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ABSTRACT

This thesis provides a procedure to fit generative networks to target distributions, with

the goal of a small Wasserstein distance (or other optimal transport costs). The approach

is based on two principles: (a) if the source randomness of the network is a continuous

distribution (the “semi-discrete” setting), then the Wasserstein distance is realized by a

deterministic optimal transport mapping; (b) given an optimal transport mapping between

a generator network and a target distribution, the Wasserstein distance may be decreased via

a regression between the generated data and the mapped target points. The procedure here

therefore alternates these two steps, forming an optimal transport and regressing against it,

gradually adjusting the generator network towards the target distribution. Mathematically,

this approach is shown to minimize the Wasserstein distance to both the empirical target

distribution, and also its underlying population counterpart. Empirically, good performance

is demonstrated on the training and testing sets of the MNIST and Thin-8 data. As a

side product, the thesis proposes several effective metrics of measure performance of deep

generative models. The thesis closes with a discussion of the unsuitability of the Wasserstein

distance for certain tasks, as has been identified in prior work.
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CHAPTER 1: INTRODUCTION

Deep generative models (DGMs), which are deep neural networks modeling complex dis-

tributions by first sampling from simple distributions such as multivariate Gaussian, and

then transforming the samples to complex targets such as images, has become increasing

popular and successful in various real-world applications such as image synthesis [1], style

transfer [2], and music generation [3].

Generative Adversarial Networks (GANs) [4] is arguably the most successful family of

DGMs in recent years. GANs optimize both the generator network, as well as a second

discriminator or adversarial network: first the discriminator was fixed and the generator was

optimized to fool it, and second the generator was fixed and the discriminator was optimized

to distinguish it from real samples. This procedure was originally constructed to minimize

a Jensen-Shannon Divergence via a game-theoretic derivation. Subsequent work derived

the adversarial relationship in other ways, for instance the Wasserstein GAN used duality

properties of the Wasserstein distance [5].

Despite its huge success, GAN suffers from two well-known limitations. First, the adver-

sarial training process is unstable and prone to mode-collapse. Second, since the Jensen-

Shannon or Wasserstein divergences is not optimized explicitly but instead indirectly by

neural-network approximation and game-theoretic process, it is not clear that how such di-

vergences are actually minimized, and it is also not clear how to quantitatively evaluate the

closeness between generated and target distributions. In practice, careful hyper-parameter

tuning and various tricks may prevent such issues from serious affecting the results, but this

would usually require a large number of trial-and-errors before success.

In this thesis, we attempt to alleviate such limitations of GANs by proposing a simple non-

adversarial but still alternating procedure to fit generative networks to target distributions.

The procedure explicitly optimizes the Wasserstein-p distance between the generator g#µ

and the target distribution ν̂. As depicted in Figure 1.1, it alternates two steps: given

a current generator gi, an Optimal Transport Solver (OTS) associates (or “labels”) gi’s

probability mass with that of the target distribution ν̂, and then a fitting procedure (FIT)

uses this labeling to find a new generator gi+1 via a standard regression.
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Figure 1.1: The goal in this example is to fit the initial distribution (the blue central line) to

the target distribution (the red outer ring). The algorithm alternates OTS and FIT steps,

first (OTS) associating the input distribution samples with target distribution samples, and

secondly (FIT) shifting input samples towards their targets, thereafter repeating the process.

Thanks to being gradual, and not merely sticking to the first or second OTS, the process

has a hope of constructing a simple generator which generalizes well.
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The effectiveness of this procedure hinges upon two key properties: it is semi-discrete,

meaning the generators always give rise to continuous distributions, and it is gradual, mean-

ing the generator is slowly shifted towards the target distribution. The key consequence

of being semi-discrete is that the underlying optimal transport can be realized with a de-

terministic mapping. Solvers exist for this problem and construct a transport between the

continuous distribution g#µ and the target ν̂; by contrast, methods forming only batch-

to-batch transports using samples from g#µ are biased and do not exactly minimize the

Wasserstein distance [6, 7, 8, 9].

The procedure also aims to be gradual, as in Figure 1.1, slowly deforming the source

distribution into the target distribution. While it is not explicitly shown that this gradual

property guarantees a simple generator, promising empirical results measuring Wasserstein

distance to a test set suggest that the learned generators generalize well. Figure 1.2 gives an

example similar to Figure 1.1, except that FIT step will iterate itself until stuck at a local

optimum. The learned manifold after the first step is a zig-zag shaped curve which does not

generalize. While the alternating procedure is able to further push the generated samples

to targets, the learned manifold is not as smooth as in Figure 1.1.

We show that our proposed method has a variety of theoretical guarantees Foremost

amongst these are showing that the Wasserstein distance is indeed minimized, and secondly

that it is minimized with respect to not just the dataset distribution ν̂, but moreover the

underlying ν from which ν̂ was sampled. This latter property can be proved via the triangle

inequality for Wasserstein distances, however such an approach introduces the Wasserstein

distance between ν and ν̂, namely W (ν, ν̂), which is exponential in dimension even in simple

cases [10, 11, 12]. Instead, we show that when a parametric model captures the distributions

well, then bounds which are polynomial in dimension are possible.

Empirically, we find that our method generates both quantitatively and qualitatively bet-

ter digits than the compared baselines on MNIST, and the performance is consistent on

both training and test datasets. We also experiment with the Thin-8 dataset [12], which is

considered challenging for methods without a parametric loss.

As a side result of our method, OTS is able to measure the Wasserstein-p distance between

generated and target distribution, which makes it capable as an evaluation tool of DGMs.

We apply our tool to GAN [4], LSGAN [13], WGAN [5] and WGAN-GP [14] with different

generator and discriminator architectures.

The rest of the thesis is structured as follows. In Chapter 2, we review the previous

works in deep generative models, evaluation methods, and optimal transport. In Chapter 3,

we introduce preliminaries of optimal transportation theory, then propose our semi-discrete

optimal-transport solver, along with methods to accelerate its computation. In Chapter 4,
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we first present our fitting procedure, and then the overall generator training algorithm. In

Chapter 5, we give theoretical analysis of the optimization and generalization properties of

our method. In Chapter 7, we briefly describe how to use our method to evaluate deep

generative models. In Chapter 6, we present our experimental results both qualitatively

and quantitatively, and also presents evaluation results of a variety of GAN methods. In

Chapter 8 and Chapter 9, we discuss the limitations of our method and conclude with some

future directions.
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Figure 1.2: Example of non-gradual training.
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CHAPTER 2: REVIEW OF RELATED WORKS

2.1 OPTIMAL TRANSPORT

Optimal transport, which is to find optimal plans to move between probability measures, is

an old yet vibrant topic. Two classic reference books of optimal transport are [15] and [16],

and the recent book [17] gives a comprehensive introduction to modern optimal transport

algorithms, with an emphasis on computational methods.

By continuity of input distributions, optimal tranport algorithms can be classified into

the following 3 classes: discrete OT, semi-discrete OT and continuous OT. For the task

of evaluating and training generative models, semi-discrete OT is of particular interest,

since the generated images G(z) forms a continuous distribution while the training and test

datasets are discrete. [18] provides a geometric view of semi-discrete optimal transport.

Comparing to traditional optimal transport algorithms applying linear programming or

network flow, it is found that stochastic algorithms based on dual formulation of optimal

transport achieves faster convergence, and can be naturally extended to semi-discrete and

continuous formulations [19]. In [19], the dual variables (a.k.a. Kantorovich potential) is

extended to continuous space via reproducing kernel Hilbert spaces. On the other hand, [20]

achieves the same goal by parameterizing the Kantorovich potential via neural networks.

Most stochastic optimization algorithms in [19] and [20] imposes an entropic regularization

to the optimal transport formulation: it has many advantages, for example guarantee of

unique optimal solution, faster algorithms [21] with Sinkhorn algorithm [22], etc.

On the other hand, in our context one would like to exactly compute Wasserstein metric

without any regularization to obtain an accurate measurement of generator performance.

Our work will focus on non-regularized semi-discrete optimal transport, and its application

on evaluation and training of GANs.

2.2 DEEP GENERATIVE MODELS

In recent years there has been a huge amount of research interest in the area of deep

generative models. We first briefly survey the two most popular families of DGMs: generative

adversarial networks (GANs) and variational auto-encoders (VAEs), then focus on discussing

works on the joint field of DGMs and optimal transport, as they have closer relationship to

our work.

Variational auto-encoders [23] maximize a variational lower bound of data likelihood. From
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the perspective of auto-encoders (AEs), VAEs can be alternatively viewed as a regularized

form of AEs, where reconstruction error and prior restriction to latent codes are jointly

optimized. [24] serves as a comprehensive tutorial to VAEs.

Generative Adversarial Networks [4] train both the generator and a separate discriminator

in an adversarial way: the discriminator is trained to distinguish between real and gener-

ated samples, and the generator is trained to fool the discriminator. The original training

objective of GANs is equivalent to minimizing a lower bound on the Jensen-Shannon diver-

gence of the generated and target distributions, and a slight variant of the original objective

is equivalent to minimizing a lower bound on their KL-divergence. Both objectives suffers

from vanishing gradient [25] which motivates development of Wasserstein GANs (WGAN)

[5].

Lots of works have appeared recently on the joint area of optimal transport and generative

modeling, WGAN [5] and its variant WGAN-GP [14] approximate Wasserstein-1 distance

as their training target, by applying Kantorovich-Rubinstein duality ([15], Theorem 1.14):

W (µ, ν) = sup
Lip(f)≤1

Ex∼µf(x)− Ex∼νf(x) (2.1)

Lip(f) ≤ 1 is approximated by the function class of neural networks. In WGAN, the

weights of the neural networks are restricted, in order to bound the Lipschitz constant of

neural networks, while in WGAN-GP the weights are unrestricted, but a regularization on

gradients at the interlopations between samples is introduced.

Wasserstein auto-encoder (WAE) ([26], [27]) optimizes Wasserstein distance by introduc-

ing a relaxation to its primal form. [28] gives a comparison of WGAN and WAE from the

view of optimal transportation theory.

The idea of computing optimal transport between batches of generated and real sam-

ples has been used in both non-adversarial generative modeling [7, 29], as well as adversarial

generative modeling [8, 9]. [7] optimizes an interpolation of regularized OT and MMD (max-

imum mean discrepancy) losses. [29] compute discrete OT with proximal point methods and

extend to generative models. [8] propose a variant to GAN which minimizes a combination of

optimal transport and energy distance. [9] proposes a neural-approximated form and incor-

porate it into the formulation of WGAN. Nonetheless, minimizing batch-to-batch transport

distance does not lead to the minimization of the Wasserstein distance between the gener-

ated and target distributions [6]. Instead, our method computes the whole-to-whole optimal

transport via the semi-discrete formulation.

[20] proposes to train generative networks by fitting towards the optimal transport plan

between latent code and data, which can be considered as a special case of the non-alternating
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procedure we discussed earlier. Important limitations of the method in [20] includes requiring

latent code having the same dimension as data, and not directly optimizing any distance

between generated and target distributions.

2.3 EVALUATION OF DGMS

The most important reason that generative adversarial networks [4] becomes extremely

popular is probably that it can generate images with unprecedented quality. However, eval-

uating the quality of generative models is still a diffcult task and perhaps no silver bullet

would exist for every application, as surveyed and discussed in [30] and [31].

[32] critically surveys popular evaluation metrics for GANs. Inception score [33] is proba-

bly the most popular evaluation metrics in the GAN literature, with several variants proposed

[34, 35]. It favors models that generate easy-to-classify samples by an external classification

model, and with diverse class distribution. While being widely accepted and reasonably

correlated to human perception of images, inception score and its variants have certain lim-

itations. Relying an external model, inception score does not directly measures how the

generators learn from their training data, but instead measures how they generate samples

favored by the inception model. Also, diversity of labels does not guaranttee removal of

mode collapse, which will be demonstrated by experimental results in our work.

Another line of GAN evaluation metrics attempts to measure distance between distribu-

tion of generated samples and distribution of real data. Such distance measures include

Wasserstein metric [5], Fréchet Inception Distance [36], maximum mean discrepancy [37, 38]

and so on. [39] performs empirical study using FID under a large-scale search of hyperpa-

rameters.

Our work will focus on Wasserstein metric, which is widely used both for training [5, 14]

and evaluating [40, 41] GANs. Instead of exactly computing Wasserstein distance, and

the supremum over all Lipschitz-1 functions is substituted by that over a function class of

neural networks, with weight clippling or gradient penalty. It is still unknown how good

these workarounds are. In contrast, we aim to evaluate GAN models by exactly compute

the Wasserstein distance between generated images and training datasets through stochastic

optimal transport algorithms.

On quantitatively measuring mode collapse, [42] proposes using birthday paradox test to

estimate the support size of generated samples. [43] constructs datasets with known modes

for counting number of modes covered.
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2.4 GENERALIZATION PROPERTIES OF WASSERSTEIN DISTANCE

[10] analyzes the sample complexity of evaluating integral probability metrics. [11] shows

that KL-divergence and Wasserstein distances do not generalize well in high dimensions, but

their neural net distance counterparts do generalize. [12] gives reasons for the advantage of

GAN over VAE, and collects the Thin-8 dataset to demonstrate the advantage of GANs,

which is used in our experiments.

The previous works focus on the worst case where exponential number of samples (w.r.t.

dimensionality) is required. On the other hand, our work proposes that there are provable

and verifiable cases that polynomial number of samples is sufficient. We will compare both

our theoretical and empirical findings with those in [11, 12].
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CHAPTER 3: THE OPTIMAL-TRANSPORT SOLVER

3.1 PRELIMINARIES: OPTIMAL TRANSPORT

Given two vector spaces X and Y denoting the origin and destination of masses respec-

tively, and a cost function c : X × Y → R, where c(x, y) is the cost of moving x ∈ X to

y ∈ Y . In the context of generative modeling, X and Y are usually the same space (the

space of generated and target samples), and c(x, y) is a metric defined for x, y ∈ X.

Given two probability measures (distributions) µ on X and ν on Y . For a deterministic

mapping T between X and Y , we define the distribution of T (x) ∈ Y where x ∼ µ as T#µ,

where # is called the pushforward operator. The Monge optimal transportation problem is

defined as finding a deterministic mapping T : X → Y such that T#µ = ν, and the optimal

transport cost

Tc(µ, ν) := inf
T#µ=ν

∫
X

c(x, T (x))dµ (3.1)

is achieved. We call T as a Monge optimal transference plan. y = T (x) denotes that x is

“transported” to y by the plan T , with the cost of c(x, y).

In some cases, we would like the mass in some x ∈ X be split and transported to multiple

y ∈ Y . Mass is allowed to split because sometime it is necessary (for example, when µ is

a point mass on X), and also for computational reasons. Formally, define coupling Π(µ, ν)

as the collection of measures on X × Y with marginal distributions µ and ν. We define

Kantorovich optimal transportation problem as finding a coupling measure π ∈ Π(µ, ν) such

that the optimal transportation cost

OT (µ, ν) := inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ (3.2)

is achieved. π is called as a Kantorovich optimal transference plan. Throughout the thesis

we will use the notation Tc for both Monge and Kantorovich optimal transport cost: there

will be no ambiguity wherever we use it.

Now we give an informal derivation of the Kantorovich duality on which our method

heavily relies. See Chapter 1 of [15] for the rigorous proof. Define Kantorovich potentials

ϕ(x), ψ(y) on X, Y respectively, along with the following optimization problem

I(π) := sup
ϕ∈L1(dµ),ψ∈L1(dν)

∫
X

ϕ(x)dµ+

∫
Y

ψ(y)dν −
∫
X×Y

(ϕ(x) + ψ(y)) dπ (3.3)

where L1(dµ) is the class of dµ-almost absolutely integratable functions.
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It is easy to verify that if π ∈ Π(µ, ν), then I(π) = 0; otherwise, I(π) = +∞, as we can

give ϕ(x) and ψ(y) arbitrarily large values on (x, y) within the discrepancies between the

(µ, ν) and the marginal distributions of π.

Then, the infimum over Π(µ, ν) can be rewritten as infimum over arbitrary distribution

on X × Y with I(π) as an indicator operator:

Tc(µ, ν) = inf
π

sup
ϕ,ψ

∫
X×Y

c(x, y)dπ +

∫
X

ϕ(x)dµ+

∫
Y

ψ(y)dν −
∫
X×Y

(ϕ(x) + ψ(y)) dπ

= inf
π

sup
ϕ,ψ

∫
X

ϕ(x)dµ+

∫
Y

ψ(y)dν −
∫
X×Y

(ϕ(x) + ψ(y)− c(x, y)) dπ

= sup
ϕ,ψ

inf
π

∫
X

ϕ(x)dµ+

∫
Y

ψ(y)dν −
∫
X×Y

(ϕ(x) + ψ(y)− c(x, y)) dπ (3.4)

where minimax principle is applied for the last equality.

If for any non-zero measure subset of X × Y , ϕ(x) +ψ(y) > c(x, y), then π can be chosen

so that ∫
X×Y

(ϕ(x) + ψ(y)− c(x, y))

can be arbitrary large, and the infimum equals to −∞. Therefore, the supremum has to

be taken over Φc, the collection of pairs of (ϕ, ψ) where ϕ ∈ L1(dµ), ψ ∈ L1(dν) and

ϕ(x) + ψ(y) ≤ c(x, y) for dµ-almost x and dν-almost y.

In this case, the infimum over π is achieved at π = 0 and

Tc(µ, ν) = sup
(ϕ,ψ)∈Φc

∫
X

ϕ(x)dν +

∫
Y

ψ(y)dν (3.5)

which is called the Kantorovich dual form of optimal transport.

3.2 THE SEMI-DISCRETE OPTIMAL-TRANSPORT SOLVER (OTS)

To apply optimal transport to our generative modeling case, we first discuss several unique

properties of our problem, comparing to the general optimal transport formulation discussed

in Section 3.1. First, we would like to compute the optimal transport cost between the

distributions of generated samples and real samples, which come from the same space. We

use X to denote this space. A popular choice of optimal-transport-based distance notion is

the Wasserstein-p metric:

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X

d(x, y)pdπ

)1/p

, (3.6)
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where d is a metric (a usual choice is the `q metric) on X. Wp(µ, ν) equals to the 1/p power

of the Kantorovich optimal transport cost with cost function c(x, y) := d(x, y)p.

Second, the generated samples has the form g(z) where z is usually drawn from a simple

distribution e.g. standard multivariate Gaussian. We use µ to denote the simple distribution

and the generated distribution is g#µ.

Finally, the the target distribution ν = ν̂ is an empirical measure, meaning the uniform

distribution on a training set {y1, ..., yN}. When g#µ is continuous, the optimal transport

problem here becomes semi-discrete, and the maximizing choice of ϕ can be solved analyti-

cally, transforming the problem to optimization over a vector in RN :

Tp(g#µ, ν̂) = sup
ϕ,ψ∈Φc

∫
X

ϕ(x)dg#µ(x) +
1

N

N∑
i=1

ψ(yi)

= sup
ϕ∈Φ′

c,ψ̂
,ψ̂∈RN

∫
X

ϕ(x)dg#µ(x) +
1

N

N∑
i=1

ψ̂i

= sup
ψ̂∈RN

∫
X

min
i

(c(x, yi)− ψ̂i)dg#µ(x) +
1

N

N∑
i=1

ψ̂i, (3.7)

where ψ̂i := ψ(yi), and Φ′
c,ψ̂

is the collection of functions ϕ ∈ L1(d(g#µ)) such that ϕ(x) +

ψ̂i ≤ c(x, yi) for almost all x and i = 1, ..., N . The third equality comes from the maximizing

choice of ϕ: ϕ(x) = mini(c(x, yi)− ψ̂i).
Our OTS solver, presented in Algorithm 3.1, uses SGD to maximize eq. (3.7), or rather

to minimize its negation

−
∫
X

min
i

(c(x, yi)− ψ̂i)dg#µ(x)− 1

N

N∑
i=1

ψ̂i. (3.8)

OTS is similar to Algorithm 2 of [19], but without averaging. Note as follows that Algo-

rithm 3.1 is convex in ψ̂, and thus a convergence theory of OTS could be developed, although

this direction is not pursued here.
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Algorithm 3.1 Optimal Transport Solver (OTS)

Input: continuous generated distribution g#µ, training dataset (y1, ..., yn) corresponding

to ν̂, cost function c, batch size B, learning rate η.

Output: ψ̂ = (ψ̂1, ..., ψ̂N)

Initialize t := 0 and ψ̂(0) ∈ RN .

repeat

Generate samples x = (x1, ..., xB) from g#µ.

Define loss l(x) := 1
B

∑B
j=1 mini(c(xj, yi)− ψ̂i) + 1

N

∑N
i=1 ψ̂i.

Update ψ̂(t+1) := ψ̂(t) + η · ∇ψ̂l(x).

Update t := t+ 1.

until Stopping criterion is satisfied.

return ψ̂(t).

Proposition 3.1. Equation (3.8) is a convex function of ψ̂.

Proof. It suffices to note that mini

(
c(g(x), yi)− ψ̂i

)
is a minimum of concave functions

and thus concave; eq. (3.8) is therefore concave since it is a convex combination of concave

functions with an additional linear term.

Note that the optimal transport cost computed via Equation (3.5) is the cost for the

Kantorovich optimal transference plan, where mass can be split, which is a relaxation of the

Monge optimal transference plan, where mass cannot be split and a deterministic mapping

T exists between x ∼ µ′ and y ∼ ν ′, as discussed in Section 3.1.

A deterministic Monge OT mapping is crucial to our setup, since it provides the regression

target for our FIT step. In general, Monge and Kantorovich OT plans are different; in our

semi-discrete setting, the Kantorovich OT plan is unique and does not split mass, making it

also a Monge OT plan, assuming the cost function is strictly convex and superlinear ([15],

Theorem 2.44):

Proposition 3.2. Assume X = Rd, g#µ is continuous, and the cost function c(x, y) takes

the form of c(x− y) and is a strictly convex, superlinear function on Rd. Given the optimal

ψ̂ for eq. (3.8), then T (x) := arg minyi c(x, yi) − ψ̂i, which is a Monge transference plan, is

the unique Kantorovich optimal transference plan from g#µ to ν.

13



Proof. By Theorem 2.44 of [15], if T (x) can be uniquely determined by T (x) = x −
∇c∗(∇ϕ(x)), where ϕ is defined in eq. (3.5), then T (x) is the unique Monge-Kantorovich

optimal transference plan. Defining m := arg mini c(x− yi)− ψ̂i for convenience, we have

T (x) = x−∇c∗(∇ϕ(x))

=⇒ x− T (x) = ∇c∗(∇ϕ(x))

= ∇c∗(∇x min
i
c(x− yi)− ψ̂i)

= ∇c∗∇x(c(x− ym)− ψ̂m)

= ∇c∗∇c(x− ym)

= x− ym
=⇒ T (x) = ym

= arg min
yi

c(x− yi)− ψ̂i

which concludes the proof.

Some remarks:

1. We use arg minyi c(x, yi)− ψ̂i for yarg mini c(x,yi)−ψ̂i
as a slight abuse of notation.

2. Wasserstein-p distances on `p metric with p > 1 satisfy strict convexity and super-

linearity, while p = 1 does not. On the other hand, in practice we have found that

for p = 1, Algorithm 3.1 still converges to near-optimal transference plans, and this

particular choice of metric generates crispier images than others.

3. The continuity of g#µ, which is required for the existence of Monge transference plan,

holds if g is a feedforward neural network with non-degenerate weights, and invertible

activation function such as sigmoid, tanh, or leaky ReLU. For non-invertible activation

function such as ReLU, it is possible that g#µ gives mass to a discrete subset of Rd;

however, this did not happen in our experiments, and moreover can be circumvented

by adding a small perturbation to g’s output. It is possible to prove an extension of

Theorem 2.44 of [15] under milder assumptions: we hope to explore this direction in

the future.

3.3 ACCELERATION VIA SUBSAMPLING

A drawback of Algorithm 3.1 is that computing minimum on the whole dataset has O(N)

complexity, which is costly for extremely large datasets. For moderately sized datasets such
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as MNIST, the efficiency is acceptable, as will be presented in Chapter 6, but it might be

prohibitive for very large datasets.

This motivates us to find a solution that can avoid computing max over the whole dataset.

Our solution turns out to be very simple: for every iteration, we only sample a portion of

dataset y, compute max over the sampled y’s, and then update their ψ̂, as detailed in

Algorithm 3.2.

Algorithm 3.2 Optimal Transport Solver (OTS)

Input: continuous generated distribution g#µ, training dataset (y1, ..., yn) corresponding

to ν̂, cost function c, batch size B, subsample size C, learning rate η.

Output: ψ̂ = (ψ̂1, ..., ψ̂N)

Initialize t := 0 and ψ̂(0) ∈ RN .

repeat

Generate samples x = (x1, ..., xB) from g#µ.

Draw s1, ..., sC uniformly from {1, ..., N}.
Define loss l(x) := 1

B

∑B
j=1 mini(c(xj, ysi)− ψ̂si) + 1

C

∑C
i=1 ψ̂si .

Update ψ̂(t+1) := ψ̂(t) + η · ∇ψ̂l(x).

Update t := t+ 1.

until Stopping criterion is satisfied.

return ψ̂(t).

To intuitively see how Algorithm 3.2 works, let us take a look on how SGD is performed

in Algorithm 3.1 more closely. For each iteration, a batch of x is sampled and −c(xi, yj)− ψ̂j
is computed for each yj, and a batch of arg maxyj −(xi, yj) − ψ̂j are obtained. Then those

“arg max ψ̂j” are penalized by SGD (by decreasing all the other ψ̂j), making them less likely

to be argmax again. In Algorithm 3.2, argmax of a subsample of y is selected and then

penalized. If the maximum over the subsample is not far away it over the whole dataset,

then we could expect this subsample maximum to be penalized later by Algorithm 3.1, and

Algorithm 3.2 does this penalization early for faster convergence.

Mathematically, Algorithm 3.1 optimizes

f(ψ̂) := Eµ max
j

(
−c(x, yj)− ψ̂j

)
+

1

n

n∑
j=1

ψ̂j (3.9)
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while Algorithm 3.2 optimizes

fs(ψ̂) := Es

(
Eµ max

sj

(
−c(x, ysj)− ψ̂sj

)
+

1

C

C∑
j=1

ψ̂sj

)
(3.10)

where Es := Es1,...,sC∈{1,...,n}. Under mild assumptions of data, the difference between eq. (3.9)

and eq. (3.10) is small. We leave detailed theoretical analysis as future work.
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CHAPTER 4: THE GENERATOR FITTING ALGORITHM

4.1 THE FITTING STEP (FIT)

Given an initial generator g, and an optimal transference plan T between g#µ and ν̂

thanks to OTS, we update g to obtain a new generator g′ by simply sampling z ∼ µ and

regressing the new generated sample g′(z) towards the old OT plan T (g(z)), as detailed in

Algorithm 4.1.

Under a few assumptions detailed in Section 5.1, Algorithm 4.1 is guaranteed to return a

generator g′ with strictly lesser optimal transport cost

Tc(g′#µ, ν̂) ≤ Ex∼g′#µc(x, T (x)) < Ex∼g#µc(x, T (x)) = Tc(g#µ, ν̂), (4.1)

where T denotes an exact optimal plan between g#µ and ν̂; Section 5.1 moreover considers

the case of a merely approximately optimal T , as returned by OTS.

Algorithm 4.1 Fitting Optimal Transport Plan (FIT)

Input: sampling distribution µ, old generator g with parameter θ, transference plan T ,

cost function c, batch size B, learning rate η.

Output: new generator g′ with parameter θ′.

Initialize t := 0 and g′ with parameter θ′(0) = θ.

repeat

Generate random noise z = (z1, ..., zB) from µ.

Define loss l(z) := 1
B

∑B
j=1 c(g

′(z), T (g(z))).

Update θ(t+1) := θ′(t) − η · ∇θ′l(z).

Update t := t+ 1.

until Stopping criterion is satisfied.

return g′ with parameter θ′(t).
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4.2 THE OVERALL ALGORITHM

The overall algorithm, presented in Algorithm 4.2, alternates between OTS and FIT: dur-

ing iteration i, OTS solves for the optimal transport map T between old generated distribu-

tion gi#µ and ν̂, then FIT regresses gi+1#µ towards T#gi#µ to obtain lower Wasserstein

distance.

Algorithm 4.2 Overall Algorithm

Input: sampling distribution µ, training dataset (y1, ..., yn) corresponding to ν̂, initialized

generator g0 with parameter θ0, cost function c, batch size B, learning rate η.

Output: final generator g with parameter θ.

Initialize i := 0 and g0 with parameter θ(0) = θ0.

repeat

Compute ψ̂i := OTS(gi#µ, ν̂, c, B, η).

Get Ti as Ti(x) := arg minyi c(x, yi)− ψ̂i.
Compute gi+1 := FIT(µ, gi, Ti, c, B, η) with parameter θ(i+1).

Update i := i+ 1.

until Stopping criterion is satisfied.

return g with parameter θ(i).
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CHAPTER 5: THEORETICAL ANALYSIS

We now analyze the optimization and generalization properties of our Algorithm 4.2:

we will show that the method indeed minimizes the empirical transport cost, meaning

Tc(gi#µ, ν̂) → 0, and also generalizes to the transport cost over the underlying distribu-

tion, meaning Tc(gi#µ, ν)→ 0.

5.1 OPTIMIZATION GUARANTEE

Our analysis works for general transportation costs Tc that satisfy the triangle inequality,

which holds for Wasserstein-p distances over any metric space, if p ≥ 1 ([15], Theorem 7.3).

Our method is parameterized by a scalar α ∈ (0, 1/2) whose role is to determine the relative

precisions of OTS and FIT, controlling the gradual property of our method. We assume that

for each round i, there exist error terms εot1, εot2, εfit such that:

1. Round i of OTS finds transport Ti satisfying

Tc(gi#µ, ν̂) ≤
∫
c(Ti ◦ gi, gi)dµ ≤ Tc(gi#µ, ν̂)(1 + εot1), (approximate optimality)

Tc(Ti#gi#µ, ν̂) ≤ εot2 ≤ αTc(gi#µ, ν̂); (approximate pushforward)

2. Round i of FIT finds gi+1 satisfying∫
c(Ti ◦ gi, gi+1)dµ ≤ εfit ≤

1− 2α

1 + εot1

∫
c(Ti ◦ gi, gi)dµ ≤ (1− 2α)Tc(gi#µ, ν̂)

(progress of FIT);

3. Each gi#µ is continuous (continuity of generation).

The first assumption is satisfied by Algorithm 3.1 since it represents a convex problem;

moreover, it is necessary in practice to assume only approximate solutions. The second

assumption holds when there is still room for the generative network to improve Wasserstein

distance: otherwise, the training process can be stopped. The third assumption is satisfied

in general conditions as discussed in Proposition 3.2.

α is a tunable parameter of our overall algorithm: a large α relaxes the optimality re-

quirement of OTS (which allows early stopping of Algorithm 3.1) but requires large progress
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of FIT (which prevents early stopping of Algorithm 4.1), and vice versa. This gives us a

principled way to determine the stopping criteria of OTS and FIT.

Given the assumptions, we now show Tc(gi#µ, ν̂)→ 0. By triangle inequality,

Tc(gi+1#µ, ν̂) ≤ Tc(gi+1#µ, Ti#gi#µ) + Tc(Ti#gi#µ, ν̂) ≤ Tc(gi+1#µ, Ti#gi#µ) + εot2.

Since gi+1#µ is continuous, Tc(gi+1#µ, Ti#gi#µ) is realized by some deterministic trans-

port T ′i satisfying T ′i#gi+1#µ = Ti#gi#µ, whereby

Tc(gi+1#µ, Ti#gi#µ) =

∫
c(T ′i ◦ gi+1, gi+1)dµ =

∫
c(Ti ◦ gi, gi+1)dµ ≤ εfit.

Combining these steps with the upper bounds on εot2 and εfit,

Tc(gi+1#µ, ν̂) ≤ εot2 + εfit ≤ (1− α)Tc(gi#µ, ν̂) ≤ e−αTc(gi#µ, ν̂).

Summarizing these steps and iterating this inequality gives the following bound on Tc(gt#µ, ν̂),

which goes to 0 as t→ 0.

Theorem 5.1. Suppose (as discussed above) that Tc satisfies the triangle inequality, each

gi#µ is continuous, and the OTS and FIT iterations satisfy

Tc(Ti#gi,#µ, ν̂) ≤ εot2 ≤ αTc(gi#µ, ν̂), (5.1)∫
c(Ti ◦ gi, gi+1)dµ ≤ εfit ≤ (1− 2α)Tc(gi#µ, ν̂). (5.2)

Then Tc(gt#µ, ν̂) ≤ e−tαTc(g0#µ, ν̂).

5.2 GENERALIZATION GUARANTEE

In the context of generative modeling, generalization means that the model fitted via

training dataset ν̂ not only has low divergence D(gi#µ, ν̂) to ν̂, but also low divergence to

ν, the underlying distribution from which ν̂ is drawn i.i.d.. If Tc satisfies triangle inequality,

then

Tc(gi#µ, ν) ≤ Tc(gi#µ, ν̂) + Tc(ν̂, ν), (5.3)

and the second term goes to 0 with sample size n→∞, but the sample complexity depends

exponentially on the dimensionality [10, 11, 12]. To remove this exponential dependence,

we make parametric assumptions about the underlying distribution ν; a related idea was
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investigated in detail in parallel work [44].

Our approach is to assume the Kantorovich potential ψ̂, defined on ν̂, is induced from a

function ψ ∈ Ψ defined on ν, where Ψ is a function class with certain approximation and

generalization guarantees. Since neural networks are one such function classes (as will be

discussed later), this is an empirically verifiable assumption (by fitting a neural network to

approximate ψ̂), and is indeed verified in the Appendix.

For this part we use slightly different notation: for a fixed sample size n, let (gn, Tn, ν̂n)

denote the earlier (g, T, ν̂). We first suppose the following approximation condition: Suppose

that for any ε > 0, there exists a class of functions Ψ so that

sup
ψ∈L1(ν)

∫
ψcdµ+

∫
ψdν ≤ ε+ sup

ψ∈Ψ

∫
ψcdµ+

∫
ψdν; (5.4)

thanks to the extensive literature on function approximation with neural networks [45, 46,

47], there are various ways to guarantee this, for example increasing the depth of the network.

A second assumption is a generalization condition: given any sample size n and function

class Ψ, suppose there exists Dn,Ψ ≥ 0 so that with probability at least 1− δ over a draw of

n examples from ν (giving rise to empirical measure ν̂n), every ψ ∈ Ψ satisfies∫
ψdν ≤ Dn,Ψ +

∫
ψdν̂n; (5.5)

thanks to the extensive theory of neural network generalization, there are in turn various

ways to provide such a guarantee [48], for example through VC-dimension of neural networks.

Combining these two assumptions,

Tc(gn#µ, ν) = sup
ψ∈L1(ν)

{∫
ψcd(gn#µ) +

∫
ψdν

}
≤ ε+ sup

ψ∈Ψ

{∫
ψcd(gn#µ) +

∫
ψdν

}
≤ Dn,Ψ + ε+ sup

ψ∈Ψ

{∫
ψcd(gn#µ) +

∫
ψdν̂n

}
≤ Dn,Ψ + ε+ sup

ψ∈L1(ν̂n)

{∫
ψcd(gn#µ) +

∫
ψdν̂n

}
≤ Dn,Ψ + ε+ Tc(gn#µ, ν̂n). (5.6)

This can be summarized as follows.
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Theorem 5.2. Let ε > 0 be given, and suppose assumptions eqs. (5.4) and (5.5) hold. Then,

with probability at least 1− δ over the draw of n examples from ν,

Tc(gn#µ, ν) ≤ Dn,Ψ + ε+ Tc(gn#µ, ν̂n).

By the earlier discussion, Dn,Ψ → 0 and ε→ 0 as n→∞, whereas the third term goes to

0 as discussed in Section 5.1.

5.3 VERIFYING THE GENERALIZATION ASSUMPTION

We fit an MLP with 4 hidden layers of 512 neurons to the vector ψ̂ trained between our

fitted generating distribution g#µ and dataset ν̂. Figure 5.1 shows that the training error

goes to zero and ψ has almost the same value as ψ̂ when evaluated on ν̂.

One way to achieve the generalization result without the verification process, is to parametrize

ψ as a neural network in the optimal transport algorithm. In Algorithm 3.1, we choose to op-

timize the vectorized ψ̂ since it is a convex programming formulation guaranteed to converge

to a global minimum.
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Figure 5.1: ψ̂ of on MNIST fitted by neural network.
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CHAPTER 6: EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL SETUP

6.1.1 Datasets

We evaluate our generative model on the MNIST and Thin-8 128× 128 datasets [49, 12].

On MNIST, we use the original test/train split [49], and each model is trained on the training

set and evaluated on both training and testing sets. For Thin-8 we use the full dataset for

training since the number of samples is limited.

6.1.2 Baselines

We compare our model against several neural net generative models:

1. WGAN [5];

2. WGANGP [14];

3. Variational auto-encoder (VAE) [23];

4. Wasserstein auto-encoder (WAE) [27].

We experiment with both MLP and DCGAN [50] as the generator architectures, and use

DCGAN as the default discriminator/encoder architecture as it achieves better results for

these baselines. Our method and WAE allow optimizing general optimal transport costs, and

we choose to optimize the Wasserstein-1 distance on the `1 metric both for fair comparison

with WGAN, and also since we observed clearer images on both MNIST and Thin-8.

6.1.3 Metrics

We use the following metrics to quantify the performance of different generative models:

Neural net distance (NND-WC, NND-GP). [11] define the neural net distance be-

tween the generated distribution g#µ and dataset ν as:

DF(g#µ, ν) := sup
f∈F

Ex∼g#µf(x)− Ey∼νf(y), (6.1)
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where F is a neural network function class. We use DCGAN with weight clipping at

±0.01, and DCGAN with gradient penalty with λ = 10 as two choices of F . We call

the corresponding neural net distances NND-WC and NND-GP respectively.

Wasserstein-1 distance (WD). This refers to the exact Wasserstein distance on `1 metric

between the generated distribution µ and dataset ν, computed with our Algorithm 3.1.

Inception score (IS). [33] assume there exists a pretrained external classifier outputing

label distribution p(y|x) given sample x. The score is defined as

ISp(µ) := exp{Ex∼µKL(p(y|x) || p(y))} (6.2)

Fréchet Inception distance (FID). [36] give this improvement over IS, which compares

generated and real samples by the activations of a certain layer in a pretrained classifier.

Assuming the activations follow Multivariate Gaussian distribution of mean µg, µr and

covariance Σg,Σr, FID is defined as:

FID(µg, µr,Σg,Σr) := ‖µg − µr‖2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2). (6.3)

We chose the above metrics because they capture different aspects of a generative model,

and none of them is a one-size-fit-all evaluation measure. Among them, NND-WC and NND-

GP are based on the adversarial game and thus biased in favor of WGAN and WGANGP. WD

measures the Wasserstein distance between the generated distribution and the real dataset,

and favors WAE and our method. IS and FID can be considered as neutral evaluation

metrics, but they require labeled data or pretrained models to measure the performance of

different models.

6.1.4 Detail of Neural Network Architectures

We summarize the neural networks architectures used in the following diagrams. In the

diagrams, Input/Hidden/Output(x, y, z) denotes that the activation has size x× y × z; FC

denotes fully-connected layers; ConvT(k, s, p) denotes 2D transposed convolutional layers

with kernel size k, stride s and padding size p, which is consistent to the conventional

notations; BN denotes batch normalization layers [51].
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MLP:

Input(100)
FC−−→ Hidden(512)

FC−−→ Hidden(512)
FC−−→ Hidden(512)

FC−−→ Output(D).

DCGAN MNIST 28× 28:

Input(100, 1, 1)
ConvT(7,1,0)+BN−−−−−−−−−−→ Hidden(128, 7, 7)

ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(64, 14, 14)

ConvT(4,2,1)−−−−−−−→ Output(1, 28, 28).

DCGAN Thin-8 128× 128:

Input(100, 1, 1)
ConvT(4,1,0)+BN−−−−−−−−−−→ Hidden(256, 4, 4)

ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(128, 8, 8)

ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(64, 16, 16)
ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(32, 32, 32)

ConvT(4,2,1)−−−−−−−→ Hidden(16, 64, 64)
ConvT−−−−→ Output(1, 128, 128).

Figure 6.1: Generator architectures.

DCGAN 28× 28:

Input(1, 28, 28)
Conv(4,2,1)−−−−−−→ Hidden(64, 14, 14)

ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(128, 7, 7)
FC−−→ Output(1).

Thin-8 128× 128:

Input(1, 128, 128)
Conv(4,2,1)−−−−−−→ Hidden(16, 64, 64)

ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(32, 32, 32)

ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(64, 16, 16)
ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(128, 8, 8)

ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(256, 4, 4)
FC−−→ Output(1).

Figure 6.2: Discriminator architectures.
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DCGAN 28× 28:

Input(1, 28, 28)
Conv(4,2,1)−−−−−−→ Hidden(64, 14, 14)

ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(128, 7, 7)
FC−−→ Output(100).

Thin-8 128× 128:

Input(1, 128, 128)
Conv(4,2,1)−−−−−−→ Hidden(16, 64, 64)

ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(32, 32, 32)

ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(64, 16, 16)
ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(128, 8, 8)

ConvT(4,2,1)+BN−−−−−−−−−−→ Hidden(256, 4, 4)
FC−−→ Output(100).

Figure 6.3: Encoder architectures.

For WGANGP, batch normalization is not used since it affects the computation of gradi-

ents. All activations used are ReLU. Learning rate is 10−4 for WGAN, WGANGP and our

method, and 10−3 for VAE and WAE.

6.1.5 Training Details of Our Method

To get the transport mapping T in OTS, we memorize the sampled batches and their

transportation targets, and reuse these batches in FIT. By this trick, we avoid recomputing

the maximum over the whole dataset.

Our empirical stopping criterion relies upon keeping a histogram of transportation targets

in memory: if the histogram of targets is close to a uniform distribution (which is the

distribution of training dataset), we stop OTS. This stopping criterion is grounded by our

analysis in Section 5.1.

6.2 QUALITATIVE STUDY

We first qualitatively investigate our generative model and compare the samples generated

by different models.

Samples of generated images. Figure 6.4 shows samples generated by different models

on the MNIST dataset. The results show that our method with MLP (Figure 6.4(b)) and

DCGAN (Figure 6.4(c)) both generate digits with better visual quality than the baselines
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with the DCGAN architecture. Figure 6.5 shows the generated samples on Thin-8 by our

method, WGANGP, and WAE. The results of WGAN and VAE are omitted as they are

similar to both WGANGP and WAE consistently on Thin-8. When MLP is used as the

generator architecture, our method again outperforms WGANGP and WAE in terms of the

visual quality of the generated samples. When DCGAN is used, the digits generated by our

method have slightly worse quality than WGANGP, but better than WAE.

(a) Real Image (b) Ours-MLP (c) Ours-DCGAN

(d) WGAN (e) WGANGP (f) WAE

Figure 6.4: Real and generated samples on the MNIST dataset: (a) real samples; (b) samples

generated by our model with MLP as the generator network; (c) samples generated by our

model with DCGAN as the generator network; (d) samples generated by WGAN; (e) samples

generated by WGANGP; (f) samples generated by WAE. DCGAN is used as the generator

architecture in (d)(e)(f).
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(a) Ours-MLP (b) WGANGP-MLP (c) WAE-MLP

(d) Ours-DCGAN (e) WGANGP-DCGAN (f) WAE-DCGAN

Figure 6.5: Generated samples on the Thin-8 dataset. (a)(b)(c) are samples generated by

different methods using MLP as the generator; and (d)(e)(f) are samples when using DCGAN

as the generator.

Importance of the alternating procedure. We use this set of experiments to verify

the importance of the alternating procedure that gradually improves the generative network.

Figure 6.6 shows: (a) the samples generated by our model; and (b) the samples generated

by a weakened version of our model that does not employ the alternating procedure. The

non-alternating counterpart derives an optimal transport plan in the first run, and then fits

towards the derived plan. It can be seen clearly the samples generated with such a non-

alternating procedure have considerably lower visual quality. This verifies the importance

of the alternating training procedure: fitting the generator towards the initial OT plan does

not provide good enough gradient direction to produce a high-quality generator.
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(a) Alternating. (b) Non-alternating.

Figure 6.6: Generated samples on MNIST with and without the alternating procedure.

6.3 QUANTITATIVE RESULTS

We proceed to measure the quantitative performance of the compared models.

MNIST results. Table 6.1 shows the performance of different models on the MNIST

training and testing sets. In the first part when MLP is used to instantiate generators, our

model achieves the best performance in terms of all the five metrics. The results on neural

network distances (NND-WC and NND-GP) are particularly interesting: even though neural

network distances are biased in favor of GAN-based models because the adversarial game

explicitly optimizes such distances, our model still outperforms GAN-based models without

adversarial training. The second part shows the results when DCGAN is the generator

architecture. Under this setting, our method achieves the best results among all the metrics

except for neural network distances. Comparing the performance of our method on the

training and testing sets, one can observe its consistent performance and similar comparisons

against baselines. This phenomenon empirically verifies that our method does not overfit.
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Table 6.1: Quantitative results on the MNIST training sets.

Method Arch MNIST Training

NND-WC NND-GP WD IS FID

WGAN 0.29 5.82 140.710 7.51 31.28

WGANGP 0.13 2.61 107.61 8.89 8.46

VAE MLP 0.53 4.26 101.06 7.10 52.42

WAE 0.18 3.64 90.91 8.42 11.12

Ours 0.11 2.56 66.68 9.77 3.21

WGAN 0.11 4.69 125.63 7.02 27.64

WGANGP 0.08 0.83 93.61 8.65 4.65

VAE DCGAN 0.48 3.68 106.63 6.96 42.10

WAE 0.18 3.29 90.96 8.35 12.28

Ours 0.10 2.28 70.13 9.54 3.76

Table 6.2: Quantitative results on the MNIST testing sets. Note that the Wasserstein

distance on training and testing sets of different sizes are not directly comparable.

Method Arch MNIST Test

NND-WC NND-GP WD FID

WGAN 0.29 6.05 142.48 31.91

WGANGP 0.12 3.02 112.22 8.99

VAE MLP 0.52 4.42 110.49 51.88

WAE 0.15 3.80 101.46 11.49

Ours 0.10 2.79 82.87 3.56

WGAN 0.10 4.86 132.97 28.44

WGANGP 0.07 1.66 104.15 5.45

VAE DCGAN 0.46 3.89 115.59 41.95

WAE 0.15 3.53 101.02 12.66

Ours 0.09 2.55 82.79 4.18
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Thin-8 results. There are no meaningful classifiers to compute IS and FID on the Thin-8

dataset. We thus only use NND-WC, NND-GP and WD as the quantitative metrics, and

Table 6.3 shows the results. Our method obtains the best results among all the metrics

with both the MLP and DCGAN architectures. For NND-WC, all methods expect ours

have similar results of around 3.1: we suspect this is due to the weight clipping effect,

which is verified by tuning the clipping factor in our exploration. NND-GP and WD have

consistent correlations for all the methods. This phenomenon is expected on a small-sized

but high-dimensional dataset like Thin-8, because the discriminator neural network has

enough capacity to approximate the Lipschitz-1 function class on the samples. The result

comparison between NND-WC and NND-GP directly supports the claim [14] that gradient-

penalized neural networks (NND-GP) have much higher approximation power than weight-

clipped neural networks (NND-WC).

It is interesting to see that WGAN and WGANGP lead to the largest neural net distance

and Wasserstein distance, yet their generated samples still have the best visual qualities on

Thin-8. This suggests that the success of GAN-based models cannot be solely explained by

the restricted approximation power of discriminator [11, 12].

Table 6.3: Quantitative results on the Thin-8 dataset.

Method Arch NND-WC NND-GP WD

WGAN 3.12 258.05 3934

WGANGP 3.12 144.38 2235

VAE MLP 3.11 105.22 1950

WAE 3.07 111.79 1945

Ours 2.87 80.48 1016

WGAN 3.10 157.84 2481

WGANGP 3.04 79.47 1909

VAE DCGAN 3.02 81.38 1820

WAE 3.11 88.04 1950

Ours 2.92 47.59 923
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Time cost. Table 6.4 reports the training time of different models on MNIST. For moder-

ately sized datasets such as MNIST, our method is faster than WGAN and WGANGP but

slower than VAE and WAE. Compared with GAN-based models, our method does not have

a discriminator which saves time.

Table 6.4: Training time per iteration of the compared methods on MNIST.

Method WGAN WGANGP VAE WAE Ours

Time (ms) 26.17 47.03 7.38 7.22 11.08
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CHAPTER 7: EVALUATION OF GANS

In this chapter, we discuss the “side product” of our OTS algorithm: some new metrics

to effectively evaluate deep generative models.

7.1 DEFINING NEW METRICS

As discussed in previous sections, now we can exactly compute Wasserstein score SW (g) :=

Wp(g#µ, ν̂) of any generator, without any regularization or approximation through neural

networks, through Algorithm 3.1 and 3.2.

However, using Wasserstein score as the single metric of quality has some drawbacks.

When we say a generator does not generate good samples, we are typically referring to one

of the following three cases:

1. The generator produces samples that do not correspond to training dataset, for exam-

ple images that do not look like digits for MNIST;

2. The generator produces samples that only correspond to a portion of training dataset;

3. The generator simply memorizes the training dataset and can produce nothing beyond

that.

We call the 3 cases under-approximation, mode collapse and overfitting, respectively. (The

word “mode collapse” has different definitions throughout GAN literature, referring to either

Case 2 or Case 3. We define the 2 cases as “mode collapse” and “overfitting” respectively

to stress their differences.)

While Wasserstein score is sensitive to all the 3 cases (test dataset is required for over-

fitting), as a single score it does not distinguish between the cases. A generator producing

blurry images might have the same score as another generator producing sharp images but

mode collapse.

This motivates us to define metrics to quantify each case separately. We first define

approximation score as follows:

SA(g) := inf
w∈Rn,w�0,w>1=n

Wp(g#µ,w>ν) (7.1)

where w � 0 means each entry of w is non-negative. Approximation score allows the

generator to “choose” a weighted subset of data to achieve the lowest possible Wasserstein

distance, i.e. mode collapse to a subset to get highest approximation quality.
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While SA can be calculated in dual form similarly to Algorithm 3.1 and 3.2, there is a

simple and intuitive way to calculate by the following proposition:

Proposition 7.1. For p ≥ 1, for any w ∈ Rn such that w � 0 and w>1 = n,

Wp(µ,w
>ν) ≥

(
Ex∼µ inf

y∈Supp(ν)
‖x− y‖pp

)1/p

(7.2)

Proof. Let π be the optimal transport plan between µ and w>ν, then

W p
p (µ,w>ν) = E(x,y)∼π(x,y)‖x− y‖pp ≥ E(x,y)∼π(x,y) inf

y∈Supp(ν)
‖x− y‖pp

= Ex∼µ inf
y∈Supp(ν)

‖x− y‖pp

which concludes the proof.

Letting w be the empirical distribution of Lp nearest neighbors, then the following corollary

is directly obtained:

Corollary 7.1.

SA(g) =

(
Ex∼µ inf

y∈Supp(ν)
‖g(x)− y‖pp

)1/p

. (7.3)

With this corollary, approximation score can be equivalently defined as the expected dis-

tance between generated samples and their nearest neighbors.

Building the relationship between Wasserstein distance and nearest neighbors, while being

intuitive, is useful since it gives a natural definition of our mode collapse score:

SM(g) := SW (g)− SA(g) = Wp(g#µ, ν)− inf
w�0,w>1=n

Wp(g#µ, ν) (7.4)

While SW , SA and SM combined give a comprehensive characterization of how generative

models learn from training dataset, they do not evaluate generators with held-out data.

Suppose the underlying distribution of data is ν, and νtrain and νtest are training and test

datasets drawn from ν, respectively. A näıve sampling generator which outputs uniform

distribution of νtrain will get 0 as all the 3 scores. However, the generator might overfit

training dataset and produces samples very different to νtest. This motivates us to define

overfitting score as

SO(g) := Wp(g#µ, νtest)−Wp(g#µ, νtrain) (7.5)

By this definition, a generator which generates the underlying distribution ν would have an

overfitting score of 0.
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7.2 EVALUATION RESULTS

As an example showing how our proposed metrics are useful, Table 7.1 shows inception

score and Wasserstein score (p = 1) for a näıve sampling generator which uniformly generates

from a subsample of MNIST training dataset. With a fairly large sample size like 10000,

nearly perfect inception score can be achieved, neglecting the fact that the generator mode

collapses to less than 1/5 of the dataset, which is captured by our proposed metrics.

Table 7.1: Comparing inception score and Wasserstein score for näıve sampling generators.

Sample size Inception score SW SA SM

500 9.26 60.25 0.00 60.25

5000 9.85 44.10 0.00 44.10

10000 9.93 22.84 0.00 22.84

60000 (all) 9.95 0.00 0.00 0.00

We evaluate GAN [4], LSGAN [13], WGAN [5] and WGAN-GP [14] with two types of

neural network architecture: MLP and DCGAN [50].

Table 7.2 summarizes our evaluation metrics with p = 1. WGAN-GP works best for MLP

architecture while standard GAN works best for DCGAN. It is not surprising that DCGAN

has much better mode collapse results than MLP, which stronger generator and discrimina-

tor; however, MLP is better at overfitting, possibly because of lower model complexity.
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Table 7.2: Evaluation Metrics for the evaluated algorithms.

Algorithm Architecture SW SA SM SW(test) SO

MNIST

GAN MLP 222.81 101.15 121.67 221.21 -1.60

LSGAN MLP 133.99 92.89 41.10 150.69 16.70

WGAN MLP 73.76 51.07 22.69 74.07 0.31

WGAN-GP MLP 57.36 44.26 13.10 59.24 1.88

GAN DCGAN 42.56 40.07 2.49 48.52 5.96

LSGAN DCGAN 43.42 40.72 2.70 49.04 5.62

WGAN DCGAN 47.59 43.85 3.74 52.22 4.63

WGAN-GP DGGAN 51.34 46.72 4.62 55.09 3.75

CelebA

GAN MLP 4186.28 1684.97 2501.31 4254.73 68.45

LSGAN MLP 2227.07 2033.41 193.65 2368.90 141.83

WGAN MLP 2333.05 1306.21 1026.84 2364.11 31.06

WGAN-GP MLP 1850.62 1676.83 173.79 2032.87 182.25

GAN DCGAN 1864.58 1737.57 127.01 2054.75 190.17

LSGAN DCGAN 1869.92 1751.13 118.79 2065.69 195.77

WGAN DCGAN 1986.93 1877.75 109.19 2181.55 194.62

WGAN-GP DCGAN 1889.58 1756.00 131.59 2074.06 184.48

Figure 7.1 qualitatively evaluates how well discriminator loss of WGAN and WGAN-

GP can be used to monitor the training process. For all combination except WGAN-

GP+DCGAN where training is unstable, decreasing discriminator loss coincides nicely with

decreasing Wasserstein score. For WGAN-GP+DCGAN, unstable discriminator losses also

coincide with unstable Wasserstein scores. This confirms the practice of using discriminator

loss as a training indicator.
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Figure 7.1: Discriminator loss as indicator of training quality, for WGAN adnd WGAN-GP.
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CHAPTER 8: DISCUSSION ON LIMITATIONS

We have also run our method on the CelebA and CIFAR10 datasets [52, 53]. On CelebA,

our method generates clear faces with good visual quality and with meaningful latent space

interpolation, as shown in Figure 8.1(a) and Figure 8.1(b). However, we observe that the

good visual quality partly comes from the average face effect: the expressions and back-

grounds of generated images lack diversity compared with GAN-based methods.

Figure 8.2 shows the results of our method on CIFAR10. As shown, our method generates

identifiable objects, but they are more blurry than GAN-based models. VAE generates

objects that are also blurry but less identifiable. We compute the Wasserstein-1 distance of

the compared methods on CIFAR10: our method (655), WGAN-GP (849) and VAE (745).

Our method achieves the lowest Wasserstein distance but does not have better visual quality

than GAN-based models on CIFAR10.

Analyzing these results, we conjecture that minimizing Wasserstein distances on pixel-

wise metrics such as `1 and `2 leads to a mode-collapse-free regularization effect. For models

that minimize the Wasserstein distance, the primary task inherently tends to cover all the

modes disregarding the sharpness of the generated samples. This is because not covering

all the modes will result in huge transport cost. In GANs, the primary task is to generate

sharp images which can fool the discriminator, and some modes can be dropped towards this

goal. Consequently, the objective of our model naturally prevents it from mode collapse, but

at the cost of generating more blurry samples. We propose two potential remedies to the

blurriness issue: one is to use a perceptual loss; and the other is to incorporate adversarial

metric into the framework.

We have tried to apply Lap2 loss similar to [54] (where Lap1 is used):

Lap2(x, x′) :=
∑
j

2−2j|L(j)(x)− L(j)(x′)|2 (8.1)

where L(j)(x) is the j-th level of the Laplacian pyramid representation [55] of x.

Figure 8.3 shows the generated images with Lap2 loss with a three-layer Laplacian pyramid.

The results are slightly better than pixel-wise losses. We will continue exploring this direction

in the future.
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(a) Generated samples

(b) Latent space walk

Figure 8.1: Samples generated by our method on CelebA, and a latent space interpolation.
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(a) Our method

(b) VAE

Figure 8.2: Samples generated by our method and VAE on CIFAR10.
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Figure 8.3: CelebA results with Laplacian loss.
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CHAPTER 9: CONCLUSION

In this thesis, we have proposed a simple alternating procedure to generative modeling by

explicitly optimizing the Wasserstein distance between the generated distribution and real

data. We show theoretically and empirically that our method does optimize Wasserstein

distance to the training dataset, and generalizes to the underlying distribution. We also

discuss the evaluation of GANs by our method, and possible directions to accelerate its

computation.

There are many interesting future directions in this area. First, entropy-regularized op-

timal transport can be used and compared with non-regularized OT. Second, better loss

functions including adversarial and perceptual losses should be further studied. Third, the

subsampling process might be further improved by some results in the area of nearest neigh-

bor search. Finally, a theoretical analysis of how gradual fitting contributes to smoother

manifolds and better generalization.
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