.0, δ = 0.5, β = [−4.0 − 6.0]T , T = 1,

Γ =

 0.9888 −0.0025

−0.0025 1.0113

 .
Figure 3.1 shows the rectangle we choose for this parameter setting:

Figure 3.1: Analyticity Strip for the Bivariate NIG Model

3.3.1 Numerical Experiments: Bivariate pdf approximation

By setting small enough discretization parameters, h1 and h2, and large enough trun-

cation parameters, M1 and M2, the benchmark is computed to be:

f0.10,0.10,1000,1000(x1 = 0.2, x2 = 0.3) = 0.9820209383008591.

We start with the analysis of the truncation error from the first dimension and the

discretization error from the first dimension, and then move on to the total approxi-

mation error analysis from both dimensions.

• Truncation error analysis
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We, first of all, fix h1 = h2 = 0.10,M2 = 1, 000 and increase the square root of

M1 from 6 to 30, with step size 4. The following table records the truncation

error from the first dimension:

Bivariate NIG Model pdf Truncation Error
M1 M1h1 Fh1,h2,M1,M2(0.2, 0.3) abs error
36 1.8000 0.3857564792 5.96E-01
100 5.0000 0.8550298611 1.27E-01
196 9.8000 1.0265893600 4.46E-02
324 16.2000 0.9946052323 1.26E-02
484 24.2000 0.9826618948 6.41E-04
676 33.8000 0.9820292937 8.36E-06
900 45.0000 0.9820209610 2.27E-08

Table 3.1: Truncation Error in Estimating Bivariate NIG pdf: Exact Value =
0.98202094

The following figure plots the truncation error in log scale as a function of M1:

Figure 3.2: Truncation Error in Estimating Bivariate NIG cdf: Exact Value =
0.98202094

As the plot shows, the truncation error from the first dimension decays exponen-

tially in terms of M1.
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• Discretization error analysis

By setting h2 = 0.10,M1 = M2 = 1000, and increasing 1/h1, we perform an

analysis on the discretization error from the first dimension. The numerical

experiment results are included in Table 3.2:

Bivariate NIG Model pdf Discretization Error
1/h1 h1 Fh1,h2,M1,M2(0.2, 0.3) abs error
0.05 20.0000 2.1671844470 1.19E+00
0.10 10.0000 1.0812294130 9.92E-02
0.15 6.6670 0.9859055288 3.88E-03
0.20 5.0000 0.9821368740 1.16E-04
0.25 4.0000 0.9820240970 3.16E-06
0.30 3.3330 0.9820210209 8.26E-08

Table 3.2: Discretization Error in Estimating Bivariate NIG pdf: Exact Value =
0.98202094

The following plot shows that the discretization error is decaying exponentially

in 1/h1.

Figure 3.3: Discretization Error in Estimating Bivariate NIG pdf: Exact Value =
0.98202094

• Total error analysis

By choosing M1, and selecting M2, h1 and h2 by M1, the total approximation

error is included in the following table:
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Bivariate NIG Model pdf Total Approximation Error
M1 M2 h1 h2 M1h1 M2h2 F (0.2, 0.3) abs error
9 10 1.2160 1.1300 10.9457 11.2975 1.13580040 1.54E-01
25 27 0.7297 0.6875 18.2428 18.5637 0.99305863 1.10E-02
49 52 0.5212 0.4954 25.5399 25.7623 0.98237331 3.52E-04
81 85 0.4054 0.3875 32.8370 32.9376 0.98202482 3.88E-06
121 127 0.3317 0.3170 40.1341 40.2610 0.98202077 1.66E-07
169 177 0.2807 0.2685 47.4312 47.5302 0.98202093 7.75E-09

Table 3.3: Total Approximation Error in Estimating Bivariate NIG pdf: Exact Value
= 0.98202094

The plot 3.4 shows that the total approximation error is decaying exponentially

in M1/2
1 , as suggested by our theoretical convergence rate: O(e−

√
M1).

Figure 3.4: Total Approximation Error in Estimating Bivariate NIG pdf: Exact Value
= 0.98202094

3.3.2 Numerical Experiments: Bivariate cdf approximation

To investigate accuracy of our approximation, since there is no close-form solution to

the cdf, we choose small enough discretization parameters and large enough truncation

parameters: h1 = h2 = 0.1,M1 = M2 = 1000. The cdf benchmark is then computed to

be:

F0.1,0.1,1000,1000(x1 = 0.2, x2 = 0.3) = 0.7943850860032705.
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To have a detailed evaluation of the approximation performance, we analyze trun-

cation error and discretization error separately.

• Truncation error analysis

We first discuss the truncation error from the first dimension by setting a large

enough truncation level for the second dimension, and small enough discretization

levels for both dimensions: h1 = h2 = 0.1,M2 = 1000. Each time we increase

square root of M1 by 5 from 5 to 30. Then the total absolute error is decreasing

exponentially, as shown in Table 3.4. Equivalently, the log error is decreasing

linearly in terms of M1 (Figure 3.5).

Bivariate NIG Model cdf Truncation Error
M1 M1h1 Fh1,h2,M1,M2(0.2, 0.3) abs error
25 1.2500 0.4401345126 3.54E-01
100 5.0000 0.7006439336 9.37E-02
225 11.2500 0.7889790130 5.41E-03
400 20.0000 0.7943703611 1.47E-05
625 31.2500 0.7943854184 3.32E-07
900 45.0000 0.7943850866 5.77E-10

Table 3.4: Truncation Error in Estimating Bivariate NIG cdf: Exact Value =
0.7943850860

• Discretization error analysis

We then investigate the discretization error from the first dimension by setting

large M1 and M2 and small enough h2. In increasing 1/h1 linearly, we have

linearly decreasing log error, as shown in Table 3.5 and Figure 3.6.
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Figure 3.5: Truncation Error in Estimating Bivariate NIG cdf: Exact Value =
0.7943850860

Bivariate NIG Model cdf Discretization Error
1/h1 h1 Fh1,h2,M1,M2(0.2, 0.3) abs error
1 1.0000 0.8366819972 4.23E-02
2 0.5000 0.7961371861 1.75E-03
3 0.3333 0.7944606658 7.56E-05
4 0.2500 0.7943883518 3.27E-06
5 0.2000 0.7943852271 1.41E-07
6 0.1667 0.7943850921 6.05E-09

Table 3.5: Discretization Error in Estimating Bivariate NIG cdf: Exact Value =
0.7943850860

Figure 3.6: Discretization Error in Estimating Bivariate NIG cdf: Exact Value =
0.7943850860
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• Total error analysis

Previous sections investigate truncation and discretization error when the second

dimension is fixed. In this section, we evaluate the total approximation error by

choosing M2 based on M1, and selecting h1, h2 as functions of M1 and M2. The

associated total approximation error is :

Bivariate NIG Model cdf Total Approximation Error
M1 M2 h1 h2 M1h1 M2h2 F (0.2, 0.3) abs error
25 27 0.7297 0.6875 18.2428 18.5637 0.81631346 2.19E-02
64 67 0.4561 0.4365 29.1885 29.2429 0.79597802 1.59E-03
121 127 0.3317 0.3170 40.1341 40.2610 0.79449935 1.14E-04
196 205 0.2606 0.2495 51.0798 51.1517 0.79439342 8.33E-06
289 302 0.2146 0.2056 62.0255 62.0850 0.79438569 6.07E-07
400 418 0.1824 0.1747 72.9711 73.0418 0.79438513 4.42E-08

Table 3.6: Total Approximation Error in Estimating Bivariate NIG cdf: Exact Value
= 0.79438509

Figure 3.7: Total Approximation Error in Estimating Bivariate NIG cdf: Exact Value
= 0.79438509

3.3.3 Numerical Experiments: 2d European option pricing

Another application lies in pricing 2d European options. In this section, we price a 2d

European call option with final payoff:
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(max(S1
T , S

2
T )−K)+,

where S1
T = S1

0e
X1
T , S2

T = S2
0e
X2
T are the final prices of Stock 1 and Stock 2 at maturity

T, S1
0 , S

2
0 are the initial stock prices, and K is the strike price.

Denote the risk-free interest rate by r and the dividend yields that the underlying

assets are paying for by q1 and q2. For the discounted gains to be martingales, we need

E[S1
T ] = S1

0e
(r−q1)T and E[S2

T ] = S2
0e

(r−q2)T , which requires that

µ1 = r − q1 − δ
√
α2 − βTΓβ + δ

√
α2 − (βT + [1 0])Γ(β + [1 0]T ), (3.25)

µ2 = r − q2 − δ
√
α2 − βTΓβ + δ

√
α2 − (βT + [0 1])Γ(β + [0 1]T ). (3.26)

The price of a 2d European call option with maturity T > 0 and strike price K > 0

is computed to be:

C(S1
0 ,S

2
0 , X1, X2,K)

= e−rTE
[
(max(S1

0e
X1 , S2

0e
X2)−K)+

]
= e−rT

(
E[(S2

0e
X2 −K)1{X1≤x1

0}1{X2>x2
0}] + E[(S2

0e
X2 −K)1{X1>x1

0}1{X2−X1>x2
0−x1

0}]

+E[(S1
0e
X1 −K)1{X2>x2

0}1{X1−X2>x1
0−x2

0}] + E[(S1
0e
X1 −K)1{X1>x1

0}1{X2≤x2
0}]
)
,

where x1
0 = ln(K/S1

0), x2
0 = ln(K/S2

0). This can be approximated by expanding it and

applying Theorem 3.5, Theorem 3.6 and Corollary 3.7.

We then perform numerical experiments by borrowing previous parameter setting.

And r = 0.02, q1 = q2 = 0.02. µ1 and µ2 are computed to be 0.149752 and 0.227841,

by (3.25) and (3.26).
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The following table and plot include the numerical results in estimating the 2d

European call option price under Bivariate NIG model (Table 3.7 and Figure 3.8):

2d European Option Pricing Error
M1 M2 h1 h2 M1h1 M2h2 Call Price abs error
25 27 0.7297 0.6875 18.2428 18.5637 0.15149415 3.81E-05
64 67 0.4561 0.4365 29.1885 29.2429 0.15154069 8.46E-06
121 127 0.3317 0.3170 40.1341 40.2610 0.15153318 9.40E-07
196 205 0.2606 0.2495 51.0798 51.1517 0.15153229 5.86E-08
289 302 0.2146 0.2056 62.0255 62.0850 0.15153224 3.63E-09

Table 3.7: Total Approximation Error in Pricing 2d European Call Options Under
Bivariate NIG model: Exact Value = 0.151532236

The benchmark is selected by setting h1 = h2 = 0.1,M1 = M2 = 1000.

Figure 3.8: 2d European Call Option Pricing Error Analysis

The total approximation error soon converges to 1.0E − 07 level. The plot 3.8

demonstrates that the log error is decreasing linearly in terms of M1/2
1 .
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Chapter 4

Monte Carlo Estimation of

Sensitivities from Analytic

Characteristic Functions

In financial derivatives trading, sensitivity analysis plays a significant role in risk man-

agement. The hedging strategy for a typical financial derivative product relies on the

sensitivities of its price with respect to changes in different variables. For some financial

models, such as Black-Scholes-Merton (BSM) model, we have closed-form expressions

for option sensitivities. When such analytic solutions are not known to us, Monte Carlo

simulation is widely used then.

The price of a financial derivative is defined by integrating the product of the dis-

counted payoff function and the corresponding density function. Pathwise derivative

method (PDM) and likelihood ratio method (LRM) can be applied in sensitivity esti-

mation by differentiating the integral with respect to a certain parameter of interest.

However, pathwise derivative method requires the smoothness of the payoff function,

which is often not satisfied. The likelihood ratio method is particularly attractive as
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long as the probability density function is differentiable with respect to the parameter.

It has no restrictions on the discounted pay-off function.

4.1 The likelihood ratio method

To illustrate the likelihood ratio method, we, first of all, define the likelihood ratio

estimator.

4.1.1 The likelihood ratio estimator

Let X be a continuous random variable with probability density function, fθ(x), de-

pending on a parameter θ ∈ R, which is a parameter of interest. The expectation of a

given real-valued function h(X) is:

Eθ[h(X)] =

∫
R
h(x)fθ(x) dx.

The sensitivity of the expectation with respect to θ is measured by the derivative

of the above expectation with respect to θ. Denote gθ(x) = dfθ(x)/ dθ. Assuming

validity of the interchange of the order of integration and differentiation, the sensitivity

is equivalent to the following expectation:

d

dθ
Eθ[h(X)] =

d

dθ

∫
R
h(x)fθ(x) dx =

∫
R
h(x)gθ(x) dx

=

∫
R
h(x)

gθ(x)

fθ(x)
fθ(x) dx = Eθ[h(x)Sθ(X)], (4.1)

where Sθ(X) = gθ(x)/fθ(x) is known as a score function. We call h(X)Sθ(X) a likeli-

hood ratio estimator of the sensitivity.

To be more general, let X1, · · · , Xd be d independent continuous random variables,
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with probability density functions, f 1
θ (x1), · · · , fdθ (xd), depending on a common pa-

rameter θ ∈ R. The expectation of a real-value function h(X1, · · · , Xd) is denoted

by:

Eθ[h(X1, · · · , Xd)] =

∫
Rd
h(x1, · · · , xd)

d∏
i=1

f iθ(xi) dxd · · · dx1.

Its sensitivity with respect to parameter θ is:

d

dθ
Eθ[h(X1, · · · , Xd)] =

d

dθ

∫
Rd
h(x1, · · · , xd)

d∏
i=1

f iθ(xi) dxd · · · dx1

=

∫
Rd
h(x1, · · · , xd)

d∑
j=1

(
gjθ(xj)

d∏
i=1,i 6=j

f iθ(xi)
)
dxd · · · dx1

=

∫
Rd
h(x1, · · · , xd)

( d∑
j=1

gjθ(xj)

f jθ (xj)

) d∏
i=1

f iθ(xi) dxd · · · dx1 (4.2)

= Eθ[h(X1, · · · , Xd)Sθ(X1, · · · , Xd)],

assuming that the interchange of the orders of integration and differentiation is valid.

Here the score function is Sθ(X1, · · · , Xd) =
∑d

j=1

gjθ(xj)

fjθ (xj)
, where gjθ(xj) = df jθ (xj)/ dθ.

And the likelihood ratio estimator h(X1, · · · , Xd)Sθ(X1, · · · , Xd) can be proved to be

an unbiased estimator of the sensitivity.

In many financial applications, we do not have access to the closed-form expressions

of the probability density functions or the cumulative distribution functions. However,

if the characteristic functions of the distributions are available to us, both the density

functions and the score functions can be approximated, and hence, the likelihood ratio

method can be implemented in estimating the sensitivities. In this thesis, we will be

addressing how to evaluate (4.1) and (4.2) through Monte Carlo simulation, and more

specifically, likelihood ratio method.
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4.1.2 Monte Carlo estimation from tabulated data

Evaluating the sensitivity through Monte Carlo simulation needs approximation and

tabulation of the cumulative distribution function. The score function Sθ can also be

approximated from tabulated data. Before that, let’s review the inverse transform

method for simulating X from the tabulated cdf values.

• The one-dimensional case

Let’s first discuss the one-dimensional case. Denote the cdf of X by Fθ(x).

Consider an interval χ = [x0, xK ], equally divided into K sub-intervals, each

of length η = (xK − x0)/K. Denote the k-th nodes of the sub-intervals by

xk = x0 + kη, 0 ≤ k ≤ K. Cumulative distribution functions on these discrete

nodes, Fθ(xk), can be approximated by F̃k by inverting the characteristic function.

More details and numerical examples can be found in [26]. Then the cumulative

distribution function of X can be approximated by linear interpolation:

F̃θ(x) =
1

η

K∑
k=1

(
(xk − x)F̃k−1 + (x− xk−1)F̃k

)
1[xk−1,xk)(x) + 1[xK ,∞)(x). (4.3)

F̃θ(x) is a piecewise linear function with a mixed type, continuous on (x0, xK) and

with probability masses at x0 and xK . X can be simulated from it through the

inverse transform method. [26] presents explicit and computable upper bounds

for the bias introduced by truncating the support of the distribution, linear in-

terpolation, and the errors in approximating the cdf, in particular, when the cdf

is approximated from an analytic characteristic function.

Taking the derivative of F̃θ(x) with respect to x gives us a piecewise constant

approximation, f̃θ(x), to fθ(x). It is the summation of a piecewise constant

51



function on (x0, xK) and two Dirac Delta functions representing the probability

masses:

f̃θ(x) = F̃0 · δ(x− x0) + (1− F̃K) · δ(x− xK)

+
1

η

K−1∑
k=1

(F̃k − F̃k−1) · 1(xk−1,xk](x) +
1

η
(F̃K − F̃K−1) · 1(xK−1,xK)(x),(4.4)

where 1A(x) is an indicator function which takes value 1 if x ∈ A and 0 otherwise.

Then it remains to approximate gθ(x). We accomplish that by a piecewise linear

function:

g̃θ(x) =
1

η

K−1∑
k=1

(
(xk − x)g̃k−1 + (x− xk−1)g̃k

)
1[xk−1,xk)(x)

+
1

η

(
(xK − x)g̃K−1 + (x− xK−1)g̃K

)
1[xK−1,xK ](x), (4.5)

where g̃k is an approximation of gθ(xk) through an inverse Fourier transform.

Details of it is included in Section 4.1.3.

To avoid dividing a Dirac Delta function when approximating the score function

Sθ(x) = gθ(x)/fθ(x), we only consider x ∈ (x0, xK):

S̃θ(x) =

 g̃θ(x)/f̃θ(x), x0 < x < xK

0, otherwise
. (4.6)

We are thus estimating the sensitivity Eθ[h(X)Sθ(X)] by the following expecta-

tion effectively:

Eθ[h(X̃)S̃θ(X̃)] =

∫ xK

x0

h(x)g̃θ(x) dx, (4.7)
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where X̃ is generated from F̃θ(x).

In summary, we tabulate the approximated values of Fθ(x) and gθ(x) in the

following way: 
x0 x1 · · · xK

F̃0 F̃1 · · · F̃K

g̃0 g̃1 · · · g̃K

 . (4.8)

We use the second row to construct F̃θ(x) as in (4.3), generate X̃ from it, compute

the corresponding f̃θ(x̃) and g̃θ(x̃) by (4.4) and (4.5), and the score function S̃θ(x̃)

by (4.6).

In the numerical implementation, we repeat this process for N times, generate

X̃n, n = 1, 2, · · · , N , and estimate the sensitivity by

1

N

N∑
n=1

h(X̃n)S̃θ(X̃
n). (4.9)

• The multi-dimensional case

For the multi-dimensional case, since X1, · · · , Xd are independent random vari-

ables, they should be tabulated separately with distinct Ki, x
i
0, x

i
Ki
, ηi, F̃

i
k, g̃

i
k, 0 ≤

k ≤ Ki, 1 ≤ i ≤ d. Similarly, F̃ i
θ(xi), f̃ iθ(xi), and g̃iθ(xi) can be approximated

respectively by (4.3), (4.4), and (4.5). We then approximate the score function

by:

S̃θ(x1, · · · , xd) =


∑d

i=1 g̃
i
θ(xi)/f̃

i
θ(xi), xi0 < xi < xiKi , 1 ≤ i ≤ d

0, otherwise
. (4.10)
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And the sensitivity Eθ[h(X1, · · · , Xd)Sθ(X1, · · · , Xd)] is then estimated by

Eθ[h(X̃1, · · · , X̃d)S̃θ(X̃1, · · · , X̃d)]

=

∫ x1
K1

x1
0

· · ·
∫ xdKd

xd0

h(x1, · · · , xd)
( d∑
j=1

g̃jθ(xj)

f̃ jθ (xj)

) d∏
i=1

f̃ iθ(xi) dxd · · · dx1.(4.11)

Each time for the i-th dimension, we simulate X̃i from F̃ i
θ(x̃i) through the in-

verse transform method, obtain f̃ iθ(x̃i) and g̃iθ(x̃i), and compute the corresponding

score function by (4.10). By generating a sample of size N, {(X̃n
1 , · · · , X̃n

d ), n =

1, 2, · · · , N}, we estimate the sensitivity by

1

N

N∑
n=1

h(X̃n
1 , · · · , X̃n

d )S̃θ(X̃
n
1 , · · · , X̃n

d ). (4.12)

In Section 4.1.2 and 4.1.2, we described how to use the tabulated F̃k and g̃k val-

ues to generate samples and to estimate the sensitivity. In the following section,

we will elaborate on how to obtain the tabulated values in (4.8) from character-

istic functions of the distributions. In approximating (4.7) and (4.11) by (4.9)

and (4.12), there are three major sources of bias: truncation of the distribu-

tions supports, the linear interpolation, and the approximation of Fθ(xk) and

gθ(xk), 0 ≤ k ≤ K. Bias analysis is included in Section 4.1.4.

4.1.3 Inverting characteristic functions

Denote the characteristic function ofX by φθ(ξ) and assume that φθ(ξ) ∈ L1(R). Given

φθ(ξ), we can express Fθ(x) in terms of the Hilbert transform of φθ(ξ), according to [26],

Fθ(x) =
1

2
− i

2
H(e−iξxφθ(ξ))(0),
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which can be evaluated using a very simple scheme. We then have the following

approximation for Fθ(x):

Fθ,h,M(x) =
1

2
− i

2

M∑
m=−M

e−ix(m−1/2)hφθ((m− 1/2)h)

(m− 1/2)π
, h > 0,M ≥ 1, (4.13)

where h and M are respectively the discretization level and the truncation level.

We obtain F̃k in the second row of (4.8) by letting F̃k = Fθ,h,M(xk), 0 ≤ k ≤ K.

According to [19], this approximation turns out to be remarkably accurate when the

characteristic function belongs to a certain analytic class. The discretization error

decays exponentially in terms of 1/h and admits explicit bounds.

Taking derivative of Fθ(x) with respect to θ and denote it by Ḟθ(x), we have:

Ḟθ(x) =
1

2
ψθ(0)− i

2
H(e−ixξψθ(ξ))(0),

where ψθ(ξ) = dφθ(ξ)/dθ. And it can be approximated by

Ḟθ,h,M(x) =
1

2
ψθ(0) +

i

2

M∑
m=−M

e−ix(m−1/2)hψθ((m− 1/2)h

(m− 1/2)π
, h > 0,M ≥ 1.

To construct (4.8), we need to approximate gθ(x) as well. Since pdf is the inverse

Fourier transform of characteristic function:

fθ(x) =
1

2π

∫
R
e−iξxφθ(ξ) dξ,

with approximation
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fθ,h,M(x) =
1

2π

M∑
m=−M

e−ixmhφθ(mh)h, h > 0,M ≥ 1.

Assume ψθ(ξ) ∈ L1(R), gθ(x) is then the inverse Fourier transform of ψθ(ξ):

gθ(x) =
1

2π

∫
R
e−iξxψθ(ξ) dξ, (4.14)

and can be approximated by trapezoidal rule with discretization level h and trun-

cation level M :

gθ,h,M(x) =
1

2π

M∑
m=−M

e−ixmhψθ(mh)h, h > 0,M ≥ 1. (4.15)

Then g̃k in the third row of (4.8) can be obtained by letting g̃k = gθ,h,M(xk), 0 ≤

k ≤ K. Interestingly, when ψθ is in the analytic class mentioned previously, the simple

trapezoidal rule is highly accurate, with exponentially decaying discretization error in

terms of 1/h.

If ψθ is in this analytic class H(D(d−,d+)), we then have the following error bound for

approximating gθ(x) and Ḟθ(x). The proof can be adapted from [26] straightforwardly

and is omitted here.

Theorem 4.1. Suppose ψθ ∈ L1(R) ∩H(D(d−,d+)).

If |ψθ(ξ)| ≤ κ exp(−c|ξ|ν) for any ξ ∈ R for some κ, c, ν > 0 and n ≥ 0, then for any

h > 0,M ≥ 1 such that Mh ≥ ( n
cν

)1/ν,

|gθ(x)− gθ,h,M(x)| ≤ e−2π|d−|/h+xd−

2π(1− e−2π|d−|/h)
||ψθ||− +

e−2πd+/h+xd+

2π(1− e−2πd+/h)
||ψθ||+

+
κ

πνc(n+1)/ν
Γ(
n+ 1

ν
, c(Mh)ν), (4.16)
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|Ḟθ(x)− Ḟθ,h,M(x)| ≤ e−2π|d−|/h+xd−

2π|d−|(1− e−2π|d−|/h)
||ψθ||− +

e−2πd+/h+xd+

2πd+(1− e−2πd+/h)
||ψθ||+

+
κ

2π

( 1

M
+

4

νc(Mh)ν
)

exp(−c(Mh)ν). (4.17)

If |ψθ(ξ)| ≤ κ|ξ|−ν−1 for any ξ ∈ R for some κ, ν > 0, then for any h > 0,M ≥ 1 such

that Mh ≥ ( n
cν

)1/ν,

|gθ(x)− gθ,h,M(x)| ≤ e−2π|d−|/h+xd−

2π(1− e−2π|d−|/h)
||ψθ||− +

e−2πd+/h+xd+

2π(1− e−2πd+/h)
||ψθ||+ +

κ

πν
(Mh)−ν ,

(4.18)

|Ḟθ(x)− Ḟθ,h,M(x)| ≤ e−2π|d−|/h+xd−

2π|d−|(1− e−2π|d−|/h)
||ψθ||− +

e−2πd+/h+xd+

2πd+(1− e−2πd+/h)
||ψθ||+

+
κ

2π

( 1

M
+

2

ν

) 1

(Mh)ν
. (4.19)

The above results therefore show that when ψθ is in the analytic class defined above,

the discretization error decays exponentially in 1/h. Moreover, if ψθ has exponential

tails, which is the case in many applications, the truncation error also decays expo-

nentially in terms of Mh. It is thus not surprising that rather large h and small M

often achieve remarkable accuracy in the above approximation. If ψθ has polynomial

tails, then the discretization error in 1/h still allows one to take relatively large h.

Consequently, one usually does not need a tremendous amount of terms in (4.15) to

bound the truncation error. Finally, and the best of all, the total approximation error

admits explicit bounds. They allow us to determine h and M for any given error tol-

erance level. This proves to be very useful in controlling the bias of the Monte Carlo

estimation of the sensitivities.

Similarly, if φθ is in this analytic class, we can also find the error bound for the

approximation of fθ, as proved in [26].

Corollary 4.2. Suppose φθ ∈ L1(R) ∩H(D(d−,d+)).
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If |φθ(ξ)| ≤ κ exp(−c|ξ|ν) for any ξ ∈ R for some κ, c, ν > 0 and n ≥ 0, then for any

h > 0,M ≥ 1 such that Mh ≥ ( n
cν

)1/ν,

|fθ(x)− fθ,h,M(x)| ≤ e−2π|d−|/h+xd−

2π(1− e−2π|d−|/h)
||φθ||− +

e−2πd+/h+xd+

2π(1− e−2πd+/h)
||φθ||+

+
κ

πνc(n+1)/ν
Γ(
n+ 1

ν
, c(Mh)ν). (4.20)

If |φθ(ξ)| ≤ κ|ξ|−ν−1 for any ξ ∈ R for some κ, ν > 0, then for any h > 0,M ≥ 1 such

that Mh ≥ ( n
cν

)1/ν,

|fθ(x)− fθ,h,M(x)| ≤ e−2π|d−|/h+xd−

2π(1− e−2π|d−|/h)
||φθ||− +

e−2πd+/h+xd+

2π(1− e−2πd+/h)
||φθ||+ +

κ

πν
(Mh)−ν .

(4.21)

Even though we do not tabulate the approximated data for fθ(x) or Ḟθ(x), the

derived estimation error bound will be used in the future proof.

4.1.4 Estimation Bias

As we mentioned in Section 4.1.2, truncation of the distribution supports, linear in-

terpolation, and the errors in approximating Fθ(xk) and gθ(xk), 0 ≤ k ≤ K are the

three major sources of bias in sensitivity estimation. In this section, we will analyze

the bias, and obtain explicit bounds for it in the one-dimensional cases. This allows

us to conveniently determine the width and fineness of the grids in (4.8), as well as

numerical parameters for characteristic functions inversion.

4.1.5 The one-dimensional case

First of all, let’s assume that gθ is differentiable with respect to x and introduce the

following notations:
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|χ| = xK − x0,

||h||χ = sup
x∈χ
|h(x)|,

||g′′θ || = sup
x∈χ
|g′′θ (x)|,

Eg
χ = max

0≤k≤K
|gθ(xk)− g̃k|.

Taking derivatives on both sides of (4.14) for twice and assuming validity of chang-

ing the orders of integration and differentiation, we obtain

g′′θ (x) = − 1

2π

∫
R
e−iξxξ2ψθ(ξ) dξ, (4.22)

which gives an upper bound of ||g′′θ ||χ:

||g′′θ (x)||χ ≤
1

2π

∫
R
|ξ2ψθ(ξ)| dξ.

And we introduce the following notation regrading the error in approximating

g̃k, 0 ≤ k ≤ K by gθ,h,M(xk):

Eg
h,M,χ = max

0≤k≤K
|gθ(xk)− gθ,h,M(xk)|.

In the one-dimensional case, we have the following estimates for the bias:

Theorem 4.3. Let Eθ[h(X)Sθ(X)] be defined as in (4.1) and Eθ[h(X̃)S̃θ(X̃)] in (4.7).
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Assume that gθ(x) is twice differentiable with respect to x. Then we have

|Eθ[h(X)Sθ(X)]− Eθ[h(X̃)S̃θ(X̃)]| (4.23)

≤
(∫ x0

−∞
+

∫ ∞
xK

)
|h(x)gθ(x)| dx

+
1

2K2
||g′′θ ||χ · ||h||χ · |χ|

3 + ||h||χ · Eg
χ · |χ|. (4.24)

If ψθ ∈ H(D(d−,d+)), and g̃k = gθ,h,M(xk), 0 ≤ k ≤ K, then

|Eθ[h(X)Sθ(X)]− Eθ[h(X̃)S̃θ(X̃)]|

≤ ||ψθ||+

2π

∫ x0

−∞
|h(x)|exd+ dx+

||ψθ||−

2π

∫ ∞
xK

|h(x)|exd− dx

+
1

4πK2
||h||χ · |χ|3 ·

∫
R
|ξ2ψθ(ξ)| dξ

+||h||χ · Eg
h,M,χ · |χ|. (4.25)

Proof. The bias is given by

Eθ[h(X)Sθ(X)]− Eθ[h(X̃)S̃θ(X̃)]

=

∫
R
h(x)gθ(x) dx−

∫ xK

x0

h(x)g̃θ(x) dx

=
K∑
k=1

∫ xk

xk−1

h(x)(gθ(x)− g̃θ(x)) dx+
( ∫ x0

−∞
+

∫ ∞
xK

)
h(x)gθ(x) dx.

Note that over [xk−1, xk], g̃θ(x) = g̃k−1 + (g̃k − g̃k−1)(x − xk−1)/η. Denote ḡθ(x) =

gθ(xk−1) + (gθ(xk) − gθ(xk−1))(x − xk−1)/η. That is, g̃θ(x) is the linear interpolation

formed using approximated values of gθ(x), and ḡθ(x) is the one where exact values

of gθ(x) are used. Since gθ(xk) is differentiable, for any x ∈ [xk−1, xk], there exists
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ξk(x) ∈ (xk−1, xk) such that gθ(x) = gθ(xk−1) + g′θ(ξk(x))(x− xk−1).

∣∣ ∫ xk

xk−1

h(x)(gθ(x)− g̃θ(x)) dx
∣∣

=
∣∣ ∫ xk

xk−1

h(x)(gθ(x)− ḡθ(x) + ḡθ(x)− g̃θ(x)) dx
∣∣

=
∣∣ ∫ xk

xk−1

h(x)
(
g′θ(ξk(x))− gθ(xk)− gθ(xk−1)

η

)
(x− xk−1) dx

+

∫ xk

xk−1

h(x)
(
gθ(xk−1)− g̃k−1 + (gθ(xk)− g̃k − (gθ(xk−1)− g̃k−1))

x− xk−1

η

)
dx
∣∣

=
∣∣ ∫ xk

xk−1

h(x)(g′θ(ξk(x))− g′θ(ξk(xk)))(x− xk−1) dx

+

∫ xk

xk−1

h(x)
(
(gθ(xk−1)− g̃k−1)

xk − x
η

+ (gθ(xk)− g̃k)
x− xk−1

η

)
dx
∣∣

≤ 1

2
||g′′θ ||χ · ||h||χ · η3 + ||h||χ · Eg

χ · η.

By summing K terms up, this leads to (4.23) immediately.

If ψθ ∈ H(D(d−,d+)), by Cauchy’s integral theorem, for any ε > 0 such that d+− ε > 0,

gθ(x) =
1

2π

∫
R
e−iξxψθ(ξ) dξ

=
1

2π
ex(d+−ε)

∫
R
e−iξxψθ(ξ + i(d+ − ε)) dξ.

Letting ε→ 0+, we obtain |gθ(x)| ≤ exd+||ψθ||+/(2π),∀x ∈ R.

Similarly, |gθ(x)| ≤ exd−||ψθ||−/(2π),∀x ∈ R. We therefore have

( ∫ x0

−∞
+

∫ ∞
xK

)
|h(x)gθ(x)| dx ≤ ||ψθ||

+

2π

∫ x0

−∞
|h(x)|exd+ dx+

||ψθ||−

2π

∫ ∞
xK

|h(x)|exd− dx.

Combining it with (4.23), we obtain the upper bound in (4.25).

The theorem above is convenient to use in practice in several ways:

• [x0, xK ] is not required to cover the majority of the support of the distribution.
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For example, if h(x) is zero on the negative real line, one can simply take x0 = 0

without introducing any bias.

• The explicit bound in (4.25) is very easy to use. One can choose x0 according to

the first term so that the bias introduced by x0 is under a desired level. Similarly,

the second term allows us to choose xK . After we obtain x0 and xK , we determine

K according to the third term, and h and M according to the fourth term and

by Theorem 4.1.

• Theorem 4.3 can be used in more general ways for estimating sensitivities when

the probability density does not admit an explicit expression. Depending on

what information is available about the probability density, bounds for |gθ|, |g′′θ |

and the values g̃k might be obtained in other ways. Then (4.23) can be used

to determine χ = [x0, xK ], the number of sub-intervals K, and the numerical

parameters that affect the accuracy of g̃k.

In Theorem 4.3, we do not add any constraints on the differentiability of function

h(x). Next theorem gives another upper bound in estimating the sensitivity while

assuming that h(x) differentiable almost everywhere in χ: h′(x) = dh(x)/ dx. And we

denote:

||h′||χ = ess sup
x∈χ
|h′(x)|,

||g′θ||χ = ess sup
x∈χ
|g′θ(x)|,

EḞ
χ = max

0≤k≤K
|Ḟθ(xk)− ˜̇Fk|,

EḞ
h,M,χ = max

0≤k≤K
|Ḟθ(xk)− Ḟh,M,θ(xk)|.

Theorem 4.4. Suppose h(x) is differentiable in ∪Kk=1(xk−1, xk) except at nh points and
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gθ(x) is twice differentiable with respect to x ∈ χ. Then

|Eθ[h(X)Sθ(X)]− Eθ[h(X̃)S̃θ(X̃)|

≤
( ∫ x0

−∞
+

∫ ∞
xK

)
|h(x)gθ(x)| dx

+
1

2K2
||h′||χ · ||g′θ||χ · |χ|3

+2
(
(nh +K) · ||h||χ + ||h′||χ · |χ|

)
EḞ
χ . (4.26)

If ψθ ∈ H(D(d−,d+)), and g̃k = gθ,h,M(xk), 0 ≤ k ≤ K, then

|Eθ[h(X)Sθ(X)]− Eθ[h(X̃)S̃θ(X̃)]|

≤ ||ψθ||+

2π

∫ x0

−∞
|h(x)|exd+ dx+

||ψθ||−

2π

∫ ∞
xK

|h(x)|exd− dx

+
|χ|3

4πK2
||f ′||χ

∫
R
|ξψθ(ξ)| dξ (4.27)

+2
(
(nh +K) · ||h||χ + ||h′||χ · |χ|

)
EḞ
h,M,χ. (4.28)

Proof. Assuming that in (xk−1, xk), 1 ≤ k ≤ K, h(x) is indifferentiable except at

nhk(
∑K

k=1 n
h
k = nh) points, and following similar steps in the proof of Theorem 4.3, the

estimation bias can be written as:

Eθ[h(X)Sθ(X)]− Eθ[h(X̃)S̃θ(X̃)]

=
K∑
k=1

∫ xk

xk−1

h(x)(gθ(x)− g̃θ(x)) dx+
( ∫ x0

−∞
+

∫ ∞
xK

)
h(x)gθ(x) dx.

Since h(x) is differentiable in (xk−1, xk), 1 ≤ k ≤ K except at nhk points, by [20], we

have:
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|
∫ xk

xk−1

h(x)(gθ(x)− g̃θ(x)) dx| ≤ 2(nhk +1) · ||h||χ ·EḞ
χ + ||h′||χ ·η ·

∫ xk

xk−1

|gθ(x)− g̃θ(x)| dx,

where

∫ xk

xk−1

|gθ(x)− g̃θ(x)| dx

=

∫ xk

xk−1

|gθ(x)−
Ḟθ(x

−
k )− Ḟθ(x+

k−1)

η
+
Ḟθ(x

−
k )− Ḟθ(x+

k−1)

η
−

˜̇Fθ(x
−
k )− ˜̇Fθ(x

+
k−1)

η
| dx

= |Ḟθ(x−k )− Ḟθ(x+
k−1) + ˜̇Fθ(x

−
k )− ˜̇Fθ(x

+
k−1)|+

∫ xk

xk−1

|gθ(x)−
Ḟθ(x

−
k )− Ḟθ(x+

k−1)

η
| dx

≤ 2EḞ
χ +

1

η

∫ xk

xk−1

∫ xk

xk−1

|gθ(x)− gθ(y)| dy dx.

Due to the fact that gθ(x) differentiable in (xk−1, xk), for any x, y ∈ (xk−1, xk), there

exists ξk(x, y) ∈ (xk−1, xk), such that gθ(y) = gθ(x) + g′θ(ξk(x, y))(y − x).

Therefore,

|
∫ xk

xk−1

h(x)(gθ(x)− g̃θ(x)) dx|

≤ 2
(
(nhk + 1) · ||h||χ + ||h′||χ · η

)
EḞ
χ +

η3

2
· ||h′||χ · ||q′θ||χ.

Naturally, we get the error bound in (4.26).

Remark 4.5.
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• From Theorem 4.4, similarly, we obtain:

|Eθ[h(X)]− Eθ[h(X̃)]|

≤
( ∫ x0

−∞
+

∫ ∞
xK

)
|h(x)fθ(x)| dx+ |h(x0)|Fθ(x0) + |h(xK)|(1− Fθ(xK))

+
1

2K2
||h′||χ · ||f ′θ||χ · |χ|3

+2
(
(nh +K + 1)||h||χ + ||h′||χ · |χ|

)
· EF

χ , (4.29)

where fθ as a function of x is differentiable in (x0, xK), and h(x) is differentiable

with respect to x in (x0, xK) except at up to nh points, ||f ′θ||χ = ess supx∈χ |f ′θ(x)|,

and EF
χ = max0≤k≤K |Fθ(xk)− F̃k|.

• If φθ ∈ H(D(d−,d+)), and let f̃k = fθ,h,M(xk), 0 ≤ k ≤ K, then

|Eθ[h(x)]− Eθ[h(X̃)]| ≤ ||φθ||+

2π

∫ x0

−∞
|h(x)|exd+ dx+

||φθ||−

2π

∫ ∞
xK

|h(x)|exd− dx

+|h(x0)|Fθ(x0) + |h(xK)|(1− Fθ(xK))

+
|χ|3

4πK2
||h′||χ ·

∫
R
|ξφθ(ξ)| dξ

+2
(
(nh +K + 1)||h||χ + ||h′||χ · |χ|

)
· EF

h,M,χ, (4.30)

where EF
h,M,χ = max0≤k≤K |Fθ(xk)− Fh,M,θ(xk)|.

The multi-dimensional case

For multi-dimensional cases, we examine the absolute difference between (4.12) and

(4.11), and provide a theoretical upper bound for the estimation bias. In addition to

the notations used earlier in this section, denote

Ef
χ = max

0≤k≤K
|fθ(xk)− f̃k|,
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Ef
h,M,χ = max

0≤k≤K
|fθ(xk)− fθ,h,M(xk)|,

where we assume that fθ(x) as a function of x is differentiable: f ′θ(x) = dfθ(x)/ dx,

and h is differentiable almost everywhere: h′(x) = dh(x)/ dx. Approximation of fθ at

xk can be obtained by similar method to that of Fθ and gθ. The details are included

in [26].

Theorem 4.6. Let Xi, 1 ≤ i ≤ d, be d independent random variables with cumulative

distribution functions F i
θ, density functions f iθ, and Ḟ i

θ =
∂F iθ
∂θ
, giθ =

∂f iθ
∂θ

. For 1 ≤

i ≤ d, let χi = [xi0, x
i
Ki

], with xik = xi0 + kηi(0 ≤ k ≤ Ki), where ηi =
xiKi
−xi0
Ki

.

|h(x1, x2, · · · , xd)| is bounded by h1(x1)h2(x2) · · ·hd(xd) for some hi ≥ 0, where hi(xi)

is differentiable in χi except at up to nhi points. Denote that ||hi||χi = supxi∈χi |hi(xi)|,

||h′i||χi = ess supxi∈χi |h
′
i(xi)|, and assume that they are finite for 1 ≤ i ≤ d. Define

Bf
i =

( ∫ xi0

−∞
+

∫ ∞
xiKi

)
|hi(x)f iθ(x)| dx+ |hi(xi0)|F i

θ(x
i
0) + |hi(xiKi)|(1− F

i
θ(x

i
Ki

))

+
1

2K2
i

||h′i||χi · ||f iθ
′||χi · |χi|3

+2
(
(nhi +Ki + 1)||hi||χi + ||h′i||χi · |χi|

)
· EFi

χi
, (4.31)

and define

Bg
i =

( ∫ xi0

−∞
+

∫ ∞
xiKi

)
|hi(x)giθ(x)| dx+

1

2K2
i

||h′i||χi · ||giθ
′||χi · |χi|3

+2
(
(nhi +Ki)||hi||χi + ||h′i||χi · |χi|

)
· EḞi

χi
. (4.32)

Let B = max(Bf
1 , B

f
2 , · · · , B

f
d , B

g
1 , B

g
2 , · · · , B

g
d). Then there exist constants ai > 0, 0 ≤
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i ≤ d− 1, independent of B such that

|Eθ[h(X1, · · · , Xd)Sθ(X1, · · · , Xd)]− Eθ[h(X̃1, · · · , X̃d)S̃θ(X̃1, · · · , X̃d)]|

≤ d ·B(a0 + a1B + · · ·+ ad−1B
d−1),

where S̃θ(x1, x2, · · · , xd) is defined by
∑d

i=1

g̃iθ(xi)

f̃ iθ(xi)
.

Proof. Define ||fihi||1 =
∫
R hi(x)f iθ(x) dx, and ||gihi||1 =

∫
R hi(x)giθ(x) dx. By Theorem

4.4 and Remark 4.5, we have the following for any 1 ≤ i ≤ d:

|
∫
R
hi(x)g̃iθ(x) dx| ≤ ||gihi||1 +Bg

i ,

|
∫
R
h(x1, · · · , xd)(g̃iθ(x)− giθ(x)) dxi| ≤ Bg

i

d∏
j=1,j 6=i

hj(xj),

|
∫
R
hi(x)f̃ iθ(x) dx| ≤ ||fihi||1 +Bf

i ,

|
∫
R
h(x1, · · · , xd)(f̃ iθ(x)− f iθ(x)) dxi| ≤ Bf

i

d∏
j=1,j 6=i

hj(xj).

Define ||Fihi|| = max(||fihi||1, ||gihi||1) and ||F̃ihi|| = max(||f̃ihi||1, ||g̃ihi||1), it is

easy to see that ||F̃ihi|| ≤ ||Fihi||+ B. Then we are ready to find the upper bound of
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the error in estimating sensitivity for the multi-dimensional cases:

|Eθ[h(X1, · · · , Xd)Sθ(X1, · · · , Xd)]− Eθ[h(X̃1, · · · , X̃d)S̃θ(X̃1, · · · , X̃d)]|

= |
∫
R
h(x1, · · · , xd)

d∏
i=1

f iθ(xi)
d∑
j=1

gjθ(xj)

f jθ (xj)
dx1 · · · dxd

−
∫
R
h(x1, · · · , xd)

d∏
i=1

f̃ iθ(xi)
d∑
j=1

g̃jθ(xj)

f̃ jθ (xj)
dx1 · · · dxd|

= |
∫
R
h(x1, · · · , xd)

d∏
i=1

f iθ(xi)
d∑
j=1

gjθ(xj)

f jθ (xj)
dx1 · · · dxd

−
∫
R
h(x1, · · · , xd)

( d−1∏
i=1

f iθ(xi)f̃
d
θ (xd)

)( d−1∑
j=1

gjθ(xj)

f jθ (xj)
+
g̃dθ(xd)

f̃dθ (xd)

)
dx1 · · · dxd

+

∫
R
h(x1, · · · , xd)

( d−1∏
i=1

f iθ(xi)f̃
d
θ (xd)

)( d−1∑
j=1

gjθ(xj)

f jθ (xj)
+
g̃dθ(xd)

f̃dθ (xd)

)
dx1 · · · dxd

−
∫
R
h(x1, · · · , xd)

( d−2∏
i=1

f iθ(xi)
d∏

i=d−1

f̃ iθ(xi)
)( d−2∑

j=1

gjθ(xj)

f jθ (xj)
+

d∑
j=d−1

g̃jθ(xj)

f̃ jθ (xj)

)
dx1 · · · dxd

+

∫
R
h(x1, · · · , xd)

( d−2∏
i=1

f iθ(xi)
d∏

i=d−1

f̃ iθ(xi)
)( d−2∑

j=1

gjθ(xj)

f jθ (xj)
+

d∑
j=d−1

g̃jθ(xj)

f̃ jθ (xj)

)
dx1 · · · dxd

· · ·

−
∫
R
h(x1, · · · , xd)

d∏
i=1

f̃ iθ(xi)
d∑
j=1

g̃jθ(xj)

f̃ jθ (xj)
dx1 · · · dxd|

≤ d ·B
d−1∏
j=1

||Fjhj||+ d ·B
d−2∏
j=1

||Fjhj||(||Fdgd||+B) + · · ·+ d ·B
d∏
j=2

(||Fjhj||+B).

Then a0, a1, · · · , ad−1 can be found sequentially.

Theorem 4.6 guarantees that, as B decreases, Eθ[h(X̃1, · · · , X̃d)S̃θ(X̃1, · · · , X̃d)]

converges to Eθ[h(X1, · · · , Xd)Sθ(X1, · · · , Xd)]. In practice, we can adjust xi0, xiKi , Ki,

and other parameters to decrease B sequentially. And by doing this for several times,

we are able to control the bias to our desired tolerance level.

In this theorem, we did not use the stationary increment property for Lévy process.
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If we further assume so, then the distribution of X1, X2, · · · , Xd would be the same

and so does X̃1, X̃2, · · · , X̃d. In that case, the computational effort could be greatly

reduced since all the grid points and probability approximation schemes will be the

same for all the d dimensions.

4.2 Numerical Experiments

In this section, we illustrate the likelihood ratio method by simulating European vanilla

call option and Asian call option deltas under the CGMY model. The European

option delta represents a one-dimensional case, while the Asian option delta is a multi-

dimensional case.

European vanilla option and Asian option pricing

The asset price is modeled by a geometric Lévy process: S(t) = eX(t), where X(t) =

ln(S(t)) is a CGMY model process with X(0) = ln(S0). S0 is the initial asset price.

The price of a European call option is given by:

VS0 = e−rTES0 [max(0, S(T )−K)] = ES0 [e−rT max(0, eX(T ) −K)] = ES0 [h(X(T ))],

where T is the time-to-maturity, K is the strike price, r is the risk-free interest rate,

and h(x) = e−rT max(0, ex −K).

The payoff of an Asian call option with d monitoring periods is max(0, AdT −K) =

max(0, 1
d

∑d
k=1 Skδ − K), where δ is the time interval between two consecutive moni-

toring periods: δ = T/d. Then the price of an Asian call option is:

VS0 = e−rTES0 [max(0, AdT −K)] = ES0 [h(X1, X2, · · · , Xd)],
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where X1 = ln(Sδ), Xi = ln(Siδ/S(i−1)δ), 2 ≤ i ≤ d are independent Lévy incre-

ments, and

h(x1, x2, · · · , xd) = e−rT max
(
0,

1

d
(ex1 + ex1+x2 + · · ·+ ex1+x2+···+xd)−K

)
.

Hence we have the following inequality:

|h(x1, x2, · · · , xd)| ≤ e|x1|e|x2| · · · e|xd|, 1 ≤ i ≤ d.

Thus hi(xi) = e|xi|, 1 ≤ i ≤ d. Since there is at most one point where hi(xi) is not

differentiable at, nhi = 1.

The CGMY process

A CGMY process, Xt, is a pure jump Lévy process with drift µ and the following Lévy

density:
CeGx

|x|1+Y
1x<0 +

Ce−Mx

|x|1+Y
1x>0,

for some C > 0, G > 0,M > 0, 0 < Y < 2. By the martingale condition, µ =

r− q−CΓ(−Y )((M−1)Y −MY + (G+ 1)Y −GY ). Even though we do not have access

to explicit expression for pdf and cdf of Xt, the characteristic function of Xt is know

explicitly:

φt(ξ) = exp(iµtξ − tCΓ(−Y )(MY − (M− iξ)Y +GY − (G+ iξ)Y )),

where Γ(·) is the gamma function. Moreover, φt ∈ H(D(d−,d+)) for any −M ≤

d− < 0 < d+ ≤ G. When 0 < Y < 1, we have |φt(ξ)| ≤ κte
−ct|ξ|ν , with κt =

exp(−tCΓ(−Y )(MY +GY )), ct = 2tC|Γ(−Y ) cos(πY/2)|, and ν = Y .
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4.2.1 Delta of European call options under the CGMY model

Delta, as an option Greek, is defined as the partial derivative of option price with

respect to the underlying asset price.

• European vanilla call option delta

To estimate the delta of a European call option, we first need to construct (4.8)

for X(T ) = ln (S(T )) by its characteristic function:

φ̃S0(ξ) = exp
(
i(µT + ln(S0))ξ− TCΓ(−Y )(MY − (M− iξ)Y +GY − (G+ iξ)Y )

)
.

And the corresponding ψ̃S0(ξ) is given by:

ψ̃S0(ξ) =
iξ

S0

φ̃S0(ξ).

Both φ̃S0(ξ) and ψ̃S0(ξ) are in H(D(d−,d+)), and satisfy

|φ̃S0(ξ)| ≤ κT e
−cT |ξ|ν , |ψ̃S0(ξ)| ≤ κT

S0

|ξ|e−cT |ξ|ν , ∀ξ ∈ R.

The parameters are chosen based on Theorem 4.4 and by constraining the right

hand-side of (4.25) to be less than or equal to the desired bias tolerance level

εb. In terms of a European call option, we choose x0 = ln(K) since h(x) = 0 for

x ∈ (−∞, x0). Hence, the first term is 0. Then we determine xK > 0 according

to the second term:

||ψ̃S0||−

2π
exKd−

( K
d−
− 1

d− + 1
exK
)
.

We find the smallest xK so that the above is bounded by εb/2. We then select K
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according to the third term and have it less than or equal to εb/2:

K = d

√
(exK −K)(xK − x0)2

2πεb

∫
R
|ξ2ψ̃S0(ξ)| dξe.

The last step is to bound the last term by 0.01εb, which is negligible compared

to εb. In this way, we find h and M accordingly. The current x0, xK , K, h, and

M setting can be taken as initial values. By adjustments, we can find more

appropriate values, which balance the terms in (4.23) better.

• Arithmetic Asian call option delta

For an Asian call option, we need to construct (4.8) along each dimension. Due

to the fact that a CGMY process is a Lévy process, X2, X3, · · · , Xd have the

same characteristic function, and hence share the common sets of grids. The

characteristic function of X1 is:

φ1
S0

(ξ) = exp(i(µδ + ln(S0))ξ − δCΓ(−Y )(MY − (M− iξ)Y +GY − (G+ iξ)Y )),

(4.33)

while the characteristic functions of Xi, 2 ≤ i ≤ d are identical:

φ2
S0

(ξ) = exp(iµδξ − δCΓ(−Y )(MY − (M− iξ)Y +GY − (G+ iξ)Y )). (4.34)

Since there is no S0 in φ2
S0

(ξ), ψ2
S0

(ξ) = 0, and so are g̃2
k, 0 ≤ k ≤ K2. We then

only need two rows in (4.8) for the last d− 1 dimensions. And the score function
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is reduced to:

S̃θ(x1, · · · , xd) =

 g̃1
θ(x1)/f̃ 1

θ (x1), x1
0 < x1 < x1

K1
, x2

0 < xi < x2
K2
, 2 ≤ i ≤ d

0, otherwise
.

(4.35)

By Theorem 4.6, we fix a desired bias level εb, and by solving the inequality:

d ·B
(
||F2g2||d−1 + (||F2g2||+B)d−1 + (d− 2)||F1g1|| · (||F2g2||+B)d−2

)
≤ εb,

we find an appropriate value for B. And by adjusting xi0, xiKi , Ki and other pa-

rameter values, we have Bf
i ≤ B,Bg

i ≤ B, 1 ≤ i ≤ d.

4.2.2 Numerical results

The likelihood ratio method in estimating call option deltas is implemented using C++

on a MacBook Pro with Intel Core i5 2.6GHz CPU and 8GB RAM.

For the CGMY process, we use the following parameter setting:

C = 4, G = 50,M = 60, Y = 0.7, r = 0.05, q = 0.02, T = 0.5, S0 = K = 1.

• Numerical results for European vanilla call option

Since f(x) = 0, for x ≤ ln(K), we let x0 = ln(K) = 0. In Table 4.1, we set the

tolerance level of total estimation bias to be εb = 10−3, and obtain corresponding

values for x0, xK , K, h, and M in order:
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European Call Option Delta in the CGMY model: εb = 10−3

x0 xK K h M
0 0.66 46 3.64 15

Table 4.1: Parameter Settings for European Call Option Delta in the CGMY model

Using the numbers obtained in Table 4.1, we construct (4.8) and generate Monte

Carlo estimates of the European call option delta. Results are reported in Table

4.2:

The exact value of 0.566793 reported in the table is computed through finite

European Call Option Delta in the CGMY Model (εb = 10−3): Exact Value = 0.566793
N (* 1000) Delta Abs Error Std Error CPU (s)
1 0.50552 6.13E-02 3.77E-02 0.0008
4 0.57665 9.85E-03 2.15E-02 0.0023
16 0.57206 5.27E-03 1.04E-02 0.0247
64 0.56238 4.41E-03 5.12E-03 0.0392
256 0.56547 1.33E-03 2.59E-03 0.1542
1024 0.56664 1.58E-04 1.29E-03 0.5749
4096 0.56733 5.34E-04 6.48E-04 2.3927
16384 0.56623 5.62E-04 3.24E-04 9.5731

Table 4.2: European call option delta in the CGMY model

difference method. The first column contains the sample sizes used in the sim-

ulation. The second column includes the European call option delta estimated

by the likelihood ratio method. The ’Std Error’ column and the ’CPU’ column

report the stand errors and the computational time in seconds. The ’Abs Error’

column shows that as the sample size increases, the absolute error approaches to

the level of 10−4. Therefore, with the current parameter setting, we achieve the

goal of bounding the bias by εb = 0.001.

• Numerical results for arithmetic Asian call option

For the arithmetic Asian call option, we consider monthly monitoring, with d = 6.

The target tolerance level is εb = 10−4. Parameter values are included in Table
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4.3:

Asian Call Option Delta in the CGMY model: εb = 10−4

x1
0 x1

K1
K1 h1 M1

-0.26 0.22 47 2.062 28
x2

0 x2
K2

K2 h2 M2

-0.19 0.16 44 1.898 18

Table 4.3: Parameter Setting for Asian Call Option Delta in the CGMY model

Monte Carlo estimates for the Asian call option delta are included in the following

table. The exact value is estimated by the finite difference method, with the

option prices at different levels of S0 computed through the Fourier Transform

method. To reduce simulation variance, we apply Control Variate method, by

using the geometric Asian call option delta as a control variate. The absolute

error in the third column decreases by half till bounded by 1.00E-04.

Asian Call Option Delta in the CGMY Model (εb = 10−4): Exact Value = 0.547941
N (* 1000) Delta Abs Error Std Error CPU (s)
1 0.54731 6.35E-04 7.27E-04 0.0058
4 0.54763 3.13E-04 1.43E-04 0.0205
16 0.54780 1.43E-04 1.64E-04 0.0840
64 0.54783 1.08E-04 8.33E-05 0.3420
256 0.54786 8.19E-05 4.09E-05 1.3995
1024 0.54784 9.97E-05 2.04E-05 5.6366
4096 0.54786 8.55E-05 1.02E-05 22.2483
16384 0.54787 6.70E-05 5.11E-06 89.5612

Table 4.4: Asian call option delta in the CGMY model
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Chapter 5

Simulating from Characteristic

Functions by Acceptance-Rejection

5.1 Acceptance-Rejection Method for Univariate Cases

Steps for acceptance-rejection method for univariate cases are summarized as follows:

• Step 1. Find a (easy-to-simulate) probability distribution G(x), with probability

density function g(x), such that supx f(x)/g(x) ≤ c, for some c ≥ 1.

• Step 2. Generate X ∼ G(x), and compute g(x).

• Step 3. Compute f(x).

• Step 4. Generate U ∼ U [0, 1]: if u ≤ f(x)/(cg(x)), accept x; if u > f(x)/(cg(x)),

reject x and go back to Step 2.

Instead of simulating from a complicated distribution f(x), acceptance-rejection

method generates samples from g(x). When the closed-form f(x) is not accessible, one

can approximate it by inverting characteristic function and applying the trapezoidal
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rule. The probability of accepting generated samples, in other words, acceptance rate,

is 1/c. To have a higher acceptance rate, one needs to find an appropriate distribution

g(x) such that c is minimized. Therefore, selecting a suitable cg(x) is significant in the

implementation of the acceptance-rejection method.

5.1.1 Devroye’s 2nd-order method

Devroye [22] proposed one way to select cg(x). In the thesis, a 2nd-order polynomial

function with a constant bound is used to cover the underlying pdf, f(x):

cg(x) = min(c̃,
k̃

x2
),

where

c̃ =
1

2π

∫ ∞
−∞
|φ(ξ)| dξ ≈ 1

2π

M∑
m=−M

|φ(mh)|h,

and

k̃ =
1

2π

∫ ∞
−∞
|φ′′(ξ)| dξ ≈ 1

2π

M∑
m=−M

|φ′′(mh)|h.

With analyticity in a horizontal strip and exponential tail, c̃ and k̃ are found to be

finite. As we proved in previous section, this approximation has an error exponentially

decaying.

One disadvantages of Devroye’s method is that for every generation, without closed-

form pdf, one needs to approximate f(x) by trapezoidal rule, which is time consuming.

To have better performance, we propose several improvements on the Devroye’s

2nd-order method.

5.1.2 Improvements on Devroye’s 2nd-order Method

• Devroye’s 4th-order Method

77



When the magnitude of x gets larger and larger, the 2nd-order polynomial decays

much slower than polynomials of higher orders. So we first of all consider covering

f(x) with polynoimals of higher orders. cg(x) we select is defined to be:

cg(x) = min(c̃,
k̃

x2
,
θ̃

x4
),

where

θ̃ =
1

2π

∫ ∞
−∞
|φ(4)(ξ)| dξ ≈ 1

2π

M∑
m=−M

|φ(4)(mh)|h.

For every generation, f(x) is computed by trapezoidal rule.

• Devroye’s 2nd-order/4th-order Method with Tabulation

Tabulating f(x) on the simulation grid does not improve its acceptance rate, but

will theoretically decrease the simulation time. And f(x) is approximated by

linear interpolation:

f(x) =
x− xk−1

xk − xk−1

f(xk) +
xk − x

xk − xk−1

f(xk−1),

for xk−1 ≤ x ≤ xk, 1 ≤ k ≤ K.

• Coverage with Exponential Functions

Due to the fact that the characteristic function is analytic in a horizontal strip

including the real axis, its pdf is exponentially decaying on both sides. The lower

boundary of the analyticity strip, d−, determines the decay rate on the positive

side, while the upper boundary, d+, determines the decay rate on the negative

side. Based on this property, one can find a two-sided exponential function to

cover f(x). And this exponential function does not have to be symmetric since

the decay rate on both sides can be different. The structure of cg(x) is then:
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cg(x) =

 θl exp(−bl(x̂− x)), x ≤ x̂

θr exp(−br(x− x̂)), x > x̂
.

x̂ is the mode of the pdf, f(x).

• Coverage with Exponential Functions and a Constant Bound

By adding a constant bound to the exponential function, cg(x) now becomes:

cg(x) =

 min(θl exp(−bl(x̂− x)), c̃), x ≤ x̂

min(θr exp(−br(x− x̂)), c̃), x > x̂
.

5.1.3 Numerical Experiment: Acceptance-rejection for Univari-

ate Cases

In this section, we exhibit the performance of Devroye’s 2nd-order method, together

with our improvements numerically by pricing a future under Double Exponential Jump

(Kou’s) model.

The asset price is: St = S0 exp(Xt), where

Xt = γt+ σWt +
Nt∑
i=1

Yi, Nt ∼ Poission(λt).

The characteristic function of Xt is:

φ(ξ) = exp
(
− 1

2
ξ2σ2t+ iξγt+ iξγt(

p

λ+ − iξ
− 1− p
λ− + iξ

)
)
.

One reasonable parameter setting for the Kou’s model is:

r = 0.02, T = 1.00, σ = 0.2, λ = 7.0, p = 0.2, λ+ = 80, λ− = 10, S0 = 1.0.
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For tabulation and approximation, we choose:

h = 0.10,M = 1000, δx = 0.002,

where δx is the tabulation grid size.

By martingale property, the future’s theoretical price is computed to be E[S0e
rT ] =

1.020200. In this following table, for each simulation method, we record estimated

future price, absolute error, standard error, acceptance rate, and running time for

1, 000 generations.

Acceptance-rejection Methods Comparison (N = 1, 000)
Method Est. Future

Price
Abs Error Std Error Acceptance

Rate
Running
Time

Devroye 1.028350 0.008148 0.011828 0.590319 1.886870
Devroye
(4th) 1.024150 0.003952 0.011173 0.711744 1.537540
Devroye
(tab) 1.026722 0.004522 0.012647 0.599168 0.031286
Devroye
(4th, tab) 1.025178 0.003902 0.011624 0.715672 0.026419
Asymm.
Exp Dis 1.010780 0.009417 0.012062 0.751880 0.023977
Asymm. Exp Dis
with Const. 1.045290 0.025089 0.011914 0.854701 0.030887

Table 5.1: Acceptance-rejection Methods in Pricing Future under Kou’s Model: Exact
Value = 1.020200

The traditional Devroye’s 2nd-order method finishes the simulation within 1.89s,

with acceptance rate 59%. The acceptance rate increases to 71% if the 4th-order

polynomial is incorporated. The running time is then decreased a little by increased

acceptance rate. If we use tabulation for the 2nd-order and the 4th-order methods,

acceptance rate does not change much. But the running time decreases to only 2%

of the previous level, which is a great improvement. By covering the underlying pdf
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with asymmetric exponential functions, the acceptance rate increases to 75%. And if

we incorporate a constant bound, it reaches the level 85%, with running time 0.03s.

The comparison between the traditional Devroye’s 2nd-order method and our finest

model shows that the acceptance-rejection method does improve the simulation effi-

ciency for univariate cases, which is also demonstrated by the following two plots.

Figure 5.1: Devroye 2nd Order Method v.s. Exponential Function with Constant
Bound

The one on the left-hand-side shows how the underlying pdf is covered by cg(x) in

Devroye’s 2nd-order method, while the one on the right-hand-side exhibits the coverage

by the exponential function with a constant bound. As the plot shows, the second

coverage is more efficient, with the green and the red curves closer to each other, which

is reflected by higher acceptance rate by the last method.

5.2 Acceptance-Rejection Method for Bivariate Cases

The univariate numerical experiment has shown that the exponential coverage is effi-

cient as an improvement. In this section, we investigate if it is applicable for bivariate

models.
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To begin with, we list the steps for the acceptance-rejection method for bivariate

cases:

• Step 1. Optimize parameters ak, bk, θk, x̂1 and x̂2 in:

cg(x1, x2) = θk exp (−ak|x1 − x̂1| − bk|x2 − x̂2|),

k = 1, 2, 3, 4 and correspond to four quadrants, such that:

f(x1, x2) ≤ cg(x1, x2).

• Step 2. Tabulate f(x) for approximation and simulation: x1 = x̂1+nδ1
x, and x2 =

x̂2 +nδ2
x, n = −N,−N+1, · · · , N . Calculate f̃(xi1, x

j
2), i, j = −N,−N+1, · · · , N

by inverting characteristic function and trapezoidal rule.

• Step 3. Generate X = (X1, X2) from G(x1, x2), and compute cg(x1, x2).

• Step 4. Approximate f(x1, x2) by linear interpolation:

f̃(x1, x2)

=
1

δX1δX2

(
f̃i,j(x

1
i+1 − x1)(x2

j+1 − x2) + f̃i+1,j(x1 − x1
i )(x

2
j+1 − x2)

+ f̃i,j+1(x1
i+1 − x1)(x2 − x2

j) + f̃i+1,j+1(x1 − x1
i )(x2 − x2

j)
)
.

• Step 5. Generate U ∼ U [0, 1]: if u ≤ f̃(x1, x2)/(cg(x1, x2)), accept x = (x1, x2);

if u > f̃(x1, x2)/(cg(x1, x2)), reject x = (x1, x2) and go back to Step 3.

The approximated pdf and the optimized coverage are displayed in the following

two figures:
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Figure 5.2: Bivariate NIG pdf and the coverage cg(x1, x2)

The 2d European call option pricing under the bivariate NIG model is again imple-

mented to show the performance of the acceptance-rejection method. In the following

table, we summarize the numerical results with sample sizes from 10 to 10, 000, 000.

We continue to use the previous parameter setting and the benchmark is borrowed

from the last section.

Pricing 2d European Pricing by Acceptance-rejection
Sample
size

Est. Call
Price

Abs Error Std. Error Accept
Rate

Running time

10 0.102742 0.048791 0.034228 0.333333 0.0002
100 0.147931 0.003601 0.013377 0.531915 0.0005
1000 0.154931 0.003399 0.004904 0.466636 0.0049
10000 0.148058 0.003474 0.001523 0.476735 0.0469
100000 0.151334 0.000198 0.000486 0.475021 0.4593
1000000 0.151416 0.000117 0.000153 0.474889 4.5813
10000000 0.151278 0.000254 0.000048 0.474975 46.5381

Table 5.2: Acceptance-rejection Methods in Pricing 2d European Call under Bivaraite
NIG Model: Exact Value = 0.151532235916, Theoretical Acceptance Rate = 0.4752

The real acceptance rate is close to theoretical acceptance rate, 0.4752.
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Chapter 6

Error Probability Analysis of EGC

Receivers from Analytic

Characteristic Functions

6.1 SER approximation and error analysis

The conditional error probability (CEP) considered in this thesis is:

Ps(ε|γ) = a · erfc(√pβγ) + b · erfc2(
√
pβγ),

where p > 0, β =
√

Eb
N0Lr

> 0, a and b are constants, and erfc(·) is the complemen-

tary error function. In an EGC system, the parameter, γ, with characteristic function

φγ(·), is defined as: γ =
√
Y , Y =

(∑Lr
l=1 Yl

)2, where Yl’s are the fading amplitudes,

and can be modeled as Rayleigh, Nakagami-m, or Nakagami-n random variables. Lr

is the total number of paths combined in the receiver.

Denote the probability density function of γ as p(γ). The average bit or symbol
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error rate (SER) is obtained by taking expectation of Ps(ε|γ) over p(γ):

E[Ps(ε|γ)] =

∫ ∞
0

Ps(ε|γ)p(γ) dγ. (6.1)

Remark 6.1. The Bit Error Rate (BER) is a special case of SER. Under Coherent

PSK cases, a = 1
2
, b = 0, p = 1. Under coherent FSK cases, a = 1

2
, b = 0, p = 1

2
.

Remark 6.2. The Square QAM is a special case of SER with q = 1 − 1/
√
M̃ , p =

1.5 log2 M̃/(M̃ − 1), a = 2q, b = −q2 (M̃ is the modulation order and is of a power of

2).

To evaluate SER, we rewrite the erfc(·) function in terms of the cumulative distri-

bution function (cdf), F (·), of the standard normal distribution:

erfc(γ) =
2√
π

∫ ∞
γ

e−t
2

dt = 2(1− F (
√

2γ)).

By [26], F (x) can be approximated efficiently by:

F̃h,M(γ) =
1

2
− i

2

M∑
m=−M

e−iβ(m−1/2)hφ((m− 1/2)h)
1

(m− 1/2)π
, (6.2)

where φ(t) = exp(− t2

2
) is the characteristic function of the standard normal distribu-

tion, h and U = Mh are respectively the discretization level and the truncation level

of the approximation.

In this way, Ps(ε|γ) is approximated by:

P̃ h,M
s (ε|γ) = 2a(1− F̃h,M(

√
2pβγ)) + 4b(1− F̃h,M(

√
2pβγ))2

= (a+ b)− i(a+ 2b)
M∑

m=−M

e−i
√

2pβγ(m−1/2)h

(m− 1/2)π
φ((m− 1/2)h)

− b

M∑
m=−M

M∑
n=−M

e−i
√

2pβγ(m+n−1)h

(m− 1/2)(n− 1/2)π2
φ((m− 1/2)h)φ((n− 1/2)h).(6.3)
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Plugging this into (6.1), and assuming the validity of interchanging the orders of

integration and summations, we then approximate the SER by:

E[P̃ h,M
s (ε|γ)]

= (a+ b)− i(a+ 2b)
M∑

m=−M

φ((m− 1/2)h)

(m− 1/2)π
φγ(−

√
2pβ(m− 1/2)h)

− b
M∑

m=−M

M∑
n=−M

φ((m− 1/2)h)φ((n− 1/2)h)

(m− 1/2)(n− 1/2)π2
φγ(−

√
2pβ(m+ n− 1)h). (6.4)

If Lr > 1 and Yl’s are independent, φγ(·) =
∏Lr

l=1 φYl(·).

6.1.1 SER approximation error analysis

One major reason of implementing this approximation method is that in many cases,

closed-form expressions of the probability density functions are not available to us, but

that of the characteristic functions are. Especially, when this characteristic function

satisfies some analytic conditions, the total approximation error admits explicit bound,

which decays exponentially.

Before the detailed analysis of the error bound, we give the definition of a class of

analytic functions on a complex strip. For −∞ < d− < 0 < d+ < +∞, D(d−,d+) =

{z ∈ C : I(z) ∈ (d−, d+)}, where I(z) denotes the imaginary part of a variable z in

the complex plane C.

Definition 6.3. A function f is in H(D(d−,d+)) if it is analytic in D(d−,d+) and satisfies

∫ d+

d−

|f(x+ iy)| dy → 0, x→ ±∞, (6.5)

Theorem 6.4. Let γ be a continuous random variable with characteristic function
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φγ(ξ) ∈ H(D(d−,d+)). For any 0 < d < min(− d−
2
√

2pβ
, d+

2
√

2pβ
), there exists an error bound

in approximating E[Ps(ε|γ)] by E[P̃ h,M
s (ε|γ)]:

|E[P̃ h,M
s (ε|γ)]− E[Ps(ε|γ)]|

≤ 2|b|e−4πd/h+d2

πd2(1− e−2πd/h)2

(
φγ(2

√
2pβdi) + φγ(−2

√
2pβdi) + 2

)
+ (2|a|+ 16|b|+ 4|b|τMh)

e−2πd/h+d2/2

√
2πd(1− e−2πd/h)

(
φγ(
√

2pβdi) + φγ(−
√

2pβdi)
)

+ τMh(|b|τMh + |a|+ 8|b|), (6.6)

where τMh = 1
πM

e−
1
2

(Mh)2
+ 1

π
Γ(0, 1

2
(Mh)2).

If we select h by h = h(M) = (4πdM−2)1/3, then there exists a constant C1, C2 > 0

independent of M such that:

|E[P̃ h,M
s (ε|γ)]− E[Ps(ε|γ)]|

≤ C1|b| exp(−(4πdM)2/3)
(
ed

2(
φγ(2

√
2pβdi) + φγ(−2

√
2pβdi) + 2

)
+ M−2/3ed

2/2
(
φγ(
√

2pβdi) + φγ(−
√

2pβdi)
)

+M−4/3
)

+ C2|a| exp(−(
√

2πdM)2/3)
(
ed

2/2
(
φγ(
√

2pβdi) + φγ(−
√

2pβdi)
)

+M−2/3
)
.(6.7)

Proof. Corollary 2.9 in [26] gives an upper bound for the absolute error in approximat-

ing F (
√

2pβγ) by F̃h,M(
√

2pβγ):

EF
h,M(

√
2pβγ) := |F̃h,M(

√
2pβγ)− F (

√
2pβγ)|

≤ e−2πd/h

2πd(1− e−2πd/h)
(e
√

2pβdγ||φ||+ + e−
√

2pβdγ||φ||−) +
1

2
τMh

=
e−2πd/h+d2/2

√
2πd(1− e−2πd/h)

(e
√

2pβdγ + e−
√

2pβdγ) +
1

2
τMh. (6.8)
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d can be selected to be any positive finite real value since φ(t) = exp(−t2/2) is decaying

exponentially at the rate that is higher than any linear order.

Denoting e−2πd/h+d2/2
√

2πd(1−e−2πd/h)
by θh, the corresponding approximation error of P̃ h,M

s (ε|γ)

is bounded by:

EPs
h,M(γ)

:= |P̃ h,M
s (ε|γ)− Ps(ε|γ)|

= |(F̃h,M(
√

2pβγ)− F (
√

2pβγ))
(
− 2a+ 4b

(
2 + (F̃h,M(

√
2pβγ) + F (

√
2pβγ))

)
|

≤ EF
h,M(

√
2pβγ)

(
2|a|+ 16|b|+ 4|b|EF

h,M(
√

2pβγ)
)

≤ 4|b|θ2
h(e
√

2pβdγ + e−
√

2pβdγ)2 + θh(2|a|+ 16|b|+ 4|b|τMh)(e
√

2pβdγ + e−
√

2pβdγ)

+ τMh(|a|+ 8|b|+ |b|τMh). (6.9)

Taking integration of this over p(γ), we then get an upper bound for the approx-

imation error of E[P̃ h,M
s (ε|γ)] in (6.6). φγ(ξ) ∈ H(D(d−,d+)) requires that 0 < d <

min(− d−
2
√

2pβ
, d+

2
√

2pβ
).

The incomplete gamma function Γ(0, 1
2
(Mh)2) ∼ 1

(Mh)2 e
− 1

2
(Mh)2 forMh large enough.

To have the terms in (6.6) decay at the same rate, we set: 2πd/h = 1
2
(Mh)2. Therefore,

selecting h = h(M) = (4πdM−2)1/3, the error bound is simplified as in (6.7).

Corollary 6.5. Let γ be a continuous random variable with pdf p(γ). If there exist

−∞ < d− < 0 < d+ < +∞ such that:

p(γ) =


O(e(d−+ε)γ), γ → +∞

O(e(d+−ε)γ), γ → −∞
,

then Theorem 6.4 applies.

According to Theorem 6.4 and Corollary 6.5, once d is chosen, one just needs to
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adjust M to bound this approximation error to a desired level.

In multivariate cases where Yl’s are dependent, but γ’s pdf satisfies the assumptions

in Corollary 6.5, Theorem 6.4 still applies. For the cases that Yl’s are independent, the

analyticity strip of γ is the intersection of the analyticity strips of all the Yl’s.

6.2 Commonly used distributions for channel fading

amplitude modeling

In this section, we analyze the tail behavior of three widely-used distributions in channel

amplitude modeling: Rayleigh, Nakagami-m, and Nakagami-n(Rice) distribution, all

of which have characteristic functions satisfying the specific analytic conditions and

have exponentially decaying pdfs.

6.2.1 Rayleigh distribution

The pdf of a Rayleigh random variable γ is given as:

p(γ) =


γ
σ2 e
− γ2

2σ2 , γ ≥ 0

0, γ < 0

,

where σ > 0 is the scale parameter of the distribution.

Since p(γ) is decaying exponentially in the order of − γ2

2σ2 , the corresponding d+ and

d− can be chosen to be any finite positive real values.

The characteristic function of a Rayleigh random variable with parameter σ is:

φγ(t) = 1− σte−
σ2t2

2

√
π

2

(
erfi(

σt√
2

)− i
)
.

Here, erfi is the imaginary error function.
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6.2.2 Nakagami-m distribution

Nakagami-m distribution has the probability density function:

p(γ) =


2m

ml
l γ2ml−1

Ω
ml
l Γ(ml)

exp
(
− mlγ

2

Ωl

)
, γ ≥ 0

0, γ < 0

,

where ml is the Nakagami-m fading parameter, and Ωl = E[γ2].

The dominating term in p(γ), exp
(
− mlγ

2

Ωl

)
, determines that it decays at an expo-

nential rate that is higher than any linear order. This determines that d+ and d− can

be any positive real value.

The characteristic function is:

φγ(t) = 1F1(ml;
1

2
;−Ωlt

2

4ml

) + it

√
Ωl

ml

Γ(ml + 1
2
)

Γ(ml)
1F1(ml +

1

2
;
3

2
;−Ωlt

2

4ml

),

where 1F1(·; ·; ·) is the confluent hypergeometric function of the first kind.

6.2.3 Nakagami-n(Rice) distribution

A Nakagami-n random variable has the following pdf:

p(γ) =


2(1+n2

0)γe−n
2
0

Ω
e−

1+n2
0

Ω
γ2
I0

(
2n0γ

√
1+n2

0

Ω

)
, γ ≥ 0

0, γ ≤ 0

,

where I0(u) =
∑∞

k=0
(−1)ku2k

22k(k!)2 is the zero-order Bessel Function of the first kind.

We confirm the exponentially decaying tail behavior of p(γ). d+ and d− can be

chosen to be any positive real number.

The corresponding characteristic function of Nakagami-n(Rice) distribution is:
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φγ(t)

=e−n
2
0

∞∑
k=0

n2k
0

k!

(
1F1(k + 1;

1

2
;− t2Ω

4(1 + n2
0)

) +

√
Ω

1 + n2
0

it
Γ(k + 3

2
)

Γ(k + 1)
1F1(k +

3

2
;
3

2
;− t2Ω

4(1 + n2
0)

)
)
.

6.2.4 Correlated Nakagami-m distribution

For the multi-dimensional case, by [41], the characteristic function for the Lr-variate

Nakagami-m distributed random variables, Y1, Y2, · · · , YLr , with exponential correla-

tion coefficient ρi,j = ρ|i−j|(i, j = 1, 2, · · · , Lr) is given as:

φY1,Y2,··· ,YLr (t1, t2, · · · , tLr)

=
2Lr(1−2ml)π

L
2 (1− ρ2)ml

Γ(ml)(1 + ρ2)ml(Lr−2)

∞∑
i1,i2,··· ,iLr−1=0

(ρ
4

)2
∑Lr−1
j=1 ij

×(1 + ρ2)−
(
i1+2

∑Lr−2
j=2 ij+iLr−1

)
β∏

j=1 Lr − 1ij!Γ(ml + ij)

×
Lr∏
k=1

Γ(2ξk)[Ak1F1

(
ξk;

1

2
;−ckt2k

)
+ itkBk1F1

(1

2
+ ξk;

3

2
;−ckt2k

)
],

(6.10)

where β = 0 for Lr = 2 and β = 1 for Lr ≥ 3, ξk = ik−1 + ik +ml, and
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Ak = [Γ(
1

2
+ ξk)]

−1, k = 1, 2, · · · , Lr

Bk =


√

2(1− ρ2)[Γ(ξk)]
−1, k = 1, Lr√

2(1−ρ2)
1+ρ2 [Γ(ξk)]

−1, k = 2, 3, · · · , Lr − 1

ck =


1−ρ2

2
, k = 1, Lr

1−ρ2

2(1+ρ2)
, k = 2, 3, · · · , Lr − 1

,

where i0 = iLr = 0.

6.3 Numerical Experiments

In this section, we exhibit the proposed approximation method numerically. The fol-

lowing numerical experiments are done on a MacBook Pro with 8GB RAM and 2.6

GHz Intel Core i5 with C++.

In Section 6.3.1, we display BER approximation results under cases Lr = 1, 2, 3.

Section 6.3.2 takes one-dimensional Rayleigh distribution as an example by plotting

the BER with respect to SNR.

The parameter settings we choose for the numerical experiments are listed in Table

6.1:

Parameter Setting
Rayleigh σ = 0.2
Nakagami-m ml = 2, Ωl = 0.25

Nakagami-n(Rice) n0 =
√

2, Ω = 0.25
(exponentially) correlated
Nakagami-m

ml = 0.8, Ωl = 0.25, ρ = 0.3

Table 6.1: Parameter Setting
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Since the selection of h is based on the choice of d by h = h(M) = (4πdM−2)1/3.

Due to the fastly decaying property of the special functions, d should take small values

to avoid large approximation error.

6.3.1 BER approximation

In our BER numerical experiment part, we consider only the coherent FSK cases, with

a = 1
2
, b = 0, p = 1

2
.

Table 6.2 gives the BER approximation results under Rayleigh distribution with

σ = 0.2 and β = 50. d is set to be 0.1. M value ranges from 4 to 28. h = h(M) is taken

and values are included in the second column of the table. The approximated BER

values are included in the Column ’approx BER’. The benchmark used for computing

the approximation error comes from the closed-form BER expression with respect to

SNR by [40]: BER = 1
2
(1−

√
SNR

1+SNR
). As we can see, the approximated BER converges

to 0.00248141 with approximation error reaching the level of 1.0E-9.

BER Approximation
M h approx BER approx error comp time
8 0.2698 0.07032397 6.8E-2 3.0E-6
12 0.2059 0.01237585 9.9E-3 7.0E-6
16 0.1700 0.00312974 1.2E-3 9.0E-6
20 0.1465 0.00259128 1.1E-4 8.0E-6
24 0.1297 0.00249036 9.0E-6 1.2E-5
28 0.1170 0.00248204 6.3E-7 1.4E-5
32 0.1071 0.00248144 3.9E-8 1.4E-5
36 0.0990 0.00248141 2.2E-9 1.5E-5
40 0.0923 0.00248141 1.1E-10 2.7E-5

Table 6.2: BER Approximation: γ ∼ Rayleigh(0.2), β = 50, d = 0.1

Table 6.3 shows the approximated BER values under Nakagami-m(2, 0.25) while

M takes value from 20 to 40. d = 0.05 and β = 50. Since there is no closed-form

solution to BER under Nakagami-m distribution, we use the approximated BER value
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with M = 48 and h = h(M) correspondingly as the benchmark. The approximated

BER approaches to 0.00000760 with approximation error decreases below 1.0E-9 level

finally.

BER Approximation
M h approx BER approx error comp time
20 0.1162 0.00095006 9.4E-4 1.3E-4
24 0.1029 0.00009887 9.1E-5 1.7E-4
28 0.0929 0.00001500 7.4E-6 2.0E-4
32 0.0850 0.00000811 5.1E-7 2.4E-4
36 0.0786 0.00000763 3.1E-8 2.7E-4
40 0.0732 0.00000760 1.7E-9 3.9E-4
44 0.0687 0.00000760 7.5E-11 4.0E-4

Table 6.3: BER Approximation: γ ∼ Nakagami-m(2, 0.25), β = 50, d = 0.05

Similarly, Table 6.4 shows the numerical results for γ ∼ Nakagami-n(2, 0.25), d =

0.05, β = 50. Benchmark value is approximated by setting M = 50 and h = h(M)

correspondingly.

BER Approximation
M h approx BER approx error comp time
16 0.1349 0.00878907 8.5E-3 8.4E-4
20 0.1162 0.00120124 8.7E-4 1.2E-3
24 0.1029 0.00039683 6.6E-5 1.5E-3
28 0.0929 0.00033502 3.7E-6 2.0E-3
32 0.0850 0.00033144 1.7E-7 2.4E-3
36 0.0786 0.00033128 5.8E-9 2.6E-3
40 0.0732 0.00033128 1.6E-10 3.5E-3

Table 6.4: BER Approximation: γ ∼ Nakagami-n(
√

2, 0.25), β = 50, d = 0.05

The numerical results for γ = Y1 + Y2, Y1 ∼ Rayleigh(0.2), Y2 ∼ Nakagami-m(2,

0.25), β = 10 are included in Table 6.5. We set d = 0.1. The 2-dimensional BER con-

verges faster and stays around 0.00015147 as soon as M reaches 10. The approximation

error is below the level of 1.0E-9 afterwards. Here the benchmark is the approximated

value when M = 35.
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BER Approximation
M h approx BER approx error comp time
2 0.6798 0.19328928 1.9E-1 6.0E-6
4 0.4282 0.00219236 2.0E-3 1.0E-5
6 0.3268 0.00015608 4.6E-6 1.4E-5
8 0.2698 0.00015148 5.2E-9 1.8E-5
10 0.2325 0.00015147 1.4E-10 2.3E-5
12 0.2059 0.00015147 1.7E-11 2.9E-5

Table 6.5: BER Approximation, γ = Y1 +Y2: Y1 ∼ Rayleigh(0.2), Y2 ∼ Nakagami-m(2,
0.25), β = 10, d = 0.1

Numerical results for BER approximation under 2-d correlated Nakagami-m dis-

tribution in Table 6.6 shows exponential convergence. The exact value benchmark is

chosen as the approximated value with M = 90.

BER Approximation
M h approx BER approx error comp time
20 0.1162 0.00294194 2.9E-3 4.0E-3
26 0.0976 0.00031579 2.6E-4 6.2E-3
32 0.0850 0.00007960 1.9E-5 8.3E-3
38 0.0758 0.00006170 1.2E-6 1.1E-2
44 0.0687 0.00006054 6.7E-8 1.3E-2
50 0.0631 0.00006048 2.7E-9 1.4E-2

Table 6.6: BER Approximation: γ = Y1 + Y2, Y1, Y2 ∼ correlated Nakagami-m(0.8,
0.25), ρ = 0.3, β = 10, d = 0.05

As Table 6.7 shows, when β = 10, d is chosen to be 0.1, and γ = Y1 + Y2 + Y3,

Y1 ∼ Rayleigh(0.2), Y2 ∼ Nakagami-m(2, 0.25), Y3 ∼ Nakagami-n(
√

2, 0.25), the

approximated BER exhibit fast convergence to the level 0.00000485. We choose the

approximated value with M = 30 to be the benchmark.

6.3.2 BER vs SNR

This section shows the relationship between BER and SNR numerically under one-

dimensional Rayleigh distribution. With increasing value of σ, the value of SNR in-
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BER Approximation
M h approx BER approx error comp time
4 0.4282 0.17447099 1.7E-1 7.2E-5
6 0.3268 0.00992374 9.9E-3 1.1E-4
8 0.2698 0.00021910 2.1E-4 1.4E-4
10 0.2325 0.00000708 2.2E-6 2.1E-4
12 0.2059 0.00000486 1.3E-8 2.3E-4
14 0.1858 0.00000485 4.6E-11 2.9E-5
16 0.1700 0.00000485 1.0E-13 3.0E-4

Table 6.7: BER Approximation, γ = Y1 +Y2 +Y3: Y1 ∼ Rayleigh(0.2), Y2 ∼ Nakagami-
m(2, 0.25), Y3 ∼ Nakagami-n(

√
2, 0.25), β = 10, d = 0.1

creases, consequently, BER decreases. In Figure 6.3.2, we plot the approximated BER

values in log scale with respect to SNR values varying from 0 to 35. Here, the SNR

values are transformed into unit dB by SNR = 10 log10(β2σ2).

6.3.3 Square QAM approximation

To show the efficiency in approximating Square QAM by our method. We take three

examples: γ ∼ Rayleigh(0.2), γ = Y1 + Y2, Y1 ∼ Rayleigh(0.2), Y2 ∼ Nakagami-m(2,

0.25), and γ = Y1 + Y2, Y1, Y2 ∼ correlated Nakagami-m(0.8, 0.25), with ρ = 0.3.

Under the current parameter setting, Square QAM approximation results in Table

6.8 for the 1-d Rayleigh case reaches the stable level as soon as M gets close to 55.

Square QAM Approximation
M h approx Square QAM approx error comp time
25 0.1002 0.00057324 1.4E-8 5.8E-3
30 0.0887 0.00057328 2.8E-8 8.2E-3
35 0.0800 0.00057329 3.0E-8 1.3E-2
40 0.0732 0.00057328 2.3E-8 1.8E-2
45 0.0677 0.00057327 1.5E-8 2.0E-2
50 0.0631 0.00057326 9.5E-9 2.6E-2
55 0.0592 0.00057326 5.3E-9 3.5E-2

Table 6.8: Square QAM Approximation: γ ∼ Rayleigh(0.2), β = 60, d = 0.05, M̃ = 32
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Figure 6.1: 1-d Rayleigh BER vs SNR (dB)

Table 6.9 shows exponential convergence in the Square QAM approximation error.

Square QAM Approximation
M h approx Square QAM approx error comp time
10 0.2325 0.02274020 2.3E-2 1.1E-3
14 0.1858 0.00092261 9.2E-4 2.3E-3
18 0.1572 0.00002541 2.0E-5 3.6E-3
22 0.1374 0.00000527 2.9E-7 5.6E-3
26 0.1230 0.00000499 3.0E-9 7.8E-3
30 0.1118 0.00000499 2.7E-11 1.2E-2

Table 6.9: Square QAM Approximation: γ = Y1 + Y2: Y1 ∼ Rayleigh(0.2), Y2 ∼
Nakagami-m(2, 0.25), β = 60, d = 0.1, M̃ = 32

Square QAM approximation error in Table 6.10 decays exponentially with increas-

ing M . The approximated value when M = 66 is selected as benchmark Square QAM

value.
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BER Approximation
M h approx Square QAM approx error comp time
6 0.2594 0.02641576 2.5E-2 9.7E-3
12 0.1634 0.00126018 9.6E-5 4.2E-2
18 0.1247 0.00116193 2.1E-6 9.8E-2
24 0.1029 0.00116330 7.2E-7 2.0E-1
30 0.0887 0.00116377 2.5E-7 3.3E-1
36 0.0786 0.00116393 8.9E-8 5.2E-1
42 0.0709 0.00116399 3.3E-8 7.5E-1
48 0.0648 0.00116401 1.2E-8 9.8E-1
54 0.0600 0.00116401 4.4E-9 1.3E-0

Table 6.10: Square QAM Approximation: γ = Y1 + Y2, Y1, Y2 ∼ correlated Nakagami-
m(0.8, 0.25), ρ = 0.3, β = 15, d = 0.05
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