
c© 2019 Zaichen Chen

MODELING OF ELECTRICAL CIRCUIT WITH RECURRENT NEURAL
NETWORKS

BY

ZAICHEN CHEN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor Elyse Rosenbaum, Chair
Professor Pavan Hanumolu
Associate Professor Maxim Raginsky
Professor Martin Wong

ABSTRACT

In this dissertation, a circuit modeling methodology using recurrent neural net-

works (RNNs) is developed. The methodology covers model structure selection,

data generation, training, and model implementation for circuit simulation. Sev-

eral different RNN structures are investigated and their capabilities in circuit

modeling are compared. The stability of RNN in the context of circuit model-

ing is defined and methods to guarantee stability for some RNN structures are

developed. The modeling methodology is supported by test cases showing the

accuracy and efficiency of RNN models.

ii

ACKNOWLEDGMENTS

I would like to give sincere thanks to my advisor, Professor Elyse Rosenbaum, for

her kind encouragement and guidance throughout my graduate study. I would

also like to thank Professor Maxim Raginsky for his help during my doctoral

research. Finally, I would like to thank former and current fellow students, in-

cluding Dr. Kuo-Hsuan Meng, Dr. Robert Mertens, Dr. Min-Sun Keel, Dr.

Nicholas Thomson, Dr. Yang Xiu, Collin Reiman, Sandeep Vora, Jie Xiong, and

Xiao Ma, for their help and support during my life in Illinois.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Review of Previous Work . 4

CHAPTER 2 GENERAL RNN CIRCUIT MODELING METHODOLOGY 7
2.1 General RNN Model Structure . 7

2.1.1 General RNN Model Equations 7
2.1.2 Associate RNN Model with Circuit 8

2.2 Training Data Generation . 11
2.3 Training . 13

2.3.1 Practical Details of the Training Setup 19
2.4 Verilog-A Implementation of RNN 20

2.4.1 Direct Verilog-A Implementation of Continuous-time RNN
Equations . 20

2.4.2 Verilog-A Implementation of Discrete-time RNN Equations 21

CHAPTER 3 RNN MODEL STRUCTURES 23
3.1 The Ordinary RNN . 23

3.1.1 Zero-in-zero-out RNN . 25
3.1.2 Numerical Stability of Discrete-time Verilog-A Imple-

mentation . 26
3.2 The Asymmetric Hopfield Network 31
3.3 The Gated Recurrent Unit . 32
3.4 A Modeling Example . 34

CHAPTER 4 THE VANISHING GRADIENT PROBLEM 39
4.1 Mathematical Description . 39
4.2 Test Case: Nonlinear Resistor with Reactive/Delay Element . . . 41

CHAPTER 5 STABILITY OF RNN MODELS 47
5.1 Definition of Model Stability . 47
5.2 Conditions for Stability . 51
5.3 Test Case I: Nonlinear RLC Circuit 55
5.4 Test Case II: Two-port ESD Protection Circuit of an IO Pin . . . 61

iv

CHAPTER 6 EVALUATION OF MODELING METHODOLOGY WITH
ADDITIONAL TEST CASES . 64
6.1 ESD Test Cases . 64

6.1.1 Simple ESD Circuits . 64
6.1.2 Full-chip ESD Protection Network 68

6.2 Other Behavioral Modeling Tasks 78
6.2.1 CTLE Circuit . 78
6.2.2 An Encrypted Circuit Netlist 81

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 84
7.1 Conclusions . 84
7.2 Future Work . 85

APPENDIX A MATHEMATICAL DERIVATION OF STABILITY
CONDITIONS . 87

APPENDIX B STABILITY ANALYSIS OF THE NONLINEAR RLC
CIRCUIT . 91

REFERENCES . 93

v

CHAPTER 1

INTRODUCTION

1.1 Motivation

Modeling of electrical circuit components has always been a critical enabler for

electronic design automation (EDA). In general, models used in circuit simulation

can be classified into one of two major categories. For semiconductor devices,

physics-based models can be derived from an analysis of the device physics, e.g.

electrostatics, carrier transport, generation and recombination, etc. Those mod-

els are usually accurate and robust in various simulation conditions. However,

the development cost of physics-based models is high in both time and labor, and

they are usually computationally inefficient especially for large-scale circuits. In

addition, for deep-submicron semiconductor devices, the underlying physics be-

comes too complicated to model with simple analytical equations. Consequently,

accurate descriptions of the device physics are replaced by approximations with

empirical fitting parameters introduced, compromising the model accuracy. On

the other hand, behavioral models can be developed for either a single semi-

conductor device, or a circuit block consisting of many semiconductor devices

and/or other components. The model equations of a behavioral model are arbi-

trarily chosen to best represent the observed characteristics of the entity being

modeled. Compared with physics-based models, behavioral models are often

more computationally efficient and less costly to develop.

While physics-based models and behavioral models are both used in the inte-

1

grated circuit (IC) design process, the situation changes when the design process

of an electrical system, e.g. cell phone, laptop, etc., is considered. In principle, it

is possible to represent an entire electrical system with a netlist of components,

and run simulation with all components described by physics-based models. Prac-

tically, however, IC designers need to protect their intellectual property (IP), i.e.

their design; thus the circuit netlist cannot be provided to system designers.

Without a netlist, physics-based models cannot be used. In addition, even when

the circuit netlist is available, simulation of a full electrical system with physics-

based models often turns out to be too time consuming. Therefore, IC modeling

in system design is usually achieved through behavioral models. For instance,

IBIS is an industry standard modeling template for IC packages and I/O circuits

in which the IC terminal current-voltage (I-V) characteristics are modeled with

lookup tables and fixed waveforms.

In this work, it is proposed to use the recurrent neural network (RNN) as a

behavioral model of semiconductor devices and electrical circuit blocks. Through-

out this dissertation, the physical entity (device or circuit block) being modeled

will be referred to as “circuit being modeled,” “original circuit,” or simply “cir-

cuit,” even if it is only a single semiconductor device. The RNN is a black-box

model since the model equations are not designed to match any specific system;

rather, the model equations are designed for versatility and ease of training. Note

that the word “training” is used to describe the optimization of model parameters

against known data, and those data will be referred to as “training data.” The

black-box nature of RNN makes it inherently IP-obscuring, and its versatility

makes it viable for various types of circuits, reducing the need to develop mul-

tiple model structures and parameter extraction techniques for different classes

of circuits. Among other neural network models that share the black-box prop-

erty, RNN is chosen since it is proven [1] to model nonlinear systems that can be

2

described by nonlinear state-space equations, specifically

ẋ = f(x,u) (1.1a)

y = g(x,u) (1.1b)

where u is the vector of inputs, y is the vector of outputs, and x is the vector of

the internal states of the system. Physics-based models of semiconductor devices

can in general be written in the form of nonlinear state-space equations (1.1).

Thus, it is expected that RNN can model circuits that consist of mostly semi-

conductor devices. The suitability of RNN for the modeling of general dynamic

systems is also demonstrated in [2].

Potentially, RNN is especially useful to model electrostatic discharge (ESD)

protection circuits. The requirement for electrical systems to pass system-level

ESD tests, e.g. the IEC 61000-4-2 standard [3], raises the need for ESD-accurate

IC modeling. The current industry standard of IC modeling, the IBIS model,

only includes a static I-V lookup table for ESD purposes and cannot accurately

model the transient response of the on-chip ESD circuit. An alternative method

proposed by the Industry Council — System-Efficient ESD Design (SEED) —

attempts to extract an on-chip ESD circuit model through pulsed I-V measure-

ments of the IC. As a result, SEED also fails to address the transient behavior

of on-chip ESD circuit [4]. Using physics-based ESD device models in conjunc-

tion with the IBIS model may accurately predict the IC’s transient behavior,

but the parameter fitting process for ESD device models can be difficult due

to limited measurement capabilities for devices operating at ESD power levels.

Instead, RNN may provide a generalized behavioral modeling method for ESD

protection circuits. An RNN based on-chip ESD circuit model captures both

the transient and static behavior of the circuit. The RNN model can be derived

3

by the IC designer using training data generated from circuit simulation with

the full netlist, and distributed to system designers for accurate transient ESD

simulation without IP disclosure.

1.2 Review of Previous Work

The problem of deriving behavioral models for unknown nonlinear systems is

usually referred to as nonlinear system identification. For the general problem

of nonlinear system identification, several classes of black-box models have been

proposed, including but not limited to the Volterra series, the Hammerstein-

Wiener model, autoregressive models, neural networks, and models in some gen-

eral nonlinear state-space form. Obviously, the problem of circuit modeling can

be considered a nonlinear system identification problem, thus all these black-box

models can potentially be applied. Indeed, there have been numerous publica-

tions discussing the use of general black-box models for circuit modeling. In this

section, a comprehensive literature review is presented focused on those pub-

lications, and the novelty of this work compared with the past publications is

explained.

The Volterra series [5] has long been used for modeling of electronic devices

and circuits. In [6, 7], Volterra series is used to model a MESFET device, and in

[8] an electrodynamic speaker. Many prior works use the Volterra series for the

modeling of power amplifiers, such as in [9, 10, 11, 12, 13, 14]. Some variations

or improved versions of the Volterra series are used in those works; for instance,

the truncated Volterra series is used in [12], and a model order reduction method

is used in conjunction with the Volterra series in [14].

The Hammerstein-Wiener model consists of cascaded blocks of linear transfer

functions and static nonlinear mappings. Models of this class are used to model

4

power amplifiers in [15, 16], wireless transmitters in [17], DC/DC converters in

[18], and IGBTs in [19]. In this work, the Hammerstein-Wiener model was also

initially chosen as a candidate model for ESD protection circuits. However, it

turned out that for the types of nonlinearity exhibited by ESD protection circuits,

the Hammerstein-Wiener model has difficulty fitting to the data.

Autoregressive models use discrete-time functions that depend on past infor-

mation of the system input and output. At each time step, the output of the

system is calculated from a nonlinear static function whose inputs consist of the

current system input, the system input from several previous time steps, and the

system output from several previous time steps. Some popular choices of the

nonlinear static function include polynomials, radial basis functions (RBF), and

feedforward neural networks (FNN). Usually, the acronym “NARX model” stands

for nonlinear autoregressive models, where the letter X stands for eXogenous (i.e.

external) input. In [20], NARX model with RBF nonlinearity is used to model

RF circuits. In [21, 22, 23, 24, 25, 26], NARX model with FNN nonlinearity

is used to model RF power amplifiers, and the same model structure is used in

[27] for RF receivers, and in [28] for a variety of electrical circuits. Among those

publications, some improvements to the modeling procedure are also proposed.

For example, the stability of the NARX model with a specific FNN nonlinearity

is discussed in [22]; an optimal training data generation method is proposed in

[23]; and a novel model structure in which the inputs to the nonlinear static func-

tion are connected to multiple layers of an FNN is introduced in [25]. Instead of

using a pre-determined analytical nonlinear function, techniques have also been

developed to extract the nonlinearity in the NARX model from data, such as in

[29, 30].

The FNN is also used in circuit modeling as non-autoregressive models. In

[31], FNN is used to describe the input-output relationship of the magnitude and

5

phase components of a power amplifier. In [32, 33], FNN is used for frequency-

domain modeling of RF circuits. In [34], a state-space equation for an oscillator

is proposed with FNN as part of the equation.

In this work, circuit modeling technique is developed for RNN structures, which

are commonly used for applications such as natural language processing [35]

and handwriting recognition [36]. The RNN model structure is fundamentally

different from the Volterra series or Hammerstein-Wiener model, as the latter two

do not contain any form of feedback. The NARX models with FNN nonlinearity

have a structure similar to that of the RNNs investigated in this work, except

that NARX models use feedback from the output while RNN models use feedback

from a hidden layer in the network. To the best of the author’s knowledge, this

is the first such RNN structure to be investigated for circuit modeling purposes.

In addition, most of the previous work focuses on RF circuits such as power

amplifiers, and the models are designed to be used for simulation with constant

time steps. In contrast, this dissertation investigates the use of RNN model

structures for general purpose circuit modeling. In this work, the simulation

environment is expected to be a general-purpose circuit simulator, which will

usually adopt a variable time step in transient simulation. Finally, unlike most

previous work, this dissertation systematically analyzes the capacity of RNN

model structures, signifying both their advantages and weaknesses.

6

CHAPTER 2

GENERAL RNN CIRCUIT MODELING
METHODOLOGY

All circuit models, physics-based or behavioral, consist of the model structure and

the model parameters. The model structure is a set of mathematical equations

appropriate for describing a class of circuit. Each specific circuit in the class can

be represented by those equations by adjusting the model parameters accordingly.

Thus, modeling a circuit consists of three steps:

1. Choose a model structure based on the circuit class.

2. Collect data for the specific circuit.

3. Fit model parameters to the data.

This process is applicable for both physics-based and behavioral modeling. In

this chapter, an introduction to the RNN circuit modeling methodology is given

in these three steps.

2.1 General RNN Model Structure

2.1.1 General RNN Model Equations

Consider a general nonlinear system with nu inputs and ny outputs. Denoting

the system input u(t) ∈ Rnu and output y(t) ∈ Rny , the RNN model of the

7

system can be expressed in the following general form:

ẋ(t) = f(x(t),u(t),Θx) (2.1a)

y(t) = g(x(t),Θy) (2.1b)

Here, x(t) ∈ Rnx is the hidden state vector and its dimension nx is an empirically

selected model parameter. ẋ(t) = dx(t)
dt

is the time derivative of the hidden

states, f and g are static functions, Θx and Θy together comprise the trainable

parameters Θ = Θx∪Θy. For an RNN, f is a function generally considered to be

an artificial neural network; its exact formulations will be introduced in Chapter

3. The function g is chosen to be affine functions of x, i.e.

g(x(t),Θy) = by +Wyx(t)

where the model parameter Θy = {by,Wy}, by ∈ Rny and Wy ∈ Rny×nx .

For the rest of this dissertation, the explicit time dependence of the variables

u, x, and y will be omitted in equations in which the time dependence is obvious.

2.1.2 Associate RNN Model with Circuit

In Section 2.1.1, the RNN is introduced as a state-space model which predicts a

time-domain output waveform given an input waveform. For an electrical circuit

model, the behavior of the circuit needs to be described in terms of its terminal

voltages and currents. The correspondence between RNN inputs/outputs and

terminal voltages/currents of a circuit is discussed in this section.

Consider a circuit with q external terminals. A model of the circuit must

describe the relationship between all terminal voltages and currents. However,

voltage is only meaningful in electrical circuits as a difference between two nodes.

8

Thus, one terminal of the circuit should be chosen as a reference, and all other

terminal voltages should be described by the difference between them and the

reference. Also, due to Kirchhoff’s current law, the current flowing into the

reference is always equal to the sum of current flowing out of all other terminals.

As a result, there is no need to introduce the current at the reference into the

model equations. Following this analysis, the circuit can be viewed as a p-port

where p = q−1, and each port consists of a non-reference terminal as the positive

node, and the reference as the negative node. A complete circuit model can be

made by equations describing the relationship between all p port voltages and p

port currents.

Depending on the type of the model and the application in which it is used, the

port voltages and currents of the circuit can be represented as scalar variables,

time domain waveforms, frequency domain signals, etc. The RNN model devel-

oped in this work is intended mostly for transient simulations. Therefore, the

port voltages and currents of the circuit are represented as time-domain wave-

forms. To fully describe the transient characteristics of the p-port, a behavioral

model needs to enable the prediction of all port currents given all port voltages,

and vice versa. To achieve this, the RNN input and output dimensions need to

be chosen as nu = ny = p. Then, each port of the circuit should be associated

with a single input and a single output of the RNN. Two configurations can be

chosen for this association — voltage waveform as RNN input, current waveform

as RNN output, or the reverse. In this way, the prediction of all port currents

given all port voltages (or vice versa) becomes the problem of solving (2.1) with

p known voltage and current waveforms, and p unknown voltage and current

waveforms.

For certain ports of some circuits, there is no need to include both the port

voltage and current in the model equations. Rather, those ports can be considered

9

input-only or output-only. Input-only ports with voltage as the only variable can

be defined for ports with such high input impedances that the voltage waveform

at the port is practically independent of the current that flows into it. Some

examples include gate terminals of MOSFETs driven by sufficiently large sources,

or control terminals of a voltage-controlled relay. Note that for the practical

implementation of a voltage input port, no branch current is associated with the

port, making it effectively an open circuit. On the other hand, an input-only

port with current as its variable is not compatible with circuit simulators, since

the inclusion of such port requires the node voltage at the port to be undefined.

This requirement violates the principle of modified nodal analysis. Output-only

ports can be designated if the port will only be connected to some known fixed

load. For instance, if a port is always connected to circuits with 50 Ω input

resistance, one can connect the port to an actual 50 Ω resistor during training

data generation, and treat the port as output-only with either voltage or current

as the variable. Note that during circuit simulation, if an output-only port is

connected to load that is different from what was assumed, the simulation result

may deviate drastically from the behavior of the original circuit.

In summary, a circuit port can be associated with an RNN model in the fol-

lowing ways:

• voltage-input, current-output (VICO)

• current-input, voltage-output (CIVO)

• voltage-input, no output (VINO)

• no input, voltage-output (NIVO)

• no input, current-output (NICO)

Together, the VICO and CIVO ports are referred to as input-output ports.

10

2.2 Training Data Generation

To enable the parameter fitting, or training step of the modeling procedure,

training data need to be collected for the circuit being modeled. In general,

the training data need to be voltage and current waveforms collected at circuit

ports corresponding to the associated RNN inputs and outputs. The range of

the training data determines the applicability of the trained model. Since RNN

is a black-box model, one cannot expect the model to make correct prediction for

inputs that are vastly different from everything that is included in the training

data. Conversely, if the model is expected to be used for certain applications,

then the training data should cover, as much as possible, the operation range of

the original circuit for those applications. The operation range of a circuit can

roughly be defined by imposing limits on the amplitude, frequency, and slew rate

of the voltage and current waveforms applied at its ports.

For most modeling tasks addressed in this work, the netlist of the circuit being

modeled is available. In those cases, the training data can be generated from tran-

sient circuit simulation. To maximize the variability of the input waveforms yet

guarantee that reasonable stimuli are being applied, a training data generation

method based on random piecewise linear (PWL) sources is introduced. Figure

2.1 shows the circuit netlist used for data generation. Each of the n voltage

sources in Figure 2.1 has an output waveform in the following PWL formulation:

vs(t) = Vk−1 +
Vk − Vk−1

τk
(t−

k−1∑
i=1

τi),
k−1∑
i=1

τi ≤ t ≤
k∑

i=1

τi (2.2)

In (2.2), Vi and τi are random variables selected independently for all n voltage

sources. Vi with i ∈ N are the values of the PWL function at both ends of each

of the linear segments. The value of Vi is sampled from a uniform distribution

with lower and upper bounds Vmin and Vmax. Similarly, τi with i ∈ N+ are

11

the lengths of the linear segments, and the value of τi is sampled from a log

uniform distribution with lower and upper bounds τmin and τmax. Here, the log

uniform distribution is chosen to ensure that short rising or falling edge segments

consist of a significant portion of the total training data. The bounds of both

distributions are determined by the operational ranges of the circuit. In this

way, the amplitude and the power spectrum of the stimuli are bounded within

the desired range of operation of the circuit. Each voltage waveform is smoothed

with a low-pass filter whose cutoff frequency is much higher than τ−1
min to avoid

numerical difficulty caused by the discontinuity in the first derivative of vs(t).

The length of each transient simulation is chosen to be 5-10 times τmax. The

source resistances Ri in Figure 2.1 are varied between each transient simulation.

For each simulation, the values of the resistances are sampled from a log uniform

distribution whose range resembles reasonable source resistances the circuit will

see as part of a larger system. Figure 2.2 shows a sample PWL waveform vs(t)

and the corresponding voltage and current waveforms measured at the terminals

of the circuit.

In some modeling tasks, the circuit netlist is unknown and the training data

have to be generated from measurement of the physical circuit. In those cases, the

training data are limited to those that can possibly be generated from a physical

measurement setup. Those physical systems can most likely be described by a

voltage source with a series impedance, although the source impedance is usually

fixed for the measurement system. In Figure 2.3, several examples of source

voltage waveforms with good variability are shown. All those waveforms can

be realized using a transmission line pulse (TLP) test system [37] with some

modifications.

With either training data generation method — simulation or measurement

— the raw data collected are in the form of sampled waveforms, i.e. pairs of

12

LPF
Z0=Rx

Target
Circuit

To
Model

Rx vx1vs1

LPF
Z0=Rx

Rx vxn
…

…2vx1 2vxn

R1

Rn

v1

i1

vn

in

…

vsn

RxRx

Figure 2.1: Schematic representation of the circuit used for training data
generation.

time and voltage or current. The time steps in those data waveforms may not

necessarily be uniform. On the other hand, the RNN structures used in this work

are in general developed for training with time series data, i.e. vectors of voltage

and current values with an implied uniform time step. Therefore, as a final step

of training data generation, the raw data waveforms are interpolated to a time

base whose time step is uniform.

2.3 Training

In machine learning, the parameter fitting step is called training. Training can

be defined as the process of finding the model parameters that minimizes a loss

function defined to quantify the difference between the model and the original

circuit. Specifically, for a fixed set of training data, the loss function only depends

13

-10

-5

0

5

10
vo

lta
ge

 [V
]

PWL voltage

-10

-5

0

5

10

vo
lta

ge
 [V

]

port voltage

0 10 20 30 40 50
time [ns]

-10

-5

0

5

10

cu
rr

e
nt

 [A
]

port current

Figure 2.2: Sample random PWL training data. The voltage and current
waveforms at the circuit port are not PWL functions since they are related to

one another by the input impedance of the port.

14

Figure 2.3: Sample selected waveform training data.

on the model parameters. Thus, general purpose optimization algorithms can be

applied to minimize the loss function, and thus to obtain the best fit of the model

parameters to the training data. A mathematical description of this process is

given below.

Assume that the training data being provided are time series. Denote the

training dataset {uk, yk} where k labels the number of time series in the training

set, the input time series is uk = {uk
1,u

k
2,u

k
3, ...} and the output time series is

yk = {yk
1 ,y

k
2 ,y

k
3 , ...}. The loss function can be defined as the mean squared error

(MSE) between the output of the training data and the prediction of the RNN

given the input of the training data:

L(uk,yk,Θ) =
∑
i

∥∥yk
i − ŷi(u

k,Θ)
∥∥2

(2.3)

where the time series ŷ(uk,Θ) is the prediction of the RNN given input time

15

series uk and parameters Θ. Then, the optimization problem can be expressed

as:

Θbest = arg min
Θ

N∑
k=1

L(uk,yk,Θ) (2.4)

It is worth noting that the MSE loss function is chosen since the expected ap-

plication for the RNN model is ESD simulation. For this application, it is most

important to accurately predict the amplitudes of peaks of the transient circuit

response. Optimizing the MSE loss leads to good model accuracy for those peak

amplitudes. However, optimization of the MSE loss does not lead to optimized

model error in terms of low voltage/current response, or frequency response.

Therefore, if the RNN model is expected to be used in leakage or spectral anal-

ysis, a different loss function should be used for training.

For time series training data, the RNN prediction ŷ(u,Θ) can be calculated

from a discrete-time approximation of (2.1). There are multiple methods for

this approximation, e.g. forward Euler, backward Euler, the trapezoidal rule,

etc. Importantly, the optimization problem (2.4) is only numerically viable if

Lk(Θ) = L(uk,yk,Θ) can be expressed as an explicit function of Θ. Accordingly,

it is required that a closed form expression of ŷ(u,Θ), also being an explicit

function of Θ, can be derived from the discrete-time approximation of (2.1). The

Forward Euler method satisfies this condition and is chosen to be the approxi-

mation method. Thus, if the training time series are created with the time step

h, (2.1) is approximated with the following discrete-time recurrence equation:

xi = xi−1 + h · f(xi−1,ui,Θx) (2.5a)

yi = g(xi,ui,Θy) (2.5b)

By unrolling the recurrence equation (2.5a), the loss function Lk(Θ) can be ex-

pressed as an explicit function of Θ. Thus, the optimization problem (2.4) can

16

be solved with general optimization algorithms.

Generally speaking, the optimization problem (2.4) cannot be solved analyt-

ically for neural networks, nor can it be expected to be convex. Therefore, a

numerical, iterative optimization algorithm must be adopted. In this work, the

stochastic gradient descent (SGD) method is used for the training process. SGD

is also the most commonly used training algorithm for RNNs. In SGD, the set

of training parameters Θ is randomly initialized, then for each training sample,

i.e. each time series, the parameters are updated using the following iterative

equation:

Θnew = Θold − r
∂L

∂Θ

∣∣∣∣
Θold

(2.6)

where the learning rate r is a user controlled parameter which adjusts the balance

between the speed and convergence of SGD. The gradient ∂L
∂Θ

can be explicitly

calculated using the back-propagation through time (BPTT) algorithm, which is

described below.

The gradient ∂L
∂Θ

can be expressed as a sum of the gradients at all the time

steps:

∂L

∂Θx

=
∑
i

∂L

∂ŷi

∂ŷi

∂xi

dxi

dΘx

(2.7a)

∂L

∂Θy

=
∑
i

∂L

∂ŷi

∂ŷi

∂Θy

(2.7b)

In (2.7), ∂L
∂Θy

can be directly calculated from (2.5b); ∂L
∂Θx

needs to be calculated

with

∂L

∂Θx

=
∑
i

∂L

∂ŷi

∂ŷi

∂xi

(
∂xi

∂xi−1

dxi−1

dΘx

+
∂xi

∂ui

∂ui

∂Θx

+
∂xi

∂Θx

)
(2.8)

Since ui is the independent input, ∂ui

∂Θ
= O. On the other hand, the term dxi−1

dΘx

can be expanded as a product of partial derivatives by applying the chain rule

17

repeatedly. Therefore,

∂L

∂Θx

=
∑
i

∂L

∂ŷi

∂ŷi

∂xi

i∑
j=1

(
i∏

k=j+1

∂xk

∂xk−1

)
∂xj

∂Θx

(2.9)

In (2.9), all partial derivative terms can be explicitly calculated from (2.5).

It is worth noting that in practical training tasks, the value of the time step

h sometimes causes numerical difficulty in the training process. Specifically, an

examination of (2.5a) reveals that the gradient ∂L
∂Θx

depends linearly on h; thus,

too small an h can cause the gradient to become zero, while too large an h will

cause the gradient to explode. In those situations, it would help to introduce a

normalization parameter to the RNN equation (2.1a). With the normalization

parameter τ , the general RNN equation can be expressed as

ẋ(t) = τ−1 · f(x(t),u(t),Θx) (2.10a)

y(t) = g(x(t),u(t),Θy) (2.10b)

Accordingly, for training with discrete-time data, the recurrence equation (2.5a)

becomes

xi = xi−1 + hτ−1 · f(xi−1,ui,Θx) (2.11)

In this way, the gradient ∂L
∂Θx

can be normalized with an appropriately chosen τ .

An especially significant and natural choice of the normalization factor is τ = h,

which will often be used in this work. With τ = h, the RNN equation (2.1a)

becomes

ẋ = h−1 · f(x,u,Θx) (2.12)

and for training with time series data, the recurrence equation (2.11) becomes

xi = xi−1 + f(xi−1,ui,Θx) (2.13)

18

2.3.1 Practical Details of the Training Setup

In this section, practical training settings used in this work are summarized.

As a common machine learning practice, the training data are separated into

two subsets: the training set and validation set. The parameter updates use only

data in the training set, and the validation set is used to evaluate overfitting. In

this work, 80% of the training data are used in training, and 20% in validation,

with the data randomly separated.

The training process performs parameter update according to (2.6) using all

samples in the training set in a non-repetitive manner. In each training epoch,

all training set samples are used for parameter update exactly once. After each

epoch, the training error and validation error for the epoch are calculated with

the entire training set and validation set according to (2.3). The training set is

shuffled for the next epoch. The training process will terminate if the validation

error becomes stagnant, i.e. stops improving significantly for more than a preset

number of epochs, or the total number of epochs exceeds a preset maximum. In

this work, the default numbers for those preset parameters are 100 for stagnancy,

and 2000 for maximum.

The learning rate r in (2.6) is adaptively controlled. Numerous methods for

controlling the SGD learning rate have been developed, and the AdaDelta [38]

algorithm is chosen for this work. In addition, the learning rate is further reduced

when the training error is detected to be plateaued for a long period (by default

20 epochs), similar to the learning rate annealing method introduced in [39].

In this work, the training program is written in Python, and open-source pack-

ages Theano and Keras are used.

19

2.4 Verilog-A Implementation of RNN

In Sections 2.1 to 2.3, the process of creating an RNN model for an electrical

circuit is introduced. However, to use the RNN model in a general-purpose circuit

simulator, its model equations need to be implemented in a form interpretable

by the simulator. In this work, we choose to implement the RNN model using

the Verilog-A language, a de facto industry standard for compact modeling.

2.4.1 Direct Verilog-A Implementation of Continuous-time RNN
Equations

x[1]

i=g(x)

u

…

x[2] x[n]

i[1:n]

Figure 2.4: Schematic representation of the Verilog-A RNN model for a 1-port
circuit.

In this section, a method of implementing (2.1) in Verilog-A is given. Figure

2.4 shows the Verilog-A netlist of a 1-port RNN model with the port being VICO.

The RNN internal states x = x[1:n] are represented by internal nodes in Verilog-

A. The state transition equation (2.1a) is implemented by the current branches

labeled i[1:n], with

i[1:n] = i = ẋ− f(x,u)

20

where the quantity ẋ is implemented using the Verilog-A time-differential op-

erator ddt. The output equation (2.1b) is implemented by the current branch

labeled i = g(x). During circuit simulation, KCL equation is formulated for all

nodes. For each of the nodes x[1:n], only one current branch is connected, thus

the KCL equations become i[1:n] = 0, which is equivalent to the RNN equation

(2.1a).

It is simple to modify the netlist shown in Figure 2.4 for RNN models with

multiple ports and/or ports with current as input and voltage as output. In

both cases the internal nodes x and current branches i[1:n] do not need to be

modified. For multi-port RNN, additional input nodes u and output branches

i = g(x) need to be added; for a port with current as input, the dependent current

source i = g(x) needs to be replaced by a dependent voltage source v = g(x).

2.4.2 Verilog-A Implementation of Discrete-time RNN Equations

Since (2.5) is used directly in the training process, it may be reasonable to con-

sider (2.5) as the fundamental RNN equations, and create the Verilog-A model

by converting it to differential equations. This Verilog-A implementation method

will be introduced in the next paragraph. Interestingly, it is observed that switch-

ing the Verilog-A implementation method from one to another does not cause

significant change in model accuracy or numerical performance. The error in-

troduced by the Verilog-A implementation is usually negligible compared with

the error of the RNN model itself. Nevertheless, the Verilog-A implementation

method introduced in Section 2.4.1 is preferred for theoretical reasons which will

be addressed in Section 3.1.2.

To convert the discrete-time RNN equations to differential form, the input,

output and hidden states of the RNN need to be replaced by their continuous-

21

time counterparts and their time-derivatives. Essentially, the RNN equations

(2.5) describe the dynamic behavior of the system at an arbitrary time step ti. A

first-order expansion of the continuous-time inputs and hidden states is taken at

t = ti−1 + αh. Here, 0 < α < 1 is a parameter introduced for model conversion,

and h is the time step of the training data. The discrete-time RNN inputs and

hidden states may then be approximated as:

ui = u + (1− α)hu̇ (2.14a)

xi−1 = x− αhẋ (2.14b)

xi = x + (1− α)hẋ (2.14c)

Substituting (2.14) into the recurrence relation (2.5) yields

x + (1− α)hẋ = x− αhẋ + h · f(x− αhẋ,u + (1− α)hu̇,Θx) (2.15a)

y = g(x,u,Θy) (2.15b)

Next, (2.15) is implemented in Verilog-A in a way similar to that introduced

in Section 2.4.1. The dependent current sources representing the RNN state

transition equation in Figure 2.4 are now

i = −hẋ + h · f(x− αhẋ,u + (1− α)hu̇,Θx) (2.16)

It has been found that the choice of the model parameter α affects the numeri-

cal stability of the Verilog-A model. This observation will be revisited in Section

3.1.2.

22

CHAPTER 3

RNN MODEL STRUCTURES

In this chapter, RNN model structures investigated in this work are introduced.

3.1 The Ordinary RNN

Outputs ymx1:

yi = by+Wyxi

Σ σ

Σ

Σ

Input
kx1

Wu
nxk

Wr
nxn

Wy
mxn

x
nx1

Output
mx1

Initial states

x0
nx1

bu
nx1

by
mx1

Σ

Hidden states x
nx1

:

xi = σ(bu+Wuui+Wrxi-1)

σ(.) = activation, e.g., tanh

σ

σ

Inputs ukx1

Parameter set:

bu, Wu, Wr, by,Wy, x0

Figure 3.1: Structure and model equations of a one-hidden-layer ordinary RNN
with k inputs, m outputs, and n hidden states.

In this work, the term “ordinary RNN” is used to denote the most basic RNN

model, characterized by its single hidden layer and linear output layer, as is

shown in Figure 3.1. If the normalization constant τ = h is used where h is the

time step of the training time series, the ordinary RNN has the following model

23

Table 3.1: Selected activation functions used in neural networks.

Name Notation in this work Explicit form

sigmoid σs(x)
1

1 + e−x

hyperbolic tangent tanh(x)
ex − e−x

ex + e−x

softplus σr(x) ln (1 + ex)

equations:

ẋ = h−1 · [−x + tanh(Wrx +Wuu + bu)] (3.1a)

y = Wyx + by (3.1b)

For the ordinary RNN, the model parameters are Wu ∈ Rnx×nu , Wr ∈ Rnx×nx ,

bu ∈ Rnx , Wy ∈ Rny×nx , and bu ∈ Rny .

In (3.1a), the activation function that introduces nonlinearity to the model is

chosen to be hyperbolic tangent, but other functions can also be used in principle.

The hyperbolic tangent function was chosen due to the intuitive understanding

that the internal state variables of an electrical circuit, e.g. charges and fluxes,

are mostly bipolarity quantities. Some common choices of activation function are

listed in Table 3.1. Note that all the activation functions are strictly monotonic

increasing, and their derivatives are all bounded between 0 and 1. In (3.1a), the

activation function is applied element-wise to its argument, which is a vector.

For training with time series data, (2.13) is used to approximate the differential

equation (3.1a) to a recurrence equation. The approximated equation is:

xi = tanh (Wrxi−1 +Wuui + bu) (3.2)

24

3.1.1 Zero-in-zero-out RNN

To adapt to the task of circuit modeling, a modification is introduced to the

ordinary RNN equations (3.1) to accommodate for a common property of many

circuits: For a physical sourceless circuit, if the condition V = 0 holds for all t < 0

at every terminal, i.e. the circuit is initialized to a rest state, then for a zero-

input stimuli V = 0 for t ≥ 0, the output must be I = 0 at every terminal due

to conservation of energy. This property is referred to as zero-in-zero-out (ZIZO)

in this work. The modified RNN equations below are introduced to account for

the ZIZO property of circuit being modeled:

ẋ = h−1 [−x + tanh (Wrx +Wuu + bu)− tanh bu] (3.3a)

y = Wyx (3.3b)

Obviously, for the initial condition x(0) = 0 and input waveform u(t) = 0, the

solution of differential equation (3.3) would be x(t) = 0 and y(t) = 0. This

modified model has the same training complexity as the ordinary RNN (3.1).

For actual training, the ZIZO ordinary RNN equation (3.3a) is approximated

with the following recurrence equation:

xi = tanh (Wrxi−1 +Wuui + bu)− tanh bu (3.4)

It is easy to verify that this recurrence equation also satisfies ZIZO: When the

hidden states vector x is initialized to x0 = 0 and the input is ui = 0 for all i,

the solution to the recurrence equation (3.4) can be found to be xi = 0 for all i.

Below, (3.5) present an alternative (and simpler) set of discrete-time RNN

25

equations that guarantee ZIZO:

xi = tanh (Wrxi−1 +Wuui) (3.5a)

yi = Wyxi (3.5b)

This alternative equation provides ZIZO with initialization x0 = 0 since tanh(0) =

0. However, the model described by (3.5) has an inconvenient symmetry that

makes it unsuitable for many circuits. Suppose that for a specific input time

series ui = fu(i), the model predicts a hidden states time series xi = fx(i) and

yi = fy(i). For the negative input time series ui = −fu(i), it can be derived

from mathematical induction that xi = −fx(i) and yi = −fy(i). A significant

implication of this result is that any circuit modeled with (3.5) must have an I-V

characteristic that is an odd function. Many circuits do not have this property,

e.g. a single diode. Therefore, the model (3.5) cannot be used as a general circuit

model.

3.1.2 Numerical Stability of Discrete-time Verilog-A
Implementation

It is observed that for the ordinary and ZIZO ordinary RNN, if the Verilog-A

model creation method introduced in Section 2.4.2 is used, numerical instability

may occur depending the choice of the parameter α used for the recurrence-to-

differential equation conversion (2.15). Specifically, non-convergence of transient

simulation is observed when the value of α is close to 1. This phenomenon will

be discussed using the ZIZO ordinary RNN as an example.

Consider the circuit netlist shown in Figure 3.2 with which a transient simu-

lation is run. In Figure 3.2, the Verilog-A model netlist for the ZIZO ordinary

RNN is represented by the elements inside the dashed box, and dependent current

26

+

-
VS(t)IS

s

RS

x[1]

i=Wyx

u

x[2] x[n]

i[1:n]

Verilog-A Model

Figure 3.2: Circuit diagram for numerical stability analysis.

sources i[1:n] are defined by (2.16). Substituting the equation for ZIZO ordinary

RNN (3.4), one obtains

i[1:n] = x−(1−α)hẋ−tanh[Wr(x−αhẋ)+Wu(u−(1−α)hu)+bu]+tanh bu (3.6)

In the Verilog-A model, the variables x and u are represented by node voltages.

In addition, to implement the time differential of a signal, e.g. ẋ, virtual nodes

are created in the Verilog-A model; those nodes are denoted as d = hẋ and

c = hu̇. Defining i[1:n] = F (x,d, u, c) and assuming that the backward Euler

method is applied in the transient simulation, the modified nodal analysis (MNA)

27

equations representing the circuit netlist are as follows:

s = vs (3.7a)

is +
s− u
Rs

= 0 (3.7b)

Wyx +
u− s
Rs

= 0 (3.7c)

F (x,d, u, c) = 0 (3.7d)

hx

τ
− d =

hxprev

τ
(3.7e)

hu

τ
− c =

huprev
τ

(3.7f)

In (3.7), s is the node voltage labeled in Figure 3.2, xprev and uprev are the

solutions of x and u at the previous time step, and τ is the variable time step

used in the transient simulation. Since (3.7d) is nonlinear, the circuit simulator

will attempt to solve the set of equations iteratively using the Newton-Raphson

method. Defining vector X = {x,d, u, c}, the Newton iteration formula for

(3.7d) may be written as

J∗FX = −F (X∗) + J∗FX
∗ (3.8)

In (3.8), X∗ is the value of X in the previous Newton-Raphson iteration, and

J∗F is the Jacobian of F (X) when X = X∗. The entire set of MNA equations

can be written in the following matrix form, which is the same as the matrix

28

generated by the stamp method in the circuit simulator:

0 1 0 0 O O

−1 1/Rs −1/Rs 0 O O

0 −1/Rs 1/Rs 0 Wy O

0 0 h/τ −1 O O

O O J∗u J∗c J∗x J∗d

O O O O hI/τ −I

is

s

u

c

x

d

=

vs

0

0

huprev/τ

−F (X∗) + J∗FX
∗

hxprev/τ

(3.9)

Using (3.6), the Jacobians are found to be

Ju = ∂F /∂u = −MOWu (3.10a)

Jc = ∂F /∂c = −(1− α)MOWu (3.10b)

Jx = ∂F /∂x = I −MOWr (3.10c)

Jd = ∂F /∂d = (1− α)I − αMOWr (3.10d)

where I is the identity matrix and MO is the diagonal matrix specified in (3.11).

MO = diag {tanh′[Wr(x
∗ − αd∗) +Wu(u∗ + (1− α)c∗)]} (3.11)

In (3.11), tanh′ denotes the derivative of the hyperbolic tangent function, i.e.

tanh′(x) =
d tanh(x)

dx
=

1

1 + tanh2(x)

If the model parameters Wu, Wr, and Wy are known, the only unknowns in

the MNA matrix are the time step τ and the diagonal matrix MO. The entries

of matrix MO depend on the value of intermediate variables during Newton-

Raphson iterations and are impossible to know a priori. However, by treating

29

the elements of MO as random variables and using Monte Carlo simulation, the

numerical stability of the transient simulation for a specific time step τ can be

evaluated. In fact, a large set of randomly generated MO represents a wide range

of MNA matrices being solved in actual circuit simulations. Since the elements

of MO are derivatives of the hyperbolic tangent function, they are bounded by

[0, 1], and a uniform distribution is assumed for the Monte Carlo simulation.

Figure 3.3: MNA matrix condition number from Monte Carlo simulation with
random MO.

The Monte Carlo simulation is done for an RNN and the relationship between

the condition number of the MNA matrix and α is plotted in Figure 3.3. The

transient simulation time step τ is taken to be 1/10 of the RNN time step h. The

results of this exercise suggest that the condition number of the MNA matrix

increases dramatically when α gets close to one. Moreover, the variance of the

MNA matrix condition number also increases when α gets close to one, suggesting

an increased likelihood of causing numerical instability.

30

Due to the numerical instability issue discussed in this section, it is in general

recommended to use α = 0 when the method introduced in Section 2.4.2 is used

for the Verilog-A implemention of an RNN model. Accordingly, the differential

equation implemented in the Verilog-A model becomes

ẋ = f(x,u + hu̇,Θx) (3.12a)

y = g(x,u,Θy) (3.12b)

This equation differs from the differential form RNN equations (2.1) only by the

hu̇ term. It is observed that this term has negligible effect on the accuracy of

the Verilog-A model. On the other hand, the inclusion of the hu̇ term causes

violation of the causality principle. Therefore, from a theoretical point of view,

it is recommended to directly use (2.1) for the Verilog-A model.

3.2 The Asymmetric Hopfield Network

Another RNN structure widely investigated in the past is the Hopfield network.

The Hopfield network is a single-layer RNN like the ordinary RNN, but it adds a

decay constant for each of the hidden states. If the normalization constant τ = h

is used, the Hopfield network has the following model equations:

ẋ = h−1 [−Λx +Wr tanh (x +Wuu + bu)] (3.13a)

y = Wyx + by (3.13b)

where Λ ∈ Rnx×nx is a diagonal positive definite matrix representing the de-

cay constants. In practice, the positiveness of those parameters can be achieved

through applying a training constraint, or defining the parameters as an exponen-

tial of real numbers. Although in the original work about the Hopfield network

31

[40] the matrix Wr is assumed to be symmetric, in this work no such constraint

is imposed.

Similar to the ordinary RNN, for training with time series data, (3.13a) is

approximated with a recurrence equation according to (2.13):

xi = (I − Λ)xi−1 +Wr tanh (xi−1 +Wuui + bu) (3.14)

In addition, when the ZIZO property applies to the circuit being modeled, a

ZIZO version of the Hopfield network can be used:

ẋ = h−1 [−Λx +Wr (tanh(x +Wuu + bu)− tanh(bu))] (3.15a)

y = Wyx (3.15b)

and the recurrence equation for training with time series data becomes

xi = (I − Λ)xi−1 +Wr [tanh (xi−1 +Wuui + bu)− tanh(bu)] (3.16)

3.3 The Gated Recurrent Unit

Another RNN structure investigated in this work is the gated recurrent unit

(GRU) [41]. The GRU is proposed as a simplified version of the long short-

term memory (LSTM) network, and both the GRU and LSTM were developed

to mitigate the vanishing gradient problem, which will be discussed in detail

in Chapter 4. If the normalization constant τ = h is used, the GRU has the

32

following model equations:

z = σs (bz + Uzu +Rzx) (3.17a)

r = σs (br + Uru +Rrx) (3.17b)

x = h−1(1− z) ∗ [−x + tanh (bh + Uhu +Rh(r ∗ x))] (3.17c)

y = Wyx + by (3.17d)

In (3.17), z ∈ Rnx and r ∈ Rnx are intermediate variables, σs is the sigmoid

function listed in Table 3.1, and all subscript terms R , U , b and W are

trainable model parameters. The operator ∗ denotes element-wise (Hadamard)

multiplication of two vectors.

For training with time series data, (2.13) can be applied to (3.17c) to generate

an approximate recurrence equation. Converting the intermediate variables z

and r also to time series, the resultant recurrence equation can be expressed

with three separate equations:

zi = σs (bz + Uzui +Rzxi−1) (3.18a)

ri = σs (br + Urui +Rrxi−1) (3.18b)

xi = zi ∗ xi−1 + (1− zi) ∗ tanh [bh + Uhui +Rh(ri ∗ xi−1)] (3.18c)

Again, the GRU equations can also be modified to accommodate for the ZIZO

33

property of electrical circuits. The ZIZO GRU equations are:

z = σs (bz + Uzu +Rzx) (3.19a)

r = σs (br + Uru +Rrx) (3.19b)

x = h−1(1− z) ∗ [−x + tanh (bh + Uhu +Rh(r ∗ x))− tanh(bh)] (3.19c)

y = Wyx (3.19d)

3.4 A Modeling Example

An example RNN modeling task is presented in this section with definition of

major performance figures-of-merit during the training process.

In this example, the circuit being modeled is chosen to be a nonlinear resistor

and an inductor connected in series, which is also used in a test case in Section

4.2. Since the circuit is fairly simple, the model structure is chosen to be a ZIZO

ordinary RNN with nx = 20. The training data are generated using the random

PWL method and converted to time series via interpolation.

During the training process, two performance indicators — the training error

and the validation error — are closely monitored. The relative training and

validation errors are defined by

Er =

√
1
N

∑N
k=1

1
L

∑L
i=1

∥∥yk
i − ŷi(uk,Θ)

∥∥2√
1
N

∑N
k=1

1
L

∑L
i=1

∥∥yk
i

∥∥2
(3.20)

where Er is the relative error, N is the total number of training/validation sam-

ples, L is the number of time points in each sample, uk and yk are the input

and output time series of the kth training/validation sample, and ŷ(u,Θ) denotes

the RNN prediction for input u with parameters Θ. The training and validation

errors are calculated after each training epoch. In Figure 3.4, the evolution of

34

the RNN training and validation error across the training epochs is plotted.

Figure 3.4: Evolution of training and validation errors across training epochs.

After the RNN model is trained, further evaluation is needed for the Verilog-A

model implemented from the RNN. In model evaluation, transient simulation is

run with the circuit being excited with random PWL voltage waveforms that are

of much longer duration than those in the training dataset. By using a longer

duration excitation, one can verify that the RNN model actually captures the

dynamic behavior of the circuit rather than just replicating the known response

of the circuit for a limited amount of time. This transient simulation will also be

referred to as “evaluation simulation” in latter parts of this dissertation. Figure

3.5 compares the evaluation simulation result for the original circuit and RNN

model. In a transient simulation, the voltage and current waveforms predicted by

the RNN model can both deviate from waveforms obtained from a simulation with

the original circuit, making it necessary to quantify the error associated with both

waveforms. The following method is used to quantify the error between simulated

35

-4

-2

0

2

4

vo
lta

ge
 [V

]

original circuit
RNN model

0 50 100 150 200
time [ns]

-4

-2

0

2

4

cu
rr

e
nt

 [A
]

original circuit
RNN model

Figure 3.5: Transient simulation result for the original circuit and RNN model
subjected to random PWL stimuli.

waveforms y from the original circuit and ŷ from the RNN model: First, both

waveforms are linearly interpolated to the same time base of length L with a

constant time step much smaller than that used for training data generation. This

interpolation is necessary since the two waveforms are generated from separate

transient simulations and thus may have values recorded at totally different sets

of time instances. The interpolated waveforms yi and ŷi are used in the following

36

Table 3.2: Model accuracy of RNN model of the modeling example.

Stimuli Error

Training Training 2.3% / Validation 2.3%
Evaluation Voltage 1.14% / Current 1.17%

equation to calculate the relative error:

Er =

√
1
L

∑L
i=1 ‖yi − ŷi‖2√

1
L

∑L
i=1 ‖yi‖2

(3.21)

Current Error
(Training)

Current Error
(Evaluation)

Load Line
(Training)

Load Line
(Evaluation)

V

I

Original
Circuit

RNN Model

Figure 3.6: Illustration of difference in training error and evaluation error due
to the load line effect.

For the modeling example, the relative errors in training, validation and eval-

uation are all listed in Table 3.2. As a rule of thumb used in this work, a model

is considered accurate if the relative error is less than 5%, and acceptable if the

relative error is between 5% and 10%. Using this rule, it can be concluded that

37

the RNN model is accurate for this particular test circuit. Note that in Table

3.2, the evaluation error is smaller than the training/validation error. This is

attributed to difference in the type of source used in the training and evaluation

processes. In the training process, the RNN predicts the output current based

on a fixed input voltage waveform. Equivalently, the model is connected to an

ideal voltage source. In evaluation, however, the RNN model is sourced by a

voltage source with a non-zero source resistance. As a result, the evaluation er-

ror is distributed between the input and output, and the error in each of the two

waveforms can be smaller than the training error. A graphical illustration of this

change in error due to load line is shown in Figure 3.6.

38

CHAPTER 4

THE VANISHING GRADIENT PROBLEM

4.1 Mathematical Description

One major drawback of the ordinary RNN comes from the issue known as the

vanishing gradient problem. Equation (2.9) can be used to illustrate this issue.

Rewrite (2.9) as

∂L

∂Θx

=
∑
i

i∑
j=1

∇i
j(Θx) (4.1)

where ∇i
j(Θx) denotes the gradient of the output error at time step i with respect

to the parameters Θx local to the time step j. Comparing with (2.9), it appears

∇i
j(Θx) =

∂L

∂ŷi

∂ŷi

∂xi

(
i∏

k=j+1

∂xk

∂xk−1

)
∂xj

∂Θx

(4.2)

The vanishing gradient problem arises when the parameter Wr in the ordinary

RNN (3.1) is considered. From (4.2), it follows immediately that

∇i
j(Wr) =

∂L

∂ŷi

∂ŷi

∂xi

(
i∏

k=j+1

∂xk

∂xk−1

)
∂xj

∂Wr

(4.3)

The partial derivative in the product term of (4.3) can be calculated as:

∂xk

∂xk−1

= diag(tanh′(ok))Wr (4.4)

39

where oi = bu+Wrxi−1 +Wuui, and diag(x) denotes the diagonal matrix formed

from vector x. Substituting (4.4) into (4.2), one obtains

∇i
j(Wr) =

∂L

∂ŷi

∂ŷi

∂xi

(
i∏

k=j+1

diag(tanh′(ok))Wr

)
∂xj

∂Wr

(4.5)

For certain matrices Wr, the spectrum radius (i.e. maximum magnitude of

eigenvalues) of the matrix inside the product operator in (4.5), diag(tanh′(ok))Wr,

can be uniformly less than 1 for all possible states ok. When this happens, the

absolute value of the gradient ∇i
j(Wr) will become zero when i− j is sufficiently

large. This zeroing of the long-term gradient is called the vanishing gradient prob-

lem. The vanishing gradient problem happens frequently since for all common

activation functions used for neural networks, the derivative tanh(x) is bounded

between 0 and 1. Especially, for the hyperbolic tangent function, the derivative

tanh′(x) approaches zero when the value of tanh(x) approaches ±1.

As a result, the gradient ∂L
∂Wr

will only have contributions from short-term

gradient terms, i.e. ∇i
j(Wr) for which i− j is not large. This can pose a training

problem since some systems being modeled can have long-term input-output

dependences — inputs having significant lingering effects many time steps later.

Suppose for a specific system that an input at time step j causes an output

response to occur at a later time step i. The RNN can only be trained to

learn this dependence from the gradient update ∇i
j(Wr). If this gradient update

becomes zero due to the vanishing gradient problem, the long-term dependence

will never be learned, and the information of this long-term dependence will be

lost in the training process.

It may seem that an appropriate choice of the training data time step h could

eliminate the vanishing gradient problem. Indeed, use of large h reduces the

severity of the vanishing gradient problem since the same long-term dependence

40

can be covered with fewer time steps, so that there are fewer terms in the product

term in (4.5), making it less likely to reach zero. However, for systems that are

expected to be excited by fast transients, using a large time step can significantly

degrade the model accuracy. This is evident from the sampling theorem: If the

training data time step is chosen to be h, the interpolated training data will

contain no information about the circuit’s behavior for stimuli with a frequency

higher than f0 = 1
2h

. Therefore, the trained model also does not contain any

information about the model behavior when excited with stimuli with a frequency

higher than f0. In fact, considering the fact that most circuits being modeled

in this work are nonlinear, they should generate spurious response that contains

frequency content several times higher than the base frequency of a stimulus.

Therefore, the time step h should be chosen to be several times higher than the

expected maximum stimulus frequency.

4.2 Test Case: Nonlinear Resistor with Reactive/Delay

Element

Figure 4.1: Test circuits used in the investigation of vanishing gradient problem.

Circuit modeling experiments are carried out to demonstrate the impact of the

vanishing gradient problem. Three simple test circuits illustrated in Figure 4.1

are used for this experiment. All three test circuits contain the same nonlinear

41

Table 4.1: List of vanishing gradient test cases.

Settling time Inductance Capacitance T-line delay

1 ns 0.18 nH 0.5 nF 0.25 ns
3 ns 0.54 nH 1.5 nF 0.75 ns
10 ns 1.78 nH 5 nF 2.5 ns
30 ns 5.36 nH 15 nF 7.5 ns
100 ns 17.8 nH 50 nF 25 ns

resistor, which is realized with two identical diodes connected in parallel facing

different directions. The diode is designed to have no memory with the static

I-V characteristics:

Id = Is exp

(
q(Vd −RsId)

kT
− 1

)
(4.6)

where Vd and Id are the voltage across and current through the diode. Memory is

introduced to the three test circuits by adding a single reactive or delay element

to each circuit: an inductor in series, a capacitor in parallel, and an ideal trans-

mission line (T-line) in series, respectively. Since the vanishing gradient problem

becomes more severe for systems with longer memory, it is expected that the

model accuracy will deteriorate when the inductance, capacitance, and T-line

delay in the test circuits become larger, and the time step of the training data

h is kept unchanged. To facilitate the comparison between the three test cases,

the settling time is defined as a measure of the circuit memory. For each test

circuit, simulation with the voltage across the test circuit being a step function

is performed. From the simulation result, the settling time is defined as the time

it takes for the current through the circuit to settle to less than 1% compared

with its steady-state value.

Training data are generated using the random PWL method described in Sec-

tion 2.2. The values of the components used in the actual netlists are listed in

Table 4.1. All training samples extracted from circuit simulation are waveforms

42

with a length of 100 ns, and the waveforms are interpolated with a fixed time

step h = 50 ps to form the time series data directly used in training. In total,

five sets of training data are generated for each test circuit.

For each set of training data, six different RNN models are trained. The three

model structures — ZIZO ordinary RNN, ZIZO Hopfield network, and GRU,

each with a hidden state vector dimension of 20 — are used to fit the training

data. For each model structure, the circuit is configured as VICO or CIVO to

train two different models. The results of all training experiments are groups

with the type of memory element and input/output configuration, and are listed

in Tables 4.2-4.4.

Table 4.2: Accuracy (in terms of Training Error/Validation Error of the output
quantity) of RNN models trained for nonlinear resistor & series inductor.

Port I/O Settling time ZIZO Ordinary ZIZO Hopfield GRU

1 ns 2.3% / 2.3% 0.5% / 0.6% 0.3% / 0.3%
3 ns 6.5% / 6.4% 3.8% / 4.1% 0.4% / 0.4%

VICO 10 ns 9.4% / 9.4% 7.9% / 7.4% 0.8% / 0.8%
30 ns 30.2% / 31.6% 14.1% / 12.7% 1.5% / 2.0%
100 ns 16.4% / 11.2% 43.0% / 50.7% 6.2% / 9.2%

1 ns 9.2% / 9.3% 9.4% / 9.2% 8.9% / 9.6%
3 ns 8.9% / 8.7% 7.9% / 8.6% 7.7% / 7.5%

CIVO 10 ns 9.3% / 8.8% 6.1% / 6.7% 5.7% / 6.7%
30 ns 12.6% / 12.5% 4.5% / 5.2% 6.2% / 5.8%
100 ns 14.9% / 16.9% 11.3% / 15.1% 9.2% / 9.5%

43

Table 4.3: Accuracy (in terms of Training Error/Validation Error of the output
quantity) of RNN models trained for nonlinear resistor & parallel capacitor.

Port I/O Settling time ZIZO Ordinary ZIZO Hopfield GRU

1 ns 3.3% / 2.8% 1.2% / 1.3% 0.5% / 0.5%
3 ns 3.7% / 3.9% Training diverges 0.9% / 0.9%

VICO 10 ns 6.1% / 5.1% 1.0% / 1.0% 1.6% / 1.7%
30 ns 11.5% / 13.8% 4.2% / 3.9% 2.2% / 2.5%
100 ns 43.2% / 64.5% 13.6% / 22.8% 14.2% / 27.7%

1 ns 2.6% / 2.7% 2.0% / 1.9% 0.4% / 0.4%
3 ns 6.0% / 6.2% 5.5% / 5.0% 0.7% / 0.6%

CIVO 10 ns 5.7% / 5.8% 5.4% / 5.0% 1.8% / 1.8%
30 ns 10.8% / 11.1% 8.0% / 9.4% 3.2% / 3.3%
100 ns 76.6% / 74.5% 79.2% / 78.8% 14.4% / 16.8%

Table 4.4: Accuracy (in terms of Training Error/Validation Error of the output
quantity) of RNN models trained for nonlinear resistor & series T-line.

Port I/O Settling time ZIZO Ordinary ZIZO Hopfield GRU

1 ns 2.8% / 2.8% 1.0% / 1.0% 0.8% / 1.0%
3 ns 6.5% / 6.6% 2.7% / 2.8% 2.7% / 2.7%

VICO 10 ns 29.3% / 28.3% 29.1% / 28.5% 28.9% / 29.0%
30 ns 28.1% / 28.2% 28.0% / 27.8% 28.3% / 27.2%
100 ns 22.0% / 22.5% 21.9% / 22.8% 22.3% / 21.4%

1 ns 2.4% / 2.5% 1.3% / 1.3% 2.8% / 2.8%
3 ns 6.1% / 5.9% 2.6% / 2.4% 2.2% / 2.5%

CIVO 10 ns 29.5% / 29.0% 29.5% / 29.5% 29.4% / 29.3%
30 ns 28.4% / 28.5% 28.5% / 27.3% 28.4% / 28.4%
100 ns 22.2% / 22.3% 22.4% / 21.5% 22.2% / 22.6%

From Tables 4.2-4.4, it is evident that the performances of all different RNN

structures become worse with longer circuit settling time. This is consistent

with the theory of vanishing gradient problem causing diminished accuracy. For

a circuit with longer settling time, more information will be lost due to the

vanishing gradient, causing the prediction error of the RNN to increase. On

the other hand, comparing all the results between different model structures,

44

it appears that the GRU is most robust for training of systems with long-term

memory. The Hopfield network performs worse than GRU, and the ordinary

RNN is the worst. This observation is expected since the GRU is specifically

designed to alleviate the vanishing gradient problem. Unfortunately, even for the

GRU, training error is still an increasing function of the circuit settling time, and

the error can eventually become intolerable. It can also be observed from the

results that different types of memory cause problems of different severity. For the

systems with inductor and capacitor, the model accuracy gradually degrades with

increasing settling time, and there are observable differences between the three

structures. For the system with the transmission line, it appears that the training

will completely fail for all structures once the delay is long enough. This result

suggests that systems with pure delay are the most difficult to train for RNN

structures, while systems with long decaying time constants can cause problems

for the training algorithm, but using a GRU alleviates the problem. Note that

systems with pure delay cannot be expressed with state-space equations with

a finite number of states. Therefore, it is expected that RNN as a state-space

system approximator has reduced performance for such systems.

It appears from the result that using VICO or CIVO does lead to difference in

the model accuracy. This difference is especially prominent for the system with

inductor, as the RNN models with voltage input outperform the current input

ones by a large margin. For the systems with capacitor and transmission line, it

is hard to conclude if one input configuration is necessarily better than the other.

This observation is hypothetically attributed to a combined effect of the reac-

tive element and the nonlinear resistor. The dynamic behavior of the RL and

RC systems can be easily described by a differential equation if the resistor in

45

the system is assumed linear:

V = Lİ +RI (4.7a)

I = CV̇ +R−1V (4.7b)

where (4.7a) represents the series RL and (4.7b) represents the parallel RC. From

those two equations, the sensitivity of voltage or current subject to a fast transient

change in the other can be evaluated. For the RL system, I is not sensitive to a

fast change in V because the İ term acts like an integrator. On the other hand,

V can be sensitive to a fast change in I especially if the resistance R is large.

Similarly, for the RC system V is not sensitive to fast change in I, but I can be

sensitive to fast change in V if R is small. Consider the behavior of the nonlinear

resistor which consists of two diodes connected in anti-parallel. Its differential

resistance will never be small, but can be large when the voltage is close to zero,

when both diodes are in the off state. This indicates that for the nonlinear RL

system, the voltage can be potentially too sensitive to the current, making the

RNN with CIVO configuration difficult to train.

46

CHAPTER 5

STABILITY OF RNN MODELS

It is highly undesirable for a behavioral model to incorrectly predict that a stable

system has an unstable response. However, as a class of black-box model, there

is no guarantee that an RNN would be stable even if trained with data collected

from a stable system. It is always possible to generate multiple models for the

same system, test each and discard the unstable ones, but this method is highly

inefficient. In this chapter, the RNN model structures are analyzed mathemati-

cally and certain conditions for stability are derived. In general, those conditions

create a constraint on the RNN model parameters, such that if the training pro-

cess is carried out with those constraints, the trained model can be guaranteed

to be stable.

5.1 Definition of Model Stability

All RNN structures introduced in this work are in the form of a nonlinear state-

space system. In general, the model can be written as

ẋ(t) = f(x(t),u(t)) (5.1a)

y(t) = g(x(t)) (5.1b)

This work utilizes asymptotic stability; an asymptotically stable system will al-

ways converge to a constant equilibrium point for a constant input. Consequently,

47

a circuit model in the form of (5.1) that is asymptotically stable cannot predict

an oscillatory response to constant stimuli. Thus, for any circuit other than an

oscillator, it is desired to enforce asymptotic stability when creating its model.

A formal definition of the asymptotic stability of the nonlinear system (5.1) is

as follows [42]. Suppose that the constant input u(t) = U and hidden state X

satisfy f(X,U) = 0, i.e., x = X is an equilibrium point of the system for input

u = U . The equilibrium point is asymptotically stable if there exists ε > 0 such

that for all |x0 −X| < ε, the solution to differential equation (5.1a) with input

u = U and initial condition x(0) = x0 satisfies

lim
t→∞

x(t) = X (5.2)

If condition (5.2) can be satisfied for all ε > 0, the equilibrium point is said to be

globally asymptotically stable. Furthermore, if all equilibrium points satisfying

f(X,U) = 0 for all U ∈ Rnu are globally asymptotically stable, then system

(5.1) is said to be absolutely stable (ABST). Clearly, the output of an ABST

system will converge to a constant for any constant input.

For circuit simulation, the RNN model will be connected to models of other

circuits in the full system being simulated. Potentially, more than one RNN

model can be used in the same simulation. It is important to note that a system

that consists of ABST systems connected in cascade is also ABST [43]. This

means that a large circuit represented by cascaded ABST models cannot display

nonphysical instability during circuit simulation. However, the ABST property

has limitations in its application; most significantly, if an ABST system is con-

nected in feedback, its stability is no longer guaranteed. Unfortunately, for RNN

circuit models in which both the voltage and current at a single port are treated

as variables — one as input and the other as output — the feedback connection

48

is inherent. For example, consider an RNN model of a 1-port circuit in which the

port voltage v is the input and current i is the output. Connecting a load resistor

R to the port introduces feedback between the input and output, as given by the

relation v = Ri. In fact, any circuitry connected to this port, other than an ideal

voltage source, will introduce feedback to the RNN model. As a result, even if

the RNN model is guaranteed to be ABST, no such statement can be made about

the stability of the full system to be analyzed in a practical circuit simulation.

Thus, if an RNN circuit model contains any IO-ports, a stability analysis must

consider the source/load circuitry connected to those ports.

In theory, there are infinite varieties of source/load circuitry, and a stability

analysis that covers all alternatives is infeasible. However, there are certain

practical source/load configurations that can be analyzed. In particular, if the

combined system of the source/load and the RNN can be expressed explicitly as

a state-space system, the stability analysis can be carried out using the Lyapunov

method. For example, consider a voltage source with series resistance and shunt

capacitance. The output characteristic of that source is described by

iout =
Vs − vout

R
− Cdvout

dt
(5.3)

Further consider a multi-port RNN model whose input-output ports are of the

type voltage-input current-output, and each of those ports is connected to a

source that is described by (5.3). A comparison of (5.1) and (5.3) indicates

that at the jth port, vjout = uj and ijout = yj, and the combined system can be

represented by:

ẋ = f(x,u) (5.4a)

u̇ = (RC)−1(Vs − u)− C−1g(x) (5.4b)

49

In (5.4), R and C are diagonal matrices whose entries are the output resistances

and capacitances of the sources connected to each port. The combined system

described by (5.4) is autonomous with state variables [x u]T , so one can define its

asymptotic stability with (5.2). Furthermore, the combined system is ABST if it

satisfies global asymptotic stability for all Vs. Clearly, the stability of the system

(5.4) depends on the source resistances and capacitances R and C. The designer

should identify the range of R and C values that may be encountered in practice;

furthermore, one can leverage expert knowledge about the characteristics of the

circuit being modeled to identify the ranges of R and C for which the system

should be stable. Then, if the combined system (5.4) is ABST for all R and C

in that range, the RNN model can be identified as stable for this particular type

of source. The preceding analysis is specific to one (often-encountered) model of

a voltage source, and needs to be performed for different kinds of sources/loads

on a case-by-case basis.

In this work, stability analysis is carried out for sources and loads that have

a purely real output impedance and are connected port-wise to the RNN model.

Sources connected to voltage-input ports are represented by Thevenin equivalent

circuits and sources connected to current-input ports by Norton equivalent cir-

cuits. It follows that the feedback can be described using u = V − Ry, where

V represents the Thevenin source voltage or Norton source current and R rep-

resents the Thevenin source resistance or Norton source conductance. The full,

autonomous feedback system is then

ẋ = f(x(t),V −Rg(x)) (5.5)

An RNN model is said to be ABST for port-wise resistive feedback if the nonlinear

system (5.5) is globally asymptotically stable for all V and diagonal positive

50

definite R.

5.2 Conditions for Stability

In Section 5.1, stability is defined for RNN models as general nonlinear systems.

In practice, the stability of different RNN structures needs to be analyzed case-

by-case.

First of all, an observation can be made that the ordinary RNN can be consid-

ered as a special case of the Hopfield network. It may seem on examination that

the ordinary RNN (3.1a) and Hopfield network (3.13a) are different since the

ordinary RNN contains an activation of linearly reconnected states tanh(Wrx),

while the Hopfield network contains a linearly reconnected activation of the states

Wr tanh(x). However, for the ordinary RNN, one can make the transform of

states x̄ = Wrx so that (3.1a) becomes

˙̄x = h−1 [−x̄ +Wr tanh(x̄ +Wuu + bu)] (5.6)

After such a transform of states, the ordinary RNN becomes a Hopfield network

with the state-wise decay constant Λ = I.

There is a body of prior research that addresses the stability conditions for a

Hopfield network. However, for a Hopfield network with arbitrary parameter Wr,

no sufficient and necessary condition for ABST has been established. In [44], it is

shown that for Hopfield networks with a normal Wr matrix, i.e. WrW
T
r = W T

r Wr,

a sufficient and necessary condition for ABST would be max(Re [λe(Wr)]) < 0,

where λe(A) represents the eigenvalues of matrix A. On the other hand, in [45, 46]

it is demonstrated that if no constraint is imposed on Wr, a sufficient condition

for the ABST of the Hopfield network (3.13) is Wr − Λ ∈ L, where L is the set

51

of Lyapunov diagonally stable (LDS) matrices, defined as

L =
{
A | ∃D = diag(d) > 0 : ATD +DA < 0

}
(5.7)

where M > 0 or M < 0 means that the symmetric matrix M is positive definite

or negative definite, respectively. With either stability condition enforced, the

resultant model space is only a subset of the set of all stable networks. In this

work, we mainly focus on the LDS condition. With a stability condition iden-

tified, a corresponding constraint can be introduced into the training process to

enforce stability. This is done by introducing a regularization term into the loss

function that drives the model parameters toward the stable region.

It is not straightforward to construct a regularization term that corresponds to

the LDS condition (5.7). However, if the stability criterion is further constrained

to be Wr+W
T
r −2Λ < 0, a regularization term that is a function of the eigenvalues

of the symmetric matrix Wr + W T
r − 2Λ can be introduced. Setting D = I in

(5.7), one may easily verify that Wr + W T
r − 2Λ < 0 is a sufficient condition for

Wr − Λ ∈ L. For an ordinary RNN, Λ = I, thus the stability condition becomes

Wr+W T
r −2I < 0; this constraint can also be directly derived using the Lyapunov

method, the details of which are given in Appendix A. The regularization term

shown below is added to the loss function to penalize any positive eigenvalue of

the matrix Wr +W T
r − 2Λ:

R(Θ) =
∑

σr
[
λe(Wr +W T

r − 2Λ)
]

(5.8)

Above, λe(M) denotes the eigenvalues of the symmetric matrix M , and σr is

the softplus function listed in Table 3.1. With regularization, the optimization

52

problem (2.4) becomes

Θbest = arg min
Θ

N∑
k=1

[
Lk(Θ) + γR(Θ)

]
(5.9)

where γ is a proportionality factor whose value is tuned to ensure model stability

with only a minimal sacrifice in model accuracy.

As is discussed in Section 5.1, it is further desired to find conditions that guar-

antee the RNN model to be ABST for port-wise resistive feedback, as described

in the preceding section. For an RNN, the feedback equation in (5.5) can be

written as

ẋ = h−1 [−x + tanh ((Wr −WuRWy)x +WuV −WuRby + bu)] (5.10)

Equation (5.10) has the same functional form as (3.1a), and represents an ordi-

nary RNN with different parameters. From the analysis of ABST for ordinary

RNN, it immediately follows that the nonlinear system (5.10) is guaranteed to

be globally asymptotically stable for all V if Wr −WuRWy − I ∈ L. Therefore,

a sufficient stability condition for an RNN with port-wise resistive feedback is

∀R = diag(r) > 0 : Wr −WuRWy − I ∈ L (5.11)

If there exists a diagonal positive definite matrix D such that W T
y = DWu, then

a sufficient condition of (5.11) can be formulated in terms of matrix eigenvalues

and introduced into training as a regularization. Specifically, condition (5.11)

can be satisfied for all R > 0 if D(Wr − I) + (Wr − I)TD < 0.

Proof. Let A = Wr − I. From W T
y = DWu, one obtains

D(A−WuRWy) + (A−WuRWy)
TD = DA+ ATD − 2WyRW

T
y

53

Since R is positive definite, WyRW
T
y is also positive definite. Therefore, if DA+

ATD < 0, it follows that DA+ ATD − 2WyRW
T
y < 0 for all R > 0. Thus, (5.7)

is satisfied for A−WuRWy.

Similar to (5.8), a regularization term penalizing positive eigenvalues of matrix

D(Wr− I) + (Wr− I)TD can be introduced to enforce stability condition (5.11):

R(Θ) = k
∑

σr
[
λe(D(Wr − I) + (Wr − I)TD)

]
(5.12)

To use the regularization method (5.12), the equation W T
y = DWu must have

a diagonal positive definite solution D. This can be guaranteed in the training

process by defining the RNN parameters in terms of D instead of Wy. In this way,

the output equation for the ordinary RNN (3.1b) becomes y = (DWu)Tx + by

with the training parameters Θy = {D, by}.

Thus far, (5.12) has only been used for training 1-port models, since the re-

quirement of the existence of D is easy to meet when nu = ny = 1. For 1-port

models, Wu and W T
y are all nx × 1 vectors; thus, as long as they share the same

sign element-wise, the diagonal entries of D can be calculated from element-wise

division between W T
y and Wu. On the other hand, if there are two or more ports

in the model, the parameters Wu ∈ Rnx×nu and W T
y ∈ Rnx×ny are not vectors.

In this case, the existence of D implies linear dependence of all vectors formed

by element-wise division from the corresponding column vectors of W T
y and Wu.

That is a demanding constraint to be put on the two matrices. Further analysis

of system (5.10) is warranted to derive a stability condition applicable to circuits

with more than one input-output port.

For Hopfield networks, the nonlinear system (5.5) can be written as

ẋ = h−1 [−Λx +Wr tanh ((I −WuRWy)x +WuV −WuRby + bu)] (5.13)

54

Unfortunately, this equation is neither in the form of a Hopfield network, nor

any neural network structure with a known stability condition. Furthermore, a

simple transform of states cannot convert the equation to a form for which a

stability condition is known. Consequently, stability analysis of (5.13) needs to

be done from scratch, in principle with the Lyapunov method. This analysis is

beyond to the scope of this dissertation.

5.3 Test Case I: Nonlinear RLC Circuit

An experiment is designed and performed to test the effectiveness of the reg-

ularization method (5.12). In this experiment, a 1-port circuit comprised of a

nonlinear resistor, an inductor and a capacitor is used as the test case. The

circuit schematic is shown in Figure 5.1, and the nonlinear resistor has an I-V

characteristic defined by the following function:

I = 4 tanh(V) +
1

4
V (5.14)

ZIZO ordinary RNN models (3.3) with nx = 30 are used for this experiment.

A single set of training data is generated with the random PWL method, and

used to train multiple models with or without the stability regularization. Each

of the trained RNN models is converted to a Verilog-A model using the method

introduced in Section 2.4.1.

The stability of the Verilog-A models is evaluated by transient simulation in

which the model is excited by a step-voltage source through a linear resistor. For

the simulation with each step-voltage and source resistance (V-R) combination,

the system is considered stable if both the voltage and current responses of the

model settle to a constant value. In contrast, if either of the voltage and current

55

0.2 nH

0.15 nFRnonlinear

Figure 5.1: Netlist of the 1-port test circuit used for model stability analysis.

waveforms appears to be oscillating indefinitely, or exploding to infinity, the

system is considered unstable. The result of all stability simulations can be

visualized by calculating the maximum peak-to-peak variation in the voltage

and current waveforms after a predefined time T , i.e.

Vpp = max
t>T

V (t)−min
t>T

V (t) (5.15a)

Ipp = max
t>T

I(t)−min
t>T

I(t) (5.15b)

and T is chosen to be long enough for the circuit to settle. An example of this

visualization is shown in Figure 5.2, which shows the stability simulation result

for the original circuit itself. Obviously, the original circuit is stable for all tested

V-R combinations, since the simulated voltage and current variations all die out

eventually. In fact, it can be proven that the original circuit is in theory ABST

for port-wise resistive feedback. The proof is given in Appendix B.

Not surprisingly, if the stability regularization (5.11) is not used, it is possible

for the trained RNN model to be unstable for specific V-R combinations, even if

it appears to have good accuracy in all perspectives — training, validation and

56

Figure 5.2: Stability simulation result for the original test circuit shown in
Figure 5.1. Note the voltage scale on the color bar is in fV (10−15V).

Verilog-A evaluation. An example transient simulation result is shown in Figure

5.3, highlighting the oscillatory behavior predicted by the RNN model. For this

specific RNN model, the full stability simulation result is shown in Figure 5.4.

Evidently, for some V-R combinations the system is shown to be oscillating at

a significant amplitude, reflected with both the current and voltage waveforms.

Notice that this oscillation may not be observed in the evaluation phase, since

the model is still stable for most Thevenin sources. Therefore, it is essential to

57

-40

-20

0

20

40

vo
lta

ge
 [V

]
original circuit
RNN model

0 1 2 3 4
time [ns]

-8

-6

-4

-2

0

cu
rr

e
nt

 [A
]

original circuit
RNN model

Figure 5.3: Transient simulation result for the test circuit and an RNN model,
demonstrating the unstable behavior of the RNN.

run stability simulations if one desires to determine the stability of the model.

An RNN model should be classified as unstable if any of the stability simulation

results shows an unstable behavior.

To evaluate the effectiveness of the regularization method (5.12), 10 models

are trained for the nonlinear RLC test circuit with or without the regularization.

The weight parameter γ in the regularization (5.9) is chosen to be 0.05. Among

the 10 models, 5 are trained with VICO configuration and 5 with CIVO. The

58

Figure 5.4: Stability simulation result for an RNN model of the nonlinear RLC
stability test circuit.

only difference for each set of 5 models is the random initialization of the model

parameters before training. Table 5.1 summarizes the accuracy and stability of

the 10 RNN models trained without regularization. From Table 5.1, it appears

that with a normal training approach without stability regularization, there is a

non-zero probability that the trained model will be unstable.

For comparison, the accuracy and stability of the 10 models trained with sta-

bility regularization are listed in Table 5.2. In this case, all VICO models show

59

Table 5.1: Stability simulation result for ZIZO ordinary RNN models trained
for the nonlinear RLC test case with no regularization.

Input Train/Validation Error Verilog-A Error Stability

3.6% / 3.9% 13.1% / 5.0% Unstable
0.8% / 0.8% 1.3% / 0.6% Stable

Voltage 10.0% / 9.8% 7.9% / 3.9% Stable
2.3% / 2.1% 8.2% / 4.0% Stable
1.0% / 1.0% 2.5% / 1.3% Stable

4.0% / 4.2% 2.5% / 1.3% Stable
3.9% / 3.9% 2.2% / 1.1% Stable

Current 4.1% / 4.0% 2.4% / 1.2% Stable
4.0% / 4.0% 2.7% / 1.3% Stable
10.2% / 7.1% 3.6% / 1.7% Unstable

Table 5.2: Stability simulation result for ZIZO ordinary RNN models trained
for the nonlinear RLC test case with regularization for port-wise resistive

feedback stability.

Input Train/Validation Error Verilog-A Error Stability

16.4% / 16.4% 8.4% / 3.8% Stable
16.7% / 16.1% 7.6% / 3.4% Stable

Voltage 15.9% / 15.6% 7.8% / 3.4% Stable
16.4% / 16.4% 7.9% / 3.6% Stable
16.5% / 16.7% 8.5% / 3.9% Stable

7.0% / 6.6% 1.9% / 0.8% Stable
5.3% / 5.3% 1.6% / 0.7% Stable

Current 6.0% / 5.1% 1.7% / 0.7% Stable
5.1% / 5.1% 9.5% / 4.3% Stable
6.7% / 6.8% 1.8% / 0.8% Stable

60

significant training and validation error, and the evaluation error, although lower

than the training error, is still much higher than in the models trained without

regularization. The increase in training error is expected, since regularization

tends to constrain the model space. On the other hand, all 5 CIVO models give

acceptable training and validation error only slightly higher than those of the no

regularization case. Four of the models also show good evaluation error. Most

importantly, all 10 models trained with the stability regularization are observed

to be stable in the stability simulation for all V-R combinations, demonstrating

the effectiveness of the regularization method. In conclusion, the stability regu-

larization moderately diminishes the model accuracy but successfully guarantees

the model stability. On the other hand, the difference in accuracy between the

VICO and CIVO models is likely to be case-specific, and a rigorous physical

explanation is hard to propose due to the black-box nature of the RNN model.

5.4 Test Case II: Two-port ESD Protection Circuit of an

IO Pin

A second experiment on the stability of RNN models focuses on a 2-port ESD

protection circuit for an IO cell. The schematic of the circuit is shown in Figure

5.5. Although for a circuit with two VICO or CIVO ports, no method is developed

in this work to guarantee the RNN model stability, it will be demonstrated that

the choice of input/output variables has an impact on the model stability.

Similar to the previous test case, random PWL stimuli are used for training

data generation. The PWL source voltages and resistances are randomly sampled

from distributions independent for each port. ZIZO ordinary RNN with nx = 30

is chosen as the model structure. Five models are trained for both VICO and

CIVO configurations, and for each configuration the only difference between the

61

Ref

Port 1

Port 2

5.5kµ

62.5µ
10pF

100kΩ

62.5µ

62.5µ

130µ

250µ

6nF

0.2Ω

0.2Ω

Rail Clamp

Figure 5.5: Schematics of the 2-port ESD protection circuit used for stability
analysis. The rail clamp circuit in red is used in another test case in Section

6.1.1.

five models is the random initialization of the model parameters before training.

The training and validation errors of the models are listed in the second column

of Table 5.3. After training, each RNN model is implemented in Verilog-A as a

2-port behavioral model.

Rather than working directly on the 2-port RNN models, the evaluation of

this circuit is carried out with the 1-port circuit created by shorting port 2 of

the model. The reason of choosing this evaluation method is as follows: While

being a test case for stability, there is no stability regularization applied during

the training process. Hence, one cannot assume that the models will be ABST

for port-wise resistive feedback. Therefore, the stability of the circuit should

be evaluated with a more practical stability condition than the 2-port Thevenin

stimuli method which tests the theoretical ABST condition. The 2-port Thevenin

stimuli method itself is impractical due to the exceedingly large number of tran-

sient simulations needed for a full-factorial sweep of the voltages and resistances

of both the Thevenin sources. Instead, the evaluation is carried out with the

62

Table 5.3: Stability simulation result for ZIZO ordinary RNN models for the
2-port ESD protection test case.

Port I/O Train/Valid Error Verilog-A Error V/I Stability

3.8% / 3.8% 2.2% / 1.5% Stable
3.1% / 3.2% 2.0% / 1.5% Unstable

VICO 3.1% / 3.2% 2.3% / 1.7% Unstable
2.9% / 3.1% 2.7% / 1.9% Unstable
3.5% / 3.7% 1.4% / 1.0% Unstable

4.4% / 4.2% 1.9% / 1.4% Stable
4.2% / 4.0% 1.4% / 1.0% Stable

CIVO 4.4% / 4.6% 0.9% / 0.7% Stable
4.6% / 4.6% 3.5% / 2.6% Stable
4.0% / 3.9% 1.5% / 1.1% Stable

1-port circuit created by shorting port 2 of the model. The resultant 1-port cir-

cuit closely resembles the power-off ESD condition, in which the port 2 of the

circuit is connected to a passive network with almost zero load impedance. The

accuracy of the Verilog-A model is evaluated for the 1-port circuit using random

PWL stimuli, and the stability is evaluated with Thevenin sources. The accuracy

and stability of the 1-port is listed in columns 3-4 of Table 5.3.

In this test case, for both VICO and CIVO configurations, the training, valida-

tion and evaluation error for all five models are close to each other. Interestingly,

the models trained with VICO configuration are unstable with a high probability,

while the CIVO models are uniformly stable. This result offers a useful hint for

real life training tasks, namely that it is advisable to change the input/output

configurations of the model when stable models appear to be hard to achieve.

63

CHAPTER 6

EVALUATION OF MODELING
METHODOLOGY WITH ADDITIONAL TEST

CASES

In this chapter, the RNN modeling methodology is evaluated with circuits used

in practical circuit designs. Selected circuits are modeled using RNNs introduced

in Chapter 2 and training data generated with methods introduced in Section

2.2. It will be demonstrated that although some potential problems for RNN are

exposed in Chapters 4 and 5, it in general creates an accurate model for many

real life circuits if the training is done correctly. On the other hand, it will also

be demonstrated that RNN models can deviate from accurate prediction when

used in conditions for which they are not trained.

6.1 ESD Test Cases

As is discussed in Section 1.1, ESD protection circuits are important test cases

for the RNN modeling methodology. This section shows some case studies for

creating RNN models for ESD protection circuits.

6.1.1 Simple ESD Circuits

For the first ESD test set, the RNN is used to model two relatively simple func-

tional circuits for ESD protection purposes. The two circuits being modeled are

a) a single SPICE diode, and b) an active rail clamp circuit [47]. The schematic of

the rail clamp circuit is shown in Figure 5.5 (the red portion), and the transistor

models are BSIM4v4 with parameters defined for a commercial 130 nm CMOS

64

technology. The ZIZO ordinary RNN (3.3) is used as the model structure. The

training data are generated with circuit simulation, but the stimuli are chosen to

be measurement-compatible, as is introduced in Figure 2.3. The trained models

are implemented in Verilog-A and evaluated with stimuli different from those

used in training data generation. The first evaluation stimulus is a random PWL

voltage source with a 1 Ω output resistance. The second stimulus corresponds

to an IEC 61000-4-2 ESD tester [3] whose model netlist is shown in Figure 6.1.

Since both evaluation stimuli have a longer time-span than the training samples,

it can be concluded that the model well replicates the internal dynamics of the

circuit if the model accurately predicts the transient response of the circuit for

all evaluation simulations.

330Ω

200Ω

12pF

150pF

3µH

120pF 3µH

10pF

140nH
output

ref

Vpc

Figure 6.1: Schematic of the IEC 61000-4-2 ESD tester model. Vpc denotes the
precharge voltage, and the relay needs to be actuated to deliver the discharge.

Figures 6.2 and 6.3 compare the simulation results obtained for the SPICE

diode with original circuit model and the Verilog-A RNN model for the two

evaluation stimuli. The same comparison for the rail clamp circuit is shown in

65

Figure 6.2: Simulation result for diode with PWL stimulus.

Figure 6.3: Simulation result for diode with IEC stimulus.

66

Figure 6.4: Simulation result for rail clamp with PWL stimulus.

Figure 6.5: Simulation result for rail clamp with IEC stimulus.

67

Table 6.1: Error of RNN model for the simple test cases.

Case Stimuli Voltage/Current Error

Diode Random PWL 0.64% / 1.66%
Diode IEC 0.55% / 0.15%

Rail Clamp Random PWL 1.39% / 0.77%
Rail Clamp IEC 1.91% / 0.20%

Figures 6.4 and 6.5. The relative errors are calculated with a slightly different

formula than (3.21):

Er =

√
1
L

∑L
i=1 ‖yi − ŷi‖2

maxyi −minyi

(6.1)

The calculated errors are listed in Table 6.1. Note that with (6.1), the calculated

relative error will be smaller than (3.21). However, it appears that in all cases

the RNN models have an error of less than 2%, indicating that the RNN models

accurately predict the transient response of both test circuits.

6.1.2 Full-chip ESD Protection Network

In the second test case, a more complicated circuit — a full-chip ESD protection

network — is used as the modeling target. The circuit schematic is shown in

Figure 6.6, with the voltage sources VSIO and VScore both set to zero to emulate

the power-off condition. Although the circuit contains many elements, it is a

1-port with the IO pin as positive terminal and ground as negative terminal.

The inductances in this circuit are identified to be large enough to cause long-

term memory related issue, i.e. the vanishing gradient problem. Therefore, the

RNN most robust against the vanishing gradient problem, the ZIZO GRU, is

chosen to be the model structure. The hidden states vector size of the ZIZO

GRU is set to nx = 30. On the other hand, notice that an inductor appears

in series with the input terminal, the IO pin. Since the inductance is known,

68

VDD

VSS

VDDIO

VSSIO

...

...

...

...
...

...

packageboard die

IO pin

Chip_IO

VScore

VSIO

...
...

...
...

Figure 6.6: Schematic of the ESD protection network test case. The box with
bidirectional arrow represents active rail clamp plus decoupling capacitor, with
the VDDIO domain version shown in Figure 5.5 and the VDD domain version

sharing the same structure with different sizing.

69

Table 6.2: Model Accuracy of ZIZO GRU model of the ESD protection
network, modeled from IO pin.

Stimuli Error

Training Training 1.4% / Validation 1.6%
Random PWL Voltage 0.89% / Current 1.80%

IEC Voltage 45.06% / Current 0.10%

it is possible to exclude it from the RNN model by modeling the ESD network

as a 1-port between the node labeled “Chip IO” and ground. The full circuit

model will consist of the RNN model in series with the IO pin inductance. In

this way, the total amount of memory in the RNN model is reduced, and this

may alleviate the vanishing gradient problem. In principle, any circuit element

strictly in series with a port, i.e. current flowing through the element equal to the

current flowing into the port at all times, can be excluded from the RNN model

if needed. However, all the other inductances shown in Figure 6.6 do not satisfy

this criterion as each of them is in parallel with another inductor connected to

the same power/ground net, lumped from multiple power/ground pins.

The two 1-port realizations of the ESD network, one from IO pin to ground and

the other from Chip IO to ground, are treated as two completely independent

test cases and trained separately using the same ZIZO GRU model structure. For

both circuits, training data are generated using random PWL stimuli. Similar

to the test cases shown in Section 6.1.1, the trained Verilog-A RNN models are

evaluated with randomly generated PWL stimuli and the IEC 61000-4-2 tester

model.

The accuracy of the ZIZO GRU model trained for the ESD network with IO

pin as the input is listed in Table 6.2. The transient simulation results with

the two evaluation stimuli are plotted in Figures 6.7 and 6.8. It appeared that

the GRU is capable of handling the long-term memory of the system, showing

70

-10

-5

0

5

10

vo
lta

ge
 [V

]
original circuit
RNN model

0 50 100 150 200
time [ns]

-4

-2

0

2

4

cu
rr

e
nt

 [A
]

original circuit
RNN model

Figure 6.7: Verilog-A GRU simulation result with random PWL stimuli for the
ESD network model with input at IO pin.

excellent training and validation errors. The Verilog-A model also shows low

error for random PWL evaluation. However, in the transient simulation with IEC

stimuli, the Verilog-A RNN model prediction deviates from the original circuit by

a significant margin. From Figure 6.8, it is evident that most of this error comes

from the initial few nanoseconds in the simulation voltage waveform. A zoomed-

in view of this voltage waveform is presented in Figure 6.9. Clearly, the Verilog-A

RNN model is incapable of replicating the very fast oscillatory response of the

71

-50

0

50

100
vo

lta
ge

 [V
]

original circuit
RNN model

0 20 40 60 80 100
time [ns]

0

1

2

3

4

cu
rr

e
nt

 [A
]

original circuit
RNN model

Figure 6.8: Verilog-A GRU simulation result with IEC stimuli for the ESD
network model with input at IO pin.

original circuit. The decreased predictability of the RNN for very fast oscillatory

waveforms is attributed to a lack of high-frequency information in the training

data. In fact, in the IEC 61000-4-2 standard, the specified current rise time for

the first current peak is between 600 and 1000 ps. Using this information, it

is determined for training data generation that the fastest τi parameter selected

for the random PWL waveform (2.2) is 500 ps so that the fastest current pulse

in the IEC waveform can be covered; and the time step used for the time series

72

1 1.5 2
time [ns]

-20

0

20

40

60

80

vo
lta

ge
 [V

]
original circuit
RNN model

Figure 6.9: Zoomed in view of the voltage waveform in Figure 6.8.

interpolation is h = 50 ps so that sufficient temporal resolution can be achieved

for those fast pulses. Therefore, the accuracy of the RNN model is expected

to collapse if the stimulus applied has a rise time much faster than 500 ps, or

frequency much higher than 1 GHz. From Figure 6.9, the initial oscillation in

the voltage waveform has a frequency of about 50 GHz, while the oscillation

frequency at 2 ns is about 5 GHz. Those high-frequency oscillations are not

seen by the RNN during the training process. Therefore, it would actually be

surprising if the RNN trained without such high-frequency information would be

able to accurately predict the response.

In theory, the reduced model accuracy for high-frequency waveforms can be

mitigated by using faster stimuli during training data generation and shorter time

step for interpolation. However, in this case the change in time step would be too

aggressive since the oscillation frequency can be as high as 50 GHz. Attempting

to match this in training data generation would lead to severe vanishing gradient

problem and drastic increase in the training time.

For the test case in which the input of the model is Chip IO, the evaluation

73

Table 6.3: Model accuracy of ZIZO GRU model of the ESD protection network,
modeled from Chip IO.

Stimuli Error

Training Training 1.6% / Validation 2.4%
Random PWL Voltage 1.62% / Current 2.44%
IEC @ IO pin Voltage 11.12% / Current 0.05%

IEC @ Chip IO Voltage 36.39% / Current 0.05%

-10

-5

0

5

vo
lta

ge
 [V

]

original circuit
RNN model

0 50 100 150 200
time [ns]

-5

0

5

cu
rr

e
nt

 [A
]

original circuit
RNN model

Figure 6.10: Verilog-A GRU simulation result with random PWL stimuli for
the ESD network model with input at Chip IO.

is done in a slightly different way. The evaluation with random PWL stimuli

is applied to the RNN model as usual. The IEC tester model, however, is not

74

Figure 6.11: Verilog-A GRU simulation result with random PWL stimuli for
the ESD network model with input at Chip IO.

connected directly to the RNN model, as the evaluation with IEC tester resembles

a real world measurement case, and it would be unrealistic to directly measure

75

-50

0

50

100
V

IO
 p

in
 [V

]
original circuit
RNN model

1 1.5 2
time [ns]

0

5

10

V
ch

ip
 IO

 [V
]

original circuit
RNN model

Figure 6.12: Zoomed in view of the voltage waveforms in Figure 6.11.

Chip IO. Instead, the IEC tester is connected to the full network model, i.e.

RNN model in series with the IO pin inductance. Therefore, for the evaluation

with IEC tester, voltage and current waveforms at both the IO pin and Chip IO

are compared with the simulation result using the original circuit, and errors are

also quantified for both nodes.

Table 6.3 summarizes all the model accuracy figures-of-merit for the Chip IO

test case, and the comparison between transient simulation results with the orig-

inal circuit and the Verilog-A RNN model is shown in Figures 6.10 and 6.11.

76

Again, the training, validation, and random PWL evaluation error for the model

are all small, while the IEC evaluation shows large error in the predicted volt-

age waveform. The error is still concentrated in the first few nanoseconds of

the waveform. In Figure 6.12, zoomed-in views of the simulated voltage wave-

forms at the IO pin and Chip IO are both plotted. In this case, for the voltage

waveform at the IO pin, the 50 GHz oscillation is well matched while the 5 GHz

oscillation is not. Circuit analysis shows that the 50 GHz oscillation is mostly

contributed by the inductor between the IO pin and Chip IO node. By excluding

this inductor from the RNN model, both simulations (RNN and original circuit)

derive this oscillation from lumped circuit elements, which are identical in the

first place. The 5 GHz oscillation is caused by the circuit being modeled, since

it also appears in the waveform at Chip IO. Since the random PWL stimuli used

for training data generation have a fastest rising edge of 500 ps, the RNN pre-

diction of this 5 GHz oscillation is expected to be inaccurate. In Figure 6.12,

the RNN demonstrates some generalization capability by predicting a fairly close

amplitude and frequency for the 5 GHz oscillation, but the phase error becomes

large very soon.

In conclusion, for the two full-chip ESD protection network test cases, the RNN

(ZIZO GRU) model accurately replicates the behavior of the original circuit for

signal frequencies that appeared in the training data. To improve the RNN

accuracy for faster signal, the training data has to be regenerated with faster

stimuli, and interpolated to time series with a shorter time step. This change will

in general aggravate the vanishing gradient problem and lead to worse training

accuracy. Compared with aggressively scaling the time step, a better approach

would be to investigate the circuit being modeled first and, if possible, exclude

the circuit elements causing the highest frequency response from the RNN model.

77

6.2 Other Behavioral Modeling Tasks

In this section, some circuits whose purpose is other than ESD protection are

modeled using RNN. This describes the majority of integrated circuit blocks.

6.2.1 CTLE Circuit

VDD

VSS

Vinp Vinn
Voutp Voutn

Figure 6.13: Schematic of the CTLE circuit.

A continuous-time linear equalizer (CTLE) circuit is modeled using an ordinary

RNN. The schematic of the circuit is shown in Figure 6.13. The CTLE has

differential input and output pairs. Assuming almost-ideal source and almost-

open load, the RNN structure is chosen to have two VINO ports and two NIVO

ports. The hidden state vector length nx is arbitrarily chosen to be 20 because

the behavioral complexity of the circuit is expected to be low. The regularization

term (5.8) is applied to enforce the stability of the model and the regularization

weight γ in (5.9) is chosen to be 0.05.

78

Table 6.4: Model Accuracy of RNN model of the CTLE circuit.

Stimuli Error

Training Training 0.6% / Validation 0.6%

Evaluation
Voutp 1.87% / Voutn 1.91%
Vdm 11.70% / Vcm 1.00%

0

0.5

1

V
ou

tp
 [V

]

original circuit
RNN model

0 10 20 30 40 50
time [ns]

0

0.5

1

V
ou

tn
 [V

]

original circuit
RNN model

Figure 6.14: Evaluation simulation result of the CTLE test case, presented in
terms of voltage waveforms at the two outputs.

Training data is generated for the CTLE circuit with a slightly modified ran-

dom PWL stimuli. In this case, the PWL waveforms are not generated for the

79

-0.5

0

0.5
V

dm
 [V

]
original circuit
RNN model

0 10 20 30 40 50
time [ns]

0.7

0.8

0.9

1

V
cm

 [V
]

original circuit
RNN model

Figure 6.15: Evaluation simulation result of the CTLE test case, presented in
terms of differential-model and common-mode voltage waveforms.

voltage at the two inputs, but rather for the common-mode and differential-mode

voltage between the two inputs. The rationale for this data generation method

is the fact that the common-mode voltage applied to the inputs of the circuit

is relatively constant. If full-range random PWL waveforms are independently

applied to both inputs, the common-mode voltage waveform appearing at the in-

puts would become unrealistically large. Instead, the differential-mode waveforms

cover the full range of expected (allowed) amplitudes, while the common-mode

80

waveforms only deviate slightly from the nominal value. The voltages at the two

input ports are finally calculated from the common-mode and differential-mode

voltages.

As usual, the training data is interpolated to time series for training, and the

trained model is implemented in Verilog-A for evaluation. Table 6.4 summarizes

the model accuracy, while Figures 6.14 and 6.15 compare the simulated output

waveforms in evaluation for the original circuit and the Verilog-A RNN model.

Based on these results, it can be concluded that the RNN model provides a good

representation of the CTLE circuit.

6.2.2 An Encrypted Circuit Netlist

The last test case is an unknown circuit described by an encrypted netlist. None

of the design details were disclosed, other than the fact that the circuit contains

more than 1000 transistors, each of which is described by a BSIM4 model. The

only information provided is a list of the terminals and the expected stimuli.

The circuit has 12 terminals: 3 terminals are connected to constant voltage or

current sources; 7 terminals are input ports, subject to an arbitrary input sig-

nal; 2 terminals are outputs. At first glance, it might seem highly challenging

to generate sufficient training data for black-box modeling of this circuit; gen-

erating training data for a 7-input system with all inputs independently subject

to arbitrary waveforms would consume a prohibitive amount of computational

power. However, for this circuit, the types of stimuli applied to the 7 inputs are

highly limited. The inputs can only stay at two static voltage levels, 0 V and 5

V, except when a level transition happens. The level transitions occur only at 1

ms intervals, synchronized for all input terminals, and the rising and falling time

for the transition is always 1 ns. In this way, every input can be represented by

81

Table 6.5: Model accuracy of RNN model of the unknown encrypted circuit.

Stimuli Error

Training Training 2.0% / Validation 2.0%
Evaluation Output-1 0.72% / Output-2 0.74%

Table 6.6: Simulation speed for the RNN model of the unknown encrypted
circuit.

Netlist Simulation time

Original circuit 254.5 s
RNN model 5.7 s

a string of 0’s for the low voltage level and 1’s for the high voltage level.

It can be shown that the total number of input state transitions is (27)2 =

16384, and it is possible to create training stimuli that cover all the level tran-

sitions exhaustively. In practice, the training stimuli are chosen to be random

strings of 0’s and 1’s at all inputs. The training data are generated by transient

circuit simulation and the simulated waveforms are interpolated to time series

with h = 10 µs time step. It might seem odd to use a time step greater than

the rise time of the input signal, but in this case the shape of the rising edge is

not important information for predicting the circuit behavior. In addition, it is

permissible to use a large time step since the response at the circuit outputs is

slow.

The circuit is modeled as an RNN with nu = 7, ny = 2, and nx = 30. The

trained RNN is implemented in Verilog-A, and evaluated for stimuli that are dual-

level voltage waveforms of longer duration than the waveforms in the training set.

Table 6.5 summarizes the model accuracy, while Figure 6.16 compares simulated

output waveforms for the original circuit and the RNN model. From those results,

it can be concluded that the model accuracy is good.

Significantly, for this test case, the RNN model runs much faster than the

82

0

1

2

3

V
ou

t1
 [V

]

original circuit
RNN model

0 10 20 30 40 50
time [ms]

0

1

2

3

V
ou

t2
 [V

]

original circuit
RNN model

Figure 6.16: Evaluation simulation result for the unknown encrypted circuit
netlist.

original circuit model in circuit simulation. Table 6.6 compares the CPU time

consumption of the transient simulations. The RNN model achieves a more than

40x acceleration. In this case, the original circuit netlist contains more than 1000

transistors all modeled with BSIM. It is not surprising that such a large netlist

takes a long time to simulate. On the other hand, the speed of the RNN model

only depends on the model structure itself, i.e. the type of the RNN and the

number of inputs, outputs, and hidden states. Therefore, if the structure of the

RNN is kept the same, the acceleration provided by the RNN will increase with

the complexity of the original circuit.

83

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

It has been demonstrated in this work that RNNs can accurately model a variety

of electrical circuits when used correctly. Especially, an RNN model is expected to

well replicate the dynamic behavior of the circuit being modeled for the types of

stimuli that are covered by the training data. On the other hand, certain inherent

problems are identified for RNN model structures, and from them guidelines for

using RNN in circuit modeling can be derived. The vanishing gradient problem

hampers the training process especially for systems with long-term memory. The

problem can be alleviated by increasing the time step of the training data through

re-interpolation, but the model accuracy for fast stimuli will deteriorate as a

trade-off. Thus, for a circuit with a large ratio between the length of its memory

and the time constant of the fastest stimuli it encounters in expected operation

conditions, it is advisable to use RNN structures more robust to the vanishing

gradient problem. Among the three RNN structures introduced in this work, the

ordinary RNN is the least robust to vanishing gradient; the Hopfield network

is slightly better; the GRU is by far the best model for systems with long-term

memory. However, even the GRU fails to train for systems with a long pure

delay, and it may be a good idea to avoid using any RNN type model for those

circuits.

Another major contribution of this work is the definition and development of

84

stability conditions for RNN-based circuit modeling. The usual stability condi-

tion defined for general nonlinear systems may only be applied to circuits without

feedback, which excludes all circuits that contain ports with mutually dependent

voltage and current waveforms. The derivation of a useful stability condition

for those excluded circuits is difficult. Nevertheless, a stability condition is de-

rived and applied to a 1-port circuit subjected to Thevenin source, modeled with

the ordinary RNN. The stability conditions derived in this work can be easily

incorporated with the training process as a form of regularization.

Finally, it is demonstrated that it is best to choose the training data generation

method using domain knowledge about the circuit being modeled. A random

PWL method is developed as a general training data generation method and

it appears to work in many cases. For circuits with special input constraints,

the training data generation method should be adjusted to avoid introducing

impractical waveforms into the dataset. Also, for circuits with many ports, the

random PWL method may run into the “curse of dimensionality” problem since it

is a full-factorial method whose required amount of data depends exponentially

on the number of ports. To generate training data for such circuits, certain

patterns in the input stimuli for the circuit must be exploited for a reduction in

the quantity of training data needed.

7.2 Future Work

There are many potential future research projects that can enhance the RNN

modeling methodology. A selected list is given in this section.

A potential method of alleviating the vanishing gradient problem would be

to train with variable time step data. In principle, the total number of time

steps can be reduced by using a small time step for fast-varying portions of the

85

waveforms, and large time step for relatively stable portions. This method may

be the most prominent solution to the modeling of circuits with long pure delays,

such as transmission lines and certain synchronous sequential logic circuits.

Another important future research topic would be the further development of

stability conditions. For multi-port circuits modeled with ordinary RNN or cir-

cuits modeled with the Hopfield network, stability conditions for the feedback

system may be developed, in principle, with the Lyapunov method. However, it

remains unclear if any of such conditions may be easily enforced and incorpo-

rated into the training process. On the other hand, no stability conditions are

constructed for the GRU. Due to the algebraic complexity of the GRU structure,

it already seems unwise to attempt to develop any stability condition, whether

any form of feedback is considered. Furthermore, even if any stability conditions

can be formulated for GRU, they are nevertheless likely to be too complicated

to enforce. If a modeling task demands the use of GRU and the stability of the

model is critical, the best method would be to train multiple models and evalu-

ate their stability, then discard the unstable ones. Finally, passivity is a circuit

property related to stability, and it may also be worthwhile to attempt to develop

passivity conditions for RNN model structures.

86

APPENDIX A

MATHEMATICAL DERIVATION OF
STABILITY CONDITIONS

A sufficient condition for the stability criterion can be derived using the Lyapunov

method [42]. The derivation is given in [22] for RNN structure not investigated

in this work. In this section, the derivation is performed for the differential

representation of the ZIZO ordinary RNN

ẋ = f(x,u) = h−1 · [−x + tanh(Wrx +Wuu + bu)− tanh(bu)] (A.1)

In the derivation, notation like a < b means that the inequality holds element-

wise, i.e., ∀i, a[i] < b[i].

The equilibrium points (xs,us) of the nonlinear system (A.1) are the solutions

to the equation f(xs,us) = 0. For a constant input us, one obtains the following

relationship between xs and us:

xs = tanh(Wrxs +Wuus + bu)− tanh(bu) (A.2)

Defining Γ = Wuus + bu and making the change of variable z = x − xs, one

obtains

ż =
1

h
[−z − xs + tanh(Wrz +Wrxs + Γ)− tanh bu] (A.3)

Substituting (A.2) into (A.3) gives

ż =
1

h
[−z − tanh(Wrxs + Γ) + tanh(Wrz +Wrxs + Γ)] (A.4)

87

Define the vector function

f(w) = tanh(w +Wrxs + Γ)− tanh(Wrxs + Γ) (A.5)

Equation (A.4) can now be written as

ż =
1

h
[−z + f(Wrz)] (A.6)

To derive a stability condition, the following Lyapunov function is introduced:

V (z) = 1 ·
∫ Wrz

0

f(w)dw (A.7)

where 1 = [1 1 . . . 1] is a vector of ones. In order to guarantee global asymptotic

stability of system (A.4), V (z) needs to satisfy the following conditions:

1. V (0) = 0 and V (z) > 0 for z 6= 0.

2. V (z)→∞ when ‖z‖ → ∞.

3. V̇ (z) = dV
dz
ż < 0 for z 6= 0.

Since tanh(x) is a monotonically increasing function of x, f(w) and w must

have the same sign component-wise. Therefore,

∫ Wrz

0

f(w)dw > 0

holds for all z 6= 0, and condition 1 is satisfied. Also, from (A.5), it is quite

obvious that condition 2 is satisfied. To evaluate condition 3, calculate the time

88

derivative of V (z):

V̇ (z) =
dV

dz
ż (A.8a)

= fT (Wrz)Wr
1

h
[−z + f(Wrz)] (A.8b)

=
1

h
[fT (Wrz)Wrf(Wrz)− fT (Wrz)Wrz] (A.8c)

Since 0 < d
dx

tanh(x) < 1 holds for all x, it can be proved that |f(Wrz)| < |Wrz|

holds for all z 6= 0, thus

fT (Wrz)Wrz > fT (Wrz)f(Wrz) (A.9)

Substituting (A.9) into (A.8c) gives

V̇ (z) <
1

h
[fT (Wrz)Wrf(Wrz)− fT (Wrz)f(Wrz)] (A.10)

Thus

V̇ (z) <
1

h
fT (Wrz)(Wr − I)f(Wrz) (A.11)

For both sides of (A.11), taking the transpose and then averaging with the orig-

inal equation gives:

V̇ (z) <
1

h
fT (Wrz)

(
Wr +W T

r

2
− I
)
f(Wrz) (A.12)

From (A.12) it is evident that, to satisfy condition 3, that the symmetric matrix

T0 =
Wr +W T

r

2
− I (A.13)

must be negative definite, i.e., all eigenvalues of T0 must be negative. This is a

sufficient condition of ABST for the nonlinear system (A.1).

89

In the derivation, the activation function is assumed to be the hyperbolic tan-

gent. However, the derivation remains valid for any activation function whose

derivative is uniformly bounded between 0 and 1. Many commonly used activa-

tion functions in neural networks satisfy this condition, including all activation

functions listed in Table 3.1.

90

APPENDIX B

STABILITY ANALYSIS OF THE NONLINEAR
RLC CIRCUIT

Consider the nonlinear RLC test circuit connected to a Thevenin source with

voltage Vs and resistance Rs. From KCL and KVL, differential equations de-

scribing the circuit can be written as

iL = f(vC) + Cv̇C (B.1a)

Vs = RsiL + Li̇L + vC (B.1b)

The nonlinear system (B.1) can be written in the following nonlinear state-space

form:

v̇C = C−1(−f(vC) + iL) (B.2a)

i̇L = L−1(−vC −RsiL + Vs) (B.2b)

with the state variables being vC and iL. For a known V-R combination, the

equilibrium of the system can be solved by setting all time-derivatives to zero.

Thus, the equilibrium states of the system satisfies

ve +Rsf(ve) = Vs (B.3a)

ie = f(ve) (B.3b)

where ve is the equilibrium state of vC and ie is the equilibrium state of iL.

91

To demonstrate the ABST of (B.2), a Lyapunov function Φ(vC , iL) needs to

be found that satisfies all the following conditions:

1. Φ ≥ 0 for all vC , iL ∈ R with Φ = 0 if and only if vC = ve and iL = ie.

2. Φ→∞ when v2
C + i2L →∞.

3. Φ̇ = ∂Φ
∂vC

v̇C + ∂Φ
∂iL
i̇L ≤ 0 for all vC , iL ∈ R with Φ̇ = 0 if and only if vC = ve

and iL = ie.

In general, it is most natural to attempt to formulate the Lyapunov function as

the energy function of the system. Choose

Φ(vC , iL) =
C

2
(vC − ve)2 +

L

2
(iL − ie)2 (B.4)

Obviously, the first two conditions for the Lyapunov function are satisfied by

(B.4). Condition 3 can be tested:

Φ̇ =
∂Φ

∂vC
v̇C +

∂Φ

∂iL
i̇L

= C(vC − ve)C−1(−f(vC) + iL) + L(iL − ie)L−1(−vC −RsiL + Vs)

= (vC − ve)(−f(vC) + iL) + (iL − f(ve))(−vC −RsiL + ve +Rsf(ve))

= −(vC − ve)(f(vC)− f(ve))−Rs(iL − ie)2

Obviously, condition 3 for the Lyapunov function is satisfied if (vC − ve)(f(vC)−

f(ve)) > 0 for vC 6= ve. This is equivalent to saying that the I = f(V) is a

monotonically increasing function of V . For the nonlinear resistor used in the

test case, its I-V relationship I = 4 tanh(V) + 1
4
V is obviously monotonically in-

creasing. Therefore, the Lyapunov satisfies all three conditions, and consequently

the system (B.2) is ABST.

92

REFERENCES

[1] L. Jin, P. N. Nikiforuk, and M. M. Gupta, “Approximation of discrete-time
state-space trajectories using dynamic recurrent neural networks,” IEEE
Transactions on Automatic Control, vol. 40, no. 7, pp. 1266–1270, July 1995.

[2] A. P. Trischler and G. M. D’Eleuterio, “Synthesis of recurrent neural net-
works for dynamical system simulation,” Neural Networks, vol. 80, pp. 67 –
78, 2016.

[3] Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement
techniques - Electrostatic discharge immunity test, IEC 61 000-4-2:2008,
2008.

[4] C. Reiman, N. Thomson, Y. Xiu, R. Mertens, and E. Rosenbaum, “Practical
methodology for the extraction of SEED models,” in EOS/ESD Symposium
Proceedings, Sep. 2015, pp. 1–10.

[5] V. Volterra, Theory of Functionals and of Integro-differential Equations.
NY: Dover, 1959.

[6] S. A. Maas and A. Crosmun, “Modeling the gate I/V characteristic of a GaAs
MESFET for Volterra-series analysis,” IEEE Transactions on Microwave
Theory and Techniques, vol. 37, no. 7, pp. 1134–1136, July 1989.

[7] F. Filicori and G. Vannini, “Mathematical approach to large-signal mod-
elling of electron devices,” Electronics Letters, vol. 27, no. 4, pp. 357–359,
Feb 1991.

[8] A. J. M. Kaizer, “Modeling of the nonlinear response of an electrodynamic
loudspeaker by a Volterra series expansion,” Journal of the Audio Engineer-
ing Society, vol. 35, no. 6, pp. 421–433, 1987.

[9] E. Ngoya, N. L. Gallou, J. M. Nebus, H. Buret, and P. Reig, “Accurate
RF and microwave system level modeling of wideband nonlinear circuits,”
in IEEE MTT-S International Microwave Symposium Digest, vol. 1, June
2000, pp. 79–82.

93

[10] D. Mirri, G. Luculano, F. Filicori, G. Pasini, G. Vannini, and G. P. Gabriella,
“A modified Volterra series approach for nonlinear dynamic systems mod-
eling,” IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, vol. 49, no. 8, pp. 1118–1128, Aug 2002.

[11] A. Zhu, M. Wren, and T. J. Brazil, “An efficient Volterra-based behavioral
model for wideband RF power amplifiers,” in IEEE MTT-S International
Microwave Symposium Digest, vol. 2, June 2003, pp. 787–790.

[12] A. Zhu and T. J. Brazil, “Behavioral modeling of RF power amplifiers based
on pruned volterra series,” IEEE Microwave and Wireless Components Let-
ters, vol. 14, no. 12, pp. 563–565, Dec 2004.

[13] A. Zhu and T. J. Brazil, “RF power amplifier behavioral modeling using
Volterra expansion with Laguerre functions,” in IEEE MTT-S International
Microwave Symposium Digest, 2005.

[14] A. Zhu, J. C. Pedro, and T. J. Brazil, “Dynamic deviation reduction-based
Volterra behavioral modeling of RF power amplifiers,” IEEE Transactions
on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4323–4332, Dec
2006.

[15] A. A. M. Saleh, “Frequency-independent and frequency-dependent nonlin-
ear models of TWT amplifiers,” IEEE Transactions on Communications,
vol. 29, no. 11, pp. 1715–1720, November 1981.

[16] M. Abuelma’atti, “Frequency-dependent nonlinear quadrature model for
TWT amplifiers,” IEEE Transactions on Communications, vol. 32, no. 8,
pp. 982–986, August 1984.

[17] J.-T. Hsu and K. D. T. Ngo, “Behavioral modeling of the IGBT using
the Hammerstein configuration,” IEEE Transactions on Power Electronics,
vol. 11, no. 6, pp. 746–754, Nov 1996.

[18] F. Alonge, F. D’Ippolito, F. M. Raimondi, and S. Tumminaro, “Nonlinear
modeling of DC/DC converters using the Hammerstein’s approach,” IEEE
Transactions on Power Electronics, vol. 22, no. 4, pp. 1210–1221, July 2007.

[19] J. Moon and B. Kim, “Enhanced Hammerstein behavioral model for broad-
band wireless transmitters,” IEEE Transactions on Microwave Theory and
Techniques, vol. 59, no. 4, pp. 924–933, April 2011.

[20] I. S. Stievano, I. A. Maio, and F. G. Canavero, “Parametric macromodels
of digital I/O ports,” IEEE Transactions on Advanced Packaging, vol. 25,
no. 2, pp. 255–264, May 2002.

[21] D. Luongvinh and Y. Kwon, “Behavioral modeling of power amplifiers using
fully recurrent neural networks,” in IEEE MTT-S International Microwave
Symposium Digest, June 2005.

94

[22] Y. Cao, R. Ding, and Q.-J. Zhang, “State-space dynamic neural network
technique for high-speed IC applications: modeling and stability analysis,”
IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 6, pp.
2398–2409, June 2006.

[23] Y. Cao and Q. J. Zhang, “A new training approach for robust recurrent
neural-network modeling of nonlinear circuits,” IEEE Transactions on Mi-
crowave Theory and Techniques, vol. 57, no. 6, pp. 1539–1553, June 2009.

[24] Y. Cao, X. Chen, and G. Wang, “Dynamic behavioral modeling of non-
linear microwave devices using real-time recurrent neural network,” IEEE
Transactions on Electron Devices, vol. 56, no. 5, pp. 1020–1026, May 2009.

[25] M. Rawat, K. Rawat, and F. M. Ghannouchi, “Adaptive digital predistortion
of wireless power amplifiers/transmitters using dynamic real-valued focused
time-delay line neural networks,” IEEE Transactions on Microwave Theory
and Techniques, vol. 58, no. 1, pp. 95–104, Jan 2010.

[26] V. Devabhaktuni, C. F. Bunting, D. Green, D. Kvale, L. Mareddy, and
V. Rajamani, “A new ANN-based modeling approach for rapid EMI/EMC
analysis of PCB and shielding enclosures,” IEEE Transactions on Electro-
magnetic Compatibility, vol. 55, no. 2, pp. 385–394, April 2013.

[27] B. Mutnury, M. Swaminthan, M. Cases, N. Pham, D. N. de Araujo, and
E. Matoglu, “Macromodeling of nonlinear transistor-level receiver circuits,”
IEEE Transactions on Advanced Packaging, vol. 29, no. 1, pp. 55–66, Feb
2006.

[28] S. A. Sadrossadat, P. Gunupudi, and Q. Zhang, “Nonlinear elec-
tronic/photonic component modeling using adjoint state-space dynamic neu-
ral network technique,” IEEE Transactions on Components, Packaging and
Manufacturing Technology, vol. 5, no. 11, pp. 1679–1693, Nov 2015.

[29] G. Chrisikos, C. J. Clark, A. A. Moulthrop, M. S. Muha, and C. P. Silva, “A
nonlinear ARMA model for simulating power amplifiers,” in IEEE MTT-S
International Microwave Symposium Digest, vol. 2, June 1998, pp. 733–736.

[30] D. Drmanac, B. Bolin, and L. Wang, “A non-parametric approach to be-
havioral device modeling,” in 2010 11th International Symposium on Quality
Electronic Design (ISQED), March 2010, pp. 284–290.

[31] T. Liu, S. Boumaiza, and F. M. Ghannouchi, “Dynamic behavioral modeling
of 3G power amplifiers using real-valued time-delay neural networks,” IEEE
Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 1025–
1033, Mar. 2004.

95

[32] V. Rizzoli, A. Neri, D. Masotti, and A. Lipparini, “A new family of neural
network-based bidirectional and dispersive behavioral models for nonlinear
RF/microwave subsystems,” International Journal of RF and Microwave
Computer-Aided Engineering, vol. 12, no. 1, pp. 51–70, 2002.

[33] M. Isaksson, D. Wisell, and D. Ronnow, “Wide-band dynamic modeling of
power amplifiers using radial-basis function neural networks,” IEEE Trans-
actions on Microwave Theory and Techniques, vol. 53, no. 11, pp. 3422–3428,
Nov 2005.

[34] M. Kraemer, D. Dragomirescu, and R. Plana, “Nonlinear behavioral mod-
eling of oscillators in VHDL-AMS using artificial neural networks,” in 2008
IEEE Radio Frequency Integrated Circuits Symposium, June 2008, pp. 689–
692.

[35] Y. Goldberg, “A primer on neural network models for natural language
processing,” Journal of Artificial Intelligence Research, vol. 57, Nov. 2016.

[36] A. Graves, M. Liwicki, S. Fernndez, R. Bertolami, H. Bunke, and J. Schmid-
huber, “A novel connectionist system for unconstrained handwriting recog-
nition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 5, pp. 855–868, May 2009.

[37] E. Grund and R. Gauthier, “VF-TLP systems using TDT and TDRT for
kelvin wafer measurements and package level testing,” in EOS/ESD Sympo-
sium Proceedings, 2004.

[38] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” ArXiv
e-prints, Dec. 2012.

[39] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,
L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the
game of Go without human knowledge,” Nature, vol. 550, pp. 354–359, Oct.
2017.

[40] J. J. Hopfield, “Neural networks and physical systems with emergent collec-
tive computational abilities,” Proceedings of the National Academy of Sci-
ences, vol. 79, no. 8, pp. 2554–2558, 1982.

[41] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” ArXiv e-prints, June
2014.

[42] H. K. Khalil, Nonlinear Systems. New York, NY: Macmillan, 1992.

96

[43] V. Sundarapandian, “Global asymptotic stability of nonlinear cascade sys-
tems,” Applied Mathematics Letters, vol. 15, no. 3, pp. 275–277, April 2002.

[44] T. Chu and C. Zhang, “New necessary and sufficient conditions for absolute
stability of neural networks,” in 2005 International Conference on Control
and Automation, vol. 1, June 2005, pp. 593–598.

[45] E. Kaszkurewicz and A. Bhaya, “On a class of globally stable neural cir-
cuits,” IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, vol. 41, no. 2, pp. 171–174, Feb 1994.

[46] M. Forti and A. Tesi, “New conditions for global stability of neural net-
works with application to linear and quadratic programming problems,”
IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 42, no. 7, pp. 354–366, July 1995.

[47] R. Merrill and E. Issaq, “ESD design methodology,” in EOS/ESD Sympo-
sium Proceedings, 1993.

97

