
c© 2019 Rahul Shivu Mahadev

CLOAKING FABRIC, A CONFIDENTIALITY LAYER FOR HYPERLEDGER FABRIC

BY

RAHUL SHIVU MAHADEV

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Adviser:

Assistant Professor Andrew E Miller

ABSTRACT

Permissioned blockchains have resulted in some unlikely collaborations between organiza-

tions that would have previously been impossible due them mutually distrusting each other.

They provide a sense of trust among the parties due to the decentralized nature of their

deployment that prevents censorship from a subset of the parties. Decentralization man-

dates that all the parties have the same view of the system, therefore it has been difficult to

represent and store private data. Asynchronous Verifiable Secret Sharing(AVSS) and Secure

Multi Party Computation(MPC) are techniques from cryptography that allow the sharing

of secrets among multiple parties and enable arbitrary computations on the shared data

without leaking any information about the data.

Previously, AVSS and MPC protocols were inefficient for practical use or did not work in

the same setting of blockchains where nodes of the blockchain could arbitrarily fail. Honey-

badger AVSS and Honeybadger MPC are robust and scalable frameworks that make them

a good candidate to be coupled with a permissioned blockchain to form a confidentiality

layer on top of it. We present Cloaking Fabric, an extension to the popular permissioned

blockchain Hyperledger Fabric that utilizes HoneybadgerMPC and HoneybadgerAVSS to

provide a confidentiality layer that would allow smart-contracts on the blockchain to inter-

act with private data. We present a suite of applications to demonstrate our system and

measure the overhead it would have over standard MPC operations.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I’d like to acknowledge everyone at Decentralized Systems Lab at the University of Illinois,

Urbana-Champaign for all the support and help during my thesis. I’d also like to thank my

friend circle of Kartik, Sathwik and Vandana for standing by me. Special thanks to Rahul

Govind for Fixed Point stuff and being a voice of reason throughout.

I would like to thank my Adviser Professor Andrew Miller and Dr. Angelo De Caro from

IBM Research for constant feedback and suggestions during the course of the project.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 5
2.1 Blockchain . 5
2.2 Hyperledger Fabric . 6
2.3 Secret Sharing . 9
2.4 Multiparty Computation . 10

CHAPTER 3 RELATED WORK . 12
3.1 Hyperledger Fabric Channels . 12
3.2 Zero Knowledge Proofs . 12
3.3 Hawk Privacy Preserving Blockchain . 12
3.4 Solidus . 13
3.5 Enigma . 13
3.6 Calypso . 13
3.7 MPC Joins The Dark Side . 13
3.8 Strain . 14
3.9 Supporting Private Data on Hyperledger Fabric with Secure MPC 14
3.10 MATRIX . 15

CHAPTER 4 DESIGN . 16
4.1 Preliminaries . 16
4.2 System Overview . 17
4.3 HoneybadgerMPC . 18
4.4 Architecture . 19
4.5 Honeybadger System Chaincode (HoneybadgerSCC) 21
4.6 Operations on Secret Cells . 22
4.7 Support for Barriers . 25

CHAPTER 5 APPLICATIONS AND EVALUATION 28
5.1 Applications . 28
5.2 Implementation Details . 35
5.3 Evaluation . 36

CHAPTER 6 CONCLUSION AND FUTURE WORK 43
6.1 Future Work . 43

REFERENCES . 44

v

CHAPTER 1: INTRODUCTION

Organizations typically maintain and manage their own database for their operations[1][2].

There could be scenarios where an organization interacts with other organizations working

with them. Consider a supply chain setting[3] where there are usually many intermediate or-

ganizations involved between the source and the final consumer and each of them share some

data points with others. Traditionally the interaction between organizations that requires

data sharing is handled by a trusted third party or by one of the organizations themselves.

Aggregating petabytes of data under the control of one organization could have catas-

trophic impact. There have been a incidents like the Cambridge Analytica incident[4] where

collected user data was sold and wrongfully misused to direct targeted advertisements to

Facebook users. Some[5, 6] say that this incident had an impact on the 2016 US Presiden-

tial Elections. This has highlighted the intensity of impact with regard to misuse of data.

Laws like the GDPR(General Data Protection Regulation)[7] act by the European Union

have been since passed which aim to enforce strong constraints to how data is stored and

used[8] . This makes it important to have secure and scalable methods to allow collaboration

between organizations without revealing part or entirety of one party’s data to another.

A new variant of distributed systems called “blockchains” have emerged in the recent years.

Blockchains are replicated append-only databases where every participant maintains a copy

of the ledger and can participate in the consensus for deciding the new transactions. Ad-

ditionally blockchains can allow the execution of arbitrary programs called smart-contracts.

Blockchains have soared in popularity since the introduction of Bitcoin a peer-to-peer elec-

tronic currency[9] in 2009. There are numerous applications running on blockchains as they

are resistant to censorship due to a virtue of resilience by a replicated ledger. The CEO of

IBM has described blockchains to be the next big technology and predicts it to have the

same impact to what the Internet had for communication but with trusted transactions.

[10]. Blockchains are being used among companies in areas of health care[11, 12, 13] and

finance[14] to share data and collaborate.

Hyperledger Fabric[15] is a blockchain for the permissioned setting which caters to sce-

narios requiring better performance and throughput compared to that of permissionless

blockchains found in cryptocurrencies like Bitcoin and the permissioned nature makes it

easier to manage identities. This makes it ideal for use among organizations striving for a

1

similar goal but are distinct entities and mutually distrust each other. However, blockchains

rarely provide mechanisms to support storing of confidential data and computing functions

without revealing the data. In the most common deployment scenario Fabric would work as

a transparent, fault tolerant and censorship resistant ledger so that all parties can maintain

the data at all times so that a subset of them cannot delete or destroy the data. This makes

the joint operations between organizations more meaningful. However, there are various sce-

narios where a portion of the data on the blockchain needs to be private due to restrictions

and laws set by governing bodies[16]. Blockchain deployments deployments[11, 13, 12] over-

come HIPAA[16] restrictions by making the restricted data freely available but log the usage

of data so that unauthorized access can be enforced later. Some scenarios where private

data is useful on blockchains are as follows:

• An organization might have setup complex operations pipelines involving some of its

private data as well. The application would be written for the blockchain and the

private data would need to be used by the application. For example, consider a hospital

which shares a blockchain with the pharmaceutical company. The hospital could have

setup orders and billing on the blockchain, the hospital would identify the orders with

patient information, it would be convenient if confidential patient information could

be made private and only the type and quantity of the order be made public.

• There are scenarios[17][18] where data held by one organization is not sufficient to

analyze meaningful trends or patterns. Multiple organizations need to perform data

mining together on their confidential data. This is especially true for hospitals and

financial firms where data is private. For example, it is in the best interest of hospitals

to have higher success rates on diagnosing, treating and controlling ailments and dis-

eases. But often a single hospital may not have enough information to conclude about

the best practices. Sharing their data with other hospitals is not straightforward as

there are privacy laws which restrict the usage of patient data.

Another burgeoning technology is Secure Multi Party Computation(MPC), In MPC the

goal is to allow multiple parties to jointly compute a function over every party’s inputs while

keeping the inputs private. MPC can be used to replace a trusted third party in a variety

of scenarios. Storing secret data in a blockchain with efficient access control is a non-trivial

problem to solve as the principle of blockchains requires the data to be replicated among all

the parties. Existing solutions[19, 20] for private data fall back to centralized components in

their protocol or avoid sharing the data itself but share a key among parties and store the

same encrypted data on all nodes(physical instance of a party) of the blockchain.

2

Availability

Confidentiality

Multi Party
Computation

Hyperledger
Fabric

Cloaking
Fabric

Figure 1.1: Trade off between Availability and Confidentiality

It seems natural that coupling MPC with blockchains would give us a valuable symbiosis

between them that results in confidentiality and availability of data. In this thesis we

present Cloaking Fabric, a confidentiality layer for Hyperledger Fabric which aims to manage

secret data on the blockchain and allow arbitrary computations on them by providing a

secret namespace for chaincode(smart-contracts) to use. Figure 1.1 is an illustration of the

properties of blockchains vs properties of MPC toolkits, Multi-Party Computation provides

confidentiality but lacks in availability compared to blockchains. Cloaking Fabric would have

properties of both blockchains and MPC systems hence it is plotted on the far right corner

of the graph.

It has been challenging for such a system to exist in the past due to the following reasons.

• Permissioned blockchains were not customizable enough to build a confidentiality layer

on top of it efficiently.

• MPC toolkits in the past did not scale well with a large number of nodes and were

usually not fault-tolerant.

For Cloaking Fabric, we present a confidentiality layer for Hyperledger Fabric built us-

ing HoneybadgerMPC. HoneybadgerMPC presents a framework of protocols (Honeybadger

AVSS, Batch reconstruction, etc.) that work in a robust setting similar to blockchains where

3

a threshold number nodes can arbitrarily fail.

For Cloaking Fabric, we utilize Hyperledger Fabric and HoneybadgerMPC to build a sys-

tem capable of availability and confidentiality. A node, peer or party in Fabric would be

equivalent to a party in HoneybadgerMPC. Hyperledger Fabric is a widely deployed permis-

sioned blockchain[21] that provides a strong base of features and supports customizability.

HoneyBadgerMPC [22] is a robust(can tolerate a certain number arbitrary node failures)

MPC framework.

To summarize, this thesis will present

1. Cloaking Fabric, a Confidentiality Layer for Hyperledger Fabric which enables chain-

codes to interact with private data and perform arbitrary computations with them.

2. An API for building applications which interact with private data. The API extends

on the chaincode programming model and adds suitable features to easily build appli-

cations.

3. A suite of applications to demonstrate the capabilities of Cloaking Fabric. We bench-

mark the running times of these applications and compute the overhead of using a

blockchain along with a MPC framework.

4

CHAPTER 2: BACKGROUND

This chapter explains the relevant background required to understand the remainder of

the thesis. Section 2.1 introduces the concept of blockchains and their different flavors with

regard to setting they are deployed in. Section 2.2 gives an overview into Hyperledger Fabric

and details the individual components that are used in Cloaking Fabric. Section 2.3 explains

Secret Sharing and Section 2.4 explains Secure Multi Party Computation.

2.1 BLOCKCHAIN

A blockchain is an immutable distributed ledger shared between mutually distrusting par-

ties where every party maintains a copy of ledger state. They were first made popular by

Bitcoin[9] which is a peer-to-peer electronic cash system(cryptocurrency).

The nodes execute a consensus protocol to order and validate transactions and maintain

consistency among themselves. There are two kinds of blockchain systems based on mem-

bership.

• Permissionless blockchains: In this type of blockchain anyone can download the node

software and participate without a specific identity. Some examples of permissionless

blockchains are Bitcoin and Ethereum. It is likely that a permissionless blockchain is

often coupled with a cryptocurrency to provide a economic incentive for the nodes to

participate in consensus.

• Permissioned blockchain: Permissioned blockchains, on the other hand, restrict mem-

bership to parties which can be identified and are known to each other. Permissioned

blockchains work best in a consortium setting, when the parties know each other and

have a common goal but are mutually distrustful of others e.g banks which transact

with each other, organizations in the same supply chain.

Some blockchains also allow the execution of arbitrary logic, first introduced as scripts

in Bitcoin and later as Smart Contracts in Ethereum[23]. Smart Contracts are popular for

building trusted distributed applications owing to the decentralized nature of blockchains.

Smart Contracts are usually required to be written in a domain specific programming lan-

guage as in the case of Solidity for Ethereum.

5

2.2 HYPERLEDGER FABRIC

Hyperledger Fabric is an open source blockchain project started by IBM and now hosted

by the Linux Software Foundation. It aims to be permissioned blockchain with an emphasis

on modularity where components of the blockchain such as consensus module can be easily

swapped according to requirement.

Fabric aims to solve the following problems of prior blockchains:

• Fabric supports a per-application trust model with the help of endorsement policies

that specify the endorsement criteria for committing a transaction.

• Pluggable consensus modules in fabric help to satisfy the sentiment that there is no

“one size fits all” consensus protocol[24]. This allows Fabric to be deployed in differing

settings.

• Chaincodes in Fabric can be developed using general purpose programming languages

like Go and NodeJS. This sets a low barrier to entry for application developers and

allows for more complex applications due to the enormous support available in the

form of libraries.

2.2.1 Architecture of Fabric

Fabric overcomes the above limitations and aims to be a blockchain that focuses on re-

siliency, flexibility, scalability and confidentiality.

2.2.2 Order Execute Architecture

Blockchains follow the blueprint of State-Machine-Replication(SMR) which has been stud-

ied extensively in Distributed Systems literature[25][26]. Most traditional blockchain systems

follow the “order-execute” architecture. What this means is that the blockchain orders the

transactions first and runs them on all the nodes via State Machine Replication.

Typically, consensus in blockchains work as follows

1. Every participating node would create a block with all valid transactions.

2. The node would try and solve a cryptographic puzzle(Proof of Work).

6

3. If the node was able to solve the puzzle it will disseminate via a gossip protocol the

block along with the solution to the puzzle.

4. On receiving the block every node executes the transactions in the block in the same

order and validates it.

In popular permissioned blockchains such as Tendermint[27], Chain[28] or Quorum[29]

some variant of Byzantine Fault Tolerant consensus protocol is used. A popular variant is

PBFT[30]. They perform state machine replication by ordering the transactions first and

then executing the transactions in order.

Hyperledger Fabric is an exception to this, it drops Order-Execute for an Execute and

then Order architecture which allow it to achieve better throughput, scalability and flexi-

bility in writing smart contracts.

This can be described in three steps

1. Executing a transaction and checking its correctness.

2. Ordering through a consensus protocol irrespective of transaction semantics.

3. Validating the transaction according to the per-application trust assumptions.

This deviates from Order-Execute paradigm discussed in the previous section in the sense

that Fabric executes transactions before reaching an agreement on their order by combining

two well-known approaches to replication.

1. Passive replication: Similar to replication in distributed databases, here every trans-

action is executed on multiple peers. This can be thought of as pre-consensus compu-

tation of state updates.

2. Active replication: The ledger state after running a transaction is persisted only after

the total ordering is established in the validation phase done by every node. This can

be thought of as post-consensus validation of execution results.

In Fabric every transaction can be executed by a subset of peers, this is governed by the

application specific endorsement policy. At the endorser after simulating the transactions a

writeset(modified keys along with new values) and a read set(all read keys during execution)

are created. The readset and writeset are then cryptographically signed by the endorser and

sent back to the client as a proposal response. There is a possibility of endorsement policy

not being satisfied when there is a high contention of operations accessing the same key.

7

2.2.3 Chaincode

Smart Contracts in Fabric are called chaincodes. It is the program code which imple-

ments the application logic. It can be written in general purpose programming languages

like Go, Java or Node.js.

Chaincodes can directly access the state of the blockchain and can invoke other chaincodes

assuming permissions and scope are correct. Chaincodes are executed in an environment

which is very loosely coupled to the actual peer. This allows for having support for different

programming languages for developing chaincode. The chaincode communicates via gRPC

messages. The loose coupling is achieved by having the chaincode run in its own docker

container.

Each chaincode can have multiple endpoints similar to REST endpoints on web servers.

Chaincode endpoints can take any number of arguments and return a string or JSON output.

2.2.4 System Chaincode

They are special chaincodes which exist for the purpose of managing the blockchain

system and internal parameters. Contrary to application chaincodes (chaincodes used to

build applications), System chaincodes run on the same peer process and have access to the

peer functionality directly. Some pre-installed chaincodes are the VSCC(Validation System

Chaincode) and QSCC(Query System Chaincode).

2.2.5 Endorsement Policy

Endorsement policy is the set of rules that Fabric follows for the validation phase. It

basically states the number of endorsements from peers to commit a transaction. Only

administrators of the blockchain can set the endorsement policy, the chaincode developers

will not be able to change it.

2.2.6 Ledger

The ledger component at each peer holds the ledger state on persistent store, it stores the

transaction blocks as a set of append only files. The blocks arrive in a definite order hence

the append only structure gives maximum performance.

8

2.2.7 Ordering Service

A subset of nodes in a Fabric network provide a total ordering on the transactions. They

form the ordering service, a service independent of the peers which participate in execution.

This decoupling of ordering service nodes allows consensus to be pluggable and modular.

When a client has enough endorsements on a proposal it assembles a transaction and submits

it to the ordering service. The ordering service then establishes a total order on all submitted

transactions by a form of atomic broadcast of all the endorsements. Multiple transactions

are grouped as a block and a hash sequence of blocks is created. A crucial feature of Fabric is

that the ordering service does not execute any transaction on its own and does not maintain

the state of the system. This allows for the consensus to be modular.

2.2.8 Channels

Another interesting feature of Fabric is the support for essentially multiple blockchains

within the same context, which means they are connected to the same ordering service.

Every such blockchain is called a channel. They allow blockchains to be shared between

a subset of the parties. In a supply chain scenario, parties interacting with each other for

orders directly might wish to have a channel between them.

2.3 SECRET SHARING

Secret sharing is a technique for distributing a secret amongst a group of participants,

each of whom is allocated a share of the secret. The secret can be reconstructed only when

a sufficient number of shares of different types are combined together. Individual shares do

not reveal any information of the secret on their own. In general, given an t-share, at least

t+ 1 parties are required to reconstruct the corresponding secret.

Shamir secret sharing[31] is a popular secret-sharing scheme where t out of n secrets are

required to recover a secret. This is based on an idea that a unique t− 1 degree polynomial

can be fit to any set of t points that lie on the polynomial.

2.3.1 AVSS

In a verifiable secret sharing (VSS) protocol the dealer shares a secret with a set of n parties

such that t+1 honest parties can reconstruct the secret. It is an essential component of secure

multiparty computation (MPC) protocols, used both for generating random preprocessing

9

elements and for accepting secret-shared inputs from untrusted clients. Verifiability implies

that if any party receives its share, then every correct party also receives a valid share. This

is an important property for MPC applications since every honest party requires the share

to be available to them. Polynomial commitments by the dealer allow the parties to validate

the shares sent by the dealer in an independent manner. Asynchronous protocols have to

deal with crashed nodes and slow nodes. Since there is no way to distinguish between these

situations additional redundancy is required while distributing the shares so that parties

with invalid shares can recover their shares by interacting with other parties. The protocol

needs to satisfy correctness, confidentiality and agreement.

• Correctness: If the dealer is correct then all parties Pi will output share φ(i) where φ

is the random polynomial and φ(0) is the secret.

• Confidentiality: If the dealer is uncorrupted, then adversary will learn nothing about

the secret except for the output of the shares of the corrupted adversaries.

• Agreement: If any correct party receives output then there is a unique degree-t poly-

nomial φ′ such that each correct party eventually outputs φ′(i).

2.3.2 HoneyBadger of AVSS Protocols

Honeybadger of AVSS Protocols (HbAVSS)[32] provides linear amortized communication

overhead even in the worst case of tolerating f <n/3 Byzantine faults. Compared to the

previous work in the area which would provide optimal performance at only f <n/4 or a

fallback to quadratic overhead in case of Byzantine faults.

The main idea behind HbAVSS is borrowed from HoneybadgerBFT[33] where a technique

called encrypt-then-disperse was used. The secret shares are encrypted before they are

dispersed. This guarantees robustness and efficiency as secrecy need not be provided.

In an AVSS protocol the dealer receives an input secret which needs to be shared among n

parties. The n parties output a share for some t-degree polynomial. The shares from AVSS

are used as input for every party in MPC computations.

2.4 MULTIPARTY COMPUTATION

The setting for multi-party computation involves n parties P1, P2....Pn who compute a

function f which takes k secrets(S1, S2...Sk) as input parameters. The goal is to compute

y = f(S1, S2....Sk) while making sure correctness and privacy are preserved.

10

1. Correctness : The correct value of y is calculated, similar to what the value would be

if it were to be computed by a single party with all the inputs.

2. Confidentiality : There should be no other information be released except the output

y of the MPC computation.

2.4.1 Preprocessed Elements

Preprocessed elements simplify some of the computations involved in MPC. Preprocessed

elements are usually generated prior to the actual MPC computation.

• Beaver triples[34] : Beaver triples are used for evaluation of multiplications in an MPC

setting with t-shares. Each beaver triple is a triplet of t-shares [x]t, [y]t and [z]t such

that z = x ∗ y. We can use these triples to evaluate multiplication of shares [a]t and

[b]t by making use of the following equations.

M = Reconstruct([a]t − [x]t)

N = Reconstruct([b]t − [y]t)

[ab]t = M ∗N +M ∗ [y]t +N ∗ [x]t + [z]t

(2.1)

• Random bits : For many MPC applications, we need access to shares of a random

bit. That is, given a polynomial P (.) such that P (0) ∈ 0, 1, each party i will have

the share equal to P (i). Random bit shares can be generated directly using random

value shares. Given shares [r] of a random value r ∈ Zp we can generate a random bit

through the operation 1
2
([r]√

Reconstruct([r]∗[r])
+ 1) .

11

CHAPTER 3: RELATED WORK

There have been prior attempts to have private data on blockchains as of this writing.

Some of the solutions rely on having encrypted data on the blockchain and having the key

managed by the party which owns the data.

3.1 HYPERLEDGER FABRIC CHANNELS

A Direct and simple solution as it a standard feature of Hyperledger Fabric. This allows

parties to share a private ledger among themselves and prevent access from other parties in

the network. However all the parties in the channel have full access to the ledger. For an

application like a sealed-bid auction the bids of all the parties would be visible in the system

and hence prevents to provide a finer level of privacy where nobody except the party can

access the secret.

3.2 ZERO KNOWLEDGE PROOFS

Zero Knowledge proofs allow provers to establish a statement with other parties without

revealing any additional information. The party which has the secret would run a smart

contract on its own and prove to the others that the contract ran successfully and correctly.

This works in a setting where only one of the parties holds secret data.

3.3 HAWK PRIVACY PRESERVING BLOCKCHAIN

Hawk is a decentralized smart contract system that retains privacy of the transactions

from the view of the public. It extends the smart contract programming model and a pro-

grammer need not know or use additional cryptographic tools while writing a private smart

contract. The programming model adds constructs to define and differentiate between public

and private data. They present a concept of a manager who would know the users inputs

but would not disclose them. The manager need not be trusted and could be caught and

reprimanded(loss of deposit) in case of deviation from protocol. They open up discussions

about future work where MPC could be used to build the manager. Cloaking Fabric

would be along the lines of the manager described in Hawk.

12

3.4 SOLIDUS

Solidus[35] is a system to have confidential transactions on public blockchains. They

leverage Zero Knowledge Proofs along with the concept of Oblivious-RAM. Oblivious-RAM

hides the memory access patterns of a program without changing the input and output or the

algorithm itself. Solidus can hide the details of the transaction and the participants by using

publicly verifiable Oblivious-RAM which combines Zero Knowledge Proofs with Oblivious-

RAM to hide identities of the individual participant. Solidus is designed for settings where

every transactions would depend on secrets of one participant.

3.5 ENIGMA

Enigma[36] is a system that supports computations on private data in a decentralized

setting. Enigma is more of an off-chain privacy framework as it runs a modified version of

secure MPC among parties different from the parties of the blockchain. It is meant to be

used to offload privacy protected computations by smart contracts on existing blockchains

like Ethereum. Enigma uses a variant of the popular SPDZ[37] protocol for the Multi Party

Computation, SPDZ is not a robust protocol and would halt on failures.

3.6 CALYPSO

Calypso[19] is a decentralized private data management system for blockchains. The

secrets are encrypted and stored as a whole on the blockchain. However the access control

and identity management happens via a different network. The symmetric key required to

decrypt the on-chain secret is secret shared among the participants of this side network. The

access control primitives they provide are fairly substantial and can cover most uses cases

including transfer of ownership of data. However since they are not storing the actual shares

of the secret but storing the encrypted data. The applications are restricted to a store and

retrieve kind, MPC operations are not possible.

3.7 MPC JOINS THE DARK SIDE

Cartlidge et al. present[38] a solution for dark pools in financial markets. Dark pools

in financial markets which are pools of potential buyers and sellers of a service that want

to purchase or sell in large volume without indicating their interest so as to not inflate

the market value. Dark pools traditionally employ third party trusted brokers to handle

13

the sales and orders. In case of a failure mode of a trusted third party like leaking the

orders beforehand, the market rates tend to fluctuate and cause catastrophic losses for the

clients. They implement a solution for this using Scale-Mamba MPC toolkit. They present

a Continuous double auction where they arrange bids in descending order and offers in the

ascending order to form a Limit Order Book such that the highest bid and lowest order

form a spread and decide what incoming bids and orders would be matched to transact.

Scale-Mamba implements an actively secure MPC protocol which guarantees security up to

one failure, which means on detecting a failure the MPC computation stops.

3.8 STRAIN

Strain[39] by Blass et al. is an auction protocol for blockchains which guarantees bid.

Strain use Zero-Knowledge proofs to do pairwise comparison between bids and publishing

them on the blockchain. Strain does not utilize secret sharing or MPC primitives hence

caters to a weaker adversarial model than MPC where the adversary is aware of the order

of bid by amount. This helps them achieve an optimal complexity of O(n) and 3blocks ,

which makes it perfect for permissionless blockchains. They also mention in the paper that

Hyperledger Fabric would potentially be a good platform for secure auctions however did

not have anonymity guarantees provided.

3.9 SUPPORTING PRIVATE DATA ON HYPERLEDGER FABRIC WITH SECURE
MPC

The paper[40] By IBM Research presents a system to store secrets on a blockchain and

perform MPC on the secret data. They use Hyperledger Fabric as the blockchain and write

a chaincode to achieve the same. Parties store the data on the ledger encrypted with their

own secret key, when it needs to use the data for a transaction the party would decrypt the

ledger data and use it as an input to a transaction.

They describe the use of a ”helper” server to set up communication channels for inter

peer communication. They acknowledge the insecure nature of this and state that this is

was done to demonstrate the possibility of such a system. The system stores encrypted data

on the blockchain, the key to encrypt this data is held by special parties known as ”privileged

clients”.

14

They discuss some properties that their system does not possess but a production system

in the future might possess.

1. Endorsement Policy : They point out that it is important to align the trust model of

the secure-MPC protocol with the endorsement policy i.e A protocol that can tolerate t

adversarial parties should have an endorsement policy that requires at least t+1 peers

to endorse a transaction. They also note that non-standard endorsement policies can

be supported by using System chaincodes.

2. Enforcing rogue peers : A rogue peer is a peer that exploits the “execute and then

endorse nature” of fabric to block transactions that do not align with the interests of

the peer after executing the MPC protocol.

3. Support multiple parties : Their demo supports only three parties due to the

underlying MPC protocol used which does not scale to more nodes.

This paper presents a lot of ideas that we will directly use in our implementation.

3.10 MATRIX

The work by Assi Barak et al. titled “An End-to-End System for Large Scale P2P MPC-

as-a-Service and Low-Bandwidth MPC for Weak Participants”[41] discusses the importance

of coordination in MPC i.e. getting multiple parties to start the MPC operation at the same

time. They present MPSaaS(MPC as a service) which uses a system called MATRIX that

helps coordinate the participation and running of MPC. MATRIX allows administrators

to specify the name, description and the start time of the MPC operation along with the

type of circuit. MATRIX is a centralized service and hence is a single point of failure for

availability.

15

CHAPTER 4: DESIGN

4.1 PRELIMINARIES

4.1.1 Flexible Trust Model of Fabric

A property of Fabric is flexibility in its trust model which is the reason it very well may

be deployed in various scenarios. The components of Fabric like the ordering service are

pluggable and can be changed based on the deployment requirements. There are various de-

cisions to be made while deciding the ordering service. Fabric presents a centralized orderer,

a cluster-based orderer running a Crash Fault Tolerant consensus protocol like Raft[42] or

Kafka[43] and even BFT protocols like BFT-SMaRt[26] can be used. Endorsement policy

is the number of endorsements that are required for committing a transaction. This can be

set on a per application level and allows for different security settings for each application

e.g. ANY(‘Org1.nodes’) would enforce that the transaction be signed by any one node from

Organization 1.

4.1.2 Network Model

In the asynchronous network model there are no timing assumptions i.e. there is no bound

on the time for messages to be delivered within. HoneyBadgerMPC and HoneyBadgerAVSS

work in asynchronous settings as there are no timeout assumptions in the implementations

of both. Endorsement policies of Fabric let us extend this to the endorser nodes as well

where the first 2n/3 + 1 valid endorsements would be sufficient to commit a transaction. At

the time of writing, Fabric version 1.4 ships with a partially synchronous ordering service

implemented in Raft[42] and Kafka[43]. However, the pluggable consensus model of Fabric

allows future work to use HoneyBadgerBFT[33] which is BFT consensus in an asynchronous

setting. A partially synchronous network model could be supported by using PBFT or Raft

as the consensus module of the orderer. In this model the consensus algorithm would assume

a δ bound for the delivery time of the messages. This δ could be something that is adaptive

and changes as the protocol proceeds or could be static and set by the protocol developer.

4.1.3 Confidentiality

Confidentiality in our context implies that a secret shared by a user is not made public

unless the user leaks it or it is used as a part of a chaincode application which reconstructs

16

secrets at some point. The output of an MPC operation is also private to the participants

unless explicitly specified.

HoneyBadgerAVSS guarantees that if the dealer(client/party) is correct the adversary

would learn nothing about the secret. HoneyBadgerMPC guarantees that apart from the

output of the computation, the parties will not learn the other party’s inputs. Endorsement

policies on Fabric and (n, t) configuration on HoneyBadgerMPC enforce that an adversary

cannot arbitrarily start reconstruction on a secret.

4.1.4 Integrity

Integrity in our context implies that the results of the arbitrary computations performed

be true to the MPC program i.e. the result of a MPC computation running on Cloaking

Fabric should be the same as the MPC computation running on HoneybadgerMPC. Integrity

could also mean that the value of a secret or the metadata is not wrongly changed by an

adversary. This is prevented by having write-once secrets which allow write only from the

authenticated client. It is common practice to open-source chaincode and the MPC programs

so that they can be verified publicly.

4.1.5 Availability

Availability is defined as access to the chaincode and the data without censorship. The

ledger is replicated in Fabric and information such as metadata is available on every single

node. HoneybadgerAVSS can tolerate t failures, hence even in the case of f <= t failures,

secrets can be recovered. Similarly, HoneyBadgerMPC is a robust MPC framework that

tolerates t failures as well. Which means that the protocol does not halt even when there

are f <= t failures.

4.2 SYSTEM OVERVIEW

In this section we will discuss the overall design of Cloaking Fabric. Figure 4.1 shows the

end-to-end working of Cloaking Fabric with respect to a single client who interacts with the

system. The client interacts with Cloaking Fabric by sharing secrets which could be used

as input to MPC, the MPC completes and publishes the result of the computation on the

blockchain. The user has the ability to recover his secret input from the blockchain using

private reconstruction.

17

Cloaking
Fabric

AVSS of in
put

MPC Execution

Public Result

Private Result

Priva
te Reconstru

ctio
n

Client

Figure 4.1: Cloaking Fabric in action

Cloaking Fabric is an extension for the existing Hyperledger Fabric system. We extend on

it by building a system chaincode which interfaces with HoneybadgerMPC. Cloaking Fabric

is roughly made up of the following components.

1. HoneyBadgerMPC : A general purpose toolkit for performing robust, scalable Multi

Party Computation.

2. HoneyBadger System Chaincode : The system chaincode that interfaces with Honey-

BadgerMPC and provides an abstraction for secret cells.

3. HoneyBadger Chaincode API : The API for chaincode developers to use to build

applications that interact with secret cells.

4.3 HONEYBADGERMPC

HoneybadgerMPC is a multi-purpose MPC toolkit for running MPC applications as well

as sharing and reconstructing secret data. HoneybadgerMPC is written in Python and we

have a modified version of HoneybadgerMPC to interface with Fabric. It is important to

use a robust MPC toolkit as Fabric works in a setting where nodes can arbitrarily crash and

execution of chaincode should still go on seamlessly. If we use a non-robust MPC toolkit the

MPC execution would halt on a single failure, any partial subset endorsement policy would

turn out to be redundant.

18

These are some of the components of HoneyBadgerMPC that we build on.

• HbAVSS : An AVSS protocol that robustly tolerates up to t adversaries and allows

for constant size commitments. AVSS uses sockets to communicate with other peers

and hence we had to add modify the peer container to support the communication

between AVSS peers.

• Robust Reconstruction : HoneyBadgerMPC allows for robust batch-based recon-

struction of secrets. The interface of reconstruction is natural and easy to use and uses

some of the same network primitives as HbAVSS.

• Preprocessing : To make certain operations faster, HoneyBadgerMPC uses pre-

computed random bits and/or beaver triples during execution. HoneyBadgerMPC

has a comprehensive offline phase that generates and replenishes these preprocessed

elements.

• MPC context : MPC context allows multiple parties to compute a function together

by running the same code but have access to different shares of the data. This is

implemented using asyncio and every operation that requires network communication

is awaited on.

4.4 ARCHITECTURE

The Fabric ledger is shared by all the participants in the network and therefore they

all share the same ledger state. For Cloaking Fabricwe need state which is private to a

particular peer. Every share of a secret should be held by a unique peer to maintain the

reconstructability property of the shares. If the shares were to be stored on the same ledger,

all shares would be accessible to an adversary who could reconstruct the secret at any point.

The shares would be stored in the individual nodes private state which for us is a Level-DB

instance. Figure 4.3 dissects the node and lists the components layer by layer.

The metadata i.e. the public properties of the cell, should be stored on the public ledger

and should be consistent among nodes. Figure 4.4 shows the network level view of the

Cloaking Fabric. The public ledger is always in sync and agreed upon by the nodes but the

private state is maintained independently by every node.

19

Private
State

(shares)

Endorser
1

Endorser
2

Endorser
5

Endorser
3

Shared ledger

State(Metadata)

Endorser
4

Figure 4.2: System Architecture - Network of Endorsers

Honeybadger System
Chaincode

Honeybadger Chaincode API

Application Chaincode

Private
State(LevelDB) Public Ledger

Figure 4.3: System Architecture - Components

20

4.5 HONEYBADGER SYSTEM CHAINCODE (HONEYBADGERSCC)

HoneyBadgerSCC is Fabric system chaincode that essentially interfaces with Honeybad-

gerMPC to provide an abstraction of secret cell. A secret cell is a write once structure

that can hold a single value of secret data and its metadata is stored on the public ledger.

A secret cell has the following properties.

• CellName : The name of the secret cell. It is the identifier for the secret cell and

this value is used for all input and output fields which use secret cells. The cell name

is set by the application and it is shared with the client who uses the cellname as a

parameter while running AVSS on his secret input. CellName is also the primary key

of the secret cell and cannot be changed in the lifecycle of the secret cell.

• IsWritten : A boolean value which indicates whether a cell has been written by the

intended writer yet. The flag acts as a barrier for moving into the MPC phase of the

application chaincode. This is updated by the system chaincode when the respective

share for a given secret cell is received by the node and is validated to be correct.

• WriterKey : The writer key is the main access control primitive for Cloaking Fabric.

The client interacting with the application passes their public key as an argument to

the application chaincode endpoint. The application chaincode then creates and sets

the WriterKey to that of the communicating client. When the client has to AVSS the

values they provide valid certification to the system chaincode. The WriterKey when

set to null indicates that no client can write to a secret cell. This is especially useful

when the output of an MPC computation is a secret cell.

• IsOpen : A boolean which indicates if the secret data has been reconstructed yet or

not. The IsOpen field is initially set to false but it is set to true once the reconstruction

completes and the node receives the opened value.

• Value : This holds the value of the cell once the secret data has been reconstructed.

Once the value is made public it is irreversible as the value would be known to all

the nodes. The value field is initially empty and is only set after the reconstruction is

completed by opening a share.

21

Application chaincode HoneybadgerSCC

AppEndpoint(clientKey)

createCell(cname,
clientKey)

HoneybadgerSCC

HbAVSS

cellName = cname
IsOpened = false
IsWritten = false

Value = ""
WriterKey = client

cellName = cname
IsOpened = false
IsWritten = true

Value = ""
WriterKey = client

Ledger

Ledger

cname:
share

Client

Client

Figure 4.4: An illustration of a workflow involving secret sharing

4.6 OPERATIONS ON SECRET CELLS

4.6.1 Share Secret

Figure 4.4 illustrates the typical workflow during secret sharing. The client interacts with

a chaincode endpoint and may be asked for input to a secret cell in some scenarios. The

Application chaincode provides the client with the name of the secret cell and creates an

entry for the secret cell by sending a request to HoneybadgerSCC.

The writer of a cell (application sets the public key of the writer) creates shares of the

secret input and starts HbAVSS as a dealer to the other endorsing nodes. The endorsing

nodes on completing HbAVSS successfully would store the share to their private state and

update the cell’s IsWritten to true. Depending on how many endorsers set the state and

endorsement policy of the system, the transaction will be committed and the cell can be used

in applications. In any event that the AVSS does not complete either due to a malicious

client(dealer) or more than supported node failures(f > t), the secret is not shared and

IsWritten remains false.

22

HoneybadgerSCC

Priva
teRe

cons
truc

t(cli
entK

ey,

cnam
e)

cellName = cname
IsOpened = false
IsWritten = true

Value = ""
WriterKey = client

Ledger State

reconstruct(shares)

cname:
share

cname:
share

cname:
share

cname:
share

Client

Figure 4.5: Private reconstruction of a cell

4.6.2 Private Reconstruction

Private Reconstruction is a primitive provided by Cloaking Fabric for scenarios when the

client wants to retrieve a previously shared secret from the system. The client would sign a

message with his private key and request for the individual shares from the endorsers. The

endorsers after validating the identity of the user would return the shares for the partic-

ular cell. The client then runs reconstructions provided by HoneybadgerMPC locally and

reconstructs the secret. Figure 4.5 shows the working of private reconstruction.

4.6.3 Public Reconstruction

In public reconstruction all endorsers participate together to reconstruct the secret from

the shares they individually hold. Public reconstruction is used as a primitive in MPC

operations and is useful for applications where an input has to be private for a certain

duration of time and then needs to be revealed after satisfying a condition. Application

chaincode would decide when it is time to reconstruct a secret, this would usually be after a

certain number of inputs are available to be opened or a certain duration of time has elapsed

since the creation of the instance. Figure 4.6 illustrates the working of Public Reconstruction.

23

HoneybadgerSCC

cellName = cname
IsOpened = true
IsWritten = true
Value = "Value"

WriterKey = client

Ledger State

App Chaincode

Start Reconstruction

cname:
share

cname:
share

cname:
share

cname:
share

Figure 4.6: Public reconstruction of a cell

Public Reconstruction works in two phases from the point of view of application chaincode.

1. Application chaincode calls reconstructSecret API call to start the reconstruction

phase. This returns true if the reconstruction was started successfully.

2. Application chaincode then calls GetCellMetadata to retrieve the metadata of the

cell. It then checks the IsOpen attribute to check if the reconstruction was successful.

and proceeds to use the reconstructed Value

4.6.4 MPC Operation(mpcOp)

mpcOp is a function to start MPC on the nodes. mpcOp takes a list of secret cells as input,

the type of the MPC operation as an argument, instance name of the MPC operation and

starts the MPC operation on the respective nodes. MPC operation is called by application

chaincode when a certain condition is met e.g number of inputs, time elapsed, number of

blocks in the blockchain. MPC operation only starts the MPC on the nodes, it sets a flag

and result once the operation is complete. checkMPCResult is able to retrieve the result

from the MPC operation.

24

1 func ReadAorB(choice) {

2 if readToken.valid() {

3 readToken.use()

4 if choice == "A" {

5 return readSecret("A")

6 } else {

7 return readSecret("B")

8 }

9 } else {

10 return Error("No read token")

11 }

12 }

Figure 4.7: Demonstration of breach in confidentiality due to speculative reads

4.7 SUPPORT FOR BARRIERS

4.7.1 Speculative Execution in Fabric

In the previous section we described the architecture of Fabric and how it follows a ex-

ecution paradigm different from other blockchains. Executing a transaction first and then

deciding the order and validity of the transaction based on read-write conflicts causes the

execution to be speculative in nature. Although this sort of architecture allows for a higher

throughput in general due to execution to be done by a subset of nodes, down side is mak-

ing sure side effects from not committing a transaction do not breach the confidentiality or

integrity of the system. This behavior is documented in the Fabric paper [15] and detailed

in work from IBM Research[44].

4.7.2 Side Effects from Speculation

A side effect occurs when a transaction performs an irreversible operation that cannot be

undone in the validation phase in the event the transaction is not committed. A side effect

could be something as simple as returning the result of an uncommitted transaction.

Consider the above example in figure 4.7. The function here allows the user to read a

secret either A or B but not both. In the event that there are two simultaneous calls to the

function in Fabric i.e before one of the transactions are committed, there is a chance that a

malicious user would be allowed to read both the secrets. These hazards can be exploited

in a variety of settings if the application does not handle it correctly.

• Free reads in Pay for access: a client may purchase a “token” to read one record

25

1 func sampleApplication () {

2 A = reconstructSecret("a")

3 B = reconstructSecret("b")

4 if checkValidity(A) && checkValidity(B) {

5 applicationLogic ()

6 } else {

7 return Error()

8 }

9 }

Figure 4.8: Demonstration of a hazard in application chaincode using Cloaking Fabric

from the database, e.g. to download an e-book. Speculative reads would let a client

effectively double spend that token.

• Escape Audit Logs : Access logging[16] is a pragmatic approach to privacy by allowing

clients easy access to a large data source but audit every time a client reads data, this

enforces accountability on the reader of the data as they can be tracked if they read

the data without authorization. This sort of speculative execution can be exploited by

malicious clients to read data without being logged.

• Zero knowledge proof or related cryptography gadgets: Zero knowledge proofs and

other similar class of protocols in cryptography there is an established pattern where

the “proof verifier” is only allowed to choose only one value to read. In such a scenario

speculative reads can be used to read more than required amount of data.

Naturally such issues could arise in applications using Cloaking Fabric. We have irre-

versible operations in reconstructing private data and MPC computations.

In Figure 4.8, The application chaincode attempts to reconstruct two related secret cells

for a transaction and then checks the validity of the cells. In the event that the second cell

does not exist the transaction is not valid, however the first secret would have irreversibly

been reconstructed.

4.7.3 Barriers

To address the above problem of speculative execution hazards we have a couple methods

to serve as barriers for application programmers. Barriers essentially force the application

logic to wait for the prior condition to be updated and set on the blockchain. The barrier

fields are only updated in the blockchain if the endorsement policy is met. The following

fields can be used as barrier fields. A solution to the hazard in Figure 4.8 using barriers is

show in Figure 4.7.3.

26

1 func sampleApplication () {

2 A = getSecretCell("a")

3 B = getSecretCell("b")

4 if A.isOpen && B.isOpen {

5 // running application logic when both the cells are open

6 applicationLogic ()

7 }

8 else if A.isWritten && B.isWritten && additionalAppCondition {

9 // opening the cell when both the cells have been written

10 A.reconstruct ()

11 B.reconstruct ()

12 } else {

13 return Error()

14 }

15 }

Figure 4.9: Demonstration of the use of barriers

1. IsWritten : this field is updated only when the secret is shared by the client success-

fully. That involves AVSS being run by (2/3n)+1 nodes, then the secret cell structure

needs to be updated on the blockchain which requires (2n/3) + 1 signatures from the

endorsers.

2. IsOpen : similarly this is updated only when the share is opened successfully, requires

at least (2n/3) + 1 nodes to complete the opening.

3. checkMPCResult() : A function in the Honeybadger chaincode API which returns if

the MPC result is available or not. Since the MPC operation is asynchronous, this is

helpful in determining if the MPC operation has completed or not.

Application chaincode must be written in a way that they return no other information if

the barrier condition is not satisfied and the client is expected to be polling to check the

result of an operation.

27

CHAPTER 5: APPLICATIONS AND EVALUATION

In this section we present some applications built using Cloaking Fabric. We then evaluate

the performance of these applications and compare Cloaking Fabric with related work.

5.1 APPLICATIONS

We present three different applications to show the working of Cloaking Fabric. First

we present a (1) secure Rock Paper Scissors game which utilizes secret cells to reduce

the number of phases compared to traditional implementations. We then demonstrate the

capability to do MPC on secret cells with three applications (2) a secure sealed bid

auction and (3) secure linear regression.

5.1.1 Rock Paper Scissors

We present a new take on the classic Rock Paper Scissors game to showcase an application

that interacts with secret cells. The user inputs will be secret shared using HbAVSS and

stored in secret cells. Only when both the parties have shared their input the reconstruction

phase can start, after which the inputs are made public for the result to be computed and

published.

Consider a traditional rock paper scissors smart contract[45] which does not have the

ability to access or store private data. The users provide a commitment of their move(which

could be the move hashed along with a random seed). Once both the players input their

moves. One of the players starts the reveal phase by revealing his commitment(providing the

move and the random seed individually to the chaincode). The second player has a limited

time to reveal his move after the first player has revealed his move. Once both the users

have revealed their move the result is computed and published. If the second player fails to

reveal his move in the allocated time, he forfeits.

The above approach is divided into two distinct phases (1). Users input their move and

(2). Users reveal their move. A failure mode here would be in phase (2) where a malicious

player learns that his move is not the winning move after the other player’s move is revealed

and decides to exit the protocol without revealing their move. To counter this a timeout is

added after the first player reveals their move, else a penalty is imposed on the player.

Timeouts have issues of their own. In blockchains where transactions rates are low, time-

28

1 if fn == "createGame" {

2 // creates a game

3 memcell := getMemoryCellName ()

4 createCell(memcell , userKey)

5 // create a memory cell for the user move

6 game := createGame(gameName , userKey , "None", memcell , None)

7 game.save()

8 return Success(memcell)

9 } else if fn == "joinGame" {

10 memcell := getMemoryCellName ()

11 createCell(memcell , userKey)

12 game := GetGame(gameName)

13 game.user2Key = userKey

14 game.user2Move = memcell

15 game.save()

16 return Success(memcell)

17 }

18 else if fn == "getActiveGames" {

19 // returns the active game lobby

20 return getActiveGames(stub)

21 } else if fn == "getCompletedGames" {

22 // returns the completed games scoreboard

23 return getCompletedGames(stub)

24 } else if fn == "startRecon" {

25 game := GetGame(gameName)

26 cell1 = GetCellMetadata(game.user1Move)

27 cell2 = GetCellMetadata(game.user2Move)

28 if cell1.IsWritten && cell2.IsWritten {

29 // reconstruct only when both values are available

30 reconstructSecret(cell1)

31 reconstructSecret(cell2)

32 return Success("Started Reconstruct");

33 } else {

34 return Failure("InputNotShared")

35 }

36 } else if fn == "getResult" {

37 // result of the game if the moves have been completed

38 cell1 = GetCellMetadata(game.user1Move)

39 cell2 = GetCellMetadata(game.user2Move)

40 if(if cell1.IsOpen && cell2.IsOpen){

41 // computeResult applied RPS logic on the cells

42 return Success(computeResult(cell1 , cell2))

43 } else {

44 return Failure("Input not Opened")

45 }

46
47 }

Figure 5.1: A simplified version of the Rock Paper Scissors Chaincode

29

Alice

Bob

Alice's Move Ma

Bob's Move Mb

Winner =
RockPaperScissors(Ma,

Mb)
Winner, Ma, Mb

Figure 5.2: Ideal functionality of Secure Rock Paper Scissors

outs increase the total game time and are a hindrance to legitimate users who fail to reveal

their move on time due to network delays. More importantly it makes the players interact

multiple times which makes it less intuitive.

To understand how Rock, Paper Scissors would work with a trusted third party we can

observe the ideal functionality in Figure 5.2. In our solution the chaincode would be the

trusted third party which reconstructs the user inputs only after both the users have shared

their move.

The user who creates the game would interact with createGame endpoint in Figure 5.1.

createGame creates an instance of the game and a secret cell to which the user will share

his move. The user is then expected to share his move via HbAVSS. Potential players view

active games by invoking the getActiveGames endpoint, they then use the name of the game

to joinGame and share their move. Any entity can ask for the result for the result to be

computed by invoking startRecon on the game instance, this would start reconstruction on

the cells only if both the cells are available. Once the reconstruction is completed the result

would be available by invoking checkResult. In our approach the users can just “fire and

forget” their input and need not wait for the other user to make their move to start the

reveal phase. Result of previous games would be available by invoking getCompletedGames

endpoint. This simple application demonstrates the power of a blockchain system with access

to managing secret data and could easily be used for other applications such as bidding and

betting. The unique programming model of Cloaking Fabric helps us build useful features

like lobbies and scoreboard for the games.

Here, we make sure the fundamental properties are satisfied.

1. Confidentiality : The user’s input should not be made public until both the users

submit their moves. This is guaranteed by not starting the reconstruction until both

30

1 async def auction_mpc(context , bids):

2 max_bid = bids [0]

3 for i in range(1, len(bids)):

4 t = await max_bid.gt(bids[i]) # t = max_bid < bids[i]

5 max_bid = (await (t.mul(max_bid.sub(bids[i])))).add(bids[i])

6 # max_bid = (t* (max_bid - bids[i])) + bids[i]

7 return max_bid

Figure 5.3: MPC program for Secure Auction

Max(B1,B2,B3,B4,B5)
Winning Bid

P1

P2

P3

P4

P5

B1

B2

B3

B4

B2

Figure 5.4: Ideal functionality of secure Auction

inputs are written.

2. Integrity : Integrity implies that a user’s move should not be changed after recon-

struction has started. Since the secret cells of Cloaking Fabric are write once, this

property is guaranteed.

3. Availability : Availability should guarantee that no party should be able to halt the

computation of the result after participating in the game. By avoiding a reveal phase

we ensure that no malicious party cannot halt the execution of the contract.

5.1.2 Secure Auctions

Auctions have always been a cornerstone application for demonstrating MPC ever since

the first live real use case of MPC was used for a beets auction in Denmark[46]. The

ideal functionality of a secure auction using a trusted third party is shown in Figure 5.4.

A corrupt trusted third party especially in auctions has too much power to change the

natural execution of the auction, the third party could collude with a participant, they

could also reveal incorrect information to drive the price, hence a decentralized auction is

highly desirable when the stakes of the auction are high. It is often a requirement for auctions

31

Cloaking FabriccreateAuction

PrivateReconstruction(Winner
Information)

Public Winning
bid

MPCAuction

Bidder

Auction
Creator

Bidder Bidder
Bidder

Figure 5.5: Workflow of a Secure Auction

where the bids of the participating members of the auction be private. This is done so as to

avoid malicious behavior of the participants who could in theory collude with a subset of the

parties, exit the auction abruptly and disturb the flow of the auction. Making an auction

“decentralized” replaces the trusted third party with MPC.

We present a first price auction where we implement an auction as an MPC program and

deploy it on Cloaking Fabric. The chaincode can run multiple instances of the auction, it

identifies the auction by a name provided by the creator. The creator would then provide

additional parameters such as participant list and an end condition such as maximum number

of bids or a certain duration of time as the end point. Similar to the Rock, Paper, Scissors

example the participants could view the auction via a lobby and decide to join the auction.

Figure 5.5 presents the workflow of an auction with multiple clients and Figure 5.9 shows

the chaincode snippet for the same. The creator of the auction specifies the total number

of bids required to conduct the auction in createAuction and the auction MPC program

starts once that condition is met. We implement the MPC program for the auction in Figure

32

slope, intercept =
fit_line(Y_coordinates,

X_coordinates)

List of X coordinates

List of Y coordinates

Slope, Intercept

Figure 5.6: Ideal functionality of Linear Regression

5.3. Here we do sequential comparisons[47] to implement a Max function. In order to not

reveal the order of bids we refrain from using “if/else” statements and open the max value

only at the end.

The fundamental properties are satisfied here as follows.

1. Confidentiality : The bids of the users are required to be private and only the

winning bid is made public, there is no information revealed about the relative order

of the bids.

2. Integrity : Auction must compute the winner accurately, we rely on the underlying

MPC program to work as advertised, since the code is open source it can be thoroughly

inspected for correctness. We use FixedPoint integers of the range [−231, 231 − 2−32]

for the secret shared values. An adversary could enter a bid which is not in this range.

To validate the bid we suggest future work to use Zero Knowledge Ranged proofs[48]

to prove that the input lies in a particular range.

3. Availability : Parties should be able to participate in the auctions freely. The pro-

gramming model allows for lobby style interfaces which could announce an auction well

in advance so that all interested parties know about an auction in advance. Malicious

users cannot halt the auction after making their bid.

5.1.3 Linear Regression

Linear Regression is a statistical technique of modelling the relationship between a depen-

dent variable and one or more explanatory (independent) variable[49]. The relationships are

modeled using linear predictor functions which who’s unknown parameters are estimated

from the data. Linear Regression is used in a lot of finance, health data and forecasting

33

analytics. The ability to perform Linear Regression with private data inputs would be in-

valuable to users of Hyperledger Fabric.

Given a dataset consisting of n data points with independent variables {x1, x2, . . . , xn}
and the corresponding dependent variables {y1, y2, . . . , yn}, a linear regression model can be

used to fit a line between x and y.

The best-fit line can be parameterised with two parameters, m for the slope of the line

and b for the y-intercept, such that y = mx + b. In general, a finite error εi will be present

in our observations of the independent variables.

yi = xi + εi (5.1)

In order to find a best-fit model, we attempt to minimize the least-squares error of our

model which is given by the following equation

J(m, b) =
1

2

n∑
i=1

(yi − (mxi + b))2 (5.2)

A closed-form solution exists for the parameters m and b that minimize this error. How-

ever, the closed form solution involves matrix inversions which are not supported by Hon-

eyBadgerMPC at this point. We instead resolve to using a gradient-descent based approach

to find the best parameters.

In a gradient-based approach, we first randomly pick initial values for m and b as m0 and

b0 respectively. We then iteratively do the following operations -

mt+1 = mt − α ∗
∂J

∂m
(5.3)

bt+1 = bt − α ∗
∂J

∂b
(5.4)

We use fixed-point arithmetic [50] for linear regression, and use beaver triples for multi-

plication. Random bits required for fixed-point arithmetic are generated and stored as part

of a preprocessing phase.

The ideal functionality for Linear Regression is shown in Figure 5.6 and we implement it

by replacing the trusted third party by an MPC program[51]. Figures 5.7 and 5.8 provide

the chaincode for implementing Linear Regression. The chaincode interface is similar to that

34

of secure auction and differs in the number of parameters.

The fundamental properties are satisfied here as follows.

1. Confidentiality : To satisfy confidentiality the x and y coordinates of the point should

not be revealed. The MPC program[51] does not open the x and y coordinates in their

raw form. Only the slope and intercept will be opened.

2. Integrity : We use FixedPoint integers of the range [−231, 231 − 2−32] for the secret

shared values. An adversary could enter a point which is not in this range. To validate

the bid we suggest future work to use Zero Knowledge Ranged proofs[48] to prove that

the input lies in a particular range.

3. Availability : All parties should be able to participate in the Linear Regression freely

and no client should be able to halt the execution. client in our model just “fire and

forget” the input points and are not expected to participate further.

5.2 IMPLEMENTATION DETAILS

5.2.1 Go Plugins

We implement HoneybadgerSCC as a system chaincode and we opted to build it as a Go

plugin which would allow it to be loaded dynamically in our test system. This helped us

rapidly prototype and make changes and test them immediately. The standard technique

of building system chaincodes involves bundling it with the other system chaincodes and

rebuilding Fabric. We found this approach to be detrimental to prototyping and testing.

For compiling the system chaincode we create a docker container of the same type as the

final fabric peer and mount the file system and compile the image. We found this approach

to reduce build times to a few seconds.

5.2.2 Test Network

We tested our system on the first network example network provided in the

fabric-samples[52] repository. It uses a 4 peer system with a single certificate authority

and a single node ordering service. In first network there are two organizations and each

organization has 2 nodes. For our tests we have considered all nodes to be independent and

distrustful of all other nodes.

35

1 type LinReg struct {

2 ObjectType string ‘json:" docType"‘

3 Name string ‘json:"name"‘

4 EndPoints int ‘json:endPoints ‘

5 Participants [] string ‘json:" participants"‘

6 X [] string ‘json:"X"‘

7 Y [] string ‘json:"Y"‘

8 M int ‘json:"M"‘

9 B int ‘json:"B"‘

10 Result string ‘json:" Result"‘

11 }

Figure 5.7: Linear Regression Instance Structure

A comparison of properties of different systems
Name Support for pri-

vate data
Availability Arbitrary Com-

putations
Cloaking Fabric Yes Yes Yes
Calypso Yes Yes No
HyperMPC(MATRIX) Yes No Yes
Fabric No Yes Yes
Scale-Mamba Yes No Yes

Table 5.1: Feature Matrix of different systems

5.3 EVALUATION

In this section we evaluate the performance of Cloaking Fabric and identify bottlenecks

and overheads. We also compare Cloaking Fabric with related work and discuss the different

attributes and trade-offs.

5.3.1 Feature Comparison

Table 5.1 is a feature matrix of related systems. The properties discussed are

• Support for private data: A system supports private data if there is a mechanism

HbAVSS n=4, t=1
k(number of values) Time taken Bandwidth at

node
Bandwidth at
dealer

1 4.72 3417 5244
100 15.81 297203 525839
1000 56.73 2987488 5276382

Table 5.2: Secret Sharing benchmarks

36

1 if fn == "createInstance" {

2 // Create an instance of LinearRegression

3 LinReg := &LinReg{linearReg , instanceName , endParams}

4 LinReg.save()

5 return Success("Created Instance"))

6 } else if fn == "getActiveLinRegs" {

7 return getActiveLinRegs(stub)

8 } else if fn == "getCompletedLinRegs" {

9 return getCompletedLinRegs(stub)

10 } else if fn == "addData" {

11 // returns memory cells id for the user input

12 LinRegInstance := getInstance(key , stub)

13 memcellX , memcellY := getMemCellNames ()

14 createCell(stub , memcellX , args[1], "linReg")

15 createCell(stub , memcellY , args[1], "linReg")

16 LinRegInstance.X = append(LinRegInstance.X, memcellX)

17 LinRegInstance.Y = append(LinRegInstance.Y, memcellY)

18 LinRegInstance.save(stub)

19 return Success(memcellX , memcellY)

20 } else if fn == "runMPC" {

21 if len(LinRegInstance.X) < LinRegInstance.EndPoints && len(

LinRegInstance.Y) < LinRegInstance.EndPoints {

22 return Error("Not enough points")

23 }

24 for i, _ := range LinRegInstance.X {

25 var cellX , cellY secretcellX

26 cellX = getCellMetaData(stub , LinRegInstance.X[i])

27 cellY = getCellMetaData(stub , LinRegInstance.Y[i])

28 if cellX.IsWritten == false || cellY.IsWritten == false{

29 return Error("Unwritten cells")

30 }

31 }

32 cells := append(LinRegInstance.X, LinRegInstance.Y...)

33 mpcOp("linear_regression_mpc", LinRegInstance.Name , cells ...)

34 return Success(byte("Started")

35 } else if fn == "getResult" {

36 if checkMPCResult(stub , LinRegInstance.Name , "LinReg") == "None

" {

37 return Error("No Result yet")

38 }

39 LinRegInstance.Result = checkMPCResult(stub , LinRegInstance.

Name)

40 LinRegInstance.save()

41 return Success(LinRegInstance.Result)

42 }

Figure 5.8: Linear Regression Chaincode

37

1
2 else if fn == "runMPC" {

3 Auction := GetAuctionInstance(auctionName)

4 for _, element := range Auction.Bids {

5 cell := getCellMetaData(stub , element)

6 if cell.IsWritten == false {

7 Error("Unwritten Bids")

8 }

9 }

10 outputCell = createCell(getCellName (), Auction.creatorKey)

11 cells := (Auction.Bids)

12 mpcOp("auction", Auction.Name , outputCell , cells ...)

13 return Success("Started MPC")

14 } else if fn == "getResult" {

15 Auction := GetAuctionInstance(auctionName)

16 if checkMPCResult(Auction.Name) == "None" {

17 return shim.Success ([] byte("None"))

18 }

19 Auction.Result = checkMPCResult(Auction.Name)

20 Auction.save()

21 return Success(Auction.Result)

22 }

Figure 5.9: Auction chaincode

Cost of running the application
Application Name Number of bits Number of

triples
Rounds of com-
munication

Rock Paper Scissors 0 0 2
Auction(N bids) 124N 187N 200N
Linear Regression 64 per epoch 19 per epoch 90 per epoch

Table 5.3: Application cost matrix

Running time for the applications n=4, t=1
Application Name Time taken(Cloaking

Fabric) in seconds
Time taken(HBMPC)
in seconds

overhead(in sec-
onds)

Rock Paper Scissors 6.72 3.67 3.05
Auction(7 bids) 19.17 17.37 1.8
Linear Regression(100
epochs)

52.43 47.24 5.19

Linear Regres-
sion(1000 epochs)

469.85 477.8 7.95

Table 5.4: Running time of different algorithms

38

Running time for the applications n=4, t=1 with one failure
Application Name Time taken with 1

failures with Cloaking
Fabric

Time taken with 1
failure in HBMPC

Overhead(in sec-
onds)

Rock Paper Scissors 6.41 3.45 2.96
Auction(7 bids) 17.47 15.3 2.17
Linear Regression(100
epochs)

40.91 36.29 4.62

Linear Regres-
sion(1000 epochs)

393.24 387.30 5.93

Table 5.5: Running time of different algorithms with 1 failure

to store the secret of one party on multiple nodes but only the storing party would

know and have access to the actual secret. All the systems in the list support secret

data except the plain Hyperledger Fabric. Fabric channels do not qualify for this as

the data is visible to all parties in the channel of multiple parties and single party

channels would not be fault tolerant.

• Availability : Availability attributes to high fault tolerance, lack of single point of

failure and high resilience. Availability is crucial for running applications on wide area

networks with a large number of nodes. Scale Mamba implements a non-robust MPC

protocol which halts on detecting failures, MATRIX provides a centralized service for

coordinating MPC. This would be a single point of failure for the coordination service.

On the contrary Cloaking Fabric is backed by a blockchain which would be replicated

and provide high availability.

• Arbitrary Computations : Running arbitrary functions on the secret data would

be the third metric to compare with. Calypso stores encrypted data on the blockchain

and the key to access it would be stored as secret shares. Cloaking Fabric stores the

secret data as secret shares which can be used as inputs to MPC programs. Any com-

putation with respect to Calypso would involve reconstructing the secret, performing a

computation and encrypting the data again. This would involve a trusted third party

and would not be feasible.

5.3.2 Comparison With Prior Work in Fabric

Prior work by IBM Research[20] present a modification to Fabric to support private data.

In the paper, they mention that their work aims to be initial proof of concept in this direction.

39

1 OutOf (3, ’Org1MSP.member ’, ’Org1MSP.member ’, ’Org2MSP.member ’, ’

Org2MSP.member ’)

Figure 5.10: Endorsement Policy Snippet

They mention the following shortcomings of their approach in the paper.

• Endorsement Policy : At the time of their writing Fabric did not provide enough

freedom to specify an Endorsement policy to align with the trust model of the MPC

protocol. Since then, Fabric has evolved to support a language to specify complex

endorsement policies and Cloaking Fabric makes full use of it. For example, the en-

dorsement policy in Figure 5.10 can be used in a n = 4, t = 1 setting for the first

network sample to require endorsements from 3 peers.

• Point to point communication : They opt for a centralized server to establish

communication channels between nodes for the point to point communication between

MPC peers. In Cloaking Fabric we use system chaincode which have the privilege to

set up sockets and mange their lifetime.

• Rogue Peers : In their implementation a rogue peer could deny to endorse an MPC

operation after learning the value of the computation. Cloaking Fabric uses endorse-

ment policies which are aligned to the MPC framework and can tolerate rogue peers

which do not endorse the result after executing it. On a side not the result of the MPC

operation could also be made private.

To summarize we address all the issues they describe in their implementation and provide

a comprehensive programming model with the abstraction of a secret cell.

5.3.3 Comparison of Cloaking Fabric’s Programming Model with MATRIX

MATRIX provides a centralized architecture for coordinating MPC protocols. MATRIX

comes bundled with an administrator component which is used to create, manage and start

MPC protocols. A web based user interface is provided to the administrator where they

can specify the title, description, registration time and type of result(MPC operation) and

create an entry which is then visible to all potential participants. It is apparent that this is

suitable for large scale deployments of simple MPC computations such as number surveys.

Compared to MATRIX, Cloaking Fabric is decentralized and runs as a part of a blockchain.

The chaincode based programming model allows developers to build customized applications.

40

As we saw in Section 5.1 a variety of non-trivial applications are possible and follow the

same pattern as chaincode applications, thus giving developers freedom to implement more

comprehensive applications.

5.3.4 Experiment Setup

We run our experiments on a single server having 32 cores of Intel(R) Xeon(R) CPU

E5-2620 v4 at 2.10GHz with 120Gb of RAM. We run every single component(node, orderer,

certificate authority) on separate docker containers and ensure they run on different physical

cores. We run each of the above described applications in isolation and we assume pre-

processed data(bits, triples) are readily available. For every experiment we take three runs

and average the measurements over the three runs. For all Cloaking Fabric measurements,

we measure the total time from when the client makes the request to the chaincode to when

the result is available at the client.

5.3.5 Performance of Cloaking Fabric

Table 5.3 shows the cost of running every application in terms of the number of pre-

processed elements(bits, triples) used and the rounds of communication for each applica-

tion. The running time of applications can be directly attributed to the number of rounds

of communication. There is still potential to improve the algorithms via batching to reduce

the number of rounds of communication. For comparison, Scale-Mamba implements com-

parison with just 7 rounds of communication compared to 200 rounds in HoneybadgerMPC.

MPC joins the darkside[38] reports that for an auction that has 156 comparisons it takes 4.7

seconds for 2 parties. That is 1092 rounds of communication. The 7 bid auction running on

Cloaking Fabric takes 17.47 seconds due the fact that there are 1400 rounds of communica-

tion. If we just compare the running times with respect to rounds of communication then

the two systems perform comparably. The other difference in time could be attributed to

Cloaking Fabric involving double the number of parties and offering a robust failure mode.

5.3.6 Secret-Sharing Performance

Table 5.2 benchmarks the bandwidth and time taken for secret-sharing using HbAVSS.

We measure the time from the client node which is sharing the value, this includes the

time taken to run createCell on the application chaincode. HbAVSS allows for multiple

values(k) to be shared simultaneously by running multiple instances of AVSS in different

41

threads separately. The total bandwidth scales linearly at the dealer as well as the nodes

but the time taken reduces for larger values of k.

5.3.7 Overhead of Using Fabric

We measure the overhead of using the blockchain and chaincode programming model

compared to just running HoneybadgerMPC in Table 5.3. The overhead is defined as the

time taken to interact with the chaincode to create metadata, collect results and awaiting

results to be published on the blockchain. To measure the time taken in Cloaking Fabric,

we measure the duration between the invocation of the first chaincode endpoint that calls

mpcOp and the invocation of the endpoint that retrieves the published result. To measure

the time taken for just the MPC operation, we measure the time in the HoneybadgerMPC

codebase to start and complete the MPC operation. The results show that Cloaking Fabric

adds a large overhead compared to the total execution time for applications with low running

times, however as the running time increases the overhead becomes negligible compared to

the total time due to the fact that collecting results and awaiting the results to be published is

generally constant time. The difference in overhead time between Linear Regression running

100 epochs to 1000 epochs could be attributed to the more number of blocks created due

the client constantly polling the chaincode to collect the results. The created blocks need to

be gossiped and committed which takes time.

5.3.8 Performance with Failures

In Table 5.5 we measure the application run times when there is a crashed node. We crash

one of the nodes during MPC operation by killing the docker container and we measure the

total time it takes. We observe that the running time drops compared to the case with

failures. This can be attributed to lower bandwidth the nodes have to deal with. This is a

common occurrence in BFT protocols as well and was discussed in BFT under fire[24].

42

CHAPTER 6: CONCLUSION AND FUTURE WORK

We presented a novel approach for a blockchain system to support private data and allow

arbitrary computations on the private data using Secure Multi-Party Computation. From the

evaluation above it is evident that compared to other systems like Calypso which support

private data on the blockchain, Cloaking Fabric leverages the chaincode (smart contract)

programming model and extends it to support MPC functions. The addition of having a

MPC coupled with blockchain is not very expensive and scales almost in a constant rate

with increase in overall running time.

6.1 FUTURE WORK

1. Testing and benchmarking on large number of nodes : Currently, we restrict our testing

to 4 nodes due to the lack of easy deployment methods of Fabric peers. Theoretically

fabric supports a large number of nodes in deployment and HoneybadgerMPC is also

known to support 100 nodes. It would be interesting to verify in practice and observe

performance with scalability.

2. Support for Zero Knowledge Proofs : Applications like linear regression make use of

Fixed Point fields. It would be beneficial to have support for Zero-Knowledge ranged

proofs to validate the input range entered by the client.

3. Integrating with offline phase of HoneyBadgerMPC : HoneyBadgerMPC has a robust

offline phase that generates pre-processing elements on the fly and replenishes their

supply on the go. Currently, we resort to using files generated prior to the execution

of the MPC application.

4. Improving the efficiency of applications presented : The applications presented here

like the auction and linear regression applications can be optimized to reduce the

number of rounds of communication. This would make the application run time closer

to that of Scale-Mamba.

43

REFERENCES

[1] P. DuBois and M. Foreword By-Widenius, MySQL. New riders publishing, 1999.

[2] M. Stonebraker and L. A. Rowe, The design of Postgres. ACM, 1986, vol. 15, no. 2.

[3] J. T. Mentzer, W. DeWitt, J. S. Keebler, S. Min, N. W. Nix, C. D. Smith, and Z. G.
Zacharia, “Defining supply chain management,” Journal of Business logistics, vol. 22,
no. 2, pp. 1–25, 2001.

[4] T. Guardian, 50 million Facebook profiles harvested for Cambridge An-
alytica in major data breach, 2018 (accessed March 3, 2019). [Online].
Available: https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-
facebook-influence-us-election

[5] T. Guardian, CA on 2016 presedential elections, 2018 (accessed March 3, 2019). [On-
line]. Available: https://www.theguardian.com/technology/2017/oct/26/cambridge-
analytica-used-data-from-facebook-and-politico-to-help-trump

[6] Wired, CA on 2016 presedential elections, 2018 (accessed March 3, 2019). [Online].
Available: https://www.wired.com/story/what-did-cambridge-analytica-really-do-for-
trumps-campaign

[7] E. Union, gdpr, 2018 (accessed March 3, 2019). [Online]. Available: https://eugdpr.org/

[8] E. Union, gdpr-recital83, 2018 (accessed March 3, 2019). [Online]. Available:
http://www.privacy-regulation.eu/en/recital-83-GDPR.htm

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. [Online].
Available: http://www.bitcoin.org/bitcoin.pdf

[10] G. Rapier, “From yelp reviews to mango shipments: Ibm’s ceo on how blockchain will
change the world,” Business Insider, vol. 21, p. 2017, 2017.

[11] Y. Luo, H. Jin, and P. Li, “A blockchain future for secure clinical data sharing: A
position paper,” in Proceedings of the ACM International Workshop on Security in
Software Defined Networks & Network Function Virtualization. ACM, 2019, pp. 23–
27.

[12] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “Medrec: Using blockchain for
medical data access and permission management,” in 2016 2nd International Conference
on Open and Big Data (OBD). IEEE, 2016, pp. 25–30.

[13] A. Kovach and G. Ronai, “Mymedis: a new medical data storage and access system,”
None, 2018.

[14] A. Tapscott and D. Tapscott, “How blockchain is changing finance,” Harvard Business
Review, vol. 1, no. 9, 2017.

44

[15] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al., “Hyperledger fabric: a dis-
tributed operating system for permissioned blockchains,” in Proceedings of the Thir-
teenth EuroSys Conference. ACM, 2018, p. 30.

[16] Hipa, Access logs, 2018 (accessed March 3, 2019). [Online]. Available:
https://www.hipaaformsps.com/hipaa-access-logs-audits/

[17] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving machine
learning,” in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp.
19–38.

[18] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in Advances in Cryptology
— CRYPTO 2000, M. Bellare, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 36–54.

[19] E. Kokoris-Kogias, E. C. Alp, S. D. Siby, N. Gailly, L. Gasser, P. Jovanovic, E. Syta,
and B. Ford, “Calypso: Auditable sharing of private data over blockchains,” Cryptology
ePrint Archive, Report 2018/209, Tech. Rep., 2018.

[20] F. Benhamouda, S. Halevi, and T. Halevi, “Supporting private data on hyperledger
fabric with secure multiparty computation,” in 2018 IEEE International Conference on
Cloud Engineering (IC2E). IEEE, 2018, pp. 357–363.

[21] C. on medium, Fabric is widely deployed, 2018 (accessed March 3, 2019). [Online].
Available: https://medium.com/coinmonks/hyperledger-projects-in-real-companies-
35016745362c

[22] D. S. Lab and IC3, HoneybadgerMPC, 2018 (accessed March 3, 2019). [Online].
Available: https://github.com/initc3/honeybadgermpc

[23] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum
project yellow paper, vol. 151, pp. 1–32, 2014.

[24] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe, “Bft protocols under fire.”
in NSDI, vol. 8, 2008, pp. 189–204.

[25] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32, no. 4, pp. 18–25,
2001.

[26] J. Sousa, E. Alchieri, and A. Bessani, “State machine replication for the masses with
bft-smart,” Google Scholar, 2013.

[27] J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6, fall, 2014.

[28] Chain, Chain, 2016 (accessed March 3, 2019). [Online]. Available: https://chain.com/

45

[29] L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of consensus protocols on
blockchain applications,” in 2017 4th International Conference on Advanced Computing
and Communication Systems (ICACCS). IEEE, 2017, pp. 1–5.

[30] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI, vol. 99,
1999, pp. 173–186.

[31] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp.
612–613, 1979.

[32] A. Kate, A. Miller, and T. Yurek, “Brief note: Asynchronous verifiable secret
sharing with optimal resilience and linear amortized overhead,” arXiv preprint
arXiv:1902.06095, 2019.

[33] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of bft protocols,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2016, pp. 31–42.

[34] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in Annual In-
ternational Cryptology Conference. Springer, 1991, pp. 420–432.

[35] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and E. Shi, “Solidus: Confidential
distributed ledger transactions via pvorm,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017, pp. 701–717.

[36] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized computation plat-
form with guaranteed privacy,” arXiv preprint arXiv:1506.03471, 2015.

[37] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart, “Practical
covertly secure mpc for dishonest majority–or: breaking the spdz limits,” in European
Symposium on Research in Computer Security. Springer, 2013, pp. 1–18.

[38] J. Cartlidge, N. P. Smart, and Y. T. Alaoui, “Mpc joins the dark side,” arxiv, 2018.

[39] E.-O. Blass and F. Kerschbaum, “Strain: A secure auction for blockchains,” in European
Symposium on Research in Computer Security. Springer, 2018, pp. 87–110.

[40] F. Benhamouda, S. Halevi, and T. Halevi, “Supporting private data on hyperledger
fabric with secure multiparty computation,” in 2018 IEEE International Conference on
Cloud Engineering (IC2E), April 2018, pp. 357–363.

[41] A. Barak, M. Hirt, L. Koskas, and Y. Lindell, “An end-to-end system for large scale p2p
mpc-as-a-service and low-bandwidth mpc for weak participants,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security. ACM,
2018, pp. 695–712.

[42] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,”
in 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14), 2014, pp.
305–319.

46

[43] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging system for log
processing,” in Proceedings of the NetDB, 2011, pp. 1–7.

[44] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti, “Blockchain and trusted
computing: Problems, pitfalls, and a solution for hyperledger fabric,” arXiv preprint
arXiv:1805.08541, 2018.

[45] S. Beurgel, Rock Paper Scissors in Solidity, 2016 (accessed March 3, 2019).
[Online]. Available: https://github.com/SCBuergel/ethereum-rps/blob/master/rps-
advanced.sol

[46] P. Bogetoft, D. L. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard,
J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter et al., “Secure multiparty computation
goes live,” in International Conference on Financial Cryptography and Data Security.
Springer, 2009, pp. 325–343.

[47] O. Catrina and S. de Hoogh, “Improved primitives for secure multiparty integer com-
putation,” in Security and Cryptography for Networks, J. A. Garay and R. De Prisco,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 182–199.

[48] M. Backes, C. Hritcu, and M. Maffei, “Type-checking zero-knowledge,” in Proceedings
of the 15th ACM conference on Computer and communications security. ACM, 2008,
pp. 357–370.

[49] G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley & Sons, 2012, vol.
329.

[50] O. Catrina and S. De Hoogh, “Improved primitives for secure multiparty integer com-
putation,” in International Conference on Security and Cryptography for Networks.
Springer, 2010, pp. 182–199.

[51] D. S. Lab, Linear Regression, 2018 (accessed March 3, 2019). [Online]. Available:
https://github.com/hybridNeo/HoneyBadgerMPC/blob/dev/honeybadgermpc

[52] F. Samples, Fabric Samples, 2018 (accessed March 3, 2019). [Online]. Available:
https://github.com/hyperledger/fabric-samples

47

