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ABSTRACT

There are two directions in studying trading mechanisms: studying outcomes
that existing mechanisms generate and designing mechanisms that satisfy desired
outcomes. In this dissertation, I explore trading mechanisms in these directions.

In the first chapter, I study the first price auction with independent private valua-
tions, wherein each bidder faces ambiguity about the probability distribution from
which the other bidders’ valuations for the item are drawn. Each bidder is ambigu-
ity averse and this ambiguity is represented by a set of priors. In this informational
setting, I identify a maxmin Bayesian Nash equilibrium of the auction and show
that the bidders’ bids and the seller’s expected revenue increase with the level of
the bidders’ ambiguity if the bidders’ valuation distribution satisfies the monotone
inverse hazard rate condition. I also show that the seller’s expected revenue from
the first price auction is greater than that from the second price auction.

In the second chapter, I examine a trading mechanism in which traders’ valu-
ations for an item are interdependent. Trade can occur between multiple buyers
and multiple sellers. The transfer rules of the trading mechanism are motivated
by the second price auction. The mechanism satisfies ex-post efficiency, ex-post
incentive compatibility, and ex-post individual rationality. An example in which
the mechanism generates a budget deficit is provided. The result of this chapter
leads to my work on an impossibility result in the next chapter.

In the third chapter, I study trading mechanisms in which traders’ valuations
for an indivisible item are interdependent. Trade can occur between one buyer
and one seller. Under the assumption that each trader’s information has a greater
marginal effect on her own valuation than on the other trader’s valuation, no trading
mechanisms satisfying ex-post efficiency, ex-post incentive compatibility, ex-post
individual rationality, and no ex-post budget deficit exist.
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Chapter 1

First-Price Auctions with Maxmin Expected
Utility Bidders

1.1 Introduction

Much of the existing literature on auctions with independent private valuations
makes the following assumption: Each bidder’s valuation for the item is drawn
from a unique prior F and this distribution is common knowledge among the
bidders in the auction. This paper relaxes this assumption. There are two reasons to
weaken the unique prior assumption. First, there are real-world examples in which
this assumption seems strong. House auctions, merger and acquisition auctions,
art auctions, and online auctions are some examples. The items sold in these
auctions are unique in the sense that the bidders may not have observed similar
items in the past. Thus, the bidders don’t have enough information to have a unique
prior. The unique prior assumption is accordingly not suitable for these type of
auctions. Second, robustness of the results under the unique prior assumption can
be examined by weakening the assumption. Many well-known results from the
existing literature such as the revenue equivalence theorem or the equilibria of a
certain auction format depend crucially on the unique prior assumption. Since
Wilson (1989) emphasized the importance of studying mechanisms in a wide class
of environments, robustness has been a key question in the study of mechanisms,
including auctions. For these two reasons, I relax the unique prior assumption. I
assume that bidders in an auction face ambiguity about the probability distribution
from which each bidder’s valuation is drawn and that they are ambiguity averse.
My aim is to study first-price and second-price auctions under this assumption. The
paper focuses on the first-price auction because the outcomes of the second-price
auctions are trivial.

One of the earliest studies on ambiguity was conducted by Knight (1921). In
his book, Knight differentiates ambiguity from risk. Risk refers to situations
where probabilities are known; ambiguity, on the other hand, describes situations
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where probabilities are not known.1 Ellsberg (1961) subsequently shows that if
an agent faces ambiguity about a state of nature and is ambiguity averse, then the
decision-making behavior of the agent cannot be explained by a unique belief. A
decision-making rule of ambiguity averse agents is axiomatized by Gilboa and
Schmeidler (1989). They introduce the maxmin expected utility model with multi-
ple priors in which an agent has a set of multiple priors, instead of a unique prior,
about a state of nature. In this model, the ambiguity of the agent is captured by
the set of priors, and the agent’s utility from choosing an action is its minimum
expected utility across all beliefs in her prior set. She then selects the action that
maximizes this minimum expected utility. I use the maxmin expected utility model
developed by Gilboa and Schmeidler (1989) to explain the bidding behavior of
bidders who face ambiguity about the probability distribution from which the other
bidders’ valuations are drawn.

Some researchers have investigated auctions with bidders with ambiguity by
employing the maxmin expected utility decision rule; these researchers include
Bose, Ozdenore, and Pape (2006); Bodoh-Creed (2012); and Lo (1998). The main
difference between my paper and these papers is that my paper focuses on studying
how the outcome of the auction changes as the level of ambiguity faced by the
bidders changes. My paper quantifies the ambiguity level of each bidder from her
prior set. Then, it analyzes how the bidders’ ambiguity level affects their bids and
the seller’s expected revenue from the auction. This is an interesting question from
the seller’s perspective. If the seller knows how his expected revenue is impacted
by the bidders’ ambiguity level, then he may be able to increase his expected
revenue by adjusting the bidders’ information level.

The following are the main results. I identify a maxmin Bayesian Nash equilib-
rium of the first price auction.2 Then, I show that the bidders’ equilibrium bids and
the seller’s expected revenue from the auction increase with the bidders’ ambiguity
level if the distribution of the bidders’ valuations satisfies the monotone inverse
hazard rate condition. Moreover, I show that the first price auction generates a
larger expected revenue for the seller than the second price auction and that the
revenue gap between the two auction formats increases with the level of ambiguity
faced by the bidders.

This paper defines the prior set of each bidder as follows. It is assumed that there

1Knight (1921) uses the term ”uncertainty” instead of ”ambiguity” in his book.
2Other papers that also study the maxmin Bayesian Nash equilibrium of first price auctions are

presented in the next section.
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is a probability distribution from which each bidder’s valuation is independently
drawn and that each bidder’s prior set is a set of probability distributions in the
neighborhood of this true valuation distribution. The Levy metric, an intuitive
metric on the set of probability distributions that measures the maximum distance
between the graphs of two cumulative distribution functions, is used to define the
neighborhood. Then, the level of ambiguity that each bidder faces is represented by
the size of the neighborhood. Because the ambiguity level is captured by a parame-
ter in this prior set definition, it is possible to analyze how the bidders’ ambiguity
level affects the outcome of the auction. Among the probability distributions in a
bidder’s prior set defined by the Levy metric, we can consider two distributions:
the lower bound distribution and the upper bound distribution. In the prior set,
there is a distribution that first-order stochastically dominates all other distributions
in the set. I use the term “the lower bound distribution” to denote this distribution
because its cumulative distribution function values are lower than those of any
other distributions in the set. If a bidder’s belief about another bidder’s valuation is
the lower bound distribution, then compared to the other beliefs in her prior set,
she believes that the other bidders’ valuations for the item are higher. In the prior
set, there is also a distribution that is first-order stocahstically dominated by all
other distributions in the set. I use the term “the upper bound distribution” for this
distribution. Any probability distribution whose cumulative distribution function
values are between those of the lower bound and upper bound distributions are
contained in the bidder’s prior set.

Consider a maxmin expected utility problem faced by a bidder. Regardless of
the bidder’s bid, her worst belief, the expected payoff minimizing belief, in her
prior set is the probability distribution that first-order stochastically dominates all
the other distributions. If the bidder has this belief, then she believes that the other
bidders’ valuations for the item are high and there is a small chance of her winning
the item. Thus, this is the bidder’s worst belief. Because the worst belief does not
depend on her bid, the maxmin Bayesian Nash equilibrium with multiple priors is
the same as the Bayesian Nash equilibrium based on the worst belief. Thus, the
maxmin Bayesian Nash equilibrium of the first-price auction is obtained by using
the results on Bayesian Nash equilibrium in the first-price auction conducted by
Riley and Samuelson (1981) and Monteiro (2009). Riley and Samuelson (1981)
derive the equilibrium of the auction when the bidders’ valuations are drawn from
a continuous distribution, and Monteiro (2009) generalizes this result to the case of
distributions with discontinuities.
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This paper analyzes how the bidders’ bidding behavior and the seller’s expected
revenue change as the level of ambiguity faced by the bidders changes (Proposition
1.2, 1.3). Under the assumption that the true valuation distribution satisfies the
monotone inverse hazard rate condition, each bidder in the auction submits a higher
bid in response to an increased level of ambiguity. If a bidder faces a higher level
of ambiguity, then her worst belief is more pessimistic than the worst belief from
the lower level of ambiguity. That is, if the bidder’s ambiguity level increases, then
she believes that the other bidders’ valuations for the item are higher. Thus, to
compete against the other bidders with higher valuations, she submits a higher bid.
Due to the higher bids by the bidders, the seller’s expected revenue is also higher.
It follows that the seller’s expected revenue from the auction increases with the
level of bidders’ ambiguity about the distribution of the other bidders’ valuations.

The first price auction can be compared to the second price auction when bidders
have ambiguity (Proposition 1.4). If bidders do not face ambiguity, the revenue
equivalence theorem says that the first price auction and the second price auction
generate the same expected revenue for the seller (Myerson, 1981). However, the
first price auction generates greater expected revenue than the second price auction
if there is ambiguity. Moreover, the difference in revenues between these two
auction formats becomes larger as the bidders’ ambiguity level rises. Consider a
second price auction. If the bidders don’t face ambiguity, it is a dominant strategy
for them to bid their own valuations. It is still a dominant strategy even when the
bidders face ambiguity because dominant strategies don’t depend on the priors
that agents have. Therefore, the seller’s expected revenue from the second price
auction does not depend on whether the bidders have ambiguity or not. As we
noted, however, the seller’s expected revenue from the first price auction increases
with the increases in bidders’ ambiguity level. That is, the sensitivity of the auction
format to ambiguity is different for the first price and second price auctions, and
this leads to the revenue gap between these two auction formats.

The paper is organized as follows. Section 1.2 discusses related literature. Sec-
tion 1.3 introduces the model and informational assumptions and defines each
bidder’s prior set. Section 1.4 identifies a maxmin Bayesian Nash equilibrium of
the first price auction. Section 1.5 analyzes changes in bidders’ bidding behavior
and the seller’s expected revenue in relation to changes in the bidders’ ambiguity
level. Section 1.6 compares the results from the first price auction with those of
the second price auction. Section 1.7 and 1.8 conclude the paper by offering future
research directions.
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1.2 Related Literature

Existing literature studies auctions where the bidders face ambiguity about the
probability distribution from which the valuations of the other bidders are drawn
and they are ambiguity averse. Lo (1998) examines first price and second price
sealed-bid auctions using the maxmin expected utility model, showing that the
revenue for the seller is greater from the first price auctions than the second price
auctions. The main difference between my paper and Lo (1998) is that I exam-
ine how the bidders’ ambiguity level affects the outcome of the auction. This
is possible because each bidder’s ambiguity level can be defined by a parameter
determining the bidder’s prior set in my paper. Bose, Ozdenore, and Pape (2006)
and Bodoh-Creed (2012) characterize the revenue maximizing auction. My work
focuses on one auction format, the first price auction. The first price auction is not
in their set of optimal auctions. However, they mention that their optimal auctions
are rarely observed in the real world unlike first price auctions.

Other papers have adopted the maxmin expected utility model to explain the
decision-making behavior of agents facing ambiguity. Bergemann and Schlag
(2011) investigate the monopoly pricing problem when the monopolist has ambi-
guity about the demand distribution. I adopt their definition of a prior set to define
the bidders’ prior sets. I use the Levy metric to define the neighborhood of the true
distribution, which is how Bergemann and Schlag (2011) define the monopolist’s
prior set. Wolitzky (2016) studies properties of mechanisms using the maxmin ex-
pected utility model. He works on mechanisms in general while I focus on auctions.

1.3 Model

1.3.1. Auction

There is an indivisible item to be auctioned. There are n risk-neutral bidders
and the set of the bidders is N = {1, 2, . . . , n}. For each bidder i ∈ N , let
vi ∈ [0, 1] denote her valuation for the item, bi ∈ [0, 1] denote her bid, and
b−i ≡ (b1, . . . , bi−1, bi+1, . . . , bn) denote a profile of the bids with bidder i removed.

Consider a first price sealed-bid auction with seller’s reserve price r. The bidder
with the highest bid wins the item and pays her bid as long as her bid is at least r.
Assume that each highest bidder wins the item with the same probability in case
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of a tie. Let pi(b1, . . . , bn) denote the probability that bidder i wins the item and
ti(b1, . . . , bn) denote bidder i’s expected payment to the seller when (b1, . . . , bn) is
a profile of bids submitted by the bidders. Then, the allocation rule and the transfer
rule of the auction are defined as follows: for each i ∈ N and for each bid profile
b = (bi, b−i) ∈ [0, 1]n,

pi(bi, b−i) =


1 if bi > bmax−i and bi ≥ r,
1

k
if bi = bmax−i and bi ≥ r,

0 if bi < bmax−i or bi < r,

ti(bi, b−i) =


bi if bi > bmax−i and bi ≥ r,
bi
k

if bi = bmax−i and bi ≥ r,

0 if bi < bmax−i or bi < r.

where bmax−i ≡ max
j 6=i

bj and k ≡ |{l ∈ N | bl = bi}|. Thus, the payoff of bidder i

with valuation vi is

ui(bi, b−i; vi) = vi pi(bi, b−i)− ti(bi, b−i)

=


vi − bi if bi > bmax−i and bi ≥ r,
vi − bi
k

if bi = bmax−i and bi ≥ r,

0 if bi < bmax−i or bi < r.

From this point, I assume that the auction is the first price auction with reserve
price r unless stated otherwise.

1.3.2. Information

Bidder i’s valuation, vi ∈ [0, 1], is her private information and unknown to the
other bidders and the seller. Assume that each vi is independently drawn from the
continuously differentiable and strictly increasing distribution F0 on [0,1] whose
density function is f0. Suppose that bidders don’t know the distribution, that is,
they face ambiguity about the distribution and that they are ambiguity averse .
Each bidder knows that the valuations of other bidders are identically and indepen-
dently distributed from a distribution but she doesn’t know the distribution. The
ambiguity of each bidder can be represented by a set of probability distributions.
We assume that each bidder’s set of beliefs about another bidder’s valuation is the
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set of all probability distributions on [0,1] in the closure of ε-neighborhood of the
distribution F0. Following Bergemann and Schlag (2011), the Levy metric on the
set of probability distributions is used to define the closure of the ε-neighborhood
of F0.3 Then, bidder i’s set of beliefs is given by

Fε(F0) = {F ∈ ∆[0, 1] |F0(v − ε)− ε ≤ F (v) ≤ F0(v + ε) + ε ∀v ∈ [0, 1]}.

The Levy metric measures the maximum distance between the graphs of two cu-
mulative distribution functions along a 45◦ direction. In the belief set defined by
the Levy metric, there are two probability distributions on [0, 1], F0(v − ε) − ε
and F0(v + ε) + ε, that form a boundary of the set. The graph of each of these
distributions is a parallel shift of the graph of the value distribution, F0. Then,
any distribution on [0, 1] whose graph is located between the graphs of these two
distributions is in the bidder’s belief set. Figure 1.1 depicts each bidder’s set
of beliefs when F0 follows a uniform distribution on [0, 1]. Any distribution on
[0, 1] whose graph falls in the shaded area in the figure is included in the bidder’s
belief set. In our definition of the belief set using the Levy metric, the size of the
neighborhood, ε, represents the level of ambiguity that the bidder has. A higher
value of ε means a higher level of ambiguity of the bidder because the set of beliefs
is larger. Because each bidder’s ambiguity level is captured by a parameter, it is
convenient to analyze how the bidders’ ambiguity level affects the outcome of the
auction. It is assumed that the auction rule, the reserve price r, and each bidder’s
set of beliefs Fε(F0) are common knowledge.

1.3.3. Maxmin expected utility bidders

To analyze the behavior of bidders facing ambiguity, I adopt the maxmin ex-
pected utility decision rule axiomatized by Gilboa and Schmeidler (1989). Under
this decision rule, each bidder calculates the minimum expected payoff across all
beliefs for each of her possible bids. Then, she chooses the bid that maximizes the
minimum expected payoff. The mathematical formulation of the bidder’s minimum
expected payoff maximization problem is provided in the next subsection.

1.3.4. The game-theoretic auction and maxmin Bayesian Nash equilibrium

Each bidder’s strategy is a bidding function bi : [0, 1] → [0, 1]. Let v−i ≡
(vj)j 6=i = (v1, . . . , vi−1, vi+1, . . . , vn) denote a vector of bidders’ valuations with

3See Huber and Ronchetti (2009) on robust statistics for the definition of the Levy metric.
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v

F

1

1

2ε

2ε(
= F−10 (ε) + ε

)

F0(v + ε) + ε

F0(v)

F0(v − ε)− ε

Figure 1.1: A bidder’s set of beliefs when F0 is a uniform distribution on [0, 1].

bidder i removed. Consider bidder i with the set of beliefs Fε(F0) on another
bidder’s valuation. Suppose that bidder i bids bi, her valuation for the item is vi
and bj(·) is bidder j’s bidding strategy for all j 6= i. Bidder i’s minimum expected
payoff from bidding bi is defined by

min
F∈Fε(F0)

∫
v−i∈[0,1]n−1

ui

(
bi,
(
bj(vj)

)
j 6=i ; vi

) ∏
j 6=i

dF (vj).

Bidder i’s minimum expected payoff maximization problem can be defined as
follows:

max
bi∈[0,1]

min
F∈Fε(F0)

∫
v−i∈[0,1]n−1

ui

(
bi,
(
bj(vj)

)
j 6=i ; vi

) ∏
j 6=i

dF (vj).

By solving this problem for each valuation vi ∈ [0, 1], bidder i’s minimum expected
payoff maximizing bid, bi(vi), when the other bidders’ bidding strategies are(
bj(·)

)
j 6=i can be identified. We can say that this bidding function bi(·) is bidder

i’s best response against the other bidders’ bidding functions
(
bj(·)

)
j 6=i.

I adopt the maxmin Bayesian Nash equilibrium as the solution concept to
investigate the behavior of the bidders in the auction. A strategy profile

(
b∗i (·)

)n
i=1

is a maxmin Bayesian Nash equilibrium if each bidder’s bidding strategy is her
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best response against the other bidders’ bidding strategies. That is, for each i ∈ N
and for each vi ∈ [0, 1],

b∗i (vi) ∈ arg max
bi∈[0,1]

min
F∈Fε(F0)

∫
v−i∈[0,1]n−1

ui

(
bi,
(
b∗j(vj)

)
j 6=i ; vi

) ∏
j 6=i

dF (vj).

1.4 A Maxmin Bayesian Nash Equilibrium

Assume that the seller’s reserve price is at least F−10 (ε) + ε. That is,

r ≥ F−10 (ε) + ε.

Note that F−10 (ε) + ε is the greatest lower bound of the supports of the probability
distributions in the bidders’ prior set. This is assumed because otherwise the
bidder with her valuation less than F−10 (ε) + ε would update her prior set based
on the valuation. For example, suppose that bidder i’s valuation vi is strictly less
than F−10 (ε) + ε. Bidder i knows that value vi is in the support of the valuation
distribution. Thus, the probability distribution with a support of [F−10 (ε) + ε, 1]

cannot be included in her prior set. This problem is irrelevant in this paper because
of the assumption that the reserve price is at least F−10 (ε) + ε.

Consider bidder i with valuation vi ∈ [0, 1]. Suppose that the profile of the
other bidders’ strategies is

(
bj(·)

)
j 6=i and each bj(·) is a strictly increasing function.

Then, bidder i’s minimum expected payoff maximization problem is defined as
follows:

max
bi∈[0,1]

min
F∈Fε(F0)

(vi − bi) ∗ Pr (i wins the item).

That is,

max
bi∈[0,1]

min
F∈Fε(F0)

(vi − bi) ∗ Pr (bi ≥ bj(vj) ∀j 6= i).4

We can make two observations from this maxmin problem. First, bidder i’s optimal
bid bi, the minimum expected payoff maximizing bid, is less than or equal to her
valuation, vi, because her expected payoff would be negative otherwise. Second, for
each of her possible bids, bi ∈ [0, 1], we can find the expected payoff minimizing

4In this formulation, I don’t consider the cases of ties for convenience’ sake. This does not
affect the claim and the results I am going to derive in the paper.
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belief, F ∈ Fε(F0). From the objective function of the maxmin problem, the
expected payoff function, we can obtain that

(vi − bi) ∗ Pr (bi ≥ bj(vj) ∀j 6= i)

= (vi − bi) ∗ Pr (vj ≤ b−1j (bi) ∀j 6= i)

= (vi − bi) ∗
∏
j 6=i

F
(
b−1j (bi)

)
.

Thus, for given bi ∈ [0, 1], the expected payoff minimizing belief minimizes bidder
i’s probability of winning,

∏
j 6=i

F
(
b−1j (bi)

)
. Bidder i’s probability of winning is a

product of cumulative probabilities, F
(
b−1j (bi)

)
. Thus, a belief minimizing each of

these cumulative probabilities is the expected payoff minimizing belief. Therefore,
when each bidder’s set of priors is given by Fε(F0) defined in the previous section,
the expected payoff minimizing belief is F ∗ε satisfying

F ∗ε (v) =


0 if v < F−10 (ε) + ε,

F0(v − ε)− ε if F−10 (ε) + ε ≤ v < 1,

1 if v ≥ 1.

We can see that F ∗ε is continuous on [F−10 (ε) + ε, 1) and discontinuous at 1. Notice
also that F ∗ε is bidder i’s expected payoff minimizing belief no matter which bid
bi ∈ [0, 1] she chooses.

Example 1.1. If F0 is a uniform distribution on [0, 1], then the distribution
FU∗
ε ∈ Fε(F0) satisfying

FU∗
ε (v) =


0 if v < 2ε,

v − 2ε if 2ε ≤ v < 1,

1 if v ≥ 1.

is bidder i’s expected payoff minimizing belief. In Figure 1.1, the distribution
function on the bottom boundary of the shaded area corresponds to this belief.

Consider bidder i’s maxmin expected payoff problem:

max
bi∈[0,1]

min
F∈Fε(F0)

(vi − bi) ∗
∏
j 6=i

F
(
b−1j (bi)

)
.

10



Because F ∗ε obtained above is the expected payoff minimizing belief for any bid bi,
this maxmin expected payoff problem is equivalent to the following problem:

max
bi∈[0,1]

(vi − bi) ∗
∏
j 6=i

F ∗ε
(
b−1j (bi)

)
.

This is bidder i’s expected payoff maximization problem when her belief on another
bidder’s valuation is F ∗ε . From the equivalence of these two problems, it follows
that a maxmin Bayesian Nash equilibrium of the first price auction with bidders
having sets of priors Fε(F0) is equal to the Bayesian Nash equilibrium of the first
price auction with bidders having common prior F ∗ε . There are many previous
literature studying Bayesian Nash equilibrium of the first price auction with a
common prior and thus, we can find out a maxmin Bayesian Nash equilibrium
from the results of those literature. Riley and Samuelson (1981) study the unique
Bayesian Nash equilibrium of the first price auction when bidders have the common
belief F that is strictly increasing and differentiable. They show that the equilibrium
bidding function is given by

bi(vi) = vi −
∫ vi
v=r

(F (v))n−1dv

(F (vi))n−1
(1.1)

for vi ≥ r where r is the seller’s reserve price. Monteiro (2009) generalizes this
result and identifies the Bayesian Nash equilibria when the common prior F has
discontinuities. He shows that the equilibrium bidding strategy is equal to (1.1)
at the continuous points of F and a mixed strategy at the discontinuities of F .
The expected payoff minimizing belief, F ∗ε , in our paper has one discontinuity at
v = 1. Thus, we can find out a maxmin Bayesian Nash equilibrium of the first
price auction as follows by using the result of Monteiro (2009).

Proposition 1.1. Consider a first price sealed-bid auction with the seller’s
reserve price r satisfying r ≥ F−10 (ε) + ε. Suppose that each bidder has a set
of priors Fε(F0) about another bidder’s valuation for the item. Then, a profile
of mixed strategies

(
µi(·)

)n
i=1

is a maxmin Bayesian Nash equilibrium of the
auction if for each i ∈ {1, . . . , n},

µi(vi) =


pure strategy, b∗i (vi) = vi −

∫ vi
v=r

(
F0(v − ε)− ε

)n−1
dv(

F0(vi − ε)− ε
)n−1 if vi ∈ [r, 1),

mixed strategy, G if vi = 1,

11



where G :
[
b
F ∗ε
i (1−), b

F ∗ε
i (1)

]
→
[
0, 1
]

is a cumulative distribution function satis-
fying

G(b) =
F0(1− ε)− ε

1− (F0(1− ε)− ε)

(
− 1 +

(
1− bF

∗
ε
i (1−)

1− b

) 1
n−1
)
,

F ∗ε is the expected payoff minimizing prior, and

b
F ∗ε
i (vi) = vi −

∫ vi
v=r

(
F ∗ε (v)

)n−1
dv(

F ∗ε (vi)
)n−1 for vi ∈ [r, 1].

Remark 1.1. I identify a maxmin Bayesian Nash equilibrium in the proposition.
I don’t show its uniqueness. There may be other equilibria.

Remark 1.2. In the maxmin Bayesian Nash equilibrium, a bidder plays the
mixed strategy G only when her valuation is equal to 1. Because the true dis-
tribution F0 is continuous, the event that the bidder’s valuations for the item
is equal to 1 has measure 0. Thus, we focus on the bidder’s pure strategy,

vi −
∫ vi
v=r

(
F0(v − ε)− ε

)n−1
dv(

F0(vi − ε)− ε
)n−1 , from this point. Let b∗i (vi) denote this pure

strategy for vi ∈ [r, 1).
Example 1.1. (continued.) Suppose that the true distribution F0 is a uniform

distribution on [0, 1], that is, F0(v) = v for v ∈ [0, 1]. Then, bidder i’s maxmin
Bayesian Nash equilibrium bidding strategy for vi ∈ [r, 1) is given by

b∗i (vi) = vi −
∫ vi
v=r

(v − 2ε)n−1 dv

(vi − 2ε)n−1
=

n− 1

n
vi +

2ε

n
+

1

n

(r − 2ε)n

(vi − 2ε)n−1
.

If the bidders don’t have any ambiguity about the other bidders’ valuations
(ε = 0), then each bidder’s Bayesian Nash equilibrium bidding strategy is bi(vi) =
n− 1

n
vi +

rn

nvn−1i

.

1.5 Changes in Bidders’ Ambiguity Level

From the maxmin Bayesian Nash equilibrium of the first price auction we
obtained in Proposition 1.1, we can study how each bidder’s equilibrium bidding
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behavior changes as her level of ambiguity changes. The higher value of ε implies
the larger set of beliefs, Fε(F0), and thus, the higher level of ambiguity that each
bidder has. It can be shown that each bidder bids higher in response to the higher
level of ambiguity if the probability distribution of the bidders’ valuations, F0,
satisfies a certain condition.

Definition 1.1. The distribution F satisfies the monotone inverse hazard rate
condition if

f(v)

F (v)
is non-increasing in v.

Then, we can obtain the following result:
Proposition 1.2. Suppose that F0 satisfies the monotone inverse hazard rate

condition. Then, each bidder with her valuation for the item vi ∈ (r, 1) submits a
strictly higher bid in response to an increased level of ambiguity.

Proof. From the Proposition 1.1, it follows that bidder i’s maxmin Bayesian
Nash equilibrium bidding strategy is

b∗i (vi) = vi −
∫ vi
v=r

(
F0(v − ε)− ε

)n−1
dv(

F0(vi − ε)− ε
)n−1 .

Differentiating with respect to ε yields

db∗i (vi)

dε
=∫ vi

v=r
(n− 1)

(
F0(v − ε)− ε

)n−2 (
F0(vi − ε)− ε

)n−1 (
f0(v − ε) + 1

)
dv(

F0(vi − ε)− ε
)2n−2

−
∫ vi
v=r

(n− 1)
(
F0(v − ε)− ε

)n−1 (
F0(vi − ε)− ε

)n−2 (
f0(vi − ε) + 1

)
dv(

F0(vi − ε)− ε
)2n−2

=

∫ vi

v=r

(n− 1)
(
F0(v − ε)− ε

)n−2 (
F0(vi − ε)− ε

)n−2
∗
[(
F0(vi − ε)− ε

) (
f0(v − ε) + 1

)
−
(
F0(v − ε)− ε

) (
f0(vi − ε) + 1

)]
dv(

F0(vi − ε)− ε
)2n−2 .

(1.2)

Consider the following term in the brackets in (1.2):[(
F0(vi − ε)− ε

) (
f0(v − ε) + 1

)
−
(
F0(v − ε)− ε

) (
f0(vi − ε) + 1

)]
.
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It is given that v ≤ vi. It can be shown that the value of this term is strictly positive
if v < vi. There are two possible cases: f0(v − ε) ≥ f0(vi − ε) and f0(v − ε) <
f0(vi − ε). Consider f0(v − ε) ≥ f0(vi − ε). Because F0 is strictly increasing, it
follows that F0(vi − ε)− ε > F0(v − ε)− ε. Thus,

(
F0(vi − ε)− ε

) (
f0(v − ε) +

1
)
−
(
F0(v−ε)−ε

) (
f0(vi−ε)+1

)
> 0. Now suppose that f0(v−ε) < f0(vi−ε).

Because F0 satisfies the monotone inverse hazard rate condition, it follows that
f0(v − ε)
F0(v − ε)

≥ f0(vi − ε)
F0(vi − ε)

, that is, F0(vi − ε)f0(v − ε)− F0(v − ε)f0(vi − ε) ≥ 0.

Thus, we obtain that

F0(vi − ε)f0(v − ε)− F0(v − ε)f0(vi − ε) ≥ 0

⇒
(
F0(vi − ε)− ε

)
f0(v − ε)−

(
F0(v − ε)− ε

)
f0(vi − ε) > 0

⇒
(
F0(vi − ε)− ε

)(
f0(v − ε) + 1

)
−
(
F0(v − ε)− ε

)(
f0(vi − ε) + 1

)
> 0.

The second inequality is obtained from the supposition that f0(v− ε) < f0(vi − ε).
The third inequality is obtained from strictly increasing F0. By investigating the
two possible cases, we have that

(
F0(vi − ε)− ε

)(
f0(v − ε) + 1

)
−
(
F0(v − ε)−

ε
)(
f0(vi − ε) + 1

)
is strictly positive if v < vi. Therefore, the value of the integral

of (1.2) is strictly positive.�
Example 1.1. (continued.) If F0 is a uniform distribution on [0, 1], then its

inverse hazard rate function,
1

v
, is decreasing in v. Therefore, we can apply Propo-

sition 1.2 and say that each bidder responds to increased ambiguity with a higher
bid when F0 is a uniform distribution.

Because the bidders increase their bids in response to an increased level of
ambiguity, the seller’s expected revenue from the auction also increases.

Proposition 1.3. Suppose that F0 satisfies the monotone inverse hazard rate
condition. Then, the seller’s expected revenue from the auction when bidders face
ambiguity is greater than the one when bidders don’t face ambiguity. Moreover, the
seller’s expected revenue increases as the level of ambiguity faced by the bidders
increases.

Proof. Suppose that each bidder in the auction has a prior set Fε(F0) about the
other bidders’ valuations. Let bε∗(·) denote the maxmin Bayesian Nash equilibrium
bidding strategy of each bidder we obtained in Proposition 1.1. Then, the seller’s
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expected revenue is defined by

R(ε) =

∫ 1

v=r

bε∗(v)n
(
F0(v)

)n−1
f0(v) dv.

Consider two numbers, ε1 ∈ [0, 1] and ε2 ∈ [0, 1], satisfying ε1 < ε2. Note that a
bidder having prior set Fε2(F0) faces the higher level of ambiguity than a bidder
having prior set Fε1(F0). Note also that if ε1 = 0, then the prior set Fε1(F0) is a
singleton and it implies that the bidder does not have ambiguity. Because ε1 < ε2,
it follows that bε1∗(v) < bε2∗(v) for all v ∈ (r, 1) from the result of Proposition 1.2.
Therefore, R(ε1) < R(ε2).�

1.6 A Comparison with the Second Price Auction

The first price auction is compared to another popular auction format, the second
price auction, when bidders have ambiguity about the probability distribution from
which the other bidders’ valuations for the item are drawn.

Bidders in the second price auction have an incentive to bid their own valuations
even when they face ambiguity. Consider the second price auction with bidders
facing no ambiguity. In this case, there is a well-known result that truthful bidding
from each bidder forms a dominant strategy equilibrium. Since it is a dominant
strategy, each bidder’s incentive for truthful bidding does not depend on her belief
about the other bidders’ valuations. Thus, even when the bidders face ambiguity
and have multiple beliefs, truthful bidding forms a dominant strategy equilibrium
in the second price auction.

The bidders in the second price auction always bid their true valuations, no
matter whether they have ambiguity or not about the distribution of the others’
valuations. Thus, the seller’s expected revenue from the second price auction does
not depend on whether the bidders face ambiguity. However, we know from propo-
sition 1.3 that the seller’s expected revenue from the first price auction increases
as the bidders’ ambiguity level in the auction increases. When bidders don’t face
ambiguity, there is a well-known revenue equivalence result between first price and
second price auctions. From these results on the seller’s expected revenue from
two auction formats, it follows that:

Proposition 1.4. Consider a first price auction and a second price auction with
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the seller’s reserve price r. Suppose that the true distribution, F0, from which each
bidder’s valuation is drawn satisfies the monotone inverse hazard rate condition, the
bidders face ambiguity about the distribution and they are ambiguity averse, and
each bidder’s set of priors is Fε(F0). Then the seller can obtain the higher expected
revenue from the first price auction than the second price auction. Moreover, the
difference in expected revenues from two auction formats increases as the level of
ambiguity faced by the bidders increases.

1.7 Conclusion

This paper analyzes the first price auction where each bidder faces ambiguity
about the probability distribution from which the other bidders’ valuations are
independently drawn and is ambiguity averse. The maxmin expected utility model
with multiple priors axiomatized by Gilboa and Schmeidler (1989) is used to solve
the bidders’ optimal bidding problems. The bidders’ equilibrium bidding functions
and the seller’s expected revenue from the auction are identified. Moreover, it is
shown that the bidders’ equilibrium bids and the seller’s expected revenue increase
as the bidders’ ambiguity level increases. It is also determined that the seller’s
expected revenue from the first price auction is greater than that of the second price
auction when the bidders face ambiguity.

1.8 Future Research Directions

Asymmetry in bidders’ ambiguity levels. I assumed that the level of ambigu-
ity is the same for all bidders. As a next step, I plan to relax this assumption and
assign different ambiguity levels to bidders.

Endogenous participation of bidders. I assumed that the number of bidders
is exogenously given and showed that the seller’s expected revenue from the first
price auction increases with the level of ambiguity faced by bidders. Suppose
that bidders can choose to participate in the auction or not. In this case, increased
level of ambiguity may discourage bidders from participating in the auction and
thus, it may reduce the seller’s expected revenue from the auction. Endogenous
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participation of bidders can lead to a different result from this paper.
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Chapter 2

Multilateral Trading Mechanism with
Interdependent Values

2.1 Introduction

In real life, there are many trading situations in which multiple buyers and sellers
report his or her own information, and an institution allocates resources based
on these reported information. Examples include stock exchanges such as the
New York Stock Exchange where the prices of stocks are determined based on the
reported demand and supply from traders. A possible issue in this trading situation
is building an institution, that is, a trading rule that has desired properties. 1

In this paper, I study one trading mechanism in a market with multiple buyers
and multiple sellers, that is, a multilateral trading mechanism. The setting is as
follows. There are many buyers and sellers. Each trader can buy or sell at most
one indivisible item. Each trader is given her own real-valued type that is private
information for the trader. Therefore, this market can be analyzed as a game of
incomplete information. Traders in the market have interdependent values. That
is, each trader’s valuation for one unit of the item may depend on types of all
traders, not only on her own type. Interdependent values are observed in many
practical situations. For example, in a stock exchange, a trader’s assessment of the
value of a stock may depend on the other traders’ information concerning the stock.
Each trader has quasi-linear utility that consists of a valuation for the item and a
monetary transfer.

This paper introduces a direct revelation mechanism under which each trader
in the market reports her own type. Allocation of the items and transfers are
determined based on these reported types. The mechanism that I consider sat-
isfies ex-post incentive compatibility, ex-post individual rationality, and ex-post
efficiency. Because it is ex-post incentive compatible, no trader has an incentive to

1Desirable properties include incentive compatibility, individual rationality, budget balance, and
economic efficiency, which are defined formally in a later section.
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misreport her type even after the other traders’ true types are revealed. And volun-
tary participation is guaranteed in this mechanism because it is ex-post individually
rational. Finally, the mechanism is ex-post efficient therefore the items are owned
by the traders who value the item the most after the mechanism operates.

A brief explanation of how the mechanism satisfies ex-post incentive compati-
bility and ex-post efficiency is as follows. First, the mechanism allocates the good
efficiently based on reported types, and the transfer rules are defined in a way
that induces each trader to report her type honestly. How the winner’s payment is
determined in the second price auction motivates the transfer rules of the mecha-
nism. The winning bidder’s payment is her lowest bid that would still make her
the winner in the second price auction. In the mechanism, transfers are defined
by using the similar logic in consideration of the market with multiple buyers
and multiple sellers with interdependent valuations. Then, each trader under the
mechanism has an incentive to report her true type. From these honestly reported
types and the allocation rule, the mechanism allocates the items efficiently.

In sum, my goal is to propose a multilateral trading mechanism satisfying de-
sired properties in an interdependent values setting. The paper is organized as
follows. Section 2.2 discusses related literature. Section 2.3 introduces models
and related assumptions. Section 2.4 defines the trading mechanism. Section 2.5
studies desired properties of the mechanism. Section 2.6 presents an example.
Section 2.7 and 2.8 conclude with future research directions.

2.2 Previous Literature

Previous researches have studied trading mechanisms in markets with buyers and
sellers with incomplete information. Myerson and Satterthwaite (1983) consider
the impossibility result of the trading between one buyer and one seller with private
valuations for an item.2 They show that a trading mechanism satisfying Bayesian
incentive compatibility, interim individual rationality, and ex-ante budget balance
cannot be ex-post efficient.

Dasgupta and Maskin (2000) study an efficient auction when bidders’ valua-
tions for items are interdependent. They show that a generalized VCG auction

2Private valuations imply that each trader’s valuation for an item depends solely on her own
type.
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for interdependent values can achieve ex-post efficiency when traders’ types are
single-dimensional.3 The main difference between my paper and Dasgupta and
Maskin (2000) is that I analyze a two-sided problem in which all buyers and sellers
can affect the price and allocation of the items, in contrast to an auction in which
only buyers can. Also, each trader under my mechanism reports her own type
that is a single value, whereas each buyer in the auction by Dasgupta and Maskin
(2000) reports a bidding function that is a function of other buyers’ valuations.

Jehiel and Moldovanu (2001) obtain an impossibility result about mechanisms
with interdependent valuations. They show that if agents have multi-dimensional
types, then a mechanism satisfying both efficiency and Bayes-Nash incentive
compatibility does not exist. In my paper, I assume that each trader’s type is
one-dimensional. As a result, my mechanism can satisfy both ex-post efficiency
and ex-post incentive compatibility.

Kojima and Yamashita (2014) propose a trading mechanism in the market where
there are multiple buyers and sellers with interdependent valuations. They de-
velop a mechanism called the groupwise-price mechanism under which a market is
divided into many submarkets. They show that the groupwise-price mechanism
satisfies ex-post incentive compatibility, ex-post individual rationality, ex-post
budget balance, and asymptotic efficiency. The mechanism in my paper is efficient
with any finite number of traders. However, it may not satisfy ex-post budget
balance.

2.3 Model

Consider a market with m buyers and n sellers. Let B = {b1, b2, · · · , bm} be
a set of buyers and S = {s1, s2, · · · , sn} be a set of sellers. Each trader buys or
sells at most one unit of an indivisible item. Each buyer bi ∈ B observes her own
type tbi ∈ [0, 1] and each seller sj ∈ S observes her own type tsj ∈ [0, 1]. The type
ti is trader i’s private information. Let t = (tb1 , tb2 , · · · , tbm , ts1 , ts2 , · · · , tsn) be a
profile of types of all traders, t−bi = (tb1 , · · · , tbi−1

, tbi+1
, · · · , tbm , ts1 , · · · , tsn) be

a profile of types with buyer bi removed, and t−sj = (tb1 , · · · , tbm , ts1 , · · · , tsj−1
,

tsj+1
, · · · , tsn) be a profile of types with seller sj removed. For each trader i ∈

B ∪ S, vi(t) denotes i’s valuation for the item. The valuation vi(t) depends on i’s

3See Clarke (1971), Groves (1973), and Vickrey (1961) for VCG auction.
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own type ti as well as other traders’ types t−i. Thus, traders’ valuations for the
item are interdependent. We assume the following about the valuation function
vi(·).
A1. vi(·) is continuously differentiable for all i ∈ B ∪ S.
A2. vi(·) is non-decreasing in tj for all i, j ∈ B ∪ S:

∂vi
∂tj
≥ 0.

A3. vi(·) is strictly increasing in ti for all i ∈ B ∪ S:

∂vi
∂ti

> 0.

A4. A trader i’s type ti has a greater effect on her own valuation vi(·) than on the
other trader j’s valuation vj(·) for all i and j 6= i:

∂vi
∂ti

>
∂vj
∂ti

.

Traders have quasi-linear utility functions. Buyer bi’s utility is vbi(t)− p if the
buyer purchases the item and pays price p, and it is 0 if the buyer does not trade
and pays nothing. Seller sj’s utility is p− vsj(t) if she sells her item and receives
payment p, and it is 0 if she does not participate in the trade and receives nothing.
We assume that the valuation functions, vb1(·), · · · , vbm(·), vs1(·), · · · , vsn(·), are
common knowledge among the buyers and sellers, as well as the auctioneer.

A direct revelation mechanism is a pair of functions (π, τ) defined on the set of
type profiles, [0, 1]m+n. The functions π and τ represent the allocation rule and the
transfer rule of the mechanism respectively. Specifically, for trader i ∈ B ∪ S, the
function πi(t) denotes the probability that the trade occurs for i when the reported
type profile is t. The function τi(t) is the expected transfer for trader i when the
reported type profile is t: τb(t) is the expected transfer buyer b pays for b ∈ B, and
τs(t) is the expected transfer seller s receives for s ∈ S. Thus, buyer b’s ex-post
utility is vb(t)πb(t

′
) − τb(t

′
) and seller s’s ex-post utility is τs(t

′
) − vs(t)πs(t

′
)

when the reported type profile is t′ = (t
′

b1
, · · · , t′bm , t

′
s1
, · · · , t′sn) and the true type

profile is t = (tb1 , · · · , tbm , ts1 , · · · , tsn).
A mechanism (π, τ) is ex-post incentive compatible if

vb(tb, t−b)πb(tb, t−b)− τb(tb, t−b) ≥ vb(tb, t−b)πb(t
′

b, t−b)− τb(t
′

b, t−b)

for each tb, t
′

b, t−b, and b, and
τs(ts, t−s)− vs(ts, t−s)πs(ts, t−s) ≥ τs(t

′
s, t−s)− vs(ts, t−s)πs(t

′
s, t−s)

for each ts, t
′
s, t−s, and s.
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If a mechanism is ex-post incentive compatible, then it is the best response ex-post
for each trader to report her true type given that the other traders report their own
true types. Thus, reporting true types forms an ex-post Nash equilibrium.

A mechanism (π, τ) is ex-post individually rational if

vb(t)πb(t)− τb(t) ≥ 0 for each t and b, and
τs(t)− vs(t)πs(t) ≥ 0 for each t and s.

In an ex-post individually rational mechanism, each trader obtains non-negative
utility after all true types of the traders are revealed. Thus, each trader has an
incentive to participate in the trading process.

A mechanism is ex-post budget balanced if
m∑
i=1

τbi(t) =
n∑
j=1

τsj(t) for each t.

That is, the total transfers paid by buyers equal the total transfers received by
sellers.

A mechanism (π, τ) is ex-post efficient if it allocates the items to the traders
with n highest valuations. That is, assume that the traders’ valuations based on
reported types profile t are listed in ascending order as follows:

v(1)(t) ≤ v(2)(t) ≤ · · · ≤ v(m+n)(t).

If an ex-post efficient mechanism is applied, then the items are possessed by n
traders whose valuations correspond to v(m+1)(t), v(m+2)(t), · · · and v(m+n)(t) re-
spectively.4

2.4 Mechanism

In my mechanism, the allocations and payments are defined as follows:
Consider buyers b1, b2, · · · , bm with true types tb1 , tb2 , · · · , tbm respectively, and
sellers s1, s2, · · · , sn with true types ts1 , ts2 , · · · , tsn respectively. Each trader i in
B ∪S reports a type t′i simultaneously. After types are reported, traders’ valuations
for the item, vbi(t

′
) for bi ∈ B and vsj(t

′
) for sj ∈ S, can be calculated based on

their reported types, t′ . Then the items are allocated efficiently based on these
4In the case of tie at v(m+1)(t), that is, |{i ∈ B ∪S|vi(t) = v(m+1)(t)}| ≥ 2, it does not matter

who acquires the item among them.
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valuations from the reported types. More formally, the procedure of allocation is
defined as follows: arrange these valuations in ascending order:

v(1)(t
′
) ≤ v(2)(t

′
) ≤ · · · ≤ v(m+n)(t

′
).

Then, consider the following sets of traders:

Bα = {bi ∈ B|vbi(t
′
) ≥ v(m+1)(t

′
)},

Sα = {sj ∈ S|vsj(t
′
) ≤ v(m)(t

′
)}.

Bα is the set of buyers whose valuation at t′ is at least v(m+1)(t
′
), and Sα is the set

of sellers whose valuation is no more than v(m)(t
′
). Depending on the relationship

between v(m)(t
′
) and v(m+1)(t

′
), there are two cases to be considered to define

the allocation rule.5 First, if v(m+1)(t
′
) > v(m)(t

′
), that is, if v(m+1)(t

′
) is strictly

greater than v(m)(t
′
), then |Bα| = |Sα|. In this case, the buyers in Bα and the

sellers in Sα participate in trade, and buyers in B\Bα and sellers in S\Sα do not
trade. In the second case that v(m)(t

′
) = v(m+1)(t

′
), |Bα| may not be equal to |Sα|.

In this case, k buyers in Bα and k sellers in Sα participate in trade where

k := min{|Bα|, |Sα|}.

The k traders in each set are determined by the following procedure. Consider the
following subsets of Bα and Sα.

Bs = {bi ∈ B|vbi(t
′
) > v(m+1)(t

′
)},

Ss = {sj ∈ S|vsj(t
′
) < v(m)(t

′
)}.

Then,

Bα\Bs = {bi ∈ B|vbi(t
′
) = v(m+1)(t

′
)},

Sα\Ss = {sj ∈ S|vsj(t
′
) = v(m)(t

′
)}.

All buyers in Bs and k − |Bs| randomly chosen buyers in Bα\Bs participate in
trade. Similarly, all sellers in Ss and k − |Ss| randomly chosen sellers in Sα\Ss
participate in trade.6 Thus, k traders from each side participate in trade.

From the allocation rule of this mechanism, we can note that the k buyers with
the highest valuations and the k sellers with the lowest valuations participate in
trade and that all buyers who trade have weakly higher valuations for the item than

5The allocation rule of this mechanism is the same as the k-double auction studied by Rustichini,
Satterthwaite, and Williams (1994).

6See Appendix A for well-definedness of the allocation rule.
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all sellers who trade. Also, all buyers who don’t participate in trade have lower
valuations for the item than all sellers who don’t participate in trade. Thus, under
this allocation rule, the items are assigned efficiently based on the reported types
of traders.

Formally, the allocation rule of the mechanism is defined as follows:
For bi ∈ B,

πbi(t
′
) =


1 if vbi(t

′
) > v(m+1)(t

′
),

k − |Bs|
|Bα| − |Bs|

if vbi(t
′
) = v(m+1)(t

′
),

0 if vbi(t
′
) < v(m+1)(t

′
).

and for sj ∈ S,

πsj(t
′
) =


1 if vsj(t

′
) < v(m)(t

′
),

k − |Ss|
|Sα| − |Ss|

if vsj(t
′
) = v(m)(t

′
),

0 if vsj(t
′
) > v(m)(t

′
).

I now turn to the transfers of the mechanism. Consider buyer bi. If trade does
not occur for her, no transfer is made. If trade occurs, her lowest reported type,
t̂bi ∈ [0, 1], at which trade still occurs for her with positive probability can be
identified. Then, the buyer’s payment is her valuation at that type. To define this
formally, we define the following set.

Tbi(t
′

−bi) = {tbi ∈ [0, 1] : vbi(tbi , t
′

−bi) ≥ v(m+1)(tbi , t
′

−bi)}.

Tbi(t
′

−bi) is a set of reported types of bi at which trade happens with strictly positive
probability when other traders report t′−bi . Then,

t̂bi = inf Tbi(t
′

−bi),

and the buyer’s payment is,

v̂bi = vbi(t̂bi , t
′

−bi).

Remark 2.1. From this transfer rule, we can see the relationship between this
mechanism and a second price auction. In a second price auction, the winner’s
payment is her minimum bid such that she would still be the winner. Note that
the price for buyer bi when trade happens, vbi(t̂bi , t

′

−bi), does not depend on her
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reported type t′bi .
Remark 2.2. It is shown in the next section that Tbi(t

′

−bi) is a connected and
closed set that takes the form of [t̂bi , 1] when it is not empty. This means that there
is a cutoff type t̂bi so that trade does not occur if bi reports a type less than t̂bi , and
trade occurs with positive probability if she reports a type greater than or equal
to t̂bi . Note also that in the case that bi participates in trade no matter what she
reports, that is, Tbi(t

′

−bi) = [0, 1], the transfer of bi is v̂bi = vbi(t̂bi = 0, t
′

−bi).
Consider seller sj . If sj does not participate in trade, the transfer is 0. If she

participates in trade, then her highest reported type, t̂sj ∈ [0, 1], which makes
trade still occur for her with positive probability can be identified. Then, the seller
receives the amount v̂sj equal to the valuation for the good at that highest type. It
can also be defined formally.

Tsj(t
′
−sj) = {tsj ∈ [0, 1] : vsj(tsj , t

′
−sj) ≤ v(m)(tsj , t

′
−sj)}.

Tsj(t
′
−sj) is a set of reported types of sj at which trade occurs with positive

probability given that others report t′−sj . Then,

t̂sj = sup Tsj(t
′
−sj),

and the seller receives

v̂sj = vsj(t̂sj , t
′
−sj).

It is shown in the next section that Tsj(t
′
−sj) takes the form of [0, t̂sj ] when it

is not empty. Thus, the seller participates in trade with positive probability if and
only if she reports a type less than or equal to t̂sj .

Based on the description above, the transfer rules are defined as follows:
For bi ∈ B,

τbi(t
′
) =


vbi(t̂bi , t

′

−bi) if vbi(t
′
) > v(m+1)(t

′
),

k − |Bs|
|Bα| − |Bs|

vbi(t̂bi , t
′

−bi) if vbi(t
′
) = v(m+1)(t

′
),

0 if vbi(t
′
) < v(m+1)(t

′
).

and for sj ∈ S,

τsj(t
′
) =


vsj(t̂sj , t

′
−sj) if vsj(t

′
) < v(m)(t

′
),

k − |Ss|
|Sα| − |Ss|

vsj(t̂sj , t
′
−sj) if vsj(t

′
) = v(m)(t

′
),

0 if vsj(t
′
) > v(m)(t

′
).
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2.5 Results

In this section, we study the desirable properties of the mechanism. First, we
investigate how a trader’s reported type affects her own allocation in the following
two lemmas.

Lemma 2.1. Suppose that (A1) - (A4) hold. For bi ∈ B, if Tbi(t
′

−bi) 6= ∅, then
Tbi(t

′

−bi) = [t̂bi , 1] where t̂bi = inf Tbi(t
′

−bi). Also, for sj ∈ S, if Tsj(t
′
−sj) 6= ∅,

then Tsj(t
′
−sj) = [0, t̂sj ] where t̂sj = supTsj(t

′
−sj).

Proof. Consider buyer bi and assume that Tbi(t
′

−bi) 6= ∅. Tbi(t
′

−bi) = {tbi ∈
[0, 1] : vbi(tbi , t

′

−bi) ≥ v(m+1)(tbi , t
′

−bi)} by the definition. Consider the statement
vbi(t) ≥ v(m+1)(t). vbi(t) ≥ v(m+1)(t) holds if and only if there are at least m
traders other than bi whose valuations at t are less than or equal to bi’s valuation
evaluated at t. Let’s represent this formally. Let Λ be a set of all subsets with
cardinality m of B ∪ S \ {bi}. That is,

Λ = {I1, I2, · · · , I(m+n−1
m )}

where each element Ik is a set of m traders in B ∪ S \ {bi}. Also, for Ik ∈ Λ,

Ik = {I1k , I2k , · · · , Imk }

where each element I lk for l = 1, 2, · · · ,m is a trader. Then,

vbi(t) ≥ v(m+1)(t) iff (vbi(t) ≥ vI11 (t), vbi(t) ≥ vI21 (t), · · · , and
vbi(t) ≥ vIm1 (t)),

or
(vbi(t) ≥ vI12 (t), vbi(t) ≥ vI22 (t), · · · , and
vbi(t) ≥ vIm2 (t)),

or
...

or
(vbi(t) ≥ vI1

(m+n−1
m )

(t), vbi(t) ≥ vI2
(m+n−1

m )
(t), · · · ,

and
vbi(t) ≥ vIm

(m+n−1
m )

(t)).

By using the above equivalence, we can obtain another expression for Tbi(t
′

−bi) as
follows:
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Tbi(t
′

−bi) = {tbi ∈ [0, 1] : vbi(tbi , t
′

−bi) ≥ v(m+1)(tbi , t
′

−bi)}

=
(m+n−1

m )⋃
k=1

m⋂
l=1

{tbi ∈ [0, 1] : vbi(tbi , t
′

−bi) ≥ vIlk(tbi , t
′

−bi)}

Each set {tbi ∈ [0, 1] : vbi(tbi , t
′

−bi) ≥ vIlk(tbi , t
′

−bi)} is closed because of (A1),
the continuity of vi(·). Then, Tbi(t

′

−bi) is also closed because it is finite union of
finite intersection of these closed sets. Thus, Tbi(t

′

−bi) is compact and contains its
own infimum. Therefore, t̂bi ∈ Tbi(t

′

−bi).
We can show that Tbi(t

′

−bi) = [t̂bi , 1]. If t′bi < t̂bi , then t′bi /∈ Tbi(t
′

−bi) by the def-
inition of infimum. Consider t̂bi ∈ Tbi(t

′

−bi). This implies that there exists Ik ∈ Λ

such that vbi(t̂bi , t
′

−bi) ≥ vIlk(t̂bi , t
′

−bi) for all l = 1, 2, · · · ,m. Thus, if t′bi > t̂bi ,

then vbi(t
′

bi
, t
′

−bi) > vIlk(t
′

bi
, t
′

−bi) for all l = 1, 2, · · · ,m by (A4),
∂vi
∂ti

>
∂vj
∂ti

. It

follows that vbi(t
′

bi
, t
′

−bi) ≥ v(m+1)(t
′

bi
, t
′

−bi) and thus t′bi ∈ Tbi(t
′

−bi). Therefore,
Tbi(t

′

−bi) = [t̂bi , 1].
We can show that Tsj(t

′
−sj) = [0, t̂sj ] for seller sj by using the same argument

as above for the buyer. For the seller, we can use the following equivalence:
vsj(t) ≤ v(m)(t) holds if and only if there are at least n traders other than sj whose
valuations at t are at least as high as the valuation of sj at t. �

From the lemma, we note that each buyer has at most one cutoff reported type,
t̂bi , depending on other traders’ reported types. The buyer participates in trade with
positive probability if and only if she reports a type greater than or equal to t̂bi .
Each seller also has at most one cutoff type, t̂sj , so that the trade occurs for her
with positive probability if and only if she reports a type less than or equal to the
cutoff reported type.

Although we know that bi (sj) participates in trade with strictly positive probabil-
ity if she reports a type greater (less) than or equal to her cutoff, we don’t know the
exact probability of trade. Thus, in the next lemma, we obtain the exact probability
of trade for each reported type value.

Lemma 2.2 (Buyer). Consider buyer bi ∈ B. Suppose that t′−bi is a profile of
reported types of traders other than bi and Tbi(t

′

−bi) = [t̂bi , 1] 6= ∅ for some t̂bi > 0.
If bi reports t′bi less than t̂bi , then she does not trade. If she reports t′bi equal to t̂bi ,
then she trades with probability p where 0 < p ≤ 1. And if she reports t′bi greater
than t̂bi , then she participates in trade with probability 1. That is,
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πbi(t
′

bi
, t
′

−bi) =


1 if t

′

bi
> t̂bi ,

p if t
′

bi
= t̂bi ,

0 if t
′

bi
< t̂bi .

where 0 < p =
k − |Bs|
|Bα| − |Bs|

≤ 1.

Proof. If bi reports t′bi less than t̂bi , then vbi(t
′

bi
, t
′

−bi) < v(m+1)(t
′

bi
, t
′

−bi) because
t̂bi is a infimum of Tbi(t

′

−bi). Thus, πbi(t
′

bi
, t
′

−bi) = 0 and the trade does not occur
by the allocation rule of the mechanism.

Suppose that bi reports t′bi = t̂bi . Because t̂bi ∈ Tbi(t
′

−bi), it follows that
vbi(t̂bi , t

′

−bi) ≥ v(m+1)(t̂bi , t
′

−bi) ≥ v(m)(t̂bi , t
′

−bi). It can be shown that vbi(t̂bi , t
′

−bi) =

v(m+1)(t̂bi , t
′

−bi) = v(m)(t̂bi , t
′

−bi). Suppose to the contrary that vbi(t̂bi , t
′

−bi) >

v(m)(t̂bi , t
′

−bi). This implies that there are m traders in B ∪ S \ {bi} such that
their valuations for the item are strictly less than bi’s valuation for the item at
(t̂bi , t

′

−bi). Then, by (A1), the continuity of vi(·), there exists ε > 0 such that these
m traders’ valuations are strictly less than bi’s valuation at (t̂bi− ε, t

′

−bi). Therefore,
vbi(t̂bi−ε, t

′

−bi) ≥ v(m+1)(t̂bi−ε, t
′

−bi). Thus, it follows that t̂bi−ε ∈ Tbi(t
′

−bi). This
statement, however, contradicts the definition that t̂bi is an infimum of Tbi(t

′

−bi).
Therefore, vbi(t̂bi , t

′

−bi) = v(m+1)(t̂bi , t
′

−bi) = v(m)(t̂bi , t
′

−bi). Then, by the allo-

cation rule of the mechanism, πbi(t̂bi , t
′

−bi) =
k − |Bs|
|Bα| − |Bs|

. We can show that

this probability is always strictly greater than 0. Note first that |Bα| > |Bs| at
(t̂bi , t

′

−bi) because vbi(t̂bi , t
′

−bi) = v(m+1)(t̂bi , t
′

−bi). Also, |Sα| > |Bs|.7 Thus,

πbi(t̂bi , t
′

−bi) =
k − |Bs|
|Bα| − |Bs|

> 0 where k := min{|Bα|, |Sα|}.

Suppose that bi reports t′bi strictly greater than t̂bi . We obtain that vbi(t̂bi , t
′

−bi) =

v(m+1)(t̂bi , t
′

−bi) = v(m)(t̂bi , t
′

−bi) in the previous paragraph. That is, at (t̂bi , t
′

−bi),
bi’s valuation is equal to the (m+ 1)st smallest valuation among all traders. Now,
consider the traders’ valuations at (t

′

bi
, t
′

−bi) where t′bi > t̂bi . Because of (A4),
∂vi
∂ti

>
∂vj
∂ti

, the relative ranking of bi’s valuation does not fall in moving from

(t̂bi , t
′

−bi) to (t
′

bi
, t
′

−bi). That is, vbi(t
′

bi
, t
′

−bi) ≥ v(m+1)(t
′

bi
, t
′

−bi). Thus, there are two
possible cases: vbi(t

′

bi
, t
′

−bi) > v(m+1)(t
′

bi
, t
′

−bi) or vbi(t
′

bi
, t
′

−bi) = v(m+1)(t
′

bi
, t
′

−bi).
If vbi(t

′

bi
, t
′

−bi) > v(m+1)(t
′

bi
, t
′

−bi), then πbi(t
′

bi
, t
′

−bi) = 1 by the allocation rule of
the mechanism. Consider the case that vbi(t

′

bi
, t
′

−bi) = v(m+1)(t
′

bi
, t
′

−bi). In this

7See Appendix A.
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case, v(m+1)(t
′

bi
, t
′

−bi) > v(m)(t
′

bi
, t
′

−bi) because of (A4),
∂vi
∂ti

>
∂vj
∂ti

. Thus, buyer

bi participates in trade with probability 1 by the allocation rule. �
By the same argument, we can obtain the following lemma for the sellers’ side.
Lemma 2.2 (Seller). Consider seller sj ∈ S. Suppose that t′−sj is a profile of

reported types of the traders other than sj and Tsj(t
′
−sj) = [0, t̂sj ] 6= ∅ for some

t̂sj < 1. If sj reports t′sj greater than t̂sj , then she does not trade. If she reports
t
′
sj

equal to t̂sj , then she participates in trade with probability p where 0 < p ≤ 1.
And if she reports t′sj less than t̂sj , then she trades with probability 1. That is,

πsj(t
′

sj
, t
′

−sj) =


1 if t

′
sj
< t̂sj ,

p if t
′
sj

= t̂sj ,

0 if t
′
sj
> t̂sj .

where 0 < p =
k − |Ss|
|Sα| − |Ss|

≤ 1.

By using the lemmas, we can study the properties of the mechanism.
Theorem 2.1. Consider multilateral trading with the mechanism defined above.

Suppose that (A1) - (A4) hold. Then, the mechanism is
(1) ex-post incentive compatible,
(2) ex-post individually rational,
(3) and ex-post efficient.
Proof. Suppose that m buyers, b1, b2, · · · , bm, and n sellers, s1, s2, · · · , sn, have

their true types tb1 , tb2 , · · · , tbm , and ts1 , ts2 , · · · , tsn , respectively.
Ex-post incentive compatibility. Consider buyers first. Consider buyer bi ∈ B.

Suppose that the other traders report their true types, t−bi . We need to show that
buyer bi’s best response is reporting her true type, tbi . By using lemma 2.1, we can
identify following three possible cases depending on the values of t−bi .

Case 1. Buyer bi does not participates in trade no matter what she reports. That
is, Tbi(t−bi) = ∅.

Case 2. Buyer bi trades with probability 1 no matter which type she reports.
That is, Tbi(t−bi) = [0, 1] and

(
vbi(0, t−bi) > v(m+1)(0, t−bi) or vbi(0, t−bi) =

v(m+1)(0, t−bi) > v(m)(0, t−bi)
)

.

Case 3. There is a cutoff reported type, t̂bi , such that bi participates in trade with
strictly positive probability if and only if she reports a type greater than or equal to
t̂bi . That is, Tbi(t−bi) = [t̂bi , 1].

Let’s show that reporting true type tbi is the best response for buyer bi in each
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case.
In case 1, it is trivial that reporting her true type is the best response.
In case 2, no matter what bi reports, trade occurs with probability 1 and she pays

vbi(0, t−bi). Thus, her utility is vbi(tbi , t−bi)− vbi(0, t−bi) and does not depend on
her reported type. Therefore, reporting true type is her best response.

In case 3, Tbi(t−bi) = [t̂bi , 1]. From lemma 2.2, it follows that there are
three possible utilities for bi depending on her reported type t′bi . If bi reports
a type t′bi < t̂bi , then trade does not occur for her and her utility is 0. If she
reports a type t′bi = t̂bi , then she participates in trade with probability k−|Bs|

|Bα|−|Bs|

and her utility is k−|Bs|
|Bα|−|Bs|

(
vbi(tbi , t−bi) − vbi(t̂bi , t−bi)

)
.8 And if she reports a

type t′bi > t̂bi , then she participates in trade with probability 1 and obtains util-
ity vbi(tbi , t−bi) − vbi(t̂bi , t−bi). Now, for each possible value of true type, tbi ,
let’s show that reporting true type gives bi the highest utility among these three
possible utilities. Suppose that tbi < t̂bi . If bi reports this true type, then she
receives the utility is 0. This is greater than the other two possible utilities,
k−|Bs|
|Bα|−|Bs|

(
vbi(tbi , t−bi)−vbi(t̂bi , t−bi)

)
and vbi(tbi , t−bi)−vbi(t̂bi , t−bi), because tbi <

t̂bi and ∂vi
∂ti

> 0 from (A3). Suppose that bi’s true type tbi = t̂bi . If bi reports this true
type, then she obtains the utility k−|Bs|

|Bα|−|Bs|

(
vbi(tbi , t−bi)− vbi(t̂bi , t−bi)

)
, which is 0.

This is equal to the other two possible utilities, vbi(tbi , t−bi) − vbi(t̂bi , t−bi)(= 0)

and 0. Suppose that tbi > t̂bi . By reporting this true type, bi has the utility
vbi(tbi , t−bi)− vbi(t̂bi , t−bi). This is greater than or equal to the other two possible
utilities, k−|Bs|

|Bα|−|Bs|

(
vbi(tbi , t−bi)−vbi(t̂bi , t−bi)

)
and 0, because tbi > t̂bi and ∂vi

∂ti
> 0

from (A3).
By investigating these three possible cases, we showed that buyer bi’s best re-

sponse is reporting her true type tbi when the other traders report their true types.
By using the same argument, we can also show that each seller sj has an incentive
to report her true type. Therefore, reporting true types forms an ex-post Nash
equilibrium.

Ex-post individual rationality. In the proof of ex-post incentive compatibility
above, we can find out that each trader always obtains non-negative ex-post utility
in the truth-telling ex-post Nash equilibrium.

Ex-post efficiency. Consider buyers and sellers who participate in trade under
the mechanism. k buyers with the highest valuations for the item and k sellers
with the lowest valuations for the item participate in trade. Each buyer bi who

80 < k−|Bs|
|Bα|−|Bs| ≤ 1 from lemma 2.2.
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purchases an item has valuation vbi(t) ≥ v(m+1)(t), and each seller sj who sells an
item has valuation vsj(t) ≤ v(m)(t). Thus, each of these buyers has weakly higher
valuation for the item than each of these sellers. Consider buyers and sellers who
do not participate in trade under the mechanism. Each of these buyers has strictly
lower valuation for the item than each of these sellers. Therefore, the mechanism
allocates the items efficiently. �

An example in the next section provides a market where the mechanism gener-
ates a budget deficit.

2.6 Example

Consider a market with two buyers and two sellers. That is, B = {b1, b2} and
S = {s1, s2}. Suppose that a profile of their types is t = (tb1 , tb2 , ts1 , ts2) =

(3
4
, 1
3
, 1
2
, 1
4
) and valuation functions for one indivisible item are defined as follows:

vb1(tb1 , tb2 , ts1 , ts2) = 1
2
tb1 + 1

4
tb2 + 1

8
ts1 + 1

8
ts2 ,

vb2(tb1 , tb2 , ts1 , ts2) = 1
16
tb1 + 3

4
tb2 + 5

32
ts1 + 1

32
ts2 ,

vs1(tb1 , tb2 , ts1 , ts2) = 1
12
tb1 + 1

6
tb2 + 2

3
ts1 + 1

12
ts2 ,

vs2(tb1 , tb2 , ts1 , ts2) = 1
6
tb1 + 1

6
tb2 + 1

6
ts1 + 1

2
ts2 .

Note that these valuation functions satisfy (A1) - (A4).
Under the multilateral trading mechanism, each trader reports her true type

in an equilibrium. That is, buyer b1 reports tb1 = 3
4
, buyer b2 reports tb2 = 1

3
,

seller s1 reports ts1 = 1
2
, and seller s2 reports ts2 = 1

4
. Then, we can obtain

that v(1)(t) = vb2(t) = 0.383 < v(2)(t) = vs2(t) = 0.389 < v(3)(t) = vs1(t) =

0.472 < v(4)(t) = vb1(t) = 0.552. Thus, b1 and s2 trade an item and b2 and s1 do
not trade by the allocation rule of the mechanism.

How much transfer b1 pays and s2 receives for an item can be obtained from
Figures. In Figure 2.1, valuations of traders based on their reported types are
presented when the traders other than b1 report their true types. The figure shows
that b1’s lowest reported type that makes her still participate in trade with positive
probability, t̂b1 , is determined by the intersection of the lines for b1 and b2. Thus,
solving vb1(t̂b1 , tb2 = 1

3
, ts1 = 1

2
, ts2 = 1

4
) = vb2(t̂b1 , tb2 = 1

3
, ts1 = 1

2
, ts2 = 1

4
)

yields t̂b1 = 0.363. Therefore, b1 pays v̂b1 = vb1(t̂b1 , t−b1) = 0.359 by the transfer
rules of the mechanism. We can use the same argument to find out how much s2
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Figure 2.1: Valuations of traders depending on b1’s report when b2 reports tb2 = 1
3
,

s1 reports ts1 = 1
2
, and s2 reports ts2 = 1

4
.

Figure 2.2: Valuations of traders depending on s2’s report when b1 reports tb1 = 3
4
,

b2 reports tb2 = 1
3
, and s1 reports ts1 = 1

2
.
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receives for an item. In Figure 2.2, s2’s highest possible reported type at which she
participates in trade with positive probability, t̂s2 , is a value where the lines for s1
and s2 intersect. Thus, t̂s2 = 0.45 and s2 receives v̂s2 = vs2(t̂s2 , t−s2) = 0.489 by
the transfer rules of the mechanism.

Buyer b2 and seller s1 don’t trade an item and hence make no transfers. Thus,
the total transfers paid by buyers is 0.359(= 0.359 + 0), and the total transfers
received by sellers is 0.489(= 0 + 0.489). Because 0.359 < 0.489, ex-post budget
deficits occur in this example.

In sum, in the truth-telling ex-post Nash equilibrium under the multilateral
trading mechanism, trade occurs between buyer b1 and seller s2, the ex-post utility
of buyer b1 is

vb1(t)− v̂b1 = 0.552− 0.359 = 0.193,

the ex-post utility of seller s2 is

v̂s2 − vs2(t) = 0.489− 0.389 = 0.1,

and the ex-post utilities of b2 and s1 are 0.

2.7 Conclusion

In this paper, a trading mechanism is introduced for a market that has multiple
buyers and multiple sellers with interdependent valuations for an item. The mecha-
nism is ex-post efficient, ex-post incentive compatible, and ex-post individually
rational. The paper provides an example in which a budget deficit occurs. The
allocation and transfer rules are inspired by the second-price auction, therefore, the
mechanism allocates the items efficiently based on the traders’ honest reports.

2.8 Future Research Directions

Myerson and Satterthwaite (1983) show that a bilateral trading mechanism sat-
isfying Bayesian incentive compatibility, interim individual rationality, ex-post
efficiency, and ex-ante budget balance does not exist when traders have private
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valuations for an item. My mechanism features all of these desired properties
except ex-post budget balance. An example that the mechanism generates a budget
deficit was provided in a section. This means that there is a potential for showing
the impossibility result for interdependent values setting; establishing a counterpart
of the impossibility theorem by Myerson and Satterthwaite (1983) for the case of
interdependent values is a future research topic.

34



Chapter 3

An Impossibility Result on Bilateral Trading
Mechanisms with Interdependent Values

3.1 Introduction

In a stock market, there are multiple buyers and sellers and they trade stock
shares. Each trader has information about the stock. If a trader somehow discovers
the other traders’ information, it will affect the trader’s valuation for the stock.
Therefore, each trader’s valuation depends on her information as well as informa-
tion held by the other traders. Traders in a stock market have interdependent values
in this sense.

This paper studies trading mechanisms in a market where a buyer and a seller
have interdependent values for an item. Myerson and Satterthwaite (1983) study
bilateral trading mechanisms in a market where traders have private values, that
is, each trader’s valuation for an item solely depends on her information. Their
impossibility theorem shows that there is no bilateral trading mechanism satisfying
ex-post efficiency, Bayesian incentive compatibility, interim individual rationality,
and ex-ante budget balance. My paper examines whether there exists a bilateral
trading mechanism satisfying these desired properties when traders have interde-
pendent values.

The paper assumes that each bidder’s information has a greater marginal effect
on her valuation than on the other trader’s valuation. Art markets and stock markets
are examples that fit this assumption. In an art market, for instance, traders’ valua-
tions for an art work strongly depend on personal preferences. Thus, each trader’s
type has a greater effect on her valuation than on others’ valuations. The paper
also assumes that the interior of the buyer’s possible valuation set and the interior
of the seller’s possible valuation set have nonempty intersection. This means that
it is unknown ex-ante whether trade should occur or not for efficient allocation.
Under these assumptions, the paper shows that no bilateral trading mechanism with
interdependent values can satisfy ex-post efficiency, ex-post incentive compatibility,
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ex-post individual rationality and no ex-post budget deficit.
Jehiel and Moldovanu (2001) study trading mechanisms with interdependent val-

ues. They show that there exists a trading mechanism satisfying Bayesian incentive
compatibility and ex-post efficiency if each agent’s information is one-dimensional.
My paper adds two more properties, ex-post individual rationality and no ex-post
budget deficit, and shows the nonexistence of the mechanism featuring these four
properties. I discuss details in the later section.

The paper is organized as follows. Section 3.2 specifies the assumptions, es-
pecially those on the traders’ valuation functions, and defines the market, mecha-
nisms, and the desired properties of the mechanisms. Section 3.3 consists of three
propositions: Proposition 3.1 derives necessary conditions for ex-post incentive
compatibility of the bilateral trading mechanisms. Proposition 3.2 obtains neces-
sary conditions for ex-post efficiency, ex-post individual rationality, and no ex-post
budget deficit. Proposition 3.3 shows the nonexistence of the mechanism satisfying
all these properties by contradiction. Section 3.4 discusses differences between
this paper and Jehiel and Moldovanu (2001). Section 3.5 concludes.

3.2 Model

There is one buyer, b, and one seller, s. The seller has one unit of an indivisible
item and the buyer can purchase this item. Each trader has her own real-valued
type, tb ∈ [tb, tb] and ts ∈ [ts, ts], that is her private information. The traders have
interdependent valuations for the item. A trader’s estimate for her own value for the
item may depend on the information held by the other.1 Thus, in our setting, each
trader’s valuation for the item depends on both her own type and the other trader’s
type. That is, if (tb, ts) is a profile of trader types, then vb(tb, ts) and vs(tb, ts) are
valuations of the buyer and the seller for the item respectively. We assume the
following on the valuation functions.
A1. The item is a good that provides utility to traders:

vi(tb, ts) ≥ 0 for all tb, ts, and i ∈ {b, s}.

A2. vi(·) is continuously differentiable for i ∈ {b, s}.
A3. vi(·) is non-decreasing in tj for all i, j ∈ {b, s}:

1The interdependent value model includes the private value model as a special case. Results
also hold for the private value model.

36



∂vi
∂tj
≥ 0.

A4. vi(·) is strictly increasing in ti for i ∈ {b, s}:

∂vi
∂ti

> 0.

A5. A trader i’s type ti has a greater marginal effect on her own valuation vi(·)
than on the other’s valuation vj(·):

∂vi
∂ti

>
∂vj
∂ti

.

A6. There are type profiles, (t1b , t
1
s), (t

2
b , t

2
s) ∈ (tb, tb)×(ts, ts), at which vb(t1b , t

1
s) >

vs(t
1
b , t

1
s) and vb(t

2
b , t

2
s) < vs(t

2
b , t

2
s) respectively. Thus, it is unknown ex-ante

whether trade should happen or not for efficient allocation.

Each trader has a quasi-linear utility consisting of the valuation and transfer. If
the buyer and seller trade the item at price p, then the buyer’s utility is vb(tb, ts)−p,
and the seller’s utility is p− vs(tb, ts). Their utility is 0 if they don’t trade and no
transfer are made. The valuation functions, vb(·) and vs(·), and the utility functions
are common knowledge.

We focus on direct revelation mechanisms in which the traders report their types
then the allocation of the item and the transfers for the traders are determined based
on these reported types. A direct revelation mechanism is a profile of functions
(π, τb, τs) defined on the set of type profiles, [tb, tb]× [ts, ts]. When (tb, ts) is a re-
ported type profile, π(tb, ts) ∈ [0, 1] is the probability that trade occurs, τb(tb, ts) is
the expected monetary transfer the buyer pays, and τs(tb, ts) is the expected mone-
tary transfer the seller receives. Thus, if (tb, ts) is the true type profile and (t

′

b, t
′
s) is

reported type profile, then the buyer’s ex-post utility is vb(tb, ts)π(t
′

b, t
′
s)− τb(t

′

b, t
′
s)

and the seller’s ex-post utility is τs(t
′

b, t
′
s)− vs(tb, ts)π(t

′

b, t
′
s).

A mechanism (π, τb, τs) is ex-post incentive compatible if

vb(tb, ts)π(tb, ts)− τb(tb, ts) ≥ vb(tb, ts)π(t
′

b, ts)− τb(t
′

b, ts) for each tb, ts, and
t
′

b,
and τs(tb, ts)− vs(tb, ts)π(tb, ts) ≥ τs(tb, t

′
s)− vs(tb, ts)π(tb, t

′
s) for each tb, ts,

and t′s.

In an ex-post incentive compatible mechanism, each trader has an incentive to
report her true type and honest reporting forms an ex-post Nash equilibrium.
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We restrict attention to ex-post incentive compatible direct revelation mecha-
nisms in the paper because the revelation principle holds.2

A mechanism (π, τb, τs) is ex-post individually rational if

vb(tb, ts)π(tb, ts)− τb(tb, ts) ≥ 0 for each tb and ts,
and τs(tb, ts)− vs(tb, ts)π(tb, ts) ≥ 0 for each tb and ts.

Each trader volunteers to participate in an ex-post individually rational mechanism
because she obtains non-negative utility after all types are revealed.

A mechanism (π, τb, τs) satisfies no ex-post budget deficit if

τb(tb, ts) ≥ τs(tb, ts) for each tb and ts.

A mechanism (π, τb, τs) is ex-post efficient if

π(tb, ts) =

1 if vb(tb, ts) ≥ vs(tb, ts),

0 otherwise.

Thus, trade occurs if and only if the buyer’s valuation weakly exceeds the seller’s
valuation based on the reported types.

3.3 Results

Let’s first discuss necessary conditions for certain properties.
Proposition 3.1. Suppose that (A1) - (A5) hold. If a mechanism (π, τb, τs) is

ex-post incentive compatible, then

(i) π(tb, ts), τb(tb, ts), and the buyer’s ex-post payoff vb(tb, ts)π(tb, ts) − τb(tb, ts)
are weakly increasing in tb when ts is fixed, and

(ii) π(tb, ts), τs(tb, ts), and the seller’s ex-post payoff τs(tb, ts)− vs(tb, ts)π(tb, ts)

are weakly decreasing in ts when tb is fixed.

Proof. Only (i) is proven here as the proof of (ii) is similar. Consider tb, t
′

b ∈
[tb, tb], and ts ∈ [ts, ts]. Ex-post incentive compatibility implies that

vb(tb, ts)π(tb, ts)− τb(tb, ts) ≥ vb(tb, ts)π(t
′

b, ts)− τb(t
′

b, ts),

and vb(t
′

b, ts)π(t
′

b, ts)− τb(t
′

b, ts) ≥ vb(t
′

b, ts)π(tb, ts)− τb(tb, ts).
(3.1)

2See Appendix B for the proof of the revelation principle.
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It follows that3

(
vb(tb, ts)− vb(t

′

b, ts)
)
π(t

′

b, ts)

≤
(
vb(tb, ts)π(tb, ts)− τb(tb, ts)

)
−
(
vb(t

′

b, ts)π(t
′

b, ts)− τb(t
′

b, ts)
)

≤
(
vb(tb, ts)− vb(t

′

b, ts)
)
π(tb, ts).

If tb > t
′

b, then π(tb, ts) ≥ π(t
′

b, ts) by (A4) and this inequality. Thus, π(tb, ts)

is weakly increasing in tb. Also, if tb > t
′

b, then vb(tb, ts)π(tb, ts) − τb(tb, ts) ≥
vb(t

′

b, ts)π(t
′

b, ts)−τb(t
′

b, ts) because
(
vb(tb, ts)−vb(t

′

b, ts)
)
π(t

′

b, ts) ≥ 0. Therefore,
the buyer’s ex-post payoff, vb(tb, ts)π(tb, ts)− τb(tb, ts), is weakly increasing in tb.

Inequality (3.1) from ex-post incentive compatibility implies that

τb(t
′

b, ts)− τb(tb, ts) ≥ vb(tb, ts)
(
π(t

′

b, ts)− π(tb, ts)
)
.

If t′b > tb, then the right-hand side of this inequality is non-negative because
π(tb, ts) is increasing in tb and vb(tb, ts) is always positive from (A1). Thus,
τb(t

′

b, ts) ≥ τb(tb, ts) and therefore, τb(tb, ts) is weakly increasing in tb. �
Proposition 3.2 states the necessary conditions for ex-post efficiency, ex-post

individual rationality, and no ex-post budget deficit.
Proposition 3.2. Suppose that (A1) - (A6) hold and a mechanism (π, τb, τs)

satisfies ex-post efficiency, ex-post individual rationality, and no ex-post budget

deficit. Then:

i) There exists a closed interval I(t∗s) = [t∗s − ε, t∗s + ε] for some t∗s ∈ (ts, ts) and

ε > 0, and a strictly increasing differentiable function g : I(t∗s)→ [tb, tb] such that

vb(g(ts), ts
)

= vs(g(ts), ts) for all ts ∈ I(t∗s).

ii) For each (tb, ts) ∈ g(I(t∗s))× I(t∗s), the following hold:

If tb > g(ts), then vb(tb, ts) > vs(tb, ts), π(tb, ts) = 1,

and vs(tb, ts) ≤ τs(tb, ts) ≤ τb(tb, ts) ≤ vb(tb, ts).

If tb = g(ts), then vb(tb, ts) = vs(tb, ts) = τb(tb, ts) = τs(tb, ts), and π(tb, ts) = 1.

If tb < g(ts), then vb(tb, ts) < vs(tb, ts), π(tb, ts) = 0, and τb(tb, ts) = τs(tb, ts) = 0.

We can refer to Figure 3.1 for a better understanding of this proposition. In
Figure 3.1, we can find out the positive slope curve on which the buyer’s valuation

3This part of the proof follows Theorem 1 of Myerson and Satterthwaite (1983).
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ts

tb

t∗s

t∗b

t∗s − ε t∗s + ε

g(t∗s − ε)

g(t∗s + ε)

tb = g(ts)
vb = vs = τb = τs
π = 1tb > g(ts)

vb > vs
π = 1
vb ≥ τb ≥ τs ≥ vs

tb < g(ts)
vb < vs
π = 0

τb = τs = 0

Figure 3.1: The necessary conditions for ex-post efficiency, ex-post individual
rationality, and no ex-post budget deficit.

is equal to the seller’s valuation for the item. In the upper-left area of this curve,
the buyer’s valuation for the item is greater than the seller’s valuation. Thus, if
the traders report their types honestly, then trade happens because the mechanism
is ex-post efficient. Also, the transfers for the traders are between the buyer’s
valuation and the seller’s valuation by individual rationality and no budget deficit.
In the lower-right area of the curve, the seller’s valuation for the item is greater
than the buyer’s valuation. Therefore, if the traders report their true types, trade
does not occur due to ex-post efficiency, and no transfers are made because of
ex-post individual rationality and no ex-post budget deficit of the mechanism.

Proof of Proposition 3.2. It follows from (A2) and (A6) that there exists
(t∗b , t

∗
s) ∈ (tb, tb) × (ts, ts) such that vb(t∗b , t

∗
s) = vs(t

∗
b , t
∗
s). Define a function

H(tb, ts) := vb(tb, ts) − vs(tb, ts). Then, H(t∗b , t
∗
s) = 0 and we can apply the

implicit function theorem to show i).4

I now turn to the proof of ii) of the proposition. Consider the closed rectangular
region g(I(t∗s))× I(t∗s). We can partition this set into three subsets depending on
the relationship between tb and ts: tb = g(ts), tb > g(ts), and tb < g(ts).

4See Appendix B for the detailed proof.
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If (tb, ts) in g(I(t∗s))× I(t∗s) satisfies tb = g(ts), then it follows that vb(tb, ts) =

vs(tb, ts) from the property of g(·) in result i). Thus, π(tb, ts) = 1 because the
mechanism is ex-post efficient. If we plug this into the ex-post individual ratio-
nality and no ex-post budget deficit constraints, vb(tb, ts)π(tb, ts)− τb(tb, ts) ≥ 0,
τs(tb, ts)− vs(tb, ts)π(tb, ts) ≥ 0, and τb(tb, ts) ≥ τs(tb, ts), then we can have that
vb(tb, ts) ≥ τb(tb, ts) ≥ τs(tb, ts) ≥ vs(tb, ts). It leads to vb(tb, ts) = τb(tb, ts) =

τs(tb, ts) = vs(tb, ts) because vb(tb, ts) = vs(tb, ts).
Consider (tb, ts) ∈ g(I(t∗s)) × I(t∗s) satisfying tb > g(ts). Then, vb(tb, ts) >

vs(tb, ts) because vb(g(ts), ts) = vs(g(ts), ts) and ∂vb/∂tb > ∂vs/∂tb. Because
the mechanism is ex-post efficient, it follows that π(tb, ts) = 1. We can also
get that vb(tb, ts) ≥ τb(tb, ts) ≥ τs(tb, ts) ≥ vs(tb, ts) from the ex-post individual
rationality and no ex-post budget deficit constraints.

Consider the last case where tb < g(ts). By using the same reasoning as used
in the previous cases, we can obtain that vb(tb, ts) < vs(tb, ts), π(tb, ts) = 0, and
τb(tb, ts) = τs(tb, ts) = 0. �

We study the necessary conditions for the properties of the mechanism in Propo-
sition 3.1 and Proposition 3.2. In the next proposition, it is shown that there is no
mechanism satisfying all these properties by deriving a contradiction from these
necessary conditions.

Proposition 3.3. Suppose that (A1) - (A6) hold. Then, there is no bilateral

trading mechanism satisfying ex-post efficiency, ex-post incentive compatibility,

ex-post individual rationality, and no ex-post budget deficit.

Proof. Suppose there is a mechanism (π, τb, τs) satisfying ex-post efficiency,
ex-post incentive compatibility, ex-post individual rationality, and no ex-post
budget deficit. From Proposition 3.2, we can obtain the positive slope curve,
g : I(t∗s) → [tb, tb], on which the buyer’s valuation and the seller’s valuation for
the item are equal and the rectangular region, g

(
I(t∗s)

)
× I(t∗s), as in Figure 1.

Consider a set of type profiles, int
(
g
(
I(t∗s)

)
× I(t∗s)

)
∩ {(tb, ts) : tb > g(ts)},

that is, the upper-left area of the curve tb = g(ts) in an open rectangular region
int
(
g
(
I(t∗s)

)
× I(t∗s)

)
in Figure 3.1. vb(tb, ts) is weakly increasing in ts from (A3).

There are two cases depending on how the value of vb(tb, ts) changes as the value
of ts changes in this region:

Case 1. There exists a type pair, (t0b , t
0
s) ∈ int

(
g
(
I(t∗s)

)
× I(t∗s)

)
∩ {(tb, ts) :

tb > g(ts)}, and δ > 0 such that vb(t0b , ts) is strictly increasing in ts on an interval
(t0s − δ, t0s + δ). That is, vb(tb, ts) is strictly increasing in ts on some intervals in
the region.
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Case 2. For all (tb, ts) ∈ int
(
g
(
I(t∗s)

)
× I(t∗s)

)
∩ {(tb, ts) : tb > g(ts)}, the

value of vb(tb, ts) does not depend on the value of ts.
We derive a contradiction in each case.
The first case is depicted in Figure 3.2. Consider a pair of types (t0b , g

−1(t0b)).
Then, it follows from Proposition 3.2 that vb

(
t0b , g

−1(t0b)
)

= vs
(
t0b , g

−1(t0b)
)

=

τb
(
t0b , g

−1(t0b)
)

= τs
(
t0b , g

−1(t0b)
)
. Also, we have that vb(t0b , ts) > vs(t

0
b , ts) and

vb(t
0
b , ts) ≥ τb(t

0
b , ts) ≥ τs(t

0
b , ts) ≥ vs(t

0
b , ts) for ts < g−1(t0b) from Proposition

3.2. Because vb(t0b , ts) is strictly increasing in ts on some intervals including t0s and
t0s < g−1(t0b), it follows that vb

(
t0b , t

0
s

)
< vb

(
t0b , g

−1(t0b)
)
. Therefore,

τs
(
t0b , t

0
s

)
≤ vb

(
t0b , t

0
s

)
< vb

(
t0b , g

−1(t0b)
)

= τs
(
t0b , g

−1(t0b)
)
.

However, because the mechanism is ex-post incentive compatible, τs(t0b , ts) is
weakly decreasing in ts from Proposition 3.1, thus, τs

(
t0b , t

0
s

)
≥ τs

(
t0b , g

−1(t0b)
)
.

We now turn to the second case, which is depicted in Figure 3.3. Consider
a type profile (t

′

b, t
′
s) ∈ int

(
g
(
I(t∗s)

)
× I(t∗s)

)
∩ {(tb, ts) : tb > g(ts)}. We can

see that t′s < g−1(t
′

b). Because vb(t
′

b, ts) does not depend on ts for ts < g−1(t
′

b)

and vb(t
′

b, ts) is continuous, it follows that vb
(
t
′

b, t
′
s

)
= vb

(
t
′

b, g
−1(t

′

b)
)
. Thus, if we

apply Proposition 3.2 and repeat the same procedure as we did in the first case, we
have

τs
(
t
′

b, t
′

s

)
≤ τb

(
t
′

b, t
′

s

)
≤ vb

(
t
′

b, t
′

s

)
= vb

(
t
′

b, g
−1(t

′

b)
)

= τs
(
t
′

b, g
−1(t

′

b)
)
. (3.2)

By ex-post incentive compatibility of the mechanism, τs(t
′

b, ts) is weakly decreas-
ing in ts from Proposition 3.1. Therefore,

τs
(
t
′

b, t
′

s

)
≥ τs

(
t
′

b, g
−1(t

′

b)
)
. (3.3)

It follows from (3.2) and (3.3) that

τs(t
′

b, t
′

s) = τb(t
′

b, t
′

s) = vb(t
′

b, t
′

s).

Thus, we obtain that τb(tb, ts) = vb(tb, ts) for all (tb, ts) ∈ int
(
g
(
I(t∗s)

)
×I(t∗s)

)
∩

{(tb, ts) : tb > g(ts)}.
However, this result contradicts ex-post incentive compatibility of the mecha-

nism. Consider a type pair (t̂b, t̂s) ∈ int
(
g
(
I(t∗s)

)
×I(t∗s)

)
∩{(tb, ts) : tb > g(ts)}.

Suppose that the seller reports her true type, t̂s. If the buyer reports her true type,
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ts

ts

tb

vb, vs, τb, τs

t0b

g−1(t0b)

tb = g(ts)

vb(t
0
b , ts)

τb(t
0
b , ts)

τs(t
0
b , ts)

vs(t
0
b , ts)

Figure 3.2: Case 1. vb(tb, ts) is strictly increasing in ts for some intervals.

t̂b, then her ex-post payoff is 0 because

vb(t̂b, t̂s)π(t̂b, t̂s)− τb(t̂b, t̂s) = vb(t̂b, t̂s) ∗ 1− vb(t̂b, t̂s) = 0.

If the buyer reports a type t̂b − η where η > 0 is sufficiently small so that t̂b − η >
g(t̂s) and π(t̂b − η, t̂s) = 1, then her ex-post payoff is strictly positive because

vb(t̂b, t̂s)π(t̂b − η, t̂s)− τb(t̂b − η, t̂s) = vb(t̂b, t̂s)− vb(t̂b − η, t̂s) > 0.

That is, the buyer can be strictly better off by reporting t̂b − η instead of her true
type, t̂b. �
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ts

vb, vs, τb, τs

g−1(t
′

b)t
′
s

vb(t
′

b, ts) = τb(t
′

b, ts) = τs(t
′

b, ts)

vs(t
′

b, ts)

Figure 3.3: Case 2. vb(tb, ts) does not depend on ts.

3.4 A Comparison with Jehiel and Moldovanu (2001)

In this section, I explain how my work differs from Jehiel and Moldovanu (2001).
Both Jehiel and Moldovanu (2001) and my research study interdependent values

models: an agent’s estimate for her own value for an item may depend on the
signal held by the others. Jehiel and Moldovanu (2001) show that if each agent’s
signal is one-dimensional, then it is possible to have direct revelation mechanisms
satisfying efficiency and Bayesian incentive compatibility. My research shows
that it is impossible to have mechanisms satisfying efficiency, ex-post incentive
compatibility, ex-post individual rationality, and no ex-post budget deficit.

Jehiel and Moldovanu (2001) identify conditions under which there exist direct
revelation mechanisms satisfying efficiency and Bayesian incentive compatibility.
The condition cannot be satisfied if each agent’s signal is multi-dimensional. This
is their impossibility result. However, the condition can be satisfied if the signal of
each agent is one-dimensional. I study the one-dimensional signals and the model
of my research satisfies this condition.5 Thus, according to the result by Jehiel and
Moldovanu (2001), some of the mechanisms I study in my research satisfy both

5See Appendix B for detailed explanation.
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efficiency and Bayesian incentive compatibility.6 I show, however, that if we add
two more properties, individual rationality and no budget deficit, then there is no
mechanisms satisfying all of these four properties. This difference between Jehiel
and Moldovanu (2001) and my research is summarized in Table 3.1.

Agents Value Function
Jehiel &
Moldovanu
(2001)

n agents
Linear in signals(

V i(si, s−i) =
∑
j

ajis
j
i

)
My research

1 buyer and General
1 seller V i(si, s−i)

Signals Dimension Results
Jehiel &
Moldovanu
(2001)

Multi-dimensional EF, BIC impossible
One-dimensional EF, BIC possible

My research One-dimensional
EF, EPIC, EPIR, no EPBD

impossible

Table 3.1: The difference between Jehiel and Moldovanu (2001) and my research.

3.5 Conclusion

Under the assumption that each trader’s information has a greater effect on her
own valuation than on the other trader’s valuation, no bilateral trading mechanisms
with interdependent values satisfy efficiency, ex-post incentive compatibility, ex-
post individual rationality, and no ex-post budget deficit.

6The mechanism I introduce in the second chapter of the dissertation is an example because it
satisfies efficiency and ex-post incentive compatibility.
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Appendix A

Proofs for Chapter 2

A.1 Well-Definedness of the Allocation Rule

In the second case of the allocation rule of the mechanism, v(m)(t
′
) = v(m+1)(t

′
).

We need to show that 0 ≤ k − |Bs| ≤ |Bα\Bs|, and 0 ≤ k − |Ss| ≤ |Sα\Ss|
for the well-defined allocation rule. The number of traders for each range of
valuations is summarized in Table A.1. We know that there are less than n traders

Buyers Sellers
v > v(m+1)(= v(m)) |Bs| n− |Sα|
v = v(m+1)(= v(m)) |Bα| − |Bs| |Sα| − |Ss|
v < v(m+1)(= v(m)) m− |Bα| |Ss|

Table A.1: The number of valuations in each range

whose valuation is greater than v(m+1)(t
′
). Thus, from the first row of the table,

|Bs|+ (n− |Sα|) < n. That is, |Bs| − |Sα| < 0. Similarly, from the third row of
the table, we can obtain that (m− |Bα|) + |Ss| < m. Thus, |Ss| − |Bα| < 0.

There are two cases depending on the values of |Bα| and |Sα|. First, suppose that
|Bα| ≤ |Sα|, that is, k = |Bα|. Because Bs ⊆ Bα, |Bα\Bs| = |Bα| − |Bs| ≥ 0.
Thus, 0 ≤ k−|Bs| ≤ |Bα\Bs|. Also, from |Ss|−|Bα| < 0, |Sα\Ss| = |Sα|−|Ss|,
and |Bα| ≤ |Sα|, we can obtain that 0 < k − |Ss| ≤ |Sα\Ss|. Consider the
second case in which |Bα| > |Sα|, that is, k = |Sα|. From |Bs| − |Sα| < 0, and
|Bα\Bs| = |Bα| − |Bs|, it follows that 0 < k − |Bs| ≤ |Bα\Bs|. Also, because
Ss ⊆ Sα, |Sα\Ss| = |Sα| − |Ss| ≥ 0. Thus, 0 ≤ k − |Ss| ≤ |Sα\Ss|. �
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Appendix B

Proofs for Chapter 3

B.1 The Revelation Principle for the Ex-Post Nash
Equilibrium.

Let Γi denote the set of actions for trader i ∈ {b, s} and σi : [ti, ti] → Γi

denote trader i’s strategy. σ = (σb, σs) is a profile of the strategies. Suppose that
π : Γb × Γs → [0, 1] is the probability that the trade happens between the traders,
τb : Γb×Γs → R is the expected transfer that the buyer pays, and τs : Γb×Γs → R
is the expected transfer that the seller receives. Each trader has a quasi-linear utility
consisting of the valuation and transfer. A game is defined as (Γb,Γs, π, τb, τs).
If Γb = [tb, tb] and Γs = [ts, ts], then the game is a direct revelation game and
(π, τb, τs) is a direct revelation mechanism.

The Revelation Principle. If σ = (σb, σs) is a Nash equilibrium in the game
(Γb,Γs, π,

τb, τs), then honest reporting by each trader forms an ex-post Nash equilibrium in
the game ([tb, tb], [ts, ts], π ◦ σ, τb ◦ σ, τs ◦ σ).

Proof. Suppose that σ = (σb, σs) is a Nash equilibrium in the game (Γb,Γs, π, τb, τs).
Consider the direct revelation game ([tb, tb], [ts, ts], π ◦ σ, τb ◦ σ, τs ◦ σ). Let’s first
show that the buyer’s best response in the revelation game is reporting her type
honestly when the seller reports her type honestly. The proof for the seller’s best re-
sponse is similar so it is omitted. Consider the types tb, t

′

b ∈ [tb, tb], and ts ∈ [ts, ts].
We need to show that

vb(tb, ts) ∗ (π ◦ σ)(tb, ts)− (τb ◦ σ)(tb, ts)

≥ vb(tb, ts) ∗ (π ◦ σ)(t
′

b, ts)− (τb ◦ σ)(t
′

b, ts).
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Because σ = (σb, σs) is a Nash equilibrium in the game (Γb,Γs, π, τb, τs), it
follows that

vb(tb, ts)π(σb(tb), σs(ts))− τb(σb(tb), σs(ts))

≥ vb(tb, ts)π(σ
′

b(tb), σs(ts))− τb(σ
′

b(tb), σs(ts))

for any strategy σ′b.
Define the buyer’s strategy σ′b as follows:

σ
′

b(t) = σb(t
′

b) for all t ∈ [tb, tb].

Then, we can obtain that

vb(tb, ts)π(σb(tb), σs(ts))− τb(σb(tb), σs(ts))

≥ vb(tb, ts)π(σb(t
′

b), σs(ts))− τb(σb(t
′

b), σs(ts)).

Thus, it leads to

vb(tb, ts) ∗ (π ◦ σ)(tb, ts)− (τb ◦ σ)(tb, ts)

≥ vb(tb, ts) ∗ (π ◦ σ)(t
′

b, ts)− (τb ◦ σ)(t
′

b, ts).�

B.2 Proof of i) of Proposition 3.2.

Define H(tb, ts) := vb(tb, ts) − vs(tb, ts) for (tb, ts) ∈ (tb, tb) × (ts, ts). Then,
H(tb, ts) is continuously differentiable by (A2) and H(t∗b , t

∗
s) = 0. Also, from

(A5), we can obtain that

∂H(tb, ts)

∂tb
=
∂vb(tb, ts)

∂tb
− ∂vs(tb, ts)

∂tb
> 0,

and
∂H(tb, ts)

∂ts
=
∂vb(tb, ts)

∂ts
− ∂vs(tb, ts)

∂ts
< 0.

Thus, we can apply the implicit function theorem and have the following results:
There exists a closed interval I(t∗s) = [t∗s − ε, t∗s + ε] for some ε > 0 and a

continuously differentiable function g : I(t∗s)→ [tb, tb] such that
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1) t∗b = g(t∗s),
2) H(g(ts), ts) = 0, that is, vb(g(ts), ts) = vs(g(ts), ts) for all ts ∈ I(t∗s), and

3)
dg(ts)

dts
= −

∂H(g(ts), ts)

∂ts
∂H(g(ts), ts)

∂tb

> 0 for all ts ∈ I(t∗s). �

B.3 A Comparison with Jehiel and Moldovanu (2001)

In this section, I introduce the model of Jehiel and Moldovanu (2001). Then, I
show how the model of my research satisfies the condition derived by Jehiel and
Moldovanu (2001). By doing so, we can see the similarity and difference between
the research by Jehiel and Moldovanu (2001) and my research. Also, we can see
the implication of their research in my work and how my research is different from
theirs.

B.3.1. The model of Jehiel and Moldovanu (2001)

There are N agents and K alternatives. si ∈ Si ⊆ RK×N is a signal of agent
i that is her private information where si = (sikj)1≤k≤K,1≤j≤N and sikj affects the
agent j’s utility in alternative k. Agent i’s valuation function for alternative k

is given by V i
k (s1ki, s

2
ki, · · · , sNki) where V i

k (s1ki, s
2
ki, · · · , sNki) =

N∑
j=1

ajkis
j
ki with the

assumption that aiki ≥ 0 ∀k ∀i. If agent i obtains transfer xi in alternative k, then

her utility is
N∑
j=1

ajkis
j
ki + xi.

A direct revelation mechanism is a pair of functions (p, x) defined on the set of

profiles of signals. p :
N∏
i=1

Si → RK is a probability assignment function where

pk(s
1, · · · , sN) is the probability that alternative k is chosen when reported signals

are (s1, s2, · · · , sN), and x :
N∏
i=1

Si → RN is a transfer rule where xi(s1, · · · , sN)

is the payment received by agent i.
If si ∈ Si ⊆ R, then the signal of each agent is one-dimensional. In this

case, the valuation function of agent i for alternative k is V i
k (s1, s2, · · · , sN) =

N∑
j=1

ajkis
j . Jehiel and Moldovanu (2001) derive the following sufficient condition

for the existence of efficient and Bayesian incentive compatible direct revelation

51



mechanism when the signal of each agent is one-dimensional.

∀i ∀k ∀k′ aiki > ai
k′ i
⇒

N∑
j=1

aikj >

N∑
j=1

ai
k′j
. (B.1)

B.3.2. My research and Jehiel and Moldovanu (2001)

First, I show that the model of my research satisfies condition (B.1), the suffi-
cient condition for the existence of efficient and Bayesian incentive compatible
mechanisms, derived by Jehiel and Moldovanu (2001) if I assume that the valuation
functions in my model are linear in types of the agents.

The model of my research can be written again based on the notation by Jehiel
and Moldovanu (2001) as follows:

There are two alternatives (K = 2). Assume that alternative 1 (k = 1) is that
the buyer purchases the item from the seller, and alternative 2 (k = 2) is that the
buyer does not purchase the item. Assume also that the valuation function of each
agent is linear in types of the agents. Then, the valuation function for each agent
for each alternative, V i

k (tb, ts) for k ∈ {1, 2} and i ∈ {b, s} is given by,

V b
1 (tb, ts) = ab1bt

b + as1bt
s, V s

1 (tb, ts) = 0 · tb + 0 · ts,

V b
2 (tb, ts) = 0 · tb + 0 · ts, V s

2 (tb, ts) = ab2st
b + as2st

s

where ab1b > ab2s ≥ 0, and as2s > as1b ≥ 0 from the assumptions of my research,
∂vi
∂tj
≥ 0,

∂vi
∂ti

> 0, and
∂vi
∂ti

>
∂vj
∂ti

∀i ∈ {b, s}, j 6= i. We can check that

these coefficients, {ajki}k∈{1,2},i,j∈{b,s}, satisfy condition (4) derived by Jehiel and
Moldovanu (2001). This implies that some of the mechanisms I study in my
research satisfy efficiency and Bayesian incentive compatibility. However, I show
that if we add two more properties, ex-post individual rationality and no ex-post
budget deficit, then no mechanisms satisfying all of these four properties exist.

52


