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ABSTRACT

We introduce the spacetime discontinuous Galerkin method and motivate the need for

supporting spacetime meshing on meshes comprised of multiple manifolds. We first discuss

preliminary concepts behind simplices, simplicial complexes, and the generalization to ori-

ented simplicies. Using these ideas, we define stratified spaces and how they can be used

to model a mesh comprised of multiple oriented manifolds. We construct a graphical rep-

resentation called a Stratified Mesh and use this representation to construct a collection

of data structures, the main result being the StratifiedMesh data structure. Next we

define a set of support algorithms based on the various data structures discussed. This

leads us to review the fundamentals of the TentPitcher algorithm and its relationship

to spacetime discontinuous Galerkin methods both theoretically and in the literature. The

TentPitcher algorithm is then extended to work on stratified meshes in Ed × R for arbi-

trary spatial dimension d. We then briefly discuss a parametrization for tentpole vertices that

generalizes the baseline TentPitcher , vertex smoothing, and tilted tentpoles. Following

that, we discuss at a high level the generic software architecture and techniques used build

completely new spacetime meshing software that handles stratified meshes. Visualizations

of various examples from the software conclude the work, with examples of single manifold

2d× time, single manifold 3d× time, and a multiple manifold example in 2d× time.
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CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Within the domain of Scientific Computing, models driven by differential equations are

commonplace. For a myriad of problem domains, partial differential equations (PDEs) and

their corresponding boundary conditions dominate as the way phenomena of interest can be

compactly represented and eventually solved for by engineers and scientists. Some of the

most fascinating phenomena that are studied involve wave-like behavior that can be captured

by the specific class of hyperbolic PDEs. Such models find use in describing everything from

flow and shockwaves of inviscid fluids to sound propagation, electromagnetic phenomenon,

and crack propagation in various structures. These models enjoy the intuitive feature that

information travels within the domain at finite speeds, just as a leaf resting on the surface of

a river might travel down said river at a finite speed. Ironically, this property also naturally

leads to the potential for discontinuous solutions to hyperbolic PDEs, making them some

of the most challenging problems to solve numerically with high accuracy. Fortunately, the

fundamental properties behind hyperbolic PDEs can be exploited by discretizing spacetime

directly, resulting in elegant algorithms that take advantage of this property.

The spacetime discontinuous Galerkin (SDG) method is a finite element method that takes

advantage of the finite information propagation of hyperbolic PDEs in a way that is not seen

in other methods tackling the same problems, such as Finite Difference, Finite Volume, and

Discontinuous Galerkin methods that discretize only in space [1, 2]. Given a spatial domain

Ω ⊂ Ed and a time interval [0, t] ⊂ R, this method aims to directly tackle hyperbolic systems

of equations in the domain D = Ω × [0, t], where the system of Hyperbolic equations are

typically of the form [1]

∂v

∂t
+

d∑
i=1

∂

∂xi
F (i)(v) = g(t,x) (1.1)

where v = v(t,x) = [v1(t,x), · · · , vn(t,x)]T is our unknown, F j(v) are known flux functions,

and g(t,x) is known. Spacetime Discontinuous Galerkin, unlike other techniques, discretizes

spacetime in order to solve the system of PDEs. There are numerous advantages to this,

such as producing solution fields that can be evaluated at any time and algorithms, as will

be explained later, that promise very efficient solutions to the PDEs. The challenge with

this technique, however, is meshing in spacetime is more complicated than typical meshing
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approaches due to our need to satisfy causality conditions tied to the characteristics of the

hyperbolic system. However, much progress has been made in this endeavor [3, 4, 5, 6,

7], particularly for domains represented as a single manifold. Rigorously generalizing the

spacetime meshing algorithms to problems comprised of multiple manifolds has not been

given much attention, however. These problems naturally arise in a variety of domains.

One application of interest is modeling crack propagation where, for example, the domain

is some rectangle and the crack is initially some line within the rectangle that evolves over

time using a damage model while the rectangular domain evolves using models from linear

elasticity.

Figure 1.1: Example 2d rectangular mesh with a crack in the center

In this thesis, we extend this work to stratified spaces, which consist of multiple manifolds of

mixed dimension. The extension to stratified spaces enables the SDG method to investigate

problems like crack propagation and others that are represented by domains with multiple

manifolds of mixed dimensions.

1.2 OVERVIEW

Within this thesis, we will start by reviewing some mathematical preliminaries that we

will need before we discuss stratified spaces and their role in this work. These preliminary

topics are primarily about simplicies, simplicial complexes, and the generalization to oriented

simplices using basics from simplicial homology. Following these preliminary topics, we define

stratified spaces and discuss how we might model them in the context of meshing, eventually

stepping toward a graphical model called the stratified mesh that will prove convenient in

data structure design.

The following chapter focuses on data structure design for the meshing objects that will

be used to model the stratified meshes. We also touch on algorithms tied to these data
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structures and eventually find our way to the TentPitcher algorithm. Once here, we

tie the stratified mesh to the TentPitcher algorithm and move into a discussion about

software implementation and some sample results.
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CHAPTER 2: SPACETIME MESHING WITH MULTIPLE MANIFOLDS

2.1 PLAYING WITH SIMPLICES, COMPLEXES, AND HOMOLOGY

Let us consider the space Rd and define V = {v0,v1, · · · ,vm} ⊂ Rd to be a collection of

points represented as column vectors. A convex combination of V is a point q =
∑m

i=0 λivi

where λi ≥ 0 and
∑m

i=0 λi = 1. The convex hull of V is the set of all convex combinations

of V , where the resulting set is defined as a convex polytope and the elements of V are the

vertices of that polytope. The dimension of the convex polytope comprised of vertices in

V is equivalent to dimV = rank ([v0,v1, · · · ,vm]). A d-polytope is defined as a polytope

where dimV = d. A d-simplex ∆ is a d-polytope with the special case |V | = (d + 1). We

represent a d-simplex by its vertex set V = ∆ = {v0,v1, · · · ,vd}. A degenerate simplex

is one where dim ∆ < |∆| − 1. In our work, we assume every simplex is not degenerate,

meaning that dim ∆ = |∆| − 1. A face f of a d-simplex ∆ is any simplex such that f ⊆ ∆

and a facet is any face f with dim f = dim ∆ − 1 = (d − 1). A coface of a k-simplex f

is any simplex ∆ such that f ⊆ ∆ and a cofacet is a coface ∆ with dim ∆ = dim f + 1.

We denote the set of faces, facets, cofaces, and cofacets of an oriented simplex ∆ to be

faces (∆), facets (∆), cofaces (∆), and cofacets (∆). The subset of faces of dimension k

is represented as facesk (∆). For a more thorough treatment of convex polytopes, simplices,

and related topics, readers can refer to standard references [8, 9].

In simplicial homology, we generalize a simplex ∆ to an oriented d-simplex ~∆ by represent-

ing it as the sequence (v0, · · · ,vd) of length (d+ 1) [10, 11]. The dimension of ~∆ is defined

in the same way as the non-oriented simplex, namely dim ~∆ = rank ([v0,v1, · · · ,vm]) for

the vertices that form ~∆. Two oriented simplices ~∆ and ~∆′ are equivalent if ~∆′ is an even

Figure 2.1: Example convex 3-polytope

4



Figure 2.2: Example 3-simplex (left) and its associated 2-simplex facets (right)

permutation of ~∆. The twin for some oriented simplex ~∆ is defined as an oriented simplex
~∆′ that is an odd permutation of ~∆. For an oriented d-simplex ~∆, its faces are the collection

of all of its subsequences with the added condition that if the subsequence differs from ~∆ by

only one vertex and that vertex has an odd rank in ~∆, that subsequence must be permuted

by an odd permutation to be considered a face of ~∆. The facets of ~∆ are its faces of length

d. A coface of ~f is an oriented simplex ~∆ such that ~f is a face of ~∆. A cofacet of ~f is

a coface ~∆ such that dim ~∆ = dim ~f + 1. We define faces
(
~∆
)

, facesk

(
~∆
)

, facets
(
~∆
)

,

cofaces
(
~∆
)

, and cofacets
(
~∆
)

for some oriented simplex ~∆ similarly to the non-oriented

variants. We define the intersection of two oriented simplices ~∆ and ~∆′, ~∆ ∩ ~∆′, is a set of

the highest dimensional twin pairs {(~f, ~f ′)} where for each twin pair (~f, ~f ′), ~f is a face of
~∆ and ~f ′ is a face of ~∆′.

Figure 2.3: Example oriented twin 1-cells (left) and oriented twin 2-cells (right)

A simplicial complex K is such that for all simplices ∆ ∈ K, faces (∆) ⊆ K and for

every two simplices ∆,∆′ ∈ K, their intersection ∆ ∩∆′ must be a face of both ∆ and ∆′.

Similarly, an oriented simplicial complex ~K is such that for all oriented simplices ~∆ ∈ ~K,

faces
(
~∆
)
⊆ ~K and for every two oriented simplices ~∆, ~∆′ ∈ ~K, ~f is a face of ~∆ and ~f ′

is a face of ~∆′ for all (~f, ~f ′) ∈
(
~∆ ∩ ~∆′

)
. A simplicial k-complex K is a complex where

the highest dimension of any simplex ∆ ∈ K is k and a pure simplicial k-complex is a

simplicial k-complex where all simplices with dimension less than k are the face of some

k-simplex within the complex. For a simplicial k-complex, a chamber simplex is defined as

any simplex with a dimension of k. Oriented simplicial complexes, pure oriented simplicial
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complexes, and their oriented chamber simplices are defined similarly.

The definitions above can readily be generalized to other classes of polytopes other than

simplices, but simplices best represent our needs and so we will restrict ourselves to simplices

going forward.

2.2 STRATIFIED SPACES AND THEIR GRAPHICAL REPRESENTATION

New developments within this work pertain to explicit handling of meshes represented by

multiple manifolds. Being able to manage such meshes allow for more complicated physical

modeling and in turn allow for doing a wider range of computational science. Going off of

work in the previous section, a special interest is in having meshes represented as manifolds

represented by oriented simplicial complexes.

Figure 2.4: Example Stratified Space and Filtration into Manifolds

Recall that an n-manifold M is a topological space such that any point p ∈ M has a

neighborhood that is homeomorphic to En. For our purposes, we define stratified space as a

space X with a filtration

∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = X

where each Sk is a k-manifold and each k-stratum is Sk with its boundary. We construct

meshes of objects that can be represented by this stratified space and, ultimately, as a

set of overlapping manifolds with mixed dimensions. We assume for our purposes that
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each stratum is comprised of a single manifold, potentially represented as multiple disjoint

manifolds. We then view meshes of this stratified space as a collection of mixed dimensional

oriented manifolds, each k-dimensional manifold Sk represented as a pure oriented simplicial

k-complex ~Mk. The codimension of any simplex ~∆ ∈ ~Mk is equal to dim ~Mk subtracted

by dim ~∆. To ensure consistent orientation, each chamber of the complex is assigned the

same orientation as the manifold that contains it. This implies that each stratum must be

comprised of orientable manifolds, e.g. a Mbius strip cannot exist within a stratum.

We now describe our graphical representation of meshes representing stratified spaces,

called the stratified mesh. The stratified mesh of an n-dimensional stratified space is a

graph Gn = (Vn, En) whose vertices are based on the chambers, and their associated facets,

of the strata and whose edges encode adjacency information. Define the vertices to be

Vn =
{

(k, ~σ) | ~σ ∈ ~Mk

}
. The edges En are comprised of three classes of edges: twin edges,

facet edges, and shift edges. A facet edge {(k, ~f), (k, ~∆)} is associated with an oriented

k-manifold ~Mk and defined between two oriented simplices ~f, ~∆ ∈ ~Mk when ~f is a facet of
~∆. A twin edge {(k, ~∆), (k, ~∆′)} is defined between two oriented simplices ~∆, ~∆′ ∈ ~Mk when
~∆ is the twin of ~∆′. A shift edge {(k − 1, ~∆), (k, ~∆′)} is defined between oriented simplices
~∆ ∈ ~Mk−1 and ~∆′ ∈ ~Mk when ~∆, referred to as an interstitial simplex, is equivalent to ~∆′,

which is a cointerstitial simplex. En is the collection of all facet, twin, and shift edges found

using { ~Mk}.

Figure 2.5: Example facet edge (top-left), example twin edge (top-right), and example shift
edge (bottom-middle)
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CHAPTER 3: MESHING DATA STRUCTURES AND ALGORITHMS

3.1 DATA STRUCTURE DESIGN FOR THE STRATIFIED MESH

In the previous section, we focused on constructing the stratified mesh, a graphical repre-

sentation of the oriented manifolds within a stratified space. We now turn our attention to

designing a data structure to represent this object. Within the context of spacetime discon-

tinuous Galerkin methods, we have found no need to store oriented cells with codimension

larger than 1 for a given oriented n-manifold, except that we do need to store all vertices of

the oriented simplices. Thus, we ignore simplices in the stratified mesh Gn with codimension

larger than 1 in their associated manifold, except vertices. Interestingly, this design can be

viewed as a generalization of half-edge data structures [12] and shares similarity with the

array-based half-facet (AHF) data structure designed at Sandia Labs [13]. With this clarifi-

cation, we define a few intermediate data structures and then use them to construct a data

structure that represents a stratified mesh.

Let us first assume we have some Set data structure that allows common operations of

Insert, Remove, Union, Intersection, and Size. We then fix a spatial dimension d

such that our data structure represents a mesh of a stratified subset of Ed × R. A Ver-

tex represents an point p in Ed × R. Each Vertex stores pointers to the simplices that

contain p. An OrientedSimplexk O represents an oriented k-simplex with attributes in

Table 3.1. Notice that within Table 3.1, we refer to a global versus a non-global manifold. A

global manifold is the full k-manifold enclosing O while a non-global manifold could be any

k-manifold that is a subset of the global manifold. The global and local IDs are important

for indexing O in both the global and non-global manifolds simultaneously so we can easily

move between them. We use this global and non-global terminology similarly for other data

structures.

Now a Chamberk C represents an oriented k-simplex that is a chamber simplex of some

oriented k-manifold. A Facetk F is an oriented k-simplex that is the facet of some (k+ 1)-

simplex. Both Chamberk and Facetk inherit all the attributes of OrientedSimplexk

with the specialization that F.manifold = k + 1 and C.manifold = k. We define attributes

unique to Chamberk and Facetk in Tables 3.2 and 3.3. The C.facets and F .cofacet at-

tributes represent the facet edges. The F .twin attribute represents the twin edges. The

C.cointerstitial and F.interstitial attributes correspond to the interstitial edges.

Referring back to the Vertex data structure, a VertexV will store its spacetime coor-

dinate, a unique ID, and any Facet and Chamber data structures that contain it. These
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OrientedSimplexk

IDg An ID set by its unique global manifold
IDl An ID set any non-global manifold
manifold Dimension of manifold enclosing this simplex
vertices A sequence of vertices whose ordering en-

codes the orientation
data Arbitrary black-box satellite data

Table 3.1: Attributes of OrientedSimplexk

Chamberk

facets[1, · · · , k + 1] An array of k + 1 Facetk−1 type elements
that correspond to its facets

cointerstitial A Facetk instance that stores the cointersti-
tial simplex for this chamber; Nil if no coin-
terstitial simplex exists

Table 3.2: Attributes unique to Chamberk

attributes are defined in Table 3.4. The attributes V.chambers and V.facets allow us to

efficiently iterate through all incident simplices to a vertex, which becomes useful later on

in spacetime meshing algorithms.

Our last intermediate data structure OrientedManifoldk represents an oriented k-

manifold with attributes in Table 3.5. The orientation of an OrientedManifoldk M is

enforced by requiring all chambers of this manifold to share the same orientation.

The main data structure of interest StratifiedMeshk corresponds to a k-dimensional

stratified mesh and follows from the intermediate data structures defined previously. The

attributes for this data structure are defined in Table 3.6.

Facetk

cofacet A Chamberk+1 type instance that stores the
unique cofacet of this simplex; Nil if no co-
facet exists

twin A Facetk type instance that stores the twin
of this simplex; Nil if no twin exists

interstitial A Chamberk type instance that stores the
interstitial simplex associated with this facet;
Nil if no interstitial simplex exists

Table 3.3: Attributes unique to Facetk
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Vertex
IDg An ID set by a global stratified mesh
IDl An ID set by any non-global stratified mesh
point A point value in Ed × R
chambers[1, · · · , d+ 1] An array of d + 1 Set elements that store

Chamber type elements incident to this ver-
tex; element k of the array corresponds to a
set of Chamberk elements contained in the
k-manifold of the strata

facets[1, · · · , d+ 1] An array of d + 1 Set elements that store
Facet type elements incident to this ver-
tex; element k of the array corresponds to
a set of Facetk elements contained in the
k-manifold of the strata

Table 3.4: Attributes of Vertex

OrientedManifoldk

orientation An integer value of −1 or 1 representing the
orientation.

chambers[1, · · · , nc] An array of nc Chamberk elements con-
tained within the manifold

facets[1, · · · , nf ] An array of nf Facetk−1 elements contained
within the manifold

Table 3.5: Attributes of OrientedManifoldk

3.2 SUPPORTING ALGORITHMS

Given the data structures defined in the previous section, a collection of algorithms spe-

cific to them are defined. Algorithm 3.1 and 3.2 are procedures that return the dimension

and codimension of any OrientedSimplexk instance, including Chamberk and Facetk

since they inherit from OrientedSimplexk. The algorithms for obtaining the dimension

for OrientedManifoldk and StratifiedMeshk are equivalent to Algorithm 3.1 after

changing the input type accordingly.

Algorithm 3.1 Dimension of OrientedSimplexk O

1: procedure O.Dimension( )

2: return k

3: end procedure
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StratifiedMeshk

vertices[1, · · · , nv] An array of nv Vertex elements that com-
prise the mesh

manifolds[1, · · · , k] An array of size k comprised of
OrientedManifold elements where ele-
ment i is specifically OrientedManifoldi

type. Element i can be Nil for i < k but
element k must not be Nil

Table 3.6: Attributes of StratifiedMeshk

Algorithm 3.2 Codimension of OrientedSimplexk O

1: procedure O.Codimension( )

2: return manifold - O.Dimension()

3: end procedure

Algorithms 3.3 through 3.10 correspond to methods that will get or set state related to a

Vertex instance. Algorithm 3.11 extracts all simplices incident to a vertex in a correspond-

ing StratifiedMesh and returns this result in the form of a StratifiedMesh instance.

Algorithm 3.12 tells us if some oriented simplex is incident to some vertex and this readily

generalizes to Facet and Chamber instances. Algorithms 3.13 and 3.14 provide a way

for us to add and remove chamber cells and their associated facets from an oriented mesh.

Note that these algorithms assume the underlying array data structure has methods Ex-

ists, Remove, and Get-Open-ID. The method Exists returns a boolean value of True

if the input value exists in the array, Remove removes an element from an array, and Get-

Open-ID returns an index to an element of the array that is not currently being used and

is available to be used by some value. Also note that Algorithm 3.13 is defined for the local

ID but is similarly defined for the global ID.

Algorithms 3.15 and 3.16 represent methods that allow one to add or remove vertices from

a StratifiedMeshk instance. Algorithms 3.17 and 3.18 allow one to add or remove chamber

simplices, their associated facets, and any interstitial simplices from a StratifiedMeshk

instance. The insertion algorithm for the chambers depends on the array of manifold types

having a method Allocate that takes an input dimension k and allocates storage for the

k-manifold spot. These algorithms form the basis for the key data structure operations.
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Algorithm 3.3 Get spatial coordinate of VertexV

1: procedure V .Spatial-Coordinate( )

2: return V .point[1, · · · , d]

3: end procedure

Algorithm 3.4 Get time coordinate of VertexV

1: procedure V .Time-Coordinate( )

2: return V .point[d+ 1]

3: end procedure

Algorithm 3.5 Get set of Chamberk elements incident to VertexV

1: procedure V .Incident-Chambersk( )

2: return V .chambers[k]

3: end procedure

Algorithm 3.6 Get set of Facetk elements incident to VertexV h

1: procedure V .Incident-Facetsk( )

2: return V .facets[k+1]

3: end procedure

Algorithm 3.7 Insert Chamberk C instance into VertexV

1: procedure V .Insert-Chamberk(C)

2: V .chambers[k].Insert(C)

3: end procedure

Algorithm 3.8 Insert Facetk F instance into VertexV

1: procedure V .Insert-Facetk(F )

2: V .facets[k].Insert(F )

3: end procedure

Algorithm 3.9 Remove Chamberk C instance from VertexV

1: procedure V .Remove-Chamberk(C)

2: V .chambers[k].Remove(C)

3: end procedure
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Algorithm 3.10 Remove Facetk F instance from VertexV

1: procedure V .Remove-Facetk(F )

2: V .facets[k].Remove(F )

3: end procedure

Algorithm 3.11 Get star of VertexV in Stratified Mesh

1: procedure V .star( )

2: StratifiedMeshd S . init Stratified Mesh to store star of V

3: S.Add-Vertex(V ) . add vertex to the stratified mesh

4: for Chamberd C in V .chambers[d] do . insert d-dimensional chambers

5: for VertexV ′ in C.vertices do . add vertices of chamber to mesh

6: S.Add-Vertex(V ′)

7: end for

8: S.Insert-Chamberd(C)

9: end for

10: return S

11: end procedure

Algorithm 3.12 Check if oriented k-simplex O contains vertex V

1: procedure O.Contains-Vertexk(V )

2: for VertexV ′ in O.vertices do

3: if V = V ′ then return True

4: end if

5: end for

6: return False

7: end procedure
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Algorithm 3.13 Add Chamberk C and its facets into OrientedManifoldk M

1: procedure M .Insert-Localk(C)

2: if ¬M .chambers.Exists(C) then . check if chamber C is in array

3: C.IDl ← M .chambers.Get-Open-ID() . get local ID for chamber from array

4: M .chambers[C.IDl]← C

5: for Facetk−1 F in C.facets do

6: F.IDl ← M .facets.Get-Open-ID() . get local ID for facet from array

7: M .facets[F.IDl]← F

8: end for

9: end if

10: end procedure

Algorithm 3.14 Remove Chamberk C and its facets from OrientedManifoldk M

1: procedure M .Removek(C)

2: if M .chambers.Exists(C) then . check if chamber C is in array

3: M .chambers.Remove(C)

4: for Facetk−1 F in C.facets do

5: M .facets.Remove(F )

6: end for

7: end if

8: end procedure

Algorithm 3.15 Add VertexV to Stratified Mesh S

1: procedure S.Add-Vertex-Local(V )

2: if ¬S.vertices.Exist(V ) then

3: V.IDl ← S.vertices.Get-Open-ID() . get local ID for vertex from array

4: end if

5: end procedure

Algorithm 3.16 Remove Vertex from StratifiedMesh S

1: procedure S.Remove-Vertex(V )

2: if S.vertices.Exist(V ) then

3: S.vertices.Remove(V )

4: end if

5: end procedure
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Algorithm 3.17 Insert Chamberk and its facets into StratifiedMeshk S

1: procedure S.Insertk(C)

2: if S.manifold[k] = Nil then . allocate k-manifold if needed

3: S.manifold.Allocate(k)

4: end if

5: S.manifold[k].Insertk(C) . insert chamber and its facets into the k-manifold

6: for Facetk−1 F in C.facets do

7: if f .interstitial 6= Nil then . recursively insert interstitial simplex if not Nil

8: S.Insertk−1(f .interstitial)

9: end if

10: end for

11: end procedure

Algorithm 3.18 Remove Chamberk and its facets from StratifiedMeshk S

1: procedure S.Removek(C)

2: if S.manifold[k] = Nil then . return since C can not reside in this manifold

3: return

4: end if

5: S.manifold[k].Removek(C) . remove chamber and its facets in the k-manifold

6: for Facetk−1 F in C.facets do

7: if f .interstitial 6= Nil then . recursively remove interstitial simplex if not Nil

8: S.Removek−1(f .interstitial)

9: end if

10: end for

11: end procedure
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3.3 STRATIFIED MESHES AND THE TENTPITCHER ALGORITHM

3.3.1 Fundamental Concepts of the TentPitcher Algorithm

The TentPitcher algorithm is a spacetime meshing algorithm fundamental to modern

spacetime discontinuous Galerkin techniques used to solve systems of Hyperbolic Partial

Differential Equations (PDEs). This algorithm exploits the property of hyperbolic PDEs

that information propagates through spacetime at finite rates tied to the characteristics of

the hyperbolic system. This exploitation allows for a time and space efficient algorithm for

constructing spacetime simplices that can then be used to efficiently solve the hyperbolic

system of PDEs.

The characteristics of the hyperbolic system induce the cone constraint [4] for the facets of

all the spacetime simplices. The modern TentPitcher algorithm works with a space mesh

M ⊂ Ed representing a single manifold called the ground mesh. The algorithm constructs

spacetime simplices using simplices in the ground mesh that satisfy the cone constraint and

ensure continuous construction of spacetime simplices up to any desired time [4]. Ever since

the theoretical work and algorithm that allowed for spacetime meshing over arbitrary spatial

domains, further work has been done that generalizes the technique for adaptive operations

such as moving vertices or performing adaptive refinement and coarsening [5, 6].

The TentPitcher algorithm begins by attaching time values to each vertex in the ground

mesh, creating a d-manifold embedded in Ed ×R referred to as the Front. For any vertex v

in the Front, the Footprint of this vertex has historically been the star of v, where star (v) =

{∆ ∈M | ∆ ∩ v 6= ∅}. Within this work, we redefine the footprint to be what we internally

call the extended footprint. This extended footprint is defined below in (3.1) and will be

what we refer to as a footprint going forward. With this new definition, a footprint about

some vertex v is the collection of all simplices that are incident to the 1-simplices that

are faces of the simplices found in the star of v. The redefinition is motivated by parallel

implementations that require more mesh information so that various adaptive operations are

better done in parallel. Parallel generalization of the adaptive operations is heavily tied to

lazy refinement and lazy clean-up found in [6] and are a key motivator for the new footprint

definition.

Footprint(v) =
⋃

f∈star(v)

⋃
c∈faces1(f)

star (c) (3.1)

The Front defined above is also be viewed as the graph of some continuous time function
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Figure 3.1: Differences between original Footprint and extended Footprint about a vertex v
for a sample mesh. Gray cells are not in the Footprint, Gold cells are.

t : Ed → R that maps spatial coordinates to a time value in a piecewise affine manner using

the time values associated with the vertices of the simplices [4]. If one restricts the time

function t(x) to some simplex, then t(x) is affine. It is convenient to represent a facet of the

Front as a simplex represented by the tuple (∆, t), where ∆ = {v0, · · · , vd} is some d-simplex

and t = (t0, · · · , td) are the time values associated with each vertex [7]. The restriction of the

time function to the spacetime simplex (∆, t) is t(∆, t) : Ed → R and the simplex is causal if

the restricted time function satisfies ‖∇xt(∆, t)‖2 ≤
1

smax
for the local maximum wavespeed

smax. From [7], we define t(i) as the element of t with rank i, meaning that t(i) is greater

than or equal to i elements of t, making t(0) the minimum time value. Further, the binary

function t ↑ x is equivalent to updating the smallest vertex of t by doing t(0) ← max{t(0), x}
and the binary function t ⇑ x similarly updates all time values to be t(i) ← max{t(i), x}.

The abstract TentPitcher algorithm given in [7] is restated in Algorithm 3.19. In

Algorithm 3.19, M is the ground mesh, S is a time vector indexed by the vertices of M ,

δ ∈
(
0, 1

2

)
is a fixed parameter, and Tf is a time that we request the TentPitcher algorithm

propagate the Front past. This algorithm is based on work from [4] and [7] that allows for

spacetime meshing over arbitrary spatial meshes. For each simplex in the Footprint of v,

we first find a time t∗∆ as large as possible that we can pitch v to such that (∆, t ↑ t∗∆) is

Valid. As discussed in [7], a valid time vector t will be an element of a set Valid(∆) which

has the properties that Valid(∆) is open, convex, any (∆, t) where t ∈ Valid(∆) is causal,

and for any t ∈ Valid(∆), (t ⇑ ti) ∈ Valid(∆) for all i. It is shown that a construction
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Algorithm 3.19 TentPitcher

1: procedure TentPitcher(M,S, δ, Tf )
2: T ← S
3: while minT ≤ Tf do
4: v ← Choose arbitrary local minimum vertex of M
5: tnew ←∞
6: for each simplex (∆, t) in star (v) do
7: t∗∆ ← sup {x | (∆, t ↑ x) is valid}
8: ρ← Choose arbitrary value within (δ, 1− δ)
9: t∆ ← ρt∗∆ + (1− ρ)t(1)

10: tnew ← min{tnew, t∆}
11: end for
12: T [v]← tnew

13: end while
14: return
15: end procedure

for Valid(∆) that satisfies these properties is Valid(∆) = {t | (t ⇑ x) ∈ Causal (∆)∀x ∈ R},
where Causal(∆) is the set of all time vectors t such that (∆, t) is causal.

After finding t∗∆, we then perform an arbitrary convex combination between t∗∆ and t(1) to

produce a new time value t∆ that ensures progress relative to t(1). By updating tnew to the

value of min{tnew, t∆}, we ensure that tnew is valid for all incident simplices to v.

When a single pitch with the TentPitcher algorithm is performed, we construct space-

time simplices in between the old footprint incident on v and the new footprint incident to

the pitched vertex v′. This collection of spacetime simplices in between the old and new

Front fragments is called a Patch. A patch is a (d + 1)-manifold that represents a piece of

spacetime where we wish to find solutions to the hyperbolic PDEs. Facets of the (d + 1)-

simplices incident to the old footprint are denoted inflow facets while the facets incident to

the new footprint are denoted outflow facets. Spacetime simplices incident to and below the

inflow facets are called predecessor cells and are coupled to the spacetime simplices within

the patch due to the cone constraint. The TentPitcher algorithm is used to construct

patches in spacetime such that the predecessor cells are always comprised of known solution

information, which we call inactive cells. This feature allows us to solve for the solution field

within the patch, comprised of active simplices, using only local information.

Using the TentPitcher algorithm, we construct a patch of simplicies to solve in O(1)

time with O(1) memory cost. We then solve the system of equations for the degrees of

freedom of the patch using only local information. Performing this solution procedure for

each possible patch until we move the Front past some desired time Tf results in an O(n)
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Figure 3.2: Example Patch created around vertex v with Active and Inactive cells

algorithm, where n is the number of (d + 1)-simplices that make up the spacetime mesh.

Once an inactive spacetime simplex is not incident to any facet on the Front, we can save

and delete (or recycle) its information and maintain a spacetime mesh proportional in size

to the input spatial mesh.

3.3.2 Historical Developments of TentPitcher

The TentPitcher algorithm is the culmination of an effort spanning almost two decades

that has produced numerous theoretical and practical results in the context of meshing a

single manifold through spacetime. Early work in the TentPitcher algorithm by ngr and

Sheffer [3] found one could simply move a vertex in time as far as possible while still being

causal as long as the angles of the spatial simplices were acute. Using this, the Tent-

Pitcher algorithm was born and capable of constructing unstructure spacetime meshes of

the entire spacetime domain using an iterative procedure. Work by Erickson et. al. [4]

devised an improvement to the TentPitcher algorithm and generated various theoretical

guarantees that ensured arbitrary spatial simplices could be meshed in spacetime, even for

higher dimensions.

Later, developments in [5, 14, 6, 7] made great strides towards fully adaptive spacetime

algorithms that included spacetime smoothing, pitching tents in specified spacetime direc-

tions, refinement and coarsening through 3d× time, and the ability to adaptively mesh and

work in nonlinear and anisotropic media. In 1d × time and 2d × time, adaptive spacetime

meshing is solved, meaning it is known how to set up such operations such that arbitrary

progress in time can occur. In 3d × time, there is still a question about finding a policy

19



that can use adaptive refinement and coarsening techniques together and provably leave the

mesh in a state where one can make arbitrary progress in time [7].

The use of the TentPitcher algorithm alongside Spacetime Discontinuous Galerkin

methods developed by Haber and others [15, 16, 17, 18] has been used in a wide range

of computational science applications, some examples being [19, 20, 21, 22, 23, 24, 25, 26].

For a more detailed summary about historical work on the TentPitcher algorithm, the

reader can refer to [7].

3.3.3 TentPitcher and the StratifiedMesh

In this section, we generalize the TentPitcher algorithm to objects represented by a

StratifiedMesh. Fix a spatial dimension d such that our mesh is a stratified subset of Ed×
R. A ground mesh, the Front, and a footprint are generalized to a d-dimensional stratified

mesh, allowing us to model them with a StratifiedMeshd. Similarly, a patch is generalized

to a (d+ 1)-dimensional stratified mesh, allowing us to model it as a StratifiedMeshd+1.

With these representations, we naively modify the TentPitcher algorithm to find valid

pitches for some vertex v using all simplices incident to v across all the manifolds. This

naive algorithm is defined abstractly in Algorithm 3.20 using data structures from earlier.

Algorithm 3.20 Naive Stratified TentPitcher

1: procedure Naive-Stratified-TentPitcher(M,S, δ, Tf )
2: T ← S
3: while minT ≤ Tf do
4: v ← Choose arbitrary local minimum vertex of M
5: tnew ←∞
6: for k in d, d− 1, · · · do
7: for each Chamberk (∆, t) in v.Incident-Chambersk() do
8: t∗∆ ← sup {x | (∆, t ↑ x) is valid}
9: ρ← Choose arbitrary value within (δ, 1− δ)
10: t∆ ← ρt∗∆ + (1− ρ)t(1)

11: tnew ← min{tnew, t∆}
12: end for
13: end for
14: T [v]← tnew

15: end while
16: return
17: end procedure

Algorithm 3.20 can be improved by first recalling from [4] that one can parametrize the

gradient of the time function, restricted to some simplex (∆, t), to be
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∇xt = ∇xt|fi + n̂
∂t

∂n̂
(3.2)

where ∇xt|fi is the gradient restricted to some facet (fi, ti) of (∆, t) and ∂t
∂n̂

is the directed

derivative of the time function along a direction n̂ orthogonal to fi. Since the Tent-

Pitcher chooses a tentpole such that (∆, t) is causal, it will find a tentpole such that

‖∇xt‖2 ≤
1

smax
is satisfied. If (∆, t) is causal, its facet (fi, ti) is causal.

Proof. (
1

smax

)2

≥ ‖∇xt‖2
2

=

∥∥∥∥∇xt|fi + n̂
∂t

∂n̂

∥∥∥∥2

2

=
∥∥∥∇xt|fi

∥∥∥2

2
+

∥∥∥∥n̂ ∂t

∂n̂

∥∥∥∥2

2

≥
∥∥∥∇xt|fi

∥∥∥2

2

=⇒ 1

smax

≥
∥∥∥∇xt|fi

∥∥∥
2

(3.3)

The result of (3.3) applies recursively to the facets of (fi, ti), so inductively this implies

that all faces of ∆ will be causal with respect to time vector t when (∆, t) is causal. For a

time vector t to be valid for some simplex ∆, we also require that t is such that ∀u ∈ R,

(t ⇑ u) is causal with respect to ∆. Given we find t such that (∆, t) is valid, we know

that t̂u = (t ⇑ u) is causal with respect to ∆ for any u ∈ R. It follows from (3.3) that

the faces of ∆ are causal with respect to t̂u for any u ∈ R, implying that the faces of ∆

are valid with respect to the choice of t. With that, we state an algorithm that highly

resembles the original abstract TentPitcher, as seen in Algorithm 3.21. Since Algorithm

3.21 is effectively equivalent to the baseline TentPitcher algorithm, it carries the same

theoretical guarantees.

Now for the TentPitcher implementation used to produce the later results, the algo-

rithm is somewhat modified but is based on the respective works of Thite and Mont [6, 7].

Mont showed that the set of valid time vectors t is convex, implying the feasibility of a

binary search styled algorithm to find a valid time vector [7]. Thite showed that it is possi-

ble to both pitch tents along some specified spacetime direction and to pitch tents in such
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Algorithm 3.21 Stratified TentPitcher

1: procedure Stratified-TentPitcher(M,S, δ, Tf )
2: T ← S
3: while minT ≤ Tf do
4: v ← Choose arbitrary local minimum vertex of M
5: tnew ←∞
6: for each Chamberd (∆, t) in v.Incident-Chambersd() do
7: t∗∆ ← sup {x | (∆, t ↑ x) is valid}
8: ρ← Choose arbitrary value within (δ, 1− δ)
9: t∆ ← ρt∗∆ + (1− ρ)t(1)

10: tnew ← min{tnew, t∆}
11: end for
12: T [v]← tnew

13: end while
14: return
15: end procedure

that the tentpole vertex moves towards some desired smoothed spatial coordinate [6]. A

generalization of the tentpole vertex location is defined as the parametrized function

v′(s) = u+ d̂s (3.4)

where v′(s) is the tentpole vertex as a function of parameter s, u is some base spacetime

point, and d̂ is some spacetime direction. Specializing to the case of a tilted tentpole, we have

that u = v and that d̂ is specified as an input direction with limitations found in [6], where v

is the vertex the footprint is based around. In the case of a smoothing operation, u is equal

to the smoothed spatial location with the same time component as v and d̂ = (0, 0, 0, 1).

A typical TentPitcher operation specializes with u = v and d̂ = (0, 0, 0, 1). Viewing the

new tentpole vertex v′ in this parametric way generalizes the operations we already know.

This generic form is solved using a binary search for a valid parameter s since these three

cases have the theoretical backing that they need to ensure they will work. As of now, there

are no guarantees about what will happen for an arbitrary (u, d̂) combination.
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CHAPTER 4: SOFTWARE ARCHITECTURE AND DESIGN

4.1 AN EYE TOWARDS HIGH PERFORMANCE COMPUTING

With the data structures and algorithms of interest defined in the previous chapter, it

becomes important to consider what context the implementations will have to work in.

Within my group, serial codes have been the historic norm but there has been a shift in

the recent years to develop scalable parallel codes that can work on shared memory and

distributed memory systems. The desire to run Spacetime Discontinuous Galerkin codes

with the TentPitcher algorithm require architecting the software with this in mind.

The abstract design that has been arrived at generally consists of the Front mesh being

represented in a global manner and the footprints and patches represented in a local manner.

Global here means that the Front mesh will be accessible by any thread or process involved in

the implementation, while local means those objects will be managed by an individual thread

or process. This distinction has a heavy implication on how the implementation of the various

objects should be tailored so they can be optimal in terms of their run-time performance.

Clearly, the Front will want to enforce some sort of locking behavior that will resist race

conditions. This behavior is important to have since to scale, different threads/processes will

need to be able to communicate with the Front data structure concurrently, whether it is to

update the Front or extra footprints. This implies the use of internal data structures that

can function concurrently with different threads or processes trying to extract information

from the Front or update it.

Further, since footprints and patches will live on a given thread or process, such objects

will not be working with much data since they will only need to manage a small neighborhood

of data around some vertex. In the shared memory setting, it is also advantageous to copy

this small amount of data into the associated thread so that false sharing between different

threads can be avoided. These requirements imply that the data structures representing a

footprint and patch should consider allocation on the stack or allocating a piece of the heap

for use only within the associated thread or process.

Clearly, the Front requires different internal storage mechanisms than the footprints and

patches, even though all of them are represented as a . However, to maximize code reuse,

it is advantageous to not jump into developing a global and local version of the . Instead,

this design dilemma implies the use of generic programming techniques to help generalize

our data structures to handle the different requirements that exist for the project.
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4.2 MODERN C++ AND GENERICS

In the previous chapter, the design of a k data structure and its more primitive data

structures was designed that could be used to represent the information of interest within a

k-dimensional Primary Mesh object. One can carry that parametrization into the implemen-

tation by using a generic driven approach. As discussed above, ensuring the data structures

and algorithms can be used in a scalable manner when placed into a parallel environment,

there is again a place for using generics when it comes to choosing appropriate containers

for different data structures.

Due to the requirements of the project and other performance benefits, implementing a

generic codebase using Template Metaprogramming in C++ is a natural move. By choos-

ing such an approach, one immediate benefit is that the algorithms mentioned earlier can

be specified at compile time relative to k, which will appear as a compile-time constant.

This fact allows for more optimization opportunities by the compiler, everything from loop

unrolling to appropriate function inlining. Another benefit is that generics can help with

avoiding conditional branching since algorithm implementations will be fixed at run-time

for the chosen k instead of needing to test the value of k at run-time and deciding which

algorithm to use after. Branch prediction for the compiler becomes trivial, again leading to

speed-ups.

The meshing data structures designed earlier in this thesis are the primary components

taking advantage of all the generic programming, though certainly not the only ones. Gener-

ics have also been used to design a collection of objects we refer to as Handles, essentially

light-weight data structures that hold on to a pointer to some object. The generic implemen-

tation not only allows for holding onto a generic pointer type, but it also allows for choosing

whether the handle should own the data it points to or just be able to keep a reference to

it. Using metaprogramming techniques allow this behavior to be specified in a very flexible

way. Generics have also been used to design other generic data structures, like one used for

doing Object Pooling to minimize dynamic allocation costs.

The main uses of generics are when it comes to implementing the meshing data structures.

Metaprogramming techniques are used to not only parametrize meshing data structures with

respect to their dimension k, but they are also used to make various functionality and type

specifications decided at compile-time through the use of Traits and Policy Classes that allow

for better compiler optimizations. Within the implemented software, Traits in particular

are crucial. Traits bundle together a collection of types and potentially other applicable

information [27, 28, 29] into a class that can modify all these types and information depending

on the type of class passed in to the template parameter for the Traits class. Traits are used
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within the software to select different containers to use based on whether a data structure

instance is marked at compile-time as Global or Local. Being able to parametrize the data

structures in terms of containers has made the data structures automatically capable of

scaling to parallel contexts by choosing an appropriate container that fits those requirements.

This means that the Front can be specialized with an appropriate concurrent data structure

while the footprints and patches can be specialized with faster, lower memory cost containers.

Traits are also used to specify whether it is appropriate to use a local indexing scheme

or a global one and even help to decide what satellite data the data structures will carry

depending on their dimensions and the simulation type being run. This is a useful feature

since it effectively parametrizes the data structures with respect to the simulation one wishes

to run, which makes sense to do. Policy Classes are used along with class composition to

customize various behaviors with minimal coupling. These classes are used to implement a

set of orthogonal functionality that can be used to build a variety of unique behaviors without

running into the typical Curse of Dimensionality problem by explicitly implementing a class

that implements every combination. These policy classes are used within meshing software

to make it possible to swap certain implementations out in exchange for another that might

be better, without requiring a change to anything but a template parameter. For those

interested in learning more about these techniques and more, refer to [27, 28, 29].

4.3 VISUALIZATION

With the main C++ software written in a generic fashion, as outlined above, a variety of

sample meshes have been constructed and used to test the generic TentPitcher algorithm

implementation for a variety of cases. 2d meshes are constructed using the software named

Triangle [30] and the 3d meshes are constructed using the software named TetGen [31]. Both

software tools have been designed by experts in the field of meshing and work with input

and output meshing files that are similar and simple to work with. Visualizations presented

below were made using Matlab.

In Figure 4.1, the software tests the 3d×time capability of the generic codebase on a socket

model, a sample model that comes with TetGen. This sample problem was used to validate

that the TentPitcher code could push the Front past the time threshold of Tf = 10

seconds. The color field in the Front snapshots represents the time function t : Ed ×R→ R
that the Front is associated with. As is visible in the color mapping, at just 500 pitches

there is a visible subset of the mesh that has already pitched close to the time threshold Tf ,

while most of the mesh still has a minimal time value. This behavior is certainly expected as

the TentPitcher algorithm is free to advance different portions of the Front at different
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rates. As the number of pitches increase, however, the time values across the Front begin to

converge towards Tf , showing progress is being made as expected.

Figure 4.1: Pitching a socket in 3d× time with color field representing time progress towards
a goal of 10 seconds. TentPitcher took 9500 pitches to exceed the threshold time of 10
seconds.

Figure 4.2 provides a minimal test showing that we can smooth a simple simplicial complex

in 3d × time so that a mesh with extremely thin cells can have the mesh quality improved

and in turn improve the rate at which TentPitcher can make progress through time. As

one can see in the figure, the problematic vertex was moved to the center using smoothing

operations after being placed initially adjacent to the vertex located at the bottom left

corner of the box. The smoothing operation greatly improved the mesh quality and led to

the TentPitcher algorithm being able to pitch further in time.

The last example in Figure 4.3 displays a visual for a 2d× time example where the mesh is

comprised of multiple manifolds. In this case, the ground mesh is a circle with a 1-manifold
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Figure 4.2: Basic spacetime smoothing test in 3d× time. The left mesh is the initial spatial
mesh with extremely thin elements near the bottom left vertex of the box. The right mesh
is later in time after performing spacetime smoothing and improving the mesh quality.

ring embedded around the center. To visualize the progress of the 1-manifold portion of the

Front, visualization of the 2-manifold portion of the front stopped after some time threshold.

This test case allows the use of smoothing, whenever possible, to improve mesh quality as

progress is made in time. Going off of the visual, the generic TentPitcher algorithm

implemented is appears capable of meshing the stratified mesh through spacetime.

Figure 4.3: Pitching stratified spatial mesh with a 2-manifold and a 1-manifold using smooth-
ing where ever possible. The spacetime cells associated with the 2-manifold are removed after
some point to see progress of the 1-manifold in time.
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