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Abstract

Complex system arises as a result of inter-dependencies between multiple components. The nonlinear

interactions occurring in the system usually lead to emergent behaviors. The emergence prevails in many

natural systems, such as the fractal dynamics of stream chemistry, the chaotic behavior of atmospheric

convection, the entropy production due to the dissipative structure of plants, and so forth. Multivariate

interactions of the entire system definitely play a key role in sustaining these emergent behaviors, which will

not happen solely based on the dynamics of univariate or the interactions within a specific set of variables.

Therefore, improving the understanding on the whole system dynamics requires the consideration of how

the entire evolutionary dynamics of a system, termed causal history, jointly shapes its present state.

In this dissertation, the primary goal is to establish a framework for the study of whole system evo-

lutionary dynamics from multivariate interactions. To achieve that, an information-theoretic formulation

is developed to characterize the joint influence from the entire causal history to the present state of each

variable using a directed acyclic graph representation. The proposed framework builds on the quantification

and characterization of information flow from one source through a causal pathway and two sources through

the interaction of separable pathways, which takes advantage of the idea of momentary information transfer

and partial information decomposition. Momentary information transfer captures the amount of information

flow between any two variables lagged at two specific points in time. Partial information decomposition char-

acterizes the joint effect from two sources into redundant, synergistic and unique contributions. To evaluate

the joint influence from the causal history, we partition it into immediate causal history, as a function of lag

τ from the recent time, to capture the influence of recent dynamics, and the complementary distant causal

history. Further, each of these influences are decomposed into self and cross feedbacks. Such a partition

allows the characterization of the information flow from the self- and cross-dependencies with other variables

in both histories.

This causal history analysis approach is then implemented to investigate the dynamics of different types of

systems. It successfully illustrates the memory dependencies of short- and long-memory processes. Further,

we find the information characterization differs from system to system, illustrating their various dynamics.
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A long-memory process, for instance, is sustained by self-feedback-dominated recent dynamics and cross-

dependency dominated earlier dynamics. In the analysis of observed stream chemistry data, this analysis

indicates the key role of the flow rate in creating cross connectivities among stream solutes and also its

influence on the dynamics of each solute. Meanwhile, the information from cross-dependence is non-negligible

even after correcting for the dependency of flow rate in raw data. It suggests that besides its self-feedback

interaction, the resulting 1/f signature of each solute is also maintained by the interactions with other

variables in the stream.

Last, we evaluate the structure of numerical models based on the idea of information flow between

variables. Since we have the ability to intervene in numerical models, the evaluation analyzes how intervening

or freezing one or multiple lagged source variables impacts the dynamics of each target variable. Such

interventional-effect is different from the prior observational data based analysis anchored on statistical

dependencies, and thus provides a complementary view on the component interaction. The analysis of the

Lorenz model illustrates the potential contradictory conclusion drawn from the two perspectives, in terms of

the extent of information transferred from source variables. It, therefore, reveals the importance of numerical

modelling effort in providing insights on the dynamics of the simulated natural systems, in addition to the

analysis of observational data.

A better and deeper understanding of complex system dynamics is becoming a necessity due to a higher

demand on multidisciplinary research nowadays. With increasing availability of observational data and

complexity of numerical models, the information-theoretic metrics proposed and utilized here open new

avenues for understanding complex system dynamics.
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Chapter 1

Introduction

Complex systems, that are systems exhibiting emergent behaviors of forms and functions, arise as a

result of nonlinear dynamics and feedback interactions among multiple components in the system. Com-

plexity is ubiquitous in nature. For instance, plants emerge as dissipative systems regulating the incoming

and outgoing fluxes, such as water, carbon dioxide, radiation, etc., as well as interacting with its surround-

ing environments to maximize the overall entropy production [Schneider and Kay, 1994]. Stream solutes

usually show fractal signature, indicating self-organized dynamics in the watershed due to their internal

transporting/mixing dynamics as well as their interactions with atmospheric forcing and subsurface pro-

cesses [Kirchner et al., 2000].

One key feature associated with the complexity of a system is that the whole is greater than sum

of the parts. That is, the emergent characteristics associated with the whole system dynamics can only

be observed or quantified through the understanding of all interacting components. On the other hand,

subsystem interactions that contribute to the system-level complexity, however, do not show the same

properties individually. In earth science, the emergence of the self-similar river network is found to result

from the spatial randomness of the surface resistance, leading to the minimization of the total energy

expenditure [Paik and Kumar, 2008]. In a brain system, such complexity can be seen as the emergence of

consciousness due to the multitude of interactions in the brain network [Tononi and Edelman, 1998]. In

human society, a city is not just the sum of all its physical infrastructures and the interactions among

its residents, but rather it is an emergent complex system that optimizes its different functionalities such

as transportation and water flow through the urban drainage system [West, 2017, Yang et al., 2017]. A

thorough analysis on how the whole system dynamics enables and shapes the dynamics of each individual

component would definitely lead us beyond the traditional observation of emergent behaivors, towards a

more sophisticated understanding of these emerging phenomena.

Fortunately, the increasing availability of observational data, due to the rapid advance of modern ob-

serving technology, opens up more avenues for understanding complex system dynamics [Strogatz, 2000,
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Neal et al., 2013]. In geoscience, different types of observational networks (e.g., AmeriFlux1, the U.S. Cli-

mate Reference Network2, NOAA-NCEI3, USGS Water Data for the Nation4, and so forth) have been

deployed in the past decade. In addition to facilitating many existing data-driven approaches, such as

traditional statistical approaches and different emerging machine learning techniques, these emerging vast

observational data would be extremely helpful in serving as a basis for theoretical developments to achieve

a more sophisticated understanding of the multivariate interactions in complex systems.

On the flip side, physical modelling, a common way for simulating a system’s dynamics, serves as a white

box allowing the internal interactions of a system to be viewable from the outside [Paniconi and Putti, 2015].

It allows ensemble simulations – providing multiple trajectories of dynamics, as well as intervention of the

simulated system – that have the possibility to provide insights on the propagation of the interventions on

system’s dynamics. These two features of physical modelling are not available in nature, where intervening

natural systems is hard and observational data only contain one trajectory of the dynamics. Such unique-

ness enables modelling to serve as an ideal testbed to understand the complexity of the system through a

characterization of its dynamics from ensemble simulations and interventions.

To capture the interactions or causal relationships among time-series data through either observations

or model simulation, information theory stands out as a compelling approach [Shannon and Weaver, 1949].

This is due to its capability in capturing the nonlinear interactions among multiple components, regardless

of whether the system can be intervened. Specifically, information theory provides avenues to quantitatively

delineate the direction, strength, and content of influences between variables, termed information flow.

The goal of this dissertation is to develop an information-theoretic framework for investigating the mul-

tivariate interactions that shape the whole system dynamics, based on both observational data and physical

modelling. In this chapter, we provide the background of different types of interactions in complex system

dynamics as well as the corresponding quantification through information flow. Then, we state the research

questions and the contributions from this work, and present the organization of the rest of the dissertation.

1.1 Background

The complexity of a system is closely related to its entire evolutionary dynamics occurring in the system.

It anchors on how the past shapes the present. In other words, the inter-dependencies between the present

state of each component and the historical states of all the components contain the information of how

1https://ameriflux.lbl.gov/
2https://www.ncdc.noaa.gov/crn/
3https://www.ncei.noaa.gov/
4https://waterdata.usgs.gov/nwis
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the whole system behavior is sustained. For instance, the dissipative structure of an open system is first

created and then maintained, due to its internal dynamics as well as its interactions with the surrounding

environment through the incoming and outgoing fluxes over time [Nicolis and Prigogine, 1989]. The process

of the emergence of the dynamical dynamics structure is a consequence of an enhanced interaction among

the components [Rosas et al., 2018]. Meanwhile, how the complexity is sustained over time remains an open

question, calling for a solution for an improved understanding of the system dynamics. Addressing this

question requires illustrating different causal relationships among system components as well as developing

appropriate metrics for characterizing these causal relationships.

1.1.1 Causal Relationships in a Multivariate Complex System

Understanding the causal relationships in a complex system first requires a well-defined way for identifying

causality. In an elementary bivariate case, the causal relationship between a lagged source variable Yt−τ

and a target variable Zt refers to how Yt−τ influences Zt. A natural way to assess the causality is to

analyze how the effect of the intervention of Yt−τ propagates through all the interactions in the system and

eventually alters Zt’s dynamics. This is known as Pearl causality [Pearl, 2000]. Pearl causality can be used

in understanding component interactions in modelled system, where system interventions are controllable.

However, Pearl causality is infeasible in many natural systems, where only observations are available and

system intervention is extremely hard if not impossible. Thus, an alternative for assessing the cause-effect

relationship from statistical dependency perspective by using only observational data anchors on Granger

causality [Granger, 1969]. In its original formulation, Granger causality [Granger, 1969] evaluates the

reduction in the variance of Zt due to the knowledge of Yt−τ . While Pearl causality relies on intervention

of a variable in the system and the assessment of the ensuring impact on the system, Granger causality

relies on the inference of such a dependence through unconstrained evolution of the system arising through

all the joint interactions present therein. While the original formulation of Granger [Granger, 1969] relies

only on second order measure, the approach can be extended to consider the entire probability distribution.

This can be achieved using information-theoretic measures such as Shannon’s entropy [Schreiber, 2000,

Runge et al., 2012b]. Since the joint distribution under consideration are that of target at a specific time

and that of a source at a previous time, we see this as information flow from source to target associated with

the cause-effect dynamics
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Directed Acyclic Graph for Time-Series

Given the causal relationship for each pair of variables, in either Pearl or Granger sense, we need an

appropriate representation of the dynamical evolution for discerning the causality in a multivariate system.

Consider a system with N variables, ~Xt = {Xt, Yt, Zt, ...}N , varying in time t. The influence from the whole

system history can now be revealed as the fact that the current state of any variable Zt ∈ ~Xt is a result

of the entirety of all the earlier dynamics in the system. One common way to represents complex system

dynamics is by using process network, which is a network depicting the lagged interaction between each pair

of variables [Ruddell and Kumar, 2009a, Ruddell and Kumar, 2009b], illustrated through an example in a

quadvariate system in Fig. 1.1(a). The number shown on the edge refers to the temporal lag associated with

the causal influence between the two linked variables. Further, to visualize the temporal dependencies of the

system, we illustrate the dynamics in a corresponding Directed Acyclic Graph (DAG) representation

for time-series in Fig. 1.1(b), consisting of all the historical states ~X−t+1 = { ~Xt, ~Xt−1, ~Xt−2, ~Xt−3, ...}.

Now, each node refers to a temporal variable Zt ∈ ~X−t+1. A directed edge in E linking two nodes Yt−τ and

Zt, written as Yt−τ → Zt, stands for a direct causal influence from Yt−τ to Zt, where τ is a positive time

lag. It can be observed from the DAG that the present state of a target variable at time t is driven by

the entire dynamics prior to t in the system. We call this prior dynamics ~X−t = { ~Xt−1, ~Xt−2, ~Xt−3, ...} as

causal history. Then, unravelling the whole system dynamics can be translated to addressing the following

question: In what way do the states of interdependent variables from the causal history influence

the present state of each target variable which leads to the emergent whole system dynamics?

Different Causal Relationships in the DAG

Characterizing the influence from the entire causal history to a target Zt requires the understanding of

how the target is driven by different parts of the historical dynamics as captured in the DAG, including:

(1) one directed edge from a source node Yt−τ (Fig. 1.1(c)); (2) one causal path CYt−τ→Zt – a set of nodes

connected by a sequence of edges directing the influence from Yt−τ to Zt (Fig. 1.1(d)); (3) two causal

paths – directing the influence from two sources (Fig. 1.1(e)); and (4) recent dynamics, called immediate

causal history, and the complementary earlier dynamics, called distant causal history, partitioned by

a time lag τ (Fig. 1.1(f)). Each individual lagged source Yt−τ is the basic unit that affects the target

Zt through a directed edge or indirectly through a causal path CYt−τ→Zt . For multivariate case, such

as the illustration of two lagged sources Yt−τY and Ut−τU in Fig. 1.1(e), each source influence the target

Zt through its own causal path individually, but would eventually have a joint effect on the target. In

addition, such understanding of multivariate interactions from the entire historical dynamics further draws
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upon how specific parts of the history jointly influence the target node. In this dissertation, we further

explore the partitioning shown in Fig. 1.1(f): first, the interplay between immediate and distant causal

histories; and second, the interplay between self-and cross-dependency dynamics. The partition in terms

of immediate/distant causal histories enables the investigation of the memory dependency of the system.

For instance, a long-memory process is expected to receive influences from a very early dynamics in distant

causal history. Also, the partition into self-and cross-dependencies is important because of the dominance

of self-feedback interactions in many natural systems. Therefore, insights from its interplay with cross-

dependency would essentially help reveal the mechanism sustaining the complexity of a system. Given

different causal relationships shown in Figs. 1.1(c)-(f), we now need an approach to characterize these

relationships, quantified as information flow.

1.1.2 Quantifying Causal Relationships through Information Flows

Information theory is employed to delineate the causal relationships due to its capability in characterizing

the nonlinear dependencies among multiple variables from time-series data. Similar to the mass and energy

flows among different interactions in nature, information theory captures the flows of information provided

by source variable(s) to inform the dynamics of a target variable. The resulting interactions characterized

in the above causal relationships are thus termed information flow. Here, we first briefly introduce the

background of information theory. Then, we review the idea of momentary information transfer developed

by [Runge et al., 2012b] that captures the information flow between a pair of lagged variables either through

a directed edge (Fig. 1.1(c)) or through a causal path (Fig. 1.1(d)).

Primer on Information Theory

We anchor on Shannon’s entropy [Shannon and Weaver, 1949]. It quantifies the uncertainty of a variable

Xt, and is given by:

H(Zt) = −
∑
zt∈Zt

p(zt) log p(zt), (1.1)

where p(zt) is the probability of Zt. In a bivariate case of Zt and Yt−τY , the uncertainty of Zt that remains

given the knowledge of Yt−τY can be quantified as a corresponding conditional entropy:

H(Zt|Yt−τY ) = −
∑

zt∈Zt,yt−τY ∈Yt−τY

p(zt, yt−τY ) log
p(zt, yt−τY )

p(zt)
, (1.2)
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t-   -1 t-   t-4t-   -2 t-3 t-2 t-1 tτττ
(f) immediate and distant causal histories

X

Y

Z

U
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(c) a directed edge
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Z
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t-   -1 t-   t-4t-   -2 t-3 t-2 t-1 tτττ
(d) one causal path
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Z
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X
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Z
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(e) two causal paths

sources target edges linking sources to target 

U

Y

X
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1
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1

1
1
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From process network… …to directed acyclic graph for time-series

(a)
t-   -1 t-   t-4t-   -2 t-3 t-2 t-1 tτττ(b) 

X

Y

Z

U

causal history

Influence to the target node from/through…

self-dependence cross-dependence

Figure 1.1: Illustration of the dynamics of a quadvariate complex system in (a) process network and (b)
directed acyclic graph (DAG) representation for time-series, as well as using the DAG for showing the
influence on the present state of a target from one lagged source through (c) a directed edge (d) or a causal
path, (e) two lagged sources, and (f) the immediate and distant causal histories.
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where p(zt, yt−τY ) is the joint probability of Zt and Yt−τY . Moreover, the shared dependency between Zt

and Yt−τY can be measured by using Mutual Information (MI) of the two variables, which is given by:

I(Zt;Yt−τY ) =
∑

zt∈Zt,yt−τY ∈Yt−τY

p(zt, yt−τY ) log
p(zt, yt−τY )

p(zt)p(yt−τY )

= H(Zt)−H(Zt|Yt−τY ) = H(Yt−τY )−H(Yt−τY |Zt). (1.3)

The last two equalities of Eq.(1.3) illustrate that I(Zt;Yt−τY ) symmetrically measures the shared dependency

between Zt and Yt−τY or the reduced uncertainty of one variable given the knowledge of the other.

In addition, to have an asymmetric measure capturing the directional influence from a source to a target,

Transfer Entropy (TE) [Schreiber, 2000] is proposed. TE quantifies the information transfered to a target, Zt,

from a sequence of previous states of another variable, Yt−1:t−τ = {Yt−1, Yt−2, ..., Yt−τ}, given the knowledge

of the past states of itself, Zt−1:t−τ = {Zt−1, Zt−2, ..., Zt−τ}. It is computed through a conditional mutual

information, and is given by:

ITE,fullY→Z (τ) = I(Zt;Yt−1:t−τ | Zt−1:t−τ ). (1.4)

Meanwhile, to evaluate the transfer of information from a specific previous state of Y , Yt−τ , to Zt given

merely the immediate history of Zt, Eq.(1.4) can be revised as:

ITEY→Z(τ) = I(Zt;Yt−τ | Zt−1). (1.5)

Furthermore, when a third variable Xt−τX is considered as influencing the target Zt, in addition to Yt−τY ,

the total uncertainty reduction of Zt due to both Xt−τX and Yt−τY is measured as the mutual information be-

tween Zt and the union of Xt−τX and Yt−τY , that is, I(Zt;Xt−τX , Yt−τY ). To further characterize different in-

formation contents in I(Zt;Xt−τX , Yt−τY ), Partial Information Decomposition (PID) [Williams and Beer, 2010]

has been developed to decompose the total information into (1) synergistic information – information jointly

provided by Xt−τX and Yt−τY , denoted as S; (2) redundant information – the overlapping information from

the two sources, denoted as R; and (3) unique information – information provided by each source individually,

denoted as UX and UY , respectively. PID is then given by:

I(Zt;Xt−τX , Yt−τY ) = S +R+ UX + UY . (1.6)
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t-   -1 t-   t-4t-   -2 t-3 t-2 t-1 tτττ
(a) information flow through a directed edge

X

Y

Z

U

Yt−1 → Zt

t-   -1 t-   t-4t-   -2 t-3 t-2 t-1 tτττ
(b) information flow through a causal path

X

Y

Z

U

CYt−3→Zt

source target Zt
edges linking 
sources to Zt

condition sets in 
Eqs.(1.6) and (1.7)

Figure 1.2: Illustration of pairwise information flow to a target node Zt in a quadvariate complex system from
(a) Yt−1 through a directed edge by using Momentary Information Transfer (MIT); and (b) Yt−3 through
the corresponding causal path CYt−3 → Zt by using Momentary Information Transfer along causal Path
(MITP).

Information Flow in a Pairwise Interaction

When multivariate time-series observations of a complex system are available, the information flow from

a lagged source Yt−τ to a target Zt has been addressed in a Granger sense. Metrics have been proposed to

quantify the pairwise information flow, anchoring on the idea of momentary information [Runge et al., 2012b,

Runge et al., 2012a, Runge, 2015]. It captures the information flow transferred between two lagged nodes

through a directed edge or indirectly through a causal path, as shown in Figs. 1.1(c) and (d), respectively.

Consider a direct causal influence between Yt−τ and Zt through an edge, as shown in Fig. 1.1(c). That is,

Zt and Yt−τ are connected with a directed edge if and only if Yt−τ and Zt are statistically dependent when

conditioned on the remaining past states of the system. Mathematically, such influence can be measured as

a conditional mutual information, and is given by [Runge et al., 2012b]:

I(Zt;Yt−τ | ~X−t \Yt−τ ) > 0, (1.7)

where \ is the exclusion symbol. The conditional mutual information (CMI) in the above inequality quantifies

the information flow from Yt−τ to Zt conditioned on the knowledge of the rest of the dynamics.

The computation of CMI in Eq.(1.7) is infeasible due to the potentially infinite number of nodes in

the condition set ~X−t \Yt−τ . To avoid this ‘curse of dimensionality’, the Markov property for DAG is as-

sumed [Lauritzen et al., 1990]. Loosely speaking, this property states that a node Zt is statistically indepen-
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dent of its non-descendants if its parents PZt are given, where PZt = {Xt−τ : Xt−τ ∈ ~Xt−τ , τ > 0, Xt−τ →

Zt}. The property implies that Zt is independent of ~X−t \PZt given the knowledge of PZt . Correspondingly,

the CMI in Eq.(1.7) can be revised as:

IMIT
Yt−τ→Zt = I(Zt;Yt−τ | PZt , PYt−τ \PZt), (1.8)

which is called as Momentary Information Transfer (MIT) [Runge et al., 2012b]. Eq.(1.8) holds because

under Markov property of DAG the dynamics between Zt and Yt−τ are independent of the rest of the

historical states if conditioned on the parents of the two nodes. An example of the condition set is illustrated

as the gray nodes in Fig. 1.2(a) for the influence from Yt−1 to Zt. MIT quantifies the direct interaction

between two nodes acting as source and targets, by excluding any information from other nodes that may

be flowing through the source or directly to the target.

In addition to a direct influence through an edge, a lagged source node Yt−τ can also indirectly affect a

target node Zt through the corresponding causal path CYt−τ→Zt . An example is illustrated as the influence

from Yt−3 to Zt in the quadvariate system in Fig. 1.1(d). The quantification of the information flow through

CYt−τ→Zt is the same as Eq.(1.7). However, the corresponding simplification of Eq.(1.7) based on Markov

property is different from Eq.(1.8), and leads to the Momentary Information Transfer along causal Path

(MITP) [Runge, 2015]:

IMITP
Yt−τ→Zt = I(Zt;Yt−τ | PZt , PCYt−τ→Zt \PZt), (1.9)

where PCYt−τ→Zt are the parents of the causal path CYt−τ→Zt . Note that the condition set in Eq.(1.9) is

now defined by separating the union of Zt and CYt−τ→Zt from the rest of earlier dynamics, as illustrated in

gray nodes in Fig. 1.2(b) for the influence from Yt−3 to Zt. Therefore, Eq.(1.9) gives the information flow

from a single lagged source Yt−τ to a target Zt going only through the causal path CYt−τ→Zt .

1.1.3 What’s Next?

PID in Eq.(1.6) characterizes the influence from two sources to a target into synergistic, redundant, and

unique information content. Meanwhile, the idea of MIT and MITP captures the information flow transferred

between lagged variables directly or through specific causal pathways. Together, PID and MIT/MITP,

therefore, provide a way of thinking for further developments for characterizing the influence from either

two causal paths or the entire causal history from observational data, as illustrated in Figs. 1.1(e) and (f),

respectively. It would allow us to delineate the joint effect from the whole system dynamics, and assess how
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interactions among all variables in the system leads to emergent behaviors, which is the target for this study.

Meanwhile, in addition to the causal analysis of observational time-series data in the Granger sense,

numerical models provide an alternative way to characterize the interactions in a system from the perspective

of Pearl causality. This is because modelled systems can be easily intervened and also offer the possibility

of generating an ensemble of simulation. The interventional perspective on the interactions of a system is

strategic in that it offers a complementary view allowing us to assess the components interactions in models,

and correspondingly sheds light on the structure of modelled systems.

1.2 Research Question and Contribution

The primary goal of this dissertation is to understand the emergent behaviors of complex systems

by characterizing the influence from the multivariate interactions in the causal history to the

present state of each target variable. To achieve that, we investigate the joint influence to the present

state of a target variable from the entire evolutionary dynamics of the system, or causal history. In particular,

the following specific aims are addressed.

• Characterize the interactions of information from multiple lagged source variables to a target variable.

• Quantify the influence to a target from both its distant and immediate causal histories.

• Characterize the joint influence of the self- and cross-dependencies of a target in both distant and

immediate causal histories.

• Evaluate the structure of numerical models by quantifying the change of a target’s density evolution

under the intervention of lagged sources.

The original contributions of this dissertation are:

• We develop a momentary partial information decomposition to characterize the interactions of

information flows through the pathways from two lagged source variables to a target variable.

• The influence of the entire evolutionary dynamics of a system, or causal history, on the outcome of

each component is systematically evaluated by using an information-theoretic framework, referred to

as causal history analysis.

• Causal history analysis is used to illustrate the memory dependencies of different types of dynamical

systems, including a short-memory system and several long-memory systems.
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• Causal history analysis is shown to improve the understanding of the whole system dynamics. Specifi-

cally, it is shown that: (1) the complexity of a long-memory system is sustained by a self-dependency-

dominated recent dynamics as well as a cross-dependency-dominated earlier dynamics; and (2) the

information characterization in immediate and distant causal histories is able to indicate the depen-

dence among individual components of a system.

• The analysis of the structure of the Lorenz chaotic model provides insights through complementary

views of the interventional effect and the statistical dependence gives different or even constrasting

interpretations on the extent of the influence from lagged source(s) to a target.

1.3 Organization

The dissertation is organized as follows.

• Chapter 2 presents the momentary partial information decomposition approach for characterizing the

interactions of information resulting from two lagged sources to a target through two separable causal

paths. It builds on the recent advances of momentary information transfer – quantifying the informa-

tion transfer between two lagged components through a specific pathway – with partial information

decomposition that allows the characterization of the interaction of causal paths initiated from two

sources.

• Chapter 3 presents the causal history analysis framework. This framework partitions the entire his-

tory into immediate and distant causal histories, and provides quantitative metrics for measuring the

information flows from these two components. It is applied to investigate the memory dependencies of

a short-memory system as well as three long-memory systems.

• Chapter 4 further characterizes the interactions of self-and cross-dependencies in both immediate and

distant causal history. We then implemented the proposed framework to analyze the dynamics of a

short-memory system and three long-memory systems, based on both observed time series and model-

generated synthetic data.

• Chapter 5 presents an approach for assessing the density evolution change of a target due to the inter-

vention of one or multiple lagged sources in a numerical model using Kullback-Leibler (KL) divergence.

It is then applied for analyzing the structure of the Lorenz chaotic model. Furthermore, the result

based on KL divergence is compared with the corresponding MI and TE for illustrating the difference

between interventional effect and the statistical dependence.
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• Chapter 6 summarizes the key findings of this dissertation, and provides avenues for future work.

12



Chapter 2

Interactions of Information Transfer
Along Separable Causal Paths

2.1 Introduction1

Complex natural and human systems, such as ecosystems and financial markets, emerge as a result

of causal and/or self-organized feedback interactions among multiple variables. Lagged feedback of one

variable on another can also be interpreted as a causal outcome at the time scale of the feedback de-

pendence. Causality can also be characterized as the outcome of the interaction of information trans-

fer [Pompe and Runge, 2011, Runge et al., 2012b] among the variables in the system. Therefore, the amount

and quality of information transfer can be used to quantify the degree and nature of causality. Our goal in

this chapter is to develop a framework for quantifying causal interaction arising from information transferred

along separable paths that affect a target.

In this study, causality is interpreted as strong Granger causality [Eichler, 2012]. Different from the

causality from an interventional perspective [Pearl, 2000], Granger causality [Granger, 1969] is anchored on

the predictability of a target from one or more sources by measuring the variance of the target given the

sources. Strong Granger causality takes a further step by investigating the predictability from sources based

on the entire joint distribution of the variables involved [Eichler, 2012]. It is extremely useful in detecting

the relationships among the variables in a complex system where only observational data is available and

intervention in system is hard or impossible as in natural systems which comprise a multitude of interactions.

In the rest of the chapter, we refer causality to indicate strong Granger causality for convenience.

When a source variable influences a target directly, or indirectly through a path comprising of nodes

and links, it is called a causal path [Runge, 2015]. For example, consider a three-variable process net-

work [Ruddell and Kumar, 2009a, Ruddell and Kumar, 2009b] shown in Fig. 2.1a, where the dynamical

linkages between these components of the system are assumed to be time-invariant and constructed such

that: (1) X drives both Y and Z with a lag of one time step, (2) Y drives Z at a lag of two time steps,

and (3) both X and Z have a self-feedback at a lag of one time step. By representing the dynamics of

1This chapter is published as an article in Physical Review E, 2018 [Jiang and Kumar, 2018]
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the process network in a time series graph [Runge et al., 2012a], X affects Z lagged at two time steps

through a causal path (Fig. 2.1b), denoted as CXt−2→Zt , containing two pathways: Xt−2 → Xt−1 → Zt and

Xt−2 → Zt−1 → Zt. Furthermore, considering the contribution of multiple source variables on the target,

the target can be affected by different sources each having its own causal path, which can be separable or

non-separable. For the non-separable case, the causal path from one source contains the causal paths of

the remaining sources. For instance, the causal path CXt−2→Zt includes the causal path from Xt−1 (i.e.,

CXt−1→Zt) (Fig. 2.1c). CXt−2→Zt and CXt−1→Zt are non-separable because the node Xt−1 lies in the causal

path CXt−2→Zt . Also, the causal paths can be separable such that no source is enslaved to the causal path

of another. The separability of causal paths can be either totally independent, such as the causal paths

CXt−1→Zt and CYt−3→Zt (Fig. 2.1d), or partially independent, such as the causal paths CXt−2→Zt and

CYt−3→Zt which share the pathway Zt−1 → Zt (Fig. 2.1e). We call the causal paths, which transmit the

information to the same target from different sources but are not enslaved to the pathways of other sources,

as separable causal paths. Together, the causal paths from all source nodes of interest that affect a target

node comprise a causal subgraph.

Y

X
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Z

1

2

1

1

(a) Process net-
work graph

X

Z

Y

t-3 t-2 t-1 tt-4

(b) Causal path

X

Z

Y

t-3 t-2 t-1 tt-4

(c) Non-separable causal paths

source nodes

target node

links in the 
causal paths

influence from 
the history

X

Z

Y

t-3 t-2 t-1 tt-4

(d) Separable causal paths (with independent
pathways)

X

Z

Y

t-3 t-2 t-1 tt-4

(e) Separable causal paths (with overlapping
pathways)

Figure 2.1: The illustration of a three-variable dynamical system: (a) the process network graph illustrating
the lagged interaction of three variables X,Y and Z, where the numbers on the directed links represent
the lagged time step; (b) the time series graph corresponding to the process graph, with the causal path
CXt−2→Zt whose directed links are highlighted in brown arrows; (c) the non-separable causal paths CXt−1→Zt
and CXt−2→Zt ; (d) the separable causal paths with independent pathways CXt−1→Zt and CYt−3→Zt ; and (e)
the separable causal paths with overlapping pathways CXt−2→Zt and CYt−3→Zt (brown and blue nodes:
source nodes; black nodes: target nodes; brown and blue links: the corresponding causal paths from the
sources to the target; and nodes with black circles: nodes affecting the two separable causal paths and the
target node).
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An emerging approach for characterizing the nature of dependency between multiple interacting variables

is based on partial information decomposition (PID) [Williams and Beer, 2010, Barrett, 2015], also called

as information partitioning, which is capable of providing insights from large amounts of observational or

model datasets that are becoming available [Goodwell and Kumar, 2017a, Goodwell and Kumar, 2017b].

PID provides estimation of the information transfer from the sources to the target variable in terms of: (1)

redundant information R, which captures overlapping information content that both sources provide to the

target; (2) synergistic information S, which is only available due to the joint interaction of sources as they

affect the target; and (3) unique information U that each source shares with the target. In the case of two

sources (i.e., Xt−τX and Yt−τY ) driving Zt, PID is given as [Williams and Beer, 2010, Barrett, 2015]

I(Xt−τX , Yt−τY ;Zt) =UX + UY + S +R (2.1)

I(Xt−τX ;Zt) =UX +R (2.2)

I(Yt−τY ;Zt) =UY +R, (2.3)

where UX and UY are unique information from Xt−τX and Yt−τY , respectively; I(a; b) is the mutual informa-

tion [Cover and Thomas, 2006] between a and b; and especially, I(Xt−τX , Yt−τY ;Zt) represents the mutual

information between Zt and the union of Xt−τX and Yt−τY . Eqs.(2.1)-(2.3) further give rise to the expression

of S and R in terms of interaction information I [Cover and Thomas, 2006] such that

I(Xt−τX ;Yt−τY ;Zt) =I(Xt−τX , Yt−τY ;Zt)− I(Xt−τX ;Zt)− I(Yt−τY ;Zt)

=S −R, (2.4)

which quantifies the amount of information bound up in {Xt−τX , Yt−τY , Zt} [Barrett, 2015].

PID captures the net information transfer occurring through a multitude of causal paths involved in the

interaction. But due to the high level of dependencies in a complex system, it also masks our ability to discern

the causal interaction within a causal subgraph consisting of specific pathways, or possible separable causal

paths. For example, as illustrated in Fig. 1d, the information partitioning associated with the interaction

of Xt−1 and Yt−3 on Zt will be influenced by the external factors affecting the intermediate nodes, through

their own causal paths, called as complementary causal subgraph. Some of the nodes in the complementary

causal subgraph, that are outside of the nodes of interest (e.g., CXt−1→Zt , CYt−3→Zt , and Zt) but have

influences on them, are highlighted as nodes with black circles, including Xt−4, Xt−2, Yt−2 and Zt−2.

Therefore, in this chapter we quantify the partial information decomposition arising from the information
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transfer along separable causal paths in a manner that excludes the influence of complementary causal

subgraph thereby eliminating the effects of external factors. Also, we explore (1) how the PID varies between

separable and non-separable causal paths; (2) how the structure of the separable causal paths affects the

information partitioning; and (3) how the noise in a complex system affects these estimates. We use the

recently-proposed momentary information transfer along causal paths (MITP) [Runge, 2015], which allows

us to isolate the information transfer between two variables along their causal path from that associated with

its complementary causal subgraph. We extend this concept to characterize the causal interaction in terms

of synergistic, unique and redundant information transfer through separable causal paths by using a PID

framework anchored on a rescaled approach for computing the redundancy [Goodwell and Kumar, 2017a]

and also provide formulations associated with other prevalent measures of redundancy. This will be termed

as momentary partial information decomposition (MPID).

This chapter is organized as follows. First, we provide a brief review of the momentary information in

Section 2.2. Then, in Section 2.3 we develop the details of the mathematical framework for MPID by adopt-

ing the rescaled approach for computing redundancy. In Section 2.4, we show that under some conditions,

the proposed MPID is entirely determined by the interactions of the nodes of interest in the causal subgraph,

and autonomous of how these nodes are affected by the complementary causal subgraph. This property is

called the coupling strength autonomy (CSA) [Runge et al., 2012b]. We utilize both a linear and a nonlinear

common driver model to verify the coupling strength autonomy property analytically and numerically, re-

spectively. Moreover, in Section 2.5, we define the MPID frameworks based on three alternative redundancy

measures, and discuss their properties. In Section 2.6, based on the rescaled redundancy measure, we ana-

lyze MPID and PID under both separable and non-separable causal paths by using synthetic data generated

from two models of coupled logistic equations with varying noise strengths. Finally, we provide summary

and conclusions in Section 2.7. Appendices A to C provide mathematical proofs of several formulations.

2.2 A Review of Momentary Information

In this section, we briefly review the concept of momentary information first proposed by Pompe and

Runge [Pompe and Runge, 2011], which provides the basis for quantifying information partitioning along

separable causal paths presented in the next section. This concept originates from the idea that to assess

the impact of some variable X on another variable Y at time t with a specific time lag τ , the history of both

Xt−τ and Yt should be accounted for through conditioning so that the response of Yt to a disturbance on Xt−τ

accounts for the causal interaction between the two variables at the specific lag τ [Pompe and Runge, 2011].
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Therefore, the momentary information quantifies the causal interaction between two lagged nodes of interest,

in a time-series graph. To condition at the history of the nodes of interest, a network describing the causal

relationships among the variables in the whole system is required [Eichler, 2012].

Consider a complex system with a multivariate process ~X = {V,X, Y, Z, . . . }N , where N is the number

of component processes. We assume that the causal dependence between the component processes are

temporally invariant. The process can be represented in a time series graph G, as illustrated in Figs.

2.1c-2.1e for a three variable system, of which the basic elements include:

• Node Zt: a subprocess Z at a specific time t.

• All the nodes at time step t: ~Xt ≡ {Vt, Xt, Yt, Zt, . . . }N .

• The past or history of Zt: ~X−t ≡ { ~Xt−1, ~Xt−2, . . . }.

• Directed link (or causal link) Xt−τ → Zt: implying Xt−τ (τ > 0 is the time lag) has causal influence

on Zt.

• Parents of Zt: PZt ≡ {Xt−τ : X ∈ ~X, τ > 0, Xt−τ → Zt}. A node Xt−τ is a parent of Zt if and only if

there is a directed link/edge from Xt−τ to Zt (i.e., Xt−τ → Zt).

• Causal path from Xt−τ to Zt: CXt−τ→Zt ≡ {Vt−τV : V ∈ ~X, τV > 0, Xt−τ → · → Vt−τV → · →

Zt−τZ} ∪ {Xt−τ}.

In this study, we assume that all the causal links are identified from the criteria that only the past affects

the future. The causality in this study is defined in the context of strong Granger causality [Granger, 1969,

Eichler, 2012], that is, a pair of nodes Xt−τ ∈ G (τ > 0) and Zt ∈ G are connected by a directed link

Xt−τ → Zt if and only if:

Xt−τ 6⊥⊥ Zt | [ ~Xt\{Xt−τ}], (2.5)

where 6⊥⊥, | and \ are the dependent, conditioning and subtraction symbols, respectively. It is anchored on

the idea that Xt−τ Granger-causes Zt if the two are still dependent on each other when conditioned on the

remaining process.

Furthermore, because the directionality of the causal relationship between two contemporaneous nodes

(e.g., Xt and Yt) is ambiguous, we do not consider the undirected contemporaneous link (a link connecting

two nodes at the same time step, e.g., Xt − Yt) in this study. Thus, it allows the time series graph to be

a directed acyclic graph (DAG), where no directed loops exists [Spirtes et al., 2000]. To connect the DAG
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with the joint probability implied by the graph, we assume causal Markov property [Spirtes et al., 2000] that

given the parents , PZt , of any Zt ∈ ~X, Zt is independent of its non-descendants ~X−t \PZt in the graph,

which are the earlier dynamics excluding the direct causes of Zt.
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Figure 2.2: Illustration of the Markovian conditions for the causal subgraphs comprising one causal path
and two separable causal paths shown in Figs. 1b and 1d, respectively. (a) The conditions for the causal
path CXt−2→Zt (brown solid circles: PZt\CXt−2→Zt where \ represents the subtraction operation for sets;
the brown dashed circles: PCXt−2→Zt

). (b) The conditions for the separable causal paths CXt−1→Zt and

CYt−3→Zt (the black dashed circle: ~W1; the brown solid circle: ~W2; the blue solid circles: ~W3).

By drawing upon the causal Markov property, the potential infinite number of conditions in Eq.(2.5)

from the past can be reduced to a finite number of conditions corresponding to the parents of the nodes of

interest [Runge et al., 2012a]. Hence, the condition in Eq.(2.5) can be reduced into the parents of the two

nodes such that

Xt−τ 6⊥⊥ Zt | [PXt−τ ∪ (PZt\{Xt−τ})], (2.6)

where PXt−τ represents the parents of the source node Xt−τ , and PZt\{Xt−τ} denotes the parents of Zt

excluding the node Xt−τ if Xt−τ ∈ PZt .

Based on Eq.(2.6), MIT IMIT
Xt−τ→Zt in Eq.(1.8) quantifies the coupling strength between two nodes (e.g.,

Xt−τ and Zt) linked by a directed edge. Similarly, when Xt−τ influences Zt indirectly through the corre-

sponding causal path CXt−τ→Zt , MITP in Eq.(1.9) [Runge, 2015] accounts for the amount of information

transferred from Xt−τ to Zt via CXt−τ→Zt . Consider Fig. 2.2a as an example. The conditions for IMITP
Xt−2→Zt

are {Xt−3, Zt−2, Yt−2, Yt−3}. By conditioning on the parents of the nodes involved (i.e., {Zt} ∪ CXt−τ→Zt),

the calculated interaction information prevents the information of the complementary causal graph from

entering into the calculation.

The idea of momentary information is further extended to analyze how one node (i.e., Yt−τY ) in the causal

path CXt−τX→Zt affects the information transfer in CXt−τX→Zt through momentary interaction information
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(MII) [Runge, 2015]. Similar to MITP, by conditioning on the parents of the causal path, MII is given by:

∆IMXt−τX→Zt|Yt−τY = I(Xt−τX ;Yt−τY ;Zt | [PCXt−τX→Zt ∪ (PZt\CXt−τX→Zt)]), (2.7)

which is a conditional interaction information [Cover and Thomas, 2006].

The utilization of a time series graph not only allows the visualization of the interactions among several

nodes, but also facilitates the quantification of these interactions across different time points through different

momentary information measures. Especially, MITP and MII [Runge, 2015] are the first attempts to quantify

the information transfer between two nodes through a causal path and the casual interactions among three

nodes in a causal path, which provides a starting point to develop the momentary partial information

decomposition (MPID) described in the next section.

2.3 Momentary Partial Information Decomposition

In general, a target node Zt is not only influenced by one lagged source node Xt−τ through either a

direct link or a causal path, but also driven by multiple lagged source nodes ~V through a multitude of causal

paths, which forms a causal subgraph C~V⇒Zt ≡ ∪Xt−τ∈~V CXt−τ→Zt . Also, it is clear that the dynamics

within a causal subgraph are affected by the remaining graph preceding the target, ~X−t \C~V⇒Zt , called

as complementary causal subgraph. The interaction among multiple nodes in a time series graph poses a

question of how to characterize the different contents of information transfer through a causal subgraph

consisting of multiple causal paths, while at the same time, with the influence of its complementary causal

subgraph eliminated.

In this section, we describe the mathematical framework of the momentary partial information decom-

position (MPID) for quantifying and categorizing the information transfer to a target from a preceding

causal subgraph starting with two sources with separable causal paths. First, we build on the momentary

interaction information, which only considers one causal path, to formulate the momentary interaction in-

formation for separable causal paths (MII-SCP). Then, we review the recent advancements in PID, including

the rescaled redundancy approach for estimating PID [Goodwell and Kumar, 2017a]. Lastly, based on the

chosen PID framework, MPID is developed for partitioning the interaction of information transfer arising

from separable causal paths into synergistic, redundant and unique components.
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2.3.1 Momentary Interaction Information for Separable Causal Paths

From a time series graph perspective, the PID of a three-variable interaction at specific lagged times is

induced by the information transfer from a subgraph containing two separable causal paths of the sources

towards the target, such as the case shown in Fig. 2.1e. The separability of the two causal paths emphasizes

the fact that neither source lies in the causal path of the other. That is, two causal paths (i.e., CXt−τX→Zt

and CYt−τY→Zt) are separable if (Yt−τY 6∈ CXt−τX→Zt) ∧ (Xt−τX 6∈ CYt−τY→Zt), where ∧ is the logical AND

symbol. However, it should be noted that the two causal paths can also be non-separable if one source

belongs to the causal path of the other (such as the case in Fig. 2.1c), in which case, as shown below, the

formulation reduces to that in Eq.(2.7).

To compute MPID, the calculated interaction information along two separable causal paths in Eq.(2.4)

is required to be isolated from complementary causal subgraph containing the historical information of the

dynamics. Nevertheless, MII is not an appropriate option to use as it is formulated for the situation of one

causal path as shown in Eq.(2.7). Hence, the momentary interaction information for separable causal paths

(MII-SCP) is given as

∆IMSCP
{Xt−τX ,Yt−τY }→Zt = I(Xt−τX ;Yt−τY ;Zt | ~W ), (2.8)

where

~W = ~W1 ∪ ~W2 ∪ ~W3 (2.9a)

with

~W1 = PZt\(CXt−τX→Zt ∪ CYt−τY→Zt) (2.9b)

~W2 = PCXt−τX→Zt
\CYt−τY→Zt (2.9c)

~W3 = PCYt−τY →Zt
\CXt−τX→Zt . (2.9d)

The condition set, ~W , for the MII-SCP represents the parents of the union set of both the target Zt and

the causal paths from the two sources to the target (i.e. CXt−τX→Zt , CYt−τY→Zt). It consists of three parts:

(1) ~W1, the parents of the target node PZt excluding those in the two causal paths; (2) ~W2, the parents of

the causal path CXt−τX→Zt (i.e., PCXt−τX→Zt
) excluding the nodes in CYt−τY→Zt , and (3) ~W3, the parents

of CYt−τY→Zt (i.e., PCYt−τY →Zt
) excluding those in CXt−τX→Zt . It is noted that when the causal paths of

the two sources are non-separable, MII-SCP is reduced to MII in Eq.(2.7).
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In the example of the three-variable system in Fig. 2.2b, the condition ~W for MII-SCP between the

target Zt and two sources Xt−1 and Yt−3 (i.e., ∆IMII−SCP
{Xt−τ1 ,Yt−τ2}→Zt

) includes (1) ~W1 = {Yt−2} (black dashed

circle), (2) ~W2 = {Xt−2} (brown solid circle) and (3) ~W3 = {Xt−4, Xt−2, Zt−2} (blue solid circle). Therefore,

~W = {Xt−2, Xt−4, Yt−2, Zt−2}.

Furthermore, when two causal paths are non-separable (i.e., one source lies in the causal path of the

other source), MII-SCP collapses into MII. Suppose the source Yt−τY ∈ CXt−τX→Zt , then CYt−τY→Zt ∈

CXt−τX→Zt)). The first term in the condition ~W , i.e., PZt\(CXt−τX→Zt ∪ CYt−τY→Zt), is reduced to

PZt\CXt−τX→Zt . Also, the remaining terms in ~W , i.e., ~W2 ∪ ~W3, can be simplified to PCXt−τX→Zt
, since the

purpose of the two terms is to choose all the parents of the union of two causal paths which is now CXt−τX→Zt .

Therefore, the condition set ~W is reduced to PCXt−τX→Zt
∪ (PZt\CXt−τX→Zt), the same condition as in MII

in (Eq.(2.7)).

2.3.2 Framework for Partial Information Decomposition

Besides MII-SCP, MPID needs to provide a further characterization of the information transfer from

Xt−τX and Yt−τY to Zt through the corresponding causal paths in terms of the synergistic, unique and

redundant information. Nevertheless, to compute the four components UY , UX , R and S in the PID from

three equations Eqs.(2.1)-(2.3), one more condition is needed. To that end, various approaches for quan-

tifying one of the components in PID, that is, redundancy, synergy and unique information, have been

proposed. In addition to propose the PID framework, Williams and Beers [Williams and Beer, 2010] were

also the first to propose a redundancy measure (see Section 2.5.1) based on the minimum specific infor-

mation for the target at the outcome of a source value. However, this measure overestimates the redun-

dancy [Harder et al., 2013, Ince, 2017], because it assumes that the amount of information shared between

the two variables is also the same as the impact of the two variables on the target variable. In fact, it repre-

sents the upper bound of the information that can be redundantly shared with the target variable. Despite

this drawback, it emphasizes the idea that the redundancy and unique information are dependent on the

marginal joint distribution between each source variable and the target, which enables a series of further mea-

sures for unique [Bertschinger et al., 2014], synergistic [Griffith and Koch, 2014, Olbrich et al., 2015] and re-

dundant [Griffith and Ho, 2015, Barrett, 2015] information. Barrett [Barrett, 2015] defined the redundancy

as the minimum mutual information between each source and the target, which is equivalent to some of

the early PID frameworks [Williams and Beer, 2010, Bertschinger et al., 2014, Griffith and Koch, 2014] in

Gaussian systems. Furthermore, in computing the redundancy, besides anchoring the redundancy upon

the marginal joint distributions between the sources and the target, there is also a trend to utilize other
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aspects in the joint distribution of all the considered variables in computing the redundancy. Harder et

al. [Harder et al., 2013] quantified the redundant information based on the distance between the conditional

distribution of the target given each source by using Kullback-Leibler divergence. Ince [Ince, 2017] com-

puted the redundancy as the expected pointwise change of the surprisal of the target given the sources from

the local interaction information based on an entropy-maximized joint distribution, thus distinguishing the

redundancy-related elements in interaction information. Goodwell and Kumar [Goodwell and Kumar, 2017a]

put forward a rescaled redundancy which considers the mutual information between the sources in accounting

for the minimum mutual information-based redundancy.

In this study, to formulate the momentary partial information decomposition (MPID), we adopt the PID

framework based on the rescaled redundancy, RS , [Goodwell and Kumar, 2017a], which is given by:

RS = Rmin + Is(RMMI −Rmin), (2.10a)

where

RMMI = min[I(Xt−τX ;Zt), I(Yt−τY ;Zt)] (2.10b)

Is =
I(Xt−τX ;Yt−τY )

min[H(Xt−τX ), H(Yt−τY )]
(2.10c)

Rmin =


0, if I ≥ 0

−I, otherwise.

(2.10d)

RMMI represents the minimum mutual information, originating from the fact that the redundant infor-

mation should not be larger than the smallest value of the mutual information between any source and

target variables [Barrett, 2015]. We choose the rescaled approach in computing the redundancy because

it is able to reduce the overestimation from RMMI as well as guarantee non-negativity of PID, and it is

also empirically computable from time series observational data. To ensure a non-negative PID, RMMI

and Rmin are used for providing the upper and lower bounds, respectively, for the redundant informa-

tion. It is noted that we assume the non-negativity of PID in this study, which is termed as “local

positivity” property in [Bertschinger et al., 2013], because the non-negative partitioning is essential in il-

lustrating physical phenomenon in a meaningful way, though there exist considerations for dropping the

non-negativity condition for PID [Ince, 2017]. Furthermore, the rescaling coefficient Is is used to scale

RMMI (which overestimates the redundancy) based on the mutual information between the sources. Be-

sides, many proposed PID frameworks are computationally difficult or costly when using observational time
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series data due to the requirement of an optimization procedure for computing a metric based on marginal

distributions [Bertschinger et al., 2014, Griffith and Ho, 2015, Ince, 2017]. Meanwhile, the rescaled redun-

dancy approach, which has been applied in ecohydrological time series data [Goodwell and Kumar, 2017a,

Goodwell and Kumar, 2017b], is empirically computable and thus may have a broader applications associ-

ated with empirical analysis across many physical domains. Also, it is noted that the rescaled approach,

as formulated in Eq.(2.10) [Goodwell and Kumar, 2017a], is applicable to the interaction between two sources

similar to other redundancy measures [Harder et al., 2013, Griffith and Koch, 2014, Bertschinger et al., 2014].

Nonetheless, recognizing that there is no universal agreement on the additional condition for quantifying

PID so far, we also provide the formulations for the MPIDs based on three other redundancy measures in

Section 2.5.

2.3.3 Framework for Momentary Partial Information Decomposition

Based on the rescaled redundancy in Eq.(2.10), in a manner similar to MII-SCP, we propose the mo-

mentary partial information decomposition (MPID) by conditioning all the components in the original PID

(Eqs.(2.1)-(2.3)) on ~W such that:

∆IMSCP
{Xt−τX ,Yt−τY }→Zt = Sc −Rc (2.11a)

Rc = Rmin,c + Is,c(RMMI,c −Rmin,c) (2.11b)

UX,c = I(Zt;Xt−τX | ~W )−Rc (2.11c)

UY,c = I(Zt;Yt−τY | ~W )−Rc, (2.11d)

where

RMMI,c = min[I(Xt−τX ;Zt| ~W ), I(Yt−τY ;Zt| ~W )] (2.11e)

Is,c =
I(Xt−τX ;Yt−τY | ~W )

min[H(Xt−τX | ~W ), H(Yt−τY | ~W )]
(2.11f)

Rmin,c =


0, if ∆IMSCP ≥ 0

−∆IMSCP , otherwise.

(2.11g)

The subscript c stands for “conditional”. We note that the original suggestion of forming conditional

redundancies was given by Bertschinger et al. [Bertschinger et al., 2013] 2.

2The conditional redundancy proposed by Bertschinger et al. [Bertschinger et al., 2013] suggests a “left chain rule”, which
is a generalization of the chain rule of mutual information. The “left chain rule” property is not fulfilled in most redundancy
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2.4 Coupling Strength Autonomy for Momentary Partial

Information Decomposition

The causal Markov property of the time series graph ensures the momentary information approaches (e.g.,

MII, MITP and MII-SCP) exclude the influence of the complementary causal subgraph. This allows us to

approximate the causal interactions among variables of interest. However, these metrics are still dependent

on the Markovian conditions, such as ~W in MII-SCP. Nevertheless, Runge [Runge, 2015] showed that under

some conditions, MII and MITP are autonomous of how the nodes of interest interact with the nodes in the

complementary causal subgraph, a property described as coupling strength autonomy. In this section, we

generalize this property to MPID. Two conditions (i.e., additivity and linearity) used for the verification of

coupling strength autonomy property in MII are also adopted here, with one more condition, separability,

which allows the analysis of MPID when the causal paths of the two source nodes are separable. Then,

the coupling strength autonomy property of MPID is shown for two common driver models. In the first

model, the interaction among the variables of interest is linear, and nonlinear in the second model. For the

former, the analytical solution of MPID is derived and compared with the interaction information without

conditioning. For the latter, a numerical simulation is conducted to estimate both MPID and PID.

2.4.1 Coupling Strength Autonomy in MPID

Consider a multivariate stationary discrete-time process ~X = {X,Y, Z, . . . }N , where X, Y , Z, etc. are

sub-processes. The process ~X satisfies the causal Markov property with its corresponding time series graph

G as described in Section 2.2. We assume that for τX , τY ≥ 0, both the source nodes Xt−τX and Yt−τY are

connected with the target node Zt through two causal paths CXt−τX→Zt and CYt−τY→Zt , respectively. Also,

the union of the two causal paths and the target node is represented as ~B, that is

~B = CXt−τX→Zt ∪ CYt−τY→Zt ∪ Zt. (2.12)

For the dependencies of each node Kt−τ ∈ ~B (τ ≥ 0), the following conditions are defined:

(i) Additivity : Dependencies of Kt−τ in the following are additive:

• its parents belonging to ~B (denoted as P
~B
Kt−τ ≡ PKt−τ ∩ ~B),

• its remaining parents (denoted as PKt−τ \P
~B
Kt−τ ), and

• the noise term representing the modelling uncertainty.

measures but it’s promising in a recent chapter about pointwise information decomposition [Finn and Lizier, 2018]
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Therefore, any Kt−τ ∈ ~B (τ ≥ 0) can be written as

Kt−τ =fK(P
~B
Kt−τ ) + gK(PKt−τ \P

~B
Kt−τ ) + ηKt−τ , (2.13)

where fK , gK are the arbitrary functions for Kt−τ , and ηKt−τ is the noise term which is assumed as indepen-

dent and identically distributed (i.i.d.). It can be observed that P
~B
Kt−τ (i.e., the dependencies in fK) belongs

to ~B, while PKt−τ \P
~B
Kt−τ (i.e., the dependencies in gK) belongs to ~W defined in Eq.(2.8).

(ii) Linearity in fK : The function fK for each node Kt−τ ∈ ~B is linear. It means the dependence of

Kt−τ on the part of its parents belonging to ~B (i.e., P
~B
Kt−τ ), is linear. The linearity also implies that the

nodes in ~B (Eq.(2.12)) linearly depend on each other.

(iii) Separability of the causal paths CXt−τX→Zt and CYt−τY→Zt : Neither of the two sources lies in the

causal path from the other source to the target. That is, two causal paths (i.e., CXt−τX→Zt and CYt−τY→Zt)

are separable if (Yt−τY 6∈ CXt−τX→Zt) ∧ (Xt−τX 6∈ CYt−τY→Zt).

Theorem: Coupling strength autonomy for momentary partial information decomposition. In a stationary

discrete-time multivariate process ~X, which meets the causal Markov property in its time series graph, the

MPID for the contribution from two sources Xt−τX and Yt−τY (τX , τY ≥ 0) to the target Zt have the

following properties (proof is given in the Appendices A & B):

(a) If all the three conditions (i.e., additivity, linearity and separability) hold, MPID defined in Eqs.(2.11a)-

(2.11b) can be written as:

∆IMSCP
{Xt−τX ,Yt−τY }→Zt = I(ηXt−τX ; ηYt−τY | f̃Z( ) + ηZt ) (2.14a)

Rc = Rmin,c (2.14b)

Sc = ∆IMSCP +Rc (2.14c)

UX,c = I(ηXt−τX ; f̃Z( ) + ηZt )−Rc (2.14d)

UY,c = I(ηYt−τY ; f̃Z( ) + ηZt )−Rc, (2.14e)

where Rmin,c is given in Eq.(2.11b) and f̃Z( ) is a linear combination of all the noise terms ηt of the nodes in

~B, which are simplified as the symbol . In brief, additivity allows the exclusion of the dependencies not in ~B

(i.e., gK(PKt−τ \P
~B
Kt−τ )) in the calculation of the information partitioning due to the translational invariance

property of both entropy and mutual information (see Appendix A for details). Furthermore, separability

ensures both the minimum redundancy and the zeros of fX and fY , because Xt−τX and Yt−τY now do not

depend on any nodes in the two separable causal paths. Also, linearity converts the dependencies in the ~B
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(i.e., fK(P
~B
Kt−τ )) to be linear functions f̃ of all the noise terms in ~B after the exclusion of the non-linear

dependencies gK(PKt−τ \P
~B
Kt−τ ). Therefore, the condition set ~W is cancelled out since the calculations are

now only determined by the nodes in the causal paths and the target node (i.e., ~B) due to the linearity and

additivity conditions.

(b) If only additivity and linearity hold, both fX and fY can be converted into linear functions of the

noise terms of the nodes in ~B (similar to how fZ is converted into f̃Z in (a)). However, since separability

does not hold, the redundancy Rc is not the minimum and fX and fY can be nonzero. Hence, we can express

the corresponding MPID as

∆IMSCP
{Xt−τX ,Yt−τY }→Zt = I(f̃X( ) + ηXt−τX ; f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt ) (2.15a)

Rc = Rmin,c + Is,c(RMMI,c −Rmin,c) (2.15b)

Sc = ∆IMSCP +Rc (2.15c)

UX,c = I(f̃X( ) + ηXt−τX ; f̃Z( ) + ηZt )−Rc (2.15d)

UY,c = I(f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt )−Rc, (2.15e)

where both f̃X( ) and f̃Y ( ) are the linear functions of all the noise terms ηt of the nodes in ~B for Xt−τX

and Yt−τY , respectively, and

RMMI,c = min[I(f̃X( ) + ηXt−τX ; f̃Z( ) + ηZt ), I(f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt )] (2.16a)

and

Is,c =
I(f̃X( ) + ηXt−τX ; f̃Y ( ) + ηYt−τY )

min[H(f̃X( ) + ηXt−τX ), H(f̃Y ( ) + ηYt−τY )]
. (2.16b)

(c) If only additivity and separability hold, the redundancy Rc is minimized with fX and fY vanishing.

However, because of the nonlinearity in f , the condition set ~W cannot be cancelled out. Thus, the MPID is

reduced to

∆IMSCP
{Xt−τX ,Yt−τY }→Zt = I(ηXt−τX ; ηYt−τY | {fZ(P

~B
Zt) + ηZt } ∪ ~W ) (2.17a)

UX,c = I(ηXt−τX ; fZ(P
~B
Zt) + ηZt | ~W )−Rc (2.17b)

UY,c = I(ηYt−τY ; fZ(P
~B
Zt) + ηZt | ~W )−Rc. (2.17c)

It can be observed that the additivity and linearity conditions allow MPID to be dependent only on the
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nodes in the union of the two causal paths and the target node (see Eqs.(2.14) and (2.15)).

Furthermore, under the separability condition, the redundant information Rc achieves the minimum value

Rmin,c (see Eq.(2.14b)). It is intuitive that without the influence of other factors (e.g., a common driver),

the two separable source variables are independent, and therefore, the redundant information is minimized.

2.4.2 A Common Driver Model

Now we verify the coupling strength autonomy property for MPID in both a linear and a nonlinear

model solved analytically and numerically, respectively. Let’s consider a common driver model involving

four sub-processes (i.e., V X, Y and Z). V is the common driver of X and Y , both of which cause Z. All

the causal relationships are delayed at one time step. Fig. 2.3 illustrates the process network graph and the

time series graph of the model. We show that by adopting MPID, the effect of the common driver V in the

PID of X, Y and Z is eliminated completely in the linear model and significantly in the nonlinear model.

V Z

Y

X
1 1

1 1

(a) The process network
graph

source nodes

target node

links in the 
causal paths

PCXt-1->Zt

\ CY
t-3

->Z
t

PCYt-3->Zt

 \ CX
t-1

->Z
t

X

Z

Y

t-3 t-2 t-1 t

V

(b) The time series graph

Figure 2.3: The common driver model. (a) is the process network graph representation, where the numbers
on the directed links represent the delayed time step. (b) is the time series graph representation, where brown
and blue circles are the source nodes, (i.e., Xt−1 and Yt−1), black circle is the target node (i.e., Zt), brown
circle represents the nodes in PCXt−1→Zt

\CYt−1→Zt and blue circle refers to the nodes in PCYt−1→Zt
\CXt−1→Zt .

Also, PZt\(CXt−1→Zt ∪ CYt−1→Zt) is empty in this case. Therefore, the condition set ~W is only {Vt−2}.
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A linear common driver model

The linear common driver model can be written as

Vt = ηVt

Xt = cV X Vt−1 + ηXt

Yt = cV Y Vt−1 + ηYt

Zt = cXZ Xt−1 + cY Z Yt−1 + ηZt . (2.18)

The i.i.d. noise terms for each variable are represented as ηVt , ηXt , ηYt and ηZt , following normal distributions

N (0, σ2
V ), N (0, σ2

X), N (0, σ2
Y ) and N (0, σ2

Z), respectively. The coefficients, cV X , cV Y , cXZ and cY Z , are

the coupling strengths between variables. Especially, cV X and cV Y quantify the effect of the common

driver of Vt−1 on Xt and Yt, respectively. In the following, the analytical solutions of both MPID and

PID for quantifying the information transfer from two sources Xt−1 and Yt−1 and the target Zt are shown

sequentially.

MPID for Xt−1, Yt−1 and Zt: According to the definition of the condition in Eq.(2.8), the condition

set ~W for ∆IMSCP
{Xt−1,Yt−1}→Zt is {Vt−2} as shown in Fig. 2.3b. Therefore, the analytical solutions of ~W for

∆IMSCP
{Xt−1,Yt−1}→Zt , Rc and Sc are given as:

∆IMSCP
{Xt−1,Yt−1}→Zt =

1

2
ln
{

1 +
c2XZ c

2
Y Z σ

2
X σ

2
Y

σ2
Z(σ2

Z + c2XZ σ
2
X + c2Y Z σ

2
Y )

}
(2.19a)

Rc = 0 (2.19b)

Sc = ∆IMSCP
{Xt−1,Yt−1}→Zt . (2.19c)

The derivation is available in Appendix C. It is easy to verify that the linear common driver model example

fulfills all the three conditions (linearity, additivity and separability), thus the corresponding MPID follows

the results in Eqs.(2.14a)-(2.14e). Obviously, MPID is autonomous such that it is independent of cV X and

cV Y – the impact from the common driver Vt−2. Moreover, in this case, because ∆IMSCP
{Xt−1,Yt−1}→Zt > 0, the

redundant information Rc achieves the minimum value Rmin = 0 in MPID. It implies that there is only

synergistic information in the contribution of Xt−1 and Yt−1 in generating Zt.

PID for Xt−1, Yt−1 and Zt: The analytical solution of the interaction information I(Xt−1;Yt−1;Zt) is
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given by

I(Xt−1;Yt−1;Zt) =
1

2
ln
{ (c2XZ b+ ΓX σ

2
Z)(c2Y Z b+ ΓY σ

2
Z)

σ2
Z ΓX ΓY (σ2

Z + c2XZ Γ2
X + c2Y Z Γ2

Y + d)

}
, (2.20)

where b = c2V Y σ
2
V σ

2
X + c2V X σ

2
V σ

2
Y + σ2

Y σ
2
X , d = 2 cXZ cY Z cV Y cV X σ

2
V , ΓX = c2V X σ

2
V + σ2

X , ΓY =

c2V Y σ
2
V + σ2

Y and d = c2Y Z Γ2
Y + 2 cXZ cY Z cV Y cV X σ

2
V . For a full derivation, see Appendix C.

Eq.(2.20) shows that I(Xt−1;Yt−1;Zt) depends on cV X and cV Y through b, d, ΓX and ΓY . The depen-

dence implies that the common driver V plays a role in determining I(Xt−1;Yt−1;Zt), which is in contrast

to ∆IMSCP
{Xt−1,Yt−1}→Zt which exhibits the coupling strength autonomy property. It demonstrates that in this

linear system, by conditioning on the common driver Vt−2, the proposed momentary information measure,

∆IMSCP
{Xt−1,Yt−1}→Zt , is able to eliminate the influence from the complementary causal subgraph.

To explore this further, the coupling strength coefficients cV X and cV Y are altered to see how V affect

S and R. Suppose X and Y are strongly driven by V such that cV X and cV Y are much larger than other

coefficients in Eq.(2.18). Also, assume both the coupling coefficients cV X and cV Y are in the same order of

magnitude, that is:

cV X ≈ cV Y ≈ h, and h� c,∀c ∈ {cXZ , cY Z , σV , σX , σY , σZ}.

Therefore, I(Xt−1;Yt−1;Zt) in Eq.(2.20) can be reduced to

I(Xt−1;Yt−1;Zt) ≈
1

2
ln

1

h2
. (2.21)

Especially, when |h| > 1, I(Xt−1;Yt−1;Zt) < 0, implying that S < R according to the relationship among

I, S and R in Eq.(2.4). It means a strong coupling strength from the common driver Vt−2 would result

in more redundant information from Xt−1 and Yt−1, even though the dynamics among Xt−1, Yt−1 and Zt

alone do not suggest any redundancy from the two sources as shown in Eq.(2.19c). This is crucial in that the

empirically estimated PID without an appropriate conditioning as in ∆IMSCP would probably be influenced

by other factors (e.g., the common driver in this example), thus hiding the true dynamics of the variables

of interest.

A nonlinear common driver model

Next, we examine the coupling strength autonomy of MPID for a nonlinear model. The nonlinear model

still follows the same causality structure of the common driver model in Fig. 2.3, but with a nonlinear
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dependency between X and Y such that:

Vt = ηVt

Xt = cV X Vt−1 + ηXt

Yt = cV Y Vt−1 + ηYt

Zt = cZ Xt−1 Yt−1 + ηZt . (2.22)

where cZ is the coupling coefficient in the function of Zt.

The MPID and the PID for Xt−1, Yt−1 and Zt are estimated numerically for different combinations of

cV X and cV Y . cZ and the standard deviations of all the noises (i.e., σV , σX , σY and σZ) are set to 0.5 and

1, respectively. To compute the information-theoretic metrics (e.g., conditional entropy, conditional mutual

information), the multivariate probability distribution is required and estimated based on the kernel density

estimation method with the multivariate Gaussian kernel [Silverman, 1986]. For each combination of cV X

and cV Y , the sample length is 10,000.

Fig. 2.4 shows the estimated interaction information and the synergistic, redundant and unique infor-

mation under both MPID and PID. It can be observed that for MPID, the redundant information, Rc, in

the total information, Itotal, is almost zero for different cV X and cV Y , consistent with the conclusion that

the redundancy is minimized when additivity and separability hold. Nevertheless, all the remaining metrics

(i.e, MII-SCP, Sc, UX , UY ) vary with cV X and cV Y . It suggests that the coupling strength autonomy is

not entirely valid due to the nonlinearity in Zt. Especially, both MII-SCP and Sc show higher values when

both cV X and cV Y are close to zero, illustrating more synergistic information from Xt−1 and Yt−1 with the

decrease of the influence from their common driver Vt−2.

With regards to PID (shown in the second column in Fig. 2.4), all the metrics are affected by V through

cV X and cV Y . The impacts of cV X and cV Y on redundancy is illustrated in the increasing redundancy

R with the two coefficients, consistent with the conclusion in the linear case (see Eqs.(2.20) and (2.21)).

Furthermore, more interaction information I and synergistic information S is also observed for higher values

of cV X and cV Y .

By comparing the estimated results from MPID and PID in Fig. 2.4, we can draw the following conclu-

sions. First, the effect from the external driver, V , on the redundancy for MPID (i.e., Rc) is negligible based

on the nearly-zero values of Rc. Second, even though MII-SCP, Sc and the two unique information values

(UX,c and UY,c) in MPID still depend on cV X and cV Y , their variations in terms of the two coefficients (i.e.,

cV X and cV Y ) are much smaller than the corresponding metrics (i.e., I and S) in PID. It suggests that in
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the nonlinear common driver model, the conditioning in MPID is able to significantly reduce the influences

from the common driver Vt−2 in quantifying the dynamics among Xt−1, Yt−1 and Zt.
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Figure 2.4: The estimated interaction information MII-SCP and I as well as SUR (i.e., redundant, syn-
ergistic and unique information) from both MPID (the left column) and PID (the right column) for the
sources {Xt−1, Yt−1} and the target Zt, based on Eq.(2.22) with a simulation time length 10000 for each
combination of cV X and cV Y .

2.5 Other Momentary Partial Information Decomposition

Frameworks

In this study, we adopt the rescaled redundancy measure (Eq.(2.10)) to define the framework for the

momentary partial information decomposition (MPID) in Eq.(2.11). However, because there is still no uni-
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versal agreement on an appropriate condition to supplement Eqs.(2.1)-(2.3) to provide complete solution for

estimating S, R, UX and UY , researchers might prefer to adopt MPID based on alternate approaches, such

as those in [Williams and Beer, 2010, Harder et al., 2013, Bertschinger et al., 2014, Griffith and Koch, 2014,

Barrett, 2015, Ince, 2017]. Therefore, in this section, we provide the frameworks for MPID based upon three

other redundancy measures based on: (1) minimum specific information RMSI [Williams and Beer, 2010],

(2) minimum mutual information RMMI [Barrett, 2015], and (3) pointwise common change in surprisal

RCCS [Ince, 2017], with the corresponding conditional redundancies represented as RMSI,c, RMMI,c and

RCCS,c respectively. These conditional redundancy candidates can be used to replace the rescaled redun-

dancy in Eq.(2.11b) for forming new MPID frameworks. However, except the RMMI,c-based MPID, the

coupling strength autonomy does not hold for the other two MPID frameworks. This is detailed at the end

of this section along with other properties of these alternative MPID frameworks. Despite this, due to the

causal Markov property, the proposed MPID frameworks based on various redundancy measurements are

still helpful in excluding the influence of the history in quantifying the different information transfer in a

causal subgraph, thus revealing the information partitioning from there alternative perspectives.

2.5.1 The Minimum Specific Information Approach

Williams and Beer [Williams and Beer, 2010] proposed the redundancy measure as the average minimum

specific information over the considered input sources. The idea of defining the conditional version RMSI,c

is to exclude the influence of the complementary causal subgraph in calculating the specific information for

the two source nodes Xt−τX and Yt−τY . Therefore, RMSI,c is given by:

RMSI,c =

∫
min

A∈{Xt−τX ,Yt−τY }
{I(Zt = z;A | ~W )}p(z)dz, (2.23)

where I(Zt = z;A | ~W ) is the conditional specific information that A ∈ {Xt−τX , Yt−τY } provides about the

outcome Zt = z conditioned on ~W [Williams and Beer, 2010], and can be expressed as:

I(Z = z;A | ~W ) =

∫
a

∫
~w

p(a, ~w|z)[ln p(z|a, ~w)

p(z|~w)
]da d~w. (2.24)

2.5.2 The Minimum Mutual Information Approach

As part of Rc in Eq.(2.11b), the expression of RMMI,c is given in Eq.(2.11e).

32



2.5.3 The Pointwise Common Change in Surprisal Approach

Ince [Ince, 2017] characterized the redundancy, RCCS , as the expected pointwise change in surprisal of

the target which is common to the sources. The pointwise change in surprisal of the target Zt is interpreted

as the pointwise or local interaction information, whose joint distribution P̃ is estimated from the original

joint distribution P based on a game-theoretic approach (see the details in [Ince, 2017]).

RCCS is defined based on the interaction information I(Xt−τX ;Yt−τY ;Zt) and its local elements. We

develop the corresponding conditional version, RCCS,c, based on the conditional interaction information

I(Xt−τX ;Yt−τY ;Zt | ~W ), which is also ∆IMSCP
{Xt−τX ,Yt−τY }→Zt

in Eq.(2.8), given as:

I(Xt−τX ;Yt−τY ;Zt | ~W ) =

∫
~w

∫
x

∫
y

∫
z

p(x, y, z, ~w)i(x; y; z|~w)dx dy dz d~w, (2.25)

where i(x; y; z|~w) is the local interaction information of I(Xt−τX ;Yt−τY ;Zt | ~W ) and can be written as:

i(x; y; z|~w) = log
p(x, y, z | ~w)p(x | ~w)p(y | ~w)p(z | ~w)

p(x, y | ~w)p(x, z | ~w)p(y, z | ~w)
(2.26a)

= ∆zh(x, y | ~w)−∆zh(x | ~w)−∆zh(y | ~w), (2.26b)

with the three local individual informations: ∆zh(x, y|~w) = log p(x,y,z|~w)
p(x,y|~w)p(z|~w) , ∆zh(x|~w) = log p(x,z|~w)

p(x|~w)p(z|~w) ,

and ∆zh(y|~w) = log p(y,z|~w)
p(y|~w)p(z|~w) . Therefore, following the idea that the redundancy is measured with point-

wise common change in surprisal, RCCS,c can be defined as the weighted sum of the local conditional

interaction information and is given by:

RCCS,c =

∫
x

∫
y

∫
z

∫
~w

p̃(x, y, z, ~w)∆zh
com(x, y | ~w)dx dy dz d~w, (2.27)

where

∆zh
com(x, y | ~w) = (2.28)
−ip̃(x; y; z | ~w), if sgn ∆zh(x, y | ~w) = sgn ∆zh(x | ~w)

= sgn ∆zh(y | ~w) = sgn[−ip̃(x; y; z | ~w)]

0, otherwise.

Notice that the signs of the three local individual information and the inverse of the local interaction

information have to be the same. This is because of the assumption [Ince, 2017] that the positive and
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negative local information terms are fundamentally different, so that only the local (conditional) interaction

information where all three local individual informations have the same signs contributes to the redundancy.

Also, p̃ is the element of the maximum entropy distribution P̃ from the original joint distribution P such

that:

P̃ (X,Y, Z, ~W ) = arg max
Q∈∆P

∫
x

∫
y

∫
z

∫
~w

−q̃(x, y, z, ~w) log q̃(x, y, z|~w)dx dy dz d~w, (2.29)

where the set of potential distributions ∆P is selected from each candidate joint distribution Q, which has

the same sources’ joint distribution as well as pairwise source-target marginal joint distribution as P , and is

given by:

∆P =


Q ∈ ∆ :

Q(X,Z| ~W ) = P (X,Z| ~W ),

Q(Y,Z| ~W ) = P (Y,Z| ~W ),

Q(X,Y | ~W ) = P (X,Y | ~W )


.

The selection of the joint distribution P̃ for RCCS,c follows a similar game-theory approach as RCCS

in [Ince, 2017] but is different in that the optimization in Eq.(2.29) is based on the maximization of the

conditional entropy.

2.5.4 Properties of the Four Conditional Redundancies

We have provided formulations for MPID based on four different definitions for conditional redundancies

as the additional condition for MPID. The four selected redundancies (i.e., RMSI , RMMI , RCCS and RS)

originate from different perspectives. RMSI and RMMI render the redundancy as a function of the marginal

distribution between the target and each source, which usually overestimate the redundancy. To overcome

that, the rescaled redundancy, RS , takes the source correlations into account in the redundancy computation.

Furthermore, RCCS is developed based on a game-theory perspective and the idea that the redundancy

consists of the pointwise common change in surprisal represented as the local interaction information, which

essentially utilizes the information of the whole joint distribution.

In terms of the non-negative PID or the corresponding MPID, only RMMI and RS allow a non-negative

decomposition. Such local positive property [Bertschinger et al., 2013] for PID and MPID is imposed in this

study because the non-negative decomposition might be essential in illustrating physical phenomenon in a

meaningful way. Despite the fact the other two measures, RMSI and RCCS , cannot guarantee the local

positivity of PID and MPID, it should also be noted that the negativity of the PID and MPID induced by
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RCCS and RCCS,c, respectively, is explainable in the context of the definition for RCCS [Ince, 2017].

Furthermore, coupling strength autonomy only holds for the RMMI,c and RS,c-based MPID, while the

other two conditional redundancy measures do not facilitate this property due to their pointwise or local

information based computation. Nevertheless, the definitions for the RMSI,c and RCCS,c-based MPIDs

are also useful in computing MPIDs with most of the influence from the complementary causal subgraph

eliminated owing to causal Markov property of the network.

In addition, when the two causal paths are separable, the conditional redundancy based on the rescaled

approach is minimized as Rmin,c (see Section 2.4.1). The minimization of the redundancy vividly illustrates

the separable structure of the two causal paths from the sources, making the rescaled approach (Eq.(2.10))

suitable in quantifying MPID for separable causal paths based on a causal network.

Despite their pros and cons, the three proposed MPID frameworks in this section would eventually

delineate the information transfer along causal paths in a causal network from their own perspectives, and

provide for potentially alternative applications.

2.6 Quantifying MPID under Different Causal Paths and

Causality Structures

Given the four MPID frameworks based on different redundancy measures described above, the MPID

using the rescaled redundancy is adopted for further analysis. Specifically, in this section, we aim to inves-

tigate how MPID is affected by (1) separable and non-separable causal paths and different causal network

structures, and (2) the effect of noise. We use synthetic data generated from two coupled logistic equation

models for both separable and non-separable causal paths.

2.6.1 Coupled Logistic Equations

The two models, each of which involves three variables, are given as:

(1) A coupled logistic equation model without self-dependency:

Xi,t =
1− ε

2

3∑
j=0
j 6=i

4Xj,t−1(1−Xj,t−1) + εηXit , (2.30)

where ηXit is a standard uniform noise ~U(0, 1), and ε is the noise coupling strength ranging from 0 to 1.

35



X1

X2

X3

t-3 t-2 t-1 t

λ1 λ2source
 
 

target
 

source
 
 

conditions W

(a) Case SI – time series graph

Uλ1

S

Uλ2

R
PID

48.5%(1.2%)
1.2%(0.9%)

49.0%(1.5%)
1.3%(1.2%)

Uλ1, c

Sc

Uλ2, c

Rc

MPID

34.0%(0.4%)
25.4%(0.6%)

34.0%(0.4%)
6.6%(0.2%)

(b) Case SI – PID & MPID

X1

X2

X3

t-3 t-2 t-1 t

λ1 λ2source
 
 

target
 

source
 
 

conditions W

(c) Case NI – time series graph

Uλ1

S

Uλ2

R
PID

77.7%(1.2%)
2.4%(0.9%)

19.0%(1.2%)
0.9%(0.2%)

Uλ1, c

Sc
Uλ2, c

Rc

MPID

34.0%(0.5%)
14.3%(0.2%)

28.0%(0.4%)
23.8%(0.5%)

(d) Case NI – PID & MPID

Figure 2.5: Illustration of the time series graphs and the averaged information partitioning for the two
cases in Eq.(2.30) (i.e., Case SI and Case NI) when the coupling strength ε equals to 0.5. (a) and (c) are the
time series graphs of Cases SI and NI respectively (blue and brown nodes: the source nodes; black node: the
target node; blue and brown directed links: the links in the causal paths of the two sources; grey solid nodes:
the conditioning nodes in ~W for MPID in Eq.(2.8)). (b) and (d) are the pie charts of the averaged synergistic,
redundant and unique information percentages from PID and MPID of Cases SI and NI respectively, with
a legend showing the averaged values along with the corresponding standard deviations in the parenthesis
(Uλ1

and Uλ1,c: the unique information of X1,t−1; and Uλ2
and Uλ2,c: the unique information of X2,t−1).

(2) A fully coupled logistic equation model given as

Xi,t =
1− ε

3

3∑
j=1

4Xj,t−1(1−Xj,t−1) + εηXit . (2.31)

For each model (Eqs.(2.30) and (2.31)), the following two situations of a causal subgraph, comprising

the pathways of two sources affecting a target node, are considered for computing their MPID and PID:

• Scenario 1 (separable causal paths): the sources {X1,t−1, X2,t−1} and the target X3,t;
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Figure 2.6: Illustration of the time series graphs and the averaged information partitioning for the two cases
in Eq.(2.31) (i.e., Case SC and Case NC) when the coupling strength ε equals to 0.5. (a) and (c) are the time
series graphs of Cases SC and NC respectively (blue and brown nodes: the source nodes; black node: the
target node; blue and brown directed links: the links in the causal paths of the two sources; grey solid nodes:
the conditioning nodes in ~W for MPID in Eq.(2.8)). (b) and (d) are the pie charts of the averaged synergistic,
redundant and unique information percentages from PID and MPID of Cases SC and NC respectively, with
a legend showing the averaged values along with the corresponding standard deviations in the parenthesis
(Uλ1

and Uλ1,c: the unique information of X1,t−1; and Uλ2
and Uλ2,c: the unique information of X2,t−1).

• Scenario 2 (non-separable causal paths): the sources {X1,t−1, X3,t−2} and the target X3,t.

For convenience, we name the four cases as follows:

• Case SI: Scenario 1 (separable) in Eq.(2.30) (without self-dependency);

• Case NI: Scenario 2 (non-separable) in Eq.(2.30) (without self-dependency);

• Case SC: Scenario 1 (separable) in Eq.(2.31) (fully coupled);

• Case NC: Scenario 2 (non-separable) in Eq.(2.31) (fully coupled).
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Figs. 2.5a, 2.5c, 2.6a and 2.6c show the time series graphs of the two models and the causal subgraphs for

the four cases. For both scenarios, X1,t−1 is considered as the first source whose unique information are

represented by Uλ1
and Uλ1,c for PID and MPID, respectively. X2,t−1 and X3,t−2 are taken as the second

source for Scenario 1 and Scenario 2, respectively, with unique information represented as Uλ2 and Uλ2,c for

PID and MPID, respectively.

2.6.2 Simulation Setting

We change the noise coupling strength ε uniformly in 19 intervals between 0 and 1 to control the influence

of the noise on the two logistic models Eqs.(2.30) and (2.31) for generating synthetic data for the four cases.

For each ε, 10,000 data points are generated for computing both MPID and PID in each case. To get an

averaged behavior, ensembles of 10 trajectories are conducted for each ε. We first investigate the general

influences of the separability of the causal paths and the network structure on MPID and PID when the

coupling strength ε equals to 0.5. Then, we expand the analysis to explore how the noise strength shapes

MPID and PID.

2.6.3 Influence of the Separability of the Causal Paths and the Network

Structure on MPID/PID

The average percentages of the redundancy (i.e., R and Rc), the synergy (i.e., S and Sc) and the unique

information (i.e., Uλ1 , Uλ1,c, Uλ2 and Uλ2,c) of both MPID and PID from an ensemble of 10 runs with ε = 0.5

are shown in Figs. 2.5b, 2.5d, 2.6b and 2.6d. The standard deviations of MPID and PID are depicted in the

parenthesis in the legends.

Comparison between PID and MPID: For all the four cases, the results of MPID and PID are different.

Especially, in Case SI, Fig. 2.5b shows that there is almost no redundancy R and little synergy S from PID,

while more synergy Sc (~25.4%) is observed in MPID. This is explained by the fact that X3,t is entirely

determined by X1,t−1 and X2,t−1 according to Eq.(2.30), thus in MPID the exclusion of the history, that is,

the complementary causal subgraph, through conditioning on ~W results in higher synergistic information.

Furthermore, in Cases NI and NC, where the two causal paths are non-separable (Scenario 2), PID reveals

near-zero redundancy of the two sources and significant unique information (69% ~78%) from X1,t−1 (Figs.

2.5d and 2.6d). However, MPID (Cases NI and NC) indicates that unique information percentages of the

sources (Uλ1,c and Uλ2,c) are much closer and the proportion of the redundancy, Rc, is larger than that of

PID. This is because the non-separable causal paths (Scenario 2) allows the information transfer of the source

X1,t−1 to be a part of the information transfer of the other source X3,t−2, leading to the higher redundancy.
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Also, almost identical unique information of the two sources in MPID (with Uλ1,c slightly larger) for Cases

NI and NC results from the balance between the information transfer from the direct driver X1,t−1 with one

pathway and the indirect driver X3,t−2 with multiple pathways. Even though X3,t−2 affects the target X3,t

indirectly, there are two and three pathways towards the target for Cases NI and NC, respectively, enhancing

its unique information contribution to the target.

Different causal networks: Let’s first compare the information partitioning results of Scenario 1 – the

separable causal paths (i.e. Cases SI and NI shown in Figs. 2.5b and 2.6b, respectively). The synergy of the

MPID in Case SI (i.e., Sc) is larger than that of Case NI. As discussed in the previous paragraph, the higher

percentage of Sc in Case SI arises because the target X3,t is determined entirely by the two sources (i.e.,

X1,t−1 and X2,t−1) based on the causal relationship in Eq.(2.30). Nevertheless, the full coupling in Eq.(2.31)

enables the target X3,t to be dictated by three nodes (i.e., X1,t−1, X2,t−1 and X3,t−1). Therefore, for MPID

in Case SC, with the knowledge of only two nodes, it is not sufficient to provide the synergistic information Sc

to the target, resulting in a less synergy Sc compared with Case SI. In addition, in the comparison between

Cases NI and NC, of which the two causal paths are not separable, the information partitioning patterns

of both cases are consistent with each other. For example, the PIDs of both cases shows a strong unique

information Uλ1
from Xt−1. However, the differences in the causal network quantitatively results in the

differences in the information partitioning result. For instance, in terms of MPID, the increased redundant

information Rc in Case NC is higher than that of Case SC.

Separable and non-separable causal paths: For each model, we compare the MPID results of the separable

and non-separable causal paths. The comparisons (i.e., Case SI versus NI, and Case SC versus NC) reveal

the same behavior in the two coupled logistic models that more redundancy in the cases of non-separable

causal paths (i.e., Cases NI and NC) is estimated than that of the separable ones (i.e., Cases SI and SC).

This is intuitive because in both Case NI and NC, the source X1,t−1 lies in the causal path from the other

source X3,t−2 to the target X3,t, thereby a part of the information transfer from X3,t−2 to X3,t is overlapped

or contributed by the information given by X1,t−1, resulting in more redundancy than that of the separable

causal paths in Cases SI and SC.

2.6.4 Influence of Noise

To understand how additive noise affects the estimation of MPID and PID, we plot these estimates as

a function of signal-to-noise ratio (SNR) which is computed as the ratio of the variance of the logistic time

series to the variance of the noise terms in Eqs.(2.30)-(2.31). Furthermore, it is well known that the coupled

logistic equations are prone to synchronize depending on the lags and noise strength [Rosenblum et al., 1997,
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Mart́ı et al., 2008, Masoller and Atay, 2011, Paredes et al., 2013, Aguirre et al., 2014], which impacts the

MPID and PID outcomes. To investigate whether the lagged synchronization occurs and, thus, affects MPID

and PID, we also plot the similarity functions among the sources and target as well as the percentages of

total information given by the two sources in the overall uncertainty for both MPID and PID over SNR in

Fig. 2.7, which are defined as follows:

SFij(τ) =
{ E[(Xi,t+τ −Xj,t)

2]

[E(X2
i,t+τ )E(X2

j,t)]
1/2

}0.5

(2.32)

Itot,p =
I(λ1, λ2;Xtar)

H(λ1, λ2, Xtar)
× 100% (2.33)

Itot,p,c =
I(λ1, λ2;Xtar | ~W )

H(λ1, λ2, Xtar | ~W )
× 100% (2.34)

where SFij(τ) is the similarity function between Xi,t+τ and Xj , E is the expectation function, H( ) and

H( | ) are the Shannon’s entropy and the corresponding conditional entropy [Cover and Thomas, 2006],

respectively, {λ1, λ2, Xtar} represents the two sources and the target variables in the four cases, and Itot,p and

Itot,p,c are the percentages of shared information between sources and target for PID and MPID, respectively.

The similarity function SFij(τ) describes the degree of synchronization between two variables Xi and Xj

with a lag τ . A lower value SFij(τ) means a higher similarity between Xi and Xj with lag τ with value 0

representing a complete synchronization. The normalized total information Itot,p and Itot,p,c accounts for

the amount of uncertainty reduced by the two sources λ1 and λ2 for the target Xtar against their overall

uncertainty, with and without conditioning on ~W , respectively.

Influence of SNR on Itot,p and Itot,p,c: The percentages of total information behave differently for PID

and MPID. For PID, Itot,p (the red lines in the first column of Fig. 2.7) increases with SNR. This is because

with the decrease in the noise, the sources have a stronger control on the target, resulting in high Itot,p.

Meanwhile, for MPID, Itot,p,c (the red lines in the second column of Fig. 2.7) increases gradually until SNR

is between 1 to 50. Note that higher SNR is achieved by reducing the noise coupling strength ε in Eqs.(2.30)

and (2.31). With further increase in SNR rapidly, Itot,p,c initially drops down and then flattens (for Case

SC) or even increases a bit (for the other cases). The decrease of Itot,p,c for MPID in the range 1 < SNR

< 50 can be explained by two factors. First, the dynamics tend to be less stochastic in higher SNR and

thus the condition set ~W is able to explain more about the target. Note that in a deterministic model, the

target variable can be determined entirely by the knowledge of the condition set ~W . Therefore, the enhanced

contribution of ~W leads to the decline of Itot,p,c under high SNR. Second, the synchronization rate between

each source and the target decreases when SNR becomes larger than around 1, shown as the flattened black

lines with marked symbols in the second column of Fig. 2.7. Moreover, with the further growth of SNR
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(� 1), the target starts to be desynchronized with each source, reflected as the increase of the similarity

function between the two in each case. The change of synchronization rate accounts for not only the decrease

of Itot,p,c when SNR is slightly larger than 1, but also the increase of Itot,p,c for MPID when the system is

much less stochastic for large SNR.

Influence of lagged synchronization on Itot,p and Itot,p,c: The three similarity functions among the two

sources and the target are plotted as the three types of black lines in the first and second columns of

Fig. 2.7 for PID and MPID, respectively. It can be observed that when SNR is less than 1 (or the noise

coupling strength ε is large than around 0.5), the decrease of the three similarity functions captures with

the increases of both Itot,p and Itot,p,c. It implies the synchronization between each source and the target

with the decrease of the noise effect results in an increased proportion of uncertainty reduction in the target

given the knowledge of the two sources. Moreover, Itot,p,c decreases significantly once SNR is in the range

of 1 to 50. As explained at the end of the previous paragraph, this is due to (1) the increased information

provided by the condition set ~W for the target in a less stochastic system, and (2) the desynchronization

trend between each source and the target, which is shown as the growth of the similarity functions when

SNR is larger than around 1. However, when SNR is large, that is, the system is weakly stochastic, Itot,p,c

flattens for Case SC and goes up again for the other three cases, while at the same time, the increasing rate

of the similarity functions between each source and the target declines. The decline in the increasing rate

of the similarity functions reflects the slowdown of the desynchronization process between each source and

the target, causing the flattening and growth of Itot,p,c, for Case SC and the other three cases, respectively.

Especially, for Cases NI and NC where the two causal paths are non-separable, the increase of Itot,p,c in

MPID for high SNR (close to 100) is mainly due to the reduction in the rate of growth of the similarity

function between the target and the first source, whose unique information, Uλ1,c, (the blue dashed lines in

the fourth column of Fig. 2.7) contributes to most of Itot,p,c.

Influence of SNR on PID: For all the four cases, the synergy S (the orange lines in the third column

in Fig. 2.7) is almost zero with a little increase for high SNR, while the redundancy R (the black lines in

the third column in Fig. 2.7) is close to zero when SNR is less than around 1 but increases significantly for

high values of SNR. The near-zero values of both S and R for SNR less than 1 are due to the dominant

role of the noise in the system such that the two sources provide little information to the target, which is

also manifested as the near-zero values of the corresponding Itot,p (the red lines in the third column of Fig.

2.7). Meanwhile, the significant increase of R for larger SNR (> 1) is due to the symmetric structure of

the coupled logistic equations, whose influence is more significant in larger SNR where the system is less

stochastic, resulting in a higher value of redundancy. In terms of the two unique information, for Cases SI
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and SC, Uλ1 (the blue dashed lines) and Uλ2 (the sienna dashed lines) are almost identical for both sources

which influence the target directly through the same logistic equation. For Cases NI and NC, the two unique

information are almost zero for small SNR because of the dominant role of the noise, and start to increase

with the growth of SNR with a faster increasing rate for Uλ1 . That Uλ1 is larger than Uλ2 when the system

is less stochastic for a higher SNR illustrates the fact that the first source X1,t−1 is a direct cause of the

target X3,t while the second source X3,t−2 influences the target indirectly.
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Figure 2.7: The averaged percentages of total information, PID, and MPID for the four cases based on the
two coupled logistic equations in Eqs.(2.30)-(2.31) in terms of different signal-to-noise ratio (SNR). The first
and second columns plot the percentages of total information in Eqs.(2.33)-(2.34) (the red line) and the
similarity functions in Eq.(2.32) between the first source and the target, λ1 & tar (the black line marked
with triangles), the second source and the target, λ2 & tar (the black line marked with solid cirles), and the
two sources, λ1 & λ2 (the black dashed line), for PID and MPID, respectively. The first and second columns
plot the synergistic (the orange line), the redundant (the black line), and the two unique information (the
blue and sienna dashed lines) for PID and MPID, respectively.

Influence of SNR on MPID: For Case SI, the redundancy Rc (the orange lines in the fourth column in

Fig. 2.7) and the synergy Sc (the black lines in the fourth column in Fig. 2.7) increases and decreases with

SNR, respectively. Especially, Sc is much larger than Rc for SNR < 1, illustrating the fact that the target
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is entirely determined by the two sources, which is not shown in the corresponding PID plot in Case SI.

Meanwhile, with the increase of SNR, Rc increases rapidly while Sc decreases, as a result of the symmetric

structure of the coupled logistic equations, which leads to higher redundancy. For the other three cases, both

Sc and Rc are much larger than zero with Rc > Sc for SNR < 1, and both start to decrease with SNR and

reach around zero when SNR is close to 100. In the condition of a smaller SNR (< 1), a higher Rc results

from (1) the non-separable causal paths in Cases of NI and NC, which results in an overlapped information

transfer from the two sources, and (2) the fact that the target is determined by three causes in Case SC so

that the synergistic information Sc given by two sources is not large enough. In the case of a larger SNR

(> 1), Sc and Rc decline because of the the decreased total information Itot,p,c. With regards to the two

unique information, Uλ1,c and Uλ2,c are almost identical for the cases with separable causal paths (i.e., Cases

SI and SC) since that both sources impact the target directly through the same logistic equation. For the

other cases with non-separable causal path (i.e., Cases NI and NC), the two unique information are close

for a noise-dominant system with a smaller SNR and start to diverge with a higher Uλ1,c when the system

becomes less stochastic with a larger SNR. The increasing difference between the two unique information

with SNR illustrates that in a more deterministic system, compared with the second source X3,t−2 indirectly

controlling the target X3,t, the first source X1,t−1 is able to provide more information to the target through

its direct influence on X3,t.

2.7 Summary and Conclusions

By employing a time series graph-based approach, where the dynamics among the components at each

time step are explicitly represented, we propose the momentary partial information decomposition (MPID).

It allows us to dissect the information transfer to a target through a preceding causal subgraph, which

comprises multiple causal paths from multiple sources to the target, into synergistic, redundant and unique

information. Different from the original partial information decomposition (PID), whose quantification

includes the information from the entire history, MPID is able to exclude the influence from this history or

the complementary causal subgraph, through conditioning, for any direct cause of the subgraph of interest in

the estimation. PID and MPID together provide two ways for investigating information partitioning (with

and without the influence from the complementary causal subgraph), and the comparison between them

draws out different behaviors of a process network.

The adopted rescaled method for estimating redundancy (Eq.(2.10)) in information partitioning proves

to be effective in MPID in excluding the influence of the complementary causal subgraph. For instance,
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when the two causal paths are separable, meaning that neither of the sources belongs to the causal path

of the other, the redundant information Rc in MPID is minimized. It makes sense that when two sources

influence the target through different causal paths, the redundancy is reduced. Also, because there is no

universal agreement on the appropriate PID method, we provide the estimations for the MPID frameworks

based on the three alternative redundancy measures in Section 2.5.

Further, we investigate MPID and PID of a three-node dynamics under different causality structures and

both separable and non-separable causal paths as well as the noise effect on the information partitioning.

Application of PID and MPID for two coupled logistic equation models shows that compared with separable

causal paths, non-separable causal paths generate more redundant information since the two sources have

overlap in their causal paths towards the target. Also, the difference in causality structure gives rise to

different MPID results. For instance, under two separable causal paths, more synergistic information is

observed, when the target is entirely controlled by the two sources in the model without self-dependency,

than the fully-coupled model where the target is also driven by an external node. Furthermore, the influence

of noise on PID and especially MPID is more complex. In the two coupled logistic equations, when the

system is noise dominant (low signal-to-noise ratio (SNR)), the decline of a strong noise influence is able to

enhance the lag synchronization between each source and the target, which results in the growth of the total

information given by the two sources towards the target for both PID and MPID (i.e., Itot,p and Itot,p,c).

Meanwhile, in a weak stochastic system (high signal-to-noise ratio), Itot,p,c might either decrease due to a

higher proportion of information explained by the condition set ~W or increase because of the decrease of the

desynchronization rate between the sources and the target. In short, the influence of noise on the estimates

of PID and MPID is determined by the stochastic degree of the system as well as the causality structures of

both the system and the causal subgraph of interest. Also, it is noted that the empirical results of MPID

in the coupled logistic equations, which adopts the conditional rescaled redundancy measure, may differ if

other conditional redundancy measures, such as those proposed in Section 2.5, were used.

Although the momentary information approach is able to exclude most of the influences from the com-

plementary causal subgraph of interest, as pointed out by Runge [Runge et al., 2012b, Runge, 2015], the

time series graph-based approach has the following limitations. First, the coupling strength autonomy

property is only analytically established when both linearity and additivity hold, and not guaranteed for

nonlinear cases. However, in some cases, such as the nonlinear common driver model, this momentary ap-

proach can still significantly reduce the impact from the history and thus better reveal the internal dynamics

among the nodes of interest in terms of information partitioning. Furthermore, the Markovian conditional

independence property of the graph facilitates an approximate estimation of an automonous information
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partitioning. Therefore, when the functional dynamics of a complex system are unknown, MPID can pro-

vide at least a general picture of the autonomous mechanism in a causal subgraph. Second, the estimation

of a high-dimensional probability distribution function, resulting from the potentially many external drivers

(i.e., ~W ), requires a large amount of data, and would potentially result in biased estimation of cause-effect

relationships for short datasets.

Finally, the proposed momentary partial information decomposition, which is a Granger causality-

oriented framework, provides a new perspective in exploring complex systems, especially in natural systems

where systems are complex, self-organized, and hard to be intervened. With the increasing availability of

observational data recorded in finer resolutions [Baldocchi et al., 2001, Neal et al., 2013], a lot of investi-

gations based on different data analysis approaches have been conducted in understanding the dynamics

of different aspects in nature, such as exploring the self-organization in various ecohydrological system by

using transfer entropy [Kumar and Ruddell, 2010], the quantification of the strength and delay in climatic

interaction through the causal network [Runge et al., 2014], etc. The proposed framework, anchored on the

information partitioning of a causal subgraph, has the potential to enable the investigation of the dynamics

of multiple lagged components in terms of different types of information transfer from the sources.
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Chapter 3

Information Transfer from Causal
History in Complex System Dynamics

3.1 Introduction1

The dynamics of natural systems, such as ecosystems and climate, arise as a result of spontaneous

self-organization. Their dynamical characteristics, such as existence of strange attractors or 1/f long-

memory dependencies, arise as a result of feedback between all interacting variables. Information the-

ory offers compelling approaches for characterizing the complex non-linear inter-dependencies present in

such systems [Haken, 2006]. For example, a recent study has argued that the spontaneous formation of a

self-organized structure is reflected as decrease of joint entropy of the system as well as increase of con-

temporaneous inter-dependencies among interacting components [Rosas et al., 2018]. However, most of the

existing information-theoretic approaches are anchored on characterizing either bivariate information trans-

fer using transfer entropy or momentary information transfer [Schreiber, 2000, Frenzel and Pompe, 2007,

Runge et al., 2012b, Amblard and Michel, 2013, Sun and Bollt, 2014], or the interactions among a specific

set of variables by using methods based on partial information decomposition [Williams and Beer, 2010,

Goodwell and Kumar, 2017a, Goodwell and Kumar, 2017b, Goodwell et al., 2018, Jiang and Kumar, 2018],

which becomes difficult when more than three variables are involved. These approaches provide important

and insightful views associated with specific interactions within a system, but do not allow us to assess the

entire range of information transfer among all variables. For example, we may ask how the interactions of

several or all variables in a system determine the state of an individual variable at a specific time. Alter-

natively, we may ask how a finite time history of interactions results in an observed outcome of a specific

variable at a specific time. To answer these questions, we require metrics that allow us to characterize

full range of causal dependency in the system (in the Granger sense [Granger, 1969]), which structures the

transfer of information that progressively influences a target variable.

Consider a system composed of N variables, ~Xt = {Xt, Yt, Zt, ...}N , varying in time. The current state

of a variable, say Zt ∈ ~Xt, is a result of the evolutionary history of the system ~X−t = { ~Xt−1, ~Xt−2, ~Xt−3, ...},
1This chapter is published as an article in Physical Review E, 2019 [Jiang and Kumar, 2019]
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which we call causal history. We partition this history, based on a partitioning time lag τ with re-

spect to the present, into recent or immediate causal history { ~Xt−1, ~Xt−2, ..., ~Xt−τ} and the complemen-

tary distant causal history { ~Xt−τ−1, ~Xt−τ−2, ...}. Generally, while the information from the immediate

causal history is expected to be nondecreasing with τ , the degree and convergence of information from

the distant causal history informs the influence from the remaining historical dynamics beyond the lag

τ . Thus, quantification of the information transfer to a target variable at time t, from both its im-

mediate and distant causal histories, would delineate the dependency of the variable on the prior dy-

namics as well as the memory in the system, which are keys for understanding various complex sys-

tems [Kumar and Ruddell, 2010, Lizier et al., 2011, Jizba et al., 2012, Kirchner and Neal, 2013]. Therefore,

the objective of this study is to quantify and characterize the influence of a immediate, distant, and/or entire

causal history on Zt by using an information-theoretic framework.

We use a directed acyclic time series graph approach to characterize the temporal dependencies of the

system as well as for simplifying the computation of the information transfer. Specifically, we demon-

strate the features of our approach in terms of: (1) Information aggregation property in the causal history,

achieved through simplification from Markovian assumption in directed acyclic time series graph; (2) Dis-

cerning system memory, and its advantage over traditional methods such as lagged mutual information; (3)

Characterizing the changing interaction information jointly provided by a target variable’s self and cross

dependencies, as a function τ , from both immediate and distant causal histories; and (4) Quantifying the

change in memory dependency in a system when the influence of any particular variable is isolated from the

remaining variables.

This chapter is organized as follows. First, in Section 3.2, we provide the definitions and the properties

of the information transfer in both immediate and distant causal histories based on directed acyclic time

series graph representation of the system. Then, in Section 3.3 we implement this approach to delineate the

temporal dynamics of three different systems by quantifying the information transfer from causal history. We

first identify the memory dependency of a trivariate logistic model – a short-memory system, in Section 3.3.1.

Next in Section 3.3.2, we analyze the chaotic and long-memory Lorenz model for comparing the proposed

approach with lagged mutual information in delineating the memory dependency of the system. Then, we

investigate the information transfer in a linear trivariate Ornstein-Uhlenbeck process, whose dynamics also

shows long memory property but without the existence of a stranger attractor. While the model-generated

synthetic data are used for analysis in the previous three example, in the third example in Section 3.3.4, we

demonstrate an application using observed stream chemistry time series data, obtained in the Upper Hafren

catchment in Wales, United Kingdom [Kirchner and Neal, 2013]. Last, summary and conclusions are given
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in Section 3.4.

3.2 Information Transfer from Causal History

We represent the temporal dependency in the multivariate system ~Xt as a time series directed acyclic

graph [Runge, 2015, Eichler, 2012] as illustrated in Fig. 3.1, where each node represents a variable at a

specific time step t (e.g., Zt) and the parents of a target node or a set of nodes are denoted as P (e.g., PZt).

The directed edge linking two lagged nodes (e.g., Xt−τX and Zt with τX > 0) in the graph indicates the

direct influence from Xt−τX to Zt. The causal influence, assumed here in a Granger sense [Granger, 1969],

from a lagged node Xt−τX to a target Zt can be either through a directed edge or indirectly via a causal

path CXt−τX→Zt , which is a set of nodes connected by a sequence of directed edges from Xt−τX to Zt. That

is, CXt−τX→Zt ≡ {Vt−τV : Vt ∈ ~Xt, τV > 0, Xt−τX → · → Vt−τV → · → Zt−τZ} ∪ {Xt−τX}. We consider

the causal influence to a target node as arising only from a node earlier in time, which results in a directed

acyclic graph (DAG) of time series. In this section, based on this DAG time series graph representation,

we provide the mathematical definition of causal history, its simplification for computation, the associated

properties, and further analyses of causal history in terms of self and cross dependencies.

3.2.1 Definitions of Causal History

The causal history of a target node Zt includes all the nodes that influence Zt through causal paths in

the graph, and is represented by ~X−t = { ~Xt−1, ~Xt−2, ...}. Therefore, the total information, T , to Zt given

by the causal history, can be expressed as the mutual information (MI) [Cover and Thomas, 2006] between

the two, which is given by:

T = I(Zt; ~X
−
t ). (3.1)

Further, an immediate causal history of Zt is considered as a finite length causal history immediately

preceding time t, ~Xt−τ = {Xt−τ , Yt−τ , ...}N starting from all the contemporaneous source nodes at lag

τ . It is represented by a multitude of causal paths, that is, C ~Xt−τ⇒Zt = ∪Xt−τ∈ ~Xt−τCXt−τ→Zt (the blue

dashed box in Fig. 3.1a). To generalize the following theory, we define the immediate causal history as

a subgraph preceding Zt arising from a set of lagged sources ~V = {Xt−τX , Yt−τY , ...} to Zt, C~V⇒Zt =

∪Vt−τV ∈~V CVt−τV→Zt . Then, the complementary distant causal history can be naturally expressed as the

remaining part of the causal history, ~X−t \C~V⇒Zt , where \ is the subtraction operator (the red dashed box

in Fig. 3.1a). By using the chain rule of MI [Cover and Thomas, 2006], the total information T can be
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decomposed into the information from (1) the immediate causal history, J , and (2) the distant causal

history, D, such that:

T = I(Zt;C~V⇒Zt ,
~X−t \C~V⇒Zt)

= I(Zt; ~X
−
t \C~V⇒Zt)︸ ︷︷ ︸
=D

+ I(Zt;C~V⇒Zt | ~X
−
t \C~V⇒Zt)︸ ︷︷ ︸

=J

= D + J . (3.2)

Eq.(3.2) expresses that the information from the distant causal history, D, is provided by all the lagged

nodes not in the immediate history, i.e., ~X−t \C~V⇒Zt , through their mutual information with Zt; while the

information from the recent dynamics, J , is accounted for by the conditional mutual information (CMI)

between the target and the immediate causal history conditioned on the distant history.
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Figure 3.1: Illustration of the causal history ~X−t of a target node Zt. (a) The partition of ~X−t into an immedi-

ate causal history, C~V⇒Zt (the dashed blue box), and the complementary distant causal history, ~X−t \C~V⇒Zt
(the dashed red box). The parents of the target Zt [Eq.(3.3)], PZt , are identified by the cyan colored box.
(b) The aggregation of contemporaneous momentary information from each set of contemporaneous nodes
~Xt−i (the dashed hollow box) at an early time step t− i in the causal history [Eq.(3.10)].

3.2.2 Simplifications of T , J , and D

It is noted that the empirical computations of T , J , and D in Eq.(3.2) are infeasible due to the po-

tentially infinite number of nodes in ~X−t and ~X−t \C~V⇒Zt . Therefore, to address this challenge and con-

nect the time series graph with the underlying joint probability, we assume the Markov property for DAG

([Lauritzen et al., 1990], theorem 1). This is consistent with prior work [Runge et al., 2012b], which states
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that any node Zt in the graph is independent of all its non-descendants given the knowledge of its parents

PZt [Spirtes et al., 2000]. For the graph in Fig. 3.1, for example, this implies that given its parents PZt

(the cyan colored box), the target node Zt is conditionally independent of the rest of its non-descendants,

~X−t \PZt .

Now, the main idea of reducing the dimensions in T , J and D originates from the connection between

conditional independence and the node separation in the graph based on the Markov property. The simpli-

fication of T can be immediately achieved by using chain rule as follows (note that PZt ⊂ ~X−t ):

T = I(Zt;PZt ,
~X−t \PZt)

= I(Zt;PZt) + I(Zt; ~X
−
t \PZt | PZt)︸ ︷︷ ︸

=0

= I(Zt;PZt), (3.3)

which is the mutual information between Zt and its parents PZt (see Fig. 3.1a). The zero value for

I(Zt; ~X
−
t \PZt | PZt) results from the Markov property that separates Zt from the remaining historical nodes

given its parents.

Furthermore, the distant causal history, ~X−t \C~V⇒Zt , which serves in Eq.(3.2) as the condition set and

information contributor in J and D, respectively, can be partitioned into two parts: (1) the parents of both

Zt and the immediate causal history C~V⇒Zt excluding those in the immediate causal history, denoted as

~Wτ = PC~V⇒Zt∪Zt\C~V⇒Zt (the grey nodes in Fig. 3.1a), and (2) the remaining nodes, ~X−t \(C~V⇒Zt ∪ ~Wτ ).

Then, in a similar manner as for T , the Markov property and the chain rule also facilitate the simplifications

for D:

D = I(Zt; ~Wτ , ~X
−
t \(C~V⇒Zt ∪ ~Wτ ))

= I(Zt; ~Wτ ) + I(Zt; ~X
−
t \(C~V⇒Zt ∪ ~Wτ ) | ~Wτ )︸ ︷︷ ︸

=0

= I(Zt; ~Wτ ), (3.4)

and for J :

J = I(Zt;C~V⇒Zt | ~X
−
t \C~V⇒Zt)

= I(Zt;C~V⇒Zt | ~Wτ ). (3.5)
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Both, the zero value for I(Zt; ~X
−
t \(C~V⇒Zt∪ ~Wτ ) | ~Wτ ) and the reduction of the condition set of J into ~Wτ in

Eqs.(3.4) and (3.5), respectively, are due to the conditional independence between Zt and ~X−t \(C~V⇒Zt∪ ~Wτ )

given the knowledge of ~Wτ , which separates the immediate finite history associated with Zt and Zt itself

from the remaining history. In fact, a decomposition of C~V⇒Zt , into (1) P
C~V⇒Zt
Zt

≡ PZt ∩C~V⇒Zt – the direct

causes of Zt in the immediate causal history, and (2) C~V⇒Zt\P
C~V⇒Zt
Zt

– the remaining intermediate nodes

in C~V⇒Zt , enables a further simplification of J , that is (see Appendix D for derivations):

J =I(Zt;P
C~V⇒Zt
Zt

| ~Wτ ), (3.6)

which is achieved by taking the chain rule expansion based on C~V⇒Zt and dropping off the other term because

of the conditional independence of Zt with the remaining history given its parents. Also, by substituting

Eqs.(3.4) and (3.5) back to Eq.(3.2) and noticing PZt ⊂ P
C~V⇒Zt
Zt

∪ ~Wτ , we can again utilize the Markov

property to get:

T = I(Zt;P
C~V⇒Zt
Zt

, ~Wτ ) = I(Zt;PZt),

which reduces to Eq.(3.3) as we should expect and is constant in terms of the time lag τ . We also note that

the quantities J and D are functions of τ , but this is not included in the notation for brevity as this does

not cause any ambiguity.

3.2.3 Information Aggregation Property of T and J

The simplifications in Eqs.(3.3)-(3.6) imply an important property of information aggregation from inter-

mediate nodes to the direct causes of the node(s) of interest. For all the three information transfer measures,

the information accumulate at the nodes that are either the parents of the target node Zt [PZt for T in

Eq.(3.3) and P
C~V⇒Zt
Zt

for J in Eq.(3.6)] or the parents of the union of Zt and its immediate causal history

[ ~Wτ for D in Eq.(3.4)]. This property, derived from the Markov property for DAG, illustrates that the latest

observations actually contain all the information of the earlier dynamics in the system, transferred via the

causal paths, and influence the states of the variables at the next stage.

Further insights associated with such information aggregation property can be obtained by a decompo-

sition of both T and J . We separate C~V⇒Zt into τ set of nodes, where τ is the maximum time lag between

the target Zt and the earliest node in the source nodes ~V , that is, τ = arg maxk{Xt−k : Xt−k ∈ C~V⇒Zt}.

Each set of nodes ~Vt−i represents all the contemporaneous nodes in C~V⇒Zt at the time step t− i (1 ≤ i ≤ τ),

that is, ~Vt−i = {Vt−τV : Vt−τV ∈ C~V⇒Zt | τV = i}. It is clear that C~V⇒Zt = ∪τi=1
~Vt−i and ~Vt−i1 ∩ ~Vt−i2 = ∅
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for i1 6= i2. Therefore, we can express J in Eq.(3.5) as:

J =I(Zt; ~Vt−1, ..., ~Vt−τ | ~Wτ ),

and by using the chain rule for conditional mutual information [Shannon and Weaver, 1949], we get:

J =

τ∑
i=1

I(Zt; ~Vt−i | ~Wτ , ~Vt−i−1, ..., ~Vt−τ ). (3.7)

Note that {~Vt−i−1, ..., ~Vt−τ} are actually the remaining parents of both Zt and the subgraph C~Vt−i⇒Zt

initiated by ~Vt−i, which are not in ~Wτ . Therefore, the condition set in Eq.(3.7), { ~Wτ , ~Vt−i−1, ..., ~Vt−τ}, in

fact contains the parents of the union of Zt and C~Vt−i⇒Zt , or PC~Vt−i⇒Zt∪Zt
. Also, due to the Markov property

of the time series DAG, PC~Vt−i⇒Zt∪Zt
separates C~Vt−i⇒Zt ∪ Zt from their non-descendants, including the

remaining nodes in the conditions in Eq.(3.7), and thus gives:

Gi ≡ I(Zt; ~Vt−i | ~Wτ , ~Vt−i−1, ..., ~Vt−τ )

= I(Zt; ~Vt−i | PC~Vt−i⇒Zt∪Zt\C~Vt−i⇒Zt) (3.8)

where Gi is the generalized version of the momentary information transfer along causal paths [Runge, 2015,

Jiang and Kumar, 2018] from multiple source nodes ~Vt−i to Zt along the multiple causal paths C~Vt−i⇒Zt . It

quantifies the uncertainty reduction in Zt due to ~Vt−i conditioned on the parents of both Zt and C~Vt−i⇒Zt∪Zt,

Correspondingly, Eq.(3.7) can thus be simplified as:

J =

τ∑
i=1

Gi =

τ∑
i=1

I(Zt; ~Vt−i | PC~Vt−i⇒Zt∪Zt\C~Vt−i⇒Zt). (3.9)

This equation elucidates that the information given by a sequence of dynamics preceding Zt, i.e., its imme-

diate causal history, is an accumulation of the momentary information transfer from the contemporaneous

dynamics at each time step involved in this finite history.

Such accumulation of momentary information can be generalized to the total information T if the

source nodes ~V of the immediate causal history are taken as all the variables at an infinite past, ~Xt−τ =

{Vt−τ , Xt−τ , Yt−τ , Zt−τ , ...}, with τ →∞. In this case, the immediate causal history is naturally the whole

causal history itself, and thus J = T , which based on Eq.(3.9) gives:

T = lim
τ→∞

τ∑
i=1

I(Zt; ~Xt−i | PC ~Xt−i⇒Zt∪Zt\C~Vt−i⇒Zt). (3.10)
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By relating the above equation with Eq.(3.2), again we see that the momentary information from all

the previous intermediate nodes in the causal history are accumulated at the nodes that directly influ-

ence the target Zt, as shown in Fig. 3.1b. Note that, a measure similar to Eqs.(3.7)-(3.10) is proposed

in [Runge et al., 2012b], called the decomposed transfer entropy. It approximates the information coming

from all the historical states of a source variable ~X−t as the summation of individual conditional mutual

information from each lagged Xt−τ in a finite set of ~X−t . This is different from the information aggregation

of J and T proposed here in that Eqs.(3.9) and (3.10) approximate the information from the historical

states of multiple source variables to the target.
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Figure 3.2: Illustration of the self and cross dependencies in both simplified immediate and distant causal
histories for a target Zt (the black node). The self-dependencies, ~ZJ , and the complementary part, ~Z

′
J , in

the simplified immediate causal history, P
C~V⇒Zt
Zt

, are identified in solid and dashed black boxes, respectively.

The self-dependencies, ~ZD, and the complementary part, ~Z
′
D, in the simplified distant causal history, ~Wτ ,

are identified in solid and dashed grey boxes, respectively.

3.2.4 Interactions from Self-Feedbacks in J and D

To further dissect the information transfer we characterize the interaction information arising from self

and cross dependencies of a target variable Zt in both immediate and distant causal histories. Note that

interaction information between two sets of source nodes ~A and ~B contributing information to Zt is given

as:

I = I(Zt; ~A| ~B)− I(Zt; ~A)

= I(Zt; ~A, ~B)− [I(Zt; ~A) + I(Zt; ~B)]. (3.11)

For distant causal history, represented by ~Wτ , the two decomposed parts include: (1) a self-feedback compo-

nent of Zt, ~ZD ≡ {Vt−τ ∈ ~Wτ | V = Z} (the grey box in Fig. 3.2); and (2) the complementary component,

~Z
′
D ≡ ~Wτ\~ZD (the dashed grey box in Fig. 3.2). The difference between D and the summation of the mutual

information between Zt and each of the two components in ~Wτ then accounts for an interaction information,
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ID, which is given by:

ID = D − [I(Zt; ~ZD) + I(Zt; ~Z
′
D)]. (3.12)

ID quantifies the interaction information in Eq.(3.11) transferred to the target Zt from its self-dependency,

~ZD, as well as the complementary component, ~Z
′
D,in distant history. A negative ID [i.e., D < I(Zt; ~ZD) +

I(Zt; ~Z
′
D)] shows a net redundancy in the interaction between the two components, while a positive ID [i.e.,

D > I(Zt; ~ZD) + I(Zt; ~Z
′
D)] illustrates a net synergistic influence on the target.

Similarly, the simplified immediate causal history of Zt, represented by P
C~V⇒Zt
Zt

, can be partitioned into

(1) a component containing the self-dependence of the target, ~ZJ ≡ {Vt−τ ∈ P
C~V⇒Zt
Zt

| V = Z} (the black

box in Fig. 3.2); and (2) the complementary part, ~Z
′
J ≡ P

C~V⇒Zt
Zt

\~ZJ (the dashed black box in Fig. 3.2). The

corresponding interaction information from the two parts of immediate causal history, IJ , can be computed

as:

IJ = J − [I(Zt; ~ZJ | ~Wτ ) + I(Zt; ~Z
′
J | ~Wτ )], (3.13)

quantifying the conditional interaction information to Zt from its self and cross dependencies in the imme-

diate causal history.

We also note that in [Runge, 2015], the interaction information is used for investigating how the influence

from a source node Xt−τ to Zt is intervened by the immediate nodes in the causal path CXt−τ→Zt . In this

study, we evaluate the interaction effects on Zt from immediate and distant causal histories in terms of:

first, Zt’s own history, and second, historical states of the other variables.

3.3 Applications

To illustrate the capability of the approach described above for delineating the temporal dependency

of a system, we quantify the information transfer from the causal history in three different systems. We

first characterize the temporal dependency of a short-memory system through a trivariate logistic model.

Then, we illustrate how the proposed approach is different from lagged mutual information in addressing

system’s memory dependency using an example of a chaotic system – the Lorenz model. Further, we compare

the Lorenz model with a trivariate Ornstein-Uhlenbeck process to investigate how the information transfer

differs in processes with and without strange attractor. Finally, we quantify the memory dependency from

time series observations, representing catchment chemistry, which is known to have long-term dependency.
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Especially, by decomposing the distant history into the self-feedback of the target and the complementary

component characterizing information transfer from other interacting variables, we observe the redundancy-

dominated J , as well as consistent nonzero and synergy-dominated D in both the Lorenz model and the

stream chemistry system, which we conjecture as sustaining chaotic and fractal features of the two systems.

3.3.1 Trivariate Logistic System: a Short-Memory System

In the following, we empirically analyze the information transfer in the causal history of a nonlinear

model-generated synthetic data. Consider a trivariate coupled logistic system in Eq.(2.31). To investigate

the total information and its two components to the target node X3,t, we consider the immediate causal

history as the causal subgraph C{X1,t−τ ,X2,t−τ ,X3,t−τ}⇒X3,t
starting at an earlier time step t− τ (τ ≥ 1) (see

Fig. 3.3a). J , D and T are calculated for τ ranging from 1 to 50 and ε ∈ [0.1, 0.2, 0.3, 0.5, 0.8]. For each pair

of τ and ε, 10,000 data points are generated to conduct the empirical estimations, with an ensemble of 10

runs for each to get an average behavior. To avoid the infinite dimensions in Eq.(3.2) in the computation,

we compute T , D and J based on Eqs.(3.3), (3.4), and (3.6), respectively. The k-nearest-neighbor (kNN)

estimator [Kraskov et al., 2004, Frenzel and Pompe, 2007] is adopted for the estimation of J , T and D with

k = 5 (low k facilitates a low bias of the estimated MI and CMI [Frenzel and Pompe, 2007]). In the next

two applications, the computation of T , D, and J are also conducted in the same manner.

The contribution of immediate causal history J , and the proportion of distant causal history, D, in

the total information transfer T , D/T , are shown in Fig. 3.3b. We observe that for the range of noise

coupling strengths ε, J and D/T increases and decreases, respectively, with lag τ , and D/T achieves

asymptotic convergence to zero when the lag is sufficiently large. In particular, the convergence to zero of

D/T illustrates that this trivariate coupled logistic model has a short memory for influencing the target.

Further, the decrease of J with increasing coupling strength ε implies that a strong noise can reduce the

information transfer from the preceding finite length period and, thus, also reduce the total information in

this short-memory system.

Also, it is noted that the curves in D/T decrease with increasing τ but intersect for different values of

ε. This is because of different interactions and synchronization of coupled logistic maps as a function of

ε [Rosenblum et al., 1997, Atay et al., 2004, Paredes et al., 2013]. Therefore, we compute the lag synchro-

nization for each pair of lagged variables Xi,t−τ and Xj,t (i, j ∈ {1, 2, 3}) with τ ranging from 1 to 50, which

is given by:

Sij(τ) =
{ E[(Xi,t−τ −Xj,t)

2]

[E(X2
i,t−τ )E(X2

j,t)]
1/2

}0.5

, (3.14)
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Figure 3.3: Illustration of the trivariate coupled logistic model. (a) The time-series graph of the system with
the causal subgraph C{X1,t−τ ,X2,t−τ ,X3,t−τ}⇒X3,t

as the immediate causal history (the representations of the
nodes are the same as in Fig. 3.1a). (b) Plots of J , D/T , S̄, ID and IJ for τ ranging from 1 to 50 with
ε ∈ [0.1, 0.2, 0.3, 0.5, 0.8] (blue and red crosses, connected through a vertical line, represent the convergence
points of J , D/T , and S̄ for ε = 0.1 and ε = 0.2, respectively; note that results for ε = 0.8 are not plotted
(except J ) due to its high variability resulting from a near-zero total information T ).

where E is the expectation function. Since the dynamics is highly symmetric in terms of {X1, X2, X3} for

this trivariate model, we compute the averaged lag synchronization S̄(τ) as:

S̄(τ) =

∑
i,j Sij(τ)

9
, (3.15)

which is sketched in the middle plot of Fig. 3.3b. It shows that for each noise coupling strength ε, S̄
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oscillates for small τ , and then the amplitude decreases and S̄ eventually converges with increasing τ ,

implying a consistent similarity structure between each pair of lagged variables given an ε. The convergence

of the averaged lag synchronization, S̄, implies that the similarity between a target Xj,t and a lagged history

node Xi,t−τ gradually becomes invariant with increasing τ . It is consistent with the convergences of both J

and D/T for each ε, which are illustrated for ε = 0.1 and ε = 0.2 in blue and red crosses, respectively.

Further, the interaction information ID and IJ increases and decreases with time lag τ , and then

converges to zero and a negative value, respectively. The rapid convergence to the asymptotic values suggests

no synergy or redundancy for this short-memory model. Meanwhile, the drop of IJ with increasing τ means

the contributions from self and cross dependencies in the immediate causal history share a higher redundancy.

3.3.2 The Lorenz Model: a Comparison with Lagged Mutual Information

Now, we perform the analysis of the Lorenz model to investigate the difference between the proposed

measures of causal history and traditional methods such as lagged mutual information in capturing the

temporal dependency of a system, as well as to understand the potential interdependencies embedded in

its chaotic behavior. The Lorenz model is prototypical of its chaotic behavior [Lorenz, 1963], that is, its

dynamics are contained in a strange attractor with a fractal dimension between 2 and 3, and its governing

equation is given by a system of three variables Xt, Yt and Zt as:

dXt

dt
= σ(Yt −Xt) (3.16a)

dYt
dt

= Xt(ρ− Zt)− Yt (3.16b)

dZt
dt

= XtYt − βZt, (3.16c)

where the parameters σ, ρ and β in this study are set as 10, 28, and 8/3, respectively.

To analyze the information dynamics in the system as well as the resulting long-term dependence, we

empirically quantify the influence on a target Ut ∈ {Xt, Yt, Zt} based on (1) the lagged mutual information

between each pair of variables I(Ut;Vt−τdt), where Vt ∈ {Xt, Yt, Zt}, and τ and dt are the lag step and

the time interval, respectively; (2) the information transfer from the immediate and distant causal histories

for each variable, J and D, respectively; and (3) the interaction information contributed by a self-feedback

and the corresponding complementary components in both distant and immediate causal history, ID and

IJ , as indicated in Eqs.(3.12) and (3.13), respectively. The immediate causal history is now the subgraph

C{Xt−τdt,Yt−τdt,Zt−τdt}⇒Ut (see Fig. 3.4a), from which we can observe that given a time lag τdt the repre-

sentative distant causal history ~Wτ = {Xt−(τ+1)dt, Yt−(τ+1)dt, Zt−(τ+1)dt}. The measures are calculated for
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τ ranging from 1 to 1000 with the time interval dt = 0.01. 10,000 data points are generated to conduct the

empirical estimations, with an ensemble of 10 runs to get an average behavior.
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Figure 3.4: Illustration of the Lorenz model with parameters σ = 10, ρ = 28 and β = 8/3. (a) The times
series graph of the system with the causal subgraph C{Xt−τ ,Yt−τ ,Zt−τ}⇒Ut (U ∈ {X,Y, Z}) as the immediate
causal history. (b) The corresponding plots of the lagged mutual information, J , and D for the time lag τ
ranging from 1 to 1000. (c) The corresponding plots of ID, IJ , and J −D for the time lag τ ranging from
1 to 1000.

The results of the lagged mutual information, D, and J are shown in Fig. 3.4b. The quantities J and D

increases and decreases, respectively, with increasing τ , converging to some nonzero values when τ is around

500. The consistent nonzero D for large τ arises from the fact that the Lorenz system is a long-memory

process such that information provided from the distant history informs the present dynamics. Meanwhile,

the lagged mutual information, I(Ut;Vt−τdt), for all the three variables shows strong oscillations and grad-

ually decays to zero. The oscillations are due to the chaotic behavior where the ‘butterfly’ trajectory of the

strange attractor in this phase space determines the frequency of these oscillations, and the slow decay to

zero reflects the long term dependency. However, the lagged mutual information does not show the consistent

information contributed from the past as D does. Therefore, the proposed information transfer from the

causal history provides a view for analyzing the memory dependency of the system that is complementary

to traditional methods such as lagged mutual information.

Furthermore, the difference between J and D as well as their interaction information IJ and ID, shown
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in Fig. 3.4(c), illustrate different roles of the immediate and distant causal histories in shaping the target.

First, the recent dynamics of the Lorenz model has a stronger influence on the target than the remaining

earlier dynamics as time lag τ becomes larger than around 200. This is evidenced by the convergence of

J − D to a positive value (the black thick line). Also, the convergence of IJ to a negative value (the blue

thick line) implies a higher redundancy effect from the interaction information of cross and self dependencies

in the immediate causal history, as observed in the trivariate chaotic map. Meanwhile, the convergence of

ID to zero (the orange thick line) suggests a balanced contribution from synergistic and redundant effects,

each of which are not necessarily zero in the Lorenz model due to the nonzero convergence of D plotted

in Fig.3.4(b). In short, the Lorenz model with a strange attractor shows each variable is affected by (1) a

strong influence given by immediate causal history with dominant redundant effects from the self and cross

dependencies, and (2) less influence from distant causal history with balanced redundancy and synergistic

effects.

3.3.3 The Ornstein-Uhlenbeck Process: a Long-Memory Process Without

Strange Attractor

To investigate the difference between processes with and without strange attractors in terms of the infor-

mation transfer from causal history, we now conduct the analysis on a trivariate linear Ornstein-Uhlenbeck

(OU) process with long-term dependency. The OU process is chosen such that the model has the same struc-

ture of the directed acyclic time series graph as the Lorenz model shown in Fig. 3.4(a) and it is stationary,

which is given by:

dXt

dt
= −0.5Xt + 0.3Yt + ζX (3.17a)

dYt
dt

= 0.4Xt − 0.4Yt − 0.3Zt + ζY (3.17b)

dZt
dt

= 0.4Xt + 0.6Yt − 0.7Zt + ζZ , (3.17c)

where ζX , ζY and ζZ are independently and identically distributed noise terms following standard normal

distribution. As in the analysis of the Lorenz model, we quantify the influence on each variable in the OU

process in terms of lagged mutual information, the information from immediate and distant causal history

J and D, and their interaction information IJ and ID. The computation settings of the above information-

theoretic measures are the same as the Lorenz model. The trajectory and the time series of each variable

of the OU process are plotted in Fig. 3.5(a) with time interval dt = 0.01 and 10,000 simulated data points,

visually showing that the dynamics are confined in a three-dimensional confined domain which is not a
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strange attractor.

1.5

1.6

1.7

X
t

0.9

1.0

1.1

Y
t

0 2500 5000 7500 10000 12500
t

2.4

2.6

Z
t

Xt

1.4
1.5

1.6
1.7

1.8

Y t

0.8
0.9

1.0
1.1

Z
t

2.3

2.4

2.5

2.6

2.7

(a)

(b)

(c)

1 200 400 600 800 1000
τ

0

1

2

[n
at
s]

Xt

1 200 400 600 800 1000
τ

0

1

2
[n
at
s]

Yt

I(Ut;Xt−τ) I(Ut; Yt−τ) I(Ut;Zt−τ ) J D

1 200 400 600 800 1000
τ

0

1

2

[n
at
s]

Zt

1 200 400 600 800 1000
τ

−2

−1

0

1

[n
at
s]

Xt

1 200 400 600 800 1000
τ

−2

−1

0

1

[n
at
s]

Yt

ID IJ J −D

1 200 400 600 800 1000
τ

−2

−1

0

1

[n
at
s]

Zt

Figure 3.5: Illustration of the Ornstein-Uhlenbeck (OU) process in Eq.(3.17). (a) The trajectories of the
process (left) and the time series of each variable (right). (b) The corresponding plots of the lagged mutual
information, J , and D for the time lag τ ranging from 1 to 1000. (c) The corresponding plots of ID, IJ ,
and J −D for the time lag τ ranging from 1 to 1000.

The long-memory property of the OU process in Eq.(3.17) is evidenced in the non-zero convergence of

D and a slow-decay of the auto mutual information of each variable in Fig. 3.5(b), as also observed in the

Lorenz model (Fig. 3.4(b)). Nevertheless, different from the Lorenz model which shows a higher convergence

value in J , the convergence value of D in the OU process is larger. It indicates that, for the OU process, the

distant causal history always provides more information to the target than the immediate causal history no

matter how much of the finite recent dynamics are considered. Further, while the interaction information

IJ and ID still decreases and increases with the time lag τ , respectively, similar to the Lorenz model, ID
in the OU process converges a value larger than zero. The convergence of ID to a positive value implies

a net synergistic effect from the interaction contribution to the target. In summary, compared with the

Lorenz model, the evolutionary dynamics of the OU process, which shows a similar long-term dependency

but without a strange attractor, contains a more dominant influence from distant causal history with a net

synergistic effect on each variable in the process.
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3.3.4 Catchment Chemistry Data: an Observed Long-Memory System

We now employ our approach to analyze the water solutes in the Upper Hafren in Wales, where the

stream chemistry records are found to have 1/f fractal signatures reflecting long-term dependencies due

to the complex interactions occurring in the catchment [Kirchner et al., 2000, Kirchner and Neal, 2013].

In this application, the logarithm of flow rate, lnQ, and six water chemistry variables, Na+, Cl-, Al3+,

Ca2+, SO42- and pH, are chosen for analysis, which are sampled every 7-h from March 2007 to Jan 2009.

The 1/f fractal signatures are found in the corrected chemistry data, where the trend of the logarithm

of stream flow is excluded [Kirchner and Neal, 2013]. Both the raw and the flow rate-corrected data are

available from [Kirchner and Neal, 2013], which are used here. Here, we construct the time series graph for

both the raw data and the flow rate-corrected data by using the Tigramite algorithm [Runge et al., 2012b,

Runge, 2015, Runge et al., 2015, Runge et al., 2017] – a modified PC algorithm [Spirtes et al., 2000] an-

chored on the conditional independence test to remove any spurious relationship between each pair of nodes.

(a)

(b)

Figure 3.6: Time-series graph constructed by using the Tigramite algorithm from (a) observed logarithm of
flow rate and six catchment chemistry time series data; and (b) the six catchment chemistry data with the
variation of logarithmic flow rate corrected. The thickness of edges represents the coupling strength between
two nodes computed by momentary information transfer shown in Fig. E.1 (see the details of the graph
construction in Appendix E).

The two resulting time series graphs are shown in Fig. 3.6 (see the details of the graph construction
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in Appendix E), where coupling strengths in each directed edge, represented as the thickness of the edge,

is computed as the momentary information transfer (MIT) [Runge et al., 2012a] between the two nodes.

We can observe strong self-feedback dependencies (shown as thick edges) for most variables in both graphs.

Meanwhile, the remaining “hairy” causal influences, in a Granger sense, illustrate the relatively weaker

lagged interdependencies (shown as thin edges) among the variables, which, along with the self-feedback

dependency, contribute to the current state of each variable. Furthermore, the comparison between the

two graphs shows that with the influence of flow rate excluded, the graph constructed from the flow rate-

corrected data (Fig. 3.6b) contains fewer cross-dependencies (Fig. 3.6a). It reflects the fact that flow rate

(based mixing) plays a key role in establishing the connectivities among the stream chemistry variables.

Based on the graphs, we now compute the information transfer measures, T and D, and the interaction

information IJ and ID in Eqs.(3.12) and (3.13), respectively. The immediate causal history is initiated by

all the five variables with a same time lag τ ranging from 1 to 400 ( 117 days for 7hr dataset). Again, T

and D are first calculated based on Eqs.(3.3)-(3.4) with the number of nearest neighbors k = 5 (in kNN

method).

Figure 3.7: Plots of the information transfers D (left) and the proportion D/T (right) over the time lag τ
for the raw data and the flow rate-corrected data taking the immediate causal history initiated from all the
variables with a same lag τ based on the estimated time series graph in Fig. 3.6.

The plots of D and the proportion D/T as a function of τ shown in Fig. 3.7 are insightful. First, for all

the variables in both graphs, the information from the distant causal history, D (the left column of Fig. 3.7),

drops rapidly at small lags τ but starts to converge to a value far from zero for larger time lags (except for
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pH). Such persistent non-zero D reflects the long-term dependence present in the water chemistry data, and

illustrates that the dynamics from a distant causal history in the stream plays an important role in shaping

the current states of the solutes [Kirchner et al., 2000]. Further, the right column of Fig. 3.7 shows that, for

each variable in both networks, the percentage of the convergence value of D in the total information T is

less than 50%, illustrating a more dominant influence from the immediate causal history. Also, by comparing

the dynamics with and without flow rate, both D and its percentage in the total information, D/T , decrease

when the influence of flow rate is excluded. It illustrates that flow rate is an important driving variable

that connects various water stream variables, and contributes to maintaining the long-memory dependence.

However, this dependence varies for different variables. Specifically, for variables that are highly dependent

on flow rate, such as Ca2+ and pH, D declines significantly when the influence of flow rate is excluded. For

other variables, especially Na+ and Cl- the majority of which originates from the oceanic sources through

atmospheric pathways in this close-to-coast location [Feng et al., 2004], D drops to a lesser degree and thus

still holds a relatively strong memory persistence due to their lower dependencies on flow rate.

Further, the interaction information IJ and ID of the immediate and distant causal histories, respectively,

as a function of lag τ are plotted in Fig. 3.8. First, we see that when the influence of the flow rate is included

(the left column of Fig. 3.8), IJ decreases with increasing τ and converges to a negative value, suggesting

the prevalence of strong redundant influence in the immediate causal history. Meanwhile, ID flattens out to

zero as τ becomes larger than around 20. The convergence of ID to zero implies a balanced synergistic and

redundant effects from the self and cross dependencies in the distant causal history. Moreover, in the network

without the influence of flow rate (the right column of Fig. 3.8), IJ also converges to zero, indicating a

balance of synergistic and redundant contribution.

Also, notice that there exist oscillations in different information-theoretic measures shown in both Figs.

3.7 and 3.8 even when the values converge for large τ . This is possibly due to the bias induced by the esti-

mation of the proposed high-dimensional information-theoretic measures [Runge et al., 2012a, Runge, 2015,

Jiang and Kumar, 2018] with a limited amount of data points, which are around 1000∼2000 for the estima-

tion of D for different time lags. A shuffle test is also conducted for the computation of D, to ensure that

most of the values are statistically significant at α = 0.05 significance level (see Appendix E for details).

3.4 Conclusion

We have developed information-theoretic measures to partition the influence of total causal history (T )

into two components, immediate (J ) and distant (D) causal history. While the information from the
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immediate causal history quantifies the impact on the state of a specific variable from trajectories of recent

dynamics, its complement, the distant causal history, illustrates such impact stemming from the remaining

older history.

self-dependent

Figure 3.8: Plots of the interaction information from distant causal history, ID in Eq.(3.12) (black line),
and immediate causal history, IJ in Eq.(3.13) (blue line), over the time lag τ for the raw data and the flow
rate-corrected data taking the immediate causal history initiated from all the variables with a same lag τ
based on the estimated time series graph in Fig. 3.6.

By employing the Markov property for directed acyclic graph, we reduce the dimensions of T , D and

J to make the computations of the three measures feasible. The Markov property based simplification

further results in the information aggregation property of the time series directed acyclic graph, that is,

the information transferred from earlier dynamics in the causal history accumulate at the nodes directly

influencing the target node(s). Moreover, the dimension reduction also enables further partitions of both

the immediate and distant causal histories into self and cross dependencies, and allows us to quantify their

interaction information contribution to a target.

It is noted that while the dimension of T is now reduced to only the parents of the target, the cardinalities

of D and J can still be high due to the inclusion of the parents of the immediate causal history. For instance,

in the stream chemistry example, the dimensions of D and J are around 30 and 40, respectively, as shown

in Fig. E.3. Such high dimensions might result in biased information-theoretic estimation based on limited

datasets. Future research is required to further reduce the dimensionality.
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We take the opportunity to distinguish the causal history formulation presented here with some rele-

vant prior work. These include transfer entropy [Schreiber, 2000], causation entropy [Sun and Bollt, 2014],

momentary information transfer [Runge et al., 2012b], and directed information [Kramer, 1998]. These ex-

isting information-theoretic measures quantify the coupling strength between two (lagged) variables with or

without the knowledge of other variable(s), while the proposed causal history analysis investigates how the

entire evolutionary dynamics involving all variables in a system influences a target variable. This uniqueness

of considering contribution from multiple variables enables analyses that are not possible otherwise. The

followings is a brief summary of the differences with these different information-theoretic approaches.

Transfer entropy (TE) [Schreiber, 2000] quantifies the information transfered to a target, Zt, from a se-

quence of previous states of another variable, Xt−1:t−τ = {Xt−1, Xt−2, ..., Xt−τ}, given the knowledge of the

past states of itself, Zt−1:t−τ = {Zt−1, Zt−2, ..., Zt−τ}. It is computed through a conditional mutual informa-

tion, and is given by in Eq.(1.4). Momentary information transfer (MIT) in Eq.(1.8) [Runge et al., 2012b],

on the other hand, considers the information transfer to Zt from a specific lagged variable Xt−τ given the

knowledge of the entire historical states.

The idea of conditioning, which prevents the influence from the nodes in the condition set in influencing

the quantification of coupling strength, is also used in causation entropy (CE) [Sun and Bollt, 2014]. CE

from a source variable with lag 1, Xt−1, to the a target, Zt, conditioned on a third variable, Yt, with lag 1,

and is given by:

ICEX→Z|Y = I(Zt;Xt−1 | Yt−1). (3.18)

Notice that causation entropy is a generalization of transfer entropy in Eq.(1.4) with τ = 1, that is ICEX→Z|Z =

ITEX→Z(1).

Further, another measure called Directed Information (DI) [Amblard and Michel, 2013] quantifies how

a limited historical dynamics of a source variable, Xt−τ :t, affects the dynamical trajectory of the target

variables, Zt−τ :t. This is given as:

IDIX→Z(τ) =

τ∑
i=1

I(Zt−i;Xt−1:t−i | Zt−1:t−i+1). (3.19)

When the knowledge of the dynamical trajectory of the third variables, Yt−τ :t is given, it is converted into
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a conditional directed information (CDI) [Amblard and Michel, 2013], given by:

ICDIX→Z|Y (τ) =

τ∑
i=1

I(Zt−i;Xt−1:t−i | Zt−1:t−i+1, Yt−1:t−i). (3.20)

Different from ITE , IMIT and ICE , which quantify the influence to a target from a lagged source variable,

IDI and ICDI consider the influence from the past dynamics preceding time t as well as the instantaneous

dynamics at time t.

In addition to pairwise interactions, a variation of Eq.(3.18), temporal causation entropy (TCE) is used

for inferring the Markov order of a process [Cafaro et al., 2015], which is given by:

ITCE(τ) = I(Zt; ~Z
−
t \Zt−1:t−τ | Zt−1:t−τ ). (3.21)

which is the conditional mutual information between Zt and its earlier dynamics, ~Z−t \Zt−1:t−τ , given the

immediate dynamics Zt−1:t−τ . The calculation of ITCE in Eq.(3.21) involves the division of the entire history

of a process into two parts based on a time lag τ , which looks similar to the partition of immediate and

distant causal histories at a first glance. However, they differ in both the purposes and the technical details.

While ITCE is used to infer the Markov order of a process based on the smallest τ when ITCE equals to

zero in Eq.(3.21), the causal history analysis investigates the contribution from both immediate and distant

causal histories. The different orientation in the causal history analysis, along with its multivariate nature

of the analysis, indicate that this work adds significantly to the discourse associated with such studies.

All these existing information-theoretic measures (i.e., ITE , IMIT , ICE , IDI and ICDI), except ITCE ,

quantify the coupling strengths between two (lagged) variables from different perspectives. On the other

hand, the proposed approach for causal history analysis presented in our work is initiated from a different

perspective. It aims at analyzing how the target is driven by the entire evolutionary dynamics, which involves

multivariate interactions in a complex system. By analyzing the whole history of the system, it allows the

partition of the causal history into an immediate and distant components as well as quantification of these

quantities. Furthermore, the instantaneous influence, which is explored in IDI and ICDI , is not considered as

cause-effect relationship in this study. This is because the directionality of such causal influence between two

contemporaneous nodes is unclear and the contemporaneous dynamics is not considered as causal ‘history’.

The quantification of the information from the immediate and distant causal histories sketches the mem-

ory dependency of the system, which are illustrated with four examples with varying memories. Further,

in addition to characterizing the memory dependency of a complex system, the proposed approach also de-

lineates some key features of the complexity associated with its dynamics, which are not captured by other

66



traditional method such as lagged mutual information. First, for the Lorenz model and the OU process,

while lagged mutual information slowly goes to zero with increasing time lag τ , the information from distant

causal history D converges to a nonzero value with large lags. It implies a persistent information influence

over long time scale in the system’s evolutionary dynamics. Second, we observe that the analyzed models

have different characteristics of information transfer. For instance, while the interaction information of dis-

tant causal history, ID, flattens out in both the Lorenz model and the logistic map, the convergence of ID
to zero in the Lorenz model suggests that there is a balanced synergy and redundancy jointly contributed

by the self and cross dependencies. However, in the OU process, which also has long memory but no strange

attractor, there turns out to be a net synergy effect in the distant causal history as ID converges to a posi-

tive value. Further, the differences in the interaction information of the immediate causal history, IJ , also

illustrate the various dynamics in different systems. The comparison between the stream chemistry system

with and without the influence of flow rate shows that the existence of the flow rate is able to enhance the

redundant effect from self and cross dependencies in immediate causal history.

By involving multiple components as well as the causal influences among them, the proposed measures

address an unresolved problem, that of quantifying the causal influence on the current state of a variable from

the evolutionary dynamics of the entire system. It is different from what has been addressed so far by exist-

ing information-theoretic measures, which is usually anchored on pairwise interactions or multivariate anal-

ysis associated with specific parts of the system [Schreiber, 2000, Runge et al., 2012b, Sun and Bollt, 2014,

Jiang and Kumar, 2018]. This uniqueness, therefore, facilitates addressing the questions of how the complex-

ity of a system is sustained over time, which is reflected in varying memory dependency. With the increasing

availability of observations in various domains, this work can open up avenues for new data-driven approaches

for the study of complex system dynamics.
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Chapter 4

Using Information Flow for Whole
System Understanding from
Component Dynamics

4.1 Introduction

Present day advances in sensor and communication technologies and declining costs are allowing us

to observe the dynamics of our environment at ever increasing temporal frequency and spatial density.

Simultaneous multivariate observations at high frequencies are opening up an unprecedented opportunity

to understand and characterize deeply embedded inter-dependencies that govern process dynamics in our

environment. How can we best use such high dimensional data, arising from a number of simultaneously

measured variables, to ask questions that take us beyond component level relationships to expose whole

system behavior, and enable us to identify system level attributes from component dynamics? On the

flip side, can we also understand how system level constraints govern component level dynamics? In this

paper we aim to present a framework to address such questions by quantifying information flow among

variables to characterize causal dependencies in complex systems [Balasis et al., 2013, Bollt et al., 2018,

Goodwell et al., view].

Complex systems arise from nonlinear interactions among its multiple components or variables. The

complexity of an open system results as self-organized dynamics and associated patterns for form and

function [Nicolis and Prigogine, 1989], which is a collective behavior resulting from the interactions among

each component of the system. This draws upon the well-known idea that the whole is greater than the

union of the parts. Coherent understanding of whole system dynamics from time-series observations of several

components in such systems can only provide an approximate picture as all variables may not be observed.

Further, the variables observed may not be at a sufficiently high resolution that reveals all dependencies.

In addition, there is the possibility that a variable that is not observed may be an important driver of

several components resulting in strong apparent dependencies that may otherwise be weak or nonexistent.

Even if such a driver is in the mix of observed variables, it is not immediately apparent how its influence

on the other linked variables should be isolated so as to allow the analysis of the driven components. Our

goal, therefore, is to maximize the understanding that is possible using the entirety of the available data
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recognizing that the sampling structure of the data imposes limitations. Towards this goal, we aim to quantify

the cross-dependencies among variables through the dynamical evolution of the system, so as to characterize

the inter-dependencies that lead to a better understanding of the whole system behavior. We develop the

framework under minimal but necessary set of assumptions that are required to make the problem tractable

and provide statistically robust inference.

To achieve this goal we use information flow as the currency of exchange between interacting variables.

Information is encoded in patterns of variation of a signal. In a dynamical system, information flow captures

the propagation of fluctuations among variables [Goodwell et al., 2018]. These fluctuations may be externally

instigated, such as variability in solar radiation or rainfall in the context of a hydrologic response of a

watershed, or internally generated through non-linearities in the system. Analysis of such information

flow has the potential to characterize interactions across multivariate causal dependencies linked to whole

system dynamics. The objective of this paper is to present specific approach and formulations to achieve

this goal. We synthesize prior results and then present new formulations to develop the framework. The

proposed approach also provides a pathway that unifies the apparently dichotomous reductionist and holistic

approaches for studying system behavior by demonstrating that an understanding of detailed component

dynamics can lead to better whole system understanding.

Consider a multivariate complex system with N variables, ~Xt = {Xt, Yt, Zt, ...}N , varying in time t.

The current state of any variable Zt ∈ ~Xt is in fact a result of the entirety of all the earlier dynamics

in the system. We call this prior dynamics ~X−t = { ~Xt−1, ~Xt−2, ~Xt−3, ...} as causal history in Chapter 3.

The interactions from the causal history can be parsed in a number of ways. For example, it can be

divided into immediate and complementary distant causal history, partitioned at some time lag τ > 0.

The quantification of the influences from immediate and distant causal histories, as a function of τ , would

provide insights on the interplay between the influence of recent and prior dynamics on Zt. The dynamics

of Zt is also sustained by the dependencies on its own past as well as the interactions with other variables.

Our approach describes how such interactions can be computed from observed multivariate time-series data.

Based on the quantification of information flow immediate and distant causal history on the outcome of

a variable in Chapter 3, in section 4.2 we then present ways for capturing the interaction between self-

and cross-feedback between the target and other variables in the system. We show that this results in a

challenge that is often referred to as the curse of dimensionality [Bellman, 1957], requiring us to evaluate

high dimensional probability distribution functions. In section 4.3 we develop an approximation to reduce

the dimensionality using weighted transitive reduction [Bosnacki et al., 2010] using momentary information

transfer [Runge et al., 2012a]. In Section 4.4 we illustrate the approach through two applications. The first
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considers solute dynamics using published stream chemistry data as was used in [Jiang and Kumar, 2019].

The other three analyze the dynamics of three synthetic models: (1) a short-memory logistic model; and

(2) two long-memory models – the Lorenz model and the OrnsteinUhlenbeck process. Based on the these

applications, we find that (1) the dynamics of a short-memory process is dicated by its recent dynamics

containing both self-and cross-dependency interactions; (2) the dynamics of a long-memory process are

sustained by a self-feedback-dominated recent dynamics as well as a cross-dependency-dominated prior

dynamics; and (3) the unique dynamics of each component in different long-memory processes can be

indicated by characterizing the corresponding information flow in causal history. Section 4.5 provides a

discussion and conclusion.

4.2 Quantifying Multivariate Interactions

In addition to the temporal separation of the causal history, the analysis of multivariate time-series using

DAG representation also allows for the partition of the immediate and distant causal histories into self-

and cross-dependencies, as shown in Fig. 4.1(a). A study of how self-feedback and historical states of other

related variables, from both recent and distant dynamics, jointly affect the current state of a target variable

would potentially help reveal how multivariate interactions lead to evolutionary behavior of a system. Our

goal now is to make this notation more precise.

Specifically, for each variable Zt ∈ ~Xt of a system, we partition the distant causal history into two

components: self-dependence and cross-dependence. The first considers how a variable’s own history in-

fluences its present state, while the latter captures the influence of all other variables. Practically, in-

stead of the original distant causal history, ~X−t \C ~Xt−τ⇒Zt , we dissect ~Wτ containing the information

from earlier dynamics and directly affects the immediate causal history and Zt, into: (1) self-dependence,

~ZD ≡ {Vt−τ : V = Z, Vt−τ ∈ ~Wτ} (the orange box in Fig. 4.1(b)); and (2) cross-dependence, ~Z
′
D ≡ ~Wτ\~ZD

(the dashed orange box in Fig. 4.1(b)). The total information from the distant causal history, represented

now by ~Wτ , is quantified as D in Eq.(3.4). The partitioning of ~Wτ into ~ZD and ~Z
′
D further allows the

decomposition of D into synergistic, redundant, and unique information by using the PID framework, which

is given by:

D = I(Zt; ~Wτ ) = I(Zt; ~ZD, ~Z
′
D) (4.1a)

= SD +RD + Uself,D + Ucross,D, (4.1b)

where SD and RD are the synergistic and redundant information from distant causal history, respectively,
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and Uself,D and Ucross,D are the unique information from the self- and cross-dependencies, respectively.
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Figure 4.1: Illustration of causal history ~X−t of a target Zt. (Top) The partition of ~X−t into four parts: the

self- and cross-dependencies in the immediate causal history, represented by ~ZJ and ~Z
′
J , respectively, as well

as the self- and cross-dependencies in the distant causal history, represented by ~ZD and ~Z
′
D, respectively.

(Middle) The representation of the temporal dynamics of a complex system in the directed acyclic graph
for time-series. (Bottom) The (momentary) Partial Information Decomposition (PID) of the causal history
as well as its immediate and distant parts in terms of the interplay between the corresponding self- and
cross-dependencies.

Likewise, for immediate causal history, we divide P
C ~Xt−τ⇒Zt
Zt

, which contains information from the im-

mediate past and directly influences Zt, into the self- and cross-dependencies, represented by ~ZJ ≡ {Vt−τ :

V = Z, Vt−τ ∈ P
C ~Xt−τ⇒Zt
Zt

} (the blue box in Fig. 4.1(b)) and ~Z
′
J ≡ P

C ~Xt−τ⇒Zt
Zt

\~ZJ (the dashed blue box

in Fig. 4.1(b)), respectively. The corresponding PID from the two parts of the immediate causal history is
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given by:

J = I(Zt;P
C ~Xt−τ⇒Zt
Zt

| ~Wτ ) = I(Zt; ~ZJ , ~Z
′
J | ~Wτ ) (4.2a)

= SJ +RJ + Uself,J + Ucross,J , (4.2b)

where the subscript J refers to the information partitioning under the immediate causal history. Note that

different from the PID for D in Eq.(4.1b), the partitioning of J requires the conditioning on ~W to prevent the

influence of distant history in computing J , following the similar idea of MPID for characterizing information

flow to a target from two causal paths in Eq.(2.11).

A closer look at Eqs.(3.2), (4.1) and (4.2) reveals that the sums of J and D as well as their PID elements

in fact give rise to the PID of the information from the entire causal history, T , in terms of self- and

cross-dependencies. The PID for T is therefore given by:

T =I(Zt;PZt) = J +D (4.3a)

=SJ +RJ + Uself,J + Ucross,J+

SD +RD + Uself,D + Ucross,D (4.3b)

=SJ + SD︸ ︷︷ ︸
=ST

+RJ +RD︸ ︷︷ ︸
=RT

+Uself,J + Uself,D︸ ︷︷ ︸
=Uself,T

+Ucross,J + Ucross,D︸ ︷︷ ︸
=Ucross,T

(4.3c)

=ST +RT + Uself,T + Ucross,T , (4.3d)

where the subscript T refers to the PID in the context of the entire causal history. Eq.(4.3) illustrates that

each information content from the entire causal history (i.e., synergy, redundancy and unique information)

due to the interplay between self- and cross- dependencies is additively contributed by the corresponding

information content from its both distant and immediate histories.

In this study, we employ the rescaled approach of [Goodwell and Kumar, 2017a] for computing the PID

of D and T in Eqs.(4.1) and (4.3) as well as the momentary PID for J in Eq.(4.2). The rescaled approach

estimates the redundant information by considering the mutual dependency between two sources and en-

sures a non-negative information partitioning. Further, the empirical estimation of all the information-

theoretic measures is conducted based on the k-nearest neighbor (kNN) method [Kraskov et al., 2004,

Frenzel and Pompe, 2007]. The number of nearest neighbors, k, is set to 5 for facilitating a low bias of

(conditional) mutual information [Kraskov et al., 2004, Frenzel and Pompe, 2007]. In the analysis presented

later in Section 4.4, we first compute D and J , along with their (momentary) PIDs, in Eqs.(4.1) and (4.2),
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respectively. Then, the PID of T is obtained based on the sum of that of D and J according to Eq.(4.3).

4.3 Dimensionality Reduction Using Momentary Information

Weighted Transitive Reduction

In addition to the availability of time-series data, the validity of empirically estimating the information-

theoretic metrics in Eqs.(4.1)-(4.3) also depends on the number of the nodes involved. The dimensionality

required in the computation can still be high even after the dimension reduction achieved through the

Markov property for DAG. For example, consider the node Zt in Fig. 4.1. Its immediate and distant causal

histories are now reduced into P
C ~Xt−τ⇒Zt
Zt

(blue nodes) and ~Wτ (orange nodes), respectively. However, the

dimensions of J and D as well as their associated PID can still be high for reliable estimations of these

information-theoretic metrics in Eqs.(3.2), (4.1) and (4.2). Especially, the condition set, ~Wτ , involved in

computing both J and D, contains the parents of the entire immediate causal history, and accounts for most

of the dimensionality in the computation of J and D, as shown by the orange nodes in Fig. 4.1(b). This

dimensionality can grow large quickly as the number of variables increase and/or number of lags that influence

a target increases. Therefore, to address this problem, we introduce a new momentary information weighted

transitive reduction (MIWTR) approach to further reduce the dimensionality involved in computing the

information-theoretic measures. It builds on the weighted transitive reduction (WTR) [Bosnacki et al., 2010]

for reducing complexity of graphs, which we extend for computing the information-theoretic measures.

WTR builds on the transitive reduction (TR) [Aho et al., 1972]. For an acyclic graph, TR is aimed at

removing ‘redundant’ edges while keeping the connectivity structure of the graph. It is anchored on the idea

that a transitive reduced graph can be obtained by removing any directed edge i→ j in the original graph if

there exists an indirect path connecting nodes i and j. However, in a weighted graph, TR potentially removes

some ‘important’ edges that have large weights. To avoid that, WTR takes a step further by considering the

weights of the edges in the reduction. That it, an edge linking i and j is removed from the original graph if

and only if there exists a stronger indirect path from i to j. Otherwise, the edge is kept in the graph.

Technically, WTR is defined as follows. Consider a directed acyclic graph G1 = (~V ,E1) with a set of

nodes ~V and a set of edges E1. We define a path from node i to node j as pij = {k0 → k2 → ... → km},

where k0 = i, km = j and kl−1 → kl ∈ E1. Note that the corresponding causal path Ci→j is the union of

all the paths, pij , from i to j. The representative weight of the causal path Ci→j is defined as the maximal
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transitive influence [Bosnacki et al., 2010], and is given by:

hij = max
pij∈Ci→j

(
min

k→l∈Edges(pij)
{wkl}

)
, (4.4)

where Edges(pij) denotes all the edges in the path pij , and wkl is the weight of the edge k → l. hij is the

maximum weight of all the minimum weights in each path pij . It can also be considered as the maximum

allowable flow rate in all the pipes linking two nodes in a drainage system, where flow rate and pipe represents

the weight wkl and the path pij , respectively. In WTR, if and only if hij > wij , then the directed edge i→ j

is removed. Consider an example graph in Fig. 4.2. It consists of three nodes (i.e., A, B, and C) and three

corresponding weighted edges (i.e., A → C, A → B and B → C). TR removes the edge A → C due to the

existence of the path A→ B → C indirectly connecting A and C. Meanwhile, WTR keeps A→ C because

the corresponding maximal transitive influence hAC = wAC = 2. However, if the weight wAC is changed to

1, A→ C will be removed in WTR since now hAC = 1.5 > wAC = 1.

A

B C

2

1

1.5
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B C

2

1

1.5

A

B C
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1
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transtive reduction weighted transtive reduction
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(a) (b) (c)

Figure 4.2: Comparison of transitive reduction (TR) and weighted transitive reduction (WTR) in a graph
consisting of three nodes. (a) TR reduces the edge A → C due to the existing path A → B → C. (b)
WTR keeps the edge A→ C because the corresponding maximal transitive influence hAC in Eq.(4.4) equals
to the weight wAC = 2. (c) when wAC is reduced to 1, WTR excludes the edge A → C because now
hAC = wBC = 1.5 > wAC = 1.

In this study, MIWTR is developed to reduce the nodes in ~Wτ for each computation of Eqs.(4.1)-(4.2),

based on the WTR. The momentary information transfer for each edge defined in Eq.(1.8) is taken as the

edge weight. Since MIT reflects the strength of direct coupling between a source and target, it serves as a

good choice. The key idea of MIWTR is to first remove the edges linking ~Wτ and the immediate history

C ~Xt−τ→Zt by using WTR and then reduce the nodes in ~Wτ which now are not connected to C ~Xt−τ→Zt .

Consider Zt in the DAG for time-series G as the target and τ as the time lag for separating G into an

immediate and a distant causal history. We now define a subgraph of G, Gs = (~Vs, Es). The node set ~Vs

includes the union of the immediate causal history and ~Wτ , that is, ~Vs = C ~Xt−τ→Zt ∪ ~Wτ . The edge set Es

contains all the edges in ~Vs. The procedures for reducing ~W by using MIWTR is as follows.

• Implement WTR to exclude edges in Gs, generating a new graph G′s = ( ~Vs, E
′
s) where E

′
s is the edges

remaining after the implementation of WTR on Gs.
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• For each node Xt−τX ∈ ~Wτ , check whether there is an edge linking Xt−τX to any node in the immediate

causal history Yt−τY ∈ C ~Xt−τ→Zt based on the new graph G′s. If there is no edge Xt−τX → Yt−τY ,

remove Xt−τX from ~Wτ .

• Repeat removing nodes in the previous step for every node in ~Wτ .

• Return the reduced ~Wτ .

Consider the DAG for time-series in Fig. 4.1 as an example. ~Wτ in the orange nodes can be further

reduced by excluding Ut−τ−2 and Zt−τ−2 if the edges Ut−τ−2 → Zt−τ and Zt−τ−2 → Yt−τ are removed by

using MIWTR. A validity test for verifying the MIWTR-based reduction of ~Wτ in computing Eqs.(4.1)-(4.3)

is illustrated through a quadvariate logistic model in the Appendix F. We note that MIWTR algorithm

needs to be implemented for each distant/immediate histories segmentation of each target variable .

4.4 Characterizing Multivariate Interaction in Causal History

The framework presented in Section 4.2 provides a number of ways by which may ask how different

variables interact to determine the outcome of a specific variable at a specific time. As indicated earlier, a

variable may affect another variable’s outcome directly computed through momentary information transfer

(Fig. 1.1(c) and Eq.(1.8)) or indirectly through a causal path (Fig. 1.1(d) and Eq.(1.9)). Two variables may

interact through their corresponding causal paths (Fig. 1.1(e)) and their interaction can be partitioned using

PID into synergistic, unique, or redundant contributions (Eq.(2.11)). At the next level of complexity, we can

consider the interaction of all variables together influencing the outcome of any variable at time t through

the framework of causal history (Fig. 1.1(f) and Eqs.(4.1)-(4.3)). Causal history can be decomposed into

complementary components of immediate and distant causal histories as a function of separating time lag τ .

We have shown that, both immediate and distant causal histories can be further partitioned into self- and

cross-dependencies (Fig. 4.1). Each of these interaction can then be explored through PID (Eqs.(4.1)-(4.3)).

We can, therefore, ask:

• How does information flow, jointly provided by the entire causal history, sustain the whole system

dynamics?

• How does the characterization of such information at the system level reveal the unique contribution

of each individual component in the system?

To address the above two questions, we implement the proposed causal history analysis approach to

analyze the information flow in four different systems by using either time-series observations or synthetic
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data: an observed stream chemistry system, a short-memory logistic model, and two long-memory systems.

Then, we summarize the insights obtained from these applications.

4.4.1 Stream Chemistry Dynamics

Immediate causal historyDistant causal history

momentary information weighted 
transitive reduction (MIWTR)

!Wτ P
C !Xt−τ ⇒Zt

Zt

target

(b)

(a)

Figure 4.3: Illustration of implementing Momentary Information Weighted Transitive Reduction (MIWTR)

to reduce ~Wτ for the present state of Na+ with time lag τ = 6 in separating distant and immediate causal

histories based on the raw data. (Top) the original identified ~Wτ (orange nodes) and P
C ~Xt−τ⇒Zt
Zt

(blue nodes)

based on Eq.(3.6). (Bottom) the reduced ~Wτ by using MIWTR (orange nodes) (Note that the edges linking
~Wτ and immediate causal history are much less than the original DAG due to MIWTR).

We first analyze the fractal water solute data in Section 3.3.4. The causal history analysis is conducted

on both raw data and the data without the influence of the flow rate. Based on the two estimated DAGs in

Fig. 3.6, we compute the total, immediate and distant information flows (T , J , D) from the causal history

over time lag τ ranging from 5 to 400 using Eqs(3.3) (3.4) and (3.6). We also compute the corresponding

PIDs using Eqs.(4.1)-(4.3). Note that T is obtained by the sum of the estimated D and J , which are

computed by using kNN estimator. The computations of D and J are based on the implementation of

MIWTR. For instance, to compute the information transferred to Na+ from immediate and distant causal

history separated with time lag τ = 6 by using the raw data, we first identify ~Wτ in Eq.(3.4) based on

the DAG generated in Fig. 3.6(a), shown as the orange nodes in the top of Fig. 4.3. Then, MIWTR is

conducted to remove the nodes in ~Wτ whose edges connected to the corresponding immediate causal history
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are excluded by using WTR. The resulting simplified ~Wτ is illustrated in the bottom of Fig. 4.3, showing

the reduction of the cardinality of ~Wτ from 31 to 17. MIWTR is implemented for each variable at each time

lag τ in both DAGs in Figs. 3.6(a) and (b). The corresponding cardinalities with and without MIWTR are

shown in Fig. F.4(a). It can be observed that for each variable a significant dimension reduction is achieved

at around 5˜15 due to the simplification of ~Wτ . The resulting information partitioning for T , D and J for

the systems with and without the influence of flow rate over time lag τ are plotted in Fig. 4.4.

Trends of T , D and J . Figs. 4.4(a) and (b) show that for each variable in both graphs, the information

from the causal history, T , is almost constant with regards to the time lag τ . It is consistent with the fact

that the influence from the entire evolutionary dynamics of the system is independent of the time lag τ for

the partition of distant and immediate histories. Further, Figs. 4.4(c) and (d) provides the information from

the distant and immediate causal histories, D and J , respectively. For each variable, D and J are separated

by the dotted black line, where the above and below the dotted line refer to D and J , respectively. It can be

observed that D and J decreases and increases with growing τ , respectively. It illustrates that when more

states move from distant history to immediate history as τ increases, the information from recent dynamics

increases while the information from earlier dynamics decreases accordingly. Moreover, the non-vanishing

area above the black dotted line illustrates the non-zero convergence of D for each variable, reflecting the

long-memory property of the system.

Characteristics of T , D and J explaining the whole system dynamics. Further, based on the

information characterization of the total information T in Figs. 4.4(a) and (b), we can observe that the

self- and cross-dependencies contribute to different information contents in T of both graphs. While the

unique information, Ucross,T , contributes most of the information from cross-dependencies for all variables,

the main contributor for the influence from self-feedback interactions differs. When the flow rate is included,

the redundant information, RT in Fig. 4.4(a), is stronger in the self-feedback influence. Meanwhile, when the

flow rate influence is excluded, the unique information of self-dependency, Uself,T in Fig. 4.4(b), dominates.

The strong redundant effect due to the flow rate, again, implies that it serves a crucial role in enhancing the

connectivities among different solutes.

Moreover, a detailed characterization of information from immediate (J ) and distant (D) causal histories

of the two graphs are plotted in Figs. 4.4(c) and (d). It can be observed that the dominance of self-dependence

in immediate history is independent of τ through either unique Uself,J and redundant RJ information.

However, the influence from distant history is attributed by both self- and cross-dependencies for small τ ,

but is dominated only by cross-dependency through its unique information Ucross,D as τ increases. This

is because the influence from self-dependency is limited in recent dynamics such that when the separation
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time lag τ is too small, some of the self-dependency influence will be reflected in the distant history and

squeezed back to the immediate history as τ grows. It also implies that the influence from self-feedback

interaction dictates the recent dynamics of each target variable, while the the interaction with other variables

dominates the dynamics of the target in a long term. This is especially insightful in understanding the 1/f

fractal dynamics of these stream solutes. The important role of self-feedback interactoin in determining a

self-similar process is well-accpeted, however, the role of interaction with the remaining dynamics of a system

is usually neglected, which is now resolved through the proposed causal history analysis. It shows that the

influence due to the cross interactions is significantly crucial in sustaining the long-memory behavior and

thus also contributes to the self-similarity of the stream chemistry. In a more general sense, we postulate

that to sustain the complex dynamics as the stream chemistry system, it requires (1) the influences from

the self-feedback interactions in recent dynamics for determining the short-term trend of the system and (2)

the cross-dependency in earlier dynamics for controlling the long-term trend, so that the system behaves

‘complex’.

Characteristics of D and J distinguishing the component dynamics. In addition, the PID

results of information from the immediate and distant causal histories reveal different dynamics of the solutes

studied. In the flow-rate-dominated system, most solutes show similar PID patterns as plotted in Fig. 4.4(c).

That is, for each solute, the information from distant causal history, D, mainly consists of Ucross,D and RD,

and the information from immediate causal history, J , mainly consists of RJ and Uself,J . Again, the

significant redundant information in both distant and immediate causal histories - RD and RJ - is due to

the influence of flow rate. Also, different from the other solutes, SO4
2- shows a stronger unique information

due to its self-feedback interactions in recent dynamics, Uself,J . It implies that SO4
2- is less subjective to

the influence of flow rate than other solutes, which is evidenced by the negligible changes between SO4
2-’s

PID results with and without flow rate in Fig. 4.4(d). However, when the influence of flow rate is removed,

the PID patterns differs for each variable shown in the bottom rows of Fig. 4.4(d). For instance, Na+ and

Cl- show stronger unique information due to their self-feedback dynamics in both distant and immediate

causal histories, represented by Uself,D and Uself,J , respectively. It is consistent with the fact that the

majority of the sodium and chloride in the studied catchment, which is close to the coast, originates from

the ocean through the atmospheric deposition [Neal et al., 1997]. Therefore, compared with other solutes,

the states of Na+ and Cl- are more subjective to their own dynamics that are not overlapped with other

variables. Meanwhile, for solutes with evenly mixed origins from both ocean and catchment, such as Ca2+

and SO4
2- [Neal et al., 1997], there are higher redundant information in their distant causal histories, RD.

It illustrates the shared influences from the catchment dynamics and their own dynamics on both Ca2+ and
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SO4
2-, represented by RD. Lastly, Al3+ shows significant and dominant redundant information from both

distant and immediate histories, RD and RJ , respectively. It coincides with its solely terrestrial origin (see

Table S3 in [Kirchner and Neal, 2013]), such that the catchment dynamics dictates the state of Al3+.

The PID approach in conjunction with causal history framework for the solute dynamics has enabled

us to characterize the whole system behavior as well the dynamics of each solute. We find that maintain-

ing the whole system dynamics mainly results from a self-dependency-dominated immediate causal history

and a cross-dependency-dominated distant causal history. Also, the characterization of information from

immediate and distant causal histories indicates different origins of the studied solutes.

4.4.2 A Short-Memory Dynamics: a Trivariate Chaotic Model

To investigate the dynamics in other system, we implement the causal history analysis in a short-memory

synthetic model. Consider a trivariate coupled logistic system in Eq.(2.31) with noise coupling strength

ε = 0.3. Taking X3,t as the target node and partitioing its immediate and distant history based on an earlier

time step t − τ (τ ≥ 1) shown in Fig. 4.5(a), we identify PX3,t
in blue nodes, ~Wτ in orange nodes, and

the self-and cross-dependencies of the two histories in solid and dashed boxes, respectively. J , D and their

corresponding information characterization are calculated for τ ranging from 1 to 50 based on Eqs.(4.1) and

(4.2), with 10,000 synthetic data points generated to conduct the empirical estimations for each τ .

The characterization of information flow from distant and immediate histories are plotted in Fig. 4.5(b),

with the same colors and labels of different information characterization as Fig. 4.4. Different from the

long-memory process as the stream chemistry dynamics, D of the chaotic model (the area above the black

dotted line) converges to zero with increasing τ , indicating the short-term dependence of the process. Fur-

thermore, we observe an overall very strong redundant information contributed by both an increasing RJ

from immediate history and an decreasing RD distant history as τ grows. The opposite changes of RJ

and RD illustrates the exchange of redundant information from earlier dynamics to recent dynamics when

more historical states are considered as immediate history. And the strong overall redundancy is due to the

symmetrical structure of the model in Eq.(2.31), such that the dynamics of the three variables are similar to

each other and therefore provide significant overlapped information to the others. In addition, the influence

from cross-dependence is now dominated by immediate history through Ucross,J rather than distant history

as observed in stream chemistry dynamics. This, again, is because of the short-term dependence of the

chaotic system leading to the contributions of both self- and cross-dependence interactions originating from

recent dynamics.
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4.4.3 Two Long-Memory Dynamics: the Lorenz Model and the

Ornstein-Uhlenbeck Process

Now, let’s further analyze the dynamics in two long-memory processes with and without chaotic behav-

iors: the Lorenz model and the Ornstein-Uhlenbeck (OU) process, respectively. The two synthetic models

are given in Eqs.(3.16) and (3.17). The trajectories of the two models are sketched in Fig. 4.6(a). To

characterize the information flow to each variable in Eqs.(3.16) and (3.17), we identify the parents of each

target varaible, ~Wτ based on the immediate and distant causal histories partitioned by a time lag τ , and the

self-and cross-dependencies in the two histories in Fig. 4.6(b), as the analysis of stream chemistry dynamics

and the logistic model. The information characterization in Eqs.(4.1) and (4.2) of the two histories are then

computed based on 10,000 data points generated from the two models discretized with dt = 0.01

The PID results of the distant and immediate histories from the two models are illustrated in Fig. 4.6(c).

It can be observed that most of the information characterizations of the two models are similar to that of

stream chemistry dynamics with raw data in Fig. 4.4. First of all, the Lorenz model is a long memory process,

indicated by the non-zero convergence of the information from distant history D. Second, the redundant

information dominates the influence from immediate history and is also non-negligible in distant history

before D converges. It illustrates that the dynamics of each variable resemble that of the others. Further,

when D and J converge, the contributions from the total information T are dominated by the redundant

information in immediate history and unique information of cross-dependence dynamics in distant history. In

a physical sense, it illustrates the roles of self-and cross-dependency dynamics in determining the short-and

long-term dynamics of each variable, respectively.

Nevertheless, we can still observe the slight differences in the two models due to their unique dynamics.

For the Lorenz model, before the convergence of D, there are oscillations in the redundant information of

the distant history, RD. This is due to the approximately periodic drawing butterfly trajectories to fill the

strange attractor of the model. Specifically, the periodic spikes of RD is because the dynamical trajectory

goes back to the location close to the starting point after finishing one butterfly trajectory (see Fig. 4.6(a))

as τ increases, while RD eventually dampens out when the dynamics are away from the beginning for filling

the other part of the fractal domain. In addition, the OU process shows stronger unique information of

self-feedback interaction and synergistic information in the distant history, Uself,D and SD, respectively.

The strong Uself,D illustrates that different from the repetive butterfly trajectories in the Lorenz model, the

trajectory of the OU process is more “random” when filling out its attractor shown in Fig. 4.6(a) so that the

self-feedback interaction plays a more important role. The strong SD in distant history, on the other hand,

suggests that the joint influence from the self-and cross-dependency interactions in a long term is crucial in
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confining the dynamics in its attractor.

4.4.4 Insights from the Applications

Characterizing the information flow from the causal history in the four systems reveals the whole system

behavior as well as the dynamics of its each component. Therefore, it helps address the two questions raised

at the beginning of this section.

First of all, dynamics sustaining the whole system behavior vary from system to system. For a short-

memory system, such as the trivariate logistic model, the present state of each variable is maintained

by the recent dynamics including both self-feedback interactions and the influence of the other variables.

Meanwhile, for a long-memory system, the influences for sustaining the whole system behavior are mainly

contributed by: a self-dependency-dominated immediate causal history and a cross-dependency-dominated

distant causal history, evidenced from both observed stream chemistry system and two synthetic models. It

implies that while the self-feedback interaction from recent dynamics is critical for the short-term dynamics

of each variable, the cross-dependency interaction from earlier dynamics is responsible for its long-term

behavior, thus enforcing the dynamics as “complex”. In fact, the role of self-and cross-dependency in

immediate and distant history, respectively, is common in long-memory ecohydrologic dynamics, such as

the soil moisture. The trend of underground soil moisture is subjective to both its own dynamics and

the influence of atmospheric signals in a long term. This is evidenced by the dominant modes in the

frequencies corresponding to different ENSO signals through the spectral analysis on the observed soil

moisture, illustrating the encoded long memory of atmospheric impact on soil moisture [Amenu et al., 2005].

Furthermore, the detailed information characterization of different long-memory systems can still differ from

each other due to their unique dynamics. For instance, redundant information is pretty dominant in both

raw data-based stream chemistry system and the Lorenz chaotic model due to the influence of flow rate and

the repetitive butterfly trajectories in filling the strange attractor, respectively. However, unique information

of self-feedback interaction is more important in the flow rate-influence-corrected chemistry data and the

OU process, consistent with the self-similarity property and more “random” trajectories in the two systems,

respectively.

Second, the dynamics of each component in a complex system can be indicated by characterizing the

information from the interactions between self- and cross-dependencies in immediate and distant causal

histories. This is complementary to the previous findings associated with the dynamics sustaining the whole

system behavior. While the previous conclusion depicts the dynamics maintaining the complexity in a system

level, this conclusion details the unique dynamics of each variable through the information characterization
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on the system’s dynamics. In the analysis of stream solute dynamics, while stream solutes have been

widely and consistently found to have fractal and long-term dependency behaviors [Kirchner and Neal, 2013],

the origin of each solute and how each solute interacts with each other differs. The different origins of

solutes are indicated by the proportions of mixed redundant information and unique information from self-

dependency when the dependency of the flow rate is excluded. Furthermore, in the comparison between the

two synthetic models, we find that the redundant information is dominant in the Lorenz model, however,

unique information of self-feedback interaction is more important in the OU process. The difference illustrates

the repetitive butterfly trajectories for filling the strange attractor in the Lorenz model and relatively more

“random” trajectories in the OU process.

4.5 Discussion and Conclusion

This paper presents an information-theoretic framework to understand the whole system behavior due to

the multivariate interactions occurring in the whole system. A fundamental insight driving the development

of the framework is that the whole is greater than the sum of the parts. In other words, the complexity

results from the multivariate interactions in the entire evolutionary dynamics of the system, or causal history.

Such multivariate interaction thinking results in an improved causal history analysis for complex sys-

tem dynamics. It incorporates the PID techniques with the causal history analysis for characterizing the

information flow, to a target variable, from its self-feedback interactions and the cross-dependencies in both

immediate and distant causal histories (see the top of Fig. 4.1). While there are many ways to partition the

causal history, we argue that the proposed partitioning – in terms of the self- and cross-dependencies in a

recent and prior earlier dynamics – is a reasonable way to reveal the key aspects of interactive dependen-

cies. First, the difference between the influences from immediate and distant causal histories illustrates the

memory dependency of the system [Jiang and Kumar, 2019]. Second, the strong self-feedback interaction

observed in many systems, especially ecosystems, suggests its interplay with the dynamics of other variables

might be one of the keys for determining the current state of each target variable. However, further re-

search can focus on how other partitions for the causal history, such as interactions from different groups of

variables, reveals different perspectives of the dynamics in complex systems.

Based on the analyses of the observed stream chemistry dynamics and the three synthetic models, we find

that information characterization differs from system to system thus illustrating their different dynamics.

While the furture trajectory of a short-memory system is dicated by its recent dynamics such as the logistic

model, the dynamics of a long-memory system is mainly sustained by the influences from the self-dependency-
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dominated immediate causal history as well as the cross-dependency-dominated distant causal history. In

other words, in a long-memory system, the self-feedback interaction in recent dynamics determines the recent

trend of a target variable, and the influence from the remaining system in earlier dynamics, on the other

hand, adjusts the movement of the target in a long term. In the analyses of both stream chemistry system

and the two long-memory synthetic models, the consistent influence on long-term dynamics is evidenced

by the strong unique information of the cross-dependency, Ucross,D, in distant causal history. Furthermore,

the detailed characterization of information flow in different long-memory systems can still be different,

indicating the unique dynamics of each individual variables. For instance, in the stream chemistry dynamics

(Section 4.4.1), we observe that due to the dominant influence of flow rate, the PID contents of each solutes,

analyzed based on raw data, are similar. Nevertheless, when the influence of flow rate is excluded, the

resulting different PID illustrate the different origins of the stream solutes. In addition, the information

of the Lorenz model encompasses dominant redundancy in both immediate (RJ ) and distant history (RD)

due to its repetive butterfly trajectory, whereas the more “random” trajectory in the OU process results in

stronger unique information from the self-feedback interaction of each variable.

Further, momentary information weighted transitive reduction (MIWTR) is employed to achieve an

efficient estimation of different information theoretic measures in Eqs.(4.1)-(4.2) by reducing the cardi-

nalities. Weighted transitive reduction is more well accepted for simplifying a directed acyclic graph

than the traditional transitive reduction in that the weights or the strengths of edges are taken into ac-

count [Bosnacki et al., 2010]. That is, higher strength the edge has, less likely it will be excluded. An

example of computing the information flow in a quadvariate logistic model in the Appendix with and with-

out MIWTR verifies the feasibility of the usage of MIWTR. MIWTR would be more efficient in dimension

reduction in a more complicated DAG, especially when more variables are observed and included in the

graph construction.

A systematic multivariate interaction analysis enables the proposed information-theoretic framework in

this study. It is fundamentally different from most existing information theoretic measures, which either

only focus on pairwise interaction or interactions in a specific part of the system. This uniqueness sheds

light on how the complex system dynamics are sustained over time, thus improving our understanding

towards the whole system dynamics. This is especially helpful at the current age of Big data. With the

increasing availability of observations, these data-driven tools will provide more insights in different scientific

domains. Furthermore, they will also instigate more opportunity for assessing the modeling performance

and structure of numerical models [Liang and Kleeman, 2005, Majda and Gershgorin, 2011]. With all these

potentials, such data-driven approach will open up new avenues for investigating complex system dynamics.
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Chapter 5

Evaluating the Structure of a
Modelled System from an
Information-Theoretic Perspective

5.1 Introduction

A complex system can be considered as an information processing system. It takes in input, processes

it, and generates output with information of the system’s dynamics encoded. In the previous analyses, the

dynamics of complex systems are assessed with the assumption that the internal interactions are unknown.

This assumption is consistent with many natural systems, where only observation data are available and the

intervention of the system to achieve a different trajectory of dynamics is usually not feasible. Therefore, the

causality relation between source variable(s) and a target variable, analyzed in Chapters 1-4, focuses on how

the source(s) influences the target given the knowledge of (or conditioning, in a mathematical sense) all the

prior dynamics in the system, called Granger causality [Granger, 1969]. For instance, Chapter 2 characterizes

the influence from two lagged sources to a target by conditioning the parents of the corresponding two causal

paths, as shown in Fig. 5.1(a).

Meanwhile, numerical models, aiming at simulating the dynamics of natural systems and thus also an

information processing system, provide an alternative way for unravelling the interactions in a complex

system. Different from natural systems, the specific nature of numerical models for simulation allows system

intervention. This is extremely useful in analyzing the interventional effect, that is, how the dynamics of

target(s) would change when specific source(s) are fixed to specific values. Fig. 5.1(b) sketches an example

of the interventional effect by freezing two sources. Such an effect is termed Pearl causality [Pearl, 2000].

As the evaluation is conducted based on the causality relations through interventions in specific parts of the

system, the dynamics unravelled in this case refer to the structure of a modelling system.

Evaluating the structures of numerical models from a system-interventional perspective is crucial, in that

it enriches the analysis of complex system dynamics in addition to the analysis based solely on observational

data. For instance, it can be the case that while variable Yt−τY has a stronger influence on a target Zt in a

Granger sense, Zt changes more significantly when a third variable Xt−τX is intervened. Such contradictory

conclusion drawn from Granger and Pearl causalities would highlight the importance of reconciling the
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divergent outcomes from observational data and numerical modelling in issues such as ecosystem planning

and management, where a plenty of studies focus on how a system changes in response to adjustments of

anthropogenically altered initial/boundary conditions.

Therefore, the objective of this chapter is to investigate the influence on the present state of a component

from one or multiple lagged source components in a dynamical system from the system-intervention per-

spective. In addition to the intervention, the analysis also utilizes ensemble simulation, another uniqueness

of numerical models, to evaluate the change of a target due to the intervention of source variables. Ensemble

simulation of a numerical model allows assessing the temporal evolution of the density of the components in

the system. The cause-effect influence is then evaluated based on the change of the density evolution of the

target variable due to intervention of the source variable(s).

Analysis of causal influence anchored on the density evolution has been conducted by other researchers

from different perspectives. Liang and Kleeman [Liang and Kleeman, 2005, Liang and Kleeman, 2007a,

Liang and Kleeman, 2007b] provided a mathematical formalism for quantifying the information flow to a

target variable from a source variable at the previous time step. Later, Yin and Duan extended it to the

information flow coming from multiple components [Yin and Duan, 2018]. In addition, Bollt [Bollt, 2012]

analyzes the interaction between two components through the resulting evolution of transfer entropy. While

the existing researches focus on the influence from the dynamics at the previous step based on the system

density evolution, the analysis in this chapter takes one step further such that we investigate the influence

from one or multiple sources at any earlier time step based on the change of density evolution due to the

intervention on source(s).

In the rest of the chapter, we first present the methodology for quantifying the change of a target vari-

able due to the intervention on the lagged source component(s) by using Kullback-Leibler divergence – an

information-theoretic metrics for measuring the difference between two densities [Kullback and Leibler, 1951].

Then, we analyze the component dependencies in the Lorenz chaotic model by assessing the interventional

effect on each variable. Further, to compare the intervention results with a multivariate interaction analysis

based on statistical dependence, we quantify the dependencies between target and lagged source(s) by using

mutual information (MI) in Eq.(1.3) and transfer entropy (TE) in Eq.(1.5). Note that an exact causal his-

tory analysis in Chapter 3 is not conducted here. This is because freezing the self-feedback of the target in

the corresponding interventional analysis would directly enforce the target to be constant over time, thereby

losing the interventional effect from other variables and making the two analysis incomparable. Last, a short

conclusion is drawn and future work is discussed.
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Figure 5.1: Illustration of influence from lagged source variables to a target variable in terms of (a) the
statistical dependence driven from observed time series and (b) the interventional effect analyzed from
numerical models discretized with time intervel ∆t.

5.2 Method

Consider a multivariate continuous dynamical system ~Xt = {Xt, Yt, Zt, ...}N consisting of N variables:

d ~Xt

dt
= ~F ( ~Xt), (5.1)

where ~F = {FX , FY , ...}N is the vector field. The temporal dynamics in Eq.(5.1) can be represented by

using the DAG for time-series after discretization. Fig. 5.1(b) illustrates the DAG of a quadvariate system

discretized with time interval ∆t.

5.2.1 Intervention in the Dynamical Systems

The key idea of investigating how one or multiple lagged source variables ~V ⊆ ~X at a previous time

step t− τ (τ > 0), ~Vt−τ , influence a target variable, Zt, in Eq.(5.1) is to analyze the change of probability

density function (pdf) of Zt due to the intervention of the system on ~Vt−τ . Specifically, by intervention in

the system, we mean fixing the sources ~Vt−τ to be constants at given values.

To get Zt’s pdf and its changed pdf with the sources ~Vt−τ intervened, it requires ensemble simulation of

Eq.(5.1) as well as the interevention model. To achieve that, we discretize Eq.(5.1), leading to a mapping,

~Φ = {ΦX ,ΦY , ...}N : RN → RN given by:

~Φ :


Xt = ΦX( ~Xt−∆t) = ~Xt−∆t + ∆t · FX( ~Xt−∆t)

Yt = ΦY ( ~Xt−∆t) = ~Xt−∆t + ∆t · FY ( ~Xt−∆t)

...

. (5.2)
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where ∆t is the discretization temporal resolution. In addition, we need an intervened dynamical system

with the sources ~V fixed. Such a system can be defined as a new mapping ~Φ
S~V

= {ΦZ ∈ ~Φ | Z 6∈ ~V } : RN →

RN−NV , where NV is the number of variables involved in ~V . The new system ~Φ
S~V

takes ~Xt−∆t as inputs

and computes all the variables excluding the sources at the next time step, ~Xt\~Vt.

5.2.2 Assessing the Effect of Intervention by Using Kullback-Leibler

Divergence

Let’s denote the pdf of a target Zt generated from both the original system ~Φ and the intervened system

~Φ
S~V

with sources ~V fixed at time t − τ (τ > 0) as ρZ(t) and ρZ|~V (t|t − τ), respectively. The interventional

effect on Zt from fixing ~V starting at time t− τ can now be evaluated as quantifying the difference between

ρZ(t) and ρZ|~V (t|t − τ) through Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951], which is

given by:

DKL

(
ρZ(t)||ρZ|~V (t|t− τ)

)
=
∑
zt

ρZ(t) log
ρZ(t)

ρZ|~V (t|t− τ)
. (5.3)

DKL(p||q) is a nonnegative metrics, quantifying the distance between two pdfs p and q. DKL equals to zero

when the two pdfs are identical, and gets larger if the two pdfs differ significantly with each other. Given the

ability for assessing the intervetional effect by evaluating the corresponding density change, we now detail

the procedures for calculating the KL divergence in Eq.(5.3) based on ensemble simulation.

• Discretize the dynamical system from Eq.(5.1) to ~Φ in Eq.(5.2).

• Obtain the intervened dynamical system ~Φ
S~V

from ~Φ according to the sources ~V

• Initialize the joint density of ~Xt0 at the start time t0 with an assumed initial distribution ρ ~X(t0).

• Randomly draw Ns samples from ρ ~X(t0) to form an ensemble.

• Do ensemble predictions for the original system ~Φ till time t.

• Do ensemble predictions for the intervened system ~Φ
S~V

from time t− τ to time t.

• Estimate the densities of the target Zt in both systems ~Φ and ~Φ
S~V

, ρZ(t) and ρZ|~V (t|t−τ), respectively.

• Compute the KL divergence between ρZ(t) and ρZ|~V (t|t− τ) in Eq.(5.3).
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5.3 Application – the Lorenz Chaotic Model

We now employ the methodology presented in Section 5.2 to evaluate the interventional effect on each

component of the Lorenz model in Eq.(3.16) by fixing either one or multiple lagged source components. The

simulation is conducted based on 4000 data points for each run with an ensemble of 5000 runs (Ns = 5000).

For each variable, say Xt+τ for instance, we fix each other variable separately or jointly, that is, Yt, Zt, and

{Yt, Zt}, at each run. The intervention in each of the above three case takes effect at time t ranging from

2000 to 2050, with time lag τ ranging from 1 to 100.

Furthermore, to compare the cause-effect relations induced by interventional effect and statistical asso-

ciation dependence, we also compute the temporal evolution of mutual information and transfer entropy

between each target and lagged source(s) based on the ensemble simulation. Instead of using kNN meth-

ods for computing (conditional) mutual information, the information-theoretic measures in this section are

computed by using the histogram method in generating the pdf . The histogram method is conducted based

on 50 bins in each dimension with ranges from -40 to 40.

5.3.1 Influence of Interventional Effect on Density Evolution

The resulting temporal evolution of the density for each variable with and without interventions during

t from 1900 to 2100 is plotted in Fig. 5.2. It can be observed that without interventional effect, the density

evolutions of the three variables are stationary since the dynamics of the Lorenz model are absorbed in

the strange attractor as shown in the diagnal plots of the first three rows in Fig. 5.2. However, once the

intervention effect takes place, the density of each variable changes significantly and differs from each other,

as illustrated in the off-diagnal plots of the first three rows in Fig. 5.2 when fixing other variables at time

t = 2000. For X, its dynamics is more evenly distributed across -10 to 10 when Y is fixed, while fixing

Z confines most of the trajectories of X close to zero. For Y , the interventional effect of Z is similar to

its effect on X, but Y diverges to four specific trajectories at around ±10 and ±25 when X is fixed. For

Z, intervening either X or Y spreads the dynamics of Z from positive values towards zero more or less.

However, while the influence from Y directs the dynamics of Z more towards zero, the influence from X

squeezes most trajectories around 25. In terms of the joint effect from intervening two variables, for both Y

and Z, fixing the other two sources together results in a mixed trajectories of when intervening each source

individually. Meanwhile, the changed dynamics of X by fixing Z and Y is identical to the effect from Y

only. This is because Y is the direct influence on X as evident from Eq.(3.16).

The altered density evolution, induced by intervention in a part of system, encodes the information of

how freezing one or multiple sources affect the evolution of a target. In the next subsection, we compute the
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KL divergence Eq.(5.3) to quantify the density changes for each variable.

[nats]

Figure 5.2: The density evolution of each variable in the Lorenz model with and without freezing the source(s)
at time t = 2000. For instance, the plot of Y → X refers to the density evolution of X with variable Y fixed
at time t = 2000, while the plot of Y,Z → X refers to the density evolution of X with variables Y and Z
fixed at time t = 2000.

5.3.2 Comparing Causal Relation Due to Interventional and Association

Effects

For each trajectory, we intervene each set of sources (for each target variable) starting at time t ranging

from 2000 to 2050, and run the intervened system 100 time steps. KL divergence is then computed based

on the two different densities, generated from both original Lorenz model and the intervened system. The

corresponding MI and TE (in Eqs.(1.3) and (1.5), respectively) for each pair of source and target variables,

are computed only based on the simulations without intervention. Specifically, The results of KL, MI, and

TE when considering one and two lagged sources are plotted in Figs. 5.3 and 5.4, respectively.

Interventional effect from one lagged source. The results of KL divergence in the second column of

Fig. 5.3 shows that the interventional effect on each component from each other variable greatly differs from
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each other. For the target X, fixing Y does not change its dynamics significantly over time, whereas the

corresponding changes in the density due to intervening Z increase swiftly when the time lag tau grows, as

shown in Fig. 5.3(a). Based on the corresponding density evolution plots in the first column of Fig. 5.3(a), we

see that while the resulting self-feedback interaction of X when treating Y as constant allows the dynamics of

X to be stationary, the interaction between X and Y when fixing Z confines X around zero. In addition, the

KL divergence plots for Y in Fig. 5.3(b) is slightly different from X. Though Y receives a similar influence

from Z as X does, illustrated as a similar density change and the growth of KL divergence over t + τ , the

influence of X on Y is way more stronger than the other way around. It is due to the fact that while fixing

Y results in the self-feedback interaction of X, fixing X still allows the interaction between Y and Z, thus

complicating the dynamics of Y . Last, the divergence result for Z in Fig. 5.3(c) shows an enhanced changes

of Z’s density over time when intervening either X or Y . It can be explained by the fact that fixing either X

or Y stills allows the interaction between Z and the other variable, leading to the deviation of the trajectory

of Z.

Interventional effect from two lagged sources. The KL divergence results in the second column of

Fig. 5.4 show that when fixing two variables, the temporal density of each target variable changes abruptly

and then converges over time, with the most and least changes on Z and X, respectively. This is due to the

similar dynamics of all the three variables when the other two are fixed. That is, dV
dt = −aV + b where a

and b are constant with a > 0 and V ∈ {X,Y, Z}), whose discretization further results in an autoregressive

process without the noise term. The different degrees of density divergence are because of the different a

values due to the chosen α and β parameters in the Lorenz model.

Comparing results of KL with MI and TE. The association effect quantified by MI and TE is greatly

different from KL divergence, in terms of both indicating the important source driver and illustrating the

dynamics of the system. First of all, compared with the analysis based on KL divergence, the corresponding

results of MI and TE can refer to a totaly different conclusion on which source has a stronger influence on

the target. This is especially true in the case of the individual influence of Y and Z on X, as shown in

Fig. 5.3(a). While the KL divergence implies the stronger interventional effect from Z on X, MI and TE

show a stronger statistical dependence effect between Y and X. A similar contradiction can be observed

from the joint influence on each target from the other two variables in Fig. 5.4. As mentioned in the previous

paragraph, Z receives the strongest interventional effect from the other two variables, and X receives the

least. In contrast, the results of MI and TE illustrate that X is more strongly dependent on the rest two

variables than Z. Furthermore, stripe patterns over t+ τ can be observed in each plot of MI and TE in both

Figs. 5.3 and 5.4, which is not shown in the KL divergence. These patterns illustrates the unique dynamics
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in the strange attractor of the Lorenz model. That is, the model tries to fill the entire fractal domain by

drawing many similar but slightly different butterfly trajectories, leading to quasiperiodic dependence among

components over time.

→
X

→
Y

→
Z

(a)

(b)

(c)

Density evolution KL divergence Mutual information Transfer entropy

[nats] [nats] [nats] [nats]

Figure 5.3: Results of Kullback-Leibler (KL) divergence for quantifying the density change of each target
variable in the Lorenz model due to freezing one lagged source as well as the corresponding mutual infor-
mation (MI) and transfer entropy (TE) between the lagged source and the target, with (a) X as the target;
(b) Y as the target; and (c) Z as the target. For instance, in the first row of (a), from left to right, the four
plots show the density evolution of X with Y fixed at time t = 2000, the KL divergence between the original
density of X and the density of X at time t+ τ with Y intervened at time t, the MI and TE between X at
time t+ τ and Y at time t, respectively.

The difference between the results of KL divergence and MI/TE in the Lorenz model analysis implies the

complementary roles of employing numerical modelling and observed time series data to unravel the complex

system dynamics. While MI and TE quantified from observations are able to illustrate the association
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dependencies among the components, the interventional effects can be obtained by intervening and ensemble

simulation of a known dynamics. The inteventional effect by investigating the structure of numerical models

focuses on how the dynamics of a target variable changes by altering one or multiple sources. It would be

extremely helpful in scenario control analysis, where the control or intervention in the system is required to

evaluate the corresponding acclimation of a specific variable. On the other hand, when only observations

are available, as the case in many natural systems, metrics such as MI and TE can provide insights on the

dependencies among different components as well as indicate the corresponding cause-effect relation in a

Granger sense.

Density evolution KL divergence Mutual information Transfer entropy

[nats] [nats] [nats] [nats]

Figure 5.4: Results of Kullback-Leibler (KL) divergence for quantifying the density change of each target
variable in the Lorenz model due to freezing two lagged sources as well as the corresponding mutual infor-
mation (MI) and transfer entropy (TE) between the lagged source and the target, with (a) X as the target;
(b) Y as the target; and (c) Z as the target. For instance, in the first row of (a), from left to right, the four
plots show the density evolution of X with Y and Z fixed at time t = 2000, the KL divergence between the
original density of X and the density of X at time t+ τ with Y and Z intervened at time t, the MI and TE
between X at time t+ τ and Y,Z at time t, respectively.

5.4 Conclusion and Future Work

We analyzed the structure of a numerical model from an interventional-effect perspective. That is, in a

modelled system, we ask how the density of a target variable responds to freezing one or multiple lagged

source variables, quantified by KL divergence. This is conceptually different from the prior causal history

analysis based on observational data, where system intervention and ensemble simulations are infeasible.

Further, in the comparison between interventional effect and statistical dependency, the proposed causal
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history analysis in Chapter 3 is not performed. This is because of the incomparability of the two types of

causality due to that the target would remain constant when its self-dependency in causal history is frozen.

Instead, MI and TE are computed for accounting for the corresponding statistical dependency on one or

multiple lagged sources.

The analysis of the Lorenz model shows that the interventional effect, measured by the corresponding

change in target’s density, and the statistical-dependence effect as, measured by the MI/TE between the

target and lagged source(s), provide two complementary views on the influence on a target variable from

lagged source variable(s). While the interventional effect quantified by KL divergence illustrates how a target

trajectory would change accordingly due to fixing source(s), the dependence effect quantified by MI and TE

assesses the uncertainty reduction of the target from source(s). For instance, in the Lorenz model, variable

X is more dependent on Y based on the MI/TE result, where the stripe pattern in Fig. 5.4 across the time

lag τ also indicate the quasiperiodic dynamics of the model. Meanwhile, the KL divergence shows that

X’s dynamics is in fact strongly controlled by Z, evidenced by the corresponding drastic density change in

Fig. 5.3(a).

The different perspectives on the interactions among variables from the interventional effect and the

statistical dependence indicate the importance of numerical modelling in understanding the component

interaction in natural systems from an interventional perspective, in addition to the purpose of simulation

and prediction. For instance, it can be the case that the two perspectives provide contrasting or even

contradictory results on the key source affecting a target, as the case of target variable X in the Lorenz

model. Decision made solely based upon the analysis in observational data might therefore not be the optimal

solution due to the lack of understanding on the interventional effect. Therefore, investigating such influence

on components by intervention in systems represented by numerical models is very crucial and useful for the

planning and decision making in control systems. In agricultural systems, such interventional effect analysis

in ecohydrological models can provide insights as to what extent different field planning schemes would

affect issues such as food production, water usage, carbon/nitrogen loss, and so forth, thereby improving

agriculture management. In addition, based on a simulated control system, assessing how dam operations

affects the dynamics of the ecosystem in the downstream can inform the local authorities for operational

practices. Thus, planning and decision making that leverages the interactions among the components as

such provides a lot of opportunities for future work in addressing different practical problems.
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Chapter 6

Summary and Conclusions

The main theme of this work is to provide a better understanding on the whole system behavior of a

complex system. We anchor it on the perspective of multivariate interaction by leveraging the importance of

the joint effect from the interactions among all the components in the system, with an attempt to understand

how the whole is greater than sum of its parts. The entire evolutionary dynamics of all components

in the system is termed causal history in this study. Investigating the joint influence from the causal

history on the present state of each individual variable in a system draws upon the understanding of the

interactions within each pair of lagged variables as well as a specific set of variables in the system. A

directed acyclic graphical model is employed to represent the dynamics of all the variables in the system

represented as a time-series, and thus serves as a basis for illustrating different types of interactions through

different pathways in the graph. Furthermore, to quantify and characterize the influence from one or multiple

lagged source variables to a target variable, information theoretic approach is utilized due to its capability

in capturing the nonlinear dependency across multiple components. The corresponding delineated influence

is, therefore, termed information flow from source(s) to a target. We first investigated the whole system

behavior in observed systems by developing information-theoretic metrics for characterizing the information

flow to a target from two sources as well as from the entire causal history. The resulting unravelled cause-

effect influence is consistent with the idea of Granger causality, that is, it evaluates the dependence between

lagged variables of interest by conditioning on the remaining historical dynamics of the system. We then

employed the idea of multivariate interaction to assess the structures of numerical models. Different from the

analysis in observed systems, the cause-effect influence analyzed in modelled systems enables us to explore

Pearl causality, that is, how intervening source(s) would induce a corresponding change on the target. This

is due to the uniqueness of numerical models – the ability of being intervened and ensemble simulations.

The multivariate interactions analyzed in observed and modelled systems thus provide two complementary

views of the dynamics in a complex system. In this chapter, we summarize the main findings and discuss

the potential future avenues of this study.
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6.1 Characterizing Information Flow from Causal History

We developed an information-theoretic framework to characterize the information flow from the entire

causal history to the present state of each target. Building on momentary information transfer (MIT) for

quantifying the coupling strength between each pair of lagged variables, we characterized the information flow

from two lagged sources through separable causal paths using momentary partial information decomposition

(MPID) approach. MIT and MPID then serve as the basis for causal history analysis approach, for capturing

the joint effect from different parts of the causal history. Specifically, we evaluated the information flow

from immediate and distant histories partitioned by a time lag τ , and as a function thereof, in the causal

history for investigating the influence from a recent and the complementary earlier dynamics of the system,

respectively. Furthermore, due to the vital role of self-feedback in interactions in many natural systems,

we also characterized the joint effects of the self- and cross-dependencies in both immediate and distant

histories. These information-theoretic measures were implemented to analyze the dynamics of a trivariate

logistic model and the Lorenz chaotic model. The key results show that:

• MPID is better at illustrating the structures of two causal paths conveying interactive information

flows from two lagged sources to a target than PID.

• The convergence of the information given by distant causal history over the time lag τ illustrates the

memory-dependence of a system, with zero- and nonzero-convergences representing short and long

memories, respectively.

6.2 Understanding Whole System Behavior in Observed Systems

We implemented the proposed causal history analysis approach to investigate how the entire evolutionary

dynamics shapes the present state of each variable in different systems. In addition to the logistic model and

the Lorenz model, we further analyzed the dynamics of the Ornstein-Uhlenbeck process – a long-memory but

non-chaotic model, and an observed stream chemistry dynamics – a fractal process when the dependencies

of flow rate on stream solutes are excluded. The resulting information characterizations of the four systems,

based on either observed or synthetic data, show that:

• A short-memory system, such as the trivariate logistic model, is only sustained by its recent dynamics

including influences from both self- and cross-dependencies.

• A long-memory system, such as the Lorenz model, the OU process, and the observed stream chemistry
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dynamics, is sustained by a self-dependence-dominated recent dynamics as well as a cross-dependence-

dominated earlier dynamics.

• The 1/f fractal signature of each stream solute analyzed, with the influence of the flow rate corrected,

is sustained by both its self-feedback interaction and the interactions with other components in the

stream.

• Information characterization can distinguish different dependencies among components. For instance,

it illustrates the different origins of the solutes in the stream chemistry dynamics analysis.

6.3 Assessing Variable Dependence in Modelled Systems

We investigated the cause-effect influence from lagged source(s) to each target in a system, from the

point of view of how the density evolution of the target is altered due to the interventions on the source(s).

Such interventional effect analysis provides a complementary view of a system’s dynamics in addition to

the Granger causality-based analysis on observed systems. We quantified the intervention-induced density

change of each target due to one or multiple sources in the Lorenz model by using Kullback-Leibler (KL)

divergence, and compared it with the statistical dependence between source(s) and target quantified by

mutual information (MI) and transfer entropy (TE). The comparison between the computed KL and MI/TE,

in the Lorenz model, showed that:

• The results of KL and MI/TE, quantifying to what extent a target is influenced by source(s), can be

different. For instance, while variable Z in the Lorenz model has a stronger interventional effect on X,

X is more statistically dependent on Y . It thus illustrates the complementary roles of intervetional

effect and statistical dependence in delineating the cause-effect influences in a complex system.

• The statistical dependence, captured by MI/TE, shows the quasi-periodicity over time lag τ between

source(s) and target. It is consistent with the quasi-repetitive butterfly trajectories within the strange

attractor.

6.4 Future Work

This dissertation is the first work to understand whole system behaviors through the interactions happen-

ing in the entire evolutionary dynamics of the system based on time-series data. The proposed information-

theoretic approach, along with the idea of multivariate interaction analysis, thus provides open avenues for
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future researches to understand ecohydrological system dynamics and complex system analysis in general,

including the following:

• Investigating a wide range of ecohydrological complex systems under different conditions, such as

wetness and temperature influence. For instance, it is of interest to evaluate the difference between

a dry and a wet plant system, or between systems in warm and cold environments, in terms of the

information characterization from its historical dynamical trajectory.

• Evaluating the impact of anthropogenic activities on the dynamics of ecohydrological systems. The

stream chemistry analysis is an example of assessing the role of flow rate on shaping the interactions

among other variables in the system. The investigation of the influence from one specific variable on

the causal relationships in the rest of the system provides insights on assessing the impact on the sys-

tem’s dynamics due to anthropogenic activities, which is considered as the influential component. For

instance, the analysis could potentially serve as a basis to investigate the influence on the downstream

surface water and groudwater interaction due to the upstream activities, such as dam operations.

• Analyzing the multivariate interactions through different causal history partitions. For example, one

possibility can be evaluating the joint effect from different subsystems, by classifying all the components

into a set of subsystems based on a classification criteria of interest.

• Studying the spatial interactions. It requires leveraging the existing causal history analysis approach

to evaluate the dynamics of variables in different geographical locations.

• Identifying key source component(s) in contributing to a specific target from both interventional effect

and statistical dependence perspectives using numerical models.

With the increasing availability of time-series observations and complexity of numerical models, the pro-

posed multivariate interaction analysis framework would potentially serve as the foundation for a holistic

understanding on complex system dynamics and thus enhance our comprehension of hydrology and other

fields.

100



References

[Aguirre et al., 2014] Aguirre, J., Sevilla-Escoboza, R., Gutiérrez, R., Papo, D., and Buldú, J. M. (2014).
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Appendix A

Some Properties of Shannon Entropy
and Mutual Information

The conditional Shannon entropy holds the translationally invariant property [Runge et al., 2012b] such

that

H(X + f(W )|V,W ) =

∫
p(w)H(X + f(w)|V,W = w)dw

=

∫
p(w)H(X|V,W = w)dw

= H(X|V,W ), (A.1)

where X, V and W are random variables and f is an arbitrary function. Such translational invariance is

also valid for the conditional mutual information and can be given as

I(X + f(W );Y |V,W ) = H(X + f(W )|V,W )−H(X + f(W )|Y, V,W )

Eq.(A.1)
= H(X|V,W )−H(X|Y, V,W )

= I(X;Y |V,W ), (A.2)

where Y is a random variable. Moreover, the translational invariance for the conditional mutual information

can be generalized as

I(X + f(W );Y + g(V )|V,W ) = I(X;Y |V,W ), (A.3)

where g is also an arbitrary function. The proof of Eq.(A.3) is similar to the proof for I(X+f(W );Y |V,W ) =

I(X;Y |V,W ) such that we emphasize the translational invariance of the conditions V this time. Another
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way for generalizing the translational invariance for the conditional mutual information is

I(X + f(W ), Z + h(W );Y |V,W ) = H(X + f(W ), Z + h(W )|V,W )−H(X + f(W ), Z + h(W )|Y, V,W )

Eq.(A.1)
= H(X,Z|V,W )−H(X,Z|Y, V,W )

= I(X,Z;Y |V,W ), (A.4)

where Z and h are a random variable and an arbitrary function, respectively.

Moreover, if all the variables are Gaussian, the entropy of a d-dimensional process ~X conditional on

another multivariate Gaussian process ~Y can be expressed as [Cover and Thomas, 2006]

H( ~X | ~Y ) =
1

2
ln
{

(2πe)d
|Γ ~X,~Y |
|Γ~Y |

}
, (A.5)

where |Γ~Y | and |Γ ~X,~Y | are the determinant of the covariance matrix of ~Y and ( ~X, ~Y ), respectively.
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Appendix B

Proof of the Coupling Strength
Autonomy Property for MPID

To prove the coupling strength autonomy property for MPID shown in Section 2.4.1, we start from the

derivation for MII-SCP and then give the solutions for the synergistic, unique and redundant information.

We denote ~W as the condition adopted in MPID such that

~W = ~W1 ∪ ~W2 ∪ ~W3 (B.1a)

where

~W1 = PZt\(CXt−τX→Zt ∪ CYt−τY→Zt), (B.1b)

~W2 = PCXt−τX→Zt
\CYt−τY→Zt , (B.1c)

~W3 = PCYt−τY →Zt
\CXt−τX→Zt . (B.1d)

The interaction information in MPID can be written as

∆IMSCP
{Xt−τX ,Yt−τY }→Zt = I(Xt−τX ;Yt−τY ;Zt | ~W )

= I(Xt−τX ;Yt−τY | {Zt} ∪ ~W )− I(Xt−τX ;Yt−τY | ~W ), (B.2)

which means the expressions for the two conditional mutual information values I(Xt−τX ;Yt−τY | {Zt} ∪ ~W )

and I(Xt−τX ;Yt−τY | ~W ) are required.

(i) Assume the additivity condition holds. Then, I(Xt−τX ;Yt−τY | ~W ) can be expressed as

I(Xt−τX ;Yt−τY | ~W )
Eq.(2.13)

= I(fX(P
~B
Xt−τX

) + gX(PXt−τX \P
~B
Xt−τX

) + ηXt−τX ;

fY (P
~B
Yt−τY

) + gY (PYt−τY \P
~B
Yt−τY

) + ηYt−τ2 | ~W )

Eq.(A.2)
= I(fX(P

~B
Xt−τX

) + ηXt−τX ; fY (P
~B
Yt−τY

) + ηYt−τY | ~W ) (B.3)

The first equality holds due to the additivity condition defined in Eq.(2.13), while the second equality is
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obtained based on the translational invariance in Eq.(A.2) because PKt−τ \P
~B
Kt−τ ∈ ~W (where Kt−τ ∈ ~B).

Furthermore, due to the chain rule, I(Xt−τX ;Yt−τY | {Zt} ∪ ~W ) in Eq.(B.2) can be expanded as

I(Xt−τX ;Yt−τY | {Zt} ∪ ~W ) = I(Xt−τX , Zt;Yt−τY | ~W )− I(Yt−τY ;Zt | ~W ). (B.4)

I(Xt−τX , Zt;Yt−τY | ~W ) in Eq.(B.4) can be further expressed as

I(Xt−τX , Zt;Yt−τY | ~W )
Eq.(2.13)

= I(fX(P
~B
Xt−τX

) + gX(PXt−τX \P
~B
Xt−τX

) + ηXt−τX , fZ(P
~B
Zt) + gZ(PZt\P

~B
Zt) + ηZt ;

fY (P
~B
Yt−τY

) + gY (PYt−τY \P
~B
Yt−τY

) + ηYt−τY ) | ~W )

Eq.(A.2)
= I(fX(P

~B
Xt−τX

) + gX(PXt−τX \P
~B
Xt−τX

) + ηXt−τX , fZ(P
~B
Zt) + gZ(PZt\P

~B
Zt) + ηZt ;

fY (P
~B
Yt−τY

) + ηYt−τY | ~W )

Eq.(A.4)
= I(fX(P

~B
Xt−τX

) + ηXt−τX , fZ(P
~B
Zt) + ηZt ;

fY (P
~B
Yt−τY

) + ηYt−τY | ~W ). (B.5)

The first equality is because of the additivity condition. For the second and third equalities, notice that g

represents the function of the parents not in ~B, PKt−τ \P
~B
Kt−τ , which are a part of the condition set ~W (i.e.,

PKt−τ \P
~B
Kt−τ ∈ ~W ). Therefore, the translational invariance in Eqs.(A.2) and (A.4) are applicable in the last

two equalities in Eq.(B.5). Similarly, the second term on the right hand side of Eq.(B.4) can be changed

into

I(Yt−τY ;Zt | ~W )
Eq.(2.13)

= I(fY (P
~B
Yt−τY

) + gY (PYt−τY \P
~B
Yt−τY

) + ηYt−τY ;

fZ(P
~B
Zt) + gZ(PZt\P

~B
Zt) + ηZt | ~W )

Eq.(A.3)
= I(fY (P

~B
Yt−τY

) + ηYt−τY ; fZ(P
~B
Zt) + ηZt | ~W ). (B.6)

Combining Eqs.(B.3), (B.4), (B.5) and (B.6) into Eq.(B.2), we get

∆IMSCP
{Xt−τX ,Yt−τY }→Zt =I(fX(P

~B
Xt−τX

) + ηXt−τX , fY (P
~B
Yt−τY

) + ηYt−τY ; fZ(P
~B
Zt) + ηZt | ~W )−

I(fX(P
~B
Xt−τX

) + ηXt−τX ; fZ(P
~B
Zt) + ηZt | ~W )−

I(fY (P
~B
Yt−τY

) + ηYt−τY ; fZ(P
~B
Zt) + ηZt | ~W )

=I(fX(P
~B
Xt−τX

) + ηXt−τX ; fY (P
~B
Yt−τ2

) + ηYt−τY ; fZ(P
~B
Zt) + ηZt | ~W ). (B.7)

(ii) If linearity and addivitity hold, which means all the f functions are linear such that all the nodes on
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the two causal paths and the target node are linearly dependent on each other, the interaction information

in Eq.(B.7) can be reduced to

∆IMSCP
{Xt−τX ,Yt−τY }→Zt =I(f̃X( ) + ηXt−τX , f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt | ~W )−

I(f̃X( ) + ηXt−τX ; f̃Z( ) + ηZt | ~W )− I(f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt | ~W ) (linearity)

=I(f̃X( ) + ηXt−τX ; f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt | ~W ), (B.8a)

where both f̃X( ), f̃Y ( ) and f̃Z( ) are the linear functions of all the noise terms ηt in the union of the

two causal paths and the target node (i.e., ~B). The first equality results from the fact that each parent in

the linear function f can be iteratively decomposed into the summation of both the noise terms η and the

function g of the external nodes (i.e, the parents of the two causal paths and the target node), and therefore

the translational invariance in Eqs.(A.2)-(A.4) can be used for canceling out the g functions. Furthermore,

because all the noise terms η are i.i.d., the condition ~W is independent of η and Eq.(B.8a) can be simplified

as

∆IMSCP
{Xt−τX ,Yt−τY }→Zt = I(f̃X( ) + ηXt−τX ; f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt ), (B.9)

yielding Eq.(2.15a). Similarly, the translationally invariant property can be used to simplify the momentary

interaction partitioning in Eqs.(2.11a)-(2.11b) as

Rc = Rmin,c + Is,c(RMMI,c −Rmin,c) (B.10a)

Sc = ∆IMSCP +Rc (B.10b)

UX,c = I(f̃X( ) + ηXt−τX ; f̃Z( ) + ηZt )−Rc (B.10c)

UY,c = I(f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt )−Rc, (B.10d)
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where

RMMI,c = min[I(f̃X( ) + ηXt−τX ; f̃Z( ) + ηZt ),

I(f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt )]

Is,c =
I(f̃X( ) + ηXt−τX ; f̃Y ( ) + ηYt−τ2)

min[H(f̃X( ) + ηXt−τX ), H(f̃Y ( ) + ηYt−τY )]

Rmin,c =


0, if ∆IMSCP ≥ 0

−∆IMSCP , otherwise.

It is obviously that under the linearity and additivity conditions, MPID is independent of the condition ~W ,

resulting in the coupling strength autonomy property.

(iii) If separability and additivity hold, P
~B
Xt−τX

and P
~B
Yt−τY

are empty because X (or Z) is not in the

causal path CYt−τY→Zt (or CXt−τX→Zt). Therefore, fX(P
~B
Xt−τX

) and fY (P
~B
Yt−τY

) are zero, which allows

Eq.(B.7) to be revised as

∆IMSCP
{Xt−τX ,Yt−τY }→Zt =I(ηXt−τX ; ηYt−τY ; fZ(P

~B
Zt) + ηZt | ~W )

=I(ηXt−τX ; ηYt−τY | {fZ(P
~B
Zt) + ηZt } ∪ ~W )− I(ηXt−τX ; ηYt−τY | ~W )

=I(ηXt−τX ; ηYt−τY | {fZ(P
~B
Zt) + ηZt } ∪ ~W ), (B.11)

yielding Eq.(2.17a). The final equality holds because ηXt and ηYt are i.i.d. and the nodes in the ~W are not

the common children of ηXt−τX and ηYt−τY , leading to I(ηXt−τX ; ηYt−τY | ~W ) = 0. Also, notice that due to

the separability condition, I(Xt−τX ;Yt−τY | ~W ) = I(ηXt−τX ; ηYt−τY | ~W ) = 0 (here, gX and gY cancel out

because of the translational invariance). Hence, Is,c in Eq.(2.11b) is reduced to zero (since all the noises η

are i.i.d.), resulting in the minimum value of the redundancy such that Rc = Rmin,c according to Eq.(2.11b).

Therefore, the synergistic and redundant information can be expressed as

Rc = Rmin,c (B.12)

Sc = ∆IMSCP +Rc. (B.13)
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The two unique information can also be obtained based on the separability condition such that

UX,c = I(ηXt−τX ; fZ(P
~B
Zt) + ηZt | ~W )−Rc (B.14)

UY,c = I(ηYt−τY ; fZ(P
~B
Zt) + ηZt | ~W )−Rc. (B.15)

(iv) If all the three conditions hold, we can easily obtain MPID by combining the results of both the

situations (ii) and (iii) such that

∆IMSCP
{Xt−τX ,Yt−τY }→Zt = I(ηXt−τX ; ηYt−τY | f̃Z( ) + ηZt ) (B.16a)

Rc = Rmin,c (B.16b)

Sc = ∆IMSCP +Rc (B.16c)

UX,c = I(ηXt−τX ; f̃Z( ) + ηZt )−Rc (B.16d)

UY,c = I(ηYt−τY ; f̃Z( ) + ηZt )−Rc. (B.16e)
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Appendix C

Analytical Solutions of the Linear
Common Driver Model

In the following, we show the derivation of the analytical solutions of ∆IMSCP
{Xt−1,Yt−1}→Zt and I(Xt−1;Yt−1;Zt)

in Eqs.(2.19c) and (2.20) for the linear common driver model in Eq.(2.18).

Variances and Covariances

We derive some variances and covariances of the linear model Eq.(2.18) for the further usage in the

derivation of the analytical solutions of ∆IMSCP
{Xt−1,Yt−1}→Zt and I(Xt−1;Yt−1;Zt).

The variances of the four sub-processes (i.e., V , X, Y , Z) can be expressed as

ΓV = σ2
V

ΓX = c2V XΓV + σ2
X

ΓY = c2V Y ΓV + σ2
Y

ΓZ = c2XZΓX + c2Y ZΓY + σ2
Z .

Also, some of the used covariances between two variables (e.g., X and Y ) with a lag τ , denoted as

ΓXY (τ) = E[Xt+τYt] (where E represents the expectation function), are given by

ΓXY (0) = cV XcV Y ΓV

ΓZX(1) = cXZΓX + cY ZΓXY (0)

ΓZY (1) = cY ZΓY + cXZΓXY (0)

ΓXV (1) = cV XΓV

ΓY V (1) = cV Y ΓV

ΓZV (2) = cXZΓXV (1) + cY ZΓY V (1).
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The Momentary Interaction Information for Separable Causal Paths ∆IMSCP
{Xt−1,Yt−1}→Zt

As shown in Fig. 2.3b, the condition set ~W for ∆IMSCP
{Xt−1,Yt−1}→Zt is {Vt−2}. Therefore, ∆IMSCP

{Xt−1,Yt−1}→Zt

can be written as

∆IMSCP
{Xt−1,Yt−1}→Zt =I(Xt−1;Yt−1;Zt | Vt−2)

=I(Xt−1;Yt−1 | Zt, Vt−2)− I(Xt−τ1 ;Yt−τ2 | Vt−2)

=H(Xt−1 | Zt, Vt−2)−H(Xt−1 | Yt−1, Zt, Vt−2)

−H(Xt−1 | Vt−2) +H(Xt−1 | Yt−1, Vt−2). (C.1)

Because all the processes in the linear model are Gaussian, based on Eq.(A.5), each component in

∆IMSCP
{Xt−1,Yt−1}→Zt is given by

H(Xt−1 | Zt, Vt−2) =
1

2
ln
{

2πe
|ΓXt−1,Zt,Vt−2 |
|ΓZt,Vt−2 |

}
H(Xt−1 | Yt−1, Zt, Vt−2) =

1

2
ln
{

2πe
|ΓXt−1,Yt−1,Zt,Vt−2 |
|ΓYt−1,Zt,Vt−2 |

}
H(Xt−1 | Vt−2) =

1

2
ln
{

2πe
|ΓXt−1,Vt−2 |
|ΓVt−2 |

}
H(Xt−1 | Yt−1, Vt−2) =

1

2
ln
{

2πe
|ΓXt−1,Yt−1,Vt−2 |
|ΓYt−1,Vt−2 |

}
. (C.2)

To derive the analytical solutions of the above conditional entropies, we need to solve the determinants

involved in the above equations. Consider the example of H(Xt−1 | Vt−2). The determinant of the covariance

matrix |ΓXt−1,Vt−2 | can be expressed as

|ΓXt−1,Vt−2
| =

∣∣∣∣∣∣∣
ΓX ΓXV (1)

ΓXV (1) ΓV

∣∣∣∣∣∣∣
= ΓXΓV − ΓXV (1)2

= σ2
XΓV . (C.3)

Also, because |ΓVt−2
| = ΓV , the analytical solution of H(Xt−1 | Vt−2) is given by

H(Xt−1 | Vt−2) =
1

2
ln{2πeσ2

X}. (C.4)

Therefore, by solving all the determinants above and putting all the analytical solutions of the four con-
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ditional entropy back to Eq.(C.1), we obtain the analyticial solution of ∆IMSCP
{Xt−1,Yt−1}→Zt as shown in

Eq.(2.19c).

It is noted that because all the three conditions (i.e., separability, linearity and additivity) hold for the

linear common driver model, the solution in Eq.(2.19c) can also be achieved by solving ∆IMSCP
{Xt−τ1 ,Yt−τ2}→Zt

=

I(ηXt−τ1 ; ηYt−τ2 ; ˜fZ( ) + ηZt ) directly, which is not shown here.

Interaction Information I(Xt−1;Yt−1;Zt)

I(Xt−1;Yt−1;Zt) can be expanded as

I(Xt−1;Yt−1;Zt) =I(Xt−1;Yt−1 | Zt)− I(Xt−τ1 ;Yt−τ2)

=H(Xt−1 | Zt)−H(Xt−1 | Yt−1, Zt)−H(Xt−1) +H(Xt−1 | Yt−1) (C.5)

Similarly, the Gaussian process-based I(Xt−1;Yt−1;Zt) can be further revised according to Eq.(A.5) as,

I(Xt−1;Yt−1;Zt) =
1

2
ln
{

2πe
|ΓXt−1,Zt |
|ΓZt |

}
− 1

2
ln
{

2πe
|ΓXt−1,Yt−1,Zt |
|ΓYt−1,Zt |

}
−

1

2
ln
{

2πe|ΓXt−1
|
}

+
1

2
ln
{

2πe
|ΓXt−1,Yt−1

|
|ΓYt−1

|
}

=
1

2
ln
{ |ΓXt−1,Zt ||ΓYt−1,Zt ||ΓXt−1,Yt−1

|
|ΓZt ||ΓXt−1,Yt−1,Zt ||ΓXt−1

||ΓYt−1
|
}
. (C.6)

By solving all the determinants in Eq.(C.6), we can obtain the solution in Eq.(2.20).
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Appendix D

Derivations for Information from
Immediate Causal History

This section provides the derivations of Eqs.(3.6). We separate the immediate causal history C~V⇒Zt into

two sets: (1) those belonging to the parents of Zt, P
C~V⇒Zt
Zt

= PZt ∩ C~V⇒Zt , and (2) the remaining nodes,

C~V⇒Zt\P
C~V⇒Zt
Zt

. Then, using the chain rule, J defined in Eq.(3.5) can be written as:

J =I(Zt;P
C~V⇒Zt
Zt

, C~V⇒Zt\P
C~V⇒Zt
Zt

| ~Wτ ) (D.1)

=I(Zt;P
C~V⇒Zt
Zt

| ~Wτ ) (D.2)

+ I(Zt;C~V⇒Zt\P
C~V⇒Zt
Zt

| ~Wτ , P
C~V⇒Zt
Zt

)︸ ︷︷ ︸
=0

(D.3)

=I(Zt;P
C~V⇒Zt
Zt

| ~Wτ ), (D.4)

yielding Eq.(3.6). The chain rule of the conditional mutual information (CMI) facilitates the transition from

Eq.(D.1) to Eq.(D.2). Moreover, in the 2nd term of Eq.(D.2), I(Zt;C~V⇒Zt\P
C~V⇒Zt
Zt

| ~Wτ , P
C~V⇒Zt
Zt

), the

parents of Zt are contained in the condition set, which is the union of P
C~V⇒Zt
Zt

and ~Wτ , including the parents

of Zt in C~V⇒Zt and the remaining parents not in the subgraph, respectively. Therefore, due to the Markov

property, given PZt (included in the union of ~Wτ and P
C~V⇒Zt
Zt

), Zt is independent of its non-descendants,

which contains both C~V⇒Zt\P
C~V⇒Zt
Zt

and the remaining nodes in the condition set { ~Wτ , P
C~V⇒Zt
Zt

}, thus

leading to I(Zt;C~V⇒Zt\P
C~V⇒Zt
Zt

| ~Wτ , P
C~V⇒Zt
Zt

) = 0.
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Appendix E

Construction of the Time Series
Graph for Water Chemistry Data

The catchment chemistry data in the Upper Hafren in Wales, sampled and analyzed every 7-h from

March 2007 to Jan 2009, are available as the supporting information of [Kirchner and Neal, 2013]. In this

study we use, the logarithmic flow rate (ln Q) and six water quality variables (i.e., Na+, Cl-, Al3+, Ca2+,

SO42- and pH), as well as the data with flow-dependent variations corrected [Kirchner and Neal, 2013], are

used. We construct two time series graphs for the raw data and the flow rate-corrected one, separately, with

the total number 2375 data points including gaps for each graph. The existence of the gaps in the data would

reduce the lengths of samples in computing conditional mutual information (CMI) or mutual information

(MI), thus potentially worsening the estimation. To minimize this effect, we use the whole dataset to get

the sample data points for estimating MI or CMI and then remove the data points containing gaps in the

samples [Goodwell and Kumar, 2017a].

(a) (b)

Figure E.1: Illustration of the estimated lag functions (y-axis: the coupling strength [nats] computed based
on momentary information transfer (MIT) [Runge et al., 2012a]; x-axis: the time lag τ) of the catchment
chemistry data by using Tigramite algorithm for: (a) the logarithm of flow rate and six chemistry variable;
and (b) the six chemistry variables with the variation of the logarithm of flow rate excluded.
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The time series graph is constructed by using Tigramite algorithm [Runge et al., 2012b, Runge, 2015,

Runge et al., 2015, Runge et al., 2017], which is a modified PC algorithm [Spirtes et al., 2000] and anchored

on the conditional independence test to remove any spurious relationship between two nodes. We employ the

k-nearest-neighbor (kNN) CMI-based conditional independence test, with the number of nearest-neighbor

k = 100 (high k facilitates a low variance of the estimated CMI [Frenzel and Pompe, 2007]). Each test

is conducted based on 100 samples with a significance level α = 95%. The graphs are constructed with

a maximum time lag τmax = 5. The resulting dependencies for the two networks are shown in Fig. E.1,

sketching the lag function in terms of the momentary information transfer [Runge et al., 2012a] between each

pair of lagged components. Based on the two time series graphs, D and T for each variable are computed

based on Eqs.(3.4) and (3.3), respectively, by using kNN approach with k = 5. The dimensions of T , D, and

J are shown in Fig. E.3. As the computation of D requires higher dimensions, the numbers of data points

used for computing D are shown in Fig. E.2, where in each case more than 1000 are used. Further, to check

the significance of D, shuffle test is conducted for D with a significance level of 95% based on 100 shuffles.

The result of shuffle tests in Fig. E.4 shows most D are statistically significant.

Figure E.2: Number of data points for computing D in Eq.(3.4) in terms of the time lag τ for each variable
in the two time series graphs constructed in Fig. E.1.
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Figure E.3: The cardinality of the estimated T , D and J in Eq.(3.3), Eq.(3.4) and Eq.(3.6), respectively, in
terms of the time lag τ for each variable in the two time series graphs constructed in Fig. E.1.

Figure E.4: The estimated D in Eq.(3.4) from the two networks constructed in Fig. E.1 as well as the
corresponding threshold for shuffle test with significance level α = 0.05.
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Appendix F

Verification of Momentary
Information Weighted Transitive
Reduction

This appendix aims to verify the feasibility of MIWTR in reducing the cardinality of the condition set ~W

in Eq.(3.4). We compute and compare the information flow from the immediate and distant causal histories

J and D as well as the corresponding (momentary) partial information decomposition in Eqs.(4.1)-(4.2),

with and without MIWTR in a quadvariate logistic model. The model is given by:

Xi,t =
1− ε

4

4∑
j=1

4Xj,t−1(1−Xj,t−1) + εηXit , i ∈ {1, 2, 3, 4} (F.1)

where ηXit ∈ [0, 1] is a uniform noise term and its coupling strength ε is set as 0.2.

The procedures of computing the information flows are as follows. We first use the Tigramite package to

construct the directed acyclic time-series graph based on the synthetic data generated from Eq.(F.1). Given

the graph describing the causal history, MIWTR is employed to simplify the condition set ~W according to

the procedures in Section 4.3. J and D and their PIDs are then computed, with time lag τ ranging from 5 to

50,using k-nearest-neighbor method with k = 5. The parameter setting of the Tigramite is the same as the

Appendix B of [Jiang and Kumar, 2019]. Further, to analyze how the data length affects the performance

of MIWTR, we compute the information flow with time-series lengths 200, 400, 600, 1000, 5000, 10000.

The cardinalities of D and J with and without MIWTR are plotted in Fig. F.1(a). It can be observed that

the dimensions decrease with increasing length of synthetic data. This is because more training datasets

allow a more reliable estimation of the directed acyclic time-series graph. The estimated graph becomes

stable when data length is larger than 1000, indicated by the convergence of the decreasing cardinalities.

Furthermore, for a given data length, we also observe significant drops of dimensions for both D and J due

to the reduction of ~W by using MIWTR. The reduced dimension of ~W is around 10 for data length greater

than 1000.

The plots of D and J with and without MIWTR are shown in Fig. F.1(b). We can observe that both

the results using MIWTR (solid lines) and without MIWTR (dashed lines) converge and are pretty close to

each other, especially for data length greater than 1000. It implies that in this quadvariate logistic model,
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the implementation of MIWTR in reducing the dimensions can ensure a reliable estimation of D and J

given enough time-series data (> 1000).

The (momentary) PIDs for D and J with MIWTR are plotted in Figs. F.2(a) and F.3(a), respectively.

Both D and J contains dominant redundant information, which are RD and RJ . It illustrates the symmetric

structure of the model in Eq. F.1. Also, the differences between the information partitioning with and without

MIWTR, in Figs. F.2(b) and F.3(b), shows that the differences are close to zero when more than 1000 data

points are used. This is consistent with the conclusion that the cardinality reduction based on MIWTR

does not affect the estimation of information-theoretic measures significantly when the time-series data is

sufficient.

In the analysis of stream chemistry data and weather station data in Section 4.4, the cardinalities of D

and J of all the variables are reduced to be less than or around 20 by using MIWTR as shown in Fig. F.4.

Based on the quadvariate logistic model example, the associated estimations of information flows in Figs. 4.4

are reasonable, because the corresponding time-series lengths of the data (around 1000-4000) are sufficient

to achieve reliable estimation.
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(a) Cardinalities of       and

(b) Information flow value

D J

Figure F.1: Plots of the cardinalities and the values of D and J of each variable in Eq.(F.1) over the tima
lag τ . based on data length of 200, 400, 600, 1000, 5000 and 10000. (a) The cardinalities of the estimated
D and J (the dashed lines) in Eqs.(3.4) and (3.6), respectively, as well as the corresponding cardinalities
based on momentary information weighted transitive reduction (MIWTR, the solid lines) of each variable
with the time-series graphs constructed by using Tigramite. (b) The corresponding values of D and J with
and without MIWTR.
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(a) PID for       (MIWTR)

(b) original - MIWTR

D

Figure F.2: Plots of the partial information decomposition (PID) of D of each variable in Eq.(F.1) over
the tima lag τ . based on data length of 200, 400, 600, 1000, 5000 and 10000. (a) The PID of D based on
MIWTR. (b) The difference between D without and with MIWTR.
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(a) PID for       (MIWTR)

(b)
original - MIWTR

J

Figure F.3: Plots of the momentary partial information decomposition (PID) of J of each variable in
Eq.(F.1) over the tima lag τ . based on data length of 200, 400, 600, 1000, 5000 and 10000. (a) The PID of
J based on MIWTR. (b) The difference between J without and with MIWTR.
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self-dependent

Raw data Flow rate corrected

Figure F.4: The cardinalities of the estimated D and J (the dashed lines) in Eqs.(3.4) and (3.6), respectively,
as well as the corresponding cardinalities based on momentary information weighted transitive reduction
(MIWTR, the solid lines) of each variable in the stream chemistry system based on the two time-series
graphs for the stream solute data constructed in Fig. 3.6.
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