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Abstract

Imitation of human motion is a necessary activity for robots to integrate seamlessly into human-facing

environments. While perfect replication is not possible, especially for low degree-of-freedom (DOF) robots,

this thesis presents a model for human motion that achieves perceptual imitation. Motion capture data of

dyadic interactions was first analyzed to quantify a characteristic of human motion observed in the movement.

The leaning of the spine, or verticality, was found to correlate with these movement observations. Verticality

was then used to inspire a low-DOF model of human motion using motion capture that can be used to

command the movement of simulated robots. Experiments were developed to test users’ perception of the

imitation by these 3 and 4-DOF simulated robots of human motion. Verticality was preferred in an initial

study over artificially generated motion for the higher DOF robot, Broombot, which was preferred over

the lower DOF robot, Rollbot. A study was developed to test the preferences of users when the mapping

between human and robot motion was changed for variable human motion. Motion capture-based motion

was preferred over artificially generated motion, and a sub-group of respondents who preferred verticality

and were more engaged in the survey was found. Since the experiments were performed using motion capture

data from a trained ballet dancer, a discussion of the differences between two Indian classical dance styles is

included that shows that verticality alone is not representative of all motion and prompts a further analysis

to develop socially adaptive robot behavior. In-progress and future work include a hardware implementation

that will allow real-time motion capture data to drive simulated and/or physical robots. Menagerie is an

in-development performance using the tools developed in this thesis that can include a human with simulated

and/or physical robots moving together.
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Chapter 1

Introduction

How should two bodies of different morphology move to imitate one another? While exact replication of

activity is not possible, particularly when one system has many fewer degrees-of-freedom than the other, we

can define perceptual imitation to be achieved when human viewers see the same activity between the two

bodies. Even between humans, our differing mobility and limb lengths create differences in the execution

of a task. Yet, even with these differences, we imitate each other in many situations including children

learning new movements from the adults around them, people in exercise classes following the movements

of an instructor, or pedestrians taking cues from the people around them on the sidewalk. Moreover, simple

cartoon characters and robots are frequently seen as “doing the same thing” as natural counterparts. These

examples show that this perceptual imitation is possible and common.

One definition of imitation from sociology limits it to behaviors fulfilling (1) the imitated behavior being

new for the imitator, (2) the same task strategy of the demonstrator being employed, and (3) the same

task goal being accomplished [4]. Focusing on the third definition, we will look at whether and how simple,

simulated robots can imitate human movement. A survey of robot imitation of humans in [5] details the

utility of imitation as a mode of robot movement including the creation of a shared lexicon between two

movers and discusses the open problem of determining which part of human movement is ‘relevant’ to

imitate. A survey of socially interactive robots similarly discusses the questions of how the robot knows

what to imitate and how it maps observed action into behavior [6].

In this thesis, we explore the relationships between human motion, robot motion, and the perception of

imitation. This chapter reviews relevant background information and related work in the areas of dyadic

interactions (Section 1.1), virtual characters (Section 1.2), and robotics (Section 1.3). Chapter 2 explores

the development of a measure tracking the leaning of the spine, verticality, to characterize motion capture

examples of dyadic motion. Chapter 3 creates a model for human imitation by low degree-of-freedom

artificial systems inspired by this verticality measure. In Chapter 4, we consider the imitation effectiveness

of verticality on two low-DOF systems for human imitation and analyze the changing perception of imitation

when the human motion and human-robot mapping are varied. Chapter 5 analyzes human motion of two

1



Indian classical dance styles and how the observed motion can be transferred to robots. Chapter 6 concludes

and details in-progress and future work.

1.1 Dyadic interactions

A number of studies have been conducted on dyadic interactions, or interactions between pairs of individ-

uals. For example, analyzing the making and breaking of symmetry of the head (mirror symmetry) during

conversations was shown to be a meaningful element of communication when modeled with a dynamical

system [7, 8, 9]. The pattern of this imitation influenced how highly participants rated conversation quality.

Head motion specifically, during human conversation (nods, tilts, etc.), was recorded for robots to display

more “natural” nonverbal cues during a human interaction [10].

A co-manipulation task of a dyad moving a table, characterized by the forces applied by their hands,

was used to explore correlations between the various task parameters and the the performance of the pair,

including comparisons to minimum jerk trajectories [11]. An analysis of the handshake using sensor data

from many users decomposed the features of the motion into phases [12]. Both of these prior efforts have

worked to characterize human motion for the development of robotic counterparts.

Optical motion capture tracks a set of reflective markers on a human over time during a movement,

while active sensors can also be used to directly measure acceleration of body parts. Both produce a low-

dimensional skeleton that reduces the complex, high degree-of-freedom system of the human body to a

finite set of typically 30 rotating and translating points in 3-D space. Although optical capture does have

its limitations such as how “natural” the movements recorded are [13], it remains one of the best ways to

capture detailed, three-dimensional records of human motion.

For example, active motion capture has been used to quantify key features in tango dancing [14], mea-

suring the bending of dancers’ chests to identify individual performance and correlating between individual

postures to characterize collaborative performance. This metric is similar to one of our mappings based on

the leaning of the spine, first proposed in [15]. Similar active capture tools, which prevent occlusion during

data collection, were used to develop an interactive application, or tool, that facilitated feedback between two

dancers and their musical accompaniment. Limb-based metrics were used to determine movement similarity,

but motion features were not classified [16].

Optical motion capture was used to categorize movement in terms of valence and arousal parameters

to classify motion by emotion [17]. Dance performances have been synthesized by combining a musical

analysis and a motion analysis using motion capture that utilized intensity and the key frames on the music
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beats [18]. Motion preferences of humans were calculated and analyzed by users comparing the movements

of various amoebas to a motion capture bhangra dancer to determine which amoeba behaviors mimicked

the dancer’s movement best; this work used a pairwise comparison of mappings in order to create a task

with low cognitive effort for human subjects [19]. Researchers have asked users to imitate a video of arm

movements and recorded data using sensors similar to motion capture, and the imitation was evaluated using

a joint-space based segmentation and comparison algorithm [20]. These methods are examples of a large

body of work proposing different mappings of motion capture data between bodies to measure or quantify

imitation.

Joint improvisation, or the creative action of two or more people without a script or designated leader,

was studied in the context of imitation using a mirror game and motion capture, and a model for the

observed behavior was generated [21, 22]. Machine learning and neural networks can be used to abstract

away the complexities of interaction by training models with examples. Gaussian Mixture Models (GMM)

of Interaction Primitives model nonlinear correlations between different movers [23, 24]. An interactive

online dance work explores how different movement representations can elicit different perceptions from

an audience, or kinesthetic empathy [25]. An evolutionary dynamics approach using replicator-mutator

dynamics has been used to model dominance – achieved through encouraging behavior switching between

pre-defined modes of unison – in group dance performances [26]. Thus, the notion of “moving together” is

often clarified through the lens of imitation, which allows for individual-specific differences in action while

finding similarity.

1.2 Virtual Characters

Virtual characters offer greater ability for imitation of human behavior than physical systems because they are

not limited by actuator and control system performance. These simulated systems also afford the opportunity

for complex skeletons, which similarly do not require advanced hardware development for motion generation.

In this thesis, we use simulated characters, without motor performance limits, that have only a few degrees

of freedom, making our work more portable to robotic systems (discussed in the next section).

One mapping between human and virtual character poses was generated by using a few key human

poses from a motion capture session of a human moving in a way similar to the desired movement of the

character [27]. A methodology for creating correspondences between groups of body parts on different

characters allowed for the generation of motions on different characters from the same source [28]. In a

puppetry context, motion for animated non-human characters was generated using direct feature mapping
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using dynamical equations before a human motion-capture movement was used to control the characters in

real-time [29]. These examples again show the diversity of proposed mappings between human and artificial

motion.

Using a Kinect sensor to capture a skeleton, a platform was developed for human-virtual character

interactions for a variety of applications [30]. A dancing game was developed that generated a real-time

animation of virtual dancers on a screen that corresponded to the motion capture movement of human

dancers using a matching algorithm that recognized specific dance moves [31]. Joint improvisation has also

been used in the realm of virtual character development. Researchers designed a mirror game in which a

human was able to successfully improvise during a mirror game, a framework for imitation, with a virtual

agent [32, 33]. One thing that imitation provides to a human interactant is the sense that the artificial

system is aware of their motion, building a kinesthetic interaction channel, which imitating robots might

also leverage.

Machine learning techniques have also been used to generate movement of virtual characters, under

the guiding lens of large datasets. Researchers used learning from demonstration to program a virtual

dancer by developing an internal model of a human dancer’s movements using Artificial Neural Networks

(ANN) and Hidden Markov Models (HMM) and reacting to some movements from a human dancer [34]. A

Gaussian Mixture Model (GMM) trained with examples of two humans interacting recognized new actions

and generated responses of a virtual character [35].

1.3 Robotics

In the field of robotics, like the area of virtual characters, many methods have been developed for mapping

human movement to robot platforms. Mapping human motion to robot motion presents many difficulties

including measurement and motion feasibility [36]. A humanoid robot has been controlled by virtually

connecting human motion capture markers to points on the robot with translational springs in order to find

correspondences [37]. Additionally, a mapping between human and humanoid robot markers was investigated

in order to emulate human behaviors during social interaction [38]. Key frame selection and a cluster-based

framework was used to imitate and evaluate human motion test the imitation of children with autism with a

robot [39]. Each of these prior works shows the many possible mappings that exist between recorded human

motion and robotic platforms, even with humanoid target platforms.

Essential postures of the arms and step primitives in the legs were extracted from human motion capture

data to generate motion on a humanoid robot to imitate the original human movements [40]. A ‘simulation
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theory of the mind’ approach was used in an experiment with one robot imitating the actions of another

through a distributed system of inverse and forward models [41]. Artificial Neural Networks (ANN) were

used to generate movement on a humanoid robot that imitates human arm movements from video and

marker-tracking data [42].

A mapping was created between human motion capture data and a humanoid robot motion using an

optimization subject to dynamic and physical constraints of the robot [43]. Mathematical mappings between

dissimilar bodies have been used to evaluate imitation, acknowledging the ‘observer-dependence’ of the

evaluation [44]. The performance of a robotic system designed for human imitation was evaluated with

quantitative system-centered assessment in combination with qualitative human-centered assessment [45].

A gesture method was developed to quickly generate positions for social robots with different morphologies

[46].

Much work has focused on simpler target platforms as well. Keepon robots were used in conjunction

with the Laban Effort system to imitate the movements of children dancing to music [47]. Researchers used

the low-DOF head motions of a Keepon and Nao robot to convey internal state of the robot, basing the

movement on Laban efforts [48, 49]. A quadroter was used to communicate affect, also using the Laban

efforts, through its flight path [50]. Researchers used a mobile manipulator consisting of a robotic arm

mounted on a mobile base to test motion planning software [51]. An interactive sculpture was developed as

a robotic system that interacted with human observers to generate continuously evolving behavior [52].

In the area of pair-wise interactions, coupled inverted pendulums can be used as a model for dancers

performing the waltz, so a human mover can move with an imitating robot follower in basic steps [53]. An

energy metric was developed by imitating human trajectories on wheeled robots that related to observers’

assessment of the human performance in the context of salsa [54]. Haptic feedback, a way to measure the

forces a user exerts on an interface, is another tool used to understand model and imitate human motion.

A dancing robot adjusted the length of its stride based on haptic feedback from the physical connection

between robot and human [55], and male and female partner dancing behavior was synthesized based on

haptic interactions and stride length [56].

Thus, socially-aware robots need to be equipped with imitation capabilities as this behavior is important

for interaction tasks as well as the development of expressive robotic counterparts. In this work, we deepen

our understanding of the motion preferences for a low-DOF simulated robot, toward the end of a simple

mobile robot that successfully imitates human motion.
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Chapter 2

Developing Verticality through an
Analysis of Dyadic Movement

Human movement is a complex physical phenomenon, full of the richness of contexts, interactions, and

variations. In particular, the intricacies of dyadic movement raise many research questions, including the

manner of nonverbal communication between a pair or dyad performing a task together. In something as

simple as moving a table across a room, two individuals communicate through the movement of their bodies

in addition to the forces applied on the table and the floor. In partner dance, this communication channel

is even more nuanced. When dissecting dyadic human movement, we seek to identify properties describing

and characterizing these interactions.

This chapter presents an analysis of dyadic motion from existing motion capture data using a single

degree of freedom measure that represents the leaning of the spine, or verticality. Section 2.1 examines

partnering from a dance perspective to motivate the choice of verticality to analyze dyadic motion. Section

2.2 characterizes the verticality measure. The results of the verticality analysis (Section 2.3) and the quan-

tification of a measure of the resistance in the motion (Section 2.4) are included as well as a brief summary

of this chapter in Section 2.5.

2.1 Understanding Partnering to Motivate the Selection of

Verticality

Within distinct dance styles, dyadic motion seems to demand accord between partners on the appropriate

conventions for negotiating movement1. For example, if two people are moving together within the context

of a social dance party, they will likely be moving in a way that is significantly different than if they are

moving together in the context of a competitive dance event. For ease of (non-verbal) communication, the

partnering agents will agree about which physical cues are meaningful and what constitutes an appropriate

response.

This agreement may be prescribed by following the accepted conventions of a particular movement form,

1This discussion in this section is included with thanks to my collaborator, Ilya Vidrin.
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all of which place distinct constraints on aesthetic values (i.e. bending and straightening the legs in a waltz

versus keeping them soft in a jive [57], or de-emphasizing the line of the body [58]). Decisions are made in

real-time by each party based on interpreting physical actions they direct at one another. The quality with

which weight is shifted, individually and in coordination with others, seems to be an integral component to

the success of the expressed intention, regardless of whether the movement is extemporaneously generated

or previously choreographed.

Before defining particular aesthetic values, it is clear that motion may be evaluated in two ways: kines-

thetically for the performers and visually by observers. In certain cases of coordinated movement, partners

must evaluate movement both visually and kinesthetically. It is interesting to note that coordinated inter-

action with a partner is dependent on a certain level of trust, in terms of the physical intimacy of touch and

proximity, as well as the positions that are compromising physically (such as a lift).

Thus, it seems there are consequences at stake if agents are not aware of the ways they influence each

other physically. This assumes, of course, that agents want to level with their partners. Explicitly misleading

an agent, while beyond the scope of this thesis, is nevertheless a contentious thought when considering how

our smallest actions influence and are interpreted by partners. The fact that there might be consequences

within the act of moving with others opens up an ethical dimension of understanding weight.

At its simplest, this may be expressed as understanding the physical relationship between weight,

anatomic structures, and trust. For example, physically sensing the position of one’s pelvis in space relative

to that of one’s partner, including rotation (toward or away from one’s own body), tilt (up or down), and

the surrounding muscular activation. Outside of technical anatomy and physiology, one major question that

emerges is how this subtlety can be captured and expressed?

The quality with which one resists the force of a partner can reveal valuable insight about the other’s

position and weight distribution, creating an opportunity to move together in more distinct and nuanced

ways. While high levels of tension and resistance may limit mobility, it is less obvious that a subtle un-

derstanding of oppositional forces is often the secret to beautiful partnering. In accurately evaluating the

level of resistance of one’s partner (physically, through a form of feedback, and visually, through a form of

feedforward), one can create more controlled patterns, including higher lifts and faster turns.

This is especially evident in the screenshots from different pairs of dancers performing the same chore-

ography (Petite Mort). These images, captured at the same instant in the music, display clearly the effects

of differing resistance in a cooperative movement. The first couple executes a supported penchée (standing

split) with each dancer on their own and has lower resistance in the movement (Figure 2.1a). The second

couple executes the same position, but with a visual opposition in the movement, corresponding to a higher
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(a) Screenshot from a pair performing Petite Mort with
lower resistance within the interaction [59]. The dancers
are Roberto Bolle and Greta Hodgkinson performing at
Stars of World Ballet Gala Concert, Teatro alla Scala,
Milan, Italy in 2006.

(b) Screenshot from a pair performing Petite Mort
with higher resistance within the interaction [60]. The
dancers are Johan Inger and Elke Schepers performing
at Lucent Danstheater, The Hague, Netherlands in 1996.

Figure 2.1: Examples of varying resistance between two different dyads performing the same movement
from Petite Mort. The choreography is by Jǐŕı Kylián, and the music is Wolfgang Amadeus Mozart’s Piano
Concerto No. 21 in C Major Andante.

level of resistance (Figure 2.1b). The latter couple creates a different artistic expression. One could argue

that the latter is a more believable partnership, given that each dancer is communicating their position to

the other, as well as relying on the body of their partner to interdependently support balance and control.

We attempt to look at visual cues of basic coordinated tasks to make sense of which parameters may be

at play. Clearly, the way each dancer distributes weight through their center is crucially different in these

two examples. However, motion capture data of this area of the body is difficult to collect. In [61], reflective

markers were surgically implanted in spinal vertebrae in order to gain some insight. Our measure will need

to access broader, gross movement of the shape evolution of each partner. Thus, we look to the vertical

alignment of the spine to monitor, through a low dimensional signal, bodily interactions in a dyad pair.

2.2 Description of Verticality Metric

In this section, we will describe the dataset, introduce our model from the motion capture data, and demon-

strate how we calculate a one-dimensional verticality metric.

We analyzed four trials of motion capture data from the Carnegie Mellon Motion Capture Database [1].

Each of these datasets was of one person pulling another across a room, with contact point as either the hand

or elbow (screenshots shown in Figure 2.2). However, we visually saw differences in the way the maneuver

of pulling was executed, differences that we sought to capture quantitatively. To test our observations, we
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(a) Hand 1 (b) Hand 2

(c) Elbow 1 (d) Elbow 2

Figure 2.2: Screenshots from the videos from each of the four motion capture datasets. Classified here by
point of contact (hand or elbow), with two videos in each category [1].

sent the four videos to a Certified Movement Analysis (CMA) 2 to determine what an expert, qualitatively,

saw as differences in the motion profiles.

The expert was instructed to comment on the four videos. Without further prompting, the expert used

the word “resistance” to describe the movements in each of the videos. Table 2.1 shows excerpts from

the comments we received, specifically the portions related to this concept of resistance. For Hand 2 and

Elbow 2, the expert described the movement using phrases such as “less resistance” and “little resistance to

being pulled.” For Hand 1 and Elbow 1, she characterized the movement by “lots of resistance” and “more

resistance,” but for Elbow 1, the “resistance diminish[ed]” slightly over the course of the action.

This resistance parameter that she observed qualitatively is a guiding principle for our analysis in our

goal to compute quantitative metrics describing the data. With the four videos (two with hand as the point

of contact and two with elbow), we separated the trials by subject. Subject A was the individual pulling,

and Subject B was the individual being pulled. The two subjects across the four videos resulted in a total

of 8 distinct motion profiles.

The input to our analysis was the raw motion capture data in the .amc/.asf format. Using MATLAB

2We would like to thank Catherine Maguire, CMA for her näıve expert observation of the videos of the four dyad motion
samples analyzed here.
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Table 2.1: Excerpts from expert comments about 4 dyadic motion videos

Video Experts from expert comments

Hand 1 Lots of resistance to the pull

Hand 2 Less resistance to being pulled

Elbow 1

More resistance from the [person pulling]

initially...but the resistance diminishes

over the course of the action

Elbow 2 Little resistance to being pulled

(a) Motion
capture
skeleton

(b) A lowerneck (purple) and root (yellow)
signal for a single subject. Also displayed is
the difference vector v for a single time step
(green) and the z-direction vector in black
(k̂) and the direction of positive θ.

(c) Indicates the positive direction of the cal-
culated angle θ by computing the plane (gray)
spanned by the cross product of v and k̂ (light
blue) and k̂. The positive direction is toward the
vector v on the left side of the plane.

Figure 2.3: Process from the motion capture data to the angle between the difference vector v and the
vertical direction k̂

functions provided by [62], we converted this data into a set of trajectories: (x,y,z) for each joint. To further

simplify the analysis, we focused on the movement of the core: more specifically, how the lower neck joint

moved with respect to the pelvis (root) joint (specifically the lowerneck marker with respect to the root

marker). For each dataset, we have a root (r) and lower neck (n) signal, both in R3. A visual representation

of the vector v (green), root (yellow), and lowerneck (purple) for a single time-step are shown in Figure 2.3a

superimposed onto a motion capture skeleton.

Each of the four motion capture datasets was of slightly different length, so we first resampled each r

and n signal to be of uniform length T using the MATLAB spline function. These trajectories were not

oriented in any specific way in space, so we next applied a rotation matrix to the signals to orient them in a

manner that resembled our intuition about how the motion was carried out. A simple rotation by 90◦ about
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the x-axis and flipping the signals from right to left (ri = rT−i and ni = rT−i , ∀i = 1, 2, ..., T ) allowed

the subjects’ direction of motion to be in the positive x-y direction and the vertical direction to be in the

positive z direction.

Figure 2.3b shows a r (yellow) and n (purple) signal as an example. Note that the n signal is rotated

counterclockwise about the r signal, so the root and neck signals are not positioned vertically above each

other. We do not correct this rotation because for each dataset this offset rotation is different, and we did

not wish to hand-label any of the analysis. However, this offset will be accounted for later in our analysis

through a normalization process.

Next, we calculated a difference signal v which is simply n− r and is the neck signal with respect to the

root signal. This captures the three dimensional movements of the individual’s torso during the movement

and removes any overall translation effects. v ∈ R3 for one time step is shown in Figure 2.3b as the green

vector, going from the yellow root signal to the purple neck signal.

The angle θ is measured with respect to the unit vector in the positive z-direction (k̂), shown in black

in Figure 2.3c). Using the relationship between the dot product and the cosine, in Equation 2.1, we find

the angle θ between the vector v and the unit vector in the z-direction k̂. When taking the inverse cosine

in Equation 2.2, we ensure that the resulting angle is 0 ≤ θ ≤ 90◦. The final step is the normalization of θ

to θ̂ by subtracting the mean of θ at each time step from θ to obtain a signal centered at 0 (Equation 2.3).

When performed for each dataset, this eliminates the effects of the different offset rotations and allows us

to compare the oscillatory patterns between θ̂ signals.

‖k̂‖‖v‖ cos θ = k̂ · v (2.1)

θ = cos−1
( k̂ · v
‖v‖

)
(2.2)

θ̂ = θ − θ̄ (2.3)

Because of the offset rotation explained previously, the magnitude of θ will be positive (0 ≤ θ ≤ 90◦) for

all time steps. The positive direction is defined, as shown in Figure 2.3c as on one side of a plane (gray in

the figure) defined as the span of k̂ and v x k̂ (light blue vector). The offset is different for each dataset,

so the magnitude of the positive angle that represents the vertical will be different for each dataset, but

characterizing the changes in the angle will show, in all cases, the oscillatory behavior of the individual’s

torso. Another important point is that approximating the three dimensional vector v with a single dimension

will necessitate that changes in verticality in lateral and forward direction are not differentiated.

To compute the correlation between two signals, we used the Pearson correlation coefficient that takes
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(a) Hand 1 (b) Hand 2

Figure 2.4: Comparison of the verticality angle θ̂ (in degrees) for the Hand datasets with Subject A (red,
solid) pulling and Subject B (blue, dotted) being pulled.

(a) Elbow 1, with the black line indicating the separation
between high and low resistance behavior

(b) Elbow 2

Figure 2.5: Comparison of the verticality angle θ̂ (in degrees) for the Elbow datasets with Subject A (red,
solid) pulling and Subject B (blue, dotted) being pulled.

two one dimensional signals as input and outputs the correlation between them [63]. Equation 2.4 shows

the value of the correlation c for two signals, x and y, of length n.

c(x, y) =

∑n
1 (x− x̄)(y − ȳ)√∑n

1 (x− x̄)
2
√∑n

1 (y − ȳ)
2

(2.4)

2.3 Results from Verticality Analysis

For each of the four videos, we computed the θ̂ signals for Subject A and Subject B and compared the

two signals for each video with each other. Figure 2.4 displays the Hand datasets (the two videos where

the attachment point of Subject A to Subject B was Subject A’s hand), and Figure 2.5 displays the Elbow

datasets (where the attachment point was the elbow).

The first observation about the θ̂ signals for each subject in the same task (the red solid and blue dashed

lines plotted together) is that there seems to be a correlation or anti-correlation between the signals. For

Figure 2.4a and the first half of Figure 2.5a, the two signals seem to the anti-correlated, with oscillations in

opposite directions throughout the movement. In Figure 2.4b, Figure 2.5b, and the second half of Figure

2.5a, the signals seem to be more correlated, with approximately matching shapes.

These observations match the overall structure of the comments made by our movement expert (Table
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Table 2.2: Pearson correlation between θ̂ signals from each dataset. Also displays the resistance level and
corresponding expected sign of the correlation. The Elbow 1 dataset is split into the first half (beg) and
second half (end).

Video Resistance Level Expected Sign Correlation

Hand 1 High Negative -0.5636

Hand 2 Low Positive 0.8577

Elbow 1

(beginning)
High Negative -0.8658

Elbow 1

(end)
Low Positive 0.702

Elbow 2 Low Positive 0.9038

2.1). For the Hand 2 and Elbow 2 videos, there was less resistance to the pulling, manifesting in a direct

correlation between the θ̂ signals. For the Hand 1 video, there was more resistance, manifesting in an inverse

correlation between the signals. The Elbow 1 video is a special case because the movement starts out as

high resistance (first half is anti-correlated), but ends as low resistance (second half is correlated).

To quantify the correlations between the signals, we computed the Pearson correlation between the signals

in each video, values shown in Table 2.2. To determine the location to split the Elbow 1 signals (shown as a

black line in Figure 2.5a), we found that the maximum negative correlation occurred with the first 227 points

and split the signals in two parts according to that line. The table shows a high magnitude of correlation

(all above 0.5) between verticality signals of two individuals performing an action together. Additionally,

the sign of the correlation corresponds to the comments made by an expert about high and low resistance

movements. The positive correlation values represent low resistance behaviors, and the negative correlation

values represent high resistance behaviors.

We would like to determine whether these correlation values actually indicate that two individuals are

performing a task together. We will define a video pair as a pair of signals from the same task (i.e. Hand 2,

Subject A and Hand 2, Subject B). We anticipate that the magnitude of correlation between a video pair

will be higher than a non-video pair, which would be comparing signals extracted from two different videos.

For the Hand videos, we compared all possible pairings of the 4 signals (a total of 6 pairings), which resulted

in 2 video-pairs (from the two videos) and 4 non-video pairs.

Figure 2.6a displays all 6 correlation from the Hand pairings from lowest to highest with the two video

pairs labeled as H1 and H2. These results match our expectations: the high and low resistance cases (video

pairs) have high correlation magnitudes, and all other pairings have low magnitudes. This would indicate

that a high correlation magnitude corresponded to coordination in a task, for these cases.

We performed exactly the same analysis on the Elbow videos, but with a total of 7 pairings. We compared
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(a) Correlation of video and non-video pairs for Hand
pairings.

(b) Correlation of video and non-video pairs for Elbow
pairings.

Figure 2.6: Correlation of video and non-video pairs for Hand and Elbow signals. The bars are sorted
from least to greatest with high resistance (orange), low resistance (green), and non-video pairs (gray)
appropriately colored.

each of the 4 signals in pairs to each other, but then replaced the one value from the Elbow 1 video pair

with two values (one from each half of the signals).

The results are shown in Figure 2.6b and do not have the same clear distinction between video and

non-video pairs as in the Hand case. In fact, all non-video pairs have high correlations (above 0.8). We

hypothesize that this distinction is due to the difference in point-of-contact during the interaction, and the

more proximal attachment created less variety in the verticality signals within the Elbow datasets. Despite

not being able to distinguish video and non-video pairs by correlation for these cases, we can still differentiate

high and low resistance behavior by the sign of correlation.

2.4 Results from Resistance Analysis

From the results of the correlation calculations, there is a clear difference between the high (anti-correlated)

and low (correlated) resistance cases that matches the expert observations of the movements. Another visual

difference in the shapes of the signals are the varying height and oscillations between high and low resistance.

To quantify this difference, we performed a statistical analysis of each θ̂ signal. We first found the linear

regression by the least-squares method of each signal, shown in Equations 2.5 and 2.6, where the Pearson

correlation (c) of the time t and θ̂ are used as well as various standard deviation (SD) measures. This gave

us a line about which the deviation of the signal was minimal. We then found the standard deviation of the

residuals, shown in Equation 2.7.

This resulting a for each signal quantifies the amount of oscillation occurring about a line that minimizes
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that oscillation. Figure 2.8 shows the linear regression for each of the 8 θ̂ signals separated by resistance

and point of contact.

b = c(t, θ̂)
SD(θ̂)

SD(t)
(2.5)

θ̂est = bt+ (
¯̂
θ − bt̄) (2.6)

a = SD(θ̂est − θ̂) (2.7)

Figure 2.7: Comparison of the standard deviation of the difference of each signal from its linear resistance,
separated by higher (green) and lower resistance (orange). Also pictured is the mean of the each subgroup,
which shows the higher mean of the higher resistance group. The labels along the x-axis correspond to hand
or elbow (H/E), video number (1/2), and subject (A/B).

To quantify the visual differences in the verticality graphs of the high and low resistance cases, we

computed the standard deviation of the difference of each signal from its linear regression (from Equation

2.7). Figure 2.7 displays the standard deviation values separated by low (orange) and high (green) resistance

signals. In this analysis, we have classified Elbow 1 as higher resistance for simplicity. Additionally, the

mean of each group is plotted onto the figure in the appropriate color, showing that the mean standard

deviation of the high resistance signals is higher than that of the low resistance signals. This agrees with our

observations of the greater oscillations in the high resistance cases that quantify the differences observed by

our expert about these movement pattern.
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(a) Hand 1 (b) Hand 2

(c) Elbow 1 (d) Elbow 2

Figure 2.8: Linear Regression for each of the 8 θ̂ verticality signals with Subject A (red, solid) pulling and
Subject B being pulled (blue, dashed). Classified here by point of contact (hand or elbow).

2.5 Verticality Analysis Summary

Movement of two physically connected humans is a complex activity involving several degrees of freedom,

many of which motion capture does not encompass. However, we propose a model that, for our current

dataset, proves to be descriptive. Our results show a correspondence between computations performed on

the reduced degree-of-freedom model of the changing verticality of the subjects (a correlation metric) and

features of the dyad coordination. Both whether or not two individuals were engaged in the same task

with hand-to-arm contact and the quality of “resistance” in the partners were considered. Our analysis

corroborates the näıve observations a movement expert. Happily, our analysis does not depend on the type

of task, so the verticality metric can be easily tested on a variety of other tasks and contexts to determine

other conclusions that can be drawn from this measure.
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Chapter 3

Low-DOF Artificial Systems and
Modeling for Human Imitation

In this chapter, we will first explain our process of modeling motion capture data with four degrees of

freedom (Section 3.1). We then discuss the process of artificially generating the orientation of these simulated

robots (Section 3.2. We will conclude this chapter by explaining the explain the correspondences between

this model and the movement of two simulated robots, the Rollbot and Broombot, in Section 3.3. The

code for these simulations is written using Python 3 and the most updated version is hosted at https:

//github.com/roshk99/Robot-Menagerie. The Readme file for this repository is included Appendix A.

3.1 Computing a 4-DOF Model of Human Motion

We first recorded human motion data using an OptiTrack system and the Baseline markerset containing 37

markers (Figure 3.1a). We exported the data from the Motive software in the form of Cartesian coordinates

containing the X-Y-Z translation of each marker for each step in time. The frame rate of capture was 120

Hz, or a time step of 0.0083 seconds. Before performing further computations in the data, we manufactured

the data at any points where the motion capture system lost the position of any of the markers by linearly

interpolating between successfully recorded values.

The first two components of this model are the translation coordinates (x, y), representing the overall

human translation in the x-y plane. We obtained these values by using the x and y coordinates of the marker

BackTop (or m0) at every time step (Equation 3.1).

x = m0,x

y = m0,y

(3.1)

We next chose a pair of markers from the dataset to create a vector corresponding to some aspect of

the skeletal motion. The vector, v, between any marker pair, (m1,m2), will have two planar projections,

providing two additional, rotational degrees of freedom. Thus, we form a human motion model with two

translational degrees of freedom (common to any choice of marker pairs) and two rotational degrees of
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(a) A vector v (blue) between two
motion capture markers on a hu-
man wearing a motion capture suit.

(b) A vector v (blue) between two
motion capture markers, m1 (top
red dot) and m2 (bottom red dot).

(c) Illustration of the projections vx
(orange) and vy (yellow) and the
angles θx and θy for the same vector
v (blue) at a single time step.

Figure 3.1: Human motion capture data to a four degree-of-freedom model, with the two orientation com-
ponents shown here

freedom, for which we are interested in measuring human preference for across a series of data samples.

For example, Figure 3.1 shows the details of one possible mapping. This mapping uses the WaistRBack

and BackRight markers, which is a representation of overall spinal leaning that we call verticality; thus in

this case m1 = WaistRBack and m2 = BackRight. The vector v, shown in blue in Figure 3.1b, is computed

by subtracting the (x,y,z) coordinates of the initial point (m1) from the coordinates of the end point (m2) to

obtain a vector that represents the vertical leaning of the motion capture skeleton at each time step. This

vector v is then normalized at each time step to v̄ = v/||v|| to characterize the direction of the vector v

(Equation 3.2).

v = m2 −m1

v̄ = v/||v||
(3.2)

In the following equations, î, ĵ, and k̂ are used to represent the unit vectors in the x, y, and z directions,

respectively. From the 3 dimensional signal v̄, we will obtain angles that characterize the rotation about the

x-axis and y-axis (Figure 3.1c). The axes are aligned such that the x-y plane is the ground. To calculate

the angles in these two directions, we first calculate the projection of vector v̄ at each time step on the y-z

plane (vx) and the x-z plane (vy) (Equation 3.3). Equation 3.4 shows the calculation of θx and θy, which

are illustrated in Figure 3.1c as the angles between the projected vectors and the z-axis. The signs of these

angles are adjusted to ensure they match the right-hand-rule.
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vx = î× (v̄ × î)

vy = ĵ × (v̄ × ĵ)
(3.3)

θx = sgn(vx · (k̂ · vx))| cos (k̂ · vx)|

θy = sgn(vy · (k̂ · vy))| cos (k̂ · vy)|
(3.4)

Combining the results from the translation x, y from Equation 3.1 and the rotation θx, θy from Equation

3.4, we have a total of 4 degrees of freedom for our model of human motion.

3.2 Artificially Generated Motion

We developed a method to artificially generate the orientation of the Rollbot and Broombot to compare

to the motion-capture-based method developed above. We only modified the rotation components of the

robot motion (i.e. θx, θy, θz) and left the translation components as mirroring the horizontal movement of

the human.

We generated a new value for each of the angles at each time step by first computing random amplitudes

A between −π2 and π
2 . We then used Equation 3.5 to calculate the angle θi. This calculation can be

performed for the Rollbot for i = z and for the Broombot for i = x and i = y. The constant ω = 1
5000

was found by hand-tuning and was chosen so the resulting angles would approximately match the speed of

movement of the motion capture data.

θi = Ai sin (ωt) (3.5)

3.3 Commanding the Simulated Robots

Once we have created a model for the motion capture data, we designed the correspondence between this

model and the motion of the simulated robots. We have created two low degree of freedom simulated robots,

with three and four degrees of freedom, pictured in Figure 3.2. The dual colors of each robot make the

rotations more apparent when viewed in the simulation. The first robot, Rollbot, can translate in the x and

y directions in the horizontal plane and has one rotation θz about its central axis. The second, Broombot,

can also translate in the x and y directions in the x-y plane and has two rotations: one about its x-axis and
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Figure 3.2: The Rollbot (Left) has one articulated degree of freedom, θz, that is a rotation about the z-axis.
The Broombot (Right) has two articulated degrees of freedom, θx about the x-axis and θy about the y-axis.
With this coordinate frame orientation, this is accomplished by tilting left to right and front to back. Both
robots can translate horizontally in the x-y plane.

Table 3.1: Five different mappings with different starting and ending markers for the vector v used to model
the human motion. The sixth mapping is artificially generated motion, not based on human motion.

Marker 1 (m1) Marker 2 (m2) Related Body Part

Mapping 1 ShoulderLBack WristLOuter Arm Left

Mapping 2 ShoulderRBack WristROuter Arm Right

Mapping 3 WaistLBack AnkleLOuter Leg Left

Mapping 4 WaistRBack AnkleROuter Leg Right

Mapping 5 WaistRBack BackRight Spine

Mapping 6 Artificially Generated - See Section 3.2

one about its y-axis.

The Broombot’s four degrees of freedom correspond naturally to our four DOF model. We will command

the translation of the Broombot with translation components of the model and the rotation of the Broombot

with rotation components of the model. The only modification will be to offset the translation with a constant

at every time step so the Broombot and motion capture skeleton plotted simultaneously will translate

synchronously with starting from an offset position.

The Rollbot’s three degrees of freedom require a slight modification to use our model. The translation

will correspond directly to the translation components of our model (with an offset as in the Broombot),

but the two rotation components in the model must correspond to a single rotation of the Rollbot. We add
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these two rotations together (i.e. θz = θx + θy) to achieve this.

We can use a variety of pairs of markers to command the Broombot’s motion, but we chose a set of five

marker pairs that correspond to to various connected components of the body. These five mappings from

human motion to robot motion are shown in Table 3.1 with the starting (m1) and ending (m2) points of the

vector v listed.
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Chapter 4

Imitation of Human Motion using
Low-DOF Simulated Robots

This chapter describes the experimental setup and results of two studies investigating how users perceived

the imitation of human motion by low-DOF simulated robots. An initial study, presented in Section 4.1

explores the imitation success of the Rollbot and Broombot (introduced in Section 3.3) using verticality, or

the leaning of the spine, of motion capture data. Section 4.2 details the results of this survey. We next

created an experiment exploring how user imitation preferences for Broombot motion change as the motion

capture sample and mapping to human motion is changed (Section 4.3). A discussion of these results is

presented in Section 4.4.

4.1 Simulated Robots Imitating Human Motion with Verticality

Experimental Design

We recorded five minutes of motion capture data, recorded via the OptiTrack motion capture system. The

subject 1 moving in the motion capture suit was a researcher in our lab who is trained in classical ballet,

and this researcher moved freely to create a variety of movement for the five recorded minutes.. We then

chose three different samples of the recorded movement to use for robot motion generation. For each of these

three motion capture samples, we generated three different cases of robot motion, enumerated below. The

verticality mapping used in this study is Mapping 5 from Table 3.1, and the artificially generated mapping

is Mapping 6 from Table 3.1). A still image from an animation is shown in Figure 4.1.

We had three different case formats as shown below. We generated 3 videos for Cases 1 and 2 and 2

videos for Case 3, but also created 8 mirrored videos that switched the positioning of the movers in each

video. Each user was presented with a total of 8 questions in a random order.

1We would like to thank Erin Berl for agreeing to be the subject for these studies

22



Figure 4.1: Still image from an example animation for the study with three movers (two simulated robots and
one human motion capture skeleton). The robots were driven by either the verticality mapping (Mapping
5 from Table 3.1) or the artificially generated mapping (Mapping 6 from Table 3.1), and users were asked
which robot better imitated the human movement.

• Case 1: Rollbot Verticality vs. Artificially Generated

• Case 2: Brooombot Verticality vs. Artificially Generated

• Case 3: Brooombot Verticality vs. Rollbot Verticality

For each of the 8 questions, the user was randomly shown either the original or mirrored video and asked

two questions. They were first asked “Which robot (left or right) imitates the human skeleton (center)

best?” and could pick either Left or Right. They were then prompted to explain in a short answer form

why they made their choice for the first question.

Through these questions we aimed to test two hypotheses. Hypothesis 1 was that users prefer verticality

over artificially generated motion for the Rollbot and Broombot (corresponds to Cases 1 and 2). Hypothesis

2 states that when both robots use verticality, users prefer the Broombot over the Rollbot for imitation

(corresponds to Case 3).

4.2 Simulated Robots Imitating Human Motion with Verticality

Results

This study was developed using SurveyMonkey and administered using Amazon Mechanical Turk (MTurk)

to 20 online participants. We first compared the number of participants identifying the verticality-based

motion as imitating the human skeleton movement better to the number preferring the artificially generated

motion (Figure 4.2a). In the case of Rollbot motion (Case 1), the users had no preference between the

verticality and artificially generated robot motion. Some excerpts from their justifications include: “They

are almost identical” and “I could not tell any difference in the way the robot moved.” However, in the
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(a) Number of responses identifying the verticality-based robot
motion (blue) and artificially generated robot motion (orange)
as imitating the human skeleton movement best for the Rollbot
and Broombot movements.

(b) Percentage of participants identifying the
Rollbot verticality-based motion (purple) and the
Broombot verticality-based motion (green) as im-
itating the human skeleton best (total of 40 re-
sponses).

Figure 4.2: Results from study comparing verticality and artificially generated motion on the Rollbot and
Broombot

case of Broombot motion (Case 2), the users preferred the verticality motion 77% of the time, with one user

commenting: “This broom seems to be moving exactly like the human skeleton.”

We then compared the verticality based motion between the Rollbot and Broombot in Case 3 (Figure

4.2b). The users preferred the Broombot 78% of the time, with users commenting: “overall movement is

more active and copies movements better” and “it can emulate the leaning of the upper torso.”

We then performed one-sample two-sided t-tests on all three datasets (Table 4.1), comparing the resulting

percentages with a “random” choice of 50%. The degrees of freedom were 60− 1 = 59 for Cases 1 and 2 and

40− 1 = 39 for Case 3.

For Case 1, the two-sided t-test was not significant (p > 0.01), so the probability of choosing verticality

over artificially generated motion cannot be distinguished from 0.5 for the Rollbot. For Case 2, both the

two-sided and one-sided t-tests were significant at the 0.01 level, showing that users preferred the verticality

motion over the artificially generated motion for the Broombot. This only confirms Hypothesis 1 for the

Broombot and not for the Rollbot, since users preferred verticality only for the Broombot motion.

For Case 3, both the two-sided and one-sided t-tests were also significant, illustrating the users’ preference

of the Broombot over the Rollbot when both were using verticality. This confirms Hypothesis 2 since the

users preferred the higher DOF Broombot over the Rollbot when both were moving using verticality.

In this study, we generated motion profiles of virtual characters imitating human movement by utilizing
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Table 4.1: P-Values for One Sample T-Tests on User Study Results (p = 0.01 significance)

Two-Sided T-test One-Sided T-Test
Verticality Rollbot 0.799 0.601
Verticality Broombot 9.622e−6 4.811e−6
Verticality Broombot vs. Rollbot 3.379e−5 1.689e−5

a verticality metric computed from motion capture. This verticality metric, drawing inspiration from motion

capture analysis of dyadic motion (Chapter 2), was applied to the creation of 3 and 4 degree of freedom

virtual characters (Chapter 3). Users evaluated the motion of these low degree of freedom characters with

respect to their imitation capabilities of human movement, comparing verticality and an artificially generated

mapping. Statistical analyses on the user responses illustrated a preference for the verticality-based motion

and the higher degree of freedom virtual character Broombot.

4.3 Human Perception and Preference of Low

Degree-of-Freedom Simulated Robot Motion Driven by

Various Human Capture Mappings

The previous sections detailed a preference for verticality-based motion and the Broombot’s motion for

specific examples of motion capture data. Based on this initial study, we developed a new study to investigate

how users’ preferences change as the motion capture samples are varied and mappings other than verticality

are used for imitation.

In this section, we discuss the choice of motion capture data clips, or samples, (Section 4.3.1) and the

choice of the mappings to command the Broombot (Section 4.3.2) for the user study. We then explain the

composition of the stimuli by combining the motion capture samples and the mappings to command the

Broombot. We explain the development of the user study using these stimuli (Section 4.3.3). The individual

components of the survey include the pre-survey training (Section 4.3.4), questions for each stimuli (Section

4.3.5), and collection of demographic information (Section 4.3.6).

4.3.1 Choosing Motion Capture Samples

We recorded five minutes of motion capture data, recorded via the OptiTrack motion capture system (the

same recording as the initial study in Section 4.1). The subject moving in the motion capture suit was a

researcher in our lab who is trained in classical ballet, and this researcher moved freely to create a variety of

movement for the five recorded minutes. We observed this recording and chose three samples that focused

25



on movement from on a specific section of the body, which are enumerated below.

• Sample A: 25 second clip of motion capture observed by the researchers to have high deflections in

arm movements

• Sample B: 25 second clip of motion capture observed by the researchers to have high deflections in

leg movements

• Sample C: 25 second clip of motion capture observed by the researchers to have high deflections in

spinal movements

4.3.2 Choosing Mappings to Command Robot Motion

We used six different mappings from human motion to the Broombot’s motion (Table 3.1). The first five

mappings use five vectors from the motion capture skeleton. The designations of left and right throughout

this paper are in relation to the mover in the video, not the viewer of the video. An illustration of Mappings

2, 4, and 5 on the motion capture skeleton and the corresponding position and orientation of the Broombot

are shown in Figure 4.3. The sixth mapping has an artificially generated orientation for the Broombot, via

the process from Section 3.2.

Figure 4.3: Three possible mappings from human to robot motion. The top row of the figure displays
the vector (blue) on the motion capture skeleton and the axis with respect to which the two angles are
calculated. Those two angles (rotation about the the x and y axes) correspond to the orientation of the
Broombot (second row).
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4.3.3 Developing the User Study

For each stimuli, we generated a video that included a motion capture skeleton in the center with one

Broombot on either side of it. A screenshot of a video is shown in Figure 4.4. With the six mappings, this

generated a total of 6!
(6−2)! = 30 pairs to compare. We used those 30 combinations for each of the three

motion capture samples, resulting in a total of 90 videos.

We split these 90 videos into four groups, two groups with 23 videos and two groups with 22 videos. We

selected the videos in each group to ensure that each group saw videos from all three samples and all six

mappings. We also ordered the videos within each group so the respondents did not see the same mapping

or sample multiple times in a row.

We used the 90 videos to run a user study via a Qualtrics survey administered through Amazon Mechan-

ical Turk (MTurk). The goal of this user study was to determine the user preferences of the robot imitation

success of a variety of mappings and motion capture samples. We developed a series of hypotheses, listed

below, that will be addressed through the results of the study.

• Hypothesis 1: Users will prefer mappings based on motion capture (Mappings 1-5 ) over artificially

generated motion (Mapping 6 ).

• Hypothesis 2: Users will be more likely to choose mappings from arms (Mappings 1-2 ) for Sample

A, legs (Mappings 3-4 ) for Sample B, and spine (Mapping 5 ) for Sample C.

• Hypothesis 3: Spinal movements (Mapping 5 ) will be chosen more often than other mappings. This

hypothesis is based on the preference users showed for verticality in a previous study and the correlation

verticality had with dyadic movement.

The respondents were first presented with a consent form and then proceeded to pre-survey training

(Section 4.3.4) that prepared them to compare the imitation success by two Broombots of a motion capture

skeleton. They next were randomly sorted into one of four groups (from Section 4.3.3) and presented

with one question for each of those videos (Section 4.3.5). They completed the survey with demographic

information (Section 4.3.6) and a random number they entered into the MTurk website for completion. Upon

confirmation of completion, each respondent was paid $1, a rate determined from an estimated 30 minutes

for completion.

4.3.4 Pre-Survey Training

We included a training screen before each respondent began answering questions about the stimuli. The

purpose of this training was to (1) show imitation of human motion as different from replicating exactly, (2)
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demonstrate examples of non-humanoid characters successfully imitating human motion, and (3) familiarize

respondents with the appearance and movement patterns of the motion capture skeletons and simulated

robots Broombot.

We first displayed definitions and examples of imitation and copying so respondents were aware that

imitation does not require movers to look or move exactly the same. These definitions are reproduced here:

• Imitation: The two movers are moving similarly, and do not necessarily look the same. A dog can

imitate a human, even though they look very different. For imitation the movements must resemble

each other.

• Copying: The two movers look exactly the same and move exactly the same for the entire movement.

We next included an example of three dancers from a YouTube video performing the same choreography

to showcase that the dancers are moving similarly and are imitating each other; however, they do not look

the same and are not moving exactly alike.

We included a YouTube video of a human dancing with a cartoon mouse character to show that imitation

does not require the appearance of the two movers to be the same. This again illustrated the differences

between copying and imitating and allowed the participants to see that our robots could look very dissimilar

to humans and still imitate their movement.

The third question was worded in the exact way each video question in the survey was phrased. Par-

ticipants were shown a video of three motion capture skeletons, in which the left mover was imitating the

center mover but the right mover was moving very differently. They were required to answer this question

correctly (i.e. choose Left) to proceed to the survey.

The final section of the training process introduced the respondents to the Broombot simulated robot

and ways it can both translate and tilt. At the very end of training, the respondents confirmed that they

were required to watch the videos completely and write an explanation for each of their answers.

After completing this training, the respondents were more familiar with the task they needed to complete

and understood our definitions of imitation. We sought to avoid the scenario where respondents merely

discarded the imitation capabilities of the simulated robots due to their lack of humanoid appearance and

wanted respondents to evaluate the robots based on their movements.

4.3.5 Questions for Each Video

For each video, we asked up to three questions. A screenshot with a sample of the screen each respondent saw

for a video question is shown in Figure 4.4. The first question after watching a video asked the respondents:
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Figure 4.4: An example of a question from the user study that asks respondents to watch a video con-
taining two simulated robots imitating a motion capture skeleton and determine which robot is imitating
the skeleton’s movement better. The second question forcing a response of Left or Right only appeared
for respondents who chose Neither for the first question. Respondents were also required to provide an
explanation of their response via short answer question with a minimum length.

“Which robot (left or right) imitates the center human skeleton best? If neither left nor right imitates better,

please choose the neither option.” The respondents were provided with three choices for this question: Left,

Right, and Neither. This is similar to the question asked in the initial study (Section 4.1), but includes a

Neither option instead of forcing respondents to choose between Left and Right.

If they chose Neither as the answer to this question, a second question appeared and asked “Although

neither robot is imitating well, which (left or right) would you choose if you had to pick?”. This allowed us

29



to collect responses without a forced response (first question) as well as obtain data with a forced response

(second question). The results discussed below will include data both with and without the forced response.

The final question asks for a short explanation of the respondent’s choice for the previous questions

by asking “Please explain why you made the choice you did for the previous question. Be specific to this

video!”. We required their responses to achieve a minimum length, communicated by users through an error

message for answers that were too short. The goal of this was to encourage respondents to elaborate upon

their explanations instead of just providing 1-2 word responses.

4.3.6 Demographic Information

All demographic information collected at the end of the survey was optional. Among the questions asked

were age range, gender, and education level. We also included a table in which respondents could input

their experience level (if any) in several movement based activities out of three categories: None, 0-2 years,

2-4 years, and More than 4 years. The activities displayed were running, triathlon, dance class or practice,

martial arts, sports, pilates/group fitness class, swimming, walking/hiking, weight lifting, and other. The

demographic information aggregated over all respondents is shown in Appendix B. Most respondents were

within the age range of 25-34, spoke English as a native language, and had a bachelor’s degree in college.

Respondents of various movement activity experience levels were represented.

4.4 Human Preference Analysis of Imitation of Low-DOF

Simulated Robots Results and Discussion

In this section, we will discuss the results from the user study. We inserted questions during the survey such

as simple addition and multiplication problems to ensure respondents were keeping engaged in the survey

and not just answering randomly. We eliminated the responses from four users who did not answer these

questions correctly, resulting in a total of 196 respondents. We will discuss the results by motion capture

sample in Section 4.4.1 and the distribution of preferences for respondents in Section 4.4.2. We will perform

an analysis of the three motion capture samples from the study in Section 4.4.3 and conclude with a summary

and discussion of all the results in 4.4.4.

4.4.1 Results by Motion Capture Sample

To compare the preferences for different mappings commanding the Broombot’s motion, we analyzed the

results from our user study by motion capture sample. After discussing our data analysis process, we will
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Figure 4.5: User study results separated by motion capture sample for each mapping (left column), for each
mapping group (middle column), and for motion capture vs. artificially generated (right column). The gray
line indicates the result if all respondents chose Left and Right randomly for each question, and the 95%
confidence interval for both the results and the random choice are indicated.

review the results for each motion capture sample by individual mapping, mapping group, and motion

capture vs. artificially generated.

We computed a percentage that represents the frequency a mapping (one of six) was chosen out of the

number of times it was seen. Since each mapping was not seen an equal number of times, having the number

of times seen in the denominator allows us to compare the percentages. The naming scheme for motion

capture samples and mappings to robot motion was discussed in Section 4.3.1 and 4.3.2.
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We also computed a 95% confidence interval for the resulting percentages using Equation 4.1, where p̂ is

our calculated percentage and 1.96 is the constant multiplier for at 95% confidence level. The value of the

denominator, N , is the number of times a mapping was seen over all participants.

p̂± 1.96
p̂(1− p̂)
N

(4.1)

Figure 4.5 (left column) shows the results separated by motion capture sample and aggregated over all

samples. The fully shaded portion of each bar indicates the responses without the forced response, and the

striped portion is the added results with the forced responses. The gray line marks the level for each mapping

if all participants chose Left and Right randomly for the entire survey, and the corresponding 95% error

region is shaded gray. The 95% confidence interval was calculated for each bar, with the forced response for

clarity, and is shown by an error interval.

For each sample and overall, each individual mapping was in the error range of random choice except

Mapping 6, which respondents chose infrequently. Additionally, the responses for the left and right sides

of the body (Mappings 1-2 and Mappings 3-4 ) were approximately equal, so respondents did not prefer a

mapping from the left or right.

Grouping the responses into four mapping groups (middle column), we will combine the responses into

Mappings 1-2, Mappings 3-4, Mapping 5, and Mapping 6. Since the number of responses for the Mappings

1-2 and Mappings 3-4 groups is greater than the number of responses for Mapping 5 and Mapping 6, the

denominator of our calculation, number of times the mapping group was seen, will adjust accordingly.

Figure 4.5 (middle column) contains the results for each mapping group. The line indicating random

choice is not at the same level for each group due to the increased opportunity to choose Mappings 1-2 or

Mappings 3-4 when randomly choosing Left or Right for each video. For Sample A, Mappings 1-2 were

chosen at a frequency greater than random. For Samples B and C, Mappings 3-4 and Mapping 5 were

chosen at a frequency greater than random, with Mappings 3-4 preferred slightly more than Mapping 5

for both samples. Overall, Mappings 3-4 and Mapping 5 were chosen more frequently than random, and

Mapping 6 was chosen much less frequently than random.

Grouping all motion capture mappings (Mappings 1-5 ) into one group, we can see how our motion

capture mappings performed compared to artificially generated motion in Figure 4.5 (right column). For

each sample individually and all samples combined, Mappings 1-5 were chosen more frequently than random

and Mapping 6 was chosen much less frequently than random.
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Figure 4.6: The number of respondents choosing each mapping group (Mappings 1-2, Mappings 3-4, Mapping
5, and Mapping 6 ) more than 85% of the times seen (left) and less than 15% of the times seen (right). The
values without the forced response are fully shaded, and the values without the forced response are partially
shaded.

4.4.2 Respondent Preferences Distribution

In this section, we will discuss the distribution of respondent choices for our survey separated by mapping

groups (Mappings 1-2, Mappings 3-4, Mapping 5, and Mapping 6 ). We first counted the number of each

mapping group seen and chosen by each respondent. The ratio of these values results in a percentage of

times each respondent chose a mapping group given the number of times seen.

The Pearson Coefficient of Skewness was computed for the distributions of each mapping group. A

number closer to 0 indicates a less skewed distribution. The groups based on motion capture (Mappings

1-2, Mappings 3-4, Mapping 5 ) had low magnitudes of skewness without forced response, with values of

0.65, -0.30, and -0.20 respectively. In contrast, the group based on artificially generated motion (Mapping

6 ) had a high skewness value of 1.33, indicating that many respondents chose artificially generated motion

very infrequently. From these distributions, we plotted the number of respondents choosing a given mapping

group more than 85% of the times seen and less than 15% of the times seen in Figure 4.6, to see if any

mapping was chosen very frequently or infrequently.

There were many respondents who chose artificially generated motion (Mapping 6 ) very infrequently

(less than 15% of the time). The remaining mappings have a low number of respondents choosing them

infrequently. This result will tallies with data presented in Section 4.4.1 that shows respondents chose

motion capture-based motion more frequently than artificially generated motion. Additionally, there were

more respondents choosing spinal movements (Mapping 5 ) very frequently (more than 85% of the time)

than any other mapping. Though this does not indicate that the mapping based on spinal movements was

chosen more overall, it does indicate a high “loyalty” to verticality by some respondents (16 without forced

response and 29 with forced response).
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Loyalty and Engagement in Verticality Respondents

To compare the verticality respondents, or those individuals that chose Mapping 5 very frequently, to the

entire respondent pool, we developed quantitative values for the loyalty and engagement of participants

within a group. We computed these values for the verticality respondent group, the respondents not in the

verticality respondents group, and the total respondent pool.

Table 4.2: Loyalty values calculated for verticality respondents, not verticality respondents, and all respon-
dents. Loyalty includes percentages for each mapping group.

LOYALTY

Mappings

1-2

Mappings

3-4

Mapping

5

Mapping

6

Verticality

Respondents
0.0% 6.2% 91.0% 0.0%

Not Verticality

Respondents
18.7% 20.8% 16.3% 16.5%

All

Respondents
15.9% 18.6% 27.4% 14.1%

To analyze loyalty, we first found the mappings that each participant chose the most often (using the

values with forced response for this analysis). This differs from 85%,15% analysis performed in the previous

section as it determines the mapping that each individual was most loyal to. For each subgroup of respon-

dents, the loyalty measure was calculated using Equation 4.2, and the results are tabulated in Table 4.2.

This calculation confirms that the verticality respondent group contains high loyalty to spinal movement

mapping (91%), and the other groups do not show a particular loyalty to one mapping (highest value 27.4%).

This methodology allows us to segment our participants into groups and quantify the loyalty of the members

of that group to specific mappings.

Loyalty(Group, Mapping) =

∑
Mapping Preference % for Loyal

Number in Group
(4.2)

We also quantified engagement of the respondents by looking at the short answer responses. We first

determined whether each respondent wrote ‘relevant’ responses (percentages in Table 4.3). The users of

Amazon MTurk are likely to simple copy and paste a random text into required short answer questions, and

determining ‘relevant’ responses allow us to screen out those participants’ short answer responses. We set

two criteria that respondents had to meet in order to ensure that they provided relevant responses to the

short answer questions:
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Table 4.3: Engagement values calculated for verticality respondents, not verticality respondents, and all
respondents. Engagement is the multiplication of the percentage of respondents writing relevant responses
and the average characters written for relevant responses.

ENGAGEMENT

% Relevant
Characters

for Relevant
Engagement

Verticality

Respondents
57.1% 93.3 53.3

Not Verticality

Respondents
34.4% 75.0 25.8

All

Respondents
79.0% 79.0 29.0

• Number of responses containing at least one of the words (left, center, middle, right, human, robot)

for the respondent was greater than 15 (KW > 15)

• Number of unique words across all responses of a respondent was greater than 20 (UW > 20)

For each respondent in the group, we can determine if they provided relevant responses (KW > 15 and

UW > 20), and we can then calculate a percentages of respondents in each group writing relevant responses.

If all respondents in a group wrote relevant responses, this value would be 100%, which will be inputted into

the engagement formula (Equation 4.3).

We can additionally count the average number of characters written for respondents who wrote relevant

responses. Combining these two numbers allows us to determine an engagement score using Equation 4.3

for each group, with results shown in Table 4.3. We can see that the verticality respondents were on average

more ‘engaged’ with a score of 53.3 compared to the 29.0 over all respondents. This engagement value allows

us to determine how involved respondents from a group were with our survey.

Engagement(Group) = % Relevant ∗Average Characters for Relevant (4.3)

We also investigated any other trends in the demographic information for these verticality respondents,

to see if any other factors could correlate with the higher loyalty and engagement. The results discussed

here are those with a difference of greater than 10% in the responses.

The verticality respondents were 10% more female than the overall sample. They had more experience in

some activities (sports, swimming, and walking/hiking) and less in others (martial arts, yoga, and running),

but when aggregating all the activities, differences were not greater than 10%. Other demographic responses,

such as language and age, did not show significant differences in results between verticality respondents and
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the entire pool of respondents.

Overall, verticality respondents, who chose Mapping 5 more than 85% of the time, were loyal to the

mapping based on spinal movements, were more likely to be female, and were more engaged in the short

answer component of our survey. Further demographic analysis of these respondents may lead to greater

understanding of the relationship between preferring verticality and a greater attentiveness during the survey.

4.4.3 Analysis of Motion Capture Data

Figure 4.7: The mean (left) and standard deviation (right) of the five motion capture mappings, separated
by motion capture sample. The values for the angles in the x and y direction are displayed with bars
representing θx fully shaded and bars representing θy striped.

We also analyzed the angles (θx, θy) for all the five motion capture based mappings and for each motion

capture sample to determine if statistical methods could correlate with the respondents’ preferences in the

user study. We computed the mean and standard deviation for θx and θy, shown in Figure 4.7.

Although the mean of the spine mapping (Mapping 5 ) was high for Sample C (focused on spinal

movements), this trend does not persist for the other two samples. The standard deviation of Mappings 1

and 2 (arm mappings) were high for Sample A (focused on arm movements), but again this trend does not

hold for the remaining samples. All mappings had high standard deviations for Sample C. Although users

did not choose Mappings 1 and 2 very often for Sample B, the standard deviations of Mappings 1 and 2

were much higher than other mappings that were chosen more often.

The respondents, therefore, were not purely looking for signals that had a greater oscillation magnitude

or standard deviation. Further analysis is needed to determine if other aspects of the θx and θy signals

correlate to the respondents’ preferences to build a model of imitation preferences.
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4.4.4 Discussion of Results

In this section, we will include three discussion points tied to the three hypotheses introduced in in Section

4.3.3.

Discussion of Hypothesis 1

Respondents, over all motion capture samples, preferred motion capture mappings, Mappings 1-5, over an

artificially generated mapping, Mapping 6. Respondents chose, without forced response, motion capture

mappings 73% of the times seen compared to only 26% for artificially generated. This result holds for

individual samples as well with percentages without forced response of at least 72% for motion capture

mappings. This supports Hypothesis 1 and shows that respondents preferred motion capture motion over

artificially generated motion.

Discussion of Hypothesis 2

Table 4.4: Results tabulated with forced response for each sample and mapping group combination. The
entries we predicted to be the highest, where the body part for which the sample was chosen matches the
mapping group, are in bold, and the highest percentage for each sample is highlighted.

Sample A Sample B Sample C

Mappings 1-2 62.0% 53.3% 53.4%

Mappings 3-4 56.5% 63.7% 63.3%

Mapping 5 52.7% 59.0% 61.6%

Mapping 6 33.3% 32.8% 28.5%

We predicted from Hypothesis 2 that a particular mapping group that tracks the body part for which

a sample was chosen would have the highest preference by the users. This would be, for example, arms

mappings (Mappings 1-2 ) for Sample A that focused on arm movements. This would mean that participants

chose mappings to robot motion that reflected our observed focus of the movement in a particular motion

capture sample.

Table 4.4 contains the percentages with the forced response for each sample and mapping group combi-

nation, with the predicted highest entries in bold and the highest entry for each sample highlighted. We can

conclude that our predicted mapping was chosen above 50% for each sample, but was not necessarily chosen

the most often. For example, legs (Mappings 3-4 ) were chosen more frequently than the spine (Mapping 5 )

for Sample C that focused on the spine. Looking at the percentages from Table 4.4, the predicted highest

percentages for arms (Mappings 1-2 ) and legs (Mappings 3-4 ) were the highest for their respective samples.
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Figure 4.8: The 95% confidence interval for results with forced response, for each sample and mapping group
combination. The bars indicating our predicted highest percentages, are striped.

When taking into account the 95% confidence interval for these results, this hypothesis is even less clear.

We can visualize these intervals in Figure 4.8, which shows them for each mapping group separated by sample.

The confidence intervals overlap for all of the mapping groups over all samples, so we cannot say definitively

if our predicted mapping for each sample would be chosen more often. Although our predicted preferred

mapping for each sample has a high preference (over 60%), we cannot support with our data Hypothesis

2 that our predicted mappings for each sample will outperform other motion capture mappings.

Discussion of Hypothesis 3

From the results of previous work and insight from dancers, we predicted that verticality would be preferred.

The importance of verticality was investigated with a collaborator trained in classical ballet, and the mover

in the motion capture data was also trained in classical ballet. This connection led us to Hypothesis 3,

stating the preference for verticality.

Looking at the results separated by each mapping (left column of Figure 4.5), we can see that verticality

represented by Mapping 5 was chosen most often (with forced response was 58%) over all samples. The

next highest value is Mapping 3 at 56%. However, when combining mappings into mapping groups, the

verticality value remains the same, but legs (Mappings 3-4 ) has a value of 61%. This is due to some stimuli

comparing Mapping 3 and Mapping 4, which would always result in a choice of a mapping in the Mappings

3-4 group.

Since this property of two robots from the same mapping group being compared occurs in the cases of
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Mappings 1-2 and Mappings 3-4, we cannot definitively support Hypothesis 3 with our results. Further

studies are required that control for this property by either eliminating videos that compare two mappings

from the same mapping group or by adding another mapping that would fit into a mapping group with

Mapping 5 to balance what the user sees.

However, when analyzing the respondent distributions in Section 4.4.2, we developed two measures,

loyalty and engagement, that allowed as to make conclusions about a subgroup of the respondents. These

29 respondents chose spinal movement (Mapping 5 ) over 85% of the time, and their loyalty to verticality

can be quantified using the developed loyalty measure. Additionally, we concluded that these respondents

were more engaged, as it pertains to the short answer responses, when compared to the overall respondent

pool.

As we saw from Figure 4.6, there were no other significant subgroups that chose any of the other three

mapping groups with high frequency. This implies that, at least for these three motion capture samples,

verticality was significant. Given the propensity of users of MTurk to move very quickly through surveys,

the overwhelming choice of verticality by a subgroup of respondents is compelling. In further analysis, we

can attempt to determine characteristics of the respondents, samples chosen, or mappings used that would

explain this verticality respondent group.
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Chapter 5

Human Motion Analysis for Cultural
Understanding

The experimental results detailed in the previous chapter (Chapter 4) include the importance of verticality,

or the leaning of the spine, for low-DOF imitation of human motion. However, as seen in Section 4.2, the

motion capture sample used has an impact on how the imitation is perceived. All the recorded motion

capture data from the previous chapters are of a trained ballet dancer, and that will also have an impact on

how well verticality represents the human motion.

In this chapter, we discuss two Indian classical dance styles, Kathak and Bharatanatyam, and how

verticality likely cannot identify the subtle differences between the two forms. We will first discuss a back-

ground of these two dance styles (Section 5.1) and then examine qualitative differences between Kathak and

Bharatanatyam in Section 5.2. We will then consider how verticality would represent those differences and

suggest improved measures based on our observations (Section 5.3). We conclude in Section 5.4 by describing

how this analysis can lead to a greater understanding of how movements can vary as a result of context,

or more specifically as a result of cultural differences, and how to leverage those differences for culturally

adaptive robot motion.

5.1 Background on Kathak and Bharatanatyam

The Sanskrit text Natya Shastra (500bce to 500ce) delves into the ancient Indian performing arts [64]. The

dance section describes hand/feet positions and conveying emotions through movement and expression. The

Indian National Academy for Music, Dance, and Drama recognizes eight styles of Indian classical dance -

Kathak, Bharatanatyam, Kuchipudi, Kathakali, Manipuri, Odissi, Sattriya, and Mohiniyattam.

Bharatanatyam and Kathak, from southern and northern India respectively, diverged significantly from

their common ancient dance ancestor due to historical, cultural and regional differences. Sharpness, tension,

and straight lines in arms and legs characterize Bharatanatyam movements. In contrast, Kathak movements

are softer with less tension in elbows and wrists.

Qualitative features of these dance styles have not been quantified and pose challenges to typical capture

processes. How do we quantify small differences observed in similar movements from these two styles?
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Figure 5.1: Verticality vector (green) with respect to positive z-axis of the mover (black). Left: Mo-
tion capture skeleton with angle from z-axis to verticality vector θ labelled. Right: A Kathak (left) and
Bharatanatyam (right) dancer performing similar movements. The verticality vector does not capture dif-
fering hand gestures or tension in limbs. Screenshot from [2].

Similar research has compared other pairs of dance styles, such as Kathak and Flamenco [65].

5.2 Kathak and Bharatanatyam movement comparison

We will observe similarities and differences in an analogous position and in hand gestures performed in both

dance styles. These observations were performed by the author who has trained in both the Lucknow school

of Kathak and Kalakshetra school of Bharatanatyam.

5.2.1 A similar movement in two styles

Figure 5.2 shows a movement performed in both styles (left: Kathak, right: Bharatanatyam). Both dancers

extend their left arm to the upper-back-left corner and point their right foot towards the bottom-front-right

corner. Their right hands point inward at chest level with head turned looking at their left hand. Their

bodies are angled, pointing towards the front-left. However, the Bharatanatyam dancer extends her left

elbow while lunging, right knee unbent. The Kathak dancer bends her left elbow and has a more balanced

stance. We therefore conclude that these dancers are performing similar movements in different styles.

The positions in Figure 5.2 also differ in hand gestures, named using [66]. The Bharatanatyam dancer’s

left hand is in alapadma (fingers splayed), and her right hand is in katakaamukha (first two fingers touching

thumb with other two fingers splayed). The Kathak dancer’s left hand is in pataaka (fingers outstretched
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Figure 5.2: A Kathak (left) and Bharatanatyam (right) dancer performing similar movements with left arm
pointing up and right foot extended out. Weight shift, tension in the limbs, and hand gestures differentiate
the two positions. Screenshot from [3].

and together with thumb slightly tucked inward), while her right hand is in araala (index finger touching

thumb with other fingers outstretched and together).

5.2.2 Hand Gesture Comparison

The same hand gesture still exhibits subtle differences when performed in these two styles. Figure 5.3 illus-

trates the differences in two hand gestures (pataaka and araala) performed in Kathak and Bharatanatyam.

The purple circles highlight differences in thumb positioning. The Kathak gesture has lower tension in the

thumb, lightly touching the side of the hand, while the Bharatanatyam gesture has higher tension in the

thumb, held forcefully into the hand.

The green circles emphasize differences in muscular tension in the entire hand. In Bharatanatyam, this

tension is created by arching the tightly squeezed fingers and can be observed through veins standing out

prominently in the wrist. The Kathak gesture has fingers placed flatter, not pressed together as tightly,

and lower tension in the wrist. These subtle differences in hand gestures exemplify the stylistic differences

between Bharatanatyam and Kathak.
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Figure 5.3: The Kathak(k) and Bharatanatyam(b) hand gestures pataaka(1) and araala(2) compared. The
purple circles call attention to the thumb’s positioning, and the green circles emphasize the increased tension
in the wrist, spreading to the entire hand.

5.3 Verticality and other possible measures

After observing the similarities and differences in the two dance styles, we now attempt to apply verticality,

discussed in previous chapters., to quantify these differences. Figure 5.1 (right) illustrates a Kathak and

Bharatanatyam dancer in a similar position (mirrored). The verticality vector (green), connecting the lower

neck and pelvis, indicates the spine leaning away from the z-axis (dotted black). The roughly corresponding

angles formed by the two verticality vectors demonstrates the movements’ similarity. However, nuances in

hand gestures, limb positions, and tension cannot not captured by this measure alone.

We will propose a variety of measures to detect differences in the two dance styles not evident through

verticality alone. For example, we can extend the mathematical process used to compute verticality to

construct other vectors on the motion capture skeleton, such as those used in Chapter 4.3. A measure of

angles made by arms and legs with the vertical may yield a richer representation of motion.

An alternative method may look at specific angles in the data set. These could include the angles between

the hand and wrist, forearm and upper arm, and lower and upper leg. For example, in Figure 5.1, the elbow

angle varies in the two positions because Kathak dancers tend to keep a greater bend in the elbow, to

preserve the softness of the movement.

Tracking differences in tension, especially in hand gestures, may be difficult to measure. A hand motion

capture system, integrated with a full body motion capture system, may be capable of tracking small differ-

ences in the hand positions between styles. However, these differences in tension may not be distinguishable

through motion capture alone, requiring the use of other types of sensors.
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5.4 Summary of Dance Styles Discussion

We have presented a set of observations comparing similar movements executed with different movement

features (e.g. hand gestures and muscular tension) in two Indian classical dance styles. We have described

limitations in a motion capture metric, verticality, to discriminate between the two styles. We have also

discussed other potential measures to quantify differences in similar movements for this comparison.

Examining static positions in the two dance styles yields useful information. However, analyzing motion

data sets from both dance styles where dancers perform similar movements will provide a richer quantitative

comparison of Bharatanatyam and Kathak. This comparative framework can generate better motion repre-

sentations valuable in a variety of applications. Verticality was useful within the context of Western dance

but can break down when differentiating between two Indian dance styles. Similarly, in-home robots may

need additional metrics for sensing motion in users of different cultures or environments. An understanding

of these differences can allow us to develop socially adaptive robot motion that adjusts to varying cultural

contexts.
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Chapter 6

Conclusion

In this thesis, we first explored dyadic interactions through motion capture data to identify the importance

of the leaning of spine, verticality, to the interaction between two individuals performing a task together.

This investigation was inspired by the movement perspective of a dancer interested in the characteristics

of partnering. We then introduced a four degree of freedom model of human motion using motion capture

data to use verticality to command two low-DOF simulated robots. We ran an initial experiment testing the

viability of verticality for imitation of human motion when compared to artificially generated motion on the

two low-DOF simulated robots. We saw that users preferred verticality for the 4-DOF robot, Broombot, at

least for the short motion capture clips from a trained ballet dancer.

We then developed and ran a study investigating the change in human perceptions of the robot imitation

when we change the mapping between human and robot motion and when we change the human’s motion.

We found that users still preferred motion capture motion over artificially generated motion. We also found

that users did not always pick the mapping to robot motion that corresponded to the area of the body we

observed high deflections in the human. Lastly, we identified a sub-group of respondents who were very loyal

to the verticality mapping and were more engaged in the short answer component of the survey, which may

indicate that they were more attentive to the survey overall. This human preference analysis can lead to a

more extensive model for human preferences for robot imitation, allowing us to determine combinations of

factors in the imitation that humans are likely to prefer.

Although verticality was shown to be useful for imitation when using the human motion of a trained ballet

dancer, verticality may not capture the nuances of other styles of movement. We explored the differences

between two styles of Indian classical dance, Kathak and Bharatanatyam, to identify key aspects of the

motion that were not explained by verticality alone. This analysis can form the foundation of developing

varying motion for robots in various social and cultural situations.
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6.1 In-Progress and Future Work

We are currently developing a hardware implementation of several of the concepts we have discussed in this

thesis, beginning with a framework connecting motion capture to simulated robot motion in real-time. Using

the built-in data streaming functionality in Motive, the motion capture software for the Optitrack system,

we are building the architecture to stream the data directly into ROS. This will allow us to simulate the

Rollbot and Broombot moving in real-time to a human in a motion capture suit, using the ROS software

RViz. We can also extend this framework to physical hardware, such as an iRobot Create for the Rollbot

and a 2-DOF inverted pendulum mounted on an iRobot Create for the Broombot. We can then develop

experiments testing how the humans being imitated by the robots view various imitation mappings and

move in response to the robots’ motion.

6.1.1 Menagerie Performance

We are also currently designing a performance called Menagerie that showcases the tools developed in this

thesis. A possible schematic of the performance space is shown in Figure 6.1. The performance includes a

series of exhibits reminiscent of museum exhibits. Each exhibit will include a video with a combination of

simulated robots, actual robots, humans, and motion capture skeleton. Using the code from Appendix A

and the hardware framework describe in this section, a large variety of videos can be generated. Next to

each video playing, there will be a card with the title of each piece and a description of the piece.

Figure 6.1: A possible schematic for the Menagerie performance space. The performance could include
various museum-type exhibits that each have videos with human movers and simulated and/or actual robots.
It could also include a live performance with a some subset of a human moving in front of a projector screen
with simulated robots, a moving iRobot Create, and a moving inverted pendulum robot.
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There is also a live performance aspect of this piece. After visitors to the piece explore the exhibits, a

human can move to music in front of a projector screen that is back-projected as in Figure 6.1. Various

versions of the piece could include some subset of simulated robots projected onto the screen, an iRobot

Create, and an inverted pendulum robot. The performance will be designed to showcase the movements of

the robots and affect how visitors view the robots’ motion. The style of the mover’s movements, the types

of robots used, and how the movements interact with the chosen music will all affect the audience’s view

of the piece. Similar to previous work done in our lab, such as in [67, 68], surveys can investigate how the

viewers’ perceptions of the robots change after the performance.

6.2 Publications

The work done in this thesis produced the following publications.

• R. Kaushik, I. Vidrin, and A. LaViers, “Quantifying Coordination in Human Dyads via a Measure of

Verticality,” in Proceedings of the 5th International Conference on Movement and Computing - MOCO

’18, Genoa, Italy, 2018, pp. 1–8.

• R. Kaushik and A. LaViers, “Imitating Human Movement Using a Measure of Verticality to Animate

Low Degree-of-Freedom Non-humanoid Virtual Characters,” in Social Robotics, Cham, 2018, vol.

11357, pp. 588–598.

• R. Kaushik and A. LaViers, “Using verticality to classify motion: analysis of two Indian classical dance

styles,” Symposium on “Movement that Shapes Behaviour”. at Artificial Intelligence and Simulation

of Behaviour (AISB) 2019. England. (to appear)

• R. Kaushik and A. LaViers, “Imitation of Human Motion by Low Degree-of-Freedom Simulated Robots

and Human Preference for Mappings Driven by Spinal, Arm, and Leg Activity,” International Journal

of Social Robotics. (under review)
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Appendix A

Dancing Robot Menagerie

This document will explain step-by-step the process for obtaining data from the OptiTrack system and using

the provided python code library to generate a dancing robot menagerie. The type of robot available for

plotting is the Broombot

A.1 Record Data using the OptiTrack System in RAD Lab

A.1.1 Setting up the computer

1. The computer you will be using is the one by the wall of the lab

2. Make sure the Netgear box power cord is plugged in

3. Make sure the Ethernet cord from the Netgear box is plugged into the computer

4. Make sure the the USB License Key is plugged into the computer. The USB stick will be in the Motion

Capture Box inside a yellow envelope

5. Make sure the USB cord from the Netgear is plugged into the computer

6. Open the Motive Software on the computer

A.1.2 Calibration

1. Open File -> New Project in Motive

2. Set the working directory to a folder named with your name and the date

3. Open Layout -> Calibrate

4. Mask visible markers for each camera after you have cleared everything from the space

5. Click Start Wanding

6. Take the motion capture wand and wave it around the entire capture space (don’t forget to go high

and low!) until you have about 2000 points for each camera

7. Click Calculate

8. Click Apply
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A.1.3 Setting the Ground Plane

1. Make sure the wand is away from the space

2. Set the L-shaped piece in the center of the capture space preferably with the edges lined up with the

tiles on the floor. The long side is z and the short side is x

3. Set the vertical offset to 19mm

4. Click Calibrate

5. Save the calibration resutls in the working directory

A.1.4 Creating the Skeleton

1. Open the skeleton pane to view the markerset. Select the Baseline Markerset.

2. Have the person who will be performing the motion put on the motion capture suit.

3. Place the markesr on the person in the same locations as the image in Motive. Make sure you rotate

the skeleton to ensure you have all the markers.

4. Have the person stand in the T-position in the center of the space and click Create

5. Save the skeleton data

A.1.5 Recording a Take

1. Click the record button at the bottom of the screen to record.

2. Press the same button when done recording.

3. You can record as many takes as you like. They will appear on the left side labelled with a time-code.

A.1.6 Exporting the Data

1. File -> Export

2. Export the CSV file format with global coordinates and rotation set to XYZ. You do not need the

Rigid Bodies and Rigid Body Markers selected, but make sure Markers is selected.

3. Export as a BVH file

4. Make sure you save all files (calibration, skeleton, take, csv, etc.) to your working directory before

closing Motive

5. Unplug the Netgear power cord after you are done using the motion capture system and make sure all

markers, suits, etc. are properly put away in the motion capture equipment box. Also make sure the

USB key is put back in the yellow envelope which goes inside the motion capture equipment box.
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A.2 Generating the Simulation

A.2.1 Requirements

1. Python 3 https://www.python.org/downloads/

2. Pip https://pypi.org/project/pip/

• This should work python -m pip install -U pip

3. Numpy and Matplotlib https://scipy.org/install.html

• This should work python -m pip install --user numpy matplotlib

4. FFMPEG to save the video

• How to for Windows: http://adaptivesamples.com/how-to-install-ffmpeg-on-windows/

• FFMPEG site: https://ffmpeg.zeranoe.com/builds/

5. An environment to run python (Sublime https://www.sublimetext.com/3 is nice)

A.2.2 Motion Capture Data Computations

(Only need to complete once per csv file if you are not adding any more vectors to compute!)

1. human data import.py is the file you should run. This calls the file analyze human data.py.

2. Modify the filename field to include the csv file from Motive, which you should move to the same

folder as the repository.

3. Modify the data filename field to whatever you want the npz file containing the computed motion

capture data to be called.

4. The dim transfer field adjusts the xyz coordinates to match the convention of the z-direction pointing

up.

5. The next section includes a list of vectors with the start and end points as the first and second elements.

If you wish to add another vector to compute, add it here and make sure you add it to the end of

vectors

6. You should be able to run human data import.py now. It will take a little while and will print out a

message when completed. The data will be saved in a .npz file in the same directory.

A.2.3 Video Generation

1. main.py is the file you want to run.

2. The options section contains the vectors from human data import.py and the paths to connect when

plotting the human skeleton
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3. The Variables to Modify section contains the options you will modify for the basic use case:

• The positions can be renamed and added to as necessary.

• Video Options

– video filename is the name of the .mp4 video you want to create

– save type should be animate if you want to just view the animation or video if you want

to save a video

– animation speed contains the fraction of the total points you want to use for your step size

as you are animating the data. Default is 0.03.

– img flag is True if you want to save each frame as an image

• Mover Options. The format for each mover type is:

– Human: {’type’: ’human’, ’pos’: mid pos, ’paths’: paths,

– . . . ’section’: range(15000,17000), ’filename’: ’mocapdata01.npz’ }

– Broombot: {’type’: ’broombot’, ’pos’: right pos, ’vector’: verticality vec,

– . . . ’section’: range(15000,17000), ’filename’: ’mocapdata01.npz’,. . .

– ’radius’: 0.25, ’height’: 0.5, ’n’: 10}

– Rollbot: {’type’: ’rollbot’, ’pos’: mid pos, ’vector’: random periodic,

– . . . ’section’: range(0,1), ’filename’: ’mocapdata01.npz’, ’radius’: 0.25,

– . . . ’height’: 0.2, ’stretch’: 1.5}

– Make sure all movers you want to plot are put into the list mover opt

– The pos field should contain one the positions from above.

– The vector field should contain one of the vectors from above

– The section field should contain a range of indices you want to plot. Each mover should

have a the same length list here

– The filename field should contain the npz file name saved in the same directory

– The remaining fields modify the appearance of each mover.

4. Additional variables included:

• video fps is the frames per second of the video. 120fps is what Motive uses

• elevation and azimuth are the perspective of the video in degrees. 15 and -180 are recommended

• plane start, plane end, and height max control the ground plane and z-axis limits. -5, 5, and

5 are recommended

• color key must have at least 2 elements and contains the colors scheme for the movers
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A.2.4 Running the Simulation

Simply run the file main.py to create the simulation
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Appendix B

Demographic Information for Human
Preference Analysis of Imitation of
Low-DOF Simulated Robots

Table B.1: Age of Participants

18-24 37

25-34 132

35-44 16

45-54 7

55-64 4

Table B.2: Gender of Participants

Male 103

Female 91

Other 0

(Blank) 2

Table B.3: Native Language of Participants

Arabic 2

Bengali 0

Chinese 1

English 149

Hindi 7

Japanese 0

Portuguese 0

Punjabi 0

Russian 0

Spanish 1

Other 39
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Table B.4: Years Speaking English of Participants

Less than 1 year 0

1-2 years 1

2-5 years 3

5-10 years 18

10+ 23

Native Language English 151

Table B.5: Highest Level of Education Completed of Participants

High school graduate

(high school diploma

or equivalent)

7

Some college but no degree 20

Associate degree in college

(2-year)
7

Bachelor’s degree in college

(4-year)
119

Master’s degree 38

Professional degree (JD, MD) 2

Doctoral degree 2

(Blank) 1

Table B.6: Experience Level of Participants in Various Movement Activities

None
0-2

years
2-4

years
More than

4 years
Yoga 62 63 51 20

Running 59 51 46 40
Triathlon 98 39 30 29

Dance 70 47 62 17
Martial Arts 79 54 40 23

Sports 54 49 45 48
Swimming 84 42 41 29
Walking/

Hiking
48 50 55 43

Weight
Lifting

47 41 51 57

Other 61 51 52 32
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