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ABSTRACT

The sum-product problem of Erdős and Szemerédi asserts that any subset of the inte-

gers has many products or many sums. We explore quantitative aspects of the problem

over both the real numbers and finite fields of prime order.
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PREFACE

I was fortunate enough to have the choice of which results to include in my thesis. On

the other hand, these results lie in unrelated areas and make it rather challenging to

incorporate into a single unifying file. Instead, I chose to only include my two works

on the sum–product problem, which were a natural choice for a thesis. The work over

the real numbers is solo, while the work over finite fields is joint with Misha Rudnev

and Ilya Shkredov.
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CHAPTER 1

INTRODUCTION

Let A,B ⊂ R be finite. We define the sumset and product set via

A+B := {a+ b : a ∈ A, b ∈ B}, AB := {ab : a ∈ A, b ∈ B}.

The main sum–product conjecture of Erdős and Szmerédi [1] reads as follows.

Conjecture 1 (Sum–product Conjecture). Fix ε > 0. For any A ⊂ Z finite and

sufficiently large in size, we have

max{|A+ A|, |AA|} ≥ |A|2−ε.

Note that Conjecture 1 is true for arithmetic progressions, since the product set is

large. Similarly, Conjecture 1 its true for geometric progressions, since the sumset is

large. Conjecture 1 is a quantitative analog of the fact that Z has no nontrivial finite

subrings.

Conjecture 1 has a long and rich history which we outline in more Chapter 2, but

here we take time to outline some key ideas. Erdős and Szemerédi themselves proved

that Conjecture 1 holds for some ε < 1. It was Elekes who first realized the connection

of the sum–product conjecture and incidence geometry. In a beautiful two page paper

[2] he made progress towards Conjecture 1 and highlighted a certain dictionary that

has played a vital role since. His key observation was that a set, A, with few products

and few sums induces a point–line incidence structure with many incidences. This is

evident as the points (A + A) × (AA) and lines y = a(x − c) for a, c ∈ A have |A|3

incidences of the form (b+ c, ab), y = a(x− c)).
In mathematics, it is very useful to have a dictionary between seemingly unrelated

subjects (i.e. the Nullstellensatz), and indeed the present case is no different. On the

one hand, we can use ideas from incidence geometry to prove sum-product theorems.

This allows us to incorporate powerful tools such as the polynomial method.
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On the other hand, Conjecture 1 comes from the area of additive combinatorics [3].

A part of this subject is concerned with understanding various properties of the sumset.

For instance, in what general situations can we guarantee the sumset is large? One

such example is if the set is large dimensional [3, Chapter 5], then the sumset must be

large. More relevant is that if the product set is small, then the sumset is large [4].

Before Konyagin and Shkredov [5], there had not been a way to incorporate tech-

niques from additive combinatorics in conjunction with incidence geometry to attack

Conjecture 1. They were able to incorporate the theory of higher order energies, largely

developed by Shkredov [6]. We will get into the technical details later, but we give a

brief overview here. It is common to study the additive energy, that is solutions to

a+ b = c+ d, a, b, c, d ∈ A.

It turns out the additive energy is an `2 estimate for the convolution of 1A with itself

and thus makes the theory easier. Higher order energies involve higher moments, for

instance the number of solutions to

a+ b = c+ d = e+ f, a, b, c, d, e, f ∈ A.

This turns out to be more subtle to study. One tool is the spectral theorem from

linear algebra. In Chapter 2 we further develop this study. We formulate a conjecture

that would yield significant progress towards Conjecture 1 and make some headway

ourselves.

There is a version of Conjecture 1 over finite fields. For instance, we have the

following conjecture.

Conjecture 2 (Finite Field Sum–Product). Let A ⊂ Fp of size ≤ p1/2. Then for all

ε > 0,

|A+ A|+ |AA| �ε |A|2−ε.

We do not have growth in the sumset or product set if A = Fp so some smallness

condition must be present in such a conjecture. Again, Conjecture 2 is a quantitative

analog of the fact that Fp has no nontrivial subfields.

In [7], they made the first progress towards Conjecture 1, essentially establishing

Conjecture 2 for some ε < 1. It turns out that the finite field sum–product problem

has applications to several other areas of math and computer science, some of which
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were outlined in their original paper (indeed applications to Kakeya-type problems

were the original motivation in [7]).

In Chapter 3, we incorporate the tools from higher order energies to make progress

towards Conjecture 2. This was originally inspired by unpublished work of Shkredov

and myself and that work was the first time the theory of higher order energies made

an appearance in Conjecture 2. We utilized some techniques from [8] and incorporated

them into the state of the art incidence bound over Fp [9].
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CHAPTER 2

SUM-PRODUCT OVER THE REAL NUMBERS

2.1 Introduction

Let A,B ⊂ R be finite. We define the sumset and product set via

A+B := {a+ b : a ∈ A, b ∈ B}, AB := {ab : a ∈ A, b ∈ B}.

In this paper, we say b & a if a = O(b logc |A|) for some c > 0 and a ∼ b if b & a

and a & b. Equipped with these definitions we are ready to state the Erdős–Szemerédi

sum–product conjecture.

Conjecture 3. [1] Fix δ ≤ 1. Then for any finite A ⊂ Z, one has

|A+ A|+ |AA| & |A|1+δ.

In the same paper, Erdős and Szemerédi showed that Conjecture 33 holds for some

δ > 0, which began the history of the so called “sum–product conjecture.” Fourteen

years passed until Nathanson [10] modified their proof and made the first quantita-

tive estimate, showing Conjecture 33 holds for δ = 1/31. Ford [11] quickly improved

Nathanson’s argument to obtain δ = 1/15 is admissible in Conjecture 33. Ford did

not have this world record for long, as within months Elekes [2] showed Conjecture 33

holds for δ = 1/4. Elekes’ techniques were completely different, as he remarkably made

use of the Szemerédi–Trotter theorem from incidence geometry. His work marks the

beginning of modern progress towards resolving Conjecture 33.

Solymosi [12] showed δ = 3/11 is admissible in Conjecture 33. Later, in [13] he

used elementary geometry in a clever way to improve this to δ = 1/3. This remained

the world record for six years, until Konyagin and Shkredov [5] combined Solymosi’s

argument with Shkredov’s work in additive combinatorics [6, 14] to increase Solymosi’s

exponent. In a more recent paper [15], the same authors proved δ = 1/3 + 5/9813
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is admissible in Conjecture 33. Rudnev, Shkredov and Stevens [16] replaced a “few

sums many products” lemma used in [15] to obtain the world record that Conjecture

33 holds for δ = 1/3 + 1/1509. We make further improvements to show the following.

Theorem 4. Let A ⊂ R be finite. Then

|AA|+ |A+ A| & |A|4/3+5/5277.

Thus we improve Solymosi’s exponent by nearly 1
1000

. We remark that Theorem 4

also holds if one replaces the product set with the quotient set.

We now turn our attention to decomposition results, which is the main motivation

for the current work. About 35 years after the original sum–product conjecture, Balog

and Wooley [17] provided a new way of looking at the problem of intrinsic interest

and applicable (see [18] for the first application). To state their results, we recall some

definitions. Again, let A,B ⊂ R be finite. We define two representation functions of

x ∈ R:

rA−B(x) = #{(a, b) ∈ A×B : x = a− b}, rA/B(x) = #{(a, b) ∈ A×B : a = xb}.

The additive energy and multiplicative energy of A and B are defined via

E+(A,B) =
∑
x

rA−B(x)2, E×(A,B) =
∑
x

rA/B(x)2.

We set E+(A) = E+(A,A) and E×(A) = E×(A,A). Heuristically, E+(A) is large when

A has additive structure. This is seen more clearly by the relation

E+(A) = #{(a, b, c, , d) ∈ A4 : a+ b = c+ d}.

Theorem 5. [17] Let A be a finite subset of the real numbers and δ = 2/33. Then

there exist B,C that partition A satisfying

max{E+(B), E×(C)} . |A|3−δ, max{E+(B,C), E×(B,C)} . |A|3−δ/2.

Thus any set may be decomposed into two sets, one with little additive structure and

one with little multiplicative structure. Note that Theorem 5 with exponent δ implies

Conjecture 33 with exponent δ, via Cauchy–Schwarz:
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|A|2|B|2 ≤ |A+B|E+(A,B), |A|2|B|2 ≤ |AB|E×(A,B).

This is the so called “energy analog” of the sum–product problem. In the same paper

Balog and Wooley provided the example

{(2m− 1)2j : 1 ≤ m ≤ S, 1 ≤ j ≤ P}, (2.1)

which shows, when S = P 2, it is not possible to improve Theorem 5 beyond δ = 2/3.

Balog and Wooley use an iterative argument to combine two key lemmas and prove

Theorem 5. The first is a rather easy lemma concerning how the multiplicative energy

behaves with respect to unions. The second is at the heart of the proof, which says if

the additive energy is large, then there is a large subset that has small multiplicative

energy. To accomplish this, they utilized Solymosi’s [13] sum–product result as well

as the Balog–Szemerédi–Gowers theorem from additive combinatorics. Konyagin and

Shkredov [15] replaced this lemma with a completely different lemma of their own

that allowed them to show δ = 1/5 is admissible in Theorem 5. This lemma is what

inspired the current work. Finally Rudnev, Shkredov, and Stevens [16] improved this

to δ = 1/4, which is the energy analog of Elekes’ result towards Conjecture 33. We

improve this to δ = 7/26 below. To fully state our contribution, we require a few more

definitions.

We now introduce the third order energies of a set:

E+
3 (A,B) =

∑
x

rA−B(x)3, E×3 (A,B) =
∑
x

rA/B(x)3.

We set E+
3 (A) = E+

3 (A,A) and E×3 (A) = E×3 (A,A).

We first provide motivation for working with higher moments. It starts with the Sze-

merédi–Trotter theorem, which has played a pivotal role in the sum–product problem

since [2] (see chapter 8 of [3]).

Theorem 6. [Szemerédi–Trotter] Let P be a finite set of points and L be a finite set

of lines. Then the number of incidences between P and L is bounded from above:

#{(p, `) ∈ P × L : p ∈ `} ≤ 4|P |2/3|L|2/3 + 4|P |+ |L|.

Elekes’ result can be recovered by applying Theorem 6 to P = (A + A) × AA and

L = {y = a(x − c) : a, c ∈ A}. Now, for an arbitrary point set, P , if we apply
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Szemerédi–Trotter to the set of ∆–popular lines and P , we can simplify to obtain

|L| . max{|P |2∆−3, |P |∆−1}.

Typically the first term is larger (for instance if P = A × A), and so we see that

Szemerédi–Trotter is most naturally a third moment estimate.

At the forefront of a number of works concerning the sum–product phenomenon, i.e.

[5, 15, 16, 19, 8, 20], is the quantity d+(A).

Definition 7. Let A ⊂ R finite. We define

d+(A) := sup
B 6=∅

E+
3 (A,B)

|A||B|2
,

and the multiplicative analog

d×(A) := sup
B 6=∅

E×3 (A,B)

|A||B|2
.

It follows that 1 ≤ d+(A), d×(A) ≤ |A|. Intuitively, the closer d+(A) is to |A|, the

more additive structure A has and the closer d×(A) is to |A|, the more multiplicative

structure A has. Observe that the supremums in Definition 7 are achieved for some

|B| ≤ |A|2 since
E+

3 (A,B)

|A||B|2
≤ |A|

2

|B|
,

E×3 (A,B)

|A||B|2
≤ |A|

2

|B|
.

Remark 8. We have that d+(A) ∼ d̃+(A), where d̃+(A) is the smallest quantity such

that

#{x : rA−B(x) ≥ τ} ≤ d̃+(A)|A||B|2τ−3,

holds for all finite B ⊂ R and τ ≥ 1 [20, Lemma 17]. Indeed by Chebyshev’s inequality,

d̃+(A) ≤ d+(A) since

#{x : rA−B(x) ≥ τ} ≤ τ−3
∑
x

rA−B(x)3 ≤ E+
3 (A,B)

|A||B|2
|A||B|2τ−3.

The reverse inequality follows, up to a logarithm, from a dyadic decomposition

E+
3 (A,B)

|A||B|2
∼ 1

|A||B|2
max

1≤τ≤|A|
#{x : τ ≤ rA−B(x) < 2τ}τ 3 ≤ d̃+(A).
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In previous literature, d̃+(A) been taken as the definition of d+(A). Finally, we remark

that d+(A) is related to the following operator norm

d+(A) =
1

|A|
||TA||3`3/2→`3 , TA(f) :=

∑
x

f(x)1A(y + x).

Thus the quantity d+(A) arises from thinking of A as an operator rather than a set.

The quantities d+(A) and d×(A) can be thought of as a `3 estimate for rA−B and

rA/B, where we are allowed to vary B. This flexibility in choosing B has proved useful

in applications.

Example 9. Consider a random A ⊂ {1, . . . , n} where each element is chosen indepen-

dently and uniformly with probability p > n−1/3. Clearly |A| ∼ pn with high probability.

Let B = {1, . . . , n}. It follows from Chernoff’s inequality (for instance, Chapter 1 of

[3]) and the union bound, that every x with rB−B(x) ≥ p−2 log n satisfies

rA−B(x) ∼ p · rB−B(x), rA−A(x) ∼ p2 · rB−B(x).

This quickly implies

E+
3 (A,B)

|A||B|2
∼ p|A|, E+

3 (A)

|A|3
∼ p2|A|, E+(A,B)

|A||B|
∼ |A|, E+(A)

|A|2
∼ p|A|.

In this example d+(A) is larger than what is predicted by the third order energy, where

we only allow B = A in Definition 7. Furthermore, the analog of Definition 7 for

additive energy is as large as possible, that is & |A|; however, using more involved

techniques one can show d+(A) ∼ p|A|. Thus the trivial bounds

E+
3 (A)

|A|3
≤ d+(A) ≤ max

B 6=∅

E+(A,B)

|A||B|
,

are not tight in general.

Sumset and product set information can be deduced from upper bounds for d+(A)

and d×(A), respectively. For instance, a simple application of Cauchy–Schwarz and

Definition 7 applied to B = A reveal

|A|4

|A+ A|
≤ E+(A) ≤ E+

3 (A)1/2

(∑
x

rA−A(x)

)1/2

. d+(A)1/2|A|5/2. (2.2)
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Thus we find that using this argument, one can only show |A + A| & |A|3/2, even

with optimal information for d+(A). Improvements have been made to (2.2), which

highlights the advantage of allowing B to vary in Definition 7.

Theorem 10. [[6, Theorem 11] , [21, Corollary 10], see also [8], [19, Theorem 13],

see also [14]] Let A ⊂ R. Then

|A+A| & |A|58/37d+(A)−21/37, |A−A| & |A|8/5d+(A)−3/5, E+(A) . d+(A)
7
13 |A|

32
13 .

The multiplicative versions of these bounds all hold by applying the additive version

to the bigger of log{a ∈ A : a > 0} and log−{a ∈ A : a < 0}. Thus one basic strategy

in several sum–product improvements is as follows: use Szemerédi–Trotter to obtain a

third moment estimate and then use Theorem 10 to get improved sum–product bounds.

The strength of such theorems can be accurately tested by setting d+(A) = 1. Thus

the result for difference sets is slightly stronger than that of sumsets and both are

stronger than what we can say about the more general additive energy. Quantitative

improvements to Theorem 10 would improve all of our main theorems.

Remark 11. Suppose that one was able to improve upon Theorem 10 to

|A+ A| & |A|2d+(A)−1.

Then, combining this with the multiplicative version:

|AA| & |A|2d×(A)−1,

and applying Theorem 12 below, we would have the sum–product estimate

|A+ A||AA| & |A|3.

With this viewpoint, the obstacle to further improvements of Conjecture 33 is our cur-

rent individual understanding of “sum” and “product,” rather than the combination of

the two. The question is how much second moment information can be extracted from

third moment information.

Information about d+(A) and d×(A) can be used in conjunction with Theorem 10

to obtain bounds for sum–product problems. Our next theorem shows that these two

quantities are related.
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Theorem 12. Let A ⊂ R be finite. Then there exists X, Y ⊂ A such that

(i) X ∪ Y = A,

(ii) |X|, |Y | ≥ |A|/2,

(iii) d+(X)d×(Y ) . |A|.

This is optimal, as can be seen by taking A to be an arithmetic or geometric progres-

sion. We point out that the sets X and Y in Theorem 12 have the convenient property

that they are both of size at least |A|/2, which has not always been the case with

decomposition results; this type of result first appeared in [16, Theorem 12]. Theorem

12 can be interpreted as a d+, d× analog of Elekes’ [2] sum–product bound, in light of

(2.2). Since Theorem 10 is better than (2.2), we can go beyond this Elekes threshold,

answering a question in [16].

Theorem 13. Let A ⊂ R be finite and δ = 1/4. Then there exist B,C that partition

A with

max{d+(B), d×(C)} . |A|1−2δ.

Furthermore,

max{E+(B), E×(C)} . |A|3−
14
13
δ, max{E+(B,A), E×(C,A)} . |A|3−δ.

This improves upon [20, Theorem 4] as well as [16, Theorem 1] and builds upon the

work found there. Note that in the last inequality we have a δ in place of a δ/2. While

Theorem 12 is optimal, we do not expect Theorem 13 to be optimal. This lies at the

heart of the sum–product phenomenon. With current technology, we are unable to

fully rule out the possibility of a set with partial additive and multiplicative structure.

Note the example above in (2.1) shows that one cannot prove 2δ > 3/4, as explained

in [20].

We now mention more applications of Theorem 12. First, we consider the difference–

quotient and difference–product problems. For A ⊂ R, we set

A−1 = {a−1 : a ∈ A},

where we adopt the convention that 0−1 = 0.

10



Conjecture 14. Let δ ≤ 1. Then for any finite A ⊂ R, one has

|A− A|+ |AA−1| & |A|1+δ,

|A− A|+ |AA| & |A|1+δ.

Solymosi’s [13] techniques do not work for difference sets, but Elekes’ [2] do which

shows that Conjecture 14 holds for δ = 1/4. Solymosi’s earlier work [12] implies that

δ = 3/11 is admissible in Conjecture 14. Konyagin and Rudnev [21] adapted techniques

from [8] to show the first statement of Conjecture 14 holds for δ = 1 + 9/31 and the

second statement holds for δ = 1+11/39. Using Theorem 12, we improve their results.

Theorem 15. Let A ⊂ R be finite. Then

|A− A|+ |AA−1| & |A|1+3/10,

|A− A|+ |AA| & |A|1+7/24

In a similar spirit to the sum–product phenomenon, there are a host of “expander

problems,” for instance [22, 23, 19, 24, 25]. They roughly state that when one creates

a set by combining addition and multiplication, the resulting set should be large. For

instance, it is of interest to find the best lower bounds for

|AA± A|, |AA± AA|, |A(A± A)|, max
a∈A
|A(A± a)|.

Typically what happens is that one can apply Szemerédi–Trotter to obtain a lower

bound of the order of magnitude of |A|3/2 (see chapter 8 of [3]) and improving upon

this takes additional ideas that usually depend of the structure of the expander (see

for instance [23, 19, 25]). The problem of AA + A is unique in that it has resisted

improvements from Szemerédi–Trotter (see [24]), until a very recent preprint of Roche–

Newton, Ruzsa, Shen, and Shkredov [25]. Typically expanders are conjectured to have

size & |A|2, but we are usually far from proving so.

We use Theorem 12 to improve upon the lower bound for the expanders found in

[19]. Our idea is to use their techniques to the subsets of A appearing in Theorem 12

which have more suitable additive and multiplicative structure.

Theorem 16. Let A ⊂ R be finite. Then

|A(A− A)| & |A|3/2+7/226,

11



|A(A+ A)| & |A|3/2+1/46,

max
a∈A
|A(A± a)| & |A|3/2+1/182.

Note that Solymosi’s technique in [13] is better suited for sumsets, while Shkredov’s

and his coauthors techniques (as in Theorem 10) are better suited for difference sets.

This subtlety is not at the heart of the sum–product phenomenon, so we mention the

following theorem which we will prove during the proof of Theorem 4.

Theorem 17. Let A ⊂ R be finite. Then

|A+ A|+ |A− A|+ |AA|+ |AA−1| & |A|4/3+1/753.

The work in this paper builds directly upon the works in [17, 2, 21, 19, 16, 8, 6, 20, 14,

13]. It is worth noting that there are orthogonal works addressing the sum–product

phenomenon. Chang [4] and Bourgain and Chang [26] have developed interesting

techniques from harmonic analysis. See Croot and Hart [27] and the references within

for another perspective of the problem.

2.2 Main decomposition result

We recall that the proof of Theorem 5 [17] required two ingredients: a way to say if A

has additive structure then there is a large subset without multiplicative structure and

a simple lemma to understand how multiplicative energy interacts with unions. They

then concluded the proof with an iterative argument. We adopt a similar strategy and

begin with the former. To begin, we need another definition.

Definition 18. We define the quantity D×(A) to be the infimum of

|Q|2|R|2|A|−1t−3,

such that

A ⊂ {x : rQ/R(x) ≥ t}, 1 ≤ t ≤ |Q|1/2|R||A|−1/2, |R| ≤ |Q|.

We similarly define D+(A) to be the infimum of |Q|2|R|2|A|−1t−3 such that

A ⊂ {x : rQ−R(x) ≥ t}, 1 ≤ t ≤ |Q|1/2|R||A|−1/2, |R| ≤ |Q|.
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Thus D×(A) is small if we can efficiently place A into a set of popular quotients.

The admittedly strange quantity |Q|2|R|2|A|−1t−3 is chosen in light of (2.4) below. To

understand D×(A) a bit better, note that taking Q = AB, R = B and t = |B| for any

B finite, nonempty and not containing zero, one finds

D×(A) ≤ |AB|
2

|A||B|
. (2.3)

Thus D×(A) ≤ |A| (|B| = 1) and is smaller when |AA| is significantly smaller than

|A|3/2.
The sole reason for introducing these quantities is the following proposition that

relates D×(A) to d+(A), as defined in Definition 7.

Proposition 19 (Lemma 13 in [15]). Let A ⊂ R be finite. Then

d+(A) . D×(A), (2.4)

d×(A) . D+(A).

In [15], they had a slightly different definition of D+(A), D×(A), replacing the con-

dition t . |Q|1/2|R||A|−1/2 with |A| ≤ |Q|. The condition we impose is weaker, but the

proof of (2.4) works line for line as in [15, Lemma 13].

To better understand (2.4), one can check that (2.2), (2.3) and (2.4) together imply

Elekes’ [2] bound |A|5/2 . |AA||A+ A|.
We briefly summarize the proof of (2.4) as it plays a crucial role in what lies below.

Consider the following sets of points and lines:

P = Q× {x : rA−B(x) ≥ τ}, L = {y =
x

r
− b : r ∈ R, b ∈ B}.

The number of incidences is at least

tτ#{x : rA−B(x) ≥ τ}.

Then (2.4) follows from applying Theorem 6 (Szemerédi–Trotter) and a modest cal-

culation. Thus D×(A) allows us to efficiently transform the equation y = a − b into

y = q
r
− b which is better suited for Szemerédi–Trotter.

There has been a variety of notational choices for these quantities, but we made our

choice for the reason that we wanted the quantity with a capital letter to be larger
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than the one with a lower case letter. Note that (2.4) is the only thing we use that

relates addition and multiplication and what follows is massaging this inequality for

our purposes. We remark that a symmetric version of the following lemma holds with

the roles of d+ and d× reversed.

Lemma 20. Let T ⊂ R be a finite, nonempty set. Then there exists a nonempty

A′ ⊂ T such that

d×(T )d+(A′) .
|A′|2

|T |
, |A′| & d×(T ).

If one had that A′ = T , then Lemma 20 would immediately imply Theorem 12,

but this is unfortunately too strong to hope for. We first sketch the main idea of the

proof. If d×(T ) is large, then there is a large subset A′ ⊂ T with small D×(A′). This is

believable as both quantities are defined via multiplication. Then we finish by applying

(2.4) to turn this into additive information about A′.

Proof. By Definition 7 of d×(T ), there is a nonempty B ⊂ R such that

d×(T ) ∼ E×3 (T,B)

|T ||B|2
.

Then by the definition of E×3 (T,B) and a dyadic decomposition, there exists a ∆ ≥ 1

such that

E×3 (T,B) ∼ |P |∆3, P = {x : ∆ ≤ rT/B(x) ≤ 2∆}.

By another dyadic decomposition, there q ≥ 1 such that

|P |∆ ∼
∑
x∈P

rT/B(x) =
∑
a∈T

rB/P−1(a) ∼ |A′|q, A′ = {a′ ∈ T : q ≤ rB/P−1(a′) ≤ 2q}.

From Definition 18, we then have

D×(A′) . |B|2|P |2q−3|A′|−1,

provided that

q . |A′|−1/2max{|P |, |B|}1/2min{|P |, |B|}.

Since |A′|q ∼ ∆|P |, it is enough to verify

|P |∆q . max{|P |, |B|}min{|P |, |B|}2.

14



This follows from ∆ ≤ |B| and q ≤ min{|B|, |P |}. Then by (2.4), we find

d+(A′) . D×(A′) . |B|2|P |2q−3|A′|−1 . |B|2|A′|2∆−3|P |−1 . |A′|2

d×(T )|T |
.

For the second inequality, we use ∆2q ≤ |T ||B|2 to obtain

|A′| & |P |∆q−1 ∼ E×3 (T,B)q−1∆−2 & d×(T ).

The referee observed that Lemma 20 is in a similar spirit to the Balog–Szemerédi–

Gowers theorem [3, Theorem 2.29] geared towards the sum–product problem (one

should consider d×(A) ≥ |A|K−1 for some small K ≥ 1). The difference is instead of

concluding a large susbet with small product set as in Balog–Szemerédi–Gowers, we

conclude the weaker condition that there is a large subset with no additive structure.

Lemma 20 is quantitatively better since we are able to incorporate both addition and

multiplication.

We now move onto the easier “union lemma.” We remark that we avoid an application

of Hölder’s inequality, which appears in [20].

Lemma 21. Let A1, . . . , AK ⊂ R be finite and disjoint. Then

d+(
K⋃
j=1

Aj) ≤ |
K⋃
j=1

Aj|−1
(

K∑
j=1

d+(Aj)
1/3|Aj|1/3

)3

.

Similarly,

d×(
K⋃
j=1

Aj) ≤ |
K⋃
j=1

Aj|−1
(

K∑
j=1

d×(Aj)
1/3|Aj|1/3

)3

.

Proof. Let B ⊂ R be arbitrary and finite. Then by disjointness and the triangle

inequality in `3(Z) , we have

E+
3 (

K⋃
j=1

Aj, B)1/3 =

(∑
x

r⋃K
j=1 Aj−B(x)3

)1/3

=

∑
x

(
K∑
j=1

rAj−B(x)

)3
1/3

≤
K∑
j=1

(∑
x

rAj−B(x)3

)1/3

=
K∑
j=1

E+
3 (Aj, B)1/3.

15



Recall Definition 7

d+(A) = sup
B 6=∅

E+
3 (A,B)

|A||B|2
.

Since B was arbitrary, we may take the B that maximizes the left hand side of the

above equation, after dividing by |B|2/3, and use E+
3 (Aj, B) ≤ d+(Aj)|Aj||B|2 on the

right hand side to finish the proof. The proof of the second statement follows line by

line to that of the first.

We now iterate Lemma 20 and prove Theorem 12. Set A0 = ∅ and suppose that

A0, A1, . . . , Aj−1 have been defined. Put T = A \ (A0 ∪ . . . ∪ Aj−1) and define Aj via

Lemma 20 as a nonempty set Aj ⊂ T such that

d×(T )d+(Aj) . |Aj|2|T |−1.

We continue this process until

|A1 ∪ . . . ∪ AK | ≥ |A|/2.

This process must terminate for some finite K ≤ |A|/2 since the Aj are nonempty

and disjoint. Set Y = A \ (A1 ∪ · · · ∪ AK−1) and X = A1 ∪ · · · ∪ AK . It is clear that

|X| ≥ |A|/2 and |Y | ≥ |A|/2, otherwise the process would have stopped at step K− 1.

By Lemma 20 and the monotonicity of |A|d×(A), for 1 ≤ j ≤ K,

|Y |d×(Y )d+(Aj) ≤ |A \ (A1 ∪ · · · ∪ Aj−1)|d×(A \ (A1 ∪ · · · ∪ Aj−1))d+(Aj) . |Aj|2.

Combining with Lemma 21, we have

d+(
K⋃
j=1

Aj) ≤ |
K⋃
j=1

Aj|−1
(

K∑
j=1

d+(Aj)
1/3|Aj|1/3

)3

. |X|−1
(

K∑
j=1

|Aj|

)3

|Y |−1d×(Y )−1 . |X|2|A|−1d×(Y )−1.

Theorem 12 follows from |X| ≤ |A|.
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2.3 Difference–quotient estimate and Balog–Wooley

decomposition

We start with Theorem 15. It follows from this stronger proposition.

Proposition 22. Let A ⊂ R. Then

|A− A||AA−1| & |A|13/5,

|A− A|35|AA|37 & |A|93.

Proof. By Theorem 12, there exist X, Y ⊂ A such that |X|, |Y | ≥ |A|/2 and

d+(X)d×(Y ) . |A|.

By the second statement of Theorem 10,

d+(X) & |X|8/3|X −X|−5/3, d×(Y ) & |Y |8/3|Y Y −1|−5/3.

Combining these, we get

|A|16/3

|A− A|5/3|AA−1|5/3
.

|X|8/3|Y |8/3

|X −X|5/3|Y Y −1|5/3
. |A|.

The only difference in the proof of the second statement is we use the first statement

of Theorem 10 in the form

d×(Y ) & |Y |58/21|Y Y |−37/21,

in place of d×(Y ) & |Y |8/3|Y Y −1|−5/3.

We now prove Theorem 13, which we restate for the reader’s convenience.

Theorem 13. Let A ⊂ R be finite and δ = 1/4. Then there exist B,C that partition

A with

max{d+(B), d×(C)} . |A|1−2δ.

Furthermore,

max{E+(B), E×(C)} . |A|3−
14
13
δ, max{E+(B,A), E×(C,A)} . |A|3−δ.
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The proof can be summarized as iterating Theorem 12 at most logarithmically many

times, and then applying the third statement of Theorem 10 for the first inequality

and Cauchy–Schwarz for the second.

Proof. By Theorem 12, there exists A1 such that |A1| ≥ |A|/2 and d+(A1) . |A|1/2 or

d×(A1) . |A|1/2. Similarly, suppose A1, . . . , AK−1 are defined. Then by Theorem 12,

there exists AK ⊂ A \ (A1 ∪ · · · ∪ AK−1) such that |AK | ≥ |A \ (A1 ∪ · · · ∪ AK−1)|/2
and d+(AK) . |A|1/2 or d×(AK) . |A|1/2.

Continue this process until |AK | ≤ |A|1/2, since then we trivially have that d+(AK) ≤
|A|1/2. By size considerations, this process will terminate in ≤ log |A| steps.

Let S ⊂ {1, . . . , K} be the set of indices j such that d+(Aj) . |A|1/2 and P be the

remaining indices and set

B =
⋃
j∈S

Aj, C =
⋃
j∈P

Aj.

Then by Lemma 21 and Hölder’s inequality, since |S| ≤ log |A| and d+(Aj) . |A|1/2,
we find

d+(B) = d+( ∪
j∈S

Aj) . | ∪
j∈S

Aj|−1
(∑
j∈S

|Aj|1/3d+(Aj)
1/3

)3

. | ∪
j∈S

Aj|−1
∑
j∈S

|Aj|d+(Aj) . |A|1/2.

Similarly d×(C) . |A|1/2.
To conclude the first inequality in the second statement, note by the third inequality

of Theorem 10, we have

E+(B) . d+(B)
7
13 |B|

32
13 . |A|3−7/26,

and similarly E×(C) . |A|3−7/26.
For the second inequality in the second statement, we apply Cauchy–Schwarz to
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obtain

E+(B,A) ≤ E+
3 (B,A)1/2

(∑
x

rA−B(x)

)1/2

≤ (d+(B)|B||A|2)1/2(|A||B|)1/2

. |A|1/4|A|5/2.

Similarly E×(C,A) . |A|11/4.

2.4 Expander inequalities

We use Theorem 12 and the techniques of [19] to establish the three inequalities of

Theorem 16. We first recall the two lemmas from their paper that we use.

Lemma 23. [[19, Lemma 8]] Let A,B ⊂ R be finite and nonempty such that |A| ∼ |B|.
Then there exists b ∈ B such that

|A|6 . |A(A+ b)|2E×(A).

Lemma 24. [[19, Lemma 11]] Let A ⊂ R be finite and nonempty. Then for all nonzero

α ∈ R,

E×(A)2 . |A(A+ α)||A|
58
13d+(A)

7
13 .

Note that the authors only claim Lemma 3.9 with D×(A) in place of d+(A) which is

weaker in light of (2.4). The bound we claim follows from the same proof, which the

authors mention immediately following their proof of Lemma 3.9.

Proof of Theorem 16. Observe that Lemma 3.8 is good when the multiplicative energy

of A is small and Lemma 3.9 is good when the multiplicative energy of A is large. We

now plan to estimate

max
a∈A
|A(A± a)|, |A(A± A)|.

We can start all three proofs in the same way.

Lemma 25. Let A ⊂ R be finite and nonempty. Then there exist a, b ∈ A such that

|A|46/13 . |A(A+ a)|2d×(A)7/13,
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|A|46/13 . |A(A− b)|2d×(A)7/13.

Suppose further that |A(A + a)| ≤ r|A|3/2 for all a ∈ A. Then there is an X ⊂ A of

size at least |A|/2 such that

d+(X) . r26/7.

Proof. By Lemma 3.8, there is an a ∈ A such that |A|6 . |A(A±a)|2E×(A). Combining

this with the third inequality of Theorem 10 and simplifying yields the first statement

of the lemma. To obtain the second statement, let X and Y be as given by Theorem

12. To finish, apply the first statement to Y , use d+(X)d×(Y ) . |A|, and simplify.

Now we investigate each expander separately.

(i)[A(A−A), A(A+A)] Suppose |A(A±A)| ≤ r|A|3/2. Since A(A± a) ⊂ A(A±A)

for all a ∈ A, we may apply Lemma 25 to obtain a set X ⊂ A of size at least |A|/2 such

that d+(X) . r26/7. Now, using |A(A± A)| ≥ |X ±X| along with the first statement

of Theorem 10 in the plus case and the second statement of Theorem 10 in the minus

case and simplifying gives r & |A|1/46 and r & |A|7/226, respectively.

(ii)[A(A± a)] Suppose

max
a∈A
|A(A± a)| ≤ r|A|3/2.

By Lemma 25, there is an X ⊂ A of size at least |A|/2 such that d+(X) ≤ r26/7. On

the other hand, by Lemma 3.8 and Lemma 3.9,

|A|3 . E×(X)r2, E×(X)2 . r|A|3/2+58/13d+(X)7/13.

Combining these and using d+(X) . r26/7 yields r & |A|1/182.

2.5 Sum–product estimate

We now proceed to prove Theorem 4. The proof set–up is the same as in [5, 15], which

we now discuss. Let A ⊂ R be finite. Konyagin and Shkredov start with the geometric

approach of Solymosi [13], and can improve upon it unless Aλ := A ∩ λA has additive

structure for many choices of λ. They then prove an energy analog of a “few sums,

many products” result in [28] and use it to conclude that |AλAλ| is almost as big as

possible. It turns out that these sets are relatively small (≈ |A|2/3) and this does not

immediately improve Solymosi’s [13] exponent of 1/3 in Conjecture 33. Konyagin and
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Shkredov then use Katz–Koester [29] inclusion, that is

AλAλ ⊂ AA ∩ λAA,

as well as (2.4) and the first inequality of Theorem 10, to also give an improvement

in this case. In what remains, we quantitatively improve part of the argument and

provide the entirety of the proof of [15] to see how our new pieces fit in.

The “few sums, many products” lemma was improved recently in [16]. We interpret

this improvement as a fourth order energy estimate which allows us to more efficiently

apply the lemma. The work in [16] relied on bounding the number of solutions to

p+ b

q + c
=
p′ + b′

q′ + c′
, p, q, p′, q′ ∈ P, b, c, b′, c′ ∈ B,

which was addressed [19] while studying the expanders from Theorem 16. It turns

out, much like Szemerédi–Trotter is naturally a third moment estimate, their lemma

is naturally a fourth moment estimate.

We use fourth order energy for the first time in the sum–product problem and define

E+
4 (A,B) =

∑
x

rA−B(x)4, E×4 (A,B) =
∑
x

rA/B(x)4.

Similar to d+(A) as in Definition 7, we define d+4 (A).

Definition 26. Let A ⊂ R be finite. Then we define d+4 (A) via

d+4 (A) := sup
B 6=∅

E+
4 (A,B)

|A||B|3
.

It is easy to see that one has 1 ≤ d+4 (A) ≤ |A| and in fact we have d+4 (A) ≤ d+(A).

So d+4 (A) is the fourth moment analog of d+(A). Note that the supremum in Definition

26 is obtained for some |B| ≤ |A|3/2, since

E+
4 (A,B)

|A||B|3
≤ |A|

3

|B|2
.

Similar to Remark 8, we relate d+4 (A) to an operator norm.
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Remark 27. Consider the linear operator, as in Remark 8,

TA(f) :=
∑
x

1A(x)f(y + x). (2.5)

Then

d+4 (A) =
1

|A|
||TA||4`4/3→`4 , d+(A) =

1

|A|
||TA||3`3/2→`3 .

It is easy to see that

||TA||`1→`∞ = |A|, |A|1/2 ≤ ||TA||`2→`2 ≤ |A|.

A bound of the form

||TA||`2→`2 . |A|1/2,

together with interpolation with `1 → `∞ implies d+4 (A) ≤ d+(A) . 1. Thus `2 → `2

estimates are stronger, but higher moments are flexible to work with, as in Theorem 12

above and Proposition 30 below.

We now need the following quantity, which plays an important role in the Konyagin–

Shkredov argument.

Definition 28. Let A,B,C ⊂ R be finite and define

σ(A,B,C) := sup
σ1,σ2,σ3 6=0

#{(a, b, c) ∈ A×B × C : σ1a+ σ2b+ σ3c = 0}.

We have the trivial bound σ(A,B,C) ≤ |A||B| and this is basically obtained when

A,B,C = {1, . . . , n}. We expect that σ(A,B,C) is small whenever A,B, or C has

little additive structure. Konyagin and Shkredov [15] used that

σ(A,B,C) ≤ |A|1/2E+(B)1/4E+(C)1/4,

which we replace with the following.

Proposition 29. Let A,B,C ⊂ R be finite. Then

σ(A,B,C) ≤ |C|3/4
(
d+4 (A)|A||B|3

)1/4
Proof. The proof is similar to what appears in [30] for third order energy. Fix σ1, σ2, σ3 6=
0. Then by Hölder’s inequality, we obtain
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#{(a, b, c) ∈ A×B × C :σ1a+ σ2b+ σ3c = 0} =
∑
c∈C

#{(a, b) ∈ A×B : σ1a+ σ2b = −σ3c}

≤ |C|3/4
(∑
c∈C

#{(a, b) ∈ A×B : σ1a+ σ2b = −σ3c}4
)1/4

≤ |C|3/4
(∑

x

#{(a, b) ∈ A×B : a+ σ2/σ1b = x}4
)1/4

≤ |C|3/4
(
d+4 (A)|A||B|3

)1/4
.

The proposition follows as σ1, σ2, σ3 were arbitrary.

The next lemma is a fourth order energy analog of [16, Theorem 12].

Proposition 30. Let A ⊂ R be finite. Then there exists X, Y ⊂ A such that

(i) X ∪ Y = A,

(ii) |X|, |Y | ≥ |A|/2,

(iii) d+4 (X)E×(Y ) . |A|3.

Proposition 30 is a “few sums, many products” theorem. Indeed, if d+4 (X) & |A|,
then E×(Y ) . |A|2 and so by Cauchy–Schwarz,

|AA| ≥ |Y Y | & |Y |2.

We begin the proof of Proposition 30 with the following lemma. We mention that

there is a large overlap of the proof of Theorem 12 and Proposition 30, which are both

decomposition results.

Lemma 31. Let A ⊂ R be finite. Then there exists a nonempty A′ ⊂ A such that

E×(A′)d+4 (A) .
|A′|4

|A|
, |A′| & d+4 (A).

Note that if A′ were equal to A then Proposition 30 would immediately follow, but

this is too strong to hope for.
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Proof. Let B ⊂ R be finite and nonempty. By a dyadic decomposition, there is a

∆ ≥ 1 such that

E+
4 (A,B) ∼ |P |∆4, P = {x : ∆ ≤ rA−B(x) ≤ 2∆}.

We double count the number of solutions to

p+ b

q + c
=
p′ + b′

q′ + c′
, p, q, p′, q′ ∈ P, b, c, b′, c′ ∈ B. (2.6)

By a claim in the proof of [19, Lemma 2.5], one has that the number of solutions to

(2.6) is . |P |3|B|3.
By a dyadic decomposition, there is a q ≥ 1 such that

|A′|q ∼
∑
a∈A

rP+B(a) ∼
∑
x∈P

rA−B(x) ∼ ∆|P |, A′ = {a′ ∈ A : q ≤ rB+P (a′) < 2q}.

Given
a1
a2

=
a3
a4
, a1, a2, a3, a4 ∈ A′,

we may create a solution to (2.6), via

a1 − b1 + b1
a2 − b2 + b2

=
a3 − b3 + b3
a4 − b4 + b4

, b1, b2, b3, b4 ∈ B,

as long as aj − bj ∈ P for all j. Since each aj ∈ A′, there are at least q such choices for

each bj. Thus q4E×(A′) is . the number of solutions to (2.6), and so

E×(A′) ∼ |B|
3|P |3

q4
∼ |A

′|4|B|3

|P |∆4
∼ |A

′|4|B|3

E+
4 (A,B)

.

Finally, using ∆ ≤ |B| and q ≤ |A|, we have

|A′| & |P |∆q−1 & E+
4 (A,B)|A|−1|B|−3.

The lemma now follows from Definition 26 of d+4 (A) since B is arbitrary.

We also need the following lemma describing how E×(A) behaves with respect to

unions. The lemma will require the following application of Cauchy–Schwarz

E×(A,B)2 ≤ E×(A)E×(B). (2.7)
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Lemma 32. Let A1, . . . , AK ⊂ R be finite and disjoint. Then

E×(
K⋃
j=1

Aj) ≤

(
K∑
j=1

E×(Aj)
1/4

)4

Proof. By the triangle inequality in `2(Z), we have

E×(
K⋃
j=1

Aj)
1/2 =

(∑
x

r⋃K
j=1 Aj/

⋃K
k=1 Ak

(x)2

)1/2

=

∑
x

(
K∑

j,k=1

rAj/Ak
(x)

)2
1/2

≤
K∑

j,k=1

(∑
x

rAj/Ak
(x)2

)1/2

=
K∑

j,k=1

E×(Aj, Ak)
1/2

Now we apply (2.7) to obtain

K∑
j,k=1

E×(Aj, Ak)
1/2 ≤

K∑
j,k=1

E×(Aj)
1/4E×(Ak)

1/4 =

(
K∑
j=1

E×(Aj)
1/4

)2

.

Combining these two inequalities completes the proof.

We now iterate Lemma 31 and prove Proposition 30.

Proof of Proposition 30. Set A0 = ∅ and suppose that A0, A1, . . . , Aj−1 have been de-

fined. We define Aj via Lemma 31 as a nonempty set Aj ⊂ A \ (A0 ∪ . . . ∪Aj−1) such

that

d+4 (A \ (A0 ∪ · · · ∪ Aj−1))E×(Aj) . |Aj|4|A \ (A0 ∪ . . . ∪ Aj−1)|−1.

We continue this process until

|A1 ∪ . . . ∪ AK | ≥ |A|/2.

This process must terminate for some K ≤ |A|/2 as the Aj are nonempty and disjoint.

Set X = A \ (A1 ∪ · · · ∪ AK−1) and Y = A1 ∪ · · · ∪ AK . It is clear that |Y | ≥ |A|/2
and |X| ≥ |A|/2, otherwise the process would have stopped at step K − 1. By Lemma

31, for 1 ≤ j ≤ K,

d+4 (X)E×(Aj) ≤ d+4 (A\(A1∪· · ·∪Aj−1))E×(Aj) . |Aj|4|A\(A1∪· · ·∪Aj−1)|−1 . |Aj|4|A|−1.
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Combining this with Lemma 32, we obtain

E×(Y ) = E×(
K⋃
j=1

Aj) ≤

(
K∑
j=1

E×(Aj)
1/4

)4

.
1

d+4 (X)|A|

(
K∑
j=1

|Aj|

)4

≤ |Y |3d+4 (X)−1.

Proposition 30 follows from |Y | ≤ |A|.

We now give the proof of Theorem 4, which is identical to that in [15] with some

minor changes to utilize Proposition 29 and Proposition 30.

Proof of Theorem 4. Suppose that |A+ A|, |AA| ≤ r|A|4/3. Thus our goal is to show

r & |A|5/5277.

Note that by Cauchy–Schwarz, |AA| ≤ r|A|4/3 implies

E×(A) ≥ |A|8/3r−1. (2.8)

By a dyadic decomposition, there exists a

t ≥ E×(A)|A|−2 ≥ |A|2/3r−1,

such that

E×(A) ∼ |St|t2, St = {λ : rA/A(λ) ∼ t}.

For λ ∈ A/A, we set

Aλ = A ∩ λA.

Thus |Aλ| = rA/A(λ). By Konyagin–Shkredov clustering [15] (see also Adam Sheffer’s

blog [31, Equation 9] or my blog [32]), which is a refinement of Solymosi’s [13] argument,

we have

|A+ A|2 & |St|
M

(
M2t2 −M4 max

λ1,λ2,λ3∈St

σ(Aλ1 , Aλ2 , Aλ3)

)
, (2.9)
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as long as 2 ≤M ≤ |St|/2. We apply Proposition 29 to obtain

|A+ A|2 & |St|
M

(
M2t2 −M4t7/4 max

λ∈St

d+4 (Aλ)
1/4

)
.

Set

M2 :=
t1/4

2 maxλ∈St d
+
4 (Aλ)1/4

.

Now, we have M ≤ |St|/2, since otherwise, using d+(Aλ) ≥ 1,

|A|4−4/3r−1 ≤ E×(A) ∼ |St|t2 .Mt2 . t17/8 ≤ |A|17/8 ≤ |A|2+1/3,

and so r & |A|1/3. Also, if M ≥ 2, then we may apply (2.9) to obtain

ME×(A) . |A+ A|2,

which implies M . r3. Note that Solymosi originally proved E×(A) . |A + A|2. We

can improve unless M is very small.

Thus we just have to handle the hardest case: M . r3, that is

t

r24
≤ d+4 (A).

By a technical trick in [15], this implies for all λ ∈ St (as opposed to maximum in λ),

that
t

r24
. d+4 (Aλ). (2.10)

Indeed, we may partition St = S ′t ∪ S ′′t where d+4 (Aλ′) ≤ d+4 (Aλ′′) for λ′ ∈ S ′t and

λ′′ ∈ S ′′t . Then we apply the above argument to S ′t and see that (2.10) holds for all the

elements in S ′′t . Then we may replace St with S ′′t at the loss of just a constant. Note

that (2.10) implies that d+4 (Aλ) is almost as large as possible and each Aλ has a lot of

additive structure.

After passing to large subsets of Aλ and applying Proposition 30, we have

E×(Aλ) . t2r24, λ ∈ St,

and by Cauchy–Schwarz we find

t2

r24
. |AλAλ|, λ ∈ St.
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Thus each Aλ has almost no multiplicative structure. By Katz–Koester inclusion [29],

we have AλAλ ⊂ AA ∩ λAA and so

St ⊂ {x : rAA/AA(x) & t2r−24}.

One issue is that St is a subset of AA−1 and not A. By a popularity argument, since

|St|t ≤
∑
λ∈St

|A ∩ λA| =
∑
a∈A

|A ∩ aSt|,

there is an a ∈ A such that

A′ = aSt ∩ A ⊂ {x : raAA/AA(x) & t2r−24}, |A′| & |St|t|A|−1.

Thus by (2.4), we find

d+(A′) ≤ D×(A′) .
|AA|4r72

|A′|t6
.

We now apply the first statement of Theorem 10 (To prove Theorem 17, one should

apply the second statement of Theorem 10 in place of the first) and first use that

|A′| & |St|t|A|−1 and |St|t2 ∼ E×(A) to obtain

|A+ A|37 ≥ |A′ + A′|37 & E×(A)79t47

|AA|84|A|79r1512
.

We now apply t & E×(A)|A|−2 and then (2.8) to find

|A|331 . r1512|A+ A|37|AA|210.

Theorem 4 then follows from |AA|, |A+ A| ≤ r|A|4/3 and simplification.
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CHAPTER 3

SUM-PRODUCT OVER A PRIME FIELD

3.1 Introduction and results

Let F be a field with the multiplicative group F ∗. Throughout we assume that F has

characteristic p > 0, the most important case being F = Fp for large p. If p = 0,

constraints in terms of p appearing throughout should be disregarded.

All the sets A,B, etc. considered are finite, of cardinality | · |; one defines the sumset

via

A+B := {a+ b : a ∈ A, b ∈ B}

and similarly the difference, product set, as well as polynomial expressions like AA−AA
used herein. If B = {b} we just write A + b for A + {b}. In contrast, the notation An

denotes the n–fold Cartesian product of A with itself.

The study of the so–called sum–product phenomenon originated in the paper [1] by

Erdős and Szemerédi, who conjectured the following.

Conjecture 33 (Sum–product conjecture). [1] For δ < 1 and any sufficiently large

A ⊂ Z, one has

|A+ A|+ |AA| ≥ |A|1+δ.

Elekes in his foundational paper [2] observed that if the question of Erdős and Sze-

merédi is asked over a field rather than a ring, then one can use incidence geometry

and make good progress on it. Fields, beginning with reals, where Elekes fetched the

Szemerédi-Trotter theorem as a powerful tool, have become the structure of choice for

variants of Conjecture 33 ever since.

The study of asymptotic sum–product estimates in fields of positive characteristic

began in the prime residue field Fp setting by Bourgain, Katz and Tao [7] where the

first qualitative result was established. It was made quantitative by Garaev [33], whose

paper was followed by a body of incremental improvements. The new wave of quanti-
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tative results was initiated in [9] and [34], based on the point-plane incidence theorem

of the first author [9]. Stevens and de Zeeuw [35] derived from it a point–line incidence

theorem, which has enabled new applications to sum–product type estimates, in spirit

similar to those over the reals, based on the Szemerédi–Trotter theorem, see e.g. [36].

It was shown in [34] that

|A± A|+ |AA| � |A|6/5, A ⊂ Fp, |A| ≤ p5/8. (3.1)

Shakan and Shkredov [37], succeeded in improving the (3.1) to 6
5
+c, for a certain c > 0.

Chen, Kerr and Mohammadi [38] have recently achieved quantitative improvements to

the value of c in [37] by largely following its proofs, wherewithin they identified a more

optimal way of applying incidence bounds.

Today, after much effort, it appears unlikely that (but for a few exceptions) even

weaker versions of Conjecture 33, the central one being the weak Erdős–Szemerédi

conjecture, discussed in some detail in the real setting in [39], can be fully resolved

using the available incidence technology. However, the question how far partial results

based thereon can be pushed appears to be, at least on a certain level, interesting.

To this effect, the third author and collaborators (see e.g., [8], [40]-[41]) developed a

framework of methods, based on linear algebra and combinatorics, which have enabled

a steady supply of improvements of the state of the art of sum-product theory. A recent

paper [39] claims to have taken advantage of the latter techniques, over the reals, in

what may be the best possible way.

In a loose sense, this paper attempts to establish a positive characteristic analog of

some results in [39]. In particular, Theorem 34 gives a further improvement of the

sum-product inequality, relative to that in [38], replacing the original proof in [37] by

an essentially different one. We do not expect to have our sum-product inequality

improved further, within the reach of today’s methodology. (Admittedly, there are

many instances when prognoses along the lines of the latter statement turn out to be

false. If so, one can say in retrospect, they were stimulating.)

In addition to the standard sum–product problem, we present Theorem 35 and its

implication Theorem 36, which are “threshold–breaking” in a slightly different sense.

Theorem 35, or heuristically few products imply many differences, appears to be in

interesting development, at least in the sense that currently available techniques, in

fact, allow for it, apropos of the weak Erdős–Szemerédi conjecture. The statement of

Theorem 36 can be viewed as a particular case of an Erdős–type geometric question
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about distinct values of bilinear forms on a plane point set, studied in the real setting

in, e.g. [23].

We next present the three main inequalities, established here. Say, if F = Fp, these

inequalities clearly cannot hold for sets A, comparable in size with p. The proofs of

these inequalities rely on incidence results stemming from the point–plane incidence

theorem from [9] which in positive characteristic p is constrained in terms of p. It

would be highly desirable to have some sort of a generalisation for a finite field Fq, q
being a power of p, with a constraint expressed in terms of q but there is no such a

generalisation for now.

Since within each proof herein incidence results are used several times, the constraints

may look at the first glance ad hoc, and one may be tempted to say “for |A| sufficiently

small in terms of p” instead.

We use the standard Vinogradov notations �,� to hide absolute constants in in-

equalities, ≈ means both � and �, and the symbols .,& suppress, in addition to

constants, powers of log |A|.

Theorem 34 (Sum–product). Let |AA| = M |A|, |A ± A| = K|A|, for |A| ⊂ F ∗. If

|A| < p18/35, then

max(K,M) & |A|2/9 .

Moreover, if K3M |A|3 < p2, then

K4M5 & |A|2 . (3.2)

We remark that using the point–plane incidence bound, one can show [35, Equation

6] that

|AA| � |A| =⇒ |A+ A| � |A|3/2.

Our next result surpasses this barrier and implies that |AA| � |A|, then |A − A| �
|A|3/2+1/24.

Theorem 35 (Few products, many differences). Let |AA| = M |A|, |A − A| = K|A|,
for |A| ⊂ F ∗. If M2K2|A|3 < p2 or |A| < p24/49, then

K24M36 & |A|13 . (3.3)

The estimate of Theorem 35 is only better than Theorem 34 for small M . It would

be interesting to obtain a similar estimate if K pertained to A+A, rather than A−A
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and even more interesting if a corresponding threshold–breaking statement in the vein

of few products imply many sums could be established apropos of additive energy of A,

see [39] for the real setting.

By following the proofs, it is easy to see that the product set AA can be replaced by

the ratio set A/A.

It was proved in [9, Corollary 15], [34, Corollary 4] that

|AA− AA| � |A|3/2, |A| ≤ p2/3. (3.4)

Theorem 35 enables one to improve upon (3.4). This can also be viewed as the special

case of the general open question, concerning the minimum cardinality of set of values

of the symplectic form on pairs of points in a given set in the plane F 2 (here the set

being A × A), see [36, Theorem 4] for a general geometric bound. We formulate the

next theorem in slightly more generality.

Theorem 36 (Expansion). Let A,B,C ⊆ F ∗ be sets of approximately the same size

|A| < p4/9 and B ∩ C 6= ∅. Then for some positive c > 0 one has

|AB − AC| & |A|3/2+c .

One can take any c = 1/96 and c = 1/56 if B = C.

The powers of log |A| hidden in the & symbols can be easily tracked down, however

they are not our concern.

Progress, achieved in this paper, is primarily due to further development of methodol-

ogy founded by the third author, which enables a close to optimal multiple applications

of incidence results (this was initiated in [37, 38]). In particular, this calls for the use

of several different energies, or moments of convolution, formally introduced in the

next section. Of special importance here is the fourth additive energy E4(A), owing

to the forthcoming Corollary 39 of the Stevens–de–Zeeuw incidence theorem; in the

Euclidean setting the same role was played by the third moment E3(A), owing to the

Szemerédi–Trotter theorem. See, in particular, [40, 14, 8, 42] as well as [43] for the

general description of the approach, the closely related spectral method, and various

applications in the context of the sum–product phenomenon.
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3.2 Preliminaries

Let A,B ⊆ F be some finite sets. We use representation function notations like

rA−B(x), which counts the number of ways x ∈ F can be expressed as a difference a−b
with a ∈ A, b ∈ B, respectively.

For a real n > 1 we define the nth moment of the representation function, or energy

(see [8]) as

En(A,B) =
∑
x

rnA−B(x) ,

writing just En(A) when A = B.

Owing to the fact that the equation

a− b = a′ − b′ : a, a′ ∈ A, b, b′ ∈ B

can be rearranged, one has as well that

E2(A,B) =
∑
x

r2A+B(x) .

If n ≥ 2 is integer, then after resummation one has

En(A) =
∑

x1,...,xn−1

|A ∩ (A+ x1) ∩ . . . ∩ (A+ xn−1)|2.

This means that if one partitions the set An of n-tuples (a1, . . . , an) into equivalence

classes by translation, then En is the sum, over equivalence classes [a1, . . . , an] of squares

of the numbers of n-tuples in an equivalence class.

Next we formulate incidence results to be used, in the form most adapted to our

purposes. The first one is an adaptation of the first author’s point-pane theorem [9].

Theorem 37. Let A,B,C ⊂ F , with max(|A|, |B|, |C|) <
√
|A||B||C| < p. Then

|{(a, b, c, a′, b′, c′) : a, a′ ∈ A, b, b′ ∈ B, c, c′ ∈ C and a+bc = a′+b′c′}| � (|A||B||C|)3/2.

The second one is a derived statement for point–line incidences due to Stevens and

de Zeeuw [35].
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Theorem 38. Let A,B,C,D ⊂ F , with |A||B||D| < p2 or |A||C||D| < p2. Then

|{(a, b, c, d) ∈ A×B × C ×D : c = ab+ d}| � min[ (|A||B||C|)3/4|D|1/2, (|A||C||D|)3/4|B|1/2 ]

+ |A||D|+ |B||C|.

As to the forthcoming applications of Theorem 38, we refer to the first term in its

estimate as the main term and the remaining two as trivial terms, which in meaningful

applications will be dominated by the main term.

Corollary 39. Let A ⊆ F ∗, D ⊆ F with |AA| ≤M |A| and M |A|2|D| < p2. Then

E4(A,D) :=
∑
x

r4A−D(x)� min(M3|A|2|D|2, M2|A||D|3) log |A| . (3.5)

Hence, the number of distinct equivalence classes [a, b, c, d] of quadruples (a, b, c, d) ∈ A4

by translation is &M−2|A|4.

Proof. For 1 ≤ k ≤ min(|A|, |D|), let

nk := |Xk := {x ∈ A−D : rA−D(x) ≥ k}| .

We claim that

nk � min(M3|A|2|D|2, M2|A||D|3)/k4+M |D|/k � min(M3|A|2|D|2/k4, M2|A||D|3)/k4 ,
(3.6)

the term M |D|/k getting subsumed owing merely to the above range of k.

Estimate (3.5) then follows after dyadic summation in k. To justify (3.6), for each

x ∈ Xk there are ≥ k solutions to the equation x = α − d, with α ∈ A, d ∈ D. This

means, there are ≥ k|A|nk solutions to the equation

x = (α/a)a− d = ab− d : a ∈ A−1, b ∈ AA, x ∈ Xk.

Estimate (3.6) follows after comparing the above lower bound with the upper bound

furnished by Theorem 38 and rearranging.

If we set D = A, the number N , of equivalence classes [a, b, c, d] of quadruples

(a, b, c, d) ∈ A4 by translation satisfies, by the Cauchy–Schwarz inequality, the lower

bound

N ≥ |A|8/E4(A) &M−2|A|4. (3.7)
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3.3 Proof of Theorem 34

The presented proofs involving the sum and difference sets are somewhat different, the

difference set case being easier. We therefore present them separately, beginning with

the difference set, despite the proof involving the sumset applies to the different set as

well, in essence by replacing the truism (3.15) therein with (3.8) below.

Difference–product inequality. Let P ⊆ A − A be a set of popular differences, defined

as follows: for every x ∈ P, rA−A(x) ≥ |A|
2K
. The notions of popularity, as well as the

accompanying notations P,∆, etc. vary from one proof to another.

We further say that P is popular by mass, meaning that, by the pigeonhole principle,

|{(a1, a2) ∈ A× A; a1 − a2 ∈ P}| � |A|2.

Consider the equation

c− b = (a− b)− (a− c) = (d− b)− (d− c). (3.8)

Suppose, x := a− b and y := d− b are in P . Besides, u := a− c, v := d− c are both

in A− A. By definition of P , equation (3.8) has � |A|4 solutions (a, b, c, d).

Clearly, equation (3.8) is translation-invariant, and an equivalence class [a, b, c, d] by

translation is fixed by the values of three of the five variables defined above, namely

x, y, u, v, as well as w := c − b. Each equivalence class provides a distinct solution of

the system of equations

x, y ∈ P, u, v, w ∈ A− A : x− u = y − v = w.

It follows by the Cauchy–Schwarz inequality and Corollary 39 that

|A|4 .
√
E4(A)

√
|{x, y ∈ P ;u, v ∈ A− A : x− u = y − v ∈ A− A}| := M |A|2

√
X.

(3.9)

To bound the quantity X, we use popularity of the differences x, y and dyadic locali-
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sation. Namely, for some ∆ ≥ 1 and some D ⊆ A− (A− A) one has

X � K2

|A|2
|{a1, a2, a3, a4 ∈ A; u, v ∈ A− A : a1 − (a3 − u) = a2 − (a4 − v) ∈ A− A}|

.
K2

|A|2
∆2|{a1, a2 ∈ A, d1, d2 ∈ D ⊆ A− (A− A) : a1 − d1 = a2 − d2 ∈ A− A}|

≤ K2

|A|2
∆2

∑
w∈A−A

rA−D(w)2 ≤ K5/2

|A|3/2
∆2

(∑
w

rA−D(w)4

)1/2

=
K5/2

|A|3/2
√
E4(A,D) ,

(3.10)

where the last inequality is an application of Cauchy-Schwarz1.

The above “popular” set D ⊆ A− (A−A) is defined via rA+(A−A)(d) ≈ ∆, ∀d ∈ D.

(The brackets in the subscript of the notation rA+(A−A)(d) mean that this is the number

of representations of d as the sum d = a + x, with a ∈ A and x ∈ A− A, rather than

x = a+ a′ + a′′, with a, a′, a′′ ∈ A.)

We now apply Corollary 39, whose constraint in terms of p will be satisfied either

under assumption K,M < |A|2/9 or by the assumption K3M |A|3 < p2, owing both

cases to the Plünnecke’s inequality A− (A− A) ≤ K3|A| (see e.g. [3, Section 6.5]).

This enables one to continue the series of estimates (3.10) as

X .M3/2 K
5/2

|A|1/2
M3/2(|D|∆2)

≤M3/2 K
5/2

|A|1/2
M3/2E+(A,A− A)� K4M3|A|2 ,

(3.11)

where the last estimate has invoked Theorem 37. Namely

E2(A,A− A) = |{(a1, a2, d1, d2) ∈ A2 × (A− A)2 : a1 − d1 = a2 − d2}|

≤ |A|−2|{(a, a′, d1, d2, b1, b2) ∈ A2 × (A− A)2 × AA2 : b1/a− d1 = b2/a
′ − d2}|

�M3/2K3/2|A|5/2 .

Checking that conditions of Theorem 37 have been satisfied by the assumptions on

|A|, K,M is straightforward, for the converse of inequality (3.2) implies KM < |A|1/2.
1Here, as well as further in (3.18) it is possible, on the technical level, to estimate∑
w∈A−A rA−D(w)2 in a slightly different way along the lines of the (fairly standard) argument pre-

sented between estimates (3.21) and (3.23) in the forthcoming proof of Theorem 35. Although that
would save a factor log |A|, contributed by E4(A,D), we chose to do it here in a more streamlined
way via Corollary 39.
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Putting it together yields

K4M5 & |A|2 ⇒ max(K,M) & |A|2/9 ,

concluding the proof of the difference-product inequality of Theorem 34.

Sum–product inequality. Let |AA| ≤ M |A|, |A + A| ≤ K|A|. We write the input

conditions as inequalities, for further we will pass to a large subset of A.

Let P be a set of popular sums, defined as follows.

P = P (A) :=

{
x ∈ A+ A : rA+A(x) ≥ ε

|A|
K

}
, (3.12)

for a small ε > 0, to be later chosen as ∼ log−1 |A|. This choice of the popular set is

to be justified shortly.

By the pigeonhole principle

|{(a, a′) ∈ A× A : a+ a′ ∈ P}| ≥ (1− ε)|A|2 .

Furthermore, let A′ ⊆ A be

A′ = A′(A) := {a′ ∈ A : |{a′′ ∈ A : a′ + a′′ ∈ P (A)}| ≥ 2

3
|A|} , (3.13)

so |A′| ≥ (1 − 3ε)|A|. Indeed, the total mass
∑

x∈P rA+A(x) ≥ (1 − ε)|A|2. Consider

the set of some c|A| poorest abscissae, such that for each such abscissa a′ there are

at most 2
3
|A| distinct a′′ ∈ A: a′ + a′′ ∈ P , get the upper bund on c. The above set

of poorest abscissae supports mass at most 2
3
c|A|2, while its complement can support

mass at most (1 − c)|A|2. Adding the latter two upper bounds yields a contradiction

with the lower bound
∑

x∈P rA+A(x) ≥ (1− ε)|A|2 if c > 3ε.

Let P ′ ⊆ A′ −A′ be popular by energy E4/3(A
′). Namely x ∈ P ′ if for some ∆′ ≥ 1,

∆′ ≤ rA′−A′(x) < 2∆′, and and

E4/3(A
′) :=

∑
x∈A′−A′

rA′−A′(x)4/3 & |P ′|∆′4/3.

The reason why we deal with the additive energy E4/3(A
′) will be clear from the sequel,

as well as the raison d’être of the following lemma.
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Lemma 40. There exists B ⊆ A, with |B| � |A|, such that E4/3(B
′(B)) � E4/3(B),

where B′ ⊆ B is defined relative to B replacing A in conditions (3.12), (3.13).

Proof. Reset 3ε as ε, suppose for contradiction that, say E4/3(A
′(A)) < E4/3(A)/10,

i.e. at least 90 per cent of the energy is supported on a thin subset A\A′, of cardinality

|A\A′| < ε|A|. Throw away the latter subset from A, redefine what remains as A, with

A′ being redefined accordingly via (3.13), and attempt to repeat the procedure some

ε−1 times. If this was possible, then in the end of it one is left with a subset Aε of A

of cardinality |Aε| ≥ (1 − ε)ε−1|A| � |A|, with E4/3(Aε) < 10−ε
−1
E4/3(A). Choosing

ε = log−1 |A| is clearly a contradiction, for trivially E4/3(Aε) ≥ |Aε|2 � |A|2.

For the rest of the proof of the sum-product estimate, without loss of generality we

take B = A, in other words assuming that

E4/3(A
′)� E4/3(A) , (3.14)

to be used in the end of the proof. We also set ε = log−1 |A| in (3.12), (3.13).

Consider now a variant of equation (3.8) as follows:

−c+ b = (a+ b)− (a+ c) = (d+ b)− (d+ c) . (3.15)

Let us make popularity assumptions as to the variables a, b, c, d. By definition of the

sets A′ and P ′, it follows that the number of solutions := σ of equation (3.15), when

the difference b − c ∈ P ′ and all the four sums x := a + b, y := a + c, u := d + c and

v := d+ b involved are in P is bounded from below as

σ � |P ′|∆|A|2. (3.16)

Next we obtain the upper bound for the number of solutions (a, b, c, d) of equation

(3.15) under the constraints above. Equation (3.15) is invariant to a simultaneous shift

of b, c by some t and a, d simultaneously by −t. We say [a, b, c, d] is equivalent to

[a′, b′, c′, d′] if

(a, b, c, d) = (a′, b′, c′, d′) + (t,−t,−t, t).

Each equivalence class [a, b, c, d] yields a different solution of the system of equations

x, y, u, v ∈ P, w ∈ P ′ : x− y = v − u = w.
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If r([a, b, c, d]) denotes the number of quadruples (a, b, c, d) in an equivalence class, then∑
[a,d,c,d]

r2([a, b, c, d]) =
∑

x∈A−A

r2A−A(x)r2A−A(−x) = E4(A).

An upper bound for the quantity σ – similar to estimate (3.9) – now follows by the

Cauchy–Schwarz inequality. Invoking also the lower bound (3.16) yields

|A|2|P ′|∆′ .
√
E4(A)

√
|{x, y, u, v ∈ P, w ∈ P ′ : x− y = v − u = w}| . (3.17)

Popularity of the sums x, y, u, v together with Corollary 39 to bound E4(A) yield

|A|2|P ′|∆′ .MK2
√
|{a1, . . . , a8 ∈ A : a1 + a2 − a3 − a4 = a5 + a6 − a7 − a8 ∈ P ′}| .

We proceed similar to estimates (3.10): there exists a popular subset D ⊆ A+ A− A
where ∀d ∈ D, rA+A−A(d) ≈ ∆, for some ∆ ≥ 1 (here, contrary to the difference set

case rA+A−A(d) means the number of representations d = a+a′−a′′, with a, a′, a′′ ∈ A),

such that one gets

|A|2|P ′|∆′ .MK2∆
√
|{a1, a2 ∈ A, d1, d2 ∈ D ⊆ A+ A− A : a1 − d1 = a2 − d2 ∈ P ′}|

≤MK2∆|P ′|1/4E1/4
4 (A,D) ,

(3.18)

after another use of the Cauchy-Schwarz inequality.

Using Corollary 39 to estimate E4(A,D) – its applicability in terms of the constraints

in terms of p being the same as it was in the difference set case, see the argument

following (3.10) – we conclude that

|P ′|3/4∆′ .M7/4K2|A|−3/2(|D|∆2)1/2 ≤M7/4K2|A|−3/2
√
T3(A), (3.19)

where

T3(A) := |{(a1, . . . , a′3) ∈ A6 : a1 + a2 + a3 = a′1 + a′2 + a′3}| .

The quantity T3(A) can be bounded as follows. One can localise a2−a3 = x, a′2−a′3 = x′

to some popular set D1 ⊂ A−A with rA−A(x) ≈ ∆1, ∀x ∈ D1 and apply Theorem 37,
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so

T3(A) .M3/2|A|(|D1|3/2∆2
1) ≤M3/2|A|(E4/3(A))3/2 . (3.20)

It is easy to verify that the assumptions on |A|, K,M ensure that the conditions of

Theorem 37 have been amply satisfied.

It follows by definition of the popular set P ′ after substituting bound (3.20) into

(3.19) that

(E4/3(A
′))3/4 . |P ′|3/4∆′ .M5/2K2|A|−1(E4/3(A))3/4.

Hence, by (3.14), one cancel E4/3(A
′)� E4/3(A) and be left with

|A| .M5/2K2 ,

which proves Theorem 34.

3.4 Proof of Theorem 35

Return to relations (3.8), (3.9), with the notations x, y, u, v, w as they were introduced

apropos of (3.8), (3.9), and observe that u− v = a− d := z ∈ A− A. Suppose that z

is popular my mass (i.e with say rA−A(z) ≥ |A|
10K

) and so are x and y, set P ⊆ A − A
in this section again denote the set of such popular differences.

From (3.9) we have

u = x− w, v = y − w ⇔ u, v ∈ (A− A) ∩ (P − w) := ¶w.

We can now rewrite (3.9) as

|A|4 .M |A|2
√ ∑

w∈A−A

|{u, v ∈ Pw : u− v ∈ P}| := M |A|2
√
X. (3.21)

Let us estimate |Pw|, sorting A− A = {w1, . . . , wA−A} in non-decreasing order by the

value of rP−(A−A)(w).

Set

nk := |Wk := {w ∈ P − (A− A) : rP−(A−A)(w) ≥ k}|.
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This means, for every w ∈ Wk the equation w = x − u : x ∈ P, u ∈ A − A has ≥ k

solutions. Hence, the equation

w = t/a− u : w ∈ Wk, t ∈ AP, u ∈ A− A, a ∈ A

has ≥ k|A|nk solutions. Furthermore, AP ⊆ AA − AA, and ∀ t ∈ AP, rAA−AA(t) �
|A|/K. It follows that

|AP | �M2K|A| . (3.22)

Apply Theorem 38 to get the upper bound for the number of solutions of the latter

equation. Note that the p-condition of Theorem 38 becomes p2 > M2K2|A|3, which is

satisfied, in particular, for if |A| < p24/49, when assuming K24M36 < |A|13 (or there is

nothing to prove) implies that M2K2 < |A|13/12.
Hence, one concludes that

k|A|nk �M(K|A|)1/2(|A|nk)3/4(K|A|)3/4 +M2K2|A|2 .

Rearranging, dropping the second term since it follows by definition of nk that k ≤
K|A|, yields

nk �M4K5|A|4/k4 .

Inverting the latter bound yields

kn �MK5/4|A|n−1/4 ,

which means that for w = wn on the list, one has

|Pwn| � min(|A− A|, MK5/4|A|n−1/4) . (3.23)

Furthermore, given w, by another application of Theorem 38 (the p-condition check

being the same as done above) one has

|{u, v ∈ Pw : u− v = z ∈ P}| � 1

|A|
{u, v ∈ Pw : u− v = t/a, with a ∈ A, t ∈ AP}|

� |A|−1(|Pw|3/2(M2K|A|)1/2|A|3/4 +M2K|A||Pw|)

�MK1/2|A|1/4|Pw|3/2 +M2K2|A| ,
(3.24)

where in the last term the trivial bound |Pw| ≤ K|A| has been used.
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It follows from (3.23) that

∑
w∈A−A

|Pw|3/2 �M3/2K15/8|A|3/2
|A−A|∑
n=1

n−3/8 �M3/2K5/2|A|17/8 .

Substituting the latter bound into (3.24) one sees that the quantity X introduced in

(3.21) obeys

X �M5/2K3|A|19/8 +M2K3|A|2 �M5/2K3|A|19/8 . (3.25)

It follows from (3.21) that

|A|13 .M36K24 ,

as claimed by Theorem 35.

3.5 Proof of Theorem 36

Proof. We give two approaches, the first one allowing for better quantitative estimates,

the second one being more general. It is easy to check that the proof holds if, e.g.,

|A| < p4/9.

Set s = |AB−AC|, M = |AB|. Applying Theorem 37, one has, for M |A|3 < p2 (see

details in [34, Corollary 4]) that

|AB − AC| �M1/2|A|3/2 .

Otherwise, since there B ∩ C 6= ∅, one has |AB − AC| ≥ |A − A| = K|A|. The proof

of Theorem 35 allows for replacing the product set AA with AB, with |B| ≈ |A|, the

same concerning inequality (3.3). I.e., with |AB| = M |A|, one has

|A|13 .M36K24 ≤ (s2/|A|3)36(s/|A|)24 = s96|A|−132

or, in other words, s & |A|145/96. In the special case B = C, we can estimate size of

|AP | in (3.22) as s. It gives us nk � s2|A|2K3/k4, further the main term in (3.25) is

K7/4|A|9/8s5/4. Thus the second term in (3.24) is negligible again. Hence

|A|4 .M2K7/4|A|9/8s5/4 ≤ (s2/|A|3)2(s/|A|)7/4|A|9/8s5/4 = s7|A|−53/8
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or, in other words, s & |A|85/56.

Alternatively, we present an argument, which uses the Balog–Szemerédi–Gowers

Theorem, see e.g. [3, Section 2.5], which has more potential for generalisation. Set

σ :=
∑

x r
2
AB−AC(x). By the Cauchy-Schwarz inequality

|A|8 ≤ sσ .

Write s = N |A|3/2, for some N . Then σ ≥ |A|13/2/N . By [42, Theorem 32, Remark

33], one has the following estimate, provided that K|A|3 < p:

σ . |A|5(E×2 (A,B))1/2 .

where E×2 is multiplicative energy, defined in the standard way. Thus E×2 (A) &

|A|3/N2.

Using the Balog–Szemerédi–Gowers Theorem [3], one finds A′ ⊆ A such that |A′| &N

|A| and |A′A′| .N |A′|, the symbols &N , .N absorbing universal powers of N .

Applying Theorem 34 to the set A′ (it’s easy to see that its conditions are satisfied)

yields

|AB − AC| ≥ |A′ − A′| & |A′|37/24 &N |A|37/24 ,

as required.
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