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ABSTRACT

This thesis presents a new type of cloud service, called deep intelligence as a service, that

is expected to become increasingly common in the near future to support emerging “smart”

embedded applications. This work offers a real-time scheduling model motivated by the

special needs of embedded applications that use this service. A simple run-time scheduler is

proposed for the server and prove an approximation bound in terms of application-perceived

service utility. The service is implemented on representative device hardware and tested

with a machine vision application illustrating the advantages of our scheme. The work is

motivated by the proliferation of increasingly ubiquitous but resource-constrained embedded

devices (often referred to as the Internet of Things – IoT – devices) and the growing desire

to endow them with advanced interaction capabilities, such as voice recognition or machine

vision. The trend suggests that machine intelligence will be increasingly offloaded to cloud

or edge services that will offer advanced capabilities to the otherwise simple devices. New

services will feature farms of complex trainable (or pre-trained) classifiers that client-side

applications can send data to in order to gain certain types of advanced functionality, such

as face recognition, voice command recognition, gesture recognition, or other. These new

services will revolutionize human interaction with their physical environment, but may im-

pose interesting real-time scheduling challenges in order to maintain responsiveness while

maximizing service quality. This work includes challenges, designs for an efficient real-time

scheduling algorithm for the new machine intelligence service, and evaluation on an imple-

mented prototype.
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CHAPTER 1: PRELIMINARY

1.1 REAL TIME SYSTEMS

The correctness of a real time system depends on not only the functional results of the

algorithm, but also the timing as well. Compared with traditional computer systems, which

mainly focus on throughput, fairness and mean response time, designing a real time system

is inherently more difficult because of the timing constraints.

A plethora of real time systems or applications in have emerged real life, ranging from mul-

timedia contents that need to display frame by frame at particular frequency, to automated

driving systems that need to act quickly with various environmental signals to guarantee

safety. Based on the consequence of deadline violation, real-time systems may be further

divided into two categories:

• Hard Real Time Systems: They have strict requirements on the timing of the tasks.

Violation of deadline may result in system failures.

• Soft Real Time Systems: The timing requirements of soft real time system are relaxed.

Violation of deadline may cause degradation of quality of results, but will not cause

system failures.

The difficulty of designing a real time system lies in the interplay of multiple real time tasks

that have different timing constraints. How much computation time should be allocated to

a specific resource and when should the system schedule the task? If the system can not

satisfy all the timing constraints, can some of the tasks yield their quota to other more

serious tasks?

1.2 REAL TIME SCHEDULING ALGORITHMS

Fortunately, researchers have proposed and implemented various real time scheduling al-

gorithms to address the problem. This section contains a brief survey for some classic

scheduling algorithms, which forms the basis for evaluation and comparison. Before present-

ing a specific algorithm, abstractions for studying real time systems need to be introduced.

Real time tasks are typically abstracted as periodic tasks with following parameters:

• Computation Time C: Maximum time needed to process its workload.

• Period P: Time interval between consecutive activations of the task. For a simplistic

model, the deadline of a task can be calculated as the arrival time plus the period.
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Therefore, the utilization rate for a given task i can be written as:

ηi =
Ci

Pi

(1.1)

1.2.1 First In First Out

First in first out (FIFO) scheduling algorithm is self-explanatory: each task will run to

completion once it is fetched from some task queues. It can be best modeled by a queue

data structure. Strictly speaking, this algorithm is not a real time algorithm as it does not

consider the deadline of a task, and the decision is made purely based on when (start time)

does the task arrive at the system.

1.2.2 Round Robin

Round robin scheduling assigns time slice to each round of a task, and each task is sched-

uled to run in order. Each task either consumes its time slice or yields to other tasks, then

goes back to task queue and wait for next round. This scheduling algorithm forms the

basis for modern operating systems scheduling algorithm. For example, Linux kernel imple-

ments completely fair queuing, which is a variant of round robin by categorizing processes

into different priority levels. Within each level, the kernel performs round robin scheduling.

This algorithm suffers from the same problem as FIFO algorithm, which does not take the

deadline of tasks into account.

1.2.3 Earliest Deadline First

With earliest deadline first (EDF) scheduler, priority of tasks are based on the absolute

deadlines. Whichever task that has the nearest deadline will be assigned the highest priority.

To check whether a stream of real time tasks can be scheduled under an EDF scheduler, it

only needs to guarantee the sum of the utilization rate for all the tasks is less than 1:

∑
i

Ci

Pi

< 1 (1.2)

2



Figure 1.1: In illustration of Rate Monotonic Scheduling, with P(A) <P(B)

1.2.4 Rate Monotonic

Under rate monotonic scheduler (RMS), priority of tasks are based on the difference be-

tween deadline and start time, namely the period P of the task. Whichever task that

possesses the least period will be assigned the highest priority. Note that a task with nearer

deadline might be assigned a lower priority simply because its period is large. To guarantee

tasks are schedulable under RMS, the following inequality needs to be satisfied [1]:

∑
i

Ci

Pi

< ln2 (1.3)

Rate monotonic scheduling is guaranteed to be optimal. If tasks cannot be scheduled

with rate monotonic scheduler, the tasks cannot be properly scheduled with any other static

priority schedulers.

1.3 DEEP NEURAL NETWORKS

Deep learning is a branch under machine learning methods. Deep learning can be ar-

chitected as deep neural networks (DNN), convolutional neural networks (CNN), recurrent

neural networks (RNN), etc. Deep neural networks are constructed based on a layer by layer

data structure, which itself is constructed from multiple conceptual building blocks called

neurons. A DNN contains at least an input layer and an output layer, with some hidden

layers between them. In essence, a layer calculates a thresholded weighted sum of input set,

and its output is fed to next layer or treated as final answer. The weights in each layer are

learned in an offline training phase with some training data.
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(a) Structure of a neuron

(b) Layer structure of a Deep Neural Network

Figure 1.2: Overview of Deep Neural Network

1.4 REAL TIME SCHEDULERS IN LINUX

Since the body of this work is based on Linux operating systems (OS), a short introduction

to Linux scheduler is necessary to complete this work. Linux is a general purpose operating

system (GPOS), whereas a real time operating system (RTOS) naturally serves real time

tasks and cope with their deadlines. A normal process in Linux uses non-real time scheduling

policy. An administrator of a Linux OS can choose to use a real time scheduling policy for a

process when deemed necessary. Therefore, Linux distros with real time scheduling policies

can be used as a platform for evaluating real time algorithms.

A Linux OS contains the following scheduling policies:

1.4.1 SCHED IDLE

SCHED IDLE policy is intended for processes that has the lowest priority. Each processor

possesses an idle task created by Linux OS, which is scheduled on the processor when no

other processes can be run. The idle process puts the processor to sleep to save energy. The

idle task for each processor is scheduled under SCHED IDLE policy.

1.4.2 SCHED BATCH

SCHED BATCH policy is similar to SCHED NORMAL (explained below). However,

SCHED BATCH is assumed to be assigned to CPU computation bound processes, and thus

will be given a slight penalty when making scheduling decisions. It inherently has lower
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priority than SCHED NORMAL policy.

1.4.3 SCHED NORMAL

SCHED NORMAL is the de-facto scheduling policy for almost all the processes in a Linux

system. It is a non-real time scheduling policy. This scheudling policy is used when the

processes do not require special real time mechanisms.

1.4.4 SCHED FIFO

SCHED FIFO is one of the real time scheduling policies implemented in Linux kernel. It

is an implementation of FIFO algorithm. When a SCHED FIFO task becomes runnable,

it will preempt other SCHED NORMAL, SCHED BATCH, SCHED IDLE processes in the

system. A SCHED FIFO task will only be preempted when either it is blocked by some

system services (eg. system calls), it is preempted by a higher priority process, or it explicitly

yields to other processes.

1.4.5 SCHED RR

SCHED RR is an enhancement to SCHED FIFO scheduling policy with an extra time

quota allocated to each process. It is an implementation of round robin algorithm in Linux

kernel. However, the time slices for each SCHED RR task is not controlled by the adminis-

trator, and modifying the mechanism for calculating time quantum will require changes to

kernel. The framework presented in this work does not use this scheduling policy due to this

reason.

1.4.6 SCHED DEADLINE

SCHED DEADLINE is provided as another real time scheduling policy since Linux 3.14.

Its implementation combines earliest deadline first algorithm with constant bandwidth server

(CBS) [2]. Since Linux 4.13, SCHED DEADLINE uses Greedy Reclamation of Unused

Bandwidth (GRUB) algorithm instead of CBS [3]. When schedule a process with this policy,

the administrator needs to provide the system call with the period as well as worst case

execution time (WCET). Internally the kernel will compute the utilization rate of the process,

as well as the total utilization rate for all the processes running with SCHED DEADLINE.

If the total utilization rate exceeds the bandwidth provided by the system, the system call
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will fail and the process will not be scheduled under SCHED DEADLINE policy. Due to

this constraint, the framework presented by this work does not use this scheduling class for

implementation.
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CHAPTER 2: INTRODUCTION

2.1 CHALLENGES

This work envisions a novel type of IoT services motivated by the proliferation of in-

ternetworked embedded sensing devices (the “things”) and the desire to endow them with

capabilities to perform timely and intelligent interactions with their environment. Examples

include speech recognition, vision, and gesture understanding. The disparity between the

resource-constrained nature of such devices and the computational needs of the aforemen-

tioned interactions suggest that data processing will be increasingly offloaded to external

servers. Today, precursors of such offloading include speech recognition for home controllers

(e.g., Amazon Echo) and language translation for mobile phones, both done in the cloud.

Soft time-constraints arise from the need to ensure an appropriate interaction response time.

Future services will conceivably support multiple classes of service that differ in their server-

side latency guarantees. Note that, with the increasing popularity of edge computing , the

external server will likely move closer to the client. A business, such as a shopping mall, for

example, might host it’s own edge servers to satisfy the needs of its local embedded devices

(such as all the surveillance cameras). Hence, in the rest of this work when referring to

“cloud”, it means either cloud or edge.

Cloud services will offer farms of machine learning algorithms, such as classifiers or pre-

dictors. For simplicity, they are referred as classifiers . These algorithms can be trained with

users’ data (or may come pre-trained) to do a myriad of common recognition tasks based

on visual inputs, speech, or gestures. Such services will endow mobile and embedded de-

vices with human-like capabilities, thereby revolutionizing our interactions with the physical

world. Recently, deep learning has emerged as the state-of-the-art computational intelligence

solution for a large spectrum of IoT applications [4]. Besides breakthroughs in processing im-

ages and speech using deep learning techniques [5,6], specific neural network structures have

been designed to fuse multiple sensing modularities and extract temporal relationships [7].

The increasing number of studies on applying deep learning in the area of cyber-physical

systems (CPS) and IoT [7–10], motivate researchers to consider a deep-learning based back-

end service; hence, the term deep intelligence (as a service). Since timeliness of interactions

is important and may be related to quality-of-service agreements of different classes of users,

a natural step from a real-time perspective is to investigate the challenges that the design

of such services imposes on the underlying scheduler.

Consider a service that offers classifiers (or other machine learning algorithms) trained

using deep learning solutions. Such algorithms have a layered structure. External inputs,
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such as images or sound clips, are applied to the first layer. The output of one layer is then

the input to the next. The total number of layers is called neural network depth. More

complex inputs need more layers, making the needed depth data-dependent . For example, in

an image recognition task, simple images (e.g., a picture of an empty blue sky) might need

a smaller number of layers to yield a high quality classification result compared to complex

cluttered images. Hence, the scheduled depth of neural network processing becomes another

scheduling parameter (besides end-to-end deadlines derived from desired interaction latency

for the given user class). Since task complexity is data dependent, this parameter is not

known a priori , making for an interesting problem.

A related challenge lies in the lack of well-defined output utility metrics and utility func-

tions to serve as a foundation for deciding on the best neural network depth. Indeed,

quantification of utility has always been a challenge in most research aiming at optimizing

application-perceived quality metrics. In contrast to assumptions made in much prior work

(e.g., on imprecise computations), our utility curve (that offers a measure of output quality

versus computation time) is in general not available ahead of time, because it depends on

individual input (e.g., image) complexity.

2.2 OVERVIEW

In this work, the utility metric challenge is solved by proposing confidence in results as

the utility measure. Confidence in results is independent of what the results are used for,

making it a widely applicable metric across a variety of machine learning algorithms and

applications. The utility function can then be computed using solutions proposed in recent

literature that estimate probabilistic confidence in output results of deep learning systems

(e.g., confidence in correctness of classifer output) [9]. As shown in this work, the computed

confidence can be updated dynamically, as partial processing is done on inputs. Hence, better

estimates of “utility” are computed over time as processing occurs, leading to refinement in

utility-maximizing schedules. A bound on the efficacy of the resulting schedule at global

utility maximization subject to real-time deadline constraints is then computed.

To this end, this work proposes RTDeepIoT, the first real-time scheduling pipeline for

deep neural networks. RTDeepIoT consists of three main modules, each of which separates

and solves one major challenge.

• Confidence calibration: calibrates estimates of confidence in neural network outputs,

thus producing an unbiased estimator of output quality.

• Dynamic confidence curve update: dynamically refines utility curves to help estimate
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needed neural network depth.

• Scheduler: determines the depth and sequence of neural network executions that offers

an approximation bound on global utility maximization.

The uncertainty calibration module lays the foundation for the whole pipeline by pro-

ducing an unbiased output utility estimator. The dynamic confidence curve update module

refines confidence in outputs progressively, given input data and results of partial process-

ing. The scheduling algorithm determines the order and depth of neural network executions

based on the updated confidence curves and task deadlines using submodular maximization.

Furthermore, this work includes design for an efficient approximation of the scheduling algo-

rithm to reduce the scheduling overhead. It also introduces implementation of a user space

scheduling framework to verify the effectiveness of RTDeepIoT.

2.3 THESIS ORGANIZATION

The rest of this thesis is organized as follows. chapter 3 introduces the technical details

of scheduling model with performance analysis. chapter 3 describes the deep intelligence as

a service with real-time scheduling. System implementation is described in chapter 4. The

evaluation is presented in chapter 5. Related work is presented in chapter 6 and conclude

in chapter 7.
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CHAPTER 3: MODEL

3.1 ALGORITHMS

This section introduces RTDeepIoT, a real-time scheduling model motivated by the special

needs of “smart” embedded/IoT applications that derive their intelligent behavior from

offloading measurements to servers that process them using deep neural networks. The

model in this section is relatively abstract, and the technical details of applying this model

in practice to an actual service prototype is deferred to Section 3.2.

A few complexities are ignored first, such as the manner in which accurate utility values

are estimated. Those will be discussed later, when the abstract model is mapped to the

actual design of our service.

The discussion below presents the scheduling model on the server that must run deep

neural networks on request from client devices when data from these devices arrives at the

server. It is assumed that communication with the server is not the bottleneck. Later,

the evaluation shows that this is the case (due to the comparatively heavier computational

demand of deep neural network processing). Hence, the following part models server-side

execution only. Let program Ti refer to a program with a sequence of computation stages

{T (l)
i } for l = 1, · · · , Li, and a relative deadline, di. The set T (1:l)

i is defined as the set of

stages {T (1)
i , · · · , T (l)

i }. The utility for running all stages in T (1:l)
i by the deadline is denoted

by U(T (1:l)
i ) = u

(l)
i . No utility is derived from the execution of stages that miss the deadline.

When executing a stage (typically a layer or more in the neural network), computations

include matrix multiplications and element-wise operations. Matrices and vectors in neural

networks are usually large enough that the available parallelism exceeds the number of un-

derlying cores by a significant multiplicative factor. Therefore, without loss of schedulability,

a stage can be deployed on all cores concurrently, leading to a model where the same stages

run in parallel on all cores. Thus, the system is scheduled as a (replicated) uniprocessor.

As discussed later, our system uses EDF as the underlying scheduling algorithm, which is

optimal for the uniprocessor scheduling model.

Diminishing-return utility curves are considered, a widely encountered case in data pro-

cessing systems. Recent studies on deep learning have shown that the improvement in result

accuracy is indeed diminishing in the depth of the neural network [5]. The formal definition

of diminishing-return utility is as follows:

Definition 3.1. For a utility curve Ui(·), define the differential utility as ∆u
(l)
i = Ui(T (1:l)

i )−
Ui(T (1:l−1)

i ), where Ui(T (1:0)
i ) = 0. The property of diminishing returns is that ∆u

(l1)
i <=
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∆u
(l2)
i , if l1 > l2.

Algorithm 3.1 The greedy submodular maximization algorithm

1: Input: T , U(·), ∀i : di; Output: SG
2: SG ← ∅, G ← T
3: while G 6= 0 do
4: v∗ ← arg maxv∈G U(SG ∪ v)− U(SG)
5: G ← G\{v∗}
6: if SG ∪ {v∗} can be scheduled under deadlines {τi} then
7: S ← SG ∪ {v∗}
8: end if
9: end while

10: return SG

In order to ensure the stages of a task are executed in sequence, the set of program stages

are abstracted as a multiset, allowing for multiple instances for each of its elements.

Definition 3.2. For n stage-wise programs, the set of all stages of all programs are denoted

as a multiset T = {TLi
i } with i = 1, · · · , n, where the multiplicity of task stage Ti is Li. The

cardinality of multiset is defined as |T | =
∑n

i=1 Li. In addition, set {T l
i } denotes T (1:l)

i .

The element Ti in multiset does not explicitly refer to executing a specific computation stage,

but to the chance of executing one computation stage in the i-th program with a pre-defined

sequence order. If two Ti are selected from the multiset, the i-th program will be scheduled

to run with the depth of 2.

The goal of the scheduler is to choose the best depth, hi, for each program Ti, such that

(i) the resulting system is schedulable under the underlying operating system’s scheduling

policy (the proposed system uses EDF), and (ii) the overall utility (given by the sum of∑n
i=1 u

(hi)
i ) is maximized. This is akin to a knapsack problem with a additional constraint

that ensures schedulability.

Let us define S to be the multiset of all task stages that are chosen for execution by our

scheduler (i.e., S = {T hi
i }). Let us further denote t

(hi)
i as the time period from the arrival

time of task Ti to the time point when all stages in Ti are completed. the problem can be

formulated as:

max
S⊆T

U(S) =
n∑

i=1

u
(hi)
i

s.t. t
(hi)
i < di

(3.1)

As shown in Definition 1, the utility curve of deep learning execution stages follow the
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diminishing-return property. The overall utility of scheduling set, therefore, diminishes as

more scheduling stages are added. It is expressed more formally as Lemma 1:

Lemma 3.1. The objective set function U(S) is monotone submodular, i.e., for every S ⊆
W ⊆ T and every v ∈ T \W, it satisfies that U(S ∪ v) − U(S) ≥ U(W ∪ v) − U(W); and

for every S ⊆ W, it satisfies U(S) ≤ U(W).

The submodularity of objective set function motivates us to solve the scheduling prob-

lem (3.1) with the submodular maximization. In many submodular maximization problems

settings, the simple greedy algorithm can be implemented in an efficient way, while the opti-

mal solution is proven to be NP-Hard. Moreover, the submodularity of objective set function

can often provide a good performance guarantee depending on the structure of feasible set.

Thus, in this subsection, a greedy algorithm for our scheduling problem (3.1) is designed and

then analyze its performance accordingly.

The greedy algorithm for our scheduling problem is shown in Algorithm 3.1. The algorithm

starts from an empty set SG. In each step, the algorithm picks a computation stage v∗ with

the maximum differential utility (where utility in our implementation, as shown later, is the

estimated confidence in results), and deletes v∗ from the candidate set G. The later part

includes verification for whether the new SG set is still feasible and satisfying the deadline

constraints, when the picked execution stage v∗ is added to SG. The verification can be

done easily with the EDF algorithm. If v∗ passes the verification, it is added to SG (Line

4-6). The algorithm keeps the loop until the candidate set G is empty. Thus the system can

schedule SG with the simple EDF algorithm.

When the objective set function is monotone submodular, the greedy algorithm can often

ensure a guaranteed performance when the set of feasible solutions has a nice structure.

p-independence systems [11] are one of these structures:

Definition 3.3. An independence system is a pair (T , I) such that T is a finite set, and

I ⊆ 2T is a collection of subsets of T (called the independent sets) satisfying the following

two properties: (1) ∅ ∈ I and (2) for each S ′ ⊆ S ⊆ T , if S ∈ I then S ′ ∈ I.

Given an independence system (T , I) and a set S ⊆ T , it is assumed that B(S) denotes

the set of maximal independent sets in S. It is an independent set that is not a subset

of any other independent set. it can be formally as B(S) = {S ′ ⊆ S : S ′ ∈ I, and @e ∈
S\S ′ such that S ′ ∪ {e} ∈ I}.

Definition 3.4. An independence system (T , I) is called a p-independence system if for all

S ⊆ I,
maxS′∈B(S) |S ′|
minS′′∈B(S) |S ′′|

≤ p, (3.2)
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where |S| denotes the cardinality of set S. In addition, 1-independence system is also called

matroid.

Now it is easily obtained that the feasible solutions of our scheduling problem (3.1) form

an independence system. Firstly, the empty set is schedulable, which is a feasible solution

to (3.1). Secondly, for a feasible set S, all its subsets S ′ ⊆ S are also feasible to the problem.

Therefore, according to Definition 2, the feasible sets of our scheduling problem (3.1) form

an independence system.

Here, an illustrative example for the previous two definitions is provided. Assume that

a system has two programs T1 = {T (1)
1 } and T2 = {T (1)

2 , T
(2)
2 }. Both of them arrive at

the same time with the same deadline, d1 = d2 = 5s. The execution time of the stage in

T1 is 4s, and the execution time of each stage in T2 is 2s. In this case, T = {T1, T2, T2},
I = {∅, {T1}, {T2}, {T2, T2}}, maxS′∈B(S) = {T2, T2}, and minS′∈B(S) = {T1}. Therefore, in

this case, (T , I) is a 2-independence system according to Definition 4.

After identifying the structure of feasible sets, a general guaranteed performance of our

greedy scheduling algorithm 3.1 can be provided.

Theorem 3.1. The optimal solution of the scheduling problem (3.1) can be approximated by

the greedy algorithm, Algorithm 3.1, with a factor of 1/(1 + p) in the worst case, when the

feasible sets form a p-independence system, i.e., U(SG) ≥ maxS⊆T U(S)/(1 + p).

The above result assumes that the utility is known excatly. In our system, utility is

represented by confidence in results. Note that, due to the fact that stages must be executed

in order, at any point in time, one only needs to estimate utility of executing the single next

stage. In other words, one needs to estimate confindence in results of a task if one more layer

of its neural network is executed. As shown in the next section, this problem is solvable,

but only approximately. Assume that the system has an α-approximate oracle for the (next

stage of the) utility curve. Hence, the following applies [11]:

Theorem 3.2. When only an α-approximate oracle for the utility curve is available for α <

1, the optimal solution of the scheduling problem (3.1) can be approximated by Algorithm 3.1,

with a factor of α/(α + p) in the worst case.

The above two theorems provide Algorithm 3.1 a worst-case performance guarantee. The

guarantee depends on p defined in (3.2). In general, p is usually small for the system

that schedules multi-stage deep learning applications. The value is p is decided by the ratio

between the maximum and minimum cardinalities of sets that are just meet the schedulability

condition. In practice, such ratio is small for two reasons. On one hand, the execution time

of different deep learning stages are in the same order of magnitude. On the other hand,
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when scheduling deep intelligence services on high-speed cloud servers, the cardinalities of

sets that are just schedulable are very large. Therefore, the ratio of two large cardinalities

is small or even approximates 1.

It turns out, since the deep intelligence service would typically run the same code (e.g.,

face recognition) but on different inputs, the worst-case execution time of each layer can be

the same across different tasks. Thus, the following assumption holds:

With an addition assumption that the worst-case running times are the same for all ex-

ecutable stages in T = {T (l)
i }, i.e., t(T

(l)
i ) = w, where t(·) denotes the worst-case running

time, the previous two theorems can lead to the a stronger corollary:

Corollary 3.1. With the assumption that worst-case running times are the same for all

executable stages in T , the feasible set of the scheduling problem (3.1) forms a matroid, i.e.,

1-independence system. The optimal solution of (3.1) can be approximated by the greedy al-

gorithm, Algorithm 3.1, with a factor of 1/2 in the worst case, i.e., U(SG) ≥ maxS⊆T U(S)/2.

When only an α-approximate oracle for the utility curve is available for α < 1, the optimal

solution of (3.1) can be approximated by Algorithm 3.1, with a factor of α/(α + 1) in the

worst case.

Algorithm 3.2 The top-k greedy submodular maximization algorithm

1: Input: T , U(·), ∀i : di; Output: SG
2: SG ← ∅, G ← T
3: while |SG| < k do
4: v∗ ← arg maxv∈G U(SG ∪ v)− U(SG)
5: G ← G\{v∗}
6: if SG ∪ {v∗} can be scheduled under deadlines {τi} then
7: S ← SG ∪ {v∗}
8: end if
9: end while

10: return SG

During the scheduling process, due to the data-dependent complexities of deep learning

tasks, the utility curves may have to be updated constantly. Therefore, the old scheduling

sequence is deprecated with by a new sequence through running Algorithm 3.1 with updated

information. This property of constant updating causes some issues. On one hand, the

system utilizes only the beginning part of the scheduling sequence. On the other hand,

constant running the greedy algorithm over the whole candidate set causes a high overhead.

Therefore, Algorithm 3.1 is further approximated by limiting the size of scheduling set. As

shown in Algorithm 3.2, the ending condition of while loop is changed into |SG| < k (Line

2). Therefore, A scheduling set SG with size k can be obtained through Algorithm 3.2, and

then the system can schedule SG with simple EDF algorithm.
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Figure 3.1: The overview of Deep Intelligence as a Service.

3.2 FRAMEWORK ARCHITECTURE

This section includes overview our service architecture, where trained classifiers perform

on-demand processing on client data. For example, an airport might send images from

security cameras across the terminal for processing to detect unattended baggage (and report

it to a human operator). The architecture is shown in Figure 3.1.

As mentioned earlier, neural network processing is separated into multiple layers. These

layers can be grouped into a small number of stages (in general of multiple layers each).

At the end of each stage, a thin softmax function layer can be attached to compute a

classification at selected internal layers. Two challenges ensue:

• Confidence calibration: calibrate the confidence of neural network classification at

intermediate layers.

• Dynamic confidence curve updates: construct a utility curve by dynamically refining

the confidence in outputs over time.

The technical details of these two modules are discussed in the following subsections.
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(b) With the entropy-based calibration.

Figure 3.2: The reliability diagrams of ResNet on CIFAR-10.

3.2.1 Utility Metric: Confidence Calibration

For a classification problem, the output of a neural network classifier is a vector of

probabilities, where the largest probability is called the classification confidence. Ideally,

a well-calibrated classification confidence should be equal to the likelihood of classification

correctness, which is an unbiased estimator of classification accuracy. Unfortunately, most

deep learning systems are not well-calibrated. With the growing capability and advances

in deep learning, although classification accuracy has greatly improved, the classification

confidence is not as accurate [12].

The calibration of confidence can be visually represented by the reliability diagram [13].

As shown in Figure 3.2, the diagram plots expected classification accuracy as a function

of confidence. If the neural network is perfect, then the diagram should plot the identity
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function. Any deviation from a perfect diagonal represents miscalibration.

In order to represent the degree of miscalibration with a scalar that summarizes statistics

of calibration, Expected Calibration Error (ECE) [14] is introduced. First, classification

results are grouped into M bins with equal-width 1/M . Sm is denoted as the set of samples

whose classification confidence falls into the interval ((m− 1)/M,m/M ]. Then, the average

accuracy of Sm can be defined as:

acc(Sm) =
1

|Sm|
∑

Si∈Sm

1(ŷi = yi), (3.3)

where ŷi and yi are the predicted and true label of sample Si. Next, the average confidence

of Sm can be defined as:

conf(Sm) =
1

|Sm|
∑

Si∈Sm

pi, (3.4)

where pi is the classification confidence of sample Si. The ECE metric is defined as the

weighted average of the difference between average accuracy and confidence in M bins.

ECE =
M∑

m=1

|Sm|
m

∣∣∣acc(Sm)− conf(Sm)
∣∣∣. (3.5)

Accurate confidence estimation has drawn growing attention in recent studies [9, 15, 16].

However, existing efforts either focus mainly on regression problems [9, 15, 16] or tend to

underestimate or overestimate the confidence [15,16].

The behaviour of confidence underestimation and overestimation can be described by

the formulation of average accuracy (3.3) and confidence (3.4). S is denoted as the set

of all samples. When acc(S) < conf(S), the neural network tends to underestimate the

classification results. When acc(S) > conf(S), the neural network tends to overestimate.

The target is to make acc(S) ≈ conf(S) and ECE → 0, making the confidence in neural

network results be an unbiased estimator of classification accuracy (i.e., the utility metric).

A straightforward approach is to adjust the average confidence conf(S) to the value of

average accuracy acc(S) with fine-tuning on a validation dataset. A natural metric to control

the classification confidence is entropy, H(pi), where pi is the vector of confidences over all

targeted classes. Therefore, a simple entropy-based regularization method for confidence

calibration with fine-tuning is introduced. The loss function of the fine-tuning process can

be reformulated as:

L = CE(pi,yi) + α ·H(pi), (3.6)

where CE(·, ·) is the cross entropy; yi is label of sample i in one-hot representation; and α is
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the hyper-parameter for the entropy regularization. Tuning the value of α is simple. When

the confidence underestimate the accuracy, it is assumed that α < 0 and vice-versa.

Our confidence calibration method is simple but works well in practice. Detailed evaluation

is shown in Section 5.1.

3.2.2 Utility Curve: Dynamic Confidence Updates

The idea of dynamic confidence updates is to gradually refine confidence during the

execution process. At the beginning, predicted confidence in results is the same for all tasks,

and is based on overall statistics computed from training data. However, as tasks computes

results at intermediate stages, each task is able to update its own confidence in computed

results. It can then update confidence in results of future (subsequent) stages. This is

achieved using regression models that relate computed confidence in results of the executed

stage(s) to predicted confidence in results of future stages.
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Figure 3.3: The illustration of three-stage ResNet.

Specifically, the Gaussian process regression model [17] is chosen. This choice is based

on two reasons. First, Gaussian process is the state-of-the-art regression model. Second,

Gaussian processes produce a Gaussian distribution as the output, from which the system can

easily compute the mean value or desired confidence intervals. The framework presented in

this work simply selects the expected mean value, because RTDeepIoT focuses on maximizing

the classification accuracy.

For a three-stage neural network, as shown in Figure 3.1, three Gaussian process regression

models are trained, p̂
(2)
i = GP1 2(p

(1)
i ), p̂

(3)
i = GP1 3(p

(1)
i ), and p̂

(3)
i = GP2 3(p

(2)
i ), where p

(l)
i

denotes the classification confidence of sample i at neural network stage l. These regression

models are learned from the confidence curves of training data.

However, Gaussian process is notorious for its long inference time, which is unacceptable

for a runtime predictor. Fortunately, the inputs of these gaussian models are bounded, i.e.,

p
(l)
i ∈ [0, 1]. Therefore, these complex Gaussian process regression models can be approxi-

mated with simple piece-wise linear functions with two steps:

1. profiling the Gaussian process regression model with a set of input confidences, {0, 1/M, · · · , 1}.
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2. connecting these profiling points with a piece-wise linear function.

Thus, these computationally efficient piece-wise linear functions can be used during the

runtime for updating the dynamic confidence curve. In practice, a good approximation can

be achieved by choosing M = 10.

Detailed evaluation is shown in Section 5.1.
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CHAPTER 4: IMPLEMENTATION

This work includes implementation of a user space scheduling framework to verify the

effectiveness of RTDeepIoT. Implementing the scheduler in user space solves two key con-

cerns. First, it makes it compatible with popular operating systems, such as Linux, which

facilitates deployment at scale. Second, it enables us to integrate the scheduler with widely

deployed deep learning libraries. Specifically, the system is integrated with TensorFlow [18].

RTDeepIoT Scheduler

Service 1

Service 2

Service 3

Service N

......

Daemon Process

(con�dence, deadline,
                 WCET)sched_setpriority()

Figure 4.1: Structure of scheduling framework implementation.

To implement classifiers for our proof-of-concept prototype, an image recognition service

is chosen based on a state-of-the-art convolutional neural network (CNN) structure; namely,

residual neural networks (ResNet). As shown in Figure 3.3, compared to traditional CNNs,

ResNets add extra shortcut connections between convolutional layers. The whole ResNet is

divided into three stages. Except for the bottom convolutional layer on the left side, each

stage consists of six convolutional layers with three residual shortcut connections. At the

end of each stage, a simple softmax classifier is appended, using the end-of-stage aggregated

features for classification. The whole network is trained on the CIFAR-10 dataset 50000

training images.

Figure 4.1 demonstrates the structure of our framework. The RTDeepIoT scheduler

spawns a pool of worker processes, and each worker process runs an instance of Tesnfor-

Flow and classifies a total of 10000 images from CIFAR-10 dataset. These processes wait

on input images to arrive. Each image represents a task and is submitted to the system

with a deadline by which it is to be classified. The deadline is inherited from the client’s

class of service. When an input image arrives, it is assigned to a process in the pool. The
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process runs the aforementioned deep neural network on the new input. The execution of

the process features an explicit separation into stages. A stage might contain multiple lay-

ers. When finished, each stage will output a tuple in the form (predicted value, confidence).

Predicted value is the classification result from the current stage, specifying the most likely

classification. Confidence describes the likelihood that this classification is correct. For ex-

ample, a picture can be classified as a cat, dog, or cow, with probabilities 0.6, 0.3, and 0.1,

respectively. The classification result is then (“cat”, 0.6). The confidence in classification

will then be sent to our scheduler through a named pipe in Linux. Other parameters that

are given to the scheduler include the deadline from the original image classification request

and the worst case execution time (WCET) of the task, known from previous profiling of

the system.

A daemon process monitors the elapsed time for each classification task. If the elapsed

time for a task exceeds the deadline, the daemon process will send a signal to stop the

current computation. The process is returned to the pool and is made available to handle

new requests. The scheduler and the daemon process run at the highest priority.

The frameworks, worker process programs as well as the deadline notification daemons all

run under SCHED FIFO scheduling class. Since SCHED FIFO has inherent higher priority

than SCHED NORMAL scheduling class, implementing the frameworks with SCHED FIFO

can eliminate interference from other processes managed by the system, and thus evaluat-

ing the framework under almost all hardware resources. Although Linux kernel has throt-

tling feature to guarantee at least 5% computation time to non-real-time scheduling classes

(SCHED NORMAL and other lower priority classes), it is equivalent to running the frame-

work with a less potent hardware. Besides, using SCHED FIFO instead of other real-time

scheduling classes such as SCHED RR and SCHED DEADLINE gives us more flexibility.

The framework is able to emulate more scheduling policies without the constraints imposed

by the kernel by explicitly yield in the worker processes.

Below shows the work-flow for a single classification process:

1. The process picks a classification task. Namely, it gets an image to classify.

2. It notifies the daemon process of its deadline, and is assigned a priority accordingly.

3. When a stage is finished, the process sends the updated confidence value in results of

subsequent stages to the scheduler.

4. The scheduler will update its estimate of utility of future stages and recompute the set

of stages to execute using Algorithm 3.2.
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5. If the process finishes all the stages of the current classification task, it goes back to

the pool and waits for new assignments.

6. If the process cannot finish by the deadline, it will be interrupted by the daemon

process, and forced to return to the pool.

Note that, since our greedy algorithm tends to choose stages with the maximum incremental

utility for future execution, tasks with lower initial classification confidence values tend to

be selected for another execution stage. This has the side-effect of attaining better fairness

as well.
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CHAPTER 5: EVALUATION

To verify the effectiveness of our proposed scheduling algorithm, the scheduler is tested

with several processes running the aforementioned residual neural network. Each process

classifies images from the CIFAR-10 dataset. The dataset consists of 60000 images of 10

classes. Images arrive in a randomly shuffled order. The workstation that runs the scheduler

and the classification processes has 8 Intel i7-4770 CPUs, with 32 GB memory. The evalua-

tion is performed under Ubuntu 16.04 with kernel version 4.13. The residual neural network

is implemented on TensorFlow 1.4.0.

The following subsections evaluates our RTDeepIoT real-time scheduling pipeline from

different perspectives, including classification confidence, scheduler overhead, pipeline bot-

tlenecks, and overall classification accuracy under different workloads.

5.1 CONFIDENCE CALIBRATION & DYNAMIC CONFIDENCE UPDATES

The evaluation of classification confidence includes two parts: confidence calibration and

dynamic confidence updates.

This section includes evaluation for the quality of confidence calibration. The three-stage

ResNet structure shown in Figure 3.3 is trained on the CIFAR-10 dataset with following

calibration method:

1. RTDeepIoT: the entropy-based confidence calibration method introduced in (3.6).

2. RDeepSense: the state-of-the-art confidence calibration method with dropout opera-

tions [9].

3. Uncalibrated: the original neural network without confidence calibration method.

An illustration of reliability diagrams is shown in Figure 3.2. Compared to the uncali-

brated result, the RTDeepIoT method has greatly reduced miscalibration error between the

estimated confidence and actual classification accuracy. A quantitative analysis with the

ECE metric, defined in Equation (3.5), is shown in Table 5.1. RTDeepIoT achieves the

smallest ECE among all three stages, even compared to the state-of-the-art RDeepSense

method. The evaluation results show that our proposed simple entropy-based confidence

calibration method can provide a good estimation of classification accuracy, making it possi-

ble for the RTDeepIoT scheduling pipeline to utilize the calibrated classification confidence

as the utility metric.
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Table 5.1: The ECE of confidence calibration methods with three-stage ResNet on CIFAR-10
dataset .

Uncalibrated RDeepSense RTDeepIoT

Stage 1 0.134 0.058 0.010
Stage 2 0.146 0.046 0.012
Stage 3 0.123 0.054 0.008

Table 5.2: The Mean Absolute Error (MAE) and coefficient of determination (R2) of dynamic
confidence curve prediction for three-stage ResNet on CIFAR-10 dataset .

GP1 2 GP1 3 GP2 3

MAE 0.124 0.108 0.072
R2 0.57 0.43 0.78

Next, the quality of our dynamic confidence updates predicted for three-stage ResNet is

evaluated, which contains three regression models for predicting future-stage classification

confidence values, i.e., p̂
(2)
i = GP1 2(p

(1)
i ), p̂

(3)
i = GP1 3(p

(1)
i ), and p̂

(3)
i = GP2 3(p

(2)
i ). The

evaluation results on Mean Absolute Error (MAE) and coefficient of determination (R2) are

shown in Table 5.2. Overall, the method provides a decent confidence prediction result.

As the number of finished stages increases, the dynamic prediction improves. Although a

certain degree of error remains, it can still provide the scheduling algorithm good estimates

of the relative confidence gains obtained among different deep learning services. The fol-

lowing sections shows that the dynamic confidence update method provides better overall

classification accuracy than simple heuristics.

5.2 SCHEDULER OVERHEAD

This subsection evaluates the overhead of our framework. Since the framework contains a

user space scheduler and a daemon process running at highest priority, the framework needs

to make sure these two modules do not impose significant overhead. Comparison of the total

time needed to finish a specific number of worker processes with and without our scheduler

can be used to derive the runtime consumption. The tasks are a stream of images to be

classified with variable deadlines. Each experiment runs twice and the data point is derived

by taking the average.

Much to our surprise, running RTDeepIoT would cut down the total time needed to

finish the classification. As shown in Table 5.3, RTDeepIoT scheduling framework needs less
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time to classify 10000 images under the constraint of variable deadlines. A straightforward

explanation is that RTDeepIoT is able to throw away some unnecessary computation, with

which the tasks would not improve its accuracy and would more likely to miss the deadline.

However, it shoud be noted that RTDeepIoT still cost some computation power in the server.

The reason for the total runtime to be less in RTDeepIoT case is that the computation

thrown away by our framework offsets the extra scheduling overhead needed by RTDeepIoT.

Implementing our schedule in user space on top of the TensorFlow framework, therefore, does

not impose extra overhead on the scheduling tasks. While more efficient implementation of

the scheduler are possible, the current approach of implementation is choosen because of its

compatibility with tools already used in the machine learning community, which significantly

increases the likelihood of us making impact in that community using our results. Namely,

our solutions uses Linux unmodified and uses TensorFlow (the standard library for machine

intelligence applications) unmodified as well. On top of those, our scheduler inherits

Table 5.3: The averaged overhead of RTDeepIoT scheduler and daemon process for 10000 images
with different number of worker processes.

16 procs 20 procs 24 procs
with Scheduler (ms) 8866 9617 10261

without Scheduler (ms) 8993 10661 11177
Difference (ms) 127 1044 916
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Figure 5.1: Histogram of transmission and computation time.

TensorFlow overheads, which is the price paid for compatibility/portability. As shown later,
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despite this overhead, a higher total utility is achieved because the scheduler is able to

allocate more judiciously the resources remaining after overhead is paid.

5.3 TRANSMISSION VS. COMPUTATION BOTTLENECK

The deep-intelligence-as-a-serive scheduler presented in this work makes sense only if the

CPU is indeed the bottleneck resource. If the bottleneck lies in the communication network,

then the rate at which new pictures (or data) arrive for classification will be slow enough for

the CPU to never be overloaded. Thus, all classification tasks will always run to completion

and this work is not needed.

This subsection compares empirical measurements of transmission and computation delays

from our prototype of deep-learning based image recognition services. A local desktop con-

stantly transmits images from CIFAR-10 dataset to a remote workstation through a secure

copy protocol. The trained ResNet, as shown in Figure 3.3, takes the received images from

the local desktop as input and runs the whole three stages to classify the image content.

measurements of the distributions of transmission and computation delays are collected and

Figure 5.1 on a log scale along the time axis is plotted. There is a clear separation between

transmission and computation time distributions. Therefore, computation time is orders of

magnitude higher and is indeed the bottleneck in the system justifying our scheduler design.

5.4 DEEP INTELLIGENCE AS A SERVICE

This subsection includes evaluation of the deep learning based image recognition services

on the workstation. In order to illustrate the effectiveness of our RTDeepIoT pipeline, the

back-end scheduler is based on the following algorithms:

1. RTDeepIoT-k: this is our proposed scheduling pipeline, where k denotes the size of

scheduling set choosen in Algorithm 3.2. During the whole experiments, k is selected

to be {1, 2, 3}.

2. RTDeepIoT-DC-k: this is a variant of our scheduling pipeline. Instead of using dy-

namic confidence updates, the confidence is assumed to increases with the same slope.

Therefore, the confidence gain of the current stage is used as the gain of future stages.

The value set for k is the same as RTDeepIoT-k.

3. RR: this is a stage-level round-robin scheduling algorithm. The scheduler will select a

stage to run among all the deep learning services in a round-robin manner.
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Figure 5.2: The intensity test for scheduling algorithms with ResNet on CIFAR-10.
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Figure 5.3: The scalability test for scheduling algorithms with ResNet on CIFAR-10.
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4. FIFO: this is a FIFO scheduling algorithm, where the scheduler runs the deep learning

service on images in a first come first served manner, and runs all stages to the end.

In this evaluation, two kinds of service workloads are considered. In the first one, the

deadlines of deep learning services are kept within a range, and increase the number of

concurrent deep learning tasks. In the second one, the range of service deadline and the

number of concurrent deep learning tasks are increased proportionally. Each deep learning

task will log its classification results over stages with timestamps. The final classification

result is the last result before its deadline.

In the first set of experiments, the deadlines are set between 0.8s and 1.2s randomly,

while increasing the number of concurrent deep learning tasks from 12 to 24 with a step

of 4. Prior to the experiments, the time needed for different stages are collected and the

average total time for finishing all the stages take roughly 0.12s. The deadline range chosen

can illustrate the scenario where the computation power can only satisfy the deadlines for

part of the tasks but not all. This scenario can show the efficacy of the algorithms. The

mean value and the standard deviation of classification accuracy over concurrent tasks for

the scheduling algorithms are presented in Figure 5.2. From Figure 5.2c, the scheduling

algorithms fall into two categories. The first type of algorithms, including RTDeepIoT-k

and RR, tend to balance the classification accuracy over multiple tasks under the intensive

workload. The second type of algorithms, including RTDeepIoT-DC-k and FIFO, tend to

maximize the classification accuracy of a small set of tasks under the intensive workload,

creating some imbalance.

RTDeepIoT-k is constantly be the best scheduling algorithm under all cases. However,

an interesting observation that appears in both RTDeepIoT-k and RTDeepIoT-DC-k is that

increasing the size of the scheduling set k may hurt the overall classification accuracy, which

is a bit counterintuitive. Such phenomenon is caused by two reasons. On one hand, although

Lemma 3 and Proposition 1 can provide us the worst case guarantee with Algorithm 3.1

even when the system only has an approximately correct utility curve, Algorithm 3.1 may

not be the optimal choice for a normal case, which is our experiment setting. On the other

hand, Algorithm 3.1 assumes the underlying scheduling policy to be EDF, which is not the

best choice under the intensive workload. However, as intensity of workload is increased,

RTDeepIoT-3 starts to achieve the best performance among all.

The two baseline scheduling algorithms, RR and FIFO, show relatively bad classification

accuracy under a mild-intensive workload. This means that, by informing the scheduler with

the classification confidence, better classification accuracy can be achieved through utilizing

the heterogeneous input data complexity. When comparing RTDeepIoT-k to RTDeepIoT-

DC-k, RTDeepIoT-k consistently achieves better performance with a large margin. There-
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fore, the dynamic confidence update and the greedy submodular maximization scheduler

helps to maximize the overall classification quality give the limited system resources and

deadline constraints.

In the second set of experiments, the deadline range and the number of concurrent tasks

are proportionally increased from 0.12 − 0.16s and 2 to 0.30 − 0.40s and 5, 0.6 − 0.8s and

10, as well as 1.2− 1.6s and 20. The mean value and the standard deviation of classification

accuracy over concurrent tasks for the scheduling algorithms are illustrated in Figure 5.3.

The standard deviation of classification accuracy, shown in Figure 5.3c, still see divergence

between two types of algorithms. However, when increasing the scale of the workload, some

algorithms that do well for a small number of tasks will tend to do worse, such as DeepIoT-

DC-1. Our proposed scheduling algorithm 3.2 can balance the computation over services,

even with a very biased utility curve.

RTDeepIoT-1 is the best-performing scheduling algorithm. However, its accuracy gain

tends to be minimized when the scale of the workload increases, which is consistent with our

previous set of experiments. In this experiment, increasing the size of the scheduling set k

may still hurt the overall classification accuracy. However, the performance degradation is

diminished as the scale of the workload is increased.

When using algorithm 3.2 as backend, i.e., RTDeepIoT-k and RTDeepIoT-DC-k, the

overall classification accuracy among deep learning services increases as the workload is

scald up. Therefore, our proposed scheduling model, RTDeepIoT, benefits from the scaled

workload, which fits its envisioned use in future deep intelligence services.

In addition, general baseline algorithms, RR and FIFO, show performance degradation

as the workload is scaled. Therefore, the scalability of these algorithms is poor, while our

RTDeepIoT does better as the workload is scaled. This again illustrates the importance of

taking neural network depth as a new dimension for scheduling.
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CHAPTER 6: RELATED WORKS

Recently the intersection of machine learning and real time systems has sparkled research

efforts on effective scheduling on learning tasks. [19], [20], [21] all trades off accuracy of

learning tasks with other metrics such as schedulability or power consumption. These works

are similar to our work in the sense that this work aims to build systems to effectively schedule

tasks under the constraints of deadlines. However, their approaches require inspection on

inner structures of each layer in the neural network and perform a per layer optimization.

Our work is orthogonal to their efforts because our framework can drop in any learning

platforms and does not need to explore natures of each layer. It is possible to combine both

our framework as well as their system to achieve better results.

The essence of the scheduling problem lies in determining the number of processing stages

(and hence neural network layers) that are sufficient to obtain an accurate output (e.g., a

good classification). A body of scheduling algorithms that comes close to ours are those that

support approximate computing. The general concept pervades many areas of computer sci-

ence, spanning circuit design [22], architecture [23], energy efficient computing [24], machine

learning [25], algorithm design [26] [27]. Our work resembles approximate computing in that

our system aims to provide better quality of service (QoS) in the context of offering machine

intelligence as the service paradigm, where our system intentionally discard some stages of

the neural network.

A prime example of approximate computing in the real time research community is the

literature on imprecise computations. The work trades off result quality versus compu-

tation time [28–32]. Our work resembles imprecise computations in that our system uses

intermediate results from a prematurely terminated real-time process. The work assumes

processes to be monotone, and propose an indicator for the quality of the imprecise results.

More recently [30], imprecise computation models were proposed where the scheduler decides

on the execution of an optional section of processes by taking deadlines and required QoS

into consideration. However, our work focus on the stage-wise computation with sequential

dependency and dynamic utility function.

The QoS optimization and management have also been heavily addressed in real-time

literature. Rajkumar et al. presented an analytical model for QoS management in systems

with multiple constraints [33,34]. Lee et al. extended the QoS management analysis with the

discrete and non-concave utility functions [35]. Abdelzaher et al. proposed a real-time QoS

negotiation model for maximizing system utility with guaranteed performance [36]. Curescu

et al. presented a QoS optimization scheme for mobile networks [37]. Koliver et al. designed

a fuzzy-control approach for QoS adaptation [38]. However, all of the previous studies assume
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a known utility function beforehand. In this work, our framework consider a case where the

exact utility function is not known as a priori but is rather revealed approximately as the

computation proceeds.

In addition, our scheduler has been integrated with Tensor Flow - a library for deep learning

systems. This makes it the first real-time scheduler to be implemented in the context of a

mainstream deep learning software framework.
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CHAPTER 7: CONCLUSION

This work presented a novel service model, suitable for smart IoT applications where

simple devices with sensing capabilities offload their “machine intelligence” to the cloud

or to an edge server. The work focuses on deep learning as the state of the art enabler

of machine intelligence. A key observation was that trained deep neural networks can be

partitioned into stages with results available at different degrees of fidelity after each stage.

The number of stages of processing that an input item needs (e.g., for purposes of detection,

prediction, or classification) depends on the data. This key insight was used to build a service,

where the scheduler determines the best number of stages needed to process each input. As

successive processing stages were completed, this number would be refined. Evaluation shows

that the resulting schedules improve the average quality of results, essentially by allocating

computing resources where they engender the best improvement in result accuracy. The

service is currently being extended to other deep learning libraries (besides machine vision)

to offer rich support for deep intelligence as a (real-time) service.
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