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ABSTRACT

Individualized medicine tailors diagnoses and treatment options on an individual patient

basis. This is a paradigm shift from choosing a treatment based on highest reported efficacy

in clinical trials, which is often not effective for all individuals. In this dissertation, we assert

that treatment selection and management can be individualized when clinicians assessment of

disease symptoms are augmented with a few analytically identified patient-specific measures

(e.g., genomics, metabolomics) that are prognostic or predictive of treatment outcomes.

Patient-derived biological, clinical and symptom measures are sufficiently complex, i.e.,

heterogeneous, noisy and high-dimensional. The question for research then becomes: “Which

few among these large complex measures are sufficient to augment the clinician’s disease

assessment and treatment logic to individualize treatment decisions?”

This dissertation introduces, ALMOND — Analytics and Machine Learning Framework

for Actionable Intelligence from Clinical and Omics Data. As a case study, this dissertation

describes how ALMOND addresses the unmet need for individualized medicine in treating

major depressive disorder — the leading cause of medical disabilities worldwide. The biggest

challenge in individualizing treatment of depression is in the heterogeneity of how depressive

symptoms manifest between individuals, and in their varied response to the same treatment.

ALMOND comprises a systematic analytical workflow to individualize antidepressant

treatment by addressing the challenge of heterogeneity of major depressive disorder. First,

“right patients” are identified by stratifying patients using unsupervised learning, that serves as

a foundation to associate their disease states with multiple pharmacological (drug-associated)

measures. Second, “right drug” selection is shown to be feasible by demonstrating that

psychiatrists’ depression severity assessments augmented with pharmacogenomic measures

can accurately predict remission of depressive symptoms using supervised learning. Finally,

probabilistic graphs provide early and easily interpretable prognoses at the “right time” to a

psychiatrist by accounting for changes in routinely assessed depressive symptoms’ severity. By

choosing antidepressants that have the highest-likelihood of the patient achieving remission,

the chances of persisting depressive symptoms are reduced, which is often the leading medical

conditions in those who commit suicide or develop chronic illnesses.
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CHAPTER 1

INTRODUCTION

1.1 Analytics for Augmenting Human Intelligence in Medicine

Individualized medicine tailors diagnoses and treatment options on an individual patient

basis [1–4]. This is a paradigm shift from choosing a treatment based on aggregate therapeutic

efficacy (i.e., percentage of patients achieving the desired therapeutic benefit in clinical trials).

Individualized treatment is greatly needed because not all patients will respond to a particular

drug, and drug response varies by patient [1].

Reduction of costs in assaying patients’ genetic makeup (genome) among other biological

measures (e.g., hormones) has accelerated advances in individualized medicine [5]. However,

there are only a few well-characterized systemic diseases for which dramatically improved

treatments have been achieved by using genomics data in routine clinical settings (e.g.,

targeted therapies in breast cancer) [1, 6]. To expand the benefit of individualized medicine

to other widely prevalent complex diseases (e.g., mental health disorders and migraines), a

key question to address is: “Can a clinician’s assessments of disease severity, augmented with

patient-specific biological measures, help identify a therapeutic agent (e.g., drug) with the

highest likelihood of achieving the desired therapeutic benefit?”

The answer to that question needs high-quality data, rich clinical insights/annotations, and

analytical approaches to combine heterogeneous patient-specific measures to generate “action-

able intelligence.” Actionable intelligence is a small set of patient-derived biological/clinical

measures that provide clinicians novel insights on (1) treatment prognoses, (2) prediction

of therapeutic efficacy, and (3) disease pathophysiology or drug mechanisms. Analytical ap-

proaches for generating actionable intelligence have to augment clinician’s treatment selection

criteria prior to the initiation of treatment, and during intermediate follow-ups that span the

entire duration of the treatment. Therefore, methods have to account for static measures

(e.g., genomics) and time-varying measures with conditional properties (e.g., symptom im-

provement in response to treatment intervention). Given the widely varying differences in

disease manifestations and treatment practices, there are no universal theoretical foundations

for generating relevant actionable intelligence [7].
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1.2 ALMOND: Analytics and Machine Learning Framework for

Actionable Intelligence from Clinical and Omics Data

This dissertation introduces ALMOND, the Analytics and Machine Learning Framework

for Actionable Intelligence from Clinical and Omics Data. By combining patient-derived

biological measures with rich insights provided by physicians (domain experts) as illustrated

in Fig. 1.1, ALMOND addresses the broader clinically important question: “Is a given

therapeutic agent (e.g., drug) effective for an individual?” The broader analytical challenge in

addressing this question is in how ALMOND can augment a physician’s symptom assessment

(i.e., knowledge of disease physiology) with a few biological measures that are associated

with treatment outcomes. Then the physician can match a patient with a treatment strategy

that has the highest likelihood of enabling the patient to achieve the desired therapeutic

benefit. Hence, predicting or forecasting treatment outcomes by combining a physician’s

assessments with patient-derived biological measures has to be conditioned upon (1) the state

of the disease prior to treatment initiation, (2) patient history, and (3) how symptoms change

between disease states in response to treatment.

ALMOND formalizes conditional dependencies between symptom variations during treat-

ment by using probabilistic graphical models, as shown in Fig. 1.1. Using hidden Markov

models, ALMOND models symptom variations (visible to the physician) in response to drug

treatment in strata of patients identified at each time-point of the treatment. Then, a pa-

tient’s eventual treatment response trajectories can be inferred using optimization techniques

such as the Viterbi algorithm, for example. However, the challenge is that not all diseases

have well-defined disease states from either a symptomatic or a biological perspective. In

addressing this challenge, ALMOND uses unsupervised learning methods to learn disease

states based on symptom assessments that serve as the foundation for developing a graph,

and the probabilistic transitions between the states (i.e., nodes of the graph) are learned from

input data. The inferred states can then be engineered to jointly consider clinical assessments

and biological measures to derive accurate prognoses or predictions of treatment outcomes.

Thus, in answering the question of whether a given therapeutic agent (e.g., drug) will be

effective for an individual, this dissertation through the development of ALMOND shows

that systematic data-driven innovations are needed that bring multiple analytical approaches

together in a workflow. Finally, the success of machine learning or artificial intelligence

approaches in healthcare science and delivery rests in the ability of physicians to relate their

diagnoses to underpinnings of analytical methods to the degree that prediction results should

be explainable with minimal complexity and maximum precision. For example, “in the

patient’s transition from disease state A to disease state B after treatment initiation, since X

2



Analytics and Machine Learning Framework for Omics and Clinical Big Data (ALMOND)
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Figure 1.1: Analytics and Machine Learning Framework for Actionable Intelligence from
Clinical and Omics Data (ALMOND).

symptoms have improved by Y%, the likely treatment outcome is symptom remission with a

Z% probability.”

ALMOND is capable of analyzing data that range from the granularity of expressions of

the human genome within each cell, to population-level diagnostic data, in order to generate

actionable intelligence as illustrated in Fig. 1.1. The generated intelligence demonstrates

the ability of analytical innovations to drive biomedical research for both discovery and

translational science, which are important facets of individualizing medicine. The following

are the capabilities of ALMOND that are embodied in its unique workflows, each of which

brings to fore, a combination of probabilistic graphical models, and unsupervised and

supervised learning methods.

1. Prediction, and Prognoses of Treatment Outcomes: By using a patient’s ge-

nomic and longitudinal symptom assessment data, ALMOND can predict the outcome

of antidepressant treatment prior to its initiation; it can also provide a psychiatrist

with a prognosis of the long-term categorical outcome based on early changes in disease

symptom severity after treatment initiation. The workflow is discussed in Chapters 4 – 7.

2. Novel Drug Mechanisms: A genome’s biological functions in drug mechanisms can

be studied in terms of variations in the gene expression levels (referred to collectively as

3



the transcriptome) [8]. Because the costs of sequencing the genome within each cell have

been going down, it is now possible to identify groups of cells that react differently to drug

treatment [9]. Such a grouping of cells is based on differential patterns of expressions of

genes across cells. The mixture-model-based single-cell analysis (MiMoSA [10]) workflow

(described in Appendix B) takes as input,the untreated and drug-treated single-cell

transcriptome data and identifies genes whose expression is strikingly affected by drug

treatment. As a case study, MiMoSA identified a gene CDC42 as a candidate for

laboratory experiments to study the anti-cancer properties of the commodity diabetic

drug metformin. The laboratory experiments demonstrated a novel mechanism by which

metformin inhibited cancer cell migration in triple-negative breast cancer patients [11].

3. Disease Prognoses: Transcriptome variations of genes with competing biological

functions have the potential to explain the development of deadly diseases such as

cancer. The game-theoretic transcriptome analysis (GiTA [12]) workflow (described in

Appendix C) takes as input a patient’s transcriptome data and describes the likelihood

of disease development. For that, non-small cell lung adenocarcinoma was used as a

case study.

4. Forecasting Readmission for Surgery: For aging patients with chronic diseases such

as type II diabetes, frequent surgical interventions can lower quality of life and greatly

increase care costs. The Singapore diabetes readmission graphical network (SINGA-

DRAGN [13]) workflow (described in Appendix D) processes population electronic health

records of diabetic patients in Singapore, first to identify longitudinal relationships

between comorbidities that, when poorly controlled, warrant surgical interventions.

Then, for a new patient’s current diagnoses, SINGA-DRAGn can forecast the comorbid

complexities that are likely to warrant surgical interventions in the future.

Validation Considerations: The following measures were taken to explain the biologi-

cal significance of any biomarkers identified or predictive models developed in ALMOND.

ALMOND-identified biomarker candidates were studied in the laboratory at Mayo Clinic in

order to establish their biological relevance in drug mechanisms. Independent trial datasets

(not used in training) were used to validate the performance of the predictive methods.

An important feature of ALMOND is its usability through a clinician-friendly interface.

Data, results, and associated statistical significance information are presented, and are

illustrated in a way that feeds naturally into a clinician’s treatment guidelines. As a case

study, this dissertation describes how ALMOND addresses the unmet need for individualized

medicine in treating major depressive disorder.
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1.3 Major Depressive Disorder and Treatment Challenges

Major Depressive Disorder (MDD) is the number-one psychiatric disease worldwide, and

is expected to the be leading cause of medical disabilities by 2030 [14, 15]. Globally, 300

million people are affected by MDD, regardless of age, gender, ethnicity, race, or economic

status, among other sociodemographic factors. MDD is a complex disease characterized

by several symptoms. Common depressive symptoms are melancholy, loss of pleasure and

energy, appetite variations, guilt feelings and delusions, inability to concentrate or sleep well,

and the presence of suicidal thoughts. MDD severity is measured by summing the patient’s

categorical responses to individual symptom questionnaires assessed by a psychiatrist using

a standardized depression rating scale. The higher the score, the higher the severity of the

disease. MDD is treatable with antidepressant medication, psychotherapy or a combination

of both [14].

MDD is a heterogeneous disease in the sense that depressive symptoms often manifest

differently in different patients, even within the same family or community. While MDD is

a heterogeneous disease, antidepressant treatment outcomes are also heterogeneous [16–20].

That is, patients with the same sociodemographic factors and pre-treatment MDD severity

see different outcomes in response to the same dose and duration of antidepressant treatment.

Unlike biologically quantitative and distinct evidence of the presence/absence of cancer in

a tissue biopsy, the marked heterogeneity in patient-reported MDD symptom severity has

limited the ability to find genetic associations with disease or antidepressant response. Hence,

to date, there is no mapping between a patient’s genomic data and antidepressants that can

help in choosing the medication with highest chance of achieving desired treatment benefit.

In the absence of quantitative biological evidence to guide antidepressant treatment selection,

current practice follows what Dr. Roy Perlis (a reknowned psychiatrist) describes as “artisanal

medicine” [21]. By relying largely on a psychiatrist’s experience, on a “try-and-try-again”

basis, patients may go through several trials of antidepressants before they eventually achieve

remission from MDD symptoms. Recent studies have shown that over 70% of MDD patients

undergo 5 – 7 trials of antidepressants each lasting 8 – 12 weeks before they achieve remission

from MDD symptoms [22]. With each failure of an antidepressant medication, persisting

MDD symptoms hinder patients from functioning normally, and some patients commit suicide.

Clearly, these patients need help and deserve the kind of precision currently achieved in

individualized breast cancer therapeutics [23].
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1.4 Toward Individualizing Antidepressant Treatment

Management in Depressed Adults

1.4.1 ALMOND’s Design Driver: Real-World Patient Data

With the intent of making ALMOND-generated “actionable intelligence” augment clinicians’

treatment know-how in routine practice, ALMOND has been developed with data from

over 3, 000 consenting patients with MDD. The data are richly characterized by diversity

in race and geographical location (e.g., United States, Scandinavian Europe, East Asia),

patient-derived biological measures (e.g., genomics, metabolomics, blood drug levels) and

clinical assessments during the course of antidepressant treatments lasting at least 8 weeks.

Furthermore, data were collected at three time-points, i.e., baseline (pre-treatment), at 4

and 8 weeks, and up to 30 weeks after treatment initiation. Data from trials conducted in

both outpatient settings (i.e., no hospital stay) and inpatient settings (i.e., extended hospital

stay for extremely sick patients with MDD and other severe chronic conditions) are used to

develop and test the robustness of insights gained using ALMOND. Data used in this study

are pooled from both single-site trials (i.e., all patients seen by the same set of physicians in

the same hospital by following the same treatment protocol), and multi-site trials (i.e., data

collected from patients treated in multiple hospitals following the same treatment protocol)

settings. Reflecting on the marked heterogeneity in the manifestation of MDD symptoms

and treatment outcomes, the translational success of ALMOND when used by clinicians rests

in its capabilities to provide reliable insights. In this context insights from a trial’s dataset

are considered reliable if they replicate across independent trials wherein data are collected

in from psychiatric clinics and hospitals, or that have evidence from laboratory experiments

that relate to disease pathophysiology or treatment response. In this work, methods were

developed using data from Mayo Clinic Pharmacogenomics Research Network Antidepressant

Medical Pharmacogenomic Study (Mayo PGRN-AMPS, N = 900 subjects) [24]. Inferences

and predictions gained using Mayo PGRN-AMPS were tested in two independent datasets,

taken from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D [25], N =

1,800 subjects) and the International SSRI Pharmacogenomics Consortium (ISPC [26], N =

900 subjects).
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1.4.2 Overview: ALMOND’s Analytical Approach to Individualizing
Antidepressant Treatment

Our goal is to move from the current try-and-try-again approach of artisanal medicine

described by Dr. Perlis, to a right patient, right drug, right time approach of individualizing

antidepressant treatment management in measurement-based psychiatry. Next, we elucidate

a set of focused treatment-relevant questions that were the basis for our design of ALMOND’s

analytical workflow to achieve that goal. These questions were defined based on aspects of

current clinical practices for treating MDD for which additional degrees of specificity were

needed in order to individualize antidepressant treatment management. For each of these

questions, we summarize the value of the augmented actionable intelligence either from the

perspective of current treatment practices or for future clinical research.

1.4.3 Finding The “Right Patient” Through Patient Stratification

Stratification by Sex

Treatment-relevant Question: Are there sex-differences in biological profiles of patients

with MDD pre- and post-antidepressant treatment? We began this stratification process

by determining whether there were sex-differences in metabolomic profiles of patients with

MDD at all three time-points of the trial. Metabolomics is a study of metabolites, which are

products of metabolism (e.g., biochemical reactions in various parts of the body due to a

drug/disease). Unlike genomics, where the DNA is stable during shorter durations of time

(e.g., the duration of antidepressant treatment), metabolites offer an instantaneous snapshot

of the biochemical state of the body/organism in which one is interested [27]. MDD patients

treated with antidepressants who participated in a clinical trial at the Mayo Clinic, United

States provided blood samples that were used to measure 35 metabolites of key neurological

mechanisms associated with mental health disorders.

Approach and Significance: By using multivariate analyses of variance (MANOVA),

we demonstrated significant differences in average concentration of metabolite concentrations

between blood samples of men and women at all three time-points of the trial (discussed

in Chapter 4). While it is well-known that the prevalence of MDD in women is twice that

in men, clinicians often overlook sex as a key factor in antidepressant treatment selection.

It is also important to note that prior machine learning work on predicting antidepressant

treatment outcomes by using sociodemographic measures (including sex as a measure) as

predictors have not shown sex to be a top predictor of treatment outcomes [28,29]. Because
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of the sex difference in quantitative biological measures of patients we stratified the rest of

the analyses in ALMOND by sex, instead of testing whether sex is an important factor in

predicting antidepressant treatment outcomes.

Augmented Actionable Intelligence: Sex-dependent biological factors could drive

response to the same antidepressant treatment differently in men and women.

Stratification by Depression Severity

Treatment-relevant Question: Can MDD patients be stratified by their depression sever-

ity? Treatment decisions for many diseases, such as breast cancer (based on hormone

characterization in a tumor) or hypertension (based on the severity of the blood pressure) are

based on how the disease states are stratified biologically/symptomatically [23]. There are no

strata of MDD severity based on ranges of total depression severity scores at any intermediate

time-points of treatment. Definitions of antidepressant treatment outcomes such as remission,

or response are empirically defined based on whether a patient’s total depression severity had

dropped below a threshold or quantum after 4 or 8 weeks of antidepressant treatment [30].

The lack of stratification has often limited our ability to understand pathological mechanisms

of variation in MDD severity.

Approach: To establish such a stratification at baseline and at 4 and 8 weeks, we used an

unsupervised machine learning approach to cluster patients based on depression severity at

baseline, 4 weeks, and 8 weeks using patient data from Mayo Clinic (discussed in Chapter 4).

We first observed that total depression severity distribution in both men and women, and at

all treatment time-points, was a mixture of Gaussians. Hence, we used mixture-model based

unsupervised learning with Gaussian mixture models (GMM) to algorithmically identify the

minimum number of Gaussians that best approximated the actual distribution of depressive

symptom severity at each time-point.

Significance: Our unsupervised learning approach algorithmically identified three distinct

clusters of men and women based on their total depressive symptom severity at baseline and

after 4 weeks and 8 weeks of antidepressant treatment, using data from Mayo PGRN-AMPS

subjects. We replicated the clusters (and associated distributions in each cluster) at all

time-points in multiple independent datasets (STAR*D and ISPC). Clustering methods

always assign data-points into a specified number of clusters. However, the validity of the

clusters in the context of the application is not guaranteed. In this instance, clusters inferred

by ALMOND had two levels of significance. First, in a data-driven manner, we found that the

three clusters after 8 weeks of antidepressant treatment in all trials comprised patients who

were labeled as remitters, responders without remission, and non-responders based on clinical
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definitions that use empirically defined thresholds of total depression severity. Second, given

the acknowledged levels of heterogeneity in MDD manifestation, replication of patterns of

clusters at baseline and 4 weeks in independent trials provides a foundation for investigating

any associated differences in the disease biology and patterns of patient movement between

clusters.

Augmented Actionable Intelligence: The replicating patterns of patient clusters

increase the potential for learning the underlying pathological mechanisms of variation in

MDD severity, and trajectories of patient movement between clusters.

1.4.4 Toward Identifying the “Right Drug” by Predicting Its Efficacy via
Pharmacogenomic Measures

Treatment-relevant Question: Can a psychiatrist’s pre-treatment assessments of MDD

severity, augmented with a patient’s pharmacogenomic measures, predict eventual remission

of MDD symptoms to antidepressant treatment? We leveraged the inferred patient clusters to

associate depression severity with pharmaco-omics measures. Pharmaco-omics is the study

of how patients’ -omics measures (in this work, genomics and metabolomics) affect in the

patient’s response to a drug [31]. In this work, we assessed the predictive capabilities of

pharmacogenomic biological measures (biomarkers) associated with citalopram or escitalo-

pram, commonly prescribed antidepressants that fall under the category of selective serotonin

reuptake inhibitors (SSRIs).

Approach: In each of the inferred patient clusters, we achieved the multi-omic integration

in the following two steps. In the first step, we identified metabolites whose concentrations

were associated with depression severity scores in clusters at all time-points. In the second step,

we conducted a genome-wide association study (GWAS) to identify a few genomic markers

among 7 million single-nucleotide polymorphisms (SNPs, which are genetic variations), that

are associated with concentrations of metabolites [27]. Of all the metabolites assayed in Mayo

PGRN-AMPS samples (N = 290 of 900 subjects), we found that serotonin and kynurenine

concentrations were the most highly associated with antidepressant treatment outcomes at

8 weeks or with baseline depressive symptom severity, respectively. The pharmacogenomic

biomarkers (i.e., SNPs) associated with those metabolites are TSPAN5 (rs10516436), ERICH3

(rs696692), DEFB1 (rs5743467, rs2741130, rs2702877), and AHR (rs17137566) [32, 33]. A

psychiatrist’s depression severity assessments, augmented with the inferred biomarkers, were

then used as predictors of antidepressant treatment outcomes as discussed in Chapters 5 and 6.

Significance: Supervised machine learning methods available in ALMOND were trained

using pharmacogenomics biomarkers and total baseline depression scores of Mayo Clinic’s
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subjects. The trained models predicted sex-specific remission/response at 8 weeks with

AUC ≥ 0.7 in Mayo Clinic’s subjects, and with predictive accuracies > 65% (p ≤ 0.07) in

independent datasets. Furthermore, predictive accuracies obtained using pharcogenomic

biomarkers were on average 12% better than those obtained when using only sociodemographic

measures. The predictive performance with external replications demonstrated for the first

time that pharmacogenomic biomarkers could reliably predict SSRI treatment outcomes prior

to treatment initiation. If the multi-omic approach is extended to other antidepressants,

drug-specific prediction models could potentially help individualize antidepressant treatment

selection by identifying the treatment with the highest predicted likelihood of enabling the

patient to achieve remission from MDD symptoms.

Augmented Actionable Intelligence: A few patient-derived pharmacogenomic biomark-

ers can augment a psychiatrist’s MDD assessments to predict antidepressant treatment

outcomes better than the use of sociodemographic factors alone.

1.4.5 Identifying Prognostic Changes in Depressive Symptoms at The
“Right Time”

Treatment-relevant Question: Is there a small set of individual depressive symptoms

whose early change in assessment scores is prognostic of long-term treatment outcomes?

During the treatment management of MDD, clinicians often make decisions about whether

to continue or alter antidepressant treatment plans at intermediate treatment time-points,

before a full therapeutic trial is complete [34]. To operationalize the decision to continue

or alter treatment plans at an intermediate treatment time-point, clinicians often focus on

changes in individual depressive symptoms or total depression severity scores, measured using

depression rating scales. Hence, there is still a need to obtain additional specificity by defining

which individual depressive symptoms must change, and by how much, in order to accurately

predict an eventual categorical treatment outcome, such as remission or non-response.

Approach: To address this question (discussed in Chapter 7), we first introduce the use

of probabilistic graphs in ALMOND to algorithmically explore the most likely longitudinal

variations (paths) of total depression severity as a patient progresses toward an eventual

categorical treatment outcome. To define the graph, we used the inferred clusters of patients

as nodes of the graph, and we defined the probabilistic edges based on the fractions of

patients who moved between clusters of consecutive time-points of the trial (e.g., from the

baseline cluster to a cluster at 4 weeks). Probabilistic graphs provide the mathematical

foundation needed to model the conditional dependencies that follow a clinician’s treatment

logic, i.e., accounting for improvement in total depression severity, conditioned upon baseline
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depression severity and changes in depressive symptoms at intermediate time-points, in

a purely data-driven manner, without a priori specification of trajectories. Second, we

used hierarchical clustering to identify a small set of individual depressive symptoms with

homogeneous responses to a symptom assessment questionnaire, and for which, their early

(e.g., at 4 weeks) changes were prognostic and predictive of categorical treatment outcomes

at 8 weeks (remission, response, or non-response).

Significance: We identified a small set of individual depressive items comprising sad

mood, anxiety, guilt feelings/delusions, and work/activities, whose changes at 4 weeks were

prognostic of categorical outcomes at 8 weeks. Based on how many of these symptoms failed to

improve or exceed specific thresholds at 4 weeks that were needed to achieve specific treatment

outcomes, the probability of the most likely outcome for a specific patient was computed. In

these analyses, there were also notable sex-differences in the longitudinal variation of depressive

symptoms. The most compelling was that regardless of depression severity at baseline, women

were more likely than men to achieve remission status in response to antidepressant treatment.

This important sex-difference highlights a key aspect of antidepressant response that would

have been overlooked had we not first separated the analyses by sex. A clinician can interact

with ALMOND through a web interface, wherein patient’s gender and symptom assessment

data at baseline and at 4 weeks are collected. ALMOND then computes the probability

and statistical significance of the most-likely treatment outcome at 8 weeks and informs the

clinician through the interface.

Augmented Actionable Intelligence: ALMOND draws a clinician’s attention to

changes in a small subset of depressive symptoms after 4 weeks of treatment, and thus

could accurately inform the prognoses of eventual treatment outcomes that is likely to be ob-

served after 8 weeks of antidepressant treatment. If the prognoses forecasts a poor treatment

outcome, the clinician could prompt a change in the treatment so as to avoid extended weeks

of disease burden from the lack of response.

1.5 The Broader Impact of ALMOND

1.5.1 In Treating Depression: The Multi-Trillion Dollar Economics

The consequences of persisting MDD symptoms in the short term because of treatment

failures are significant. MDD is a serious disability-causing health condition that leads to

poor function at work [14,35,36]. In a study led by the World Health Organization (WHO)

that was published in 2016, it was shown that depression and anxiety disorders cost the global
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economy $ 2 – 8 trillion (U.S.) in lost productivity [37]. By 2030, the economic burden is

expected to double if the current trend of increasing prevalence of MDD continues [37]. The

same study also showed that in the United States of America (U.S.) alone, MDD translated

into an average of 8 hours per week of lost productivity, and over 20 days of absence per

year, costing $210 billion (U.S.) in lost productivity per year. Furthermore, early diagnoses

and treatments of MDD are administered by general practitioners (GPs), who do not use

standardized psychiatric metrics to assess the severity of MDD [38,39]. The GPs’ ability to

assess MDD severity and adequately treat patients is called into question by the fact that a

higher proportion of MDD patients achieve remission from depressive symptoms when treated

by mental health practitioners (e.g., psychiatrists) [39]. ALMOND’s web interface could be

used by a GP to generate prognoses of eventual antidepressant treatment outcomes, using

a patient’s responses to a standardized symptom questionnaire which GPs to assess MDD

symptoms. ALMOND’s will be of significant value if it enables a GP to accelerate a patient’s

access to a psychiatrist on the basis of a poor prognosis. The timely recommendation to

see a psychiatrist is crucial because even in developed countries, MDD is often not treated.

For example, in the U.S., 37% of 16 million adults with MDD do not receive mental health

treatment. 1

In the long term, one’s life is at risk if there is prolonged exposure to MDD (due to

treatment failures) or if it is left untreated (if the presence of the disease is not acknowledged).

On the extreme end is the risk of suicide, as more than 90% of individuals who commit suicide

suffered from a history of mental health disorders. Another health risk is in the potential

development of chronic diseases such as type II diabetes and coronary diseases [40, 41].

These chronic diseases develop because of poor management of stress, sleep, appetite, and

reduced physical activities resulting from persisting MDD symptoms. Studies have also

shown that persisting depression may alter brain function [42]. Brain inflammation is key

to an individual’s resilience and recovery from injury or illness. A study conducted with

positron emission tomography scans (PET scans) revealed excessive inflammation in the

brains of patients with persistent and/or untreated MDD symptoms. It is well known that

excessive inflammation in the brain is associated neurodegenerative diseases like Alzheimer’s

and Parkinson’s [43, 44].

Taken together, ALMOND’s potential to accelerate therapeutic success in treating MDD

can improve patients’ quality of life and reduce their risk of developing other chronic illnesses.

1https://www.nimh.nih.gov/health/statistics/major-depression.shtml
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1.5.2 In Medicine Beyond Psychiatry

From a biological mechanistic perspective, on one end of the clinical spectrum there are

diseases such as breast cancer for which treatment is based on tumor subtypes. At the

other end of the spectrum are neuropsychiatric diseases such as MDD for which subtyping of

individual patients is possible based on their reported symptom severity, as demonstrated in

this work. Between those two extremes are migraine headaches and inflammatory diseases,

such as rheumatoid arthritis (RA), in which patients are subtyped by the degree of swelling

of their joints (which does not directly reflect a specific mechanistic biomarker) and by

pain ratings reported by the patients using validated scales that are similar to the QIDS-C

scale used to rate depressive symptoms in this work [45–47]. Therefore, there is sufficient

heterogeneity in RA symptoms to make treatment response phenotypes so complex that the

methodological innovation presented in this work could be used to overlay biological measures

that provide a significant mechanistic perspective. This approach could then be tested for

the prediction of outcomes in response to the drug therapy for migraine headaches or RA, as

additional examples of a possible broader application of the approach described here.

1.5.3 In Pharmacogenomics Research

Pharmacogenomics research focuses on understanding the interplay between drug effects

and functions of the genome [1]. In that context, we reflect on the improvements in breast

cancer therapeutics wherein treatment selection is based on molecular characteristics of the

tumor. In diseases such as MDD, for which such biologically based subtyping is not yet

possible, the approach described in this work for stratifying patients by using symptomatic

characteristics will be of immense value for pharmacogenomics research. In particular, trials

could be designed in which multi-omics (metabolomics, trancriptomics, genomics, etc.) and

other biological measures (neuroimaging, electrophysiology, etc.) could be collected that help

to establish biological associations with patients stratified using the proposed approach. Then,

longitudinal effects of the drug on those biomarkers could be used to study why patients

either respond well to the intervention or do not. Furthermore, as already demonstrated in

this work, associations of biological markers with inferred patient stratification can provide

improved predictability of treatment outcomes. Such patient clustering that can potentially

identify underlying differences in pathophysiology or predisposition to treatment outcomes

represents a significant advance in moving away from “artisanal medicine” practices.
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1.5.4 In Advancing Analytics

Behavioral and environmental exposure are said to play an important role in brain activity,

disease development, and therapeutic response. Thus, a framework like ALMOND that

can identify strata of patients with homogeneous disease states and has the ability to

characterize longitudinal symptom characteristics will be enhanced when one incorporates

data with additional granularity such as functional neuroimaging and daily activity data

from wearable technologies. With ALMOND, predictions or prognoses of treatment outcomes

can incorporate both physician-assessed symptom data, and quantified data relating to a

patient’s lifestyle and daily activities. Such integration of image data along with physiological

monitoring data will require analytical innovations that potentially extend beyond the

traditional image analysis techniques embodied in the deep learning literature. Incorporation

of improvements in daily activities recorded by wearable devices, and patient-reported side-

effects and symptom improvements and lifestyle changes, could help clinicians individualize

the dosing and frequency of medications via techniques such as reinforcement learning.

1.6 A Vision for Augmenting Human Intelligence in Medicine

During periods of residence at Mayo Clinic, National University Hospital, Singapore, and

while presenting this research in biomedical/engineering conferences, whenever the author

of this dissertation mentioned words such as “prediction,” “machine learning” (ML), and

“artificial intelligence” (AI), he was always met with the question, “Will psychiatrists become

obsolete?” The answer to this question has always been “No, clinicians are essential to

treating patients, and in working alongside engineers to develop technologies that addresses

unmet needs in medicine.” Thr role of computer engineering scientists will be to develop

methods that provide a small set of analytically chosen, meaningful, relevant patient-derived

information in a way that amplifies and augments a clinician’s assessment of a patient’s

disease state. That is the thing that will transform what Dr. Perlis called “artisanal medicine”

into “individualized medicine.”

An analogy can be made based on the continued need for human pilots in commercial

airplane cockpits that have complex automation systems. The current generation of airplanes

(e.g., Boeing’s Dreamliner or the Airbus A350) continues to offer historically high degrees of

reliability in flight safety, and these airplanes collect tremendous volumes of high-throughput

data during the course of each flight. Pilots were impressed by the highly simplified design of

cockpit controls and data display in these airplanes, among other improvements. By analyzing

data from millions of miles and hours of flying across the globe in many flying conditions,
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airplane manufacturers have arrived at a reduced (if not simple) set of well-characterized

measures that have been deemed sufficient to allow a trained pilot to fly planes safely, even

in rapidly escalating adverse conditions. The continuing relevance of pilots in modern-day

flying, however, has been emphasized by several recent aviation incidents such as the one in

which Capt. Sullenberger safely landed a commercial passenger airplane in New York City’s

Hudson River after both engines of his plane were disabled by a bird strike. 2

In fact, the National Transportation Safety Board of the United States found that over half

of the flight simulations developed following the incident showed that, if Capt. Sullenberger

had proceeded to any nearby airports,a safe landing would have been unrealistic. Furthermore,

given rapidly escalating failures during that flight, the plane would have crashed into New

York City had Capt. Sullenberger delayed his decision to land in the Hudson River by 35

seconds. The investigative findings of that incident highlight the fact that human piloting

skills augmented with simplified presentations of required real-time safety-critical data, have

significantly reduced the chances of major catastrophes. On can argue about whether an

automated pilot trained with numerous emergency scenarios could have safely landed Capt.

Sullenberger’s plane in the Hudson River, but, for today and the foreseeable future, pilots’

skills are still deemed essential to safe flying of airplanes.

In light of that analogy, we can return to the context of augmentation of human intelligence

in medicine, broadly focusing on psychiatry and mental health. A century’s worth of research

has resulted in psychiatrists’ ability to measure, quantify and diagnose the presence of de-

pression using diagnostic criteria and more than a dozen symptom severity questions [48, 49].

Numerous statistical and machine learning approaches have identified a list of sociodemo-

graphic measures, with minimal concordance among them, as predictors of antidepressant

treatment outcomes. None of the machine learning methods so far have seen adoption in

clinics, in part because clinicians do not often use such a wide variety of sociodemographic

measures to guide treatment selection. Furthermore, psychiatrists always knew and will

continue to believe in the importance of patient-derived biological measures in furthering their

understanding of mental health disorders and in predicting treatment outcomes. However, in

the context of individualized antidepressant treatment management, the broader question

to answer has been: “Which of the psychiatrists’ assessments need to be augmented with

which relevant biological measures to accurately predict antidepressant treatment outcomes?”

Finally, in the event that the patient appears to a trained psychiatrist to be more suicidal

than a questionnaire would have found, the patient must be immediately treated to prevent

suicide, and not with an antidepressant selected by predictive analytics. The surrounding

context of the event, be it treating a suicidal depressed patient for suicide first, or landing

2https://www.ntsb.gov/investigations/AccidentReports/Reports/AAR1003.pdf
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the airline in Hudson River as opposed to crashing into New York City needs a human in

the loop. This is because, it is likely that the automated systems despite the sophisticated

analytics would be unprepared to learn the surrounding context of impending catastrophes.

The future of individualized medicine, partly rests in the capability of engineers to further

augment clinicians’ symptom assessments with real-time data from patients’ daily activities

(e.g., hours of sleep, quality of sleep, number of steps, and resting heart rate) as measured by

wearable technologies, and the patient’s exposome. The exposome comprises environmental

exposure external to the human body, such as air quality and types of surrounding vegetation.

By combining exposome data with other biological measures, we could potentially observe

whether diseases manifest in biologically different ways in different patients, while also

considering where the patients live, how they live, and what they do during the course of a

day. The optimal choice of medication may draw on all of the resulting insights. Toward

that end, the vision of this dissertation in the context of making augmented actionable

intelligence relevant to clinical practice, is that analytical combination of vast, and rapidly

growing highly complex, patient-derived data with the constantly evolving treatment strategies

used by clinicians, means that both clinicians (because of their domain knowledge) and the

augmented human intelligence enabled by AI/ML technologies will be essential to standard

individualized medicine care giving in clinics/hospitals.

1.7 Summary of Contributions

From a computer engineering perspective. The overarching goal is to analytically

generate intelligence from real-world clinical data to advance biomedical research for both

discovery and translational science. This dissertation presents ALMOND as an analytical

framework that has the capability to analyze data that are high-dimensional and heterogeneous

in both type and the time dimension (static vs. dynamic) to generate actionable intelligence.

Incorporation of inputs and annotations from clinicians and other domain experts in analyzing

data not only allows methods to be closer to clinical reality, but has allowed us to generate

results with higher degrees of interpretability. Finally, all insights of ALMOND from the

discovery perspective have either had their biological significance verified through laboratory

experiments, or been replicated in independent trial datasets pooled from across the globe.

Through insights generated by ALMOND, this dissertation makes the following key contri-

butions toward augmentation of clinicians’ intelligence in various fields of medicine.

• Psychiatry: For the first time, we have demonstrated the ability of pharmacogenomic

measures augmented with psychiatrist’s depression severity assessments to robustly
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predict antidepressant treatment outcomes. In addition to demonstrating significant

sex-differences in antidepressant response profiles, we have established much-needed

specificity in early symptom improvements for prognoses of treatment outcomes in

multiple rating scales. In assessing ALMOND’s ability to replicate disease states defined

by patient strata at all time-points of treatment, we found that all aspects of the analyses,

from longitudinal characteristics to predictive performance using pharmacogenomic

markers, replicated across independent trial datasets and depression rating scales.

• Oncology: Triple-negative breast cancer is among the most aggressive breast cancers

in women, and it does not have a targeted treatment yet. A novel mechanism of

cancer-migration inhibition by the diabetic drug metformin identified by ALMOND

has provided additional evidence for ongoing efforts to repurpose commodity drugs in

treating cancer.

Given that lung adenocarcinoma is often detected at later stages of tumor development

and warrants invasive biopsies down to the lungs, trancriptomic variations in a few

genomic biomarkers prognostic of disease development, obtained through saliva, could

help inform physicians about the state of the lung’s health.

• Endocrinology: Our ability to individualize the risk of deterioration in a diabetic

patient’s health in the long-term offers caregivers to optimize care (medication and

lifestyle suggestions) to potentially minimize hospitalizations and surgical interventions.
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CHAPTER 2

BACKGROUND, CHALLENGES, AND RELATED
WORK

Individualization of breast cancer therapeutics has been successful due to genomic-guided

treatment selection [23]. Major depressive disorder (MDD), on the other hand, despite its

global footprint is yet to benefit from individualized medicine approaches. What characteristics

of MDD limit the ability of genomics to successfully individualize antidepressant selection?

In measurement-based care in psychiatry, symptom questionnaires assess the severity of

the spectrum of depression symptoms by using ordinal scores [49]. The total depression

severity score is a sum of ordinal responses to individual depression symptom questions. It

is well-known that higher depression severity at baseline correlates with poorer outcomes

of antidepressant treatment. It is also known that early improvements in total depression

severity scores correlate with eventual treatment outcomes. Why are the pre-treatment

baseline total depression severity score and its improvement at 4 weeks insufficient to enable

psychiatrists to accurately forecast a clinical outcome at 8 weeks? Where lies the challenge

in transforming these widely used depression rating scales into prognostic scales?

The use of statistical and machine learning approaches in predicting antidepressant treat-

ment outcomes is not new. An overwhelming majority of the existing methods have used

routinely collected sociodemographic measures as predictors of categorical outcomes to antide-

pressant treatment. Why have these approaches yet to individualize antidepressant treatment

selection in routine clinical settings?

Finally, access to high-quality data and clinical measurements of symptom severity is key

to answering the broader question of “right patient, right drug, right time” to individualize

choices of antidepressant medications. To that end, what characteristics of data from

clinical trials of multiple routinely prescribed antidepressants can potentially drive analytical

innovations towards individualization of antidepressant treatment management?

Contribution. In this chapter, we describe the opportunities for analytical innovation by

describing the complexities faced by psychiatrists in the antidepressant treatment management

of MDD patients. We reflect on the related work and describe the research gap addressed in

this dissertation. We briefly introduce several multidisciplinary concepts with the intention

of making this work accessible to readers from multiple disciplines.
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2.1 Major Depressive Disorder

Major depressive disorder (MDD) is the number-one psychiatric disease worldwide [14,15].

MDD is a complex disease characterized by several depressive symptoms.

Common depressive symptoms are melancholy (sad mood or depressed mood); loss of

interest, pleasure, and energy; weight and appetite variations; guilt feelings and delusions;

inability to concentrate or sleep well, and the presence of suicidal thoughts [14].

2.1.1 Diagnoses and Measurement-Based Care

Diagnoses: The diagnostic criteria for depression are specified in the Diagnostic and

Statistical Manual of Mental Disorders (DSM) developed by the American Psychiatric

Association [50, 51]. For an individual to be diagnosed with MDD, he or she must be

experiencing five or more depressive symptoms during a two-week, period with at least one

of the symptoms being depressed mood or loss of interest or pleasure. Furthermore, the

individual must be experiencing sufficient impairment in daily activities, at work, or socially.

Finally, these symptoms must not be a result of substance abuse or a side effect of another

medication.

Measurement-Based Care: To evaluate the severity of MDD symptoms, several rating

scales that measure the severity of individual depressive symptoms have been proposed [52–54].

Each rating scale comprise 10 – 17 questions , which measure the severity of individual

depressive symptoms (also referred to as individual scale items) through ordinal responses.

Depression severity could be “clinician-rated” wherein a clinician asks the patient scale’s

questions, and records the severity of the responses. Patients can also “self-report” the

severity of depressive symptoms by rating the severity using their own judgment.

Popular rating scales that measure a full spectrum of depressive symptoms include the

17-item Hamilton Depression Rating Scale (HDRS [53]), the 16-item Quick Inventory of

Depressive Symptomatology (QIDS [52]; there is also a QIDS-C for clinician severity rated,

and a QIDS-SR for self-reported severity), and the 10-item Montgomery-Asberg Depression

Rating Scale (MADRS [54]). The total depression severity score (TS) is a summation of

individual depressive item rating scores (in HDRS and MADRS), and a summation of the

highest rating scores derived from a group of depressive symptoms (in QIDS).
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2.1.2 Treatment Options and Outcome Definitions

Treatment Options. Antidepressant medication and psychotherapy are two broad treatment

options commonly available for treating MDD [34]. Psychotherapy, also commonly known

as “talk therapy,” is based on a constant dialogue between a psychologist and the patient.

The patient can openly discuss his or her problems with a psychologist. In an objective,

nonjudgemental, and neutral way, a psychologist will engage with patients to find ways

to change the patient’s thoughts and behavior in order to reduce the burden of MDD

symptoms in his or her daily functioning. Antidepressant medication makes changes to brain

signaling in order to reduce MDD symptom severity. Common classes of antidepressants

include tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and

selective serotonin noradrenaline reuptake inhibitors (SSNRIs).

There is no consensus on which treatment option is more reliably effective [21,34]. Many

psychiatrists may prefer that the MDD patient begin with psychotherapy if the depression

severity is mild during diagnosis. Alternatively, a psychiatrist might start an MDD patient

on an antidepressant medication from the start if the patient shows moderate or severe

depression severity during diagnosis. In many instances, antidepressant medication and

psychotherapy are combined in treating MDD. In this work, we will focus on predicting or

deriving prognoses of response to SSRI treatment, which is the most commonly prescribed

primary antidepressant.

Treatment Outcome Definitions. Antidepressant treatment management comprises

two phases; the acute phase and the extended phase. The acute phase begins from the time

of treatment initiation after patient has met the DSM-IV (or DSM-V) diagnosis criteria for

MDD, and it lasts for about 8 weeks. The treatment comprises follow-ups at 2, 4, and 6

weeks after treatment initiation; during the followups, MDD symptoms are measured using

the same rating scale chosen prior to treatment initiation. In the extended phase, if the acute

phase treatment results in the patient’s achievement of remission status (defined next), the

same antidepressant is continued for upto 24 to 30 weeks, with followup visits at every 4

weeks. If the patient fails to achieve remission status by the end of the acute phase, another

acute phase with a different antidepressant is initiated. Table 2.1 illustrates the treatment

outcome definitions of remission, response (without remission), and non-response after 8

weeks of acute-phase treatment [30]. The outcome definitions are based on emperically derived

thresholds based on either the total score after 8 weeks of treatment, or the improvement in

the baseline (pre-treatment) total score (TSb). If a patient continues to stay in remission or

response status after an acute-phase treatment and during the entire duration of the extended

phase, the extended-phase treatment’s outcome is considered extended remission or extended

response, respectively.
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Table 2.1: Antidepressant treatment outcome definitions.

Total score at 8 weeks
Rating scale QIDS HDRS MADRS
Remission at 8 weeks ≤ 5 ≤ 7 ≤ 10
Response (without remission) at 8 weeks ≤ 0.5 ∗ TSb ≤ 0.5 ∗ TSb ≤ 0.5 ∗ TSb

Non-response at 8 weeks > 0.5 ∗ TSb > 0.5 ∗ TSb > 0.5 ∗ TSb

2.2 Pharmacology Primer

Pharmacology is the study of effects and mechanisms of drugs [55]. Pharmaco-omics is

the study of effect of -omics (e.g., genomics, metabolomics, and transcriptomics) in drug

response [31]. Pharmacogenomics is the study of the effect of genomics on the drug response.

Genomics is the study of the structure, function, and evolution of the genome. The genome

is the genetic make up (e.g., DNA and RNA) of an organism. There are about 23, 000 genes

in the human genome, and each gene’s DNA varies among people. Those biological variations

in genes among individuals are referred to as single-nucleotide polymorphism (SNP), and are

characterized by their location in the human genome (e.g., where they are in the 23 human

chromosomes that comprise the human genome). The variations in the SNPs are called

genotypes. Today, plasma blood samples for genome-wide genotyping can yield data for 7

million SNPs. For any given trait of clinical/biological interest (e.g., cancer vs. no cancer,

disease vs. no disease, remission vs. no remission), a genome-wide association study (GWAS)

can associate variations in SNPs (genotypes) with traits.

Metabolomics is a study of metabolites, which are products of metabolism (e.g., biochemical

reactions in various parts of the body due to a drug or disease). Pharmaco-metabolomics-

informed-genomics is the study of genome-wide associations with quantitative concentrations

of metabolites that are associated with a trait of biological or clinical interest [27].

From the perspective of drug mechanisms, two concepts are relevant to understanding of

the discussion of the CYP2C19 biomarker in Chapters 4 and 6. Pharmacokinetic markers

allow for the study of an individual’s ability to absorb, metabolize, and excrete a drug,

and is often meant to guide the selection of a safe treatment option [55], i.e., selection

of a drug or dosage that would not induce adverse effects (e.g., extreme blood pressure

variations). Pharmacodynamic biomarkers, on the other hand, relate to drug concentration

and treatment outcomes, including resulting side effects, if any [55]. In this dissertation, the

pharmacogenomic SNPs used as predictors of antidepressant treatment outcomes in Chapter 6

are pharmacodynamic biomarkers.

21



2.3 The Most Compelling Challenge in Studying Depression?

Heterogeneity

The following characteristics of MDD as a disease, and its subsequent response to antide-

pressant treatment, have thus far obstructed the achievement of high precision in treating

MDD.

2.3.1 Heterogeneity in Disease Presentation

MDD is a disease comprising multiple individual symptoms [14]. The severity of these

symptoms, as assessed by any of the rating scales, manifests differently in different patients,

even if the patients have the same total score (as illustrated in Fig. 2.1(a)). Furthermore,

among patients classified with the same outcome after 8 weeks of acute-phase treatment with

antidepressants, there is considerable variation in symptom severity score profile between

patients (as illustrated in Fig. 2.1(b)). To quantify the extent of the observed variability in

depressive symptom presentation, we need five or more principal components to explain even

50% of the variability. This variability in manifestation of depressive symptoms is referred to

as heterogeneity in disease presentation.

Treatment decisions are often based on a total score derived by summing the severity

scores of symptoms, and a treatment’s outcome is judged based on the improvement over the

baseline total score at the end of the treatment’s duration [30]. Treatment decisions made

using a total score from a depression rating scale overlooks the sensitivity of individual item

scores’ changes to antidepressant treatment [30]. Thus, an opportunity to identify patients

with more or less homogeneous presentations of depressive symptoms, albeit with similar

total scores, is lost.

2.3.2 Heterogeneity in Antidepressant Response

Let us assume that each group of patients with the same total score are considered to be

patients with the same disease state at each assessment during the antidepressant treatment.

Then, if there are N states of depression, and k time-points of assessments in the clinic,

the complexity in how depression states change is O(Nk). That is a level of complexity

that even experienced psychiatrists would not be able to assimilate in order to accurately

forecast a treatment outcome, given a patient’s total depression severity score at baseline. We

illustrate the complexity in Fig. 2.2 for 1, 400 MDD patients who were treated with citalopram

or escitalopram for 8 weeks in two large clinical trials. Figure 2.2 shows their depression
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Figure 2.1: Heterogeneity in symptom manifestation in patients with same the total score or
clinical outcome after the acute phase of antidepressant treatment.
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severity scores as assessed using the QIDS-C rating scale. To describe 100% variation of

depression severity during the treatment, 986 unique paths between baseline and 8 weeks,

with a follow-up at 4 weeks after treatment initiation were needed.

Furthermore, among patients who begin the treatment with the same depression severity

score at baseline and who have the same sociodemographic characteristics, some go on

to achieve remission, or response without remision status, after 8 weeks of acute-phase

treatment, while some fail to respond to the same antidepressant treatment. That variability

in how depression severity changes with time while resulting in an eventual outcome with

antidepressant treatment is referred to as heterogeneity in antidepressant response [16–20].

2.3.3 Heterogeneity in Treatment Strategy

Let us assume that the sincerity of patients in reporting their depressive symptoms’ severity

reduces the effect of subjectivity”in diagnoses. Following the “artisanal medicine” approach

in routine clinical practice to which Dr. Perlis refers, different psychiatrists choose different

antidepressants. In many instances, they choose to combine multiple antidepressants (referred

to as co-medications) to treat MDD patients. Indeed this end, there is no accepted consensus

on which antidepressants are more effective than the others. Hence, it is easy to observe

heterogeneity in treatment strategy even in the way medications are administered in treating

MDD. It may not be entirely clear which combination of antidepressants, or which single

antidepressant, was really the contributing factor to a particular treatment outcome.

2.3.4 How Does Heterogeneity Challenge Individualization of MDD
Therapeutics?

To provide a context on how disease and antidepressant treatment response heterogeneity

challenge individualization of antidepressant treatment, we will briefly look at the path to

success in breast cancer therapeutics.

What Brought Success in Breast Cancer Therapeutics? Until breast tumors were

uniquely characterized according to their molecular characteristics (e.g., hormone characteris-

tics), breast cancer therapeutics was just as “artisanal” as MDD is treated today. Although

no two individuals have identical genomes, high degrees of similarity in characterizations of

tumors at the molecular level make the disease states very homogeneous. Thus a GWAS

that treats unique disease states as traits (as opposed to breast cancer vs. no breast cancer

as traits) yields very actionable pharmacogenomic markers (e.g., SNPs) as targets for drug

design and choice, and that finding has been replicated in all clinical trials across the globe.
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Hence, as long as a patient’s tumor is correctly characterized and the treatment targeting

the specific tumor subtype is chosen, the likelihood of an individual’s therapeutic success is

high [23].

On the Challenges in Individualizing MDD Therapeutics: GWAS in each large

depression study have identified unique genomic markers as risk factors for developing

depression (GWAS for disease vs. no disease as traits). Several large antidepressant studies

have also established multiple mutually exclusive genomic markers of antidepressant response

(GWAS for response vs. no response, remission vs. no remission as traits). However, none of

these biomarkers replicated across trials [56,57]. The key reason for the lack of replication

in findings is the complexity of the disease in terms of differences between patients in how

depressive symptoms manifest and respond to medication. Furthermore, even GWAS for the

trait, “remission from medication vs. placebo treatment” has failed to find replicating sets

of biomarkers, because even placebo-treated patients achieve remission status at nearly the

same rate as patients treated with antidepressants.

2.4 Related Work

2.4.1 Prediction of Antidepressant Treatment Outcome

Transcriptome Variations Associated with Remission: Transcriptome variations have

been observed in blood samples between non-remitting MDD patients after 12 weeks of

citalopram with psychotherapy treatment and non-depressed control group patients [58]. The

differentially expressed genes, used as predictor variables predicted eventual non-remission

when the authors used support vector machines with linear kernels (SVM-Linear), with an

accuracy of 76%. The work work showed the promise of studying transcriptome variations

in response to antidepressant treatment. Limitations. Heterogeneity of the disease and

response in the case of remitters was observed given that transcriptome variation was not

significant between eventual remitters at baseline, and control subjects. Furthermore, the

study called for additional analyses on the ability to improve predictions by using genotype

and depression severity measures from full rating scales.

Sociodemographic Variables as Predictors of Remission: Elastic net regression

has been used with recursive feature elimination to predict remission in citalopram-treated

patients while also accounting for symptom clusters [28, 29, 59]. In all these approaches,

baseline total depression severity was consistently identified as the top predictor of remission.

However, among the lists of the other top five predictors, there was no significant overlap.
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The lists of depressive items or sociodemographic variables that were strong predictors of

remission varied among the prior efforts. Limitations. While the predictive accuracies

of the prior efforts were better than chance and statistically significant (i.e., with a p-

value ≤ 0.05), the choice of using only sociodemographic measures as predictors limits the

ability to individualize treatment selection. The reason is that, individually or in subgroups,

sociodemographic variables have been previously shown to be weak predictors of treatment

outcomes [30, 60, 61]. Furthermore, these publications also showed that predictive models

trained on treatment outcomes from one antidepressant (e.g., citalopram) could not predict

treatment outcomes with comparable specificity and sensitivity in patients treated with a

combination of antidepressants (e.g., venlafaxine plus smirtazapine) [29].

Pre-Treatment Severity of Symptom Dimensions as Predictors of Remission:

Researchers have also attempted to predict treatment outcomes by using depressive “symptom

dimensions” [61]. Clusters of symptoms defined as “symptom dimensions” are identified using

factor analyses [62, 63]. It was shown that higher scores of interest-activity symptoms on the

QIDS-C or HDRS scales at baseline were associated with lower chances of achieving remission

after an acute phase of antidepressant treatment. Limitations. Further exploration of

genomic associations between symptom dimensions’ severity and potential patient subtypes

are needed, in order to determine whether heterogeneity in treatment response and outcomes

can be better understood.

Genomic SNPs as Predictors of Remission or Response: Instead of using GWAS

as the approach for selecting genes, elastic net regression with variable selection was used

to prioritize genomic predictors from about 500, 000 genes genotyped in the Genome-based

Therapeutic Drugs for Depression (GENDEP) study [64]. The area under the receiver

operator curve (AUC) in the work was 0.77; that agreed with prior work, which revealed

that higher scores on interest-activity symptoms on the QIDS-C or HDRS scales at baseline

were correlated with lower chances of achieving remission after acute phase of antidepressant

treatment [61]. Some of the top predictors of treatment outcomes were associated with

pathology of schizophrenia and bipolar disorder. In a Taiwanese study, remission following

antidepressant treatment was predicted using top-hit SNPs (with a p-value < 7.5∗ 10−5) from

GWAS and baseline clinical variables as predictor variables [65]. In that work, multilayer

feedforward neural networks (MFNNs) that were used to predict the remission status achieved

an AUC of 0.83. In another study, genes related to the hypothalamic-pituitary- adrenal

(HPA) axis were used as predictors of remission to three commonly used antidepressants

(escitalopram, sertraline, and venlafaxine) [66]. That study, which used data from the

International Study to Predict Optimized Treatment in Depression (iSPOT-D) and Predictors

of Remission in Depression to Individual and Combined Treatments (PReDICT), showed that
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a particular SNP, h4, was associated with response to escitalopram and sertraline, and not

venlafaxine. Limitations. In all these predictive approaches, the predictive performances

when genomic predictors were used, were better than when sociodemographic factors were

used as predictors, and that is encouraging. However, none of the identified genes had SNPs

that were identified in pharmacogenomic studies of antidepressant response. Hence, it remains

to be understood how these identified genes contribute to the mechanism of antidepressant

response, which must be known in order to guide accurate treatment selection.

2.4.2 Longitudinal Analyses of Antidepressant Response

Early Improvements in Total Depression Severity Associated with Eventual Re-

mission: Using an odds ratio metric, several studies suggest that early treatment response

(improvement of at least 20% in the baseline total depression severity score) after 2 or 4

weeks of acute-phase antidepressant treatment suggests that there will be eventual response

or remission at the end of the acute-phase treatment [67–70]. However, almost all of those

studies also show that some patients (as many as 30%), early treatment response is not

predictive of eventual remission. Further, the GENDEP study showed that about 40% of

the patients treated with citalopram or nortriptyline who failed to achieve early treatment

response at 2 weeks went on to achieve response status after 8 weeks of treatment [67]. One

study used the least absolute shrinkage and selection operator (lasso) to predict eventual

response to 12-week acute-phase treatment by using the improvement in total depression

severity at 6 weeks with an AUC of 0.70 [71]. In that study, it was shown that predictive

performance did not significantly improve when improvements in individual depressive items

were also considered as predictors, in addition to improvement in the total depression severity

score. Limitations. With the exception of de Vries et al. [71], all other studies call for

methodological innovations that identify drug- and patient-specific changes in individual

symptoms that extend beyond the overall improvement in total depression severity measured

by either rating scales (e.g., QIDS-C or HDRS).

Trajectory Analyses for Modeling Antidepressant Response: Growth mixture

models are a popular statistical approach for identifying longitudinal change in a variable of

interest in unobserved subpopulations [72, 73]. Growth mixture models have been used to

infer trajectories of improvement in total depression severity scores that lead to any of the

categorical treatment outcomes [74–77]. A unique feature of the work of Kelley et al. [75], is

their ability to associate genomic markers with trajectories of remission and non-response.

Gueorguieva et al. [77] show that when trajectories of response are modeled, a third of the

patients who are responders at the end of the acute-phase treatment will see worsening in
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their depression symptom severity in the extended phase of the treatment. Limitations.

In using growth mixture models, one must have sufficient domain expertise to define the

number of latent classes and trajectories, and ensure appropriate model fit, and then interpret

the results [78, 79]. The implicit assumption in defining the paths is that the population

on each path remains homogeneous throughout the duration of the path (i.e., patients do

not change trajectories during the treatment). Furthermore, growth mixture models are

prone to overestimation of the number of trajectory classes [79]. Finally, growth mixture

models do not find paths algorithmically by conditioning future improvements in depression

severity upon improvements in depression severity at intermediate time-points, and they do

not provide easy interpretation of the dynamics of symptom changes as a function of the

percent improvement in total depression severity from baseline.

2.5 Summary: Research Gaps Addressed

In summarizing the related work in the context of predicting or modeling antidepressant

response, we observe research gaps that call for analytical innovations to individualize

antidepressant treatment selection. The prior work’s demonstration of the predictive value

of genomic measures shows the promise as a first step towards prediction of treatment

outcomes based on patient’s pharmacogenomic measures. The two limiting factors of the

prior efforts to individualize antidepressant selection are (1) their lack of ways to parse the

heterogeneity of MDD symptom manifestations and the antidepressant response, and (2)

the lack of pharmacogenomic biomarkers as predictors in predicting antidepressant response.

To move from artisanal medicine to individualized medicine, it will be important to present

analytically inferred insights in such a way that psychiatrists or physicians can easily use

them to augment the treatment strategies that they have refined through years of practice.

To that end, this dissertation addresses the following research gaps.

• Toward Pharmacogenomic-Guided Antidepressant Selection: It is promising

that several biomarkers of MDD risk and possible disease pathology have shown an

ability to predict treatment outcomes. However, illustrated by the case of breast cancer

therapeutics, drug selections consists of choosing the treatment that best suits the

disease’s biological characteristics of the patient [23]. To that end, our work demonstrates

the predictability of antidepressant treatment outcomes based on pharmacogenomic

markers as predictor variables, with cross-trial replications of the predictive performance

(as shown in Chapter 6). Thus, as illustrated in Chapters 5 and 6, ALMOND comprises

an analytical workflow to predict antidepressant response using pharmacogenomics
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Figure 2.3: Challenges in interpreting aggregate trends of depression severity improvements
by using regression-based approaches.

measures.

• Addressing Homogeneity in MDD Presentation and Antidepressant Re-

sponse: As discussed in Chapter 4, ALMOND’s analyses begin by inferring patient

stratification as a strong foundation for studying biological differences in disease states.

We then use the stratification as a basis for defining a probabilistic graphical model,

wherein the strata serve as nodes of the graph, through which one can study the most

likely longitudinal variation in depressive symptoms after treatment initiation. In stan-

dard care settings wherein biological measures are not routinely collected, ALMOND has

a symptom-based analytical workflow using probabilistic graphs described in Chapter 7,

to provide prognoses and predictions of antidepressant treatment outcomes by studying

early changes in symptom severity after treatment initiation.

• Providing Easily Interpretable Individualized Prognoses: By using growth

mixture models or regression techniques, we can infer the likely depressive severity

variation during treatment while going on to achieve a certain categorical treatment

outcome. For example, in Fig. 2.3, we show the trajectory of improvement in total

depression severity of patients with baseline total QIDS-C scores in the range of

20 – 25. Just as all prior work in trajectory analyses has shown, an improvement

in total depression severity at 4 weeks by at least 20% is prognostic of remission or
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response at 8 weeks. However, when we look at the box-plot variation or even the

scatter points colored by the 8-week response status (i.e., a ≥ 50% improvement in

total depression severity from baseline), we see that responders and non-responders

are spread across both sides of the mean, which has a very strong estimate (which

follows the thin and almost invisible 95% confidence interval band). To this end,

ALMOND first uses probabilistic graphs that incorporates information about treatment

outcome defined at intermediate time-points along with knowing the trajectories of

improvement in severity scores. Then, we are able to provide additional degrees of

specificity in individualized prognoses of treatment outcome by saying, if a patient’s

total depression severity has changed from X to Y after 4 weeks of treatment, and if A

or more core depressive symptoms have improved by B score points, this patient has a

Z% chance of achieving remission. This is of immense clinical value to psychiatrists

in helping them identify what to focus on in individualizing treatment management

plans. Today,they can measure the spectrum of depressive symptoms, but are often

challenged by heterogeneity in MDD symptom manifestation and treatment response,

as illustrated in Figs. 2.1 and 2.2.
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CHAPTER 3

INNOVATIONS TO INDIVIDUALIZE
ANTIDEPRESSANT TREATMENT MANAGEMENT

Clinicians’ deciding on the right patient-drug match prior to treatment initiation is only the

beginning of individualizing medicine. Prior to and during the course of treatment (e.g.,

at scheduled hospital visits), clinicians measure the severity of disease symptoms to assess

therapeutic efficacy. Clinicians’ decisions to continue or alter current treatments are based on

their ability to forecast the sustained effect of the drugs by observing the patients’ symptom

variations during early stages of treatment. Those two important decisions that clinicians need

to make in order to individualize treatment present opportunities for analytical innovations.

From an analytics perspective, a clinician’s ability to (1) match a patient with the right

drug prior to treatment initiation rests in the ability to analytically combine patient-derived

pharmaco-omics measures to predict eventual treatment outcomes, and (2) decide to continue

or change treatment after the current treatment’s initiation rests in the ability to model

longitudinal variations of symptom severity that are conditional upon patient’s pre-treatment

factors and subsequent symptom severity changes during the treatment. Available as inputs

to the analyses are the routinely collected high-dimensional (sample sizes << number of

variables), patient-level data (e.g., 7 million SNPs, and over 100 clinical measures). A

clinician’s treatment decision-making capabilities, augmented with analytically identified

intelligence are successful when we can identify strata of patients with homogeneous disease

states and treatment response characteristics, such that a few associated clinical or biological

measures are highly prognostic or predictive of eventual treatment outcomes.

Contributions. ALMOND’s analytical workflow (illustrated in Fig. 3.1) begins by strati-

fying MDD patients first by sex, and then by their depression severity, using unsupervised

machine learning. Then, through an integration of multiple pharmaco-omics measures in

patient strata, we use supervised machine learning to identify a few pharmacogenomic SNPs

to augment psychiatrist’s depression severity measures which can predict the antidepressant’s

efficacy prior to treatment initiation. Finally, using the patient strata as nodes of a prob-

abilistic graph, ALMOND aids a psychiatrist’s decision to continue or change the current

antidepressant treatment by identifying depressive symptoms whose early changes (e.g., at 4

weeks) are highly prognostic and predictive of treatment outcomes at 8 weeks.
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3.1 Problem Statements

Given that in current practice there is neither an ability to stratify MDD patients, nor

a way to generate homogeneous response profiles to antidepressant treatment, prognoses

or predictions of treatment outcomes to achieve individualized antidepressant treatment

management have been challenging. Hence, ALMOND’s analysis workflow was designed to

answer the following questions sequentially; they begin with patient stratification and provide

the flexibility of predicting treatment outcomes with and without biological measures.

1. Can MDD patients be stratified by the severity of their individual symptoms, or total

depression severity, or both, at all time-points?

2. Are there biological measures (e.g., genomics) associated with patient strata at baseline

(pre-treatment) that can predict eventual treatment outcomes?

3. Using patient strata as the disease states at each time-point of the antidepressant

treatment, can we model the treatment’s progression by jointly considering changes

in depression severity and observations made by psychiatrists at time-points after

treatment initiation?

4. Given a set of the progressions (e.g., paths of a graph) that patients in a given stratum

at baseline are most likely to take to achieve categorical outcomes, is there a set

of depressive symptoms (core symptoms) such that their early changes are highly

prognostic of eventual (long-term) clinical outcomes?

5. For patients in a given stratum at baseline, can core depressive symptoms’ pre-treatment

severity and their early changes (e.g., at 4 weeks) predict eventual treatment outcomes

at 8 weeks?

3.2 Patient Stratification

Rationale. While individualized treatment decisions for breast cancer are made based on

well-defined criteria for patient stratification (e.g., tumor subtypes), there are no criteria

for stratifying patients with MDD to guide antidepressant treatment selection. While the

prevalence of MDD in women is double that in men, sex is often overlooked as a factor

in guiding antidepressant selection [80–82]. Those reasons motivated us to find a way to

stratify patients first by sex, and then by their total depression severity. Stratification by

sex allows one to study biological and symptomatic variations in how men and women
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respond to antidepressant treatment, instead of merely accounting for sex as a variable in

predictive models. If the biological mechanisms of response is indeed different in men and

women, the choice of an antidepressant will have to be sex-dependent. The stratification

by total depression severity is justified even though individual depressive symptom severity

manifests differently in different patients. There are two reasons. First, all existing machine

learning prediction approaches have shown that pre-treatment depression severity is the

highest-ranked predictor of remission from MDD symptoms in response to antidepressant

treatment [28,29,59]. Second, an treatment’s efficacy at each time-point of the treatment is

measured by the extent of improvement in the total depression severity score [30].

3.2.1 First: Stratification by Sex

To anticipate sex differences in metabolomic profiles based on prior work, we used multivariate

analysis of variance (MANOVA) to determine sex differences in metabolite concentrations

of PGRN-AMPS data at baseline and after 4 and 8 weeks of treatment. The reason for

choosing metabolomics data to identify sex differences at all time-points is that prior work

has not consistently reported significant sex differences in clinical/demographic factors or

MDD symptom manifestation of patients with MDD [28,29,59,80–82].

3.2.2 Second: Stratification by Total Depression Severity Scores

Unsupervised learning was used to identify clusters (stratification) of patients based on total

QIDS-C and HDRS scores at baseline, 4 weeks, and 8 weeks.

Observation: The p-value from the Shapiro-Wilk test of the total score (e..g, in QIDS-C

and HDRS) from all three time-points of the trial, and in both men and women, was less

than the significance level (α = 0.05). This meant that the symptom severity scores were not

normally distributed, as we rejected the null hypothesis of the Shapiro-Wilk test (i.e., that

the data are normally distributed).

Approach: The fact that symptom severity is not normally distributed meant that the

k-means clustering algorithm would not be suitable as a clustering algorithm here. Without

a loss in generality, under the assumption that the data (x: total QIDS-C/HDRS score)

were distributed as a mixture of Gaussians (referred to as a Gaussian mixture model, or

GMM), we developed the patient stratification workflow (Algorithm 1). Starting with an

assumption that the data have at least two components in the GMM, we used the expectation

maximization (EM) algorithm to estimate the sufficient statistics parameters of the Gaussian

components (mean µ and variance σ2) of the GMM as shown in Fig. 3.2(a). Using the function
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Figure 3.2: Probability distributions of total depression severity scores and clustering using
Gaussian mixture models. Fig. (a) illustrates the inference of mixtures comprising the
distribution of symptom severity scores. Fig. (b) illustrates distribution of symptom severity
within the clusters inferred using the sufficient statistics of the components that were
inferred in Fig. (a).
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generateSamples, 10, 000 samples were randomly drawn from the inferred distributions. Next,

the Kolmogorov-Smirnov test (ks.test) was used to test whether the distribution of the

generated data was statistically similar to that of the original data. If the p-value (p) was

less than the significance level (α = 0.05), then we rejected the null hypothesis that the two

distributions were not similar. If that happened, the number of components was increased

by one, and tested for similarity in the two distributions. Once we obtained the minimum

number of components K in the GMM was obtained for which the generated and input data’s

distributions were similar, K clusters C = {Ck;∀k ∈ 1 : K} ordered by the increasing mean

(µk) of the components were the outputs of the workflow [83]. Patients were assigned to the

component that maximizes the likelihood L(x) given the component’s sufficient statistics

(gmmCluster), as illustrated in Fig. 3.2(b) and described by Equation 3.1.

argmax
k∈[1:K]

Lk(x) where Lk(x) = N (x, µk, σ
2
k) (3.1)

Algorithm 1 Patient stratification

Input: x← Total QIDS-C Scores
1: k ← 2
2: C ← ∅
3: α← 0.05
4: p← 0
5: while p ≤ α do
6: {µ,σ2} ← EM(x, k)
7: x′ ← generateSamples (µ,σ2)
8: p← ks.test(x, x′)
9: if p > significanceLevel then

10: C ← gmmCluster(µ,σ2)
11: end if
12: k ← k + 1
13: end while
Output: C

3.3 Multi-omics Integration to Predict Antidepressant Response

The formalism for integrating multiple biological measures in this case study is as follows

and is illustrated in Fig. 3.3.
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Patient stratification

Metabolomic association with symptom severity in patient clusters

SNP associations with metabolomic concentrations

Predicting antidepressant treatment outcomes

Symptom severityFormulation of multi-omic integration

Figure 3.3: The proposed approach to integrating
multiple omics (metabolomics and genomics) measures.

Just as tumor subtypes serve as

a foundation for integrating bio-

logical measures in oncology, our

formalism first established patient

subtypes/stratification C by using

mixture-model-based unsupervised

learning techniques. In the first

layer of overlaying of the biologi-

cal measures, a set of metabolites

m ∈ M were identified based on

significant associations of their con-

centrations with symptom sever-

ity in previously inferred patient

stratification. In the second layer

of the overlay of biological mea-

sures, in what is referred to as

a metabolomics-informed-genomics

approach, we used GWAS to iden-

tify SNPs g ∈ G that are associated

with concentrations of metabolites

that comprise m.

Through iterative overlaying of

biological measures starting with

metabolites (blood measures that reflect drug action) associated with depressive severity,

and then addition of genes associated with metabolomic concentrations, the biological

measures became more closely associated with the molecular mechanisms of antidepressant

response. Finally, out of the more than 7 million possible predictor variables, the proposed

approach identified about 65 predictor variables that comprised (1) SNPs (g) identified by the

GWAS based on metabolomic concentrations, (2) metabolites (m) whose concentrations are

significantly associated with depression severity in patient clusters, and (3) clinical measures

(discussed in Chapter 5). Thus we made the size of the predictor data computationally

tractable to predict clinical outcomes ỹ by using supervised learning methods F(m, g, S, C, y),

where y is the treatment outcome labels of the training data.
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3.4 Modeling the Symptom Dynamics of Antidepressant Response

Rationale. First, symptom dynamics in this work are defined as the likely changes in a

patient’s symptoms and associated clinical outcomes during the various stages of a trial

(e.g., response at 4 weeks or 8 weeks) while he or she is being treated with antidepressants.

To infer the symptom dynamics paths, we used the patient stratification as nodes of a

probabilistic graph, wherein the graph’s edges were the transitions patients make between

clusters of consecutive time-points. Probabilistic graphs (e.g., Bayesian networks, hidden

Markov models, and factor graphs) provide the mathematical foundation needed to model

conditional dependencies that closely follow a clinician’s treatment logic, i.e., accounting

for improvement in total depression severity, conditioned upon both baseline depression

severity and change in depression severity at intermediate time-points, in a purely data-driven

manner, without a priori specification of trajectories. Our goal was to have a graphical model

that not only models conditional dependencies of depressive symptom changes, but also

incorporates any statistical functions that capture any annotations that clinicians routinely

make during their practice (e.g., clinician defining an outcome at intermediate time-points).

Hence, we used factor graphs [84,85] to capture the relationships between clusters of patients

at consecutive time-points of the trial and associated variables, such as clinical outcomes.

The choice of factor graphs was driven by their ability to provide a compact, expressive

representation of random variables and to subsume Bayesian networks, Markov random fields

(MRFs), and hidden Markov models [84, 85]; further, they have been shown to be effective in

modeling longitudinal electronic health record data of diabetic patients [13].

Probabilistic Graph from Patient Stratification: The factor graph is a bipartite

graph G = (V ,F). We created separate factor graphs for men and women. Each graph has

three layers at each time-point, as illustrated in Fig. 3.4; the clinical observation layer, where

the clinician observes the clinical outcome based on symptom severity; the patient symptom

response layer that keeps track of changes in symptoms; and the patient stratification layer

to illustrate the cluster to which a patient’s symptom score belongs. Each layer is associated

one variable node ∈ V such as O (distribution of patients who demonstrate response (R) vs.

no response (NR)), X (symptom measure at each time point), C (patient stratification at

each time point) and one associated factor node ∈ F such as a decision rule to determine if a

patient has demonstrated response (50% reduction in symptom from baseline) for random

variable O, a transition probability matrix for symptom severity between two time points for

random variable X , and what cluster C the patient belongs to based on his or her current

symptom severity score X . The graph can be evaluated at each time point of the trial t ∈ T
starting from baseline (t) to 4 weeks (t+ 1) to 8 weeks (t+ 2) and so on.
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Figure 3.4: Patient stratification can be used to form the factor graph as illustrated. The
graph is bipartite, with patient stratification (one set of nodes) and factor functions (the
other set of nodes) that capture relationships between the symptom severity associated with
the stratification and other data.

Computing Path Likelihoods: We use the forward algorithm [84, 85] to identify the

most likely forward transitions a patient starting in any baseline cluster will make between

clusters (hidden states –C) of the trial, and also what the associated clinical outcomes will

be during the transitions (observed states –O). During transitions between the clusters, the

clinician/psychiatrist assessing the patient observes the clinical outcome O = {OR,ONR},
which is that the patient has demonstrated either response (OR), or no-response (ONR). For

both men and women, the graphs with the number of patients (n), forward transitions, and

observed outcomes O = {OR,ONR} in each cluster are shown in Fig. 3.5(a), which is similar

in construct to a hidden Markov model (HMM). Now, the symptom dynamics for any patient

starting in any of the clusters at baseline can be solved recursively by using the forward

algorithm, which is described as,

PO(Ct) =
∑
t∈T

p(O|Ct)PO(Ct−1)p(Ct−1 → Ct) (3.2)

where p(O|Ct) is the probability of the observation (response or no response) in a current

state; p(Ct−1 → Ct) is the probability of a transition from a state of a previous time-point to

a state of the current time-point (e.g., C1
b → C2

f ); and PO(Ct−1) is the path probability for a
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(a) Patient stratification and associated composition of clusters according to the associated clinical
outcomes (R = response, NR = no response).

QIDS-C Depression Severity Score Variation
in Mayo Clinic PGRN-AMPS (Women Subjects) on Symptom Dynamic Paths
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Treatment Outcome Status
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Treatment Timeline

< 50% Reduction in 
baseline depression severity

> 50% Reduction in 
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(b) Maximum likelihood symptom response paths that result from treatment
with antidepressants.

Figure 3.5: Symptom dynamics using HMM. Fig. (a) illustrates the HMM of the symptom
dynamics in men and women; Fig. (b) illustrates the inferred most likely symptom dynamics
in women based on the cluster in which each patient starts in the trial using a Sankey
diagram. Thicker lines indicate that a larger proportion of patients from the originating
cluster are taking a particular path.
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given set of observations O seen until Ct−1.

Note that the reduction from the factor graph to the HMM did not simplify the complexity

of solving the forward algorithm, but rather allowed us to explain not only the symptom

dynamics as a function of how symptoms change, but also, with the changes in symptoms,

the associated clinical outcomes during various time-points of the trial.

3.5 Identifying Core Depressive Symptoms and Associated

Antidepressant Effects

3.5.1 Core Symptoms

To extract homogeneous patterns of antidepressant response, we defined “core depressive

symptoms” based on three criteria: (1) similar response patterns at all time-points, (2) low

inter-individual variability, and (3) patterns of change that were statistically distinct within

each of the symptom dynamic paths (which we inferred in Stage 1 using total depression

severity scores). First, unsupervised machine learning (i.e., hierarchical clustering with

complete linkage) was used to identify individual QIDS-C and HDRS scale items with similar

rating patterns (meaning that they were clustered together) within the patient clusters at

baseline, 4 weeks, and 8 weeks. Second, we identified symptom clusters wherein clinician

ratings for each of the scale items at baseline had a nonzero median and low inter-individual

variability. A given item was defined as having low inter-individual variability if the chi-square

test for the distribution of clinician ratings was significant after multiple comparisons, with

the null hypothesis being that the distributions of ratings for that item were equal. Third,

for each pair of symptom dynamic paths originating at a baseline cluster and transitioning to

a cluster at 8 weeks, the Kolmogorov-Smirnov test was used to determine whether there were

statistically significant differences between the associated distributions of core symptoms at 4

weeks. We used average smoothing kernels to visualize the variations in these core symptoms’

scores within specific symptom dynamic paths.

3.5.2 Antidepressant Effects on Core Symptoms

The Mann-Whitney U-test was used to assess whether the severity of the core depressive

symptoms (expressed as a rank order) changed significantly as a likely response to antidepres-

sant treatment between two consecutive time-points on a given symptom dynamics path. By

utilizing the replicating patient clusters across datasets, we satisfied the sample independence
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Supplementary Fig. 1 

Figure 3.6: Illustrating the rank-order test construction.

requirement for this test by comparing patients in one cluster from one dataset with patients

in the consecutive time-point cluster from another dataset (illustrated in Fig. 3.6).

An example of the test conducted in citalopram or escitalopram-treated patients is illus-

trated in Fig. 3.6. Consider a pair of clusters from consecutive time-points (A1 and B1) on a

given path (A1 → B1 → C1), and a specific item from the QIDS-C scale (sad mood). We

conducted two rank-order tests for the two clusters, A1 and B1. First, we tested whether

changes in clinician ratings of severity for the QIDS-C sad mood item were significant between

patients in the A1 cluster of PGRN-AMPS vs. patients who transitioned into the B1 cluster

(4 weeks) from the A1 cluster (baseline) in STAR*D. Second, we tested whether changes in

clinician ratings of severity of the same item were significantly different between patients in

the A1 cluster of STAR*D vs. patients who transitioned into the B1 cluster from the A1

cluster in the PGRN-AMPS trial. If the p-value (with Bonferroni correction for multiple

comparisons) was significant in both comparisons, then we conclude that the changes in

clinician ratings of depressive items’ observed severity were more likely due to antidepressants

than to chance. Similar analyses were performed for all other pairs of clusters, including

paths between 4 weeks and 8 weeks, and for other depression scales and antidepressants.
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3.6 Prediction and Prognoses of Antidepressant Response Using

Early Change in Core Depressive Symptoms

3.6.1 Prediction

We used random forests, a nonparametric supervised machine learning method, as a binary

classifier to predict clinical outcomes at 8 weeks given a specific baseline cluster, using the

associated baseline severity of the core depressive symptoms and their absolute changes at

4 weeks. Using five-repeat tenfold nested cross-validation, we trained the sex- and rating-

scale-stratified classifiers with data from PGRN-AMPS subjects. Using R’s randomForest

library, we followed the recommended practice of grid search during training by setting the

mTry parameter to one-half of the total number of predictor variables, and chose the number

of trees from the range of 500 to 2, 000 with increments of 100. The trained prediction

models were then externally validated using STAR*D subjects (for the QIDS-C scale) and

ISPC subjects (for the HDRS scale). Prediction performance was reported using several

metrics (AUC, PPV, NPV, sensitivity, and specificity), and the statistical significance of the

classifier’s accuracy was established using the null information rate (NIR, the prevalence of

the class with the largest samples), which served as a proxy for chance.

3.6.2 Prognoses

This step defined the minimum number of core symptoms and levels of improvement in

the core symptoms needed at 4 weeks (given a specific baseline cluster) to achieve specific

outcomes at 8 weeks. First, the threshold of improvement vs. failure to improve was chosen

based on changes in median scores on symptom dynamic paths between the baseline and

4-week clusters. Second, a chi-square test was conducted on a table comprising the number

of core symptoms that exceeded (or failed to exceed) the threshold at 4 weeks, versus the

outcome labels (e.g., remitters vs. non-remitters, or responders vs. non-responders). If the

chi-square test’s p-value was significant for remission or response/non-response, we computed

the probability of the outcome based on how many symptoms had to exceed (or failed to

exceed) the threshold. If the p-value was not significant, no conclusions about treatment

outcome based on changes in any number of core symptoms were possible. We established

standard deviations (SD) of the probabilities by creating ten sets of, five different random

subsets (each of which maintained the same proportions of patients who achieved remission,

response and non-response in the entire dataset).
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3.7 Significance of Contributions

From a computer engineering perspective. ALMOND demonstrates that even when

disease characteristics and drug response vary between patients, augmentation of a physician’s

assessment of disease severity with a few biological measures can significantly improve the

predictability of the drug treatment outcomes. To achieve a high degree of predictability in

treatment outcomes, we overcame two significant challenges. First, we developed the ability

to integrate and analyze multiple biological measures that are high-dimensional in nature (i.e.,

the number of variables is significantly greater than the number of samples). Second, the we

developed ability to derive a compact representation of trajectories of treatment response by

reducing the state-space complexity of the longitudinal characteristics of treatment outcomes.

• On Handling the Complexity of High-Dimensional Omics Data with Sub-

jective Clinical Assessments: Much as breast tumors can be stratified based on

distinct genomic characteristics, other omics data (e.g., transcriptomics) can be associ-

ated with a few genes that differentiate disease strata. However, it has been challenging

to find replicable patterns of genomic stratification in the context of MDD, since

the disease manifestation and treatment outcomes are heterogeneous (as described in

Chapter 2). Subsequent integration of multi-omics measures has therefore been both a

clinical and a computational challenge. This dissertation shows that in the presence of

heterogeneous disease or drug response traits, the data-driven unsupervised methods

in ALMOND can infer a patient stratification in terms of disease severity measures

that replicates in independent studies. Such stratification can serve as a foundation

for the association of blood-based measures (e.g., metabolomics) with the severity of

the disease or with drug response mechanisms. Finally, the metabolites associated

with patient strata (e.g., serotonin) serve as quantitative biological traits that can be

associated with genome-wide genomics data that comprise over 7 million SNPs. Hence,

even when the patient sample size which was less than 3, 000 in our study is several

orders of magnitude smaller than the genomic variations in genome-wide genomics

(i.e., 7 million SNPs), ALMOND has shown biologically relevant and computationally

tractable ways to integrate heterogeneous biological measures with disease severity

measures obtained through clinical assessments. Such integration allowed us to find a

few focused biological predictors of antidepressant response, which yielded significant

improvement over use of sociodemographic factors with clinical assessments as the sole

predictors. Those innovations taken together are novel, since several methodologies

exist for integrating multiple biological measures when biological traits are well-defined,

as in breast cancer [86], but their translation into clinical utility in treating depression
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has been limited.

• On Handling the State Space Complexity and Interpretability in Graphical

Models: To model any phenomenon (e.g., antidepressant response), an abstraction

of the phenomenon is needed. The extent of abstraction should be realistic so that it

meets the decision criteria of domain experts (psychiatrists, in this case), but also allow

for ease of interpreting the results. Psychiatry, in treating mood disorders, is abundant

with vast abilities to symptom severity, sociodemographic measures, and biological

measures. However, there has not been a formal definition of “disease state” in the data.

The ability of ALMOND to define the disease states allowed for vertical integration of

biological measures to predict a treatment’s outcome prior to its initiation, and also

to explore longitudinal variations that best explained eventual treatment outcomes as

a function of where patients began in the trial, and how they progressed during the

trial from a clinician’s perspective. Such interpretations have so far not been possible

with existing machine learning approaches, which have attempted to predict treatment

outcomes without accounting for patient subtypes either at baseline (pre-treatment),

or during treatment. Hence, the ability to establish a patient stratification proved to

be foundational in defining an abstraction for modeling and predicting antidepressant

response.

In Psychiatry. The single greatest limiting factor in individualization of antidepressant

treatment has been the heterogeneity of antidepressant response. ALMOND’s workflow began

with the intention of finding subgroups of patients at baseline who could potentially have

longitudinal homogeneity in their response to antidepressant treatment. This approach has

the following significance in augmenting clinicians’ intelligence to individualize antidepressant

treatment management.

• On Reduced Complexity in Comprehending Antidepressant Response: Even

for a highly experienced psychiatrist, it would be impossible to memorize the 986

unique transitions (∼ O(Nk) complexity) between depression severity scores (N =

[0 : 35] in QIDS-C) at three (k = 3) time-points in order to forecast a new patient’s

possible response to treatment. By using patient stratification and probabilistic graphs,

ALMOND inferred nine unique paths originating at three baseline clusters traversing

through three clusters at 4 weeks, and terminating in three clusters at 8 weeks. As the

clusters at 8 weeks conformed to the three clinically accepted categorical outcomes,

these nine paths explained the most likely paths of antidepressant response in over 80%

of patients while also explaining the most likely early clinical outcome at 4 weeks. That
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represents a ∼ 109x reduction in complexity, when not stratifying patients. To explain

all 100% of the patient’s response to treatment, 81 paths are needed, which is still a

∼ 12x reduction in complexity when not stratifying patients. In comparison to the

response trajectories not stratifying patients (as previously shown in Fig. 2.2), the

paths inferred after patient stratification are more comprehendable by clinicians as

they begin to associate the dynamics of antidepressant response. This is possible by

identifying which cluster the patient began at baseline, and clinical response needed at

4 weeks in order to most-likely observe an outcome at 8 weeks.

• On Increased Specificity in Prognoses of Treatment Outcomes: First, AL-

MOND describes the transition a patient makes from a baseline cluster to a cluster at

8 weeks, through a cluster at 4 weeks. Then, reflecting on the change in total depres-

sion severity, additional specificity was given to establish the prognoses of categorical

treatment outcomes based on changes at 4 weeks in severity of a small set of depressive

symptoms. ALMOND’s prognoses are stated in this form: “for total depression severity

improvements between ranges a and b at baseline and 4 weeks, respectively, if x depres-

sive symptoms have improved by ≥ y points, then the chance of remission at 8 weeks

is z%.” Such specificity in prognoses of treatment outcomes has not been available in

psychiatry for treating MDD thus far.

• On the Promise for Predicting Treatment Outcomes When Pharmacoge-

nomic Measures Are Used: While there has been success of breast cancer therapeu-

tics in matching patients with suitable treatments by using pharmacogenomic markers,

previously there has been no exploration of whether pharmacogenomic SNPs could aid

in antidepressant treatment selection. ALMOND provides the ability to algorithmically

select an antidepressant prior to treatment initiation based on the highest likelihood of

remission at 8 weeks, using patient-derived pharmacogenomic markers as predictors.
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CHAPTER 4

PATIENT STRATIFICATION

Individualized medicine in practice optimizes therapeutic options based on patient “subtypes”

(strata) based on specific biological/clinical characteristics. Close association of the strata’s

trait (e.g., tumor subtypes) with a set of biomarkers (e.g., genes) can be prognostic of

treatment outcomes, as in the case with breast cancer therapeutics [87]. The need to

stratify patients is at the heart of understanding heterogeneity in MDD disease states and

antidepressant response characteristics. Currently, there are no established mechanisms

by which patients with MDD are stratified at baseline (prior to treatment) or during the

treatment’s intermediate time-points. However, at the end-point of the trial, patients are

triaged into remitters, responders without remission, and non-responders. Given the lack of

replication in findings across trials, it has remained to be explored whether patient stratification

is possible that replicates across multiple trials and rating scales.

Contribution. We first stratified patients by sex, based on observed differences in the

metabolomic profiles of men and women prior to, during, and after citalopram/escitalopram

treatment in the Mayo Clinic Pharmacogenomics Research Network Antidepressant Medical

Pharmacogenomic Study (Mayo PGRN-AMPS) [24]. Then, using mixture-model based

unsupervised learning, we inferred three clusters of men and women separately at all three

time-points (baseline, 4 weeks and 8 weeks) of the Mayo PGRN-AMPS trial based on their

total depression severity score derived separately from QIDS-C and HDRS. We validated our

clustering approach in patients treated with the same drugs, in two independent datasets,

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) [25] for the QIDS-C

scale, and International SSRI Pharmacogenomics Consortium (ISPC) [26] for the HDRS scale.

In both men and women, clusters at 8 weeks had clinical validity based on outcome definitions

outlined in Sec. 2.1.1. The first cluster included all patients who achieved remission; the 87%

of those who achieved response but not remission comprised in second cluster; and the third

cluster included all patients who achieved neither response nor remission. Our successful

replication of patient stratification with clinical validity demonstrates that we have a strong

framework for studying the integration of pharmaco-omics measures, and the longitudinal

variations in depressive symptoms in response to antidepressant treatment.
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4.1 Problem Statements

The following problem statements allow us first to stratify patients by sex, and then to

stratify patients by their depression severity.

1. Are there sex-differences in biological profiles of patients with MDD before and after

antidepressant treatment?

2. Can MDD patients be stratified by their depression severity?

3. Does patient stratification replicate across trials and rating scales?

4.2 Data

The Pharmacogenomics Research Network Antidepressant Medical Pharmacogenomics Study

(PGRN-AMPS, NCT 00613470) was a single-arm, open trial designed to assess antidepressant

effects of citalopram/escitalopram over 8 weeks in adults (aged 18 – 84 years) with MDD,

and to examine metabolomic and genomic predictors of those outcomes [88]. Subjects were

recruited from primary and specialty care clinics from March 2005 to May 2013. Psychiatric

diagnoses were confirmed using modules A, B (screen-only version), and D of the Structured

Clinical Interview for DSM-IV (SCID) [50].

Data from complete cases (baseline, 4-, and 8-week data) of step-1 of the Sequenced

Treatment Alternatives to Relieve Depression (STAR*D) trial (NCT 00021528) and Interna-

tional SSRI Pharmacogenomics Consortium (ISPC) were used to test the reproducibility of

patterns of depressive symptom response inferred in the PGRN-AMPS study. Descriptions

of the STAR*D and ISPC studies have been previously published [25,26]. Briefly, phase 1

of STAR*D was a 12-week clinical trial of citalopram for adults (aged 18 –75 years) with

MDD who were recruited from primary and specialty care settings in the United States

between June 2001 and April 2004. Our analyses included data from 899 STAR*D subjects

with complete step 1 clinical response data at 23 – 33 days (4 weeks) and 51 – 61 days (8

weeks). The ISPC dataset comprised pooled data from seven clinical trials of SSRIs for

depression carried out in North America, Europe, and Asia, in order to examine genetic

factors underlying variation in antidepressant responses [26]. Of the 998 ISPC subjects, we

used data from 344 subjects who were treated with citalopram/escitalopram and had data at

4 and 8 weeks. Table A.1 summarizes the social and demographic characteristics of included

subjects from each of the three datasets.
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4.3 Approach Overview

We propose a two-stage analyses workflow to address the aforementioned problem statements.

4.3.1 Sage - 1: Stratification by Sex

Aim — Establish sex differences in metabolomics profiles. Anticipating sex differ-

ences in metabolomic profiles based on prior work [89], we used multivariate analysis of

variance (MANOVA) to determine sex differences in metabolite concentrations of PGRN-

AMPS data at baseline and after 4 and 8 weeks of treatment. By combining data from

both sexes to predict antidepressant treatment outcomes, it is possible to investigate the

predictive capability of sex as a variable. However, given a lack of consistent sex differences

in antidepressant outcomes [28, 29, 80, 81], we stratified by sex to investigate potential sex

differences in biological and clinical predictors of treatment outcomes.

4.3.2 Stage - 2: Stratification by Total Depression Severity

Aim — Identify depressive symptom severity clusters in PGRN-AMPS (Stage

2A), replicate the cluster patterns using STAR*D and ISPC data (Stage 2B),

and identify sociodemographic factors associated with clusters (Stage 2C). As

described in Sec. 3.2.2, we first observed that distribution of depression severity scores was

a mixture of distributions. We then used mixture model-based unsupervised learning with

Gaussian mixture models (GMM) was used to algorithmically identify the minimum number

of Gaussians that best approximated the actual distribution of depressive symptom severity in

Mayo PGRN-AMPS subjects. By using this approach, we assumed that the mixture comprised

multiple Gaussians. GMM clustering has been applied in numerous fields requiring separation

of data types characterized by unique distributions [11, 90]. Given the eventual goal of

associating biological measures with depression severity during discrete treatment time-points

when clinical assessments are performed, longitudinal clustering/trajectory techniques [91]

were not suitable. This is because symptom improvement (trajectories) is conditioned upon

baseline severity and subsequent improvement (i.e., not independent), and depression severity

is assessed at discrete time-points (as opposed to continuous time measures). Therefore,

using a GMM clustering algorithm in our approach, we assigned patients to clusters based on

their total depression severity score at each time-point. To validate the clustering approach

developed in Stage 2A, we used STAR*D (for QIDS-C) and ISPC (for HDRS) datasets in Stage

2B to investigate whether the distributions of depression severity using Kolmogorov-Smirnov
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test, were the same between two independent datasets.

4.4 Results

4.4.1 Sex Differences in Metabolomic Profiles

Plasma concentrations of several metabolites differed significantly by sex at baseline and 4

and 8 weeks, regardless of response/remission status or the depression rating scale (QIDS-

C/HDRS, defined in Table 2.1) used to define outcomes as tabulated in Table 4.1. The specific

metabolite changes that occurred after citalopram/escitalopram initiation also differed by sex

and by depression rating scale and outcomes as illustrated in Fig. 4.1. There were significant

changes from baseline in the concentrations of 5HT in men and women who were classified

as remitters (defined at 8 weeks), and as responders at 4 and 8 weeks, irrespective of the

depression scale that was used (QIDS-C, HDRS). Significant changes from baseline in MHPG

concentrations were also observed in men and women, for nearly all outcome types (remission,

4-week response, 8-week response) defined by the QIDS-C or HDRS. Based on these results,

we proceeded through the remaining stages of the workflow using separate strata defined by

sex and by depression rating scale.

4.4.2 Total Depression Severity Clusters

Our unsupervised learning approach algorithmically identified three distinct clusters of men

and women (p < 1.3E− 09) based on their total depressive symptom severity at baseline (A1,

A2, A3) and after 4 weeks (B1, B2, B3) and 8 weeks (C1, C2, C3) of SSRI treatment in PGRN-

AMPS as illustrated in Fig. 4.2. The nine depressive symptom clusters in men and women

were labeled such that 3 represented the most severe symptom cluster, 1 represented the

mildest symptom cluster, and 2 represented an intermediate symptom cluster. Importantly,

in both men and women, C1 included all patients who achieved remission status, C2 included

87% of patients who achieved response but not remission status, and C3 included all patients

who achieved neither response nor remission status at 8 weeks.

We also tested to see if by using responses to individual depressive symptom items on

full rating scales, the clusters would replicate, and have the clinical validity at 8 weeks.

Comparison of depressive symptom clustering behavior using hierarchical clustering when

using individual depressive item scores are shown in Fig. 4.3. The ecological validity of the

GMM clustering approach using univariate depression severity scores is represented by the
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Table 4.1: Sex differences in metabolomic profile.

Time-point Metabolitea,b Men Women
Meanc Std. Dev Meanc Std. Dev.

Baseline

4HPLA*** 116.85 38.52 96.26 34.37
DTOCO** 84.31 35.04 69.52 43.18
GTOCO1** 79.85 39.83 65.82 41.95
GTOCO2** 112.94 114.14 87.30 45.34
GUANOSINE* 122.92 38.88 112.24 32.50
KYN* 108.39 27.40 100.28 32.59
MET** 120.38 44.60 106.13 38.87
TRP*** 108.22 20.51 98.52 22.50
URIC*** 115.67 26.45 91.39 24.56

4 Weeks

4HPLA*** 115.43 37.67 95.32 33.86
GUANOSINE** 115.84 38.88 104.86 30.50
KYN* 107.76 28.27 98.61 32.34
PARAXAN*** 123.98 100.71 87.50 71.27
TRP*** 107.30 22.12 96.32 20.30
URIC*** 120.58 26.23 89.414 26.25
XAN* 114.10 145.68 83.55 68.82

8 Weeks

4HPLA*** 124.90 44.17 96.49 32.32
5HT** 41.78 89.21 23.94 20.33
CYS** 100.78 40.08 85.29 36.70
DTOCO* 84.70 43.23 72.63 38.11
GTOCO1* 80.71 44.24 70.17 38.44
GTOCO3* 70.52 45.43 84.37 56.55
GUANOSINE*** 118.93 37.04 104.39 32.71
I3AA** 115.48 72.08 92.56 70.74
KYN** 113.76 28.61 100.80 27.87
TRP*** 112.85 23.24 98.67 22.36
TYR** 117.50 31.97 104.60 33.52
URIC*** 122.23 26.05 89.48 24.90
XAN* 90.96 110.06 69.03 41.59

a See Table A.2 for definitions of abbreviated names for each metabolite.
b Between-group comparisons (men vs. women): *p<0.05, **p<0.01, ***p<0.001
c All mean concentration values are percent pools from the LCECA platform.
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Fig. 2 
	Figure 4.1: Metabolites exhibiting significant concentration changes between baseline and 4

weeks, and baseline and 8 weeks, in depressed patients, stratified by clinical outcome.
Differences between men and women by outcome type were observed for the remaining
metabolites (shown in black text).

fact that the C1 clusters for the QIDS-C and HDRS fall entirely within the range of scores

defining remission. Neither of the two hierarchical clustering approaches yielded C1 clusters

that fell entirely within the range of scores defining remission for either depression rating

scale. Thus, we were unable to achieve the same clustering pattern using scores of individual

scale items.

External validation. We also applied our unsupervised learning approach to STAR*D

(QIDS-C rating scale) and ISPC (HDRS rating scale) datasets, and identified three clusters

of men and women at all time-points. These clusters were not statistically different (p > 0.1)

from the clusters of comparable depressive symptom severity inferred in PGRN-AMPS,

providing external validation. At 8 weeks, the three clusters (C1, C2, C3) identified in

STAR*D and ISPC also conformed to accepted clinical definitions of remission, response, and

non-response, respectively, on both depression rating scales. Our externally validated clusters

then allowed us to identify associations of depression severity with clinical, demographic, and

biological factors.
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Figure 4.2: Depressive symptom-based clusters identified by data-driven unsupervised
learning using Gaussian mixture models (GMM). The distribution of total depression
severity scores in Caucasian subjects are represented by box plots; the width of the box is
proportional to the number of patients comprising the cluster. The clusters are shown on
both the QIDS-C (A-D) and HDRS (E-H) rating scales for the PGRN-AMPS (A, C, E, and
G), STAR*D (B and D), and ISPC (F and H) for men and women.
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Figure 4.3: Comparing distribution of total depression severity scores in clusters inferred
using GMM and hierarchical clustering approaches. Results with a Gaussian mixture model
(GMM) are in the first column. The middle and third columns show clustering of patients
done via hierarchical clustering approaches with multivariate data that comprise individual
item responses at 8 weeks, both with (middle column) and without (third column) total
depression severity scores at 8 weeks. The probability densities in each figure are represented
on the y-axis, and depressive symptom scores using the QIDS-C (first row) and HDRS
(second row) are represented on the x-axis. The threshold for remission for each depression
rating scale is defined using the red vertical line in each plot.
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4.4.3 Association of Clinical, Sociodemographic Factors with Patient
Stratification

There were no significant differences in any of the clinical or soico-demographic factors (listed

in Table A.1) among the three clusters in each sex (p > 0.1, body mass index variation is

illustrated in Fig. 4.4(a)). For the 603 PGRN-AMPS patients who had complete response

data, neither CYP2C19 metabolizer status nor plasma drug levels at 4 or 8 weeks were

associated with depression severity in the respective clusters (p > 0.4; see Fig. 4.4(b)), or

across different dosages of citalopram and escitalopram (p > 0.3).

4.5 Discussion

The replication of patient clusters at all time-points that were identified using mixture-model-

based unsupervised learning has the following clinical research implications.

4.5.1 Clinical Implications of Patient Stratification

Toward Clinically Actionable Modeling of Longitudinal Effects of Antidepres-

sants: It is known that eventual antidepressant treatment outcomes are conditioned upon

baseline depression severity and subsequent changes in symptoms at intermediate time-points,

before a therapeutic trial is complete. To study the longitudinal effects of antidepressants,

the patient clusters inferred in this work can serve as nodes of a graph (e.g., a probabilistic

graph) that enable capture of the longitudinal variation of depression symptoms over time,

conditioned on baseline characteristics and changes in these characteristics at intermediate

time-points — a process that we will refer to as “symptom dynamics” (discussed in Chapter 7).

Here, the replicating cluster patterns at baseline and at 4 weeks are just as important as the

clinically valid clusters at 8 weeks. Understanding the symptom dynamics within clusters of

patients defined by depression severity and biological characteristics at baseline (predictive

outcome markers) and at intermediate time-points (change markers) may lead to further

improvement in our understanding of antidepressant response mechanisms. In addition, a

detailed understanding of the symptom dynamics across multiple time-points may enable

clinicians to change treatments if the predicted chances of response or remission are low.

Biological Associations with Depression Severity: Our clustering approach can be

used to iteratively investigate the effects of multiple biological measures (e.g., metabolomics,

genomics), individually and in groups, for predicting antidepressant response. Such systematic
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(b) Plasma drug concentration levels after 4 and 8 weeks of treatment

Figure 4.4: Fig. (a) Illustrates the comparison of mean body mass indices (BMI, kg/m2) for
men and women in clusters with comparable symptom severity at baseline, 4 weeks, and 8
weeks. Fig. (b) Illustrates the comparison of citalopram and escitalopram plasma drug
concentrations between men and women with each depressive symptom severity cluster at 4
weeks (Fig. a) and 8 weeks (Fig. b).
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investigation, using a variety of biological measures and other antidepressants, may lead

to improved understanding of the underlying neurobiology of antidepressant response, and

an ability to match individual MDD patients with specific antidepressants based on their

biological profiles.

Underlying Pathological Mechanisms Between Patient Clusters: The replicating

patterns of patient clusters raise the possibility of investigating the variability of potential

underlying pathological mechanisms of MDD between depression severity clusters — a

possibility that can be tested by the application of “omics” analyses, such as GWAS that

compare one cluster with another [92, 93].

4.5.2 CYP2C19 Metabolizer Status and Patient Stratification

Our observation that CYP2C19 metabolizer status was not significantly associated with

eventual citalopram/escitalopram treatment outcomes or depression severity clusters is in

line with findings from previous research. While functional CYP2C19 allele variants are

associated with citalopram/escitalopram metabolism [94], the impact of P450 genotypes,

including CYP2C19, on therapeutic outcomes has been less clear [95]. Some studies in

depressed patients have found a significant association between CYP2C19 genotype and

treatment response to citalopram or escitalopram [24,96], while other studies have failed to

demonstrate such an association [97,98]. There are similar inconsistencies in results of studies

attempting to link serum concentrations of antidepressants, including citalopram, with the

likelihood of positive antidepressant response [99,100]. The lack of improved predictability

of treatment outcomes using CYP2C19 genotype does not suggest that pharmacokinetic

mechanisms and the CYP2C19 genotype are not clinically relevant. This is particularly so

with respect to the dose-dependent risk of QTc interval prolongation with citalopram [95],

although evidence is mixed regarding the effect of the CYP2C19 genotype on the risk of

citalopram-associated side effects [100,101].

4.5.3 Methodological Considerations for Stratifying Patients

While it is relatively simple to establish and justify findings from a machine learning algorithm

applied to a single dataset, it is much more difficult to replicate this behavior in independent

datasets/trials because of between-trial differences in patient characteristics and other factors.

Our multi-trial replication demonstrates the power of machine learning approaches to extract
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consistent patterns of symptom severity in MDD, a disease that shows striking heterogeneity

of symptoms and high inter-patient variability in response to antidepressants.

We focused on the use of total depression scale scores rather than individual depression

scale items for three reasons. First, total depression scores at baseline were the most robust

predictor of clinical outcomes in prior machine learning work [29]. Second, total depression

scores are used to define response and remission in clinical trials [30]. And, finally, we showed

in this work that multivariate clustering approaches using individual depressive item scores

did not yield clustering patterns at 8 weeks that conformed to accepted definitions of response

or remission. These observations provide strong evidence that our clustering approach is both

computationally and clinically valid. The lack of associations between social/demographic

factors and any of the depressive symptom severity clusters also agrees with prior work

demonstrating that social/demographic factors individually or in aggregate cannot accurately

predict antidepressant treatment outcomes [59,102–104].

Others have attempted to cluster individual depression scale items to identify symptoms

with similar responses [59]. A disadvantage of their approach is the inability to model the

change in symptoms within potentially important patient subgroups defined by baseline

characteristics and eventual treatment outcomes. Moreover, it is possible that the clustering

behavior of each depression item is subject to variations conditional on baseline characteristics.

This property also precludes the use of longitudinal clustering methods [91], which are modeled

under the assumptions that sample movements between time-points are independent and

identically distributed. Hence, our choice of method is justified given our eventual goal of

associating biological measures with subgroups defined by depression severity during discrete

treatment time-points.

4.6 Summary

The patient stratification presented in this work is significant at multiple levels. First, in a

field of medicine in which findings of trials do not often replicate, our data-driven approach to

stratifying patients demonstrated high degrees of replication in patient clusters across multiple

clinical trials and rating scales. Second, the methodological approach to clustering of patients

is further justified by the ecological validity of the clusters after 8 weeks of the acute phase

of antidepressant treatment, in terms of accepted definitions of antidepressant treatment

outcomes. When these two significant aspects are taken together, the stratification achieved

in this work serves as a strong foundation for (1) multi-omic integration to predict long-term

outcomes prior to treatment initiation, (2) probing of trajectories of depressive severity
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that offer insights into homogeneity in antidepressant response, and (3) an opportunity to

revisit GWAS on clusters of patients with similar depressive symptoms who are potentially

having similar states of disease. Therefore, the replication of an ecologically valid patient

stratification across multiple datasets, as presented in this chapter, will serve as the first step

toward individualization of antidepressant treatment selection.
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CHAPTER 5

ON THE PROMISE OF PHARMACO-OMICS
MEASURES AS PREDICTORS OF

ANTIDEPRESSANT TREATMENT OUTCOMES

In diseases that are characterized by complex phenotypes (traits), such as psychiatric disorders,

inflammatory diseases, and migraines, therapeutic and treatment decisions are primarily

based on the subject-reported and/or physician-rated severity of symptoms (which are an

example of complex phenotypes/traits) in conjunction with standard social/demographic

factors. In the context of antidepressant response in MDD, the ability of these measures to

predict therapeutic success is slightly better than chance [28,29]. Genomic and transcriptomic

biomarkers as predictor variables on the other hand, have demonstrated promise in improved

predictive ability, relative to the use of using sociodemographic measures as predictors of

antidepressant treatment outcomes [58,64–66]. However, it remains to be explored whether

pharmaco-omics measures (such as metabolomics and genomics) that reflect the underlying

molecular mechanisms of therapeutic agents (e.g., drugs) could also serve as stronger predictors

of therapeutic outcomes.

Contributions. In this chapter, we propose a “learning-augmented clinical assessment”

workflow to sequentially augment physicians’ assessments of subject-specific ratings of symp-

toms with heterogeneous pharmaco-omics measures (such as metabolomics and genomics) to

predict antidepressant treatment outcomes. The workflow was developed using data from the

Mayo PGRN-AMPS, which is the largest single-center SSRI trial that has been conducted

in the United States. Metabolomics and genomics data was derived from peripheral blood

of study subjects in this trial. Through augmentation of those biological measures with

psychiatric assessments and sociodemographic factors as predictor variables, the accuracy of

predicted antidepressant treatment outcomes in MDD patients improved from 35% to 80%

relative to the use of clinical measures alone as the predictor variables. This improvement in

predictive accuracy of treatment outcomes motivates the need for developing antidepressant-

specific prediction models, so that the choice of an antidepressant can be based on which one

has the highest likelihood of causing remission of depressive symptoms.
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5.1 Problem Statements

With access to metabolomics and genomics data for a smaller cohort of the Mayo PGRN-

AMPS trial, we set out to answer the following questions (illustrated in Fig. 5.1):

1. Would augmenting social, demographic, and clinical data with metabolomics data

improve the accuracies of treatment outcome predictions, relative to using only social,

demographic, and clinical data as predictor variables?

2. Would augmenting social, demographic, and clinical data with metabolomics and

genomics data improve the accuracies of treatment outcome predictions, relative to

over using only social, demographic, and clinical data as predictor variables?

3. If the predictions improve as a result of augmenting existing clinical measures with

biological measures, how many of the top predictors were biological measures?

Clinical Assessments
Depression severity, social and demographic 

data, patient history

Metabolomics Genomics

Predictive models Predictive models Predictive models

Accuracy AccuracyImprovement? AccuracyImprovement?

Figure 5.1: The proposed analyses to establish improved predictability of antidepressant
treatment outcomes by augmenting clinicians’ assessments with biological measures.
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5.2 Data

The Mayo PGRN-AMPS trial (NCT 00613470) was designed to assess the clinical outcomes

of adults (aged 18–84 years) with non-psychotic MDD after 4 and 8 weeks of open-label

treatment with citalopram or escitalopram and to examine the metabolomic and genomic

factors associated with those outcomes [24]. Subjects were recruited from primary and

specialty care settings in and near Rochester, MN from March 2005 to May 2013. All

psychiatric diagnoses were confirmed at the screening visit using modules of the Structured

Clinical Interview for DSM-IV (SCID) administered by trained clinical research staff. The

data D = [S : C : B] analyzed in this work comprise social and demographic variables (S),

clinical measures (C), and biological measures (B) and are listed in Table 5.1. The social

and demographic data (S) were assessed only at baseline. The treatment outcomes were

established using the 16-item, clinician-rated version of the Quick Inventory of Depressive

Symptomatology (QIDS-C) at baseline, 4 weeks, and 8 weeks; the results comprise the clinical

data C, which include the responses to the 16 QIDS-C questions and the total QIDS-C score

of the symptom severity [52]. Biological measures for 290 of the 603 patients in this trial

included GWAS genotype data that, after imputation, included approximately 7 million

SNPs (G), and plasma metabolomic concentrations (B in Table 5.1) for 31 metabolites (M)

taken from patients at three time-points of the trial (at baseline, 4 weeks, and 8 weeks).

Samples were assayed on a high-performance liquid chromatography (HPLC) electrochemical

coulometric array (LCECA) platform to obtain standardized measures of the concentrations

of metabolites. Definitions of clinical outcomes are outlined in Sec. 2.1.1.

5.3 Approach Overview

To demonstrate the improved predictability in treatment outcomes, the workflow was de-

veloped using data from the Mayo PGRN-AMPS clinical trial [24]. This is the largest

single-center selective serotonin reuptake inhibitor (SSRI) trial that has been conducted in

the United States. There were 603 patients who completed the trial. They were adminis-

tered citalopram or escitalopram (commonly prescribed SSRIs) for 8 weeks, and psychiatric

assessments of depression severity at baseline (pre-treatment), 4 weeks, and 8 weeks were

conducted by a clinician using the quick inventory of depressive symptom (QIDS-C). In

this trial, biological measures for 290 of the 603 patients included genome-wide association

study (GWAS) genotype data that, after imputation, included approximately 7 million

single-nucleotide polymorphisms (SNPs) (G), and plasma metabolomic concentrations (B in

Table 5.1) for 31 metabolites (M) from patients at three time-points of the trial (at baseline,
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Table 5.1: Data (D = [S : C : B]).

Total patients: 603.
Men: Total: 222. With omics: 99.

Women: Total: 381. With omics: 191.

Social and demographic data (S) collected only at baseline:

Age (in years)
Body mass index (BMI in kg/m2)
Depression in {parents, siblings, children}
Bipolar disorder in {parents, siblings, children}
Alcohol abuse by {parents, siblings, children}
Drug abuse by {parents, siblings, children}
Seasonal pattern in symptom occurrence
History of psychotherapy

Depressive severity assessment (C):

Clinician-rated Quick Inventory of Depressive Symptomatology
(QIDS-C) questionnaire (16 questions)

QIDS-C total score

Biological data (B):

M: 31 metabolites from the HPLC LCECA platform
G: 7 million single nucleotide polymorphism genotypes
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4 weeks, and 8 weeks). Through augmentation of those biological measures with psychiatric

assessments and sociodemographic factors as predictor variables, the prediction accuracy of

antidepressant treatment outcomes in MDD patients improved from 35% to 80% relative to

the use of clinical measures alone as the predictor variables.

The formalism for integrating multiple biological measures in this case study is as follows.

Just as tumor subtypes serve as a foundation for integrating biological measures in oncology,

our formalism first established patient subtypes/stratification C by using mixture-model-

based unsupervised learning techniques. In the first layer of overlaying of the biological

measures, a set of metabolites m ∈ M were identified based on significant associations of

their concentrations with symptom severity in previously inferred patient stratification. In

the second layer of the overlay of biological measures, in what is referred to as a metabolomics-

informed-genomics approach, we used GWAS to identify SNPs g ∈ G that are associated

with concentrations of metabolites comprising m. Through iterative overlaying of biological

measures starting with metabolites (blood measures reflecting drug action) associated with

depressive severity, and then adding in the genes associated with metabolomic concentrations,

the biological measures became more closely associated with the molecular mechanisms of

antidepressant response. Finally, out of the more than 7 million possible predictor variables,

the proposed approach identified about 65 predictor variables that comprised (1) SNPs (g)

identified by the GWAS based on metabolomic concentrations, (2) metabolites (m) whose

concentrations are significantly associated with depression severity in patient clusters, and

(3) clinical measures (as shown in Table 5.1). Thus we made the size of the predictor data

computationally tractable to predict clinical outcomes ỹ by using supervised learning methods

F(m, g, S, C, y), where y is the treatment outcome labels of the training data.

5.4 Identification of Pharmacogenomic Biomarkers

In operationalizing the described metabolomics-informed-genomics approach, we associated

depression severity and metabolite concentrations of patients in baseline clusters (inferred

in Chapter 4) with treatment outcomes at 8 weeks. Baseline metabolite concentrations of

5HT, KYN, 4HBAC, TRP, TYR, and PARAXAN, and baseline depression severity were

significantly correlated (p < 0.05) with response and/or remission status at 8 weeks. These

metabolites have been identified in previous studies of metabolomics and SSRI response using

other datasets, supporting the biological relevance of these metabolite associations. Further,

many of them are also related to the monoamine neurotransmitter pathways associated with

MDD and its treatment response [32,105,106]. Those prior studies also identified SNPs in the
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TSPAN5 (rs10516436), ERICH3 (rs696692), and DEFB1 (rs5743467, rs2741130, rs2702877)

genes as top SNPs associated with plasma concentrations of 5HT or KYN [32,33]. We used

these SNPs as pharmacogenomic biomarkers for evaluating their predictive capabilities when

combined with metabolomic and sociodemographic measures as predictors of remission or

response to antidepressant treatment.

5.5 Predicting Antidepressant Response

Three classes of classifiers are used in this work, including kernel, linear, and ensemble methods.

For predicting outcomes using baseline clinical, social, demographic, and metabolomic data,

we used support vector machines with linear kernels (SVMLinear) and support vector machines

that use radial-basis kernels (SVM-RBF) as kernel methods [107]; a generalized linear model

(GLM) as a linear method [108]; and GBMs as an ensemble method [109]. As the creators of

those methods have indicated, each of those broader types has its own merits, mathematical

nuances, and complexities, and all of them have been used in other classification applications,

such as in Kaggle [110]. To use all of the omics and clinical, social, and demographics data to

predict outcomes, we used nonparametric classifiers such as SVM-RBF and random forests, as

they are better suited to handling correlated features [111], and have been used in predicting

treatment outcomes in other psychiatric diseases such as schizophrenia.

In addition to elastic-net regularization, recursive feature elimination (i.e., a wrapper

method) was also used for the GLM and GBM classifiers; that made it possible to estimate

the model performance not only by optimizing the parameters of the model, but also by

searching for the right set of predictor variables. Based on our datasets, the prediction

performance did not significantly vary with or without the use of any of the feature selection

methods; the prediction accuracy remained within 4%. This observation could also be in part

due to a reasonably small size of predictor variables.

To minimize the effects of overfit and information leak, nested cross-validation (nested-CV)

with five repeats was used to train the classifiers. In each repeat, data were randomized,

and the nested-CV comprised an outer loop and an inner loop. The outer loop had a

fivefold cross-validation to split the data into training data (80% of the data) and testing

data (the remaining 20%). The inner loop used the training data to train the classifier by

using a tenfold cross-validation, and the trained classifier was tested on the testing data.

To minimize the effects of class imbalance (i.e., unequal numbers of responders (60%) and

non-responders (40%)) in the training data, we used the synthetic minority over-sampling

(SMOTE) algorithm [112], which simulated patient profiles of the under-sampled class and
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up-sampled the under-sampled class to ensure that the two classes had equal sizes. Prediction

performance was reported using several metrics (AUC, sensitivity, and specificity), and the

statistical significance of the classifier’s accuracy was established using the null information

rate (NIR, which is the prevalence of the class with the largest samples) that served as a

proxy for chance.

5.5.1 Training with and without Biological Measures

In order to quantitatively assess the benefit of adding biological measures to predict outcomes

ỹ, we trained classifiers F(m, g, S, C, y) using (1) baseline clinical data that included only

social and demographic data, X = [S : C]; (2) all baseline data (including metabolomics and

genomics data), X = [S : C : B], where B = [m, g]; and (3) training labels y for treatment

outcomes. Metabolites (m) whose baseline concentrations were correlated with the symptom

severity at 8 weeks, and SNPs (g) associated with their concentrations, were then normalized

along with clinical data in order to train the chosen supervised learning methods. It is

important to note that several other researchers have proposed the combination of other

modalities of biological data [113–115], but it remains to be explored whether combination

becomes less effective when patient-reported data are used, since there is considerable

heterogeneity in subject-reported measures. Therefore, to the best of our knowledge, this is the

first time that quantified biological measures comprising metabolomics and genomics measures

have been integrated for analyses with the clinical measures of psychiatric assessments that

comprise demographic data and patient-provided responses to symptom questionnaires (such

as QIDS-C). For all the classifiers, we compared the AUC, in addition to the generalized

prediction accuracies, to see whether the same model’s predictive ability improved with the

addition of metabolomics data. Further, if the predictability improved, we extracted the

top five predictors of the model that provided the best balance of accuracy and AUC to see

whether the top predictors were dominated by the metabolomics.

5.5.2 Prediction Performance

ASNPs shown in Table 5.2, for both men and women and for both the outcomes response

and remission, there was a 30% improvement in the overall accuracy and corresponding

AUC. The highlighted columns in Table 5.2 indicate the best-performing models with the

metabolomics data included; four out of the top five predictors are metabolites, indicating

that their addition to the prediction model likely explains the increase in the predictability of

the outcomes. As shown in Table 5.3, there was a further improvement of at least 5% in the
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AUC and corresponding accuracy when genomics data were integrated with the metabolomics,

clinical, social, and demographic data. We have two observations about the inclusion of

biological measures in all these predictions. First, the top predictors of outcomes when

biological measures were used were different in men and women, likely pointing to different

biological mechanisms determining how men and women respond to the same antidepressant.

Second, except for the variable seasonal pattern and the involvement item in the QIDS-C

scale, no other clinical/demographic measures were predictive of outcomes. Finally, it is

biologically significant that many of the top predictor metabolites identified in this work are

known to be correlated with mood in the behavioral sciences, which has additional promising

implications, as discussed next.

5.6 Discussion

The improved predictive performance pharmaco-omics measures are augmented with routinely

collected clinical and sociodemographic measures is of significance from two perspectives.

First, from a pharmaco-omics perspective, that helps improve our understanding of MDD

pathology and drug response. Second, the potential to begin choosing antidepressants

based on predicted efficacy of the drug, a critical need given the high non-response rates to

antidepressant treatment.

5.6.1 From a Pharmacogenomics Perspective

This work demonstrates its biological significance through its improvement of predictability by

integrating metabolomics data with clinical measures, because metabolites, such as serotonin

and kynurenine, are among the top predictors of outcomes. This development is important

because for decades, the treatment of MDD has focused on biogenic amine neurotransmitter

pathways, i.e., the synthesis and metabolism of catecholamines (such as norepinephrine) and

indoleamines (such as serotonin) [116, 117]. Furthermore, the existing body of knowledge

fits well with the findings of our study; note that the metabolites listed in Table 5.2 include

serotonin (5HT) itself as well as two metabolites from the competing tryptophan metabolism

pathway (KYN and 3OHKYN) and the major catecholamine metabolite (MHPG), which are

known to play a role in behavior.

The addition of genomics data with metabolomics and clinical measures as predictor

variables has further improved the predictability of antidepressant outcomes, as shown in

Table 5.3. This result raises the question of whether the genes associated with serotonin
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and kynurenine are also extending their effects in other metabolites used in this study

through other mechanisms. The improvement in predictability should motivate researchers

and clinicians to collect more biological measures for psychiatric diseases other than major

depressive disorder (e.g., bipolar disorder, schizophrenia, and various dementias) that would

not only help subtype or stratify patients by their symptom severity profiles, but also combine

biological characteristics that would enable treatment strategies closer to the kinds used in

breast cancer therapeutics.

5.6.2 The Need for Pharmaco-omics based Predictions in Psychiatry

The overarching significance of predictive capabilities of pharmaco-omics measures in psy-

chiatry is suggested by the success of analogous “precision medicine” approaches in breast

cancer therapeutics. Today, treatment strategies for each breast cancer patient are tailored to

the tumor’s specific molecular characteristics. That successful approach is facilitated by the

close association of the phenotype (which is the molecular characteristics of the tumor, such

as whether it is estrogen-receptor-positive (ER-positive), human-epidermal-growth-factor-

receptor-2-amplified (HER2 amplified), and/or triple-negative) with a set of biomarkers, such

as hormone receptors (e.g., ER), genes, and their SNPs, which, when taken together, can

be prognostic of treatment outcomes [87]. However, in the study of treatment outcomes in

patients with MDD (as for other diseases with complex phenotypes), some interesting key

observations can be made. First, GWAS have often failed to associate SNPs with complex

and non-binary phenotypes defined as, for example, “Did patients achieve a 50% reduction

in baseline patient-reported/clinician-recorded symptoms?” As a consequence, it is acknowl-

edged that methods of integrating widely heterogeneous biological measures without a priori

biological knowledge become computationally intractable as the number of study variables

increases to the order of millions [118, 119]. Second, the predictability of antidepressant

treatment outcomes when clinical measures alone are used is at best slightly better than

chance [28,29,102,103,120–122]. Third, antidepressant medications such as selective serotonin

reuptake inhibitors (SSRIs) are the standard of care for drug therapy in adults with MDD,

but less than half of patients have favorable outcomes from this treatment [120]. In light of

these observations, if learning techniques could more accurately predict treatment outcomes

in patients with MDD by integrating a few biological measures prognostic of antidepressant

treatment’s success with routine clinical measures, the impact would be far-reaching, because

MDD affects over 350 million patients worldwide and is expected to be the leading cause of

disabilities globally by 2030 [35,36,123].
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5.7 Summary

Pharmaco-omics measures as potential predictors of citalopram/escitalopram outcomes are

promising from the perspective of individualized antidepressant treatment selection. The

improved predictive performance of these biological measures when augmented with routine

clinical and sociodemographic measures highlights the need to study these measures for other

antidepressants as well. Use of such a small set of measures (as opposed to millions of variables,

as with genome-wide genotype data) makes inference of novel biology, or accurate prediction of

clinical outcomes in diseases with complex phenotypes, computationally tractable. Of broader

significance, these findings together motivate the use of our approach for other common

diseases, such as rheumatoid arthritis or migraine headaches, for which a similar complexity

in phenotype is seen, and will also motivate researchers and clinicians to collect additional

biological measures for other psychiatric diseases for which the methods proposed in this work

could identify novel mechanisms of therapeutic efficacy. Furthermore, the workflow could be

further enhanced by considering other omics data, such as transcriptomics and/or proteomics,

in addition to profiling of the microbiome. Limitations. While we demonstrated the

capabilities of multiple pharmaco-omics measures as predictors of antidepressant treatment

outcomes, their predictive value was not tested in independent citalopram/escitalopram

trial datasets. It remains to be seen whether such multi-omic integration is possible for

other antidepressants, to demonstrate the generizability of our approach. Such replication in

findings would represent a strong foundation for investigating biological factors associated with

pathophysiology of this disease with heterogeneous disease states, and additional mechanisms

of drug action. In an attempt to addressing the limitation of external replications, we next

explore if only pharmacogenomic biomarkers can reliably predict antidepressant treatment

outcomes in multiple datasets.
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CHAPTER 6

CROSS-TRIAL PREDICTIONS OF
ANTIDEPRESSANT RESPONSE USING
PHARMACOGENOMIC BIOMARKERS

A combination of clinician assessments of patients’ depressive symptoms, individual sociodemo-

graphic characteristics, and functionally validated biomarkers could be used to individualize

antidepressant selection [34,58,64,124,125]. However, the question of whether baseline depres-

sion severity assessments augmented with pharmacogenomic biomarkers (e.g., single nucleotide

polymorphisms – SNPs) can predict antidepressant treatment outcomes remains insufficiently

addressed. Predictions obtained using methods trained with clinical and sociodemographic

factors alone have yielded predictive accuracies significantly better than chance [28,29,59,102].

The authors of these studies acknowledged the need to include biomarkers as predictors to

further improve the predictability of treatment outcomes [28, 29, 59, 102]. Our prior work

demonstrated that combining pharmaco-omics (metabolomics and genomics) measures with

clinical and sociodemographic measures improved predictability of treatment outcomes as

opposed to using only clinical, sociodemographic measures, using data from the Mayo PGRN-

AMPS [88]) [124]. Improved predictability of treatment outcomes using pharmacogenomic

biomarkers would be of immense clinical value by providing a quantitative basis for selecting

an antidepressant with the highest likelihood of providing remission/response, as opposed to

the current “try-and-wait” approach to treatment selection.

Contribution. In this chapter, we extend the two-stage patient stratification work-

flow proposed in Chapter 4 by adding a prediction stage, which uses pharmacogenomics

biomarkers from PGRN-AMPS to train statistical/machine learning models for predicting

remission/response to citalopram/escitalopram treatment. The pharmacogenomic biomarkers

were identified using a “metabolomics-informed-genomics” approach described in Section 5.4.

We then externally validated the models using data from the STAR*D [25] and ISPC [26]

datasets. Supervised machine learning methods trained using pharmacogenomics SNPs and

total baseline depression scores predicted sex-specific remission/response at 8 weeks with

AUC > 0.7 in PGRN-AMPS, and with predictive accuracies > 65% (p < 0.07) and > 76%

(p < 0.07) in STAR*D and ISPC, respectively.
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6.1 Problem Statements

Chapter 5 demonstrated that the use of multiple pharmaco-omics measures could improve

predictability of antidepressant treatment outcomes relative to use of sociodemographic

factors alone. An important limitation of the work discussed in Chapter. 6 was its lack of

external validation of prediction performance, and the reliance on metabolomic measures that

are prone to variations based on activities prior to blood draw. Pharmacogenomic measures

are stable measures that could be more reliable biomarkers in predicting treatment outcomes.

To investigate their predictive capabilities, following questions are addressed in this chapter:

1. Can depression severity combined with pharmacogenomic biomarkers predict treatment

outcomes with improved accuracies relative to the use of clinical and sociodemographic

predictors alone?

2. Can improved predictive accuracies achieved with integration of pharmacogenomic

biomarkers as predictors be replicated with multiple independent datasets and depression

rating scales?

6.2 Data

For this study, we will restrict our analyses to Caucasian subjects from PGRN-AMPS

(NCT 00613470), STAR*D (NCT 00021528) and ISPC trials. This is to avoid confounding

effects due to linkage disequilibrium in the genomes of subjects with different races/ethnicity.

For the present analyses, we utilized data from 603 Caucasian citalopram-treated PGRN-

AMPS subjects, 788 Caucasian citalopram-treated STAR*D subjects, and 152 Caucasian

citalopram/escitalopram-treated ISPC subjects who had complete clinical data at baseline

and at 4 and 8 weeks. All 603 Caucasian citalopram-treated PGRN-AMPS subjects also had

CY2C19 metabolizer genotype data at baseline, and plasma drug levels at 4 and 8 weeks.

Details of genotyping and GWAS of the PGRN-AMPS, STAR*D, and ISPC subjects have

been previously published [32,33,88]. Clinical outcome definitions are outlined in Sec. 2.1.1.

6.3 Approach Overview

We now extend the patient stratification workflow proposed in Chapter 4 with an additional

stage for predicting treatment outcomes using pharmacogenomic markers identified in Sec. 5.4

as shown in Fig. 6.1. For the sake of simplicity, we have collapsed the two-stage workflow of
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Figure 6.1: The proposed analyses to establish improved predictability in antidepressant
treatment outcomes by augmenting the clinicians’ assessments with biological measures.
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Chapter 4 into one stage assuming we begin with sex-stratified analyses, and therefore we

will still have a two-stage workflow in this chapter.

6.3.1 Stage - 1: Patient Stratification

Aim — Identify depressive symptom severity clusters in PGRN-AMPS (Stage

1A), replicate the cluster patterns using STAR*D and ISPC data (Stage 1B),

and identify sociodemographic factors associated with clusters (Stage 1C). As

described in Sec. 3.2.2, we first observed that distribution of depression severity scores was

a mixture of distributions. We then used mixture model-based unsupervised learning with

Gaussian mixture models (GMM) was used to algorithmically identify the minimum number

of Gaussians that best approximated the actual distribution of depressive symptom severity in

Mayo PGRN-AMPS subjects. By using this approach, we assumed that the mixture comprised

multiple Gaussians. GMM clustering has been applied in numerous fields requiring separation

of data types characterized by unique distributions [11, 90]. Given the eventual goal of

associating biological measures with depression severity during discrete treatment time-points

when clinical assessments are performed, longitudinal clustering/trajectory techniques [91]

were not suitable. This is because symptom improvement (trajectories) is conditioned upon

baseline severity and subsequent improvement (i.e., not independent), and depression severity

is assessed at discrete time-points (as opposed to continuous time measures). Therefore, using

a GMM clustering algorithm in our approach, we assigned patients to clusters based on their

total depression severity score at each time-point.

To validate the clustering approach developed in Stage 1A, we used STAR*D (for QIDS-C)

and ISPC (for HDRS) datasets in Stage 1B to investigate whether the distributions of

depression severity using Kolmogorov-Smirnov test, were the same between two independent

datasets.

In Stage 1C, Kolmogorov-Smirnov (continuous data) and two-way Chi-square (categorical

data) tests were used to identify clinical and sociodemographic factors (listed in Table A.1)

associated with the depression severity clusters at all time-points in all three datasets (i.e.,

Mayo PGRN-AMPS, STAR*D and ISPC). Any associated clinical/sociodemographic factors

were then combined with pharmacogenomic SNPs to predict treatment outcomes in Stage 2.

6.3.2 Stage - 2: Predicting Antidepressant Response

Aim — Predict antidepressant remission or response using pharmacogenomic

biomarkers and baseline depression severity. We trained random forests (randomForest

76



R library) [126] using PGRN-AMPS’s baseline depression severity and pharmacogenomics

data (represented as numerical genotypes [32,33,88]) to predict remission/response, and then

externally validated the trained prediction model using STAR*D and ISPC data (see Fig. 6.1).

Because clinical/sociodemographic factors, CY2C19 status and plasma drug levels were not

associated with baseline or 4 week clusters, we only assessed the predictive capability of the

pharmacogenomic biomarkers augmented by baseline depression severity, not stratified by the

baseline depression severity cluster. Random forests were used because of their mathematical

ability to handle discrete (e.g., numerical genotypes), correlated predictor variables, which

has demonstrated robust predictive capabilities in several clinical applications [127], including

psychiatric disorders [128].

To minimize the effects of overfit, information leak and use of all training data, nested cross-

validation (nested-CV) with five repeats was used to train the classifiers, which maximized the

area under the curve. In each repeat, data were randomized, and the nested-CV comprised

an outer loop and an inner loop. The outer loop had a fivefold cross-validation to split

the data into training data (80% of the data) and testing data (the remaining 20%). The

inner loop used the training data to train the classifier using a tenfold cross-validation,

and the trained classifier was tested on the testing data. To minimize the effects of class

imbalance (i.e., unequal numbers of responders (60%) and non-responders (40%)) in the

training data, we used the synthetic minority over-sampling (SMOTE) algorithm, which

simulated patient profiles of the under-sampled class and up-sampled the under-sampled

class to ensure that the two classes had equal sizes [112]. Following recommended practice

of grid-search to find optimal number of trees that maximized AUC during training only,

tuning parameter was set as square root of total number of variables, and number of trees

selected was from 500 to 3, 000 with increments of 100 [126]. The statistical significance

of the classifier’s accuracy was established using the null information rate (NIR, i.e., the

prevalence of the class with the largest samples), which served as a proxy for chance. Only

for the PGRN-AMPS data (in both scales), for which cross-validation was performed to

train the prediction model, top predictors (using variable importance in R) and AUC will be

reported in addition to PPV, NPV, sensitivity, specificity, and statistical significance of the

classifier. For external validation of the trained model on the ISPC (for HDRS) and STAR*D

(for QIDS-C) data, prediction performance will be reported using PPV, NPV, sensitivity,

specificity, and statistical significance.
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6.4 Results

In PGRN-AMPS (using nested cross-validation (CV) to train the prediction models), baseline

depression severity combined with pharmacogenomic biomarkers predicted response and

remission status with accuracies of 70 – 87.5% (p < 0.01, AUC 0.7 – 0.88) and 75 – 86%

(p < 0.04, AUC 0.75 – 0.9), respectively, shown in Table 6.1. When CYP2C19 metabolizer

status was included as a predictor variable, the prediction accuracies were reduced by at

least 4% for both remission and response in both sexes and scales (p > 0.3). The classifier

trained using PGRN-AMPS patients’ total QIDS-C baseline depression severity and SNP

data predicted response and remission status in STAR*D patients with accuracies of 64 –

70% (p < 0.06) and 65 – 75% (p < 0.07), respectively, shown in Table 6.1. The classifier

trained using PGRN-AMPS patients’ total HDRS baseline depression severity and SNP

data predicted response and remission status in ISPC patients with accuracies of 76 – 77%

(p < 0.07) and 80 – 83% (p < 0.07), respectively, shown in Table 6.1.

6.5 Discussion

6.5.1 Improved Predictions and Mechanistic Significance

We have shown that robust prediction of citalopram/escitalopram treatment outcomes can be

achieved using machine learning approaches that integrate baseline depression severity with

functionally validated pharmacogenomic biomarkers. The AUC of 0.70 or higher achieved in

this work represents an advance over our prior work, in which we used sociodemographic and

clinical factors as predictor variables in a machine learning algorithm applied to PGRN-AMPS

data, which resulted in an AUC of 0.54 [124]. Importantly, the prediction model trained

using PGRN-AMPS data predicted treatment outcomes in the STAR*D (QIDS-C scale)

and ISPC (HDRS scale) trials with similar precision, thus providing cross-trial and multiple

scale replication. Altogether, our findings represent an important step toward the goal of

biologically guided selection of antidepressants for treating MDD patients.

The improvements in predictability of remission/response presented here are in line with the

views expressed by others that including biomarkers as predictors could improve the ability of

machine learning to predict remission with citalopram/escitalopram treatment as opposed to

using only clinical and demographic variables [28, 29,59,102]. The SNPs that were included

in our analysis were the “top hit” SNPs in GWAS of the plasma metabolites that were

most highly associated with SSRI response (plasma serotonin) and baseline MDD symptom
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severity (plasma kynurenine) in the PGRN-AMPS trial [32, 33]. The pharmacogenomic

biomarkers for this study, which were SNPs in the DEFB1, AHR, TSPAN5, and ERICH3

genes, were chosen based on their important roles in serotonin or kynurenine biosynthesis, or in

inflammation—mechanisms that are associated with MDD disease risk and/or antidepressant

response [32, 33]. As noted earlier, knockdown of the expression of both TSPAN5 and

ERICH3 in neuronally derived cell lines resulted in decreased serotonin release into the culture

media [33]. Additionally, the DEFB1 gene encodes a protein expressed in gastrointestinal

mucosa that can inactivate lipopolysaccharides and, as a result, inhibit both inflammation

and the biosynthesis of kynurenine [32]. These observations are compatible with the rapidly

evolving concept of a “gut-brain axis” [129, 130]. The identification of these SNPs during

GWAS performed using quantitative biological traits (i.e., metabolite concentrations), rather

than measures of MDD clinical symptom severity (i.e., HDRS or QIDS-C), as phenotypes

represented a conscious attempt to move the analyses toward the biological underpinning

SSRI response. With the goal of cross-trial replication, we focused on pharmacogenomic

biomarkers in our predictive model because DNA data were more widely available than other

“omics” data across datasets. Further, unlike metabolomics data, DNA sequences are stable

and are less susceptible to variation related to environmental exposures (other medications,

diet, etc.) or specimen handling and processing.

6.5.2 Sex Differences

When antidepressants are being chosen, potential sex differences in the underlying biology of

antidepressant response are often overlooked. It is clear that sex represents an important risk

factor for MDD [81]. Although sex has been reported to influence response to antidepressants

in some studies [89, 131–133] prior machine learning approaches did not identify sex as a

robust predictor of remission [28,29,59]. The sex-specific differences in some top predictors

of treatment outcomes in our study suggest that sex-specific biological mechanisms may play

an important role in antidepressant response.

Limitations. Our sample consisted of Caucasian subjects, limiting generalizability of the

predictions. However, restricting our analyses to Caucasians may have reduced confounding

by race. We had no direct measures of socioeconomic status and comorbid anxiety, factors

associated with poorer response to antidepressants [134,135]. With the use of complete cases,

we cannot exclude the possibility of confounding by patients who dropped out. Although the

improvement in outcome predictions replicated across clinical trials of citalopram/escitalopram,

this work has not been replicated for other antidepressants. Finally, patients were not excluded
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on the basis of BMI/comorbid general medical conditions that could have influenced the

interactions between drug treatment and genomic profile.

6.6 Summary

By augmenting psychiatrists’ total depression severity scores with pharmacogenomic biomark-

ers, we achieved superior prediction performances in comparison to those obtained when

using sociodemographic factors as predictors of outcomes. More importantly, the predictive

capabilities of the pharmacogenomic biomarkers replicated across two other large, independent

citalopram/escitalopram studies. The overarching significance of the replicating predictability

in treatment outcomes with pharmacogenomics biomarkers is suggested by the success of

analogous “individualized medicine” approaches in breast cancer therapeutics. If pharmacoge-

nomic biomarkers are available for other classes of antidepressants, antidepressant selection

could potentially be guided by drug-specific predictive models, whereby an antidepressant is

chosen that has the highest likelihood of causing a particular patient to achieve remission

from his or her MDD symptoms. Then, there would be a true shift from “artisanal medicine”

to “individualized medicine” in treating MDD.
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CHAPTER 7

PROGNOSES AND PREDICTION OF
ANTIDEPRESSANT RESPONSE BASED ON EARLY

CHANGE IN DEPRESSION SYMPTOMS

During the pharmacological management of major depressive disorder (MDD), clinicians

often make decisions about whether to continue or alter antidepressant treatment plans at

intermediate treatment time-points, before a full therapeutic trial is complete. To operational-

ize the decision to continue or alter treatment plans at an intermediate treatment time-point,

clinicians often focus on changes in individual depressive symptoms or total depression severity

scores, measured using depression rating scales. However, clinicians are still unable to reliably

predict eventual remission or non-response to current treatment, because of the heterogeneity

in antidepressant response profiles [16–20] and the weak predictive effects of clinical and

demographic variables for outcome prediction, with the exception of depression severity at

baseline [28,29,59].

Prior studies using STAR*D and other large datasets have investigated whether early

improvements in total depression rating scale scores can be used to predict eventual treatment

non-response [67,67–71,74–77,136,137]. These studies relied on the use of growth mixture

models and trajectory analyses [74–77], which cannot be used to individualize the prediction of

eventual treatment outcomes by using specific improvements in the severity of total depression

and individual depressive symptoms at an intermediate treatment time-point. Subscales (such

as the Maier-6 [138], Bech-6 [139], HAMD7 [140], and VQIDS-C5 [141] subscales) have been

derived from full-scale versions of the HDRS and QIDS-C to measure depressive symptoms

that are more responsive to antidepressants. However, there is still a need to gain additional

specificity by defining which specific set of depressive symptoms from the full rating scales

must change at an intermediate time-point, by how much, and in which subgroup of patients,

in order to individualize the predictions of eventual treatment outcomes, such as remission or

non-response.

Contribution. Our main purpose in stratifying MDD patients was to parse, to the

greatest possible extent, heterogeneity in antidepressant response. The replicating patient

clusters at each time-point served as nodes in defining a probabilistic graph. That allowed

us to model the probabilistic nature of the transitions patient make between clusters of

consecutive time-points of the trial. Thus we allowed for eventual improvement in depression
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severity to be conditioned upon, first, where patients began before the trial, and second,

how they improved with time during the trial, while going on to achieve any of the clinical

outcomes. In doing so, we established symptom dynamic paths, which are the most likely

progressions through stages of depression severity that patients might experience, given their

baseline cluster, while they go on to achieve any of the categorical treatment outcomes. Our

inference of symptom dynamic paths then allowed us to identify a set of “core” depressive

symptoms whose 4-week changes are enough to differentiate symptom dynamic paths that

originate in the same baseline cluster, while leading to remission, response, and non-response

at 8 weeks. Psychiatrists find that association statements that reflect the aggregate statistics

(e.g., an X% improvement in total score has Y% chance of achieving eventual remission)

clinically not actionable, because they overlook prognostic capabilities of changes in individual

depressive symptoms and potential sex-differences. Instead, our approach says if a patient’s

total depression severity has changed from X to Y after 4 weeks of treatment, and if A or

more core depressive symptoms have improved by B score points, this patient has Z% chance

to achieve remission. Therefore, we now provide additional specificity at the individual

patient level that can better augment the psychiatrists’ judgments in changing treatments

early if the early prognoses of treatment outcome are poor.

7.1 Problem Statements

Our goal is to extract longitudinal homogeneity in antidepressant response in our identified

strata of patients. We addressed the following questions in this work:

1. Can we identify a specific set of (core) depressive symptoms, in patients with comparable

levels of total depression severity, that exhibit high homogeneity in their longitudinal

response to citalopram/escitalopram treatment?

2. Can baseline and early changes in core symptoms (at 4 weeks) accurately predict

eventual outcomes after 8 weeks of citalopram/escitalopram treatment? Can predictive

performance replicate across multiple independent trials and rating scales?

3. Can specific thresholds of change in core symptoms be identified at 4 weeks that are

highly prognostic of eventual outcomes at 8 weeks?
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7.2 Data

For this study, we used complete response data of subjects from PGRN-AMPS (NCT

00613470), STAR*D (NCT 00021528) and ISPC trials. For the present analyses, we uti-

lized data from 603 Caucasian citalopram-treated PGRN-AMPS subjects, 899 Caucasian

citalopram-treated STAR*D subjects, and 344 citalopram/escitalopram-treated ISPC sub-

jects who had complete clinical data at baseline and at 4 and 8 weeks. Only complete cases

were considered, as our explicit goal was to model longitudinal symptom responses to study

drugs, conditioned on baseline depression severity and changes in depressive symptoms at

intermediate time-points. Clinical outcome definitions are outlined in Sec. 2.1.1.

7.3 Approach Overview

A machine learning workflow comprising tasks (a) – (f) across five stages was developed

to predict eventual treatment outcomes by using a set of individual depressive items with

homogeneity in their longitudinal response to citalopram/escitalopram treatment. The

background analyses needed for this workflow to be operational is the patient stratification

workflow described in Chapter 4. We summarize the results from the chapter for ease in

following material presented in this chapter.

Summary of patient stratification from Chapter 4: In each of the three datasets,

the our clustering approach identified three clusters of patients based on total depressive

symptom scores at baseline (labeled A1, A2, A3), 4 weeks (B1, B2, B3), and 8 weeks (C1,

C2, C3). The ranges of depression severity scores for both scales were as follows. For the

QIDS-C: A1 [7 — 12], A2 [13 — 16], A3 [17 — 25]; B1 [0 — 6], B2 [7 — 11], B3 [12 — 25];

C1 [0 — 5], C2 [6 — 11], C3 [12 — 24]. For the HDRS: A1 [14 — 18], A2 [19 — 24], A3

[25 — 39]; B1 [0 — 8], B2 [9 — 15], B3 [16 — 31]; C1 [0 — 7], C2 [8 — 15], C3 [16 — 34].

The clusters of comparable ranges of total depression severity between trials of a given rating

scale (e.g., B1 of PGRN-AMPS and STAR*D for QIDS-C; B1 of PGRN-AMPS and ISPC for

HDRS) were identically distributed (p > 0.7, from the Kolmogorov-Smirnov (KS) test). In

clusters identified across all three datasets using our clustering approach, all patients in the

C1 cluster achieved remission, and all patients in the C3 cluster were non-responders, i.e.,

failed to achieve remission or response. 87% of patients in the C2 cluster achieved response

without remission (and the remaining 13% were non-responders). The clusters (A1,. . . ,C3)

inferred at each time-point served as nodes of the probabilistic graph, which were then used

to study the longitudinal effects of antidepressants.
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7.3.1 Stage - 1: Modeling of Total Depressive Symptom Dynamics Paths

Aim — Identify paths from each cluster that explain the most likely trajectories

to achieve remission, response and non-response. Probabilistic graphs with the

forward algorithm were used to explore all possible paths connecting a given baseline cluster

to patient clusters at 4 weeks, and then from 4 weeks to 8 weeks. We defined the graph

as a hidden Markov model in order to use the recursive forward algorithm to compute the

likelihood of each path, details of this process are explained in Sec. 3.4. For each of the nine

pairs of baseline and 8-week clusters (e.g., A1, C1), we chose the “most likely” path, defined

as the path between these two clusters through a given 4-week cluster (e.g., B1) that had

the highest likelihood score, provided that the path was followed by more than 10% of the

patients in the cluster in which the path originated. These unique “most likely” paths are

subsequently referred to as symptom dynamics paths.

7.3.2 Stage - 2: Identification of Core Depressive Symptoms

Aim — Identify depressive symptoms that exhibit high homogeneity in their

longitudinal response to citalopram/escitalopram treatment. To extract homoge-

neous patterns of antidepressant response, we defined “core depressive symptoms” based

on three criteria: (1) similar response patterns at all time-points, (2) low inter-individual

variability, and (3) patterns of change that were statistically distinct within each of the

symptom dynamic paths (which we inferred in Stage-1 using total depression severity scores).

First, unsupervised machine learning (i.e., hierarchical clustering with complete linkage)

was used to identify individual QIDS-C and HDRS scale items with similar rating patterns

(meaning that they were clustered together) within the patient clusters at baseline, 4 weeks,

and 8 weeks. Second, we identified symptom clusters wherein clinician ratings for each of

the scale items at baseline had a nonzero median and low inter-individual variability. A

given item was defined as having low inter-individual variability if the chi-square test for

the distribution of clinician ratings was significant after multiple comparisons, with the null

hypothesis being that the distributions of ratings for that item were equal. Third, for each

pair of symptom dynamic paths originating from a baseline cluster to a cluster at 8 weeks

(e.g., A3→B3 → C3 and A3 → B2 → C2), the KS test was used to determine whether there

were statistically significant differences between the associated distributions of core symptom

at 4 weeks. We used average smoothing kernels to visualize the variations in these core

symptoms’ scores within specific symptom dynamic paths.
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7.3.3 Stage - 3: Assessment of Antidepressant Effects on Core Depressive
Symptoms

Aim — Check if symptom improvement is more likely due to antidepressants

treatment than to chance. The Mann-Whitney U-test was used to assess whether the

severity of the core depressive symptoms (expressed as a rank order) changed significantly

as a likely response to antidepressant treatment between two consecutive time-points on a

given symptom dynamics path. By utilizing the replicating patient clusters across datasets,

we satisfied the sample independence requirement for this test by comparing patients in one

cluster from one dataset with patients in the consecutive time-point cluster from another

dataset. Details of constructing the test are discussed in Sec. 3.5.2 and illustrated in Fig. 3.6.

7.3.4 Stage - 4: Prediction of Clinical Outcomes from Early Changes in
Core Depressive Symptoms

Aim — To test for capabilities of core symptom changes in patients stratified by

baseline depression in predicting eventual treatment outcomes. We used random

forests, a nonparametric supervised machine learning method, as a binary classifier to predict

clinical outcomes at 8 weeks given a specific baseline cluster, using the associated baseline

severity of the core depressive symptoms and their absolute changes at 4 weeks. Using five-

repeat 10-fold nested cross-validation, we trained the sex- and rating-scale-stratified classifiers

with data from PGRN-AMPS subjects. We followed the recommended practice of grid search

during training by setting the mTry parameter to one-half of the total number of predictor

variables, and chose the number of trees from the range of 500 to 2,000 with increments of

100. The trained prediction models were then externally validated using STAR*D subjects

(for the QIDS-C scale), and ISPC subjects (for the HDRS scale). Prediction performance

was reported using several metrics (AUC, PPV, NPV, sensitivity, and specificity), and the

statistical significance of the classifier’s accuracy was established using the null information

rate (NIR, the prevalence of the class with the largest samples), which served as a proxy

for chance. Because 98% of the baseline cluster A1 patients who achieved response were

also classified as remitters, we trained prediction models for A1 cluster patients to predict

remission at 8 weeks, which gave us additional samples for training.
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7.3.5 Stage - 5: Establishment of the Prognostic Effects of Core Depressive
Symptoms

Aim — Deriving prognoses of eventual treatment outcome using change in sever-

ity of core depressive symptoms. This step defined the minimum number of core symp-

toms and levels of improvement in the core symptoms needed at 4 weeks (given a specific

baseline cluster) to achieve specific outcomes at 8 weeks. First, the threshold of improvement

vs. failure to improve was chosen based on changes in median scores on symptom dynamic

paths between baseline and 4-week clusters. Second, a chi-square test was conducted on

a table comprising the number of core symptoms that exceeded (or failed to exceed) the

threshold at 4 weeks, versus the outcome labels (e.g., remitters vs. non-remitters, or respon-

ders vs. non-responders). If the chi-square test’s p-value was significant for remission or

response/non-response, we computed the probability of the outcome based on how many

symptoms had to exceed (or failed to exceed) the threshold. If the p-value was not significant,

no conclusions about treatment outcome based on changes in any number of core symptoms

were possible. Standard deviations (SD) of the probabilities were established by creating

five random subsets (each subset maintained the same proportions of patients who achieved

remission/response/non-response in the entire dataset), and with 10 repetitions (i.e., five

different random subsets in each repeat).

Tasks (a) and (c) were in-situ (non-time-varying) inferential tasks, whereas task (b) was a

longitudinal inferential task that required conditional dependencies (which motivated the use

of probabilistic graphs), and task (e) was a predictive task that required supervised learning

methods. Therefore, multiple statistical/machine learning methods (illustrated in Fig. 7.1)

were needed to address these sequential tasks.

7.4 Results

7.4.1 Symptom Dynamics Based on Total Depression Scores

The symptom dynamic paths inferred using our machine learning workflow were identical for

the PGRN-AMPS and STAR*D datasets (for QIDS-C), and for the PGRN-AMPS and ISPC

datasets (for HDRS), based on the baseline and 4- and 8-week clusters on the path (Fig. 7.2).

In clusters on the symptom dynamic paths in the PGRN-AMPS and STAR*D datasets (for

QIDS-C), and in the PGRN-AMPS and ISPC datasets (for HDRS), the distributions of total

depression scores and clinician ratings of individual scale items of QIDS-C or HDRS were

statistically identical between associated trials (p > 0.2, as found using the KS-test for scores
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of corresponding clusters between paths of two datasets).

7.4.2 Sex Differences in Symptom Dynamics

There were notable sex differences in the symptom dynamic paths. In both rating scales,

only women demonstrated path A3 → B1 → C1, which linked patients with severe baseline

depressive symptoms (cluster A3) to remission at 8 weeks, via cluster B1 at 4 weeks. In

both rating scales, and in both women and men, the path from severe baseline depressive

symptoms (cluster A3) to response (cluster C2) at 8 weeks was through cluster B2 at 4 weeks.

On the A3 → B2 → C2 path when the HDRS rating scale was used, women were more likely

to achieve an early response (i.e., ≥ 50% reduction in baseline total depressive severity at

4 weeks) going from A3 to B2 (solid line in Fig. 7.2) than men (dashed line in Fig. 7.2).

However, for the same path in the QIDS-C data, both sexes were likely to achieve an early

response at 4 weeks, while achieving eventual response at 8 weeks.

7.4.3 Core Depressive Symptoms

In both the individual and combined datasets, five QIDS-C items (sad mood, concentra-

tion / decision-making, self-outlook, involvement, and energy/fatigability) and four HDRS

items (sad mood, psychic anxiety, guilt feelings/delusions, and work/activities) met the core

depressive symptom selection criteria outlined in Stage 2 of our analyses. These depressive

symptoms clustered together at baseline and at 4 and 8 weeks. The five core depressive items

of the QIDS-C and four core depressive items of the HDRS accounted for 62% and 43% of the

variation in QIDS-C and HDRS total scores at baseline. The average contribution of the four

core symptoms to the baseline HDRS total score was lower than the average contribution of

the five core symptoms to the baseline QIDS-C total score. This is because 16% of patients

had a score of zero for at least one of the core HDRS symptoms vs. only 11% for QIDS-C.

For the symptom dynamic paths (inferred using total depression severity scores) from a

given baseline cluster (e.g., A3 in Figs. 7.3 and 7.4), there were significant differences in

the distribution of core depressive item scores at 4 and 8 weeks for both the QIDS-C and

HDRS (p < 0.008). Further signifying the degree of homogeneity in the scoring patterns of

the core symptoms vs. non-core symptoms is visualized by the extent of overlap in bands of

confidence interval of severity scores. Finally, on these paths, the changes in core depressive

symptom severity in both rating scales were statistically significant from baseline to week 4,

but were seldom significant from week 4 to week 8 (Table 7.1).
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Fig. 2 Fig. 2

Figure 7.2: Patients are grouped into clusters at baseline, 4, and 8 weeks of
citalopram/escitalopram using Gaussian mixture model clustering. These clusters allow for
the use of probabilistic graphs to identify the most likely path of transition from a cluster at
baseline to a cluster at 8 weeks, through an intermediary cluster at 4 weeks. These paths also
account for the likely clinical outcomes observed at 4 and 8 weeks based on the improvement
in the total depressive severity scores, relative to baseline total depressive severity. Thickness
in lines indicates proportion of patients from the baseline cluster on the path, and the solid
line indicates that between consecutive clusters, the total depressive symptom severity score
is likely to be reduced by 50% relative to the baseline total depressive severity.
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7.4.4 Visualizing the Benefits of Patient Stratification on Core Symptom
Variations

Furthermore, elucidating the benefit of clustering patients and the subsequent finding of

symptom dynamic paths is seen in the boxplots of scores of core symptoms. As shown

in Fig. 7.3, although the 95% CI around the mean core symptom scores is narrow, the

corresponding box plots at each time-point span the range of scores along the y-axis, indicating

high inter-individual variation (heterogeneity) of core symptom scores. Adding the clustering

framework (illustrated in Fig. 7.3) resulted in reduced heterogeneity of core symptom scores

at all time-points, as illustrated by smaller box plots and confidence intervals, thus enhancing

the capability of predicting 8 week treatment outcomes from patterns of core symptom

responses at 4 weeks.

7.4.5 Prediction Performance of Core Depression Symptom Ratings

The performance characteristics of the machine learning algorithm that used baseline core

depressive symptom severities and their absolute changes at 4 weeks to predict non-response

or response and non-remission or emission at 8 weeks are summarized in Tables 7.2 and

7.3, respectively. In PGRN-AMPS (which was used to train the prediction models), the

predictive accuracies for response and remission status were 65% – 77% (p < 0.01, AUC

0.66 – 0.8) and 66% – 79% (p < 0.06, AUC 0.67 – 0.87), respectively. The classifier

trained using PGRN-AMPS data (with QIDS-C assessments) then predicted response and

remission status in STAR*D patients with accuracies of 63% – 70%(p < 0.06) and 69% –

73%(p < 0.07), respectively. The classifier trained using PGRN-AMPS patients’ data (with

HDRS assessments) predicted response and remission status in ISPC patients with accuracies

of 73% – 92%(p < 0.05) and 75% – 91%(p < 0.04), respectively.

In over 90% of patients for whom the prediction of clinical outcomes was incorrect, the core

depressive symptoms accounted for < 30% of the total QIDS-C/HDRS scores at baseline.

In these patients, no other set of symptoms met the criteria for core depressive symptoms.

Furthermore, in all patients, the prediction performance of a classifier that used the remaining

(non-core) depressive symptoms was significantly poorer (accuracy 56%, p < 0.2, AUC 0.59)

than that of the classifier that used the core depressive symptoms. This result is illustrated by

the significant overlap of the means of the confidence intervals of non-core symptom severities

(illustrated in Fig. 7.4B). In a contrast, the core symptoms’ variation on the symptom dynamic

paths originating from a baseline cluster begin to show separation in confidence intervals at 4

weeks (illustrated in Fig. 7.4A).
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7.4.6 Prognostic Effects of Change in Core Depressive Symptoms

We identified thresholds of change needed in the core symptoms at 4 weeks to achieve the

most likely treatment outcome at 8 weeks on the symptom dynamic paths (Fig. 7.5). The

thresholds were derived using the change in median scores on symptom dynamic paths, as

illustrated in Table 7.1. For example, as shown in Table 7.1, failure to improve by ≥ 1

point in each of the core symptoms was highly predictive of eventual non-response, whereas

improvement by ≥ 2 points in each of the core symptoms was highly predictive of eventual

remission/response. This result was observed in both men and women, and in both rating

scales. Although sex differences were observed in symptom dynamic paths with respect to

the total depression severity scores, the distributions of core symptom severity scores on the

same path were statistically identical (p > 0.6) for men and women (with the exception that

the A3→B1→C1 path was observed in women only). Furthermore, as changes in median

scores were not sex-dependent (again with the exception of the A3→B1→C1 path that was

observed only in women), we computed prognostic effects by combining data from both sexes

with sample sizes of at least 88 patients in each path.

The analyses conducted to identify thresholds of core symptom change at 4 weeks that

predicted non-response at 8 weeks were focused on patients with moderate (A2) or severe

(A3) baseline total depressive severity. As shown in Table 7.1, eventual non-responders

with moderate or severe baseline depression generally had absent to minimal improvement

(reduction by 1 point) in core depressive symptom scores at 4 weeks (B3). On the A2→B3

path, 69% (SD 1.9) and 68% (SD 2.0) (p < 0.03) of patients achieved non-response status on

the QIDS-C and HDRS scales, respectively, by reaching cluster C3 at 8 weeks (A2→B3→C3),

if at least one of the core depressive items reduced by 2 or fewer points at 4 weeks. On the

A3→B3 path, 61% (SD 1.3) and 68% (SD 1.7) (p < 0.04) of patients achieved non-response

status on the QIDS-C and HDRS scales, respectively, by reaching cluster C3 at 8 weeks

(A3→B3→C3), if at least two core depressive symptoms reduced by 2 or fewer points at 4

weeks.

The thresholds of change in core symptoms at 4 weeks needed to achieve response and

remission at 8 weeks were also investigated. As illustrated in Fig. 7.5, across all transitions

from clusters at baseline to the B1/B2 clusters at 4 weeks, the probabilities of response at 8

weeks were 62% – 79% (SD 3, p < 0.01) and 72% – 79% (SD 3.4, p < 0.06) if at least one

core depressive item’s score improved by ≥ 2 on the QIDS-C and HDRS scales, respectively.

Starting from the A3 cluster (the highest depression severity at baseline), the probabilities of

remission (which occurred for women only) at 8 weeks were 70% and 89% (SD 2.4, p < 0.06)

if at least two core depressive items improved by ≥ 2 points on the QIDS-C and HDRS scales

at 4 weeks, respectively.
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7.4.7 Prognostic Effects of Core Depressive Symptoms without Patient
Stratification

We contrasted the prognostic effects of core depressive symptoms with and without the use

of our clustering algorithm, as shown in Fig. 7.3 (women starting from the baseline cluster

A3). In Fig. 7.3, the precision of the mean values of individual symptom severity scores at

4 and at 8 weeks are represented by the 95% confidence intervals, whereas the variance in

the distribution of depression severity scores is represented by box plots with whiskers. In

the absence of symptom dynamic paths that are dependent on clusters inferred in this work,

the confidence interval around the mean is narrow but the box plots of symptom severity

score variation at 4 and 8 weeks in Fig. 7.3 are large. The large variation in scores illustrates

the heterogeneity in responses, with the upper quartile of the box-plot revealing the very

limited improvement in symptom severity. Furthermore, in the absence of patient clustering,

the probability of any one of the 8-week outcomes, based on changes in the severity of core

depressive items on either scale, was between 49% and 53%, and not statistically significant

(p > 0.7). By contrast (and as shown in Fig. 7.3B), clustering patients using our algorithm

minimized the previously observed heterogeneity in scores at 8 weeks from the patterns of

response at 4 weeks, as indicated by the smaller variation in variation of symptom scores, as

seen in the box plots for the paths that originated in A3 cluster (illustrated as an example).

7.5 Discussion

7.5.1 Clinical Treatment Implications

The initial evaluation of the clinical effects of antidepressants at 4 weeks following the initiation

of treatment is crucial for treatment planning in patients with MDD who are managed in

outpatient settings. In clinical trials, improvement in depressive symptoms with antidepressant

treatment can be observed as early as within the first 2 weeks of treatment [142] and lack of

early improvement during the first 2 weeks of antidepressant treatment may accurately predict

eventual non-response defined at 6 weeks (NPV 89%), although the predictive value for stable

response and remission for patients who achieve early improvement is much more limited (PPV

53%) [143], and not all studies have demonstrated a predictive effect of early improvement

(within the first 2–3 weeks of antidepressant treatment) for eventual response [92,144]. It is

known that certain levels of improvement in total depressive symptoms at 4 weeks indicate the

need to alter treatment [145–148], and the reevaluation of antidepressant effects at 4 weeks has

been broadly advocated for routine practice [149–153]. Moreover, in a comprehensive review
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of 4 meta-analyses of randomized trials and 10 individual open or naturalistic trials, the NPVs

of early improvement at 3 – 4 weeks (73% – 81%) for predicting eventual response at 5 – 12

weeks were less subject to variation than the NPVs for early improvement at 2 weeks (35% –

92%) [154]. In the reviewed studies, early improvement was defined as a≥ 20% reduction

from baseline in total depression scale scores. Our results provide additional specificity by

defining which depressive symptoms must improve at 4 weeks, by how much, and in which

subgroup of patients, in order to individualize the predictions of eventual treatment outcomes.

For instance, citalopram-treated patients who show improvement in total depression scores

after 4 weeks, but do not achieve sufficient improvement in the core symptoms that predict

response (or remission) at that time-point, could require a change in antidepressant treatment

based on the high likelihood of non-response at 8 weeks. This work therefore provides a

quantitative framework for early “triaging” of patients based on specific thresholds of a few

symptoms.

7.5.2 On the Necessity of Patient Stratification for Homogeneity in
Antidepressant Response

The predictive accuracies achieved in this work stemmed, in part, from the novel use of

unsupervised learning and probabilistic graphs to stratify patients in an unbiased manner into

unique clusters based on depression severity. The goal of this approach was to minimize the

effects of heterogeneity in depressive symptom responses — a major barrier to the accurate

prediction of categorical treatment outcomes in clinical antidepressant trials and real-world

practice. We ran our analyses separately by stratifying patients to clusters, and without the

cluster assignment. In the absence of patient stratification, the prognoses (probability) of

sex-specific remission/response at 8 weeks is relatively weak (49%− 53%) when using core

symptoms’ baseline severity and associated changes at 4 weeks. However, when the clustering

algorithm was applied, the same set of core symptoms’ baseline severity and associated

changes at 4 weeks accurately predicted sex-specific remission/response at 8 weeks with a

minimum accuracy of 66% and going as high as 96% depending on the cluster patients began

at baseline.

7.5.3 Sex-differences in Antidepressant Response

We modeled antidepressant effects separately in women and men even though individual

sociodemographic factors, including sex, have not demonstrated strong and consistent predic-

tive properties in previous machine learning studies of antidepressant effects. Of the patients
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with the highest depression severity at baseline (cluster A3), only women achieved early

(at 4 weeks) and eventual (at 8 weeks) remission in our study, under both rating scales.

Further, women were more likely than men to achieve early response at 4 weeks on the way

to eventual response at 8 weeks on the HDRS scale. These findings are consistent with

previously published results that show an association between female sex and greater response

to citalopram [25,82,132], which was one of our reasons for stratifying analyses by sex.

7.5.4 Clinical Research Implications

The criteria used to define “core” depressive symptoms in this work do not imply that these

symptoms are “core” to the syndrome of MDD. However, the core symptoms identified in this

report substantially overlap with symptoms derived from HDRS and QIDS-C that, according

to prior work [138–141], are most strongly linked to the effects of treatment with antidepressant

medications. The overlap of our core symptoms with existing subscales’ symptoms further

validates our machine learning-based approach, which establishes the prognostic capabilities

of these symptoms. We do not suggest that the full versions of depression rating scales should

be replaced with shorter versions based on core symptoms only, which would fail to consider

all of the important elements of MDD severity for individual patients [155]. Suicidal ideation

and sleep disturbances, for example, were not core depressive symptoms in this work, but

are important clinical symptoms for many MDD patients [28, 59, 156–158]. However, the

core symptoms identified here could inform future depression rating scale development, for

instance, by assigning greater weight to the core symptoms relative to other symptoms in

determining an eventual total score, or by providing finer gradations of the scale response

items for the core symptoms. Our results suggest that focusing on early changes in core

symptoms may increase the prognostic value of full-scale depression measures, which were

designed to measure disease severity but not necessarily to predict outcomes. By applying

our machine learning workflow to other large antidepressant datasets, one could potentially

derive drug-specific core depressive symptoms, as well as a “superset” of core depressive

symptoms whose early changes may be highly prognostic of eventual response across numerous

antidepressants.

From the perspective of finding homogeneity in the responses of groups of symptoms,

the integration of specific in-situ inferential tasks (clustering), longitudinal inferential tasks

(probabilistic graphs), and predictive tasks (supervised learning) for predicting outcomes of

antidepressant treatment is new. One might argue that homogeneity in depressive symptoms

could be inferred without requiring patient stratification or symptom dynamic paths. However,

we demonstrated that changes in the core symptoms’ severity do not have meaningful
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prognostic value in the absence of patient stratification and information on the paths the

patients traversed during treatment. These insights into homogeneity based on a few

prognostic depressive symptoms may translate to clinical practice and to future research

efforts to develop genomic (or other) biomarkers of antidepressant mechanisms of action and

response, wherein the antidepressants are used as “molecular probes.”

7.5.5 On Clinical Interpretability with Probabilistic Graphs

Latent variable analyses with growth mixture models have been used previously to study

trajectories of depression severity with antidepressant treatment [62,63,74–77,136,137]. We

used probabilistic graphs in this work because growth mixture models (1) do not find paths

algorithmically by conditioning upon improvements in symptoms at intermediate time-points,

(2) offer very limited interpretability of dynamics of symptom changes, and (3) often need

some domain expertise to reconcile results that might be perturbed by differences in model

specifications [78,79,159,160]. Growth mixture models and trajectory analyses are useful (and

often computationally simpler) when aggregate statistics of longitudinal responses are sought,

provided that the analysis is not exploratory (i.e., the numbers of paths and trajectories

are already known), path parameters are stable, and the number of unique paths is small.

However, the computational cost incurred in the construction of probabilistic graphs and

their associated inference/optimization methods is worthwhile given the rich insights gained.

Limitations. There are limitations to our approach that must be considered. We were un-

able to investigate whether changes in core depressive symptoms at time-points earlier than 4

weeks can accurately predict clinical outcomes at 8 weeks—an important consideration, given

evidence that eventual response may sometimes be predictable as early as 2 weeks [143]. None

of the datasets used here included a placebo arm; however, the replication of depressive symp-

tom clusters at all time-points in our datasets provides a basis for concluding that observed

changes in clinicians’ individual symptom ratings are more likely to reflect antidepressant

effects than chance occurrences. There was no dose standardization across datasets, but this

is less concerning given that drug dosage was not associated with clinical outcomes here or in

previous studies [59,161]. Despite replication across three independent datasets, to bring this

methodology into practice, future studies are needed to establish the generalizability of our

approach to other medications, other treatment approaches (including evidence-supported

psychotherapies), and longer follow-up durations. Further, we were unable to address which

treatments should be considered after failure to respond to citalopram/escitalopram, based on

their comparative likelihoods of achieving response or remission. Finally, our analyses focused
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on trial completers, so the impact of our findings on those who dropped out of treatment

prior to 8 weeks is unknown.

7.6 Summary

We used statistical and machine learning methods to identify a subset of core depressive symp-

toms that are highly homogeneous in their longitudinal response to citalopram/escitalopram,

and investigated their utility for predicting clinically relevant outcomes after 8 weeks of

treatment. Algorithms that utilized core depressive symptom severity at baseline and as-

sociated changes at 4 weeks accurately predicted remission, response, and non-response at

8 weeks (AUC > 0.66; accuracy > 63%). We established thresholds of change in the core

depressive symptoms at 4 weeks that were highly prognostic of eventual non-response and

remission with citalopram/escitalopram treatment at 8 weeks. We replicated these results

across three independent clinical trials’ datasets and two separate depression rating scales.

The results presented in this chapter using novel application of machine learning methods

represent significant advance because, (1) probabilistic graphical models allowed for a compact

representation of longitudinal response to antidepressants (as opposed to 986 paths illustrated

in Fig. 2.2), (2) we transformed diagnostic instruments (e.g., QIDS-C, HDRS) into prognostic

instruments using changes in individual depression severity scores, and (3) we replicated

predictive performance across multiple datasets and rating scales. Replications in symptom

dynamics and predictions are particularly significant in the context of psychiatric research,

considering that heterogeneity in disease manifestation and treatment response (as described

in Chapter 2) has been main challenge in achieving replications of findings across independent

studies.
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CHAPTER 8

CONCLUSION

This dissertation introduced, ALMOND, the Analytics and Machine Learning Framework

for Actionable Intelligence from Clinical and Omics Data. ALMOND has the capability to

advance both basic and translational health science research, as illustrated in this dissertation

with examples from many fields of medicine. ALMOND augments a clinician’s disease

knowledge and treatment selection logic with analytically, inferred patient-specific biological

measures to individualize treatment selection. A clinician’s decision to individualize treatment

are made prior to treatment initiation, and again soon after treatment initiation to ensure that

the chosen treatment option is as effective as desired. To that end, ALMOND demonstrated

the capability to aid in treatment management prior to and after treatment initiation in

treating major depressive disorder as a case study.

Major depressive disorder (MDD) is a globally prevalent disease, and individualized

medicine practices to treat its symptoms do not exist. ALMOND’s analytical workflow

for individualization of antidepressant treatment systematically addresses the challenge of

heterogeneity in major depressive disorder symptoms and antidepressant response, with

the goal being to achieve a “right patient, right drug, right time” approach to treatment

management. First, we identified the “right patients” by using unsupervised learning to

stratify patients. Patient stratification served as a foundation for associating disease states

with multiple pharmacological (drug-associated) measures. Second, “right drug” selection

in the context of antidepressants was shown to be possible, as psychiatrists’ depression

severity assessments augmented with pharmacogenomic measures robustly predicted treatment

outcomes, with replications across multiple independent trials. Finally, probabilistic graphs

provided early and easily interpretable prognoses at the “right time” for psychiatrists by

accounting for changes in routinely assessed depressive symptoms’ severity.

Important outcomes of this work include (1) discovery of compelling sex differences in the

dynamics of symptom changes due to antidepressant treatment — an aspect often overlooked

in antidepressant treatment management; (2) recognition of the ability of pharmacogenomic

biomarkers to predict antidepressant treatment outcomes, an important measure of success

in individualizing medicine; and (3) development of a clinician-friendly interface with which
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a psychiatrist can input depression severity measurement, and obtain easily interpretable

prognoses of eventual treatment outcomes. Our usable interface will enable deployment of

ALMOND in primary care settings, which is where the majority of early depressive episodes

are treated. Hence, ALMOND’s early poor prognoses will allow primary care physicians to

immediately refer the patients with poor prognoses to a mental healthcare specialists.

The broader significance of ALMOND in potentially individualizing the treatment of MDD

is twofold. First, helping clinicians choose antidepressants that have the highest likelihoods of

enabling patients to achieve remission, or by helping them decide to change treatments based

on poor early prognoses. ALMOND will help patients avoid ongoing suffering and the burden

of possible side effects of suboptimal treatments. The sooner an antidepressant treatment

can control depressive symptoms, the lower the likelihood that the patient will develop other

chronic diseases. Second, treatment approaches for many other diseases that have similar

heterogeneity in disease presentation such as rheumatoid arthritis or migraine headaches

could benefit by using from the approach of ALMOND’s workflow design to individualize

treatment management.
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APPENDIX A

ADDITIONAL MATERIALS

A.1 Additional Tables

Table A.1: Socio-demographic variables studied.

DATA DESCRIPTION

Age at study enrollment [Continuous, age in years]

Body mass index at enrollment [Continuous, kg/m2]

Smoking status

Current smoker

Former smoker

Non (never)-smoker

History of major depression in first-degree relative

Parent Yes/No

Sibling Yes/No

Child Yes/No

History of bipolar spectrum disorder in first-degree

relative

Parent Yes/No

Sibling Yes/No

Child Yes/No

History of alcohol abuse in first-degree relative

Parent Yes/No

Sibling Yes/No

Child Yes/No

Pregnant (women only) Yes/No/Did not answer

Seasonal pattern to depressive episode occurrence Yes/No/Unknown
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Table A.1: Socio-demographic variables studied (Continued).

DATA DESCRIPTION

History of any other substance abuse in first-degree

relative

Parent Yes/No

Sibling Yes/No

Child Yes/No

Transplantation or transfusion Yes/No

History of liver or bone marrow transplant, or blood

transfusion within 6 weeks of study enrollment

Yes/No

Marital status

Never married

Cohabitating/life partner

Married

Separated

Divorced

Widowed

Education level (highest degree received)

No degree received

High school diploma

Passed the General Educational

Development Test

Some college

Associate degree/Technical degree

College diploma

Master’s degree

Doctorate or professional degree

(e.g., MD, PhD, JD)

Cohabitation

Spouse or partner lives in same

home as patient

Spouse or partner does not live in

same home as patient

Not applicable
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Table A.1: Socio-demographic variables studied (Continued).

DATA DESCRIPTION

Employment status

Unemployed, not looking for em-

ployment

Unemployed, looking for employ-

ment

Full-time employed

Part-time employed

Self-employed

Retired, not working

Student status, current

Not a student

Full-time student

Part-time student

Years of education [Continuous, total number of

years of formal education]

Drug dosage [Continuous, milligrams per day]

Plasma drug levels [Continuous]
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Table A.2: Metabolite abbreviations and pathways.

Metabolite Metabolite Abbreviation Pathway
(+)-alpha-Tocopherol ATOCO Antioxidants
(+)-delta-Tocopherol DTOCO Antioxidants
(+)-gamma-Tocopherol (redox state #1) GTOCO1 Antioxidants
(+)-gamma-Tocopherol (redox state #2) GTOCO2 Antioxidants
(+)-gamma-Tocopherol (redox state #3) GTOCO3 Antioxidants
Cysteine CYS Cysteine/Methionine
Methionine MET Cysteine/Methionine
4-Hydroxybenzoic acid 4HBAC Phenylalanine
4-Hydroxyphenyllactic acid 4HPLA Phenylalanine
Salicylic Acid SA Phenylalanine
1,3-diMethylxanthine THEOPHYLINE Purine
1,7-diMethylxanthine PARAXAN Purine
Guanine GUANINE Purine
Guanosine GUANOSINE Purine
Hypoxanthine HX Purine
Uric acid URIC Purine
Xanthine XAN Purine
Xanthosine XANTH Purine
3-Hydroxykynurenine 3OHKY Tryptophan
5-Hydroxyindoleacetic acid 5HIAA Tryptophan
5-Hydroxytrptophan 5HTP Tryptophan
Alpha-methyltryptophan AMTRP Tryptophan
Indole-3-acetic acid I3AA Tryptophan
Indole-3-propionic acid I3PA Tryptophan
Kynurenine KYN Tryptophan
Serotonin 5HT Tryptophan
Tryptophan TRP Tryptophan
4-Hydroxyphenylacetic acid 4HPAC Tyrosine
Homogentisic Acid HGA Tyrosine
Homovanillic Acid HVA Tyrosine
Methoxy-Hydroxyphenly Glycol MHPG Tyrosine
Tyrosine TYR Tyrosine
Vanillylmandelic Acid VMA Tyrosine
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APPENDIX B

MIMOSA: MIXTURE-MODEL BASED
SINGLE-CELL ANALYSIS

B.1 Introduction

Population studies have shown that an anti-diabetic drug called metformin inhibits cancer

growth in various types of cancer, including triple-negative breast cancer [162,163]. Triple-

negative breast cancer (TNBC) is a molecular subtype of breast cancer that does not have any

standard targeted therapies [164, 165]. Pharmacogenomics research focuses on understanding

the interplay between drug effects and functions of the genome (i.e., human DNA). Using

the example of metformin response in TNBC, this work shows that when biomarkers of

drug response are not known a priori, it is possible for unsupervised learning methods to

augment pharmacogenomics experts’ knowledge by identifying a few genes, out of the entire

human genome (i.e., 23, 398 genes), as candidates for laboratory experiments to establish

novel biological mechanisms of a drug.

The purpose of the overall project driving this paper is to use machine learning methods

to help infer the molecular mechanism by which metformin inhibits cancer growth in TNBC.

The workflow of our analysis is illustrated in Fig. B.1. In order to identify metformin’s impact

on the TNBC cells, we used two identical MDA-MB-231 TNBC cell populations, including

192 cells (two assays, each comprising 96 cells) not treated with metformin (referred to as

baseline cells), and an equal number of the same cells treated with metformin (referred to

as metformin-treated cells). We sequenced the cells by using single-cell RNA sequencing

(scRNA-seq) technology, and the resulting data comprise the expression measure for each

gene of the sequenced genome contained in each of the cells under study [9]. The data reflect

23, 398 genes and their associated gene expressions for baseline and metformin-treated cells.

Thus, the overall data consist of 9M1 gene expression values. The goal of the analytics in

this work was to infer clusters of metformin-treated cells by using unsupervised learning and

then identify a small group of differentially expressed genes across clusters. Those genes can

then be used to identify associated diseases and pathways (where a pathway is a “series of

1[192*2 cells]*23, 398 ≈ 9M.
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Figure B.1: The single-cell RNAseq analysis workflow. It starts with sequencing of cancer
cells and goes to the use of unsupervised learning methods, combined with pathway analysis,
to generate a list of a few genes. Those genes become candidates for informing the design of
focused laboratory experiments for learning novel biology of drug action.

actions among molecules in a cell that leads to a certain product or a change in the cell”) 2 by

performing pathway analysis. By combining differentially expressed genes that overlap with

relevant pathways (as found by our pathway analysis) and available data on these genes from

the existing literature in the context of metformin and anticancer mechanisms, we choose

genes that have been implicated as having anticancer functions as candidates for laboratory

experiments.

In this work, we used mixture-model based clustering, hierarchical clustering, and k-means

clustering as unsupervised learning methods. Based on the observations of multiple nor-

mal distributions in gene expressions of single cells (see Sec. B.4 and Fig. B.2), we first

used a mixture-model based unsupervised learning approach embodied in a tool we created

called MiMoSA, for “mixture-model-based single-cell analyses” (described in Sec. B.5.1) [10].

MiMoSA found 310 of the 23, 398 genes to be significantly differentially expressed in six

metformin-treated cells. As a validating step for MiMoSA’s findings, hierarchical clustering

approaches (divisive and agglomerative clustering) also identified the same set of 310 differ-

entially expressed genes identified by MiMoSA (see Sec. B.5.2). However, the unsupervised

and lightly supervised approaches using k-means clustering for a range of k = [2 : 9] were

unable to find a set of clusters that could either identify the same set of 310 differentially

expressed genes found by MiMoSA and hierarchical clustering, or identify a different set of

2https://www.genome.gov/27530687/biological-pathways-fact-sheet/
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differentially expressed genes (see Sec. B.5.4).

That set of 310 genes is small enough to be handled by well-understood bioinformatics

approaches, such as pathway analysis. As a substantiation of our learning approach, pathway

analysis of the downregulation of these 210 genes showed strong correlations with three

pathways: (i) oxidative phosphorylation (p-value 3.81E− 21), (ii) the citric acid (TCA) cycle,

and the respiratory electron transport (p-value 2.10E−19), and (iii) mitochondrial translation

(p-value 1.41E− 07). All of those pathways were recently found to have anticancer properties,

via both in-vivo and in-vitro experiments [166–169]. Further, among the differentially

expressed genes that overlap with those pathways, we have identified the NDUFB9, COX5B,

MRPS7, and CDC42, which have been implicated in other anticancer mechanisms for other

cancers not driven by metformin; these genes are now candidates for laboratory experiments.

In Sec. B.6, we present a summary of laboratory experiments on CDC42’s downregulation by

metformin that explain the inhibition of cell migration and cell proliferation in triple-negative

breast cancer [11]. Results from the laboratory experiments demonstrate the power of

unsupervised learning that can not only identify candidate genes for laboratory experiments,

but also identify genes that could lead to the establishment of novel mechanisms of drug

action.

Traditional bulk sequencing enabled the study of aggregate gene expressions in a tumor

sample. However, with scRNA-seq, the amount of data is significantly larger, and we have

gained finer differentiation of cells by using distributions of gene expression in the cells, as

opposed to the single aggregate value of gene expression provided by bulk sequencing. For

example, scRNA-seq generates about 1 million RNA sequences per cell comprising roughly

24, 000 genes. When two sequencing panels are analyzed, where each panel consists of 96

cells, 192M sequences are generated (see Fig. B.1). Several prior efforts (discussed in Sec. B.3)

have analyzed single-cell data, but our work is unique in that it demonstrates the ability of

data-driven unsupervised learning analytics to help establish novel biological mechanisms.

B.2 Contribution

Key additional contributions of this work are as follows.

1. We demonstrate the feasibility of using learning methods to inform novel

biology: This work demonstrates the complete workflow of analyses that proceed

from data generation, to machine learning analyses, to laboratory experiments, and

finally to identifying novel mechanisms of drug action in triple negative breast cancer

(see Sec. B.6). This work represents a significant advancement considering that the
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molecular mechanisms of metformin’s response in TNBC are not yet known.

2. Test dataset and tool access: We provide access to a test dataset and MiMoSA,

which is compatible with multiple operating systems and computation architectures.
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Figure B.2: The existence of mixtures in the feature space and samples is illustrated by the
probability density functions (PDF) of gene expressions in a set of genes across (a) all
baseline cells, (b) a set of baseline cells and (c) a set of metformin-treated cells.

B.3 Related Work

The recently proposed methods for analyzing single-cell data have largely focused on finding

subpopulations of cells in a population of cells [170, 171]. All of the proposed methods

include two steps of processing, first reducing the number of genes being used to cluster

cells, and then using a clustering method to find subpopulations of cells. Further, all these

methods have found that only a few thousand genes are significantly differentially expressed

in cell samples [170–172]. For the second step of these analyses, supervised, unsupervised, or

graphical model approaches [172] are used.

The first step of the analysis tries to retain the genes that show variation in their expression

levels across the samples. For example, in the transcriptome analysis of lung adenocarci-

noma [170], the method to reduce the dimensionality of the data (for genes in this context)

was to start by looking at genes (expressed across all the samples) whose gene expressions

were measured as greater than 0, thereby reducing the gene list to about 9, 000 genes. Then,

the authors of [170] studied the correlation of gene expression among these genes by using

Pearson’s correlation analysis, and reduced the gene list to about 5, 500 genes by choosing

genes with correlation coefficients greater than 0.9. In an analysis of cell-to-cell heterogeneity

that revealed subpopulations [171], prior knowledge of cell-cycle genes was used, and only

genes that showed significant correlation were chosen, bringing the gene list down from 23, 398

to 2, 881.
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To reduce the number of genes needed to infer cell types (assuming that the data are

normally distributed), shared-nearest neighbors (SNN) or k-means clustering is used [172].

In particular, when SNN is used on simulated and real cell data, it has been shown that it

performs better than k-means clustering when no biological priors are used [172]. However,

there remains an open problem on how to choose the optimal number of neighbors and k

values; currently, we must perform an extensive search of values or use heuristics to estimate

the best values. One particular approach that is different from the normal two-step process

is the use of diffusion maps [173], a supervised approach. The authors of [173] assume the

existence of known types of cells and then use a transition matrix for classifying cells based

on the state they best match their signature to. To do so, the authors needed to define the

Gaussian kernel and further approximate the transition probabilities, and those steps are

hinged on the assumption that the cell types are known.

A significant number of single-cell analyses have used hierarchical clustering [174, 175]

to infer cell heterogeneity and then compare if the inferred clusters matched with known

cell-types inferred using human observation (e.g., pathology) [176–178]. While making no

implicit assumptions on the data’s distribution, these works have identified several novel

mechanisms in the context of circulating tumor cells, preimplantation embryos and embryonic

stem cells and phospho-protein networks in cancer cells among other studies.

All the aforementioned methods for single-cell analysis are driven either by implicit

assumptions in normality, known correlations between genes and biological mechanisms, or

by supervised methods that use cell signatures. However, in problems where either there are

many mechanisms related to drug response or we do not know the mechanism by which the

drug impacts the cells, we have to turn to data-driven methods that first study characteristics

of the data and then choose a method/algorithm to apply on the data. Further interpretation

of the chosen method’s results requires interactions with domain experts to address the

primary goal of the analysis. To the best of our knowledge, no methods exist that can

use mixture-model distributions to infer clusters of cells, despite the observation that gene

expression of cells is best described using mixture models.

Through (1) prior methodological innovations presented in describing MiMoSA [10] to

cluster cells whose gene expressions are characterized as a mixture of Gaussians, (2) novel

biological mechanisms of metformin in TNBC established using candidate genes identified

by MiMoSA [11], and (3) additional methodological investigations presented in this work to

identify novel candidates for laboratory experiments, multiple research gaps are addressed in

our work that have been overlooked by previous analysis methods.

1. Our case study demonstrates a consistent method to go from data generation from drug

intervention, to identifying major candidates for focused laboratory experimentation to
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establish a drug’s molecular mechanisms.

2. Our work does not make prior assumptions on gene correlations with drug response to

reduce the number of genes for analysis.

3. Our choice of method was driven by observations made in our preliminary analysis,

which revealed that distributions of gene expression in cells were best described by

mixtures of Gaussians; this observation was aided by the fine resolution of data provided

by scRNA-seq.

B.4 Data and Data Characteristics

B.4.1 Data

The MDA-MB-231 breast cancer cell line (ATCC HTB-26) was cultured in Leibovitz’s L-15

medium with 10% fetal bovine serum for 5 days with and without metformin. Duplicate

cultures were processed for single-cell analysis. Single cells with and without metformin

were captured on a large-sized (17 − 25µm cell diameter) microfluidic mRNA-seq chip

known as the C1 Single-Cell Auto Prep IFC, using the CTM Single-Cell Auto Prep System

(Fluidigm Corporation, South San Francisco, CA). Cells were loaded onto the chips at a

concentration of 300 cells/ µl, stained for viability with a LIVE/DEAD cell viability assay kit

(Life Technologies, Carlsbad, CA), and imaged by phase contrast and fluorescence microscopy

to assess the number and viability of cells per capture site. Only single, live cells were

included in the analysis. cDNAs were prepared on-chip using the SMARTer Ultra Low

RNA kit for Illumina (Clontech Laboratories, Mountain View, CA). Single-cell cDNA size

distribution and concentration were measured with a Quant-iT Pico green dsDNA assay kit

(Life Technologies). Illumina libraries were constructed in 96-well plates using the Illumina

Nextera XT DNA Sample Preparation kit using the protocol supplied by Fluidigm. Libraries

were quantified by Agilent BioAnalyzer, using a high-sensitivity DNA analysis kit. Single-cell

Nextera XT (Illumina) libraries of one experiment were pooled and sequenced at 100 bp

paired-end on Illumina Hiseq to a depth of about 1 million reads. Single-cell mRNA-Seq data

were processed using MAP-RSeq pipeline [179].

B.4.2 Data Characteristics and Pre-processing

The data characteristics are as follows.
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1. The data comprises 192 baseline cells, and an equal number of cells treated with

metformin. In each cell, 23, 398 genes were sequenced, and MAP-RSeq [179] was used

obtain gene expression from sequencing data.

2. The expression value for each gene was normalized by accounting for the sequencing

depth (number of short DNA sequence strings from the sequencing platform aligned

to a gene) and length of the gene. The measure of gene expression is Reads Per Kilo

Million (RPKM). The range of the RPKM is between 0 and 2, 000.

3. Only 20% of the 23, 398 genes show expression levels greater than 32 on the RPKM

scale, which is a heuristic that can be used to decide whether a gene is expressed or not

as recommended by MAP-Rseq [179].

4. Roughly 10% of the baseline and metformin-treated cells had low sequencing coverage

(< 1M reads per cell), so we excluded those cells from our analysis.

5. The density functions of gene expression of a gene across all cells, and for all genes in a

cell comprise mixtures as shown in Figures B.2(a) and B.2(b) respectively. We used

the mclust package to fit a distribution for each gene and the best fit was a Gaussian

mixture model, where each component of the mixture was a Gaussian. Using the fitted

distribution, we performed non-parametric tests (Kolmogorov-Smirnov and Wilcoxon-

rank tests) against the distribution derived from the data. The null hypothesis in this

test is that the two distributions have equal means. The p-value in these tests were

greater than the significance level of 0.05, thereby failing to reject the null hypothesis,

meaning that the model fit was statistically close to the actual data’s distribution.

6. In some metformin-treated cells, at least one component of the mixture had phase-

shifted significantly. Therefore, metformin was affecting these cells in a way differently

from other cells, thereby making the drug’s effect on the cells non-uniform as shown in

Fig. B.2(c).

We observed that 80% of the genes were considered inactive in the data and as our focus in

this analysis was on the impact of metformin measured by changes in gene expression, only

genes in the top 5% of variance across cells were considered. The dataset for available for

analyses reduced the number of genes (features) for our analysis from 23, 398 to 1, 170. We

used the reduced set of genes and the samples as inputs to the unsupervised learning methods.

This way of reducing feature space is common in bioinformatics practices, although there is

no standard threshold for the amount of variance to consider in gene expression profiles. The

general assumption is that only a few biological pathways, comprising 100− 400 genes, are
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Figure B.3: The unsupervised learning view of single-cell analysis is explained as follows.
Cells exposed to a drug may exhibit differences in their gene expression behavior due to the
molecular interactions with the drug, and these differences are not known. The
computational problem is to cluster these cells (samples), and extract the genes (features)
that are behaving differently compared to other clusters (referred to as differentially
expressed genes). These differentially expressed genes are analyzed to study their biological
significance in all known disease and molecular pathways.

affected by a treatment, and thus these genes would highly likely be present within the top

5% most variable genes.

B.5 Methods and Results

We describe the approaches used to analyze single cells with an unsupervised learning approach

as shown in Fig. B.3, as cell-types induced by metformin are not yet known.

Analytical Approach and Visualization

Our overarching analytical approach was to begin with a method that best suited the data

characteristics and the method’s assumptions. Hence, we first began with mixture-model

based unsupervised learning embodied in MiMoSA, given the observation that distribution

of gene expressions in a single-cell population is a mixture of multiple distributions. Then,

assuming that cell distributions are characterized by a few differentially expressed genes, we

used hierarchical clustering approaches to verify the clusters. We chose that approach because

the clusters are formed based on similarity in Euclidean distances; hence, if the expression

117



of a few genes is sufficient to cluster cells into groups, then hierarchical clustering could, in

theory, capture cell clusters that are highly concordant with those found by MiMoSA. Finally,

for a range of k, we chose k-means clustering to assess whether the inferred clusters captured

the same differentially expressed genes identified by MiMoSA.

Since scRNA-seq allows one to study the expression of the genome in each cell, it would

also be of interest to visualize the subpopulations (i.e., inter-cluster separations) inferred

using single-cell analyses. Earlier efforts have used either linear methods, such as principal

component analysis (PCA) [180], or nonlinear methods such as t-distributed stochastic

neighbor embedding (t-SNE) [181] to reduce the dimensionality of the data to two or three

dimensions, and then projected the clusters onto these lower dimensions [172, 182]. Our

prior work demonstrating the clustering capabilities of MiMoSA showed that projection of

the cluster labels onto first two principal components computed using PCA helped visualize

cluster separations better than t-SNE did [10]. Hence, we demonstrate the inter-cluster

separation using only PCA in this work.

B.5.1 Inferring Cell Subpopulations

MiMoSA

Based on our knowledge of the presence of multiple distributions in our data, as illustrated

in Fig. B.2, we chose to use probability distribution models to cluster the cells. Probability

models cluster data according to a model (distribution) that best defines the data (such as

Gaussian mixture models, in this work), and treats each sample (cell) as being independent

from other samples. The assumption of independence is acceptable, since each cell can

behave differently and independently of other cells in response to metformin. We define the

likelihood Li of the mixture model for each cell yi of N cells as shown in Equation B.1, where

there are K mixtures/components, fk is the distribution of the component k, and θk is the

distribution’s parameters.

Li(θ1, ..., θN ; τ1, ...τK |y) =
N∏
i=1

k=K∑
k=1

τk.fk(yi, θk) (B.1)

We chose to fit the data with Gaussian mixture models (GMM) with varying volumes and

finite mixtures, as this provided the best likelihood score for fitting the data. The multivariate

Gaussian distribution function is as defined in Equation B.2, where (µk,
∑

k) is the mean and

covariance of the component k. Because our model has mixtures of Gaussians, we need to

compute the model parameters using the maximum likelihood (ML). For model estimation,
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Figure B.4: In (a) and (b), we project respectively, the baseline and metformin-treated cell
clusters found by MiMoSA onto the first two principal components derived from PCA.

there are two popular algorithms to choose from: the expectation maximization algorithm

(EM), and the variational Bayesian EM algorithm (VBEM). Both algorithms are iterative

and are known to have similar time complexities; VBEM can be used to perform automatic

model selection and is less prone to over-fitting than is EM. However, implementations of

VBEM required binning of the gene expression measures, and with small sample space and

large variation in the range of gene expression, the binning proved to be a challenge. Hence,

we used the EM algorithm for ML to learn the model parameters. The EM algorithm is a

two-step process. First, the E-step computes the conditional expectation of the observable

data and current parameter estimate. Then, the M -step maximizes the log-likelihood of the

parameter estimates learned in the E-step.

φk(yi|µk,
∑
k

) =
0.5exp{(yi − µk)T

∑−1
k (yi − µk)}√

det(2π
∑

k)
(B.2)

Once we have learned the model parameters, we then need to decide on an optimal number

of clusters. One method that has historically provided a consistent estimator of the number of

clusters is Bayesian information criteria (BIC) [183], where the value of K at which the BIC

value asymptotically converges is chosen. We implemented the model-based clustering from

the “mclust” package in R [184]. MiMoSA identified two clusters (B1, B2) in baseline cells,
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Table B.1: Subpopulations inferred in metformin-treated cells.

Method Cluster 1 Cluster 2 Cluster 3
MiMoSA 160 6 12

Agglomerative 163 5 10
Divisive 162 5 11

and three clusters (M1, M2, M3) in metformin-treated cells. The clustering visualizations

obtained using PCA for baseline and metformin-treated cells are shown in Figs. B.4(a)-B.4(b).

We observe that metformin treatment induced very little variability in the gene expression

across cells. Hence, the majority of the cells are tightly clustered together in M1.

B.5.2 Cluster Validation: Hierarchical Clustering

We validated the clusters inferred by MiMoSA by using hierarchical clustering methods. We

performed both agglomerative and divisive hierarchical clustering on metformin-treated cells.

Hierarchical clustering was chosen because it is based on comparison of pairwise similarity of

features. Principal component analysis of metformin-treated cells showed that 97% of the

variability was captured within the first two components. Thus, it is likely that a few genes

are probably significantly altered by metformin, while the rest of the genes show little change

in their expression. Hence, pairwise comparison of the cells would tend to cluster cells with

similar changes in expression of the genome.

Hierarchical clustering treated each of the N cells as a data point described by a set of M

feature coordinates, where each individual feature coordinate is the expression of a gene. We

computed the relative measure of proximity between the cells that encompassed all of the M

gene expression levels. We performed agglomerative clustering through successive merging

of N total clusters, based on proximity, into a single, global cluster. We performed divisive

clustering in the inverse direction, which is to begin with a single cluster (comprising all N

cells) and successively splitting it into N remaining clusters. We performed agglomerative

and divisive hierarchical clustering on the metformin-treated cells using the proximity matrix

and complete linkage; the details have been previously published [10]. We began pruning

the clustering hierarchy from both approaches by starting from the root until we arrived

at three sub-trees (clusters). We note the similarity among the number of cells present the

three main clusters, shown in Table B.1. Further, we find that all the cells in cluster 2

of both hierarchical methods overlapped with M2 from MiMoSA, with M2 is having one

additional cell. Thereby, we found that clusters inferred by MiMoSA were validated by at
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least one other clustering approach with a different mathematical formalism such as one of

those used in hierarchical clustering methods. Given the evidence of cluster replication in

these independent methods, we proceeded to analyze the clusters next to identify a set of

genes that are differentially expressed across these clusters.
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Figure B.5: The average gene expression of downregulated genes identified by MiMoSA and
k-means clustering using various values of k are illustrated. Specifically, (a) shows the
average gene expression levels in clusters found by MiMoSA, while (b) shows the same
number of clusters identified by k-means clustering in baseline and metformin-treated cells.
For a wide-range of k, it can be seen in Figs. (b)–(f) that k-means clustering was unable to
establish the same cluster of cells that helped identify the significantly downregulated genes.

B.5.3 Cluster Analysis

The clusters inferred by MiMoSA in metformin-treated cells are characterized by 310 differen-

tially expressed genes of which about 200 are downregulated and about 100 are upregulated

in cluster M2, compared to M1 and M3. Clusters M1 and M3 showed little variation in

gene expression, and the cells comprising cluster M2 were the most affected by metformin

that saw a striking downregulation of over 200 genes, as shown in Fig. B.5(a). We use
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(d) k-means: k = 5
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(e) k-means: k = 6
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(f) k-means: k = 7
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(g) k-means: k = 8
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(h) k-means: k = 9

Figure B.6: These box plots of the distribution of average gene expression of respective
clusters illustrate the inability of k-means clustering to capture the cells of M2 in one cluster
even if the features comprise only the downregulated genes identified by MiMoSA. In Figs.
(a) – (e), although one could observe downregulation of the genes, they are statistically not
significant because cluster K2 comprised only one cell, and in Figs. (f)–(h), clusters K1 and
K2 comprised only one cell.
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these differentially expressed genes in studying their biological relevance, which is discussed

in Sec. B.6.

B.5.4 Demonstrating the Unsuitability of k-Means Clustering

We set out to demonstrate that the data-driven clustering approach is better suited for

observing mixtures in the distribution of gene expressions. We first normalized (centering

followed by scaling) the baseline and the metformin-treated cells, which still keeps the original

variability in the data. Normalizing the data rendered the data to be normally distributed

with zero mean and unit variance. We looked to see if we could identify the downregulated

genes in metformin-treated cell clusters obtained using the k-means clustering algorithm. The

k-means clustering algorithm is an iterative algorithm that assigns a data point to a cluster

that minimizes the distance from the point to the cluster’s mean [185]. After performing the

clustering, we mapped the cluster labels with the cells and their associated expression levels of

before normalizing. Figure B.5(a) shows the baseline and metformin-treated cell clusters with

the expression of genes that are downregulated in M2, but upregulated in all other clusters;

the downregulation is not visually observable, but is statistically significant (p-value< 0.05).

However, Fig. B.5(b) shows that for the same number of baseline and metformin-treated cell

clusters, the clusters comprising the cells were different enough that we do not observe any

significant variations in the average gene expressions of the downregulated genes identified by

MiMoSA. We then increased the number of clusters (k) in metformin-treated cells from 3 to

7, and in all of these cases, we did not observe any clusters that could capture the same 6

cells of M2 found by MiMoSA. Therefore the downregulation was not observed in any of the

clusters across the different values of k, as can be seen in Figs. B.5(c)–B.5(f).

k-Means Clustering of Cells Using Only Downregulated Genes

Instead of clustering cells using genes among those with the highest variance in their expression,

we attempted to cluster the metformin-treated cells using only the downregulated genes

identified by MiMoSA. When we started with k = 2 as the initial value, we observed that

cluster K2 was created with only one cell in it with some evidence of downregulated genes as

observed in M2. Since the cluster was made up of only one cell, making any further analysis

statistically insignificant. To find out whether the six cells of M2 would be captured together,

we increased k from 2 to 9. As illustrated in Fig. B.6, none of the clusters captured the

behavior observed in M2 that was identified by MiMoSA, while the same singe-cell (in K2 in

k = 2) continued to be clustered by itself in K2 (k = 2 : 6) and in K1 (k = 7 : 9).
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A Semi-Supervised Approach to k-Means Clustering

Unlike unsupervised learning where no labeled data is used to infer clusters, semi-supervised

learning uses a small fraction of the overall data to guide the clustering behavior [186]. We

chose three cells (50% of M2) from each of the metformin-treated cell clusters identified by

MiMoSA. Using a semi-supervised k-means clustering approach proposed by Jain [185], we

obtained three clusters of cells. The semi-supervised approach also failed to cluster the six

cells of M2 together, which meant that we could still not observe the drastic downregulation

observed using MiMoSA.

All these results show that if single-cell subpopulations are identified based on subtle

variations in their gene expressions, a data-driven model-based unsupervised learning methods

could be better suited than k-means clustering algorithm.

B.6 Unsupervised Learning Informing Biology

Pathway analysis was performed using the differentially expressed genes to further understand

the biological relevance of the differentially expressed genes. The top pathways (and the

associated p-values) were oxidative phosphorylation (3.8E − 21), the citric acid (TCA) cycle,

and respiratory electron transport (2.1E−19) and mitochondrial translation (1.4E−07). These

pathways are relevant in the context of metformin in several ways. (1) The possibility of chemo-

prevention with metformin is being investigated by targeting the oxidaptive phosphorylation

pathway [167], (2) it has been shown that metformin inhibits cancer cell proliferation by

regulating the TCA cycle [166], and (3) metformin has been shown to target mitochondrial

metabolism in cancer therapies [168,169].

It is clear that the differentially expressed genes inferred from MiMoSA’s clusters are on

pathways known to have anticancer effects driven by metformin. Among these differentially

expressed genes in the above listed pathways, we have identified the following genes which are

implicated in anticancer mechanisms. (1) NDUFB9: an accessory subunit of the mitochondrial

membrane respiratory chain NADH dehydrogenase (complex I), and loss of NDUFB9 promotes

MDA-MB-231 cells proliferation, migration, and invasion; because of elevated levels of

reactive oxygen species (ROS) [187], (2) COX5B is a peripheral nuclear-encoded sub-unit

of CcO (cytochrome c oxidase), and loss of COZ5B induces mitochondrial dysfunction and

subsequently leads to suppression of cell growth and cell senescence [188], (3) MRPS7 is a

mitochondrial ribosomal protein, involved in mitochondrial translation, that is significantly

elevated in human breast cancer cells, leading to amplified mitochondrial biogenesis and/or

mitochondrial translation in epithelial breast cancer cells [189]. Therefore, mitochondrial
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Figure B.7: Illustration of the laboratory experiments performed to establish CDC42’s role
in meformin’s anticancer mechanisms in triple-negative breast cancer.

biogenesis could be a potential target for anticancer agents and therefore could explain the

retrospective success of metformin, which prevents the onset of nearly all types of cancer

in diabetic patients, likely because it functions as a “weak” mitochondrial poison, and (4)

CDC42: known to play a role in cell-migration and cell-proliferation.

NDUFB9, COX5B and MRPS7 are known to play role in anti-cancer mechanisms in

breast cancer. CDC42 has shown to be downregulated in breast cancer patients treated with

metformin and is also downregulated in our study.

B.6.1 Cell Migration and Cell Proliferation Experimental Study

Existence of prior knowledge of CDC42’s downregulation in triple-negative breast cancer

patients treated with metformin led us to perform an elaborate set of laboratory experiments

to study whether downregulation of CDC42 by metformin could demonstrate any anticancer

properties in triple-negative breast cancer [11]. We next give an overview of the experiments

as shown in Fig. B.7 and the summarize the findings that are detailed in [11].

Control experiment: Baseline MDA-MB-231 cells were cultured in a transwell dish

and separated by a membrane in one setting (for cell proliferation), and by a gap made by

scratching in another setting (for cell migration). If we let the dish sit for 24 hours (for cell
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proliferation) or 48 hours (for cell migration) hours, the cells invaded the membrane or the

gap.

Case experiment: Another set of MDA-MB-231 cells were cultured in another transwell

dish, but this time the CDC42 was depleted in the cells (mimicking downregulation by

metformin). After we let the dish sit for 24 hours (for cell proliferation) or 48 hours (for cell

migration) hours, it was observed that only a few cells whose CDC42 was depleted were able

to permeate through the membrane or the gap.

These findings established that downregulation of CDC42 induced by metformin inhibited

cell migration and cell proliferation. Therefore, at least one new mechanism of metformin’s

anticancer property has been is established, via the use of mixture-model based unsupervised

learning’s ability to identify candidate genes.

Future work based on the current findings will include the following: (1) We will investigate

what makes the six metformin-treated cells “diagnostic” in terms of inferring metformin’s

response, as these cells seem to be more sensitive to metformin than the other cells, and (2)

We will conduct laboratory experiments for the remaining candidate genes identified in this

work based on their differential expression after metformin treatment and their biological

relevance as shown by pathway analysis.

B.7 Summary

Using metformin and TNBC as a case study, this work demonstrates an end-to-end workflow

whereby learning methods can augment the drug and disease knowledge of pharmacogenomics

experts by identifying biomarkers of novel drug actions. Considering that TNBC currently

has no targeted treatments, this work represents an important step toward the design of

targeted therapies for treating this aggressive cancer in women. Identification of a few novel

and biologically significant candidates for laboratory experiments in the absence of a priori

knowledge is important given the large size of the human genome and limitations in costs

of laboratory experiments. The broader impact of this work in identifying a small set of

differentially expressed genes after drug treatment lies in its potential to augment the drug

and disease knowledge of pharmacogenomics expert, to support laboratory investigations,

and thereby help establish novel biological mechanisms associated with drug response in

diseases beyond triple-negative breast cancer.
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APPENDIX C

GITA: GAME-THEORETIC TRANSCRIPTOME
ANALYSIS

C.1 Introduction

It is known that gene expression is modifiable by both the environmental exposures and the

genetic background of a cell [190]. It is also known that oncogene activation (increased gene

expression level) is a driver of cancer progression and that tumor suppressor gene inactivation

(decreased gene expression level) can also drive cancer progression, as shown in Fig. C.1 (in

which the solid arrows indicate shifts in modes of distribution) [191]. Furthermore, in the

two largest publicly available transcriptome datasets for adenocarcinoma [192,193], in more

than 50% of the matched samples (cancerous and histologically non-cancerous tissue from

the same lung), (1) the sum of normalized gene expressions of tumor-suppressor genes was

greater than that of the same number of oncogenes for histologically labeled healthy samples,

and (2) the sum of normalized gene expressions of tumor suppressor genes was less than

the sum of normalized gene expressions of oncogenes in tumor samples. The exact causes

of activation or inactivation of genes are multifactorial, but tumorogenesis is correlated to

increased oncogene expression and tumor suppressor gene suppression [194].

Conversely, if sustained tumor suppressor gene expression overwhelms that of the oncogenes,

the lung will continue to stay healthy (non-cancerous), but not without a risk of developing

tumors in the future. Therefore, we expect that in reaction to environmental insults such as

tobacco smoke intake in the lungs, there is a competitive relationship between the oncogenes

and the tumor suppressor genes that dictates whether the lungs will remain healthy, be at

risk of cancer proliferation, or have cancerous tumors. We use that competitive relationship

between oncogenes and tumor suppressor genes to develop a novel game-theoretic model

to predict the proliferation of adenocarcinoma. Key contributions in our game-theoretic

model are, (1) a data-driven payoff function incorporating the expression of several

tumor-suppressor and oncogenes, as no one gene’s expression is sufficient to describe cancer

proliferation in every individual, and (2) solutions in Nash equilibrium from a 2-player

game with tumor-suppressor and oncogenes as players to predict the health of the lungs,

thereby reducing the complexity of the game, which would otherwise be played by N genes
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Figure C.1: Illustration of the oncogene’s (KRAS ) activation and tumor suppressor gene’s
(DPAK1 ) inactivation driving cancer progression, using probability density functions of gene
expression. The shaded regions of the PDFs indicate the overlap in their distributions.

whose molecular interactions are not yet understood.

Lung cancer was chosen for this case study as it is the number one cause of cancer death

worldwide [195]. The five-year survival rate for lung cancer is 17.8%, which is much lower

than that for other cancers, as it is most often diagnosed after the cancer has grown to

the point that it is difficult to treat effectively. However, the five-year survival rate for the

disease when it is diagnosed early is 54%. Therefore, there is an urgent need to develop

techniques to detect lung cancer in its earliest stages, which is why we have chosen early-stage

adenocarcinoma data for this study.

C.2 Contribution

Using changes in gene expression as a basis, this work proposes a data-driven 2-player game-

theoretic model to predict the risk of adenocarcinoma based on Nash equilibrium. A key

innovation in this work is the pay-off function which is a weighted composite of the expression

of a cohort of tumor-suppressor genes (as one player) and an analogous cohort of oncogenes
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(as the other player). Another novelty of the model is its ability to predict the risk that a

healthy sample will develop adenocarcinoma, if its associated gene expression is comparable

to that of early-stage tumor samples. The model is validated using two of the largest publicly

available adenocarcinoma datasets. The results show that (1) the model is able to distinguish

between healthy and cancerous samples with an accuracy of 93%, and (2) 95% of the healthy

samples said to be at risk had gene expressions comparable to those of samples with stage I

or stage II tumors, thereby predicting the imminent onset of adenocarcinoma.

C.3 Related Work

Conflicts in biology have been studied since the pioneering work of John Maynard Smith in

the context of species’ survival in a population [196]. Smith’s work has been extended to study

the evolution of diseases, including cancers [197,198]. From a biological perspective, to the

best of our knowledge, previous studies have not modeled predictability in adenocarcinoma

using gene expression. Work on evolutionary theory of disease development generally assumes

that an evolutionary process has led either to mutations or to the development of an unhealthy

cell (such as cancer cells), and then develop stochastic models (such as the Moran process) to

derive the probability that the mutation or unhealthy cell will take over the entire population

of cells. The analytical solutions of such models are simple if the difference in player’s fitness

is assumed to be constant. The practical limitations of these models are (1) the impossibility

of learning the fitness of cell types for each patient while the cancer is developing, because

generating such data from biopsies is not tractable; and (2) the high complexity of the Moran

processes that models cell types based on multiple genes and their associated expressions.

We address these limitations in Sec. C.4 by formulating a payoff function that combines the

expression of many genes by using distributions learned from a population, thereby allowing

for a compact model that captures the dynamics of cancer proliferation. While miRNA of

specific biomarkers has been used to predict adenocarcinoma in sputum samples [199], to the

best of our knowledge, the proposed approach is unique in using gene expression to predict

adenocarcinoma.

C.4 The Data-Driven Game

Players: In a game, players fight/play for some utility/payoff [200]. The players are two types

of genes, namely G1 (tumor suppressor genes) and G2 (oncogenes). The rationale for that

grouping is that several oncogenes have been identified as drivers of lung adenocarcinomas,
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Figure C.2: Illustration of risk distribution derived from population data.

while many tumor suppressor genes are known to be inactivated in individuals with this

type of cancer. Genes are chosen if (1) they have shown higher scores of Kullback-Liebler

divergence and significant p-values (p < 0.05), relative to other tumor suppressor genes and

oncogenes, in nonparametric statistical tests such as the Komogorov-Smirnov test (which

helps differentiate the PDFs for genes derived from healthy and from tumor samples); and

(2) they have been found to be prevalent in most adenocarcinoma cases, and are regulated

by epigenetic pathways [201,202]. The model does not limit how many genes compose each

group.

Strategies: To differentiate between healthy and tumor samples, we let the strategy space

S = {healthy(H), tumor(T )} be defined based on the biological functions of the genes in the

particular context of adenocarcinoma. However, to assess whether a healthy sample is at risk

of becoming cancerous, we let S = {healthy(H), risk(S), tumor(T )}.
Payoff: For a new patient, the player’s payoff is a weighted sum of the gene expressions of

genes comprising G1 and G2. Suppose we have M strategies, and each strategy is denoted by

m. For each gene gk in a type j, the corresponding payoff Um,m′

j is computed as shown in

Equation C.1. p(m|e(gk)) is the likelihood, derived from population data that given the gene

gk’s expression e(gk) and explains which of the m strategies the gene is likely supporting. E.g.,

p(sample is healthy|e(DAPK1) = 1, 250) > p(sample has tumor|e(DAPK1) = 1, 250) in

Fig. C.1; similar to the formulation of a naive Bayesian classifier. p(m|m′) is the probability

that one player’s strategy is m if the other player plays m′. This probability is derived from

data as the ratio of samples for which the normalized sum of the expression with label m
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Table C.1: Adenocarcinoma prediction performance using game theory. (“NA” means
ground truth labels are not available in dataset.)

Strategies
Dataset Num.

Strate-
gies

Histology
labels

Num. Samples H R T Sensitivity/Specificity Accuracy(p-value)

Microarray
Two

Healthy 49 48 NA 1
88.89/98.91 93.45(2.1E-16)

Tumor 58 6 NA 52

Three
Healthy 49 23 25 1

NA/NA NA
Tumor 58 6 0 52

NGS
Two

Healthy 37 36 NA 1
76.5/99.10 90.7/(5.466E-6)

Tumor 125 14 NA 111

Threee
Healthy 37 26 11 0

NA/NA NA
Tumor 125 14 0 111

was greater than m′. Finally, the game is defined in the normal form with a bimatrix U ,

where player G1 is the row player; player G2 is the column player; and their payoffs have the

corresponding subscripts.

Um.m′

j = p(m|m′)
|Gj |∑
k=1

p(m|e(gk))e(gk) (C.1)

U =

( Healthy Tumor

Healthy (U1,1
1 , U1,1

2 ) (U1,2
1 , U2,1

2 )

Tumor (U2,1
1 , U1,2

2 ) (U2,2
1 , U2,2

2 )

)

Notion of risk: We focus on healthy samples that have gene expression in the overlap

regions of the distribution of a gene’s expression in tumor and healthy samples of a population

as shown in Fig. C.2. For a histologically healthy sample, the fact that its expression

lies in the overlap region might suggest that it is more likely to develop a tumor in the

future. Therefore, we call this distribution from these gene expressions the distribution of

risk. The 95th percentile of the gene expression that comprises the PDF is such that the

(p(e(gi)|risk) > p(e(gi)|healthy)) and (p(e(gi)|risk) > p(e(gi)|tumor)).
Solution concept: With a payoff bimatrix U , the game is analyzed using solution concepts

such as the Nash equilibrium. In an N -player game, the strategies are said to be in equilibrium

if one player cannot unilaterally change its strategy to increase its own payoff. Suppose

there exist actions in S in a 2-player game. The pair of actions/strategies for player G1 and

player G2 are said to be in Nash equilibrium (NE) if (U
m∗1,m

∗
2

j , U
m∗2,m

∗
1

j ) ≥ (U
m1,m∗2
j , U

m2,m∗1
j )

∀m 6= m∗1, i.e., the utilities for the players with strategy pair cannot be improved by one

player’s changing to another strategy, ∀m 6= m∗1. A pair of actions/strategies (m∗2,m
∗
1) is

said to be in strict Nash equilibrium (SNE) if (U
m∗1,m

∗
2

j , U
m∗2,m

∗
1

j ) > (U
m1,m∗2
j , U

m2,m∗1
j ) ∀m 6= m∗1.

A mixed strategy is one in which a player chooses an action from a distribution over all
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actions. A game in normal form has at least one mixed-strategy Nash equilibrium [203].

Pure strategies are a degenerate case of mixed strategies, in which one action is chosen with

probability p = 1 and all others with p = 0 [203].

C.5 Results

Data: The effectiveness of the model is demonstrated using two of the largest publicly

available transcriptome datasets of both solid adenocarcinoma tumors and histologically

normal lung tissue from patients with lung adenocarcinoma. The tissues for both of these

datasets were diagnosed and staged by pathologists using histology. The transcriptomes in

these studies were measured by two different techniques: for the first, we used Affymetrix

HU133A microarrays [192]; for the second, we used next-generation sequencing (NGS) [193] of

RNA. We used two distinct methods of measuring expression to demonstrate that our model

is not unduly influenced by the underlying technology and to show that more cost-effective

methods of assaying expression, such as qPCR, could also be employed. Finally, as each of

these studies includes adjacent, histologically normal samples, our model is unlikely to be

affected by systemic confounders and stratifiers, such as environmental exposure, genetic

background, pharmaceutical use, sex, and age. Two histologically defined states of lung

health are defined in both the datasets: the lungs either have tumors, or are healthy (are

histologically noncancerous). We will use these labels to differentiate the samples in this

work.

Genes: The expressions in 237 tumor suppressor genes and 248 oncogenes were examined.

Ultimately, three tumor suppressor genes (DAPK1, APC, RASSF1 ), which constitute G1,

and three oncogenes (KRAS, BRAF, CCNE2 ), which constitute G2 were chosen using criteria

discussed in Sec. C.4.

Cross-validation and equilibrium selection: Using leave-one-out and k-fold cross-

validation, we trained our model for all but one sample (or k− 1 sets of samples), and learned

the distributions for each gene; each gene’s distribution is one of the two (or three) strategies

in this game. Then we input the test sample’s gene expression into the model and used

Equation C.1 to compute the utilities, using the distributions learned from the population

data. We then subjected the game to a test sample; the prediction of the health of the

sample’s lung was based on the strategies either in strict Nash equilibrium (SNE) or in the

pure strategy Nash equilibrium (PSNE) that maximized the sum of the player’s payoffs.

Performance: First, two strategies (H,T ) were used to predict whether the samples were

healthy or had tumor. Predictions were done for about 80% of the samples using solutions in
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SNE, and the model discriminated between healthy samples and the samples with tumor with

a specificity of 91.29% and a sensitivity of 100%. All the samples for which predictions were

made using SNE had expressions that did not fall in the overlap regions of their respective

gene expression distributions drawn from healthy and tumor samples. For all the samples

(i.e., in totality), the model discriminated between healthy samples and the samples with

tumor with a specificity of 82.7% and a sensitivity of 98.61% (see Table C.1). Prediction

of tumor samples saw higher false-negative rates because the expression profiles of some of

the healthy samples overlapped with those of the tumor samples, as seen in Fig. C.1. Other

efforts to discriminate among stages of cancer and between healthy and tumor samples have

made similar observations on the overlap of gene expression profiles in healthy and tumor

samples [190].

We define a quality metric for the PSNE used for prediction (among other possible PSNEs)

as the ratio of the sum of utilities from a strategy with maximum utility (such as that

of a strict Nash) and the sum of all utilities from strategies in NE. This metric provides

the proportion of dominance of the strategy in the Nash equilibrium chosen for prediction,

relative to other strategy pairs in NE. Figure C.3 illustrates the quality of the chosen PSNE

for prediction; we observed that the average quality score of PSNE in correct predictions

(box-plots along principal diagonal) was significantly higher than and differently distributed

from those found when the predictions were wrong (p < 0.0045).

Game versus standard classifiers: For the two-strategy case, since the truth labels

were known from the datasets, we used support vector machines (SVM) with linear and radial-

basis function kernels and random forests with leave-one-out and 10-fold cross-validations

for training the classifiers with an extensive grid-search to choose model parameters that

maximize accuracy and area under curve (AUC). The proposed model’s prediction accuracy

was better than these two standard classifiers by at least 8.4%. The misclassification was

for samples in the overlap regions of gene expression distributions (e.g., Figs. C.1 and C.2),

thereby establishing robustness of the data-driven game-theoretic model.

Risk evaluation: Given that our model discriminates between the histologically healthy

and tumor samples, we now focus on the healthy samples that have gene expression in the

overlap regions of the two distributions. We subjected the same datasets to the game, with

three strategies for each type of genes. In Table C.1, we show that 51% (25 out of 49 samples)

and 27% (11 out of 37 samples) of the healthy samples from the microarray and NGS datasets,

respectively, are at risk of developing tumors. Further, the samples identified as being at risk

were found to have quality scores comparable to those of samples whose health was correctly

predicted, indicating the confidence in risk prediction.

In recent research, a risk model for survivability using gene expression has been proposed
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Figure C.3: Game’s prediction results for the Microarray dataset. The x-axis are the
predicted labels and y-axis are the labels from the data. The box-plots show the variability
in quality of prediction.
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in the context of clinical outcomes [204]. The study of risk was beneficial for early-stage

adenocarcinoma (stage I) from an intervention perspective. In our work, the game theory

model showed that an average of 95% of the healthy samples that were predicted to be at

risk of developing tumor in the future (including 92% of, or 23 out of 25 samples in, the

microarray data, and 100% of the 11 samples in the NGS data) were very similar in expression

to the lung samples diagnosed with early-stage cancers (stages IA, IB, IIA, and IIB) in both

the microarray fluorescence and NGS data, in that there was a minimal L2-norm between

the gene expression vectors of healthy samples predicted to be at risk and those of tumor

samples. This result from our risk evaluation is consistent with the findings of the risk model

using survivability [204], suggesting a high likelihood of adenocarcinomas onset in these

histologically healthy samples.

C.6 Summary

By combining the analytics of learning and game theory with measures of gene expression, we

are able to accurately distinguish tumor samples from healthy samples. The additional value

of the model is its ability to predict, with a high degree of confidence, the risk that a healthy

lung sample will turn tumorous. Moreover, our game-theoretic approach can be generalized to

other types of disease and diverse phenotypes as we develop more complex and repeated games

with intricate payoff functions, as we continue to improve our understanding of the underlying

biological mechanisms and interactions. When combined with an easy way of collecting

samples from biofluids such as blood and sputum, the model, in focusing on molecular

interactions within and among cells, can augment the use of current standard histological

technologies, in which image patterns alone cannot identify risk of cancer progression. This

model can be extended to enable visualization of environmental impact on adenocarcinoma

development.
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APPENDIX D

SINGA-DRAGN: SINGAPORE DIABETIC
READMISSION GRAPHICAL MODEL

D.1 Introduction

This work uses a factor-graph-based probabilistic graphical model to analyze longitudinal data

presented by electronic health records (EHR) to forecast a series of future health complications

that might warrant hospital readmission. The choice of factor graphs is driven by their ability

to provide a compact expressive representation of random variables and can subsume both

Bayesian networks and Markov random fields (MRFs) [84, 85]. Furthermore, factor functions

learned from the data facilitate efficient mechanisms to forecast future events. Although

factor graphs have been pursued in information-theoretical settings, recent work has shown

that factor graphs can also be used in continuous monitoring of cyber-physical systems [205].

The EHR comprise details pertaining to a patient’s visit to a healthcare provider [206]. The

primary contents of the EHR include demographic information (e.g., age, gender, race, marital

status), epidemiological information (e.g., disease exposure), diagnosis history, laboratory

tests and results, drug prescriptions, and clinicians’ notes. The nature of the data in EHR

can be structured or unstructured. For example, structured data might include age, gender,

drug name and drug dosages; and unstructured data might include radiology, microbiology,

and histology reports as well as a clinician’s text inputs.

This work is motivated by the need to predict/forecast a diabetic patient’s short-term post-

surgical health complications. Type II Diabetes (T2DM) is a major chronic disease globally,

but especially in Asia. T2DM patients have increased risk of post-operative complications

due to pre-existing chronic diseases and the immunosuppressive effects of diabetes. While

doctors are able to provide value judgments on a patient’s ability to recover from surgery

and can implement preemptive intervention such as prophylactic antibiotics, they are unable

to accurately predict which patients are likely to suffer short-term complications (within

30 days) due to the interaction of preexisting chronic diseases and surgical factors. The

ability to accurately predict outcomes of surgery (even if performed using surgical robots)

based on multiple features of patients and details of operations to optimize perioperative

care in diabetic patients would represent a significant advance in the care of these patients.
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In particular, the prevention of readmissions secondary to post-operative complications

would represent a significant reduction in patient morbidity as well as cost savings to the

hospital. Furthermore, currently it is not possible either to make long-term forecast of

health conditions that will warrant readmissions and surgical interventions, or to query

population-wide comorbids (simultaneously presented health conditions) that contribute to

readmissions (including readmissions within 30 days).

D.2 Contribution

Toward that end, by demonstrating the use of factor-graphs embodied in a tool, SINGA-

DRAGN (Singapore Diabetes Readmission Graphical Network), this work makes the following

key contributions.

1. It demonstrates our ability to forecast ten test patients’ future health complications

and their expected times to hospital readmission given their current comorbids. The

forecast uses the factor functions inferred from EHR spanning 10 years of 100 diabetic

patients who have undergone surgeries at the National University Hospital, Singapore.

As an example, for diverticulosis as current diagnosis in test patients, we show that we

are able to forecast accurately their future complications.

2. We provide a technique that can use the most highly weighted factor functions to

facilitate the identification of common comorbids warranting readmission to the hospital

within 30 days.

D.3 Related Work and Analysis Challenges

Current EHR analyses have largely focused on (1) inferring comorbids (simultaneous presence

of multiple conditions) associated with specific background health conditions/diagnoses [207],

(2) early detection of specific events (for example, heart failure, atrial fibrillation and/or atrial

flutter, tumor relapse) [208–211], (3) recommending therapeutic options [212], and (4) predict-

ing adverse drug events (ADE) [213]. All these existing analyses use diagnoses codes (ICD-9,

ICD-10) or, diagnoses descriptions, or discharge codes associated with events/diagnoses prior

to specific events.

That leads to two key observations both of which reveal shortcomings in the context of

this work.
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1. If the analyses are customized for a single class of health problems, they alone might

not be sufficient in a large multi-speciality hospital setting. A physician might be

interested in information beyond prediction of specific health condition such as possible

downstream health effects as patients continue to age.

2. To predict specific health events/conditions, the analyses first identify patterns or

trajectories of diagnoses that lead to the event of interest. Then they train classifiers,

such as neural networks or random forests, which help identify important features

in addition to making predictions. Prediction based on trained patterns from high-

frequency events implicitly assumes causality of observed patterns of diagnoses. However,

this approach will overlook patterns of rare but important events if their occurrence is

very scarce in the training data, potentially leading to false or missed predictions.

Key challenges in analyzing the EHR data are as follows:

1. A current health complication in an individual could be a manifestation of several other

current and past complications. For example, a current complication such as chronic

renal failure might have resulted from early-stage renal failure (ESRF) in the past and

may be an outcome of type II diabetes as a background disease. On the other hand,

renal failure could be caused by other antecedent conditions, such as hypertension,

and might not progress to chronic renal failure. Hence a robust probabilistic model is

required in order to estimate the likelihood that any given individual will develop a

disease, given his/her medical history relative to a particular population.

2. With longitudinal clinical data alone, identified disease associations do not imply

causality. Through the availability of population-level clinical data, it is hoped that

such associations will capture trends that warrant investigation through a clinical trial

or from additional data, such as genomic data. For example, studies have shown a

higher incidence of cancer in type I and type II diabetics [214, 215]. However, that

does not imply that cancer observed in diabetic patients is caused by diabetes. Indeed,

there could be other genetic predispositions for cancer in such patients, which may be

elucidated only if other data, such as genetic information, is made available.

3. A predictive model must be able to distinguish repeat diagnoses and complications

to avoid spurious outcomes as a result of administrative or syntax-related repetitions.

For example, a patient might appear to have multiple admission events for the same

diagnosis because of documentation requirements, but the model should recognize them

as a single episode of that diagnosis. For another example, an individual might be

admitted to the hospital for fever several times in their lifetime, but the causes and
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contexts of the fevers may be different. Furthermore, several other complications might

be driving the fevers and each combination of such complications in the context of fever

must be learned from the population’s EHR data.

Our work addresses the shortcomings of existing EHR analyses in the following ways:

1. To the best of our knowledge, our factor-graph based graphical model-based tool is

the first of its kind that can be trained on all combinations of diagnoses observed in a

population. By design, we are able to provide a global view of an individual’s health by

forecasting future health complications with current comorbids (diagnoses) as inputs.

2. We track every combination of comorbids associated with a current diagnosis that

lead to different sets of comorbids of the next diagnosis, embodied in what we call

factor functions. We then rank the likelihood that these factor functions will be

associated with specific combinations of current comorbids to determine the most

common population-wide combinations of comorbids.

3. We identify every combination of comorbids associated with current diagnoses that act

as precursors to subsequent diagnoses that warranted hospital readmission within 30

days.

4. Because we rank every combination of comorbids observed in a population, we are

now able to provide population-level statistics of all prevailing health conditions and

common complications associated with hospital readmissions.

D.4 Data

The data were derived from a longitudinal inpatient dataset comprising approximately 500, 000

medical records, including lab and radiology reports, emergency department notes, prescribed

and dispensed medications, surgical notes, and discharge summaries. It is a National

Healthcare Group (NHG) Domain Specific Review Board (DSRB) approved database and

resides in NUH servers and workstations governed by institutional data policies.

Records of 11, 000 unique T2DM patients who underwent surgery at NUH over a period of

10 years were extracted. Diabetic surgical patients were identified according to the multiple

text permutations of diabetes diagnoses and further stratified according the diabetic subtype

(e.g., gestational diabetes). Each record contains primary (raw) data such as anonymized

demographic information (nationality, race, age, gender, blood type), the condition in which
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Figure D.1: Course of one patient’s health over 10 years derived from the person’s electronic
health records. Complications in blue are those for which the patient was readmitted to the
hospital, but not within 30 days of the previous discharge. Complications in red are those for
which the patient was readmitted to the hospital within 30 days of the previous discharge.

the patient was admitted (heart rate, sugar levels, weight, etc.), emergency admission

notes, lab report information (blood tests, urine analysis, etc.), surgical notes (type of

surgery), patient discharge summaries, and medications prescribed and dispensed. Secondary

(processed) data include patient conformance (whether the patient conforms to the treatment

prescribed and manages sugar levels), time sequence of admission diagnoses, and so on. If we

were to treat each of these labels in the data as a feature, the dataset would have about 200

features in total.

D.4.1 Data Format

The data are presented in an XML file format provided by the database software engineered by

Oracle. This is the native enterprise data storage format, and significant processing is required

to transform the data into analyzable data. The dataset is presented as a compressed dump

file approximately 2.5 Tb in size divided into nine semantic groups in separate databases.
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D.4.2 Data Transformation

Each attribute in the medical record is a container in the XML file. Using a standard XML

to .CSV conversion software, we extracted and flattened the files. In this initial study, 100

randomly selected individual patient records, including all semantic groups, were manually

reviewed by doctors to check for systemic errors and to identify inaccuracies. This process

identified major errors in data transformation that resulted in omissions and were subsequently

fixed through alterations to the data-flattening program to account for idiosyncratic variations

of the source index files through the years.

After the data-flattening program was altered, the extraction software was unable to fully

convert all the files because of the size and complexity of the database. The flattening software

had to be specifically engineered to reduce the time needed to extract the 100 patient’s data

to just under an hour for the same batch size.

Significant effort was employed to ensure data veracity at every step. After data transforma-

tion, another error-checking step using one hundred randomly selected patients was performed

to ensure that no packet losses or frame-short errors occurred during transformation. The

completed data package was presented as a MS-SQL database for analysis.

D.4.3 Data Exploration and Curation

The nine semantic groups in the database contain many features required for routine clinical

operations, such as ward transfer locations and duplicate demographic information. We

indexed the database according to diagnoses and relevant fields we selected to optimize the

size of the dataset for analysis. The feature selection strategy is inclusive to incorporate

known as well as potentially unknown variables in the T2DM and surgical readmission

literature while reducing the dataset size through elimination of duplicate, redundant, or

unfilled features.

In addition, there were many sparse features because of changes in the data capture

methodologies or creation of new fields over the 10-year period. In situations where a sparse

data variable was critical to the analysis, statistical imputation techniques were employed to

enable the representation of the feature.

Next, medication lists were consolidated, and variations in medication dictionaries were

regularized according to the hospital’s current pharmacopeia. To compare drug doses in the

analysis, a “standard dose equivalence” (SDE) list was established, against which the various

doses, frequencies and duration of drugs used were calibrated.

To address the issue of changes in classification standards (such as ICD-9 to ICD-10
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transitions through the years [216], or the absence of such coding in the data, a separate

program was developed by the NUS team to assign codes to diagnoses. Using the UMLS

metathesaurus and a text-mining engine, the program was able to assign ICD-10 codes to the

Concept Unit Identifier (CUI) level for analysis. There is an ongoing effort to complete ICD

code assignment to term (LUI) and even-string level (SUI) concept identifiers, which would

greatly improve the granularity of the data field. That process is eliminating incorrectly

assigned diagnosis codes due to spelling errors and semantic duplications (e.g., heart failure

and congestive cardiac failure) and regularizing ICD coding standards. An example of a

patient’s record is shown in Fig. D.1.

Anonymization of data is carried out at the data administrator level and governed according

to institutional data privacy polices. Structured identifiers (e.g., identity numbers, names)

are assigned random numbers and with a re-identification key is kept by the administrator.

Any re-identification needs are subject to review by the project IRB and data committee. For

unstructured identifiers, another program developed by NUS researchers is used to remove

patient identifiers in local medical text data (such as discharge summaries and notes). The

program is able to remove 99.8% of identifiers and has been vigorously tested on a local

medical text lexicon to ensure complete removal of identifiers without eliminating matched

terms that are non-identifiers.

D.5 Longitudinal Analysis Using Factor Graphs

Factor graphs provide an expressive representation of random variables. Factor graphs

can subsume both Bayesian networks and Markov random fields (MRFs). While Bayesian

networks have been quite extensively used in probabilistic methods, their application in this

domain is limited by their implicit assumption of causality in observed events, which might

not be biologically substantiated.

A factor graph is a bipartite, undirected graph G = (V ;E) that represents the relations

among random variables, which can be causal or non-causal relations. A vertex (node) v ∈ V
corresponds to a random variable or a factor function. An undirected edge e ∈ E connects a

factor function to a random variable. In a factor graph representation, the relations among the

variables are explicitly specified by factor functions f(Xi) that describe the relation among

variables in the set Xi. The undirected nature of the graph does not assume causality in the

observed events. The variable in this work correspond to comorbids such as hypertension,

chronic renal failure (CRF), heart failure and anemia or any combination of them observed in

hospital visits and are inferred from the EHR of a population. A factor function in a factor
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Figure D.2: For pairwise relationships between health complications expressed by factor
functions established from population data, we can trace paths from health complications in
node “a” to health complications in node “f” in two possible ways.

graph can be any function, e.g., a probability mass function or any real-valued function.

In this work, we define the factor function as an imply function comprising the current set

of complications and possible future complications. The imply function I(a|b) finds the

occurrences (and hence the probability) of health complication(s) “b”, given the current

health complication(s) “a”, where [a, b] ∈ X. Conversely, I(b|a) finds the occurrences (and

hence the probability) of health complication(s) “a”, given the current health complication(s)

“b”, where [b, a] ∈ X.

If every patients’ course of health over 10 years is treated as a graph, using our approach,

the factor functions provide an understanding of all pairwise relationships between pairs

of comorbids (diagnoses during visits) in the population as shown in Fig. D.2. For a given

starting health complication as “a”, we can find all factor functions with current health

complication as “a” that was observed in the population. Using a set of rules (for e.g., most

occurring transitions, transition more likely in a specific race etc.), we can choose a transition

that is most relevant. We can build the future health complications by recursively looking up

factor functions with likely current health complications. For a future health complication“f”,

if a patient is starting with diagnoses “a”, two possible paths are a → b → d → f and

a→ e→ f as shown in Fig. D.2.
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Table D.1: An example factor function table for a patient.

From complica-
tions

To complications Time
between
compli-
cations
(days)

Postural hy-
potension

DVT 380

Anemia, ESRF Herpes zoster,
hypertension

100

Diverticulosis ESRF 27
Diverticulosis Hyperlipidemia 25
Diverticulosis Poorly controlled

hypertension
24

Diverticulosis Polyneuropathy 29

Table D.2: An example of factor functions across patients.

From compli-
cations

To compli-
cations

Number
of occur-
rences

Time
between
compli-
cations
(days)

30-day
readmis-
sion flag

Postural
hypotension

DVT 1 380 Yes

Anaemia,
ESRF

Herpes
zoster, hy-
pertension

2 100,56 No

Diverticulosis ESRF 3 3,11,7 Yes
Diverticulosis Hyperlipid-

emia
3 25, 28, 26 Yes

Diverticulosis Poorly con-
trolled hy-
pertension

3 24, 30, 25 Yes

Diverticulosis Polyneuro-
pathy

3 29, 25, 27 Yes

ESRF Chronic re-
nal failure

4 3, 9, 4, 8 Yes
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(a) An example test patient

(b) Establishing course of health using factor functions

Figure D.3: Fig. (a) illustrates an example of a patient with a current diagnosis of
diverticulosis as input to the SINGA-DRAGN tool, which has precomputed the factor
functions. Fig. (b) shows how one plausible course of health for the next two visits to the
hospital are computed based on the functions derived from Table D.2. The red line in Fig.
(b) traverses the functions starting with the patient’s current diagnoses.

D.5.1 Computation Model: Training on Population Data

The entire development of the tool was done in R, version 3.2.2. The tool was first trained

on the population data using the training module of SINGA-DRAGN and then tested with a

patient’s current complication t forecast the individual’s health. We trained SINGA-DRAGN

with 12, 000 EHR of 100 T2DM patients (all of whom were older than 40) who underwent
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surgery at NUH during a 10-year period. We used EHR of 10 other T2DM patients who

underwent surgery at NUH during the same 10-year period for testing. For the initial

development of the model, we chose the EHR of those 100 patients because those EHR had

been manually verified by physicians at NUH.

First, each patient’s record was individually processed. A data structure describing the

factor functions in terms of the relationship of the imply function and the time between

observed complications was output for each patient. We can output of each those data

structures as a table in a .CSV file. As an illustration, an example factor function table

with a few descriptive diagnoses, derived from a patient’s record is shown in Table D.1. (in

the tool, the human-readable diagnoses are replaced by in ICD-9/ICD-10 codes). There

are multiple diagnoses of complications in some functions, as these diagnoses were all made

during the same visit to the hospital. For example, the stacked diagnoses in each hospital

visit shown in Fig. D.3(a).

Next, once the factor function tables have been computed for all patients, a script looks for

identical factor functions. Identical factor functions are those that have the same diagnoses

in the from complications and the same diagnoses in the to complications. We also count

the occurrences of identical factor functions and obtain the distribution of time between

complications during each occurrence. The training module of SINGA-DRAGN then outputs

the data-structure for all the factor functions learned. Table D.2 shows few of the factor

functions. For the 100 patients that were used to train the model, a total of 603, 475 factor

functions were computed. (We discuss computational performance issues in Sec. D.6.)

D.5.2 Patient-specific Forecast

We now describe the order in which we process a test patient’s current comorbid being

Diverticulosis, using the factor functions inferred from the training cohort and tabulated in

Table D.2.

1. From Table D.2, we extract all functions that have the current comorbid of the patient.

We subset Table.D.2 with from complications having Diverticulosis.

2. In Table D.2, there are four entries with Diverticulosis in the from from complications

column and each of them have occurred three times. Therefore, the likelihood of each

of these complications in the future is equal. We believe that this particular observation

is an artifact of a sampling bias in a very small cohort. However, we are unlikely to

observe this uniform distribution of likelihoods when our model is trained on the larger

cohort.

146



3. Since we have recorded the readmission intervals associating current comorbids to future

diagnoses in all their occurrences in the training cohort, we can compute their statistical

average. For example, for the transition from Diverticulosis to Hyperlipidemia, the

average time to readmission is 27 days ({27 + 26 + 28}/3). These likelihoods will be

different across different demographic factors when a larger cohort is processed.

4. Next we establish plausible courses of health using the computed factor functions from

the Table D.2, as shown in Fig. D.3(b). As an example, this test patient currently

diagnosed with diverticulosis could later be diagnosed with early-stage renal failure,

and next be diagnosed with chronic renal failure. The course of health forecast is

diverticulosis → early-stage renal failure → chronic renal failure. We can not only

provide the average time to readmissions for every pair of events in this patient’s course

of health, but also raise warnings if at least one patient during the training phase was

readmitted within 30 days with this pair of comorbids (diverticulosis, early-stage renal

failure) using the 30-day readmission flag is set to “Yes” in Table D.2.

Although we learned over half a million factor functions from the EHR associated with the

100 patients, for diverticulosis, we needed only a few factor functions to find the next possible

health conditions of this patient. From this patient’s actual medical record, we learned that

the model predicted all three actual complications correctly as shown in Fig. D.3(a). However,

a new possible diagnosis was found, which is early-stage renal failure (ESRF), which might

imply that the cohort of patients with similar characteristics might suffer this complication

in the future. We believe that use of our approach would change the way physicians screen

patients who present with certain diseases and bundle interventions that are common to

patients with certain complications. Currently in our tool, for each of the diagnoses in the

forecast, we recursively query the factor function obtained from the training module and

forecast complications in upto five hospital visits in the future, as shown in Fig. D.3(b).

For testing our model, we used ten new test patients (not in the training cohort) to predict

their next potential health complication (diagnosis) given that they had Diverticulosis as

the current health condition. Only five of the ten patients had Diverticulosis in their EHR

as a diagnosis. In all these five patients, the future diagnoses that were learned from the

training data was present in all of their diagnoses when they visited the hospital after having

Diverticulosis diagnosis in their previous visit. Furthermore, in three among the five test

patients, their time to readmission was on average two weeks more than the estimated

time to readmission from the factor functions and in the remaining two patients, the time

readmission was within a week of previous discharge. While the accuracy of these forecast

are promising and take this feasibility study a step in the right direction, we are aware of
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several other variables that were not considered while we were training our model as well as

biases introduced by a small training cohort. We will discuss these factors in Sec. D.6.

D.5.3 Population-specific Statistics

From an epidemiological perspective, it is interesting to ask questions such as, “what compli-

cations are most prevalent diabetic patients in Singapore, which increases healthcare costs

and adversely affect the population’s health?” Our model keeps count of the occurrences of

complications (which are weights of the factor functions in this work) as shown in Table D.2.

Further, we can query the model about the health complications that can reveal potential

precursors and future complications based on population data.

The model is being developed to accommodate more training data, and eventually will

scale to health-system level populations. The validity of the model can be further tested in

other hospitals in Singapore. This will work better inform subgroups of patients about their

future health complications, and will provide more personalized information to allow patients

and physicians to make better decisions on early intervention.

D.6 Discussion

The goal of this work was to demonstrate the feasibility of a factor graph-based approach to

analyzing longitudinal data from electronic health records. Since the training dataset used

was very small compared to the actual diabetic cohort in Singapore, our model has several

limitations which we discuss next and will address in our future work.

D.6.1 Performance and Scalability

The training module of SINGA-DRAGN was designed to allow for processing of multiple

patients’ data in parallel based on the threads available in the computing environment. On

a 2.7 GHz Intel i7 processor with Mac OS X and an IBM POWER8 machine with Linux,

patient data were processed eight patients at a time and each patient’s analysis took on an

average of 40 seconds with a standard deviation of 13 seconds. The greater the number of

visits, the larger the time to compute the factor function table for that particular patient.

The script that computed the factor function table took roughly three minutes to coalesce

the factor functions from all patients. The total number of factor functions was a little more
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than half a million. We anticipate that the number of factor functions will grow when we

incorporate the entire cohort’s records.

In our future work, we intend to make SINGA-DRAGN compatible with a MapReduce

framework that can process the patient’s data in parallel in the Map() procedure and then

combine the factor function tables into a composite one with a Reduce() procedure. That will

allow us to use high-performance computing facilities, such as the Blue Waters supercomputer

at the University of Illinois at Urbana-Champaign, or the cluster facilities at the National

Supercomputing Center, Singapore for executing the training module.

D.6.2 Demographic Integration and Forecast Accuracy

For the 100 patients in this trial phase we did not incorporate any demographic features.

However, we plan to incorporate demographic information such as age, gender, and race

as priors in our future work to improve prediction and make the model very expressive.

One challenge in EHR analysis we mentioned in Sec. D.3 was the need to manage repeated

diagnoses. Let us suppose a patient who is currently diagnosed with hypertension gets

treated with medications and the patient conforms to the same. Because of medication, let

us assume that in a few subsequent hospital admissions, hypertension is not listed among

other diagnoses. It is highly likely that this same patient has other conditions along with

hypertension in the future, since aging introduces tends to compound health complications.

Then, a different factor function that has other comorbids as part of the patients’ health will

be used to forecast future health complications. If hypertension is the only diagnosis in this

patient’s health after many years, then, the same factor function that was used to forecast

this patient’s health with this diagnosis as the only input will be used, and therefore might

be prone to errors in forecast. We believe that our approach has the ability to capture as

many possible health conditions individuals can transition into, based on training data. At

the same time, we are also aware that we will not be able to learn every possible transition

between combination of comorbids if they are not observed in the training cohort.

To forecast possible courses of health, we currently generate forecasts for up to three

potential hospital visits in the future. However, we intend to generate up to ten hospital visits

in the future and rank the plausible forecasts by their likelihoods, using a combination of the

occurrence of the factor functions along with the associated estimated times to readmission

and information on whether the comorbids are associated with 30-day readmissions.
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D.6.3 Cost-Benefit Analysis for Early Intervention

The current version of SINGA-DRAGN has provided physicians with the first tool that quan-

titatively assesses common health complications that cause recurring hospital re-admissions.

Further, insights on which complications warrant surgeries and how the aftereffects of surgeries

affect the patients’ health are being gained with this feasibility study. Currently, physicians

in collaboration with hospital administration are assessing the downstream cost of care for

these common complications, and as well as the degradation in quality of life resulting from

associated surgeries. When our future analyses encompass the entire cohort, we will be able

to identify a tipping point in an individual’s predicted health, beyond which the patient’s

aging can be improved through preemptive clinical/surgical intervention.

D.7 Summary

This work describes the success of a feasibility study in a factor graph-based approach that

was used to analyzing data from electronic health records (EHR) to predict the future health

complications and patients’ expected time to hospital readmission. Factor functions were

learned from over 10 years of EHR data for 100 diabetic patients who have undergone surgeries

at the National University Hospital, Singapore. Furthermore, we used the most frequently

occurring factor functions to identify comorbids that warrant hospital readmissions. Such

information can inform the physician/clinician about when to intervene in order to maximize

patients’ quality of life and minimize the cost of their care.
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