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ABSTRACT

In this thesis, we address several common scenarios of corrupted data in data

and image processing pipelines. The first is in the setting of clustered data

with missing values. We design an algorithm for imputing missing values

using optimal recovery and derive an error bound for non-negative matrix

factorization of the imputed data. Second, we consider missing values as

erasure channels and show examples of using Fano’s inequality to find lower

bounds on missing values algorithms. Finally, we perform image registration

of misaligned and noisy images using multiinformation and use finite rate of

innovation sample to speed up registration while preserving optimality.
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CHAPTER 1

INTRODUCTION

Bioinformatics is an interdisciplinary field that has seen rapid growth in

recent years due to the increased availability of biological data and advances

in computer power. Modern technology has made it possible not only to

store, but also to share large datasets. In addition, increases in computing

power have made it possible to handle larger amounts of data than ever

before. The goal is to extract useful information from the data that will

allow us to understand biological systems.

The term “bioinformatics” was coined by Paulien Hogeweg and Ben Hesper

in the 1970s to mean “the study of informatic processes in biotic systems”

[1]. Hogeweg and Hesper proposed information storage, transmission, and

processing as properties of living systems, and they considered this to be an

important research area. This thinking was no doubt influenced by the devel-

opment of the field of information theory in the 1950s and 60s, during which

the Huffman code, the Reed-Solomon codes, and other landmark algorithms

were developed. The idea that biological systems carried and transmitted in-

formation was reflected in the coinage of the “genetic code” [1]. From within

the field of theoretical biology emerged mathematical models of enzyme dy-

namics and gene regulation. Alan Turing developed a theory for natural

pattern formation (e.g. how a leopard gets its spots) [2]. Research in artifi-

cial intelligence led to the development of genetic algorithms for optimization

and the now-ubiquitous neural networks for pattern recognition.

The goal of bioinformatics soon evolved into one of data analysis and inter-

pretation. This was due to a massive increase in public data brought about

by advances in DNA sequencing techniques, including a rapid DNA sequenc-

ing technique in 1977 and the polymerase chain reaction (PCR) technique for

amplifying DNA in 1983. The U.S. Department of Energy (DOE) and the

National Institutes of Health (NIH) set forth a plan to sequence the entire

human genome, and in 1990, public funding for the Human Genome Project
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(HGP) began. A parallel sequencing effort by Celera Genomics was formally

launched in 1998. Celera developed a shotgun strategy that was able to

sequence DNA more quickly and cost-effectively. This drove the HGP to

improve their own technology, and both projects published their drafts of

the completed human genome in 2000. The genome sequencing race spurred

development not only in sequencing technology, but also in data mining,

pattern recognition, and other analysis techniques.

Since then, technology has been developed for DNA methylation sequenc-

ing, mRNA sequencing, and protein sequencing, allowing scientists to study

genetic processes in a more nuanced way [3]. While every cell belonging to

an individual contains the same set of DNA, the mRNA differ from cell to

cell depending on the cell’s state and function (as do methylation and pro-

tein expression). In 2016, an initiative called the Human Cell Atlas Project

began. The project aims to create a comprehensive reference map of all

the cells in the human body, with the goal of understanding human health

and, ultimately, diagnosing and treating disease. Single-cell RNA sequenc-

ing (scRNA-seq) has made it possible to capture gene expression patterns

in individual cells. Beyond cell-level interactions, researchers hope to study

tissue-level and eventually organ-level interactions, both spatially and func-

tionally. Variations in gene expression patterns in healthy and diseased states

can be compared, and temporal responses to drugs can be captured [4].

In this thesis we consider two facets of this genomics research: cell clus-

tering and image-based transcriptomics. Clustering can be performed on

gene-expression count matrices, which are matrices with cells on one axis

and genes on the other axis. Matrix entries indicate the number of times a

gene is expressed in a cell. Cells can then be clustered according to gene-

expression patterns. Presumably, cells of different types or in different states

will express genes differently. The second area we consider is image-based

transcriptomics. Unlike gene counts, which only describe the abundance of

genes in a cell, image-based transcriptomics captures spatial patterns of gene

expression. In fluorescence in situ hybridization (FISH), genes are tagged

by fluorescent markers, and images are taken in situ. Thus cellular microen-

vironments, as well as localization patterns, are preserved. Single molecule

FISH (sm-FISH) allows for single molecule sensitivity.

In both cases, we run into the problem of noise. Gene expression counts

may be inaccurate, and in the case of scRNA-seq, some genes may be missed
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entirely. Low gene counts may be incorrectly recorded as zeros, but there is

no easy way to determine whether a zero indicates the absence of a gene or a

gene that was missed by the sequencing method. In chapter 2 we introduce

patterns of missingness and describe methods of imputing, or filling in, miss-

ing values. We cluster and impute data with missing values using optimal

recovery and find error bounds in the context of non-negative matrix factor-

ization, which is a popular method for analyzing gene-expression matrices.

In chapter 3 we discuss missing mechanisms as erasure channels and show

an example of Fano’s inequality in a missing value setting.

In image-based transcriptomics, images must be aligned, or registered, so

that the spatial configuration of the cell on the pixel grid matches across

consecutive images. In chapter 4, we consider misaligned images as noisy

copies of the original image and multivariate information functionals to per-

form theoretically optimal registration. We then use finite-rate-of-innovation

sampling to extract salient features, which speeds up registration while pre-

serving optimality properties. Chapter 5 summarizes our findings and out-

lines future work.

The basic approaches we develop are useful not just in bioinformatics but

in other parts of data science and image processing also. Missing data is

common in real-world settings, and image registration is used in hyperspec-

tral remote sensing and many computer vision applications. Our methods

can be readily applied to other applications.

Bibliographical Note

Part of Chapter 2 appears in

R. Chen, L. R. Varshney, “Non-negative matrix factorization of clustered

data with missing values,” Proc. IEEE 2019 Data Sci. Workshop, 2019.

Part of Chapter 4 appears in

R. Chen, A. B. Das, and L. R. Varshney, “Registration for image-based

transcriptomics: Parametric signal features and multivariate information

measures,” Proc. 53rd Conf. Inform. Sci. Syst., 2019.
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CHAPTER 2

NON-NEGATIVE MATRIX
FACTORIZATION OF CLUSTERED DATA

WITH MISSING VALUES

2.1 Introduction

Matrix factorization is commonly used for clustering and dimensionality re-

duction in computational biology, imaging, and other fields. Non-negative

matrix factorization (NMF) is particularly favored by biologists because non-

negativity constraints preclude negative values that are difficult to interpret

in biological processes [5, 6]. NMF of gene expression matrices can discover

cell groups and lower-dimensional manifolds in gene counts for different cell

types. According to Stein-O’Brien et al., “newer MF algorithms that model

missing data are essential for [single-cell RNA sequence] data” [7].

Often, data exhibits local structure, e.g., different groups of cells follow dif-

ferent gene expression patterns. Due to physical and biological limitations of

DNA- and RNA-sequencing techniques, gene-expression matrices are usually

incomplete, and matrix imputation is often necessary before further analysis

[6]. The local structure can be used to improve imputation.

Imputation accuracy is commonly measured using root mean-squared error

(RMSE) or similar error metrics. However, Tuikkala et al. argue that “the

success of preprocessing methods should ideally be evaluated also in other

terms, for example, based on clustering results and their biological interpre-

tation, that are of more practical importance for the biologist” [8]. Here, we

specifically consider imputation performance in the context of NMF.

We introduce a new imputation method based on optimal recovery, an

approximation-theoretic approach for estimating linear functionals of a signal

[9, 10, 11] previously applied in signal and image interpolation [12, 13, 14],

to perform matrix imputation of clustered data. Analysis with missing data

has been performed in the settings of high-dimensional regression [15] and

subspace clustering [16]. Pushing optimal recovery to imputation requires
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new geometric analysis. Our contributions include:

• A computationally efficient imputation algorithm that performs as well

as or better than other modern imputation methods, as demonstrated

on hyperspectral remote sensing data and biological data; and

• A tight upper bound on the relative error of downstream analysis by

NMF. This is the first such error bound for settings with missing values.

2.2 Missingness mechanisms

Rubin originally described three mechanisms that may account for missing

values in data: missing completely at random (MCAR), missing at random

(MAR), and missing not at random (MNAR) [17]. When data is MCAR, the

missing data is a random subset of all data, and the missing and observed

values have similar distributions [18]. The MCAR condition is described in

(2.1). This may occur if a researcher forgets to collect certain information for

certain subjects, or if certain data samples are collected only for a random

subset of test subjects. When data is MAR, the distribution of missing data

is dependent on the observed data (2.2). For example, in medical records,

patients with normal blood pressure levels are more likely to have missing

values for glucose levels than patients with high blood pressure. When data

is MNAR, the distribution of missing data is dependent on the unobserved

(missing) data (2.3). For example, people with very high incomes may be

less likely to report their incomes.

MCAR: P(Y is missing|X, Y ) = P(Y is missing) (2.1)

MAR: P(Y is missing|X, Y ) = P(Y is missing|X) (2.2)

MNAR: P(Y is missing|X, Y ) = P(Y is missing|Y ) (2.3)

It is important to understand the missingness mechanism when analyzing

the data. When data is MCAR, the statistics of the complete cases (data

points with no missing observations) will represent the statistics of the entire

dataset, but the sample size will be much smaller. If data is MAR or MNAR,

the complete cases may be a biased representation of the dataset. One can

also estimate statistics such as means, variances, and covariances based on all
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available non-missing observations of a variable. Then the sample size reduc-

tion may be less severe for certain variables. However, this also introduces

bias when data is MAR or MNAR, and there is the additional problem of

inconsistent sample sizes. Although some research has been done on MNAR

imputation, this is generally a difficult problem, and most imputation meth-

ods assume the MAR or MCAR model.

Ding and Simonoff argue that missingness mechanisms are more nuanced

than the three basic categories described by Rubin [19]. They claim that

missingness is dependent on any combination of the missing values, the ob-

served predictors, and the response variable (e.g. a category label). In the

cases where the missingness pattern contains information about the response

variable, the missingness is informative [20]. Ghorbani and Zou use informa-

tive missingness, using the missingness patterns themselves as an additional

feature for data classification [21].

2.3 Missing values imputation

In many cases, it is advantageous to impute the missing data for specific

downstream analysis, such as clustering or manifold-finding for classifica-

tion. Two main categories of imputation are single imputation, in which

missing values are imputed once, and multiple imputation, in which missing

values are imputed multiple times. The variance in the multiple imputations

of each missing observation reflects the uncertainty of the estimates, and

all imputed datasets are used in the downstream analysis, which increases

statistical power.

2.3.1 Single imputation

One of the simplest imputation techniques is mean imputation. Missing

values of each variable are imputed with the mean value of that variable.

Since all missing observations of a variable are imputed with the same value,

variance is reduced, and other statistics may be skewed in the MAR and

MNAR cases. The reduced variability in the imputed variable also decreases

correlation with other variables [22].

In regression imputation, a variable of interest is regressed on the other
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variables using the complete cases. Imputation puts points with missing

values directly on the regression line. This method also underestimates vari-

ances, but it overestimates correlations. Stochastic regression attempts to

add the variance back by distributing imputed points above and below the

regression line using a normal distribution.

Bayesian imputation approaches also exist, including Bayesian PCA [23]

and maximum likelihood imputation [24]. Bayesian methods are theoretically

sound and assume that data samples are generated from some underlying

joint distribution. In practice, these methods require numerical algorithms

such as the Markov chain Monte Carlo (MCMC) method, which may be

prohibitively time-consuming for large datasets.

2.3.2 Multiple imputation

Multiple imputation attempts to preserve the variance/covariance matrix of

the data. Multiple imputation generates several imputations of the set, re-

sulting in multiple complete datasets. Imputed datasets are then analyzed

and results are pooled. The different imputations introduce variance into the

data, but the variance may still be an underestimate since the imputations

assume correlation between the variables. One of the more popular algo-

rithms for multiple imputation is multiple imputation by chained equations

(MICE) [25]. The steps of MICE are as follows:

1. Perform single imputation (e.g. mean imputation) for each missing

value as a temporary value.

2. Choose one variable, set all the temporary values for that variable back

to missing and regress this variable on other variables (these variables

are user-specified).

3. Impute the missing values of that variable based on the previous re-

gression.

4. Repeat steps 2-3 for each variable with missing values.

5. Repeat steps 2-4 for a specified number of cycles (i.e. until convergence).

This results in one complete dataset.

6. Repeat steps 1-5 to obtain multiple imputed datasets.

While MICE does not have the theoretical backing that maximum likelihood

imputation has, MICE is flexible and can accommodate known interactions
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and independencies of real-world datasets [26]. A stepwise regression can be

performed so that the missing variable is regressed on the best predictors.

2.3.3 Imputation with clustered data

When the underlying data is clustered, a data point should be imputed based

on its cluster membership. Local imputation approaches outperform global

ones when there is local structure in data. Global approaches generally per-

form some form of regression or mean matching across all samples [25, 27],

whereas local approaches group subsets of similar samples. Popular imputa-

tion algorithms that utilize local structure include k-nearest neighbors (kNN),

local least squares (LLSimpute), and bicluster Bayesian component analysis

(biBPCA) [28, 29, 30]. The kNN imputation method finds the k closest neigh-

bors of a sample with missing values (measured by some distance function)

and fills in the missing values using an average of its neighbors. LLSimpute

uses a multiple regression model to impute the missing values from k nearest

neighbors. Rather than regressing on all variables, biBPCA performs linear

regression using biclusters of a lower-dimensional space, i.e. coherent clusters

consisting of correlated variables under correlated experimental conditions.

Delalleau et al. develop an algorithm to train Gaussian mixtures with miss-

ing data using expectation-maximization (EM) [31]. By itself, MICE does

not address clusters, but cluster-specific (group-wise) regression can be per-

formed [32].

Tuikkala et al.’s clustering results on cDNA microarray datasets showed

that “even when there are marked differences in the measurement-level im-

putation accuracies across the datasets, these differences become negligible

when the methods are evaluated in terms of how well they can reproduce the

original gene clusters or their biological interpretations” [8]. They used the

Average Distance Between Partition (ADBP) to calculate clustering error,

and they showed that BPCA, LLS, and kNN gave similar clustering results.

Chiu et al. found that LLS-like algorithms performed better than kNN-like

algorithms in terms of downstream clustering accuracy (measured using clus-

ter pair proportions) [33]. De Souto et al. evaluated whether the effect of

different imputation methods on clustering and classification were statisti-

cally significant [34]. They removed all genes with more than 10% missing
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values and compared classification using the corrected Rand index. They

found that simple methods such as mean and median imputation performed

as well as weighted kNN and BPCA.

After imputation, downstream analysis such as NMF can be performed on

data. Donoho and Stodden interpret NMF as the problem of finding cones

in the positive orthant which contain clouds of data points [35]. Liu and

Tan show that a rank-one NMF gives a good description of near-separable

data and provide an upper bound on the relative reconstruction error [36].

Given that gene and protein expression data is often linearly separable on

some manifold- or high-dimensional space [37], the bound given by rank-one

NMF is valid. We extend these ideas to data with missing values and, for the

first time, bound performance of downstream analysis of imputation. Loh

and Wainwright have previously bounded linear regression error of data with

missing values [15], but they do not consider imputation, and their proof is

based on modifying the covariance matrix when data is missing. Our proof

is based on the geometry of NMF.

2.4 Optimal recovery

Suppose we are given an unknown signal v that lies in some signal class Ck.

The optimal recovery estimate v̂ minimizes the maximum error between v̂

and all signals in the feasible signal class. Given well-clustered non-negative

data V, we impute missing samples in V so the maximum error is minimized

over feasible clusters, regardless of the missingness pattern.

2.4.1 Application to clustered data

Let V ∈ RF×N
+ be a matrix of N sample points with F observations (N

points in F -dimensional Euclidean space). Suppose the N data points lie in

K disjoint clusters Ck (where k = 1, 2, . . . , K), and that these clusters are

compact, convex spaces (e.g., the convex hull of the points belonging to Ck).

Now suppose there are missing values in V. Let Ω ∈ {0, 1}F×N be a

matrix of indicators with Ωij = 1 if vij is observed and 0 otherwise. We

make no assumptions on the missingness pattern, such as missing completely

at random (MCAR) or missing at random (MAR) [27] because we take a

9



Figure 2.1: Feasible set of estimators.

geometric approach rather than a statistical one. We define the projection

operator of a matrix Y onto an index set Ω by

[PΩ(Y)]ij =

{
Yij if Ωij = 1

0 if Ωij = 0
.

We use the subscripted vector (·)fo to denote fully observed data points

(columns), or data points with no missing values, and we use the subscripted

vector (·)po to denote partially observed data points. We use a subscripted

matrix (·)fo or (·)po to denote the set of all fully observed or partially observed

data columns in the matrix.

We can impute a partially observed vector vpo by observing where its ob-

served samples intersect with the clusters C1, ..., Ck. Let the missing values

plane be the restriction set over RF that satisfies the constraints on the

observed values of vpo. We call this intersection the feasible set W :

W = {v̂po ∈ Ck : PΩ(v̂po) = PΩ(vpo)} for some k ∈ [K]. (2.4)

Fig. 2.1 illustrates the feasible set of a three-dimensional vector with two

missing samples when the signal class (convex space containing samples from

kth cluster) covers an ellipsoid. If the signal had only one missing sample,

the feasible set would be a line segment.

All k for which (2.4) is satisfied are possible clusters from which the true

v originated. Since W cannot be empty, there must be at least one Ck that

has non-empty intersection with the set of all points satisfying the PΩ(vpo)

constraint. The optimal recovery estimator v̂∗po minimizes the maximum error
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over the feasible set of estimates:

v̂∗po = arg min
v̂po∈Ck

max
v∈Ck

‖v̂po − v‖, (2.5)

where ‖ · ‖ denotes some norm or error function. If we use the ∞-norm, v̂∗po

is the Chebyshev center of the feasible set.

If W contains estimators belonging to more than one Ck, W can be parti-

tioned into K disjoint sets, Wk, defined as

Wk = {v̂po ∈ Ck : PΩ(v̂po) = PΩ(vpo)}, k ∈ [K]. (2.6)

Feasible clusters are those for which Wk is not empty, and we can find (2.5)

over the Ck for which the corresponding Wk covers the largest volume: k =

arg maxk |Wk|.

2.4.2 Application to non-negative matrix factorization

Let V ∈ RF×N
+ be a matrix of N sample points with F non-negative obser-

vations. Suppose the columns in V are generated from K clusters. There

exist W ∈ RF×K
+ and H ∈ RK×N

+ such that V = WH. This is the NMF

of V [38]. We use the conical interpretation of NMF [35, 36], described as

follows.

Suppose the N data points originate from K cones. We define a circular

cone C(u, α) by a direction vector u and an angle α:

C(u, α) :=

{
x ∈ RF\{0} :

x · u
‖x‖2

≥ cosα

}
, (2.7)

or equivalently,

C(u, α) :=
{
x ∈ RF\{0} : (x · u)2 − (x · x) cos2(α) ≥ 0

}
. (2.8)

We truncate the circular cones to be in the non-negative orthant P so that we

have C(u, α)∩P . We can consider uk to be the dictionary entry corresponding

to Ck and all x’s belonging to Ck as noisy versions of uk. We call the angle

between cones βij := arccos(ui · uj). Assume the columns of V are in K
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Figure 2.2: Geometric assumption for greedy clustering.

Figure 2.3: Decomposition of vectors in a circular cone.

well-separated cones, that is,

min
i,j∈[K],i 6=j

βij > max
i,j∈[K],i 6=j

{max{αi + 3αj, 3αi + αj}}. (2.9)

This implies that the distance between any two points originating from the

same cluster is less than the distance between any two points in different

clusters, which is a common assumption used to guarantee clustering perfor-

mance [36, 39, 40] (see Fig. 2.2). We can then partition V into k sets, denoted

Vk := {vn ∈ Ck ∩ P}, and rewrite Vk as the sum of a rank-one matrix Ak

(parallel to uk) and a perturbation matrix Ek (orthogonal to uk). For any vec-

tor z ∈ Vk, z = ‖z‖2(cos β)uk + y, where ‖y‖2 = ‖z‖2(sin β) ≤ ‖z‖2(sinαk).

We use this rank-one approximation to find error bounds [36] (see Fig. 2.3).

If V contains missing values, we can use the optimal recovery estimator to

impute V. Assuming the columns in V come from K circular cones defined

as (2.7), there is a pair of factor matrices W∗ ∈ RF×K
+ ,H∗ ∈ RK×N

+ , such

that
‖V −W∗H∗‖F

‖V‖F
≤ max

k∈[K]
{sinαk}. (2.10)

Since the error is bounded by sinαk, we choose our optimal recovery es-

timator to minimize αk. This is equivalent to maximizing the inequality in
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(2.8):

v̂∗po = arg max
v̂po∈Ck

{(v̂po · uk)2 − (v̂po · v̂po) cos2(αk)}. (2.11)

We can solve (2.11) analytically using the Lagrangian with known values

of vpo as equality constraints. We can also solve (2.11) numerically using

projected gradient descent.

Generally, uk is not known beforehand, but we can find uk given Wk.

Given an ellipse in R3, we reconstruct its cone by drawing lines from its limit

points to the origin. Then it is straightforward to find the center of the cone.

Liu and Tan propose the following optimization problem (in the absence of

missing values) over the optimal size angle and basis vector for each cluster

[36]. We write the data points in each cluster as X := [x1, . . . ,xM ] ∈ RF×M
+

where M ∈ N+:

minimize(0,π/2) α

subject to xTmu ≥ cosα, m ∈ [M ],

u ≥ 0, ‖u‖2 = 1, α ≥ 0.

(2.12)

Of course, we also do not know Ck or Wk, so we use a clustering algorithm

to find the vectors belonging to each Ck (see Sec. 2.5).

2.5 Algorithm and error bound

Now we considering clustering and NMF with missing values. If the geometric

assumption (2.9) holds, a greedy clustering algorithm [36, Alg. 1] returns

the correct clustering of fully observed data. Here we show that a greedy

algorithm also guarantees correct clustering of partially observed data under

certain conditions.

Lemma 1 (Greedy clustering with missing values). Let Ω indicate the miss-

ing values of vpo. Let αk be the defining angle of Ck and PΩ(αk) be the

defining angle of the cone resulting from projecting Ck onto the missing value

plane from Ω. If, for exactly one k,

arccos

(
PΩ(vpo) · PΩ(uk)

‖PΩ(vpo)‖‖PΩ(uk)‖

)
≤ PΩ(αk) (2.13)
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Algorithm 1: Greedy Clustering with Missing Values

Data: Data matrix V ∈ RF×N
+ , K ∈ N, Ω ∈ {0, 1}F×N

Result: Cone indices J ∈ {0, 1, ..., K}N ; α ∈ (0, π/2)K ; u ∈ RF×K
+

1 Partition columns in V into subsets Vfo and Vpo, where Vfo contains
data columns for which

∑
i rij = F , and Vpo contains remaining

columns.;
2 Normalize Vfo so that all columns have unit `2-norm. Let V′fo be the

normalized matrix ;
3 Cluster items in V′fo using greedy clustering [36, Alg. 1] to obtain

cluster indices J and run Alg. 3 on V′fo to get u1, ..., uk from W ∗. ;

4 for vpo ∈ Vpo do
5 Let Ωj correspond to observed entries of vpo. Find

k = arg maxj∈[K] cos−1
(

PΩ(zj)·PΩ(v)

‖PΩ(zj)‖‖PΩ(v)‖

)
. If this condition is

maximized by more than one k, choose one at random. Add the
index of vpo to Jk. ;

6 end
7 for k ∈ [K] do

8 αk = maxvpo cos−1
(

PΩ(vpo)·PΩ(uk)

‖PΩ(vpo)‖‖PΩ(uk)‖

)
;

9 end
10 Return cone indices J , u, α ;
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then vpo originated from the corresponding Ck. If αk are identical for all k,

Alg. 1 will cluster vpo correctly.

Proof. The result follows directly.

Now consider feasibility of imputing data points using the α̂ and û from

Alg. 2. Clearly, the missing values plane for each point intersects the original

corresponding cone defined by the true u and α of the cone. We know the û

fall somewhere within the original cones, but if the α̂ are too small, the new

cones may not intersect with the missing values plane.

Lemma 2 (Feasibility of imputation algorithm). The estimator in (2.5)

is able to find an imputation within the feasible set given α1, . . . , αK and

u1, . . . , uk returned by Alg. 1.

Proof. Let vector vpo be a partially observed version of vfo ∈ V. We define

the angle between vpo and cluster center uk in the F -dimensional space:

γk = arccos

(
PΩ(vpo) · uk
‖PΩ(vpo)‖‖uk‖

)
, (2.14)

and between vpo and the projected cluster center in the projected (F − f)-

dimensional space:

γ̂k = arccos

(
PΩ(vpo) · PΩ(uk)

‖PΩ(vpo)‖‖PΩ(uk)‖

)
, (2.15)

where Ω is the observed values indicator corresponding to vpo. Then γk ≤ γ̂k

since PΩ(vpo) · uk = PΩ(vpo) · PΩ(uk) and ‖uk‖ ≥ ‖PΩ(uk)‖. Thus γ̂k is large

enough that an imputation on the missing values plane is feasible for each

vpo. Since αk = max γk, all partially observed points labeled as belonging to

Ck can be imputed.

Algorithm 2: Rank-1 NMF with Missing Values

Data: Partially observed data V ∈ RF×N
+ , Ω ∈ {0, 1}F×N , K ∈ N

Result: Ŵ∗ ∈ RF×K
+ and Ĥ∗ ∈ RK×N

+

1 Cluster data using Alg. 1 ;
2 Impute data using (2.5) ;
3 Perform rank-1 NMF on imputed data using [36, Alg. 2] ;
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We extend bound (2.10) on the relative NMF error to missing values

(Alg. 3). Note that the original bound allows for overlapping cones and

does not assume (2.9) holds. It only requires all points be within αk of uk,

which essentially allows the normalized perturbation matrix Ek to be upper-

bounded by sinαk. If the missing entries of each vpo are imputed using Alg. 1,

then the perturbation from the original uk, which we denote Êk, will be at

most 2Ek. We can prove this using a worst-case scenario.

Theorem 1 (Rank-1 NMF with missing values). Suppose V is drawn from

K cones and missing values are introduced to get Vpo. If Alg. 2 correctly

clusters data points and Alg. 1 is used to perform imputation, then

‖V −W∗
poH

∗
po‖F

‖V‖F
≤ max

k∈[K]
{sin 2αk}, (2.16)

where W∗
po and H∗po are found by Alg. 3.

Proof. Suppose there are two points v1 and v2 in a cone, as indicated by the

solid circle in Fig. 2.4. Then u will be at an angle α from both v1 and v2. Now

suppose v2 contains missing values. Then the new v1 will be the only vector

in the cone, v̂2 is imputed using (2.11), where û = v1, and v̂2 is at an angular

distance sin 2α from û. (One can check that if there are more than two points

in the cone, this distance cannot increase.) A worst-case imputation places

v̂2 at an angle 2α away from v1 (suppose the optimizer places v̂2 at an angle

greater than 2α from v1, but this is a contradiction since then v2 would be a

better estimate than the optimum). The dashed circle in Fig. 2.4 represents

points at an angle 2α from v1. Any v̂2 outside the dotted circle is at an angle

greater than 2α from v2. So the shaded region indicates when the error may

be greater than sin 2α. But the missing values of v2 allow for “movement”

only along the axes. Since the intersection of a hyperplane with a cone is a

finite-dimensional ellipsoid [41, 42], which is compact [43], v2 cannot “travel”

via imputation to the shaded region without crossing a feasible region less

than 2α from û. Hence the theorem holds and is tight.
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Figure 2.4: Geometric proof of relative NMF error bound.

2.6 Experimental results

To test our algorithm, we first generate conical data satisfying the geometric

assumption, using N = 10000, F = 160, and K = 40. We choose squared

length of each v as a Poisson random variable with parameter 1, and we

choose the angles of v uniformly. We then let V be partially-observed with

Bernoulli parameter ξ to obtain Vpo. That is,

Ω(i, j)
i.i.d.∼ Bern(ξ). (2.17)

We run tests using ξ ∈ {0.4, 0.55, 0.7, 0.8, 0.9} and find imputation relative

error for NMF:

E[V,W∗
poH

∗
po] =

‖V −W∗
poH

∗
po‖F

‖V‖F
. (2.18)

Fig. 2.5 shows relative error of our optimal recovery imputation with different

values of α when we enforce correct clustering. The error for all α values and

missingness percentages lies within the bound given by (2.16). Note that

because our data is drawn uniformly at random, the error does not approach

the worst-case bound.

In the next experiment, we impute the conical data with α = 0.1 with other

local imputation algorithms, including kNNimpute [44] with Euclidean, co-

sine, and Chebyshev (L∞) distances and iterated local least squares (itrLLS)[45].

We perform two tests with optimal recovery: one with enforced correct clus-

terings and one without prior knowledge of the correct clusterings. We use

α = 0.1 and do not enforce correct clustering for Alg. 3 as before (see Fig.

2.6). We find k = 8 neighbors gives us the best results. Optimal recovery

performs much better than other methods when clusters are known, and it

performs similarly to other methods when they are not.

Following [36], the next experiment tests a subset of the hyperspectral
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Figure 2.5: Relative NMF error of imputed conical data with correct
clustering.

Figure 2.6: Relative NMF error for Conical data.

imaging data set from Pavia [46]. We crop the 103 images to have 2000 pixels

per image, set K = 9, corresponding to the different imagery categories, and

introduce missing values in the same proportions as before (see Fig. 2.7). We

also run tests with mice protein data [47] (see Fig. 2.8). The original dataset

contains 1077 measurements with 77 proteins. We remove the 9 proteins

that had missing measurements, then introduce missing values. We find

k = 5 neighbors gives us the best results for kNNimpute on these datasets.

On the mouse data, we also test bicluster BPCA [30] in addition to the

other methods. The conical and Pavia test data were not sufficiently well-

conditioned to run bicluster BPCA. See Tab. 2.1 for a comparison of run

times. Our results demonstrate that optimal recovery performs similarly

to kNN methods when clusters are not known beforehand. When clusters

are known, optimal recovery performs similarly to more advanced methods

(itrLLSimpute and biBPCA) in a fraction of the time.
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Figure 2.7: Relative NMF error for Pavia data.

Figure 2.8: Relative NMF error for Mouse data.

Table 2.1: Average imputation times for Mouse data in seconds.

% Missing 10 20 30 45 60
OptRec 0.51 0.48 0.63 0.91 1.41

OptRec (Correct Clusters) 0.48 0.48 0.58 0.85 1.36
kNN (Euc) 0.11 0.17 0.29 0.34 0.51
kNN (Cos) 0.10 0.15 0.19 0.27 0.41

kNN (Cheb) 0.08 0.16 0.23 0.35 0.52
itrLLSimpute 43.9 30.4 25.7 20.5 14.5

biBPCA 5000+
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Algorithm 3: SVD with missing values

Data: Data matrix V(0) ∈ RF
+, K ∈ N

Result: U ∈ RF×K ,Σ ∈ RK×K ,X ∈ RK×N

1 Initialize U(0),Σ(0),X(0) ;
2 for t = 1, 2, ... until convergence do
3 M(t) = U(t−1)Σ(t−1)X(t−1) ;
4 V(t) = PΩ(V(t−1)) + PΩC (M(t)) ;
5 U(t),Σ(t),X(t) = svd(V(t), K) ;

6 end
7 Return U(t),Σ(t),X(t) ;

Algorithm 4: Rank-1 NMF

Data: Data matrix V ∈ RF×N
+ , J ∈ [K]N

Result: U ∈ RF×K ,Σ ∈ RK×K ,X ∈ RK×N

1 for k = 1 to K do
2 Vk := V (:, Jk) ;
3 [Uk,Σk,Xk] := svd(Vk) ;
4 w∗k := |Uk(:, 1)|, hk := Σk(1, 1)|Xk(:, 1)| ;
5 h∗k := zeros(1, N), h∗k(Jk) := hk ;

6 end
7 W∗ := [w∗1, ...,w

∗
K ], H∗ := [(h∗1)T , ..., (h∗K)T ] ;

8 Return W∗,H∗ ;

20



Figure 2.9: Minimum covering sphere in two dimensions.

2.7 Probabilistic error

We now make some probabilistic assumptions on our data and missingness

patterns to calculate the expected maximum error of optimal recovery impu-

tation. First, consider a cone C in an F -dimensional space defined by u and

α. Let us ignore the length of the vectors in C and preserve only the angles

of the vectors from u. We can then represent vectors of an F -dimensional

cone as points in an (F − 1)-dimensional ball. For example, a 3-dimensional

cone can be represented as points in a circle, as in Fig. 2.4.

Let there be N points {x1, ..., xN} ∈ RF , drawn uniformly at random from

K F -dimensional balls, labeled B1, ..., BK . Let d(xi, xj) be the Euclidean

distance between xi and xj. We assume there is at least one data point in

each ball, and that the distance between any two points in a ball Bk is less

than the distance between any point in Bk and a point not in Bk:

For any i, j ∈ [N ], i 6= j,

max
i,j∈Bk

d(xi, xj) < min
i∈Bk,j /∈Bk

d(xi, xj) for all k = 1, ..., K. (2.19)

This is equivalent to the geometric assumption in (2.9), and we can correctly

cluster any points drawn from such balls using the greedy clustering algo-

rithm already described. After obtaining the clusters, we can compute the

minimum covering sphere (MCS) on the points in each cluster [48] (Fig. 2.9).

This gives us K balls with Nk points in each ball.

Now suppose that we have partially observed entries in our data. Let

the missingness of a point be a Bernoulli random variable with parameter

γ. That is, x is fully observed with probability γ and partially observed

with probability 1 − γ. There is now some uncertainly about the position
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of partially observed data points, so we will find the MCS for only the fully

observed points. This is analogous to step 3 in Algorithm 2. By calculating

the expected change in the radius of the MCS, we can calculated the expected

change in its corresponding cone.

If we assume the N points are drawn uniformly from the K balls, then

E[Nk] = N/k, and the expected number of fully observed and partially ob-

served points in each cluster is

E[|Xk,fo|] = γNk and E[|Xk,po|] = (1− γ)Nk. (2.20)

Clearly, the volume of the MCS can only decrease as |Xk,fo| decreases. Let

Rmax be the radius of MCS if there were no missing values, and let R̂ be the

radius of the MCS of only the fully observed points. Then R̂ < Rmax only

if any x ∈ Xpo originally lay on the surface of MCSk,fo. Suppose the points

are randomly distributed along the radius of the F -ball and we pick points

to be partially observed uniformly at random. Let

Npo = d(1− γ)Ne. (2.21)

Assume xi are i.i.d. and uniformly distributed (without loss of generality) on

[0, 1]. This matches the assumption in the probabilistic analysis in [36] that

the angles are drawn uniformly at random on [0, α] (see Fig. 2.10). Assuming

a continuous distribution, almost surely no two points have exactly the same

radius, and the probability of picking the ` outermost points is

P(`) =

(
N−`
Npo−`

)(
N
Npo

) , where ` = 0, 1, ..., Npo . (2.22)
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Figure 2.10: Assumption that points are uniformly random on the radius.

This gives us

E[`] =

Npo∑
`=1

` · P[`] (2.23)

=

Npo∑
`=1

` ·

(
N−`
Npo−`

)(
N
Npo

) (2.24)

=
1(
N
Npo

) Npo∑
`=1

` ·
(
N − `
Npo − `

)
(2.25)

=

(
N−1
Npo−1

)
N(N + 1)(

N
Npo

)
(N −Npo + 1)(N −Npo + 2)

, (2.26)

where Npo is dependent on γ, as defined in (2.21).

The radius of the resulting MCS is dependent on the distribution of points

along the radius. We can determine R̂ using order statistics. If we assume

uniform distribution between 0 and 1, and order the points x1, ..., xn so that

x1 is closest to the center of the sphere and xn is farthest, the radius of the

nth point, Rn, is given by the Beta distribution

Rn ∼ B(n, 1), (2.27)

and

E[Rn] =
n

n+ 1
. (2.28)

Thus if ` of the outermost points are chosen to be missing,

E[R̂] = Rmax − (`/N)Rmax =

(
N − `
N

)
Rmax . (2.29)

We illustrate with an example in Fig. 2.11. We can substitute E[`] for `, and
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Figure 2.11: Example of E[R̂] with N = 9 and ` = 3.

since E[`] is a function of γ, we have derived the expected radius of the MCS

as a function of missingness:

E[R̂] =

(
N − E[`]

N

)
Rmax . (2.30)

Now we reverse the arrow in Fig. 2.10. Due to the random distribution of

points in the sphere, removing the ` outermost points does not change the

expected center u of the MCS. Transitioning from spheres back to cones, we

get

E[α̂] =

(
N − E[`]

N

)
α . (2.31)

Thus

α− E[α̂] =
E[`]

N
· α, (2.32)

and the normalized Frobenius distance between W∗
foH

∗
fo and W∗H∗ for a

single cone is:

‖W∗
foH

∗
fo −W∗H∗‖F
‖W∗H∗‖F

≤ sin

(
E[`]

N
· α
)
. (2.33)

If we assume vn ∈ V are MCAR, the statistical mean of Vfo is the same

as that of V. Since vn are uniformly distributed, the range of vn remains

centered on the mean, so the expected center of the MCS does not change.

Thus the maximum difference between a point v ∈ Ck and its imputed point

v̂ is sinαk. Thus after imputing with Alg. 3, we can tighten the bound in

(2.16) to
‖V −W∗

poH
∗
po‖F

‖V‖F
≤ max

k∈[K]
{sinαk}. (2.34)
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2.7.1 MCS with a different assumption

If instead we assume points are uniformly distributed in the volume of the

ball, we find the change in radius as follows. First, calculate the volume of a

F -dimensional ball of radius R = 1:

VF (R) =
πF/2

Γ(F/2 + 1)
RF . (2.35)

Then we calculate radius R̂ of an F -dimensional ball as:

R̂F (V̂ ) =
Γ(F/2 + 1)1/F

√
π

V̂ 1/F , (2.36)

where volume V̂ =
(

1−`
N

)
VF (1).

The probability that a point x is in MCSpo is

P(x ∈ MCSpo) =
V (R̂)

V (Rmax)
. (2.37)

Thus the expected radius given a missing parameter γ is given by

E[R̂] = R̂F

(
1− E[`]

N
VF (1)

)
, (2.38)

where E[`] is a function of γ.

2.7.2 Minimum covering spherical cap for normalized data

If the data is normalized such that each vector has an L2 norm of 1, all the

points will fall on the surface of a sphere. Let there be N points {x1, ..., xN} ∈
RF , drawn at random from K F -dimensional spherical caps of a radius R

F -ball, labeled C1, ..., CK . Let d(xi, xj) be some distance between xi and

xj. Assume there is at least one data point in each spherical cap, and that

Assumption 1 holds.

The area of an F-dimensional spherical cap is

A(R, h) =
1

2
AFR

F−1I2rh−h2/r2

(
F − 1

2
,
1

2

)
, (2.39)

where 0 ≤ h ≤ R,An = 2πn/2/Γ[n/2] is the area of the unit n-ball, h is the

25



height of the cap, which can be calculated as a function of the angle α between

the center and the edge of the cap, and Ix(a, b) is the regularized incomplete

beta function. Using the same style of analysis from the previous section, we

can find the expected angle E[αpo] given a parameter γ for partially observed

points.

2.8 Conclusion

We have extended classical approximation-theoretic optimal recovery for im-

puting missing values, specifically for NMF. We showed that imputation

using optimal recovery minimizes relative NMF error under certain geomet-

ric assumptions. This required a novel reformulation of optimal recovery

using the geometry of conic sections. Future work aims to extend optimal

recovery to other settings of missing values in modern data science. On the

experimental side, we plan to test our imputation algorithm on single-cell

RNA sequencing data along with different clustering algorithms. We also

aim to extend our algorithm to use local structure to take advantage of all

observable data.
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CHAPTER 3

MISSING VALUES AS NOISY CHANNELS

3.1 Introduction

We can consider the missingness mechanisms described in Chapter 2 as dif-

ferent types of channel noise. In the simplest case, MCAR mechanisms can

be modeled as an erasure channel (Fig. 3.1). MAR and MNAR mechanisms

can be modeled as signal-dependent noise channels. Ding and Simonoff de-

scribe X missingness, or missingness that is dependent on observed variables

(equivalent to MAR), M missingness, or missingness dependent on missing

variables (equivalent to MNAR), and Y missingness, or missingness depen-

dent on an output (such as signal class or some function of the signal obser-

vations). Missingness can also be mixed (MX, MY, XY, XMY). Consider a

case of MNAR missingness in gene testing where small gene counts are missed

and recorded as zeros. This can be modeled as a channel that distorts or

attenuates small signals with high probability and leaves large signals un-

changed. One can define other similar signal-dependent or class-dependent

erasure channels and derive channel capacities to obtain information the-

oretic bounds. We use an erasure channel to model MCAR mechanisms,

leaving the other mechanisms as an area for future work.

Figure 3.1: Binary erasure channel with error probability p.
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3.2 Missing values as a binary erasure channel: Fano’s

inequality and multiple hypothesis testing

Consider a set of n samples Y = (Y1, ..., Yn) drawn from joint distribu-

tion P n
θ (y) parametrized by θ, where θ lies in some set Θ. If inputs X =

(X1, ..., Xn) are present, samples are drawn from joint distribution P n
θ,X(y)

parametrized by (θ,X). An algorithm forms an estimate θ̂ of θ, with the goal

that some loss function `(θ, θ̂) is small.

We set up a multiple hypothesis test. Let V ∈ {1, ...,M} be an index

corresponding to the parameters θV . Suppose V is drawn from a prior dis-

tribution PV , and a sequence of samples Y is drawn from PY|V . The goal

is to identify V with high probability given Y. If our estimation algorithm

correctly outputs θ̂ ≈ θV , then we should be able to recover the index V from

θ̂. This is the problem of multiple hypothesis testing, where the vth hypoth-

esis is that the underlying parameter is θv. If the hypothesis test cannot be

successful, then the algorithm cannot perform well [49].

We use Fano’s inequality to lower bound the error probability. For exact

recovery, we define error probability as

Pe = P[V̂ 6= V ]. (3.1)

Theorem 2 (Fano’s inequality). For discrete random variables V and V̂ on

a common alphabet V,

H(V |V̂ ) ≤ H2(Pe) + Pe log(|V| − 1), (3.2)

where H2(·) denotes the binary entropy. If V is uniform on {1, ...,M}, then

I(V ; V̂ ) ≥ (1− Pe) log |V| − log 2, (3.3)

or

Pe ≥ 1− I(V ; V̂ ) + log 2

log |V|
. (3.4)

Proof. The proof of (3.2) can be found in [50]. To get (3.3), we use |V|−1 ≤
|V| and H2(Pe) ≤ log 2, and we subtract H(V ) = log |V| from both sides

[49].

Since V → Y → V̂ is a Markov chain, we can use the data-processing
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inequality to bound I(V ; V̂ ) ≤ I(V ; Y). If each of the n observations can

take on b values, I(V ; Y) ≤ H(Y) ≤ n log b, so

Pe ≥ 1− n log b+ log 2

logM
. (3.5)

Thus to achieve Pe ≤ δ, we need

n ≥ (1− δ) logM − log 2

log b
(3.6)

samples. Suppose samples are missing completely at random with probability

ξ. The problem can be modeled as an erasure channel, and max I(V ; V̂ ) is

scaled by a factor of (1−ξ). Substituting (1−ξ)I(V ; V̂ ) for I(V ; V̂ ) in Fano’s

inequality, we now need

n ≥ (1− δ) logM − log 2

(1− ξ) log b
(3.7)

samples to achieve Pe ≤ δ.

For approximate recovery, the error probability is defined as

Pe(t) = P[d(V, V̂ ) > t], (3.8)

where d(v, v̂) is some real-valued function and t ∈ R. We define minimum

and maximum neighborhood sizes

Nmax(t) = max
v̂∈V̂

Nv̂(t) and Nmin(t) = min
v̂∈V̂

Nv̂(t), (3.9)

where Nv̂(t) is the number of v ∈ V for which d(v, v̂) ≤ t.

Theorem 3 (Fano’s inequality with approximate recovery). For any random

variables V and V̂ on the finite alphabets V and V̂ ,

H(V |V̂ ) ≤ H2(Pe(t)) + Pe(t) log
|V| −Nmin(t)

Nmax(t)
+ logNmax(t). (3.10)

If V is uniform on V, then

I(V ; V̂ ) ≥ (1− Pe(t)) log
|V|

Nmax(t)
− log 2, (3.11)
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or equivalently,

Pe(t) ≥ 1− I(V ; V̂ ) + log 2

log |V|
Nmax(t)

. (3.12)

Proof. The proof can be found in [51].

Again, we can use the data-processing inequality to bound I(V ; V̂ ) ≤
I(V ; Y). If each of the n observations can take on b regions of values, where

each region d(v, v̂) ≤ t, then I(V ; Y) ≤ H(Y) ≤ n log b, so

Pe ≥ 1− n log b+ log 2

log |V|
Nmax(t)

. (3.13)

To achieve Pe(t) ≤ δ, we require

n ≥ 1

log b

(
(1− δ) log

|V|
Nmax(t)

− log 2

)
. (3.14)

To achieve Pe(t) ≤ δ with samples MCAR with probability ξ, we need

n ≥ 1

(1− ξ) log b

(
(1− δ) log

|V|
Nmax(t)

− log 2

)
. (3.15)

3.3 Group testing with missing outcomes

We describe the group testing problem and directly apply (3.7) and (3.15) to

existing bounds outlined in [49]. Suppose we have a set of p items. Of these

items, k are defective. The set of defective items S ⊆ {1, ..., p} is uniform

over the
(
p
k

)
possible subsets containing k items. For each test, a subset of

the p items are polled, and the test produces a binary outcome indicating if

the polled subset contains at least one defective item. The goal is to identify

S with the fewest tests.

We denote the test matrix X ∈ {0, 1}n×p where the Xi,j is 1 if item j is

included in test i. We let X be chosen in advance and randomly distributed

(e.g., i.i.d. Bernoulli).

Scarlett and Cevher [49] consider passing the noiseless test outcome through

a binary symmetric channel (BSC), which corresponds to incorrect test out-

comes. In their model, the observed outcome is given by
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Yi =

(∨
j∈S

Xij

)
⊕ Zi, (3.16)

where
∨
j∈S Xij is the noiseless test outcome, ⊕ denotes modulo-2 addition,

and ∨ is the “OR” operation. Let Zi be i.i.d. Bernoulli(ε) for some ε ∈ [0, 1
2
)

and independent of X. Let the vector of test outcomes Y = {Y1, ..., Yn}.
Given X and Y, we estimate Ŝ from Ŝ. In the exact recovery setting, the

probability of error is given by

Pe = P[Ŝ 6= S]. (3.17)

Theorem 4 (Group testing under BSC with exact recovery). Under the

noisy group testing setup described above, in order to achieve Pe ≤ δ, we

must have

n ≥
k log p

k

log 2−H2(ε)
(1− δ − o(1)) (3.18)

as p→∞, possibly with k →∞ simultaneously.

Proof. We can directly formulate this problem as a multiple hypothesis test

with V = S. Applying Fano’s inequality with conditioning on X, we obtain

I(S; Ŝ|X) ≥ (1− δ) log

(
p

k

)
− log 2. (3.19)

We upper bound I(S; Ŝ|X) ≤ I(S; Y|X) using the data processing inequality,

since S → Y → Ŝ when conditioned on X. Since the noise variables Zi

are independent, and Yi are conditionally independent of Xi and S given∨
j∈S Xij, we have

I (S; Y|X) ≤
n∑
i=1

I(
∨
j∈S

Xij;Yi). (3.20)

Since Yi is generated from
∨
j∈S Xij using a BSC, which has capacity log 2−

H2(ε), we have

I (S; Y|X) ≤ n(log 2−H2(ε)). (3.21)

Substituting the inequality
(
p
k

)
≥ ( p

k
)k and (3.21) into (3.19) gives us Thm.

4 [49].
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Similarly, we can model the error using a BEC to obtain the following

theorem. This would correspond to the case in which test outcomes are

undetermined or missing with probability Pε.

Theorem 5 (Group testing under BEC with exact recovery). Under the

group testing setup with missing test outcomes, in order to achieve Pe ≤ δ,

we must have

n ≥
k log p

k

log 2− Pε
(1− δ − o(1)) (3.22)

as p→∞, possibly with k →∞ simultaneously.

Proof. The proof is similar to the proof of Thm. 4, except that the BEC has

a capacity of log 2− Pε.

For the approximate recovery case, the decoder outputs a list L ⊆ {1, ..., p}
of cardinality L ≥ k. We can then define

Pe(αk) = P[|S \ L| > αk]. (3.23)

In other works, if the number of missed defective items exceeds some fraction

of the total number of defective items, then the decoder is wrong.

Theorem 6 (Group testing under BSC with approximate recovery). Under

the noisy group testing setup with approximate recovery, with list size L ≥ k,

in order to achieve Pe(αk) ≤ δ for some α ∈ (0, 1), we need

n ≥
(1− α)k log p

L

log 2−H2(ε)
(1− δ − o(1)) (3.24)

as p→∞, k →∞, and L→∞ simultaneously with L = o(p).

Proof. We apply Thm. 3. The number of L with cardinality L within a

neighborhood αk of S is given by

Nmax(αk) =

bαkc∑
j=0

(
p− L
j

)(
L

k − j

)
, (3.25)

which is the number of ways to place up to αk items in L. Hence, conditioning

on X and the data processing inequality as in Thm. 4, we get

I(S; Y|X) ≥ (1− δ) log

(
p
k

)∑bαkc
j=0

(
p−L
j

)(
L
k−j

) − log 2. (3.26)
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Using some asymptotic simplifications (described in [49]), we combine

(3.26) and (3.21) to obtain Thm. 7.

Again, this can be extended to a BEC corresponding to missing test out-

comes.

Theorem 7 (Group testing under BEC with approximate recovery). Under

the BEC group testing setup with approximate recovery, with list size L ≥ k,

in order to achieve Pe(αk) ≤ δ for some α ∈ (0, 1), we need

n ≥
(1− α)k log p

L

log 2− Pε
(1− δ − o(1)) (3.27)

as p→∞, k →∞, and L→∞ simultaneously with L = o(p). Note that Pε

is the error rate of the BEC.

Proof. The proof is the same as that of Thm. 7 but with the BEC channel

capacity.

In this example, we assumed i.i.d. Bernoulli missingness, corresponding to

the MCAR case. To account for the MAR and MNAR cases, there has been

some work on the capacity of signal-dependent noise channels [52], but this

is an open area for future research.

33



CHAPTER 4

REGISTRATION FOR IMAGE-BASED
TRANSCRIPTOMICS: PARAMETRIC

SIGNAL FEATURES AND MULTIVARIATE
INFORMATION MEASURES

Image-based transcriptomics involves determining spatial patterns in gene

expression across cells and tissues. Image registration is a necessary com-

ponent of data analysis pipelines that characterize gene expression levels

across different cells and intracellular structures. We consider images from

multiplexed single molecule fluorescent in situ hybridization (smFISH) and

multiplexed in situ sequencing (ISS) datasets from the Human Cell Atlas

project and demonstrate a novel approach to groupwise image registration

using a parametric representation of images based on finite rate of innova-

tion sampling, together with practical optimization of empirical multivariate

information measures.

4.1 Introduction

The transcriptome of a cell (or an organism) is the portion of DNA that is

expressed as RNA in that cell (or organism). The subset of genes that are

expressed in a cell varies depending on cell type and cell state, and recognizing

patterns in the transcriptome is an important part of understanding cell

function and pathology. The RNA molecules present in a cell can be tagged

using fluorescent markers, which can be observed in situ, and spatial patterns

of gene expression within cells and tissues can be studied [53]. Different

combinations of colored fluorescent markers serve as tags for different RNA

sequences, and images of different color spectra (multispectral images) must

be aligned for analysis.

Researchers have developed methods and algorithms to extract transcript

molecule feature sets, localization, and patterns, in tens of thousands of

single cells across the human transcriptome [54, 55]. Starfish, a community of

computational biologists and software engineers, has developed standardized
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file formats for input data and analysis [56]. They are building a standard

library that consolidates different methods from different steps of the analysis

pipeline. The goal is to contribute to the Human Cell Atlas, a project to

create comprehensive reference maps of all human cells to understand human

health and to diagnose, monitor, and treat disease [57].

An important part of the image-based transcriptomics analysis pipeline

is image registration. Image registration in the Starfish pipeline currently

addresses pixel-level translational error using an FFT-based phase correla-

tion approach [58]. Phase correlation has also been extended to rotational

and scaling error [59] as well as to subpixel registration [60]. However, phase

correlation does not account for non-linear intensity changes, which can arise

when the images to be registered are taken under different conditions (e.g.

multimodal, multispectral, different lighting, etc.). To address such intensity

nonlinearities, mutual information has been proposed elsewhere as an image

similarity measure [61, 62], and under the assumption that images are sta-

tistically dependent, we have shown that maximizing mutual information is

a theoretically optimal method for registering image pairs [63].

What about registering not just a pair of images but a larger set of images,

as in transcriptomics? A natural extension to mutual information is multiin-

formation, which can be used to jointly register multiple images and has been

shown to be superior to sequential pairwise registrations and asymptotically

optimal [63]. However, computing the multiinformation of several images is

computationally expensive—O(Nn) for n images with N pixels. To address

this computational issue we develop a novel parametric signal representation

for image-based transcriptomics data using finite rate of innovation sampling

[64]. We propose a feature- and information-based method which is O(nN)

for n images. This algorithm registers images in a joint rather than pairwise

manner and has the same output as multiinformation in certain settings when

features are properly extracted; see Thm. 8 for a formal statement.
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4.2 Registration using information

4.2.1 Mutual information

Maximizing empirical mutual information for image registration [61, 62] has

been commonly used in fields such as medical imaging and remote sensing.

Mutual information between random variables X and Y is defined as

I(X, Y ) = H(X) +H(Y )−H(X, Y ), (4.1)

where H(X) and H(Y ) are marginal entropies and H(X, Y ) is the joint

entropy of X and Y . Mutual information can also be formulated as the

Kullback-Liebler divergence (relative entropy) between the joint distribution

and the product of the marginal distributions:

I(X;Y ) =
∑
x,y

pX,Y (x, y) log

(
pX,Y (x, y)

pX(x)pY (y)

)
. (4.2)

Given two r-dimensional images X1 and X2 defined over a discrete spa-

tial region Ω, we define an image transformation T : Ω → Ω. If X2 is a

transformed version of X1, we can register X1 and X2 by finding

T ∗ = arg max
T

I(X1(x, y);X2(T (x, y))). (4.3)

There are several ways to estimate the joint and marginal distributions

of images. Two popular ones are the joint histogram method [65] and the

Parzen windowing method [66, 61]. After estimating the distributions, the

maximization problem (4.3) can then solved using an appropriate optimiza-

tion algorithm. If properly initialized, a local optimization algorithm such

as gradient descent can be used [65]. Global optimization algorithms such

as genetic algorithms, simulated annealing, and particle swarm optimization

have also been used to maximize mutual information [67, 68, 69, 70].

4.2.2 Multiinformation

Several groups have proposed using multiinformation to perform groupwise

registration [71, 72, 73]. Guyader et al. show that groupwise multiinforma-
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tion yields better registration performance than pairwise mutual information

for medical imaging settings. Multiinformation, like mutual information, is

defined as the KL divergence between a joint distribution and a product of

marginal distributions. Given n random variables X1, X2, ..., Xn, multiinfor-

mation is defined as

I(X1;X2; . . . ;Xn) =
n∑
i=1

H(Xi)−H(X1, X2, . . . , Xn)

=
∑

p(x1, x2, . . . , xn) log

(
p(x1, x2, . . . , xn)

p(x1)p(x2) · · · p(xn)

)
. (4.4)

To register n images X1, X2, . . . , Xn, we find the transformations that max-

imize multiinformation:

T ∗2 , . . . , T
∗
n = arg max

T2,...,Tn

I(X1(x);X2(T2(x)); . . . ;Xn(Tn(x))), (4.5)

where x = (x, y) for a 2-D image. Thus a single optimization can be used

to register any number of images. We call this the MM algorithm. We have

recently shown that MM is exponentially consistent for image registration

(probability of error goes to 0 exponentially fast as number of pixels goes

to infinity) [63]. In fact, we showed that MM is asymptotically optimal

in the sense of achieving the same error exponent as maximum likelihood

registration. Thus

T∗MM
.
= T∗ML = arg max

T1,...,Tn

n∏
i=1

P (Xi(Ti(x, y))|Xi), (4.6)

where “
.
=” indicates equivalent error exponents.

Guyader et al. assume images are jointly Gaussian, which greatly simplifies

the empirical distribution estimation [71]. This is usually not a valid assump-

tion for natural images or image-based transcriptomics (although they show

that it works for the images they tested). Kern et al. [72] use the approxi-

mation

I(X1;X2; . . . ;Xn) ≈
∑

i,j∈{1,...,n};i 6=j

I(Xi, Xj). (4.7)

This approximation can greatly overestimate multiinformation in cases where

mutual information of image pairs is large.

37



Rather than approximating the multiinformation function, we initially im-

plement the original objective in (4.5) using full image histograms. We per-

form our optimization using particle swarm optimization [74]. The details of

our implementation are covered in Sec. 4.4.

4.3 Feature-based registration

4.3.1 Background and related work

While MM performs groupwise registration optimally [63], it is computa-

tionally expensive. Feature-based algorithms tend to be more efficient. Many

registration methods first extract features and then match only the extracted

features across images. Others have used corner detectors and edge detectors

for registration [75, 76]. Phase correlation in the Fourier domain is applied to

these features to retrieve translations and rotations. A particularly success-

ful method is based on Lowe’s scale-invariant feature transform (SIFT) [77].

SIFT extracts local scale-invariant features, called keypoints, from images.

Key points are image features that are visually interesting (e.g., corners and

curved edges), and feature matching and clustering is performed to detect

and register objects. Numerous variants of SIFT have been used in multi-

modal image registration (we reference just a few) [78, 79, 80, 81].

Baboulaz and Dragotti formulate feature-based registration as a finite rate

of innovation problem, with applications in super-resolution [82]. They use

a Canny-like edge detector and use the intersections of those edges (corners)

as features. They then match corners across images using correlation and

RANSAC methods (also used in SIFT) and demonstrate that exact registra-

tion is possible using only the detected corners.

We apply finite rate of innovation sampling to multispectral registration

by representing smFISH images as sums of delta functions. We demonstrate

that these features alone are enough to perform registration. We also use

this sparse representation in conjunction with MM to perform groupwise

registration.

38



4.3.2 Finite rate of innovation sampling

Certain signals that have a finite rate of innovation (FRI) [64] can be written

in the form

s(t) =
∑
k

ckφ(t− tk), (4.8)

where φ(t) is a known kernel and the number of tk values per unit time (the

rate of innovation) is finite. Then the innovative part of the signal lies in

ck. Given ck and tk, we can reconstruct s(t). Various kinds of filters can

be used to identify the innovative part of the signal, and the signal can be

perfectly reconstructed using just these samples [83, 84]. Examples of FRI

signals include delta trains and piecewise polynomials.

For a 2-dimensional image, we can write (4.8) as

s(x, y) =
∑

x′,y′∈Ω

cx′,y′φ(x− x′, y − y′). (4.9)

Baboulaz and Dragotti register multiview images using FRI sampling.

They model images as sums of polynomials, using a B-spline sampling kernel

[82]. The images captured by digital imaging technologies result from the

point spread function (PSF) of a lens, which can be used as the sampling

kernel φ(x, y) in (4.9). An object in space o(x, y) is filtered through the lens

as

s(x, y) = o(x, y) ∗ φ(−x/T,−y/T ), (4.10)

where T is the sampling period. For registration, we must obtain the features

of o(x, y) from s(x, y). This can be done by deconvolving s(x, y) with the PSF

of the imaging system to give ô(p, q). The image ô(x, y) is then processed to

extract the features of interest, giving us a weighted sum of spikes:

d(x, y) =
∑

x′,y′∈Ω

cx′,y′δ(x− x′, y − y′). (4.11)

For every feature, there will be a corresponding spike in each misaligned

image. To perform groupwise registration, we group these features across

images and find the transformations so that spikes corresponding to a feature

have the same location in each image.
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Figure 4.1: Example smFISH images. Columns are different color channels.
Rows are imaging rounds.

4.4 Methods and experiments

In this section, we demonstrate our algorithmic approach on manually shifted

and rotated multispectral images, and then on a single smFISH image which

we manually shift and rotate.1 Fig. 4.1 shows some example smFISH images.

Columns correspond to a color channel (there are three total), while rows

corresponds to a round of imaging. Disturbances between imaging rounds

may cause images to shift, and image registration is necessary. We perform

a maximum intensity projection across channels to obtain one image per

imaging round, and we perform registration with these images. In Sec. 4.4.3

we present our results on misaligned smFISH images, for which we do not

have ground truth data.

4.4.1 Maximizing multiinformation

We implement MM using particle swarm optimization (PSO). To maximize

(4.5), we must search over the space T2×T3×· · ·×Tn, where each Ti can have

multiple degrees of freedom. For example, if we restrict T to include only

1Code can be found at https://github.com/toby2476/fish_register
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vertical and horizontal translations, each image has two degrees of freedom,

giving us a 2n−1-dimensional search space. If we include rotations, it becomes

a 3n−1-dimensional search space. We can also include scaling, shearing, etc.

Clearly (4.5) is much more difficult to optimize than (4.3). We plot the

multiinformation of 30 multispectral images from the CAVE database [85]

with random horizontal and vertical shifts, estimating distributions using

histograms (see Fig. 4.2). The maximum shift M is given on the x-axis, and

images were shifted with a x-shift and a y-shift drawn uniformly on [0,M ].

This matches the plots in [72] showing that mutual information of two images

is maximized when they are properly aligned.

To test registration, we use five multispectral images, shown in Fig. 4.3. We

randomly rotate them with angles between [−5, 5] degrees. We find the em-

pirical image intensity distributions for each image using image histograms,

and compute the empirical joint distribution using a joint histogram. Using

numerous histogram bins causes joint probabilities to become too small, so

we use four bins. We calculate entropies and joint entropies using the empir-

ical distributions, obtain multiinformation using (4.2), and maximize (4.3)

using PSO. Because histograms are computationally expensive, we resized

the images to decrease image sizes. We begin with exhaustive search of mul-

tiinformation over all rotations and apply the transformation that maximizes

multiinformation. (We restrict to rotations—only one degree of freedom per

image—so we can test exhaustive search.) Comparing this to PSO yields

the same results. Fig. 4.4 shows images transformed with shifts drawn uni-

formly from [−10, 10] pixels and rotations drawn uniformly from [−10, 10]

degrees. This example was initialized with 300 particles and converged after

211 iterations.

We also test a single maximum projection smFISH image; rather than re-

sizing, we crop images and perform registration on areas with high densities

of fluorescent markers. To increase the speed of PSO convergence, we use a

dictionary to store the result of every computation so that the same calcula-

tions need not be repeated, and we introduce a spread factor to the PSO to

improve convergence speed [86].
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Figure 4.2: Multiinformation of 30 multispectral images as a function of
random shifts.

Figure 4.3: Top: Rotated test images. Bottom: Images registered using
MM.

Figure 4.4: Top: Rotated and shifted test images. Bottom: Images
registered using MM.
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4.4.2 Finite rate of innovation sampling

If the weighted spikes corresponding to innovative features are correctly lo-

cated across each image, the sampled spike images will be transformed ver-

sions of the reference image, with transformations Tδ that are exactly the

original transformations T. If a spike δi has moved an L − 2 distance less

than D from the reference spike δ1 for all images i = 2, . . . , n, and if any

spike corresponding to a feature is significantly greater than distance D from

all other spikes in the image (that is, spikes are far apart and shifts and rota-

tions were small), then we can use a nearest neighboring clustering algorithm

to group spikes corresponding to the same feature across images.

We first demonstrate that we can register a collection of randomly shifted

spikes. We randomly generate a 1000 × 1000 pixel image of 500 maximum

intensity pixels (spikes) on a black background. We translate the image

and use a nearest neighbor search to find where a spike has shifted. Both

our algorithm and phase correlation register the images correctly with no

error. We then add noise by randomly removing 50 spikes and randomly

introducing 50 spikes. We then randomly shift individual spikes by 1 pixel

to any of its eight adjacent locations. We find that both our algorithm and

phase correlation produce an error of 1 pixel in any direction for about half

of the images.

We test registration of multispectral images by randomly applying a ran-

dom horizontal and vertical shift drawn from [−25, 25], and we sample using

Rosten and Drummond’s fast corner detection [87]. We represent corner lo-

cations as spikes (see Fig. 4.5) and perform a nearest neighbor search using

a search neighborhood of 30. FRI sampling followed by clustering again reg-

isters the images correctly around 40% of the time, and is off by 1 pixel in

any direction 60% of the time. On the other hand, cross-correlation gives

poor results when the images look drastically different in the various spectra.

Fig. 4.6 shows a typical example when MM and our FRI method correctly

register images, but phase correlation does not.

Next we find a sampling procedure that works well with smFISH images,

taking fluorescent markers as features. We begin again by performing a max-

imum intensity projection across all three color channels to obtain one image

per imaging round. We locate the fluorescent markers using a White Top Hat

filter, which extracts small points that are brighter than their surrounding
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Figure 4.5: Spikes found by corner detection.

Figure 4.6: From top to bottom: Manually shifted test images, registration
using MM (correctly registered), registration using FRI sampling (correctly
registered), registration using phase correlation (incorrectly registered).
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Figure 4.7: Left: Groups of pixels corresponding to fluorescent markers
(enlarged for visibility). Right: spike deltas corresponding to centroids of
clusters.

and threshold to remove any low-intensity points generated by noise.

Since each fluorescent marker is several pixels large, we must find a sin-

gle pixel location that best approximates each fluorescent marker. We use

density-based spatial clustering of applications with noise (DBSCAN) since

the number of clusters does not need to be specified and since it does not

cluster outliers [88]. DBSCAN clusters pixels corresponding to a single flu-

orescent marker (see Fig. 4.7). Once clusters are identified, we find the

coordinates of their centroids.

We obtain a list of reference spikes from the reference image and we align

the spikes in each misaligned image to the reference spikes using nearest

neighbor clustering across images. We find that results are more accurate

when the search range for each point was small, so we use a successive refine-

ment of the search radius. We perform the search first with a larger search

radius of 50 and then with a smaller search radius of 25.

4.4.3 Experimental results

Registration results for smFISH images are shown in Figs. 4.8 and 4.9. Since

there is no ground truth, we closely inspect image regions to visually confirm

correct registration (see Fig. 4.10). Comparing our results to results using

phase correlation indicate improved performance. Registration of four 980×
1330 images takes under a second with both FRI and phase correlation and
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Figure 4.8: Registration results. Top: Before registration. Bottom: After
registration with FRI

Figure 4.9: Left: Overlay of image rounds before registration. Right:
Overlay of image rounds after registration with FRI.
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Figure 4.10: Close of up pairwise registration results. Top: Reference
image. Bottom left: Before registration. Bottom center: After registration
with MM. Bottom right: After registration with FRI.

15 minutes with MM on the same machine.

4.5 Discussion

Not only does finite rate of innovation sampling improve computational ef-

ficiency of groupwise image registration, as we have shown, but it is asymp-

totically optimal for image registration if it is used with multiinformation.

Theorem 8. If images X1, . . . , Xn are FRI signals, maximizing multiinfor-

mation of the images sampled at FRI is asymptotically optimal for image

registration.

Proof. The maximum likelihood estimator of image transformations when

transformations are independent is given by:

T̂ML = arg max
T

n∏
i=2

P[Xi(Ti(x))|X1(x)], (4.12)

which is Bayes optimal. The MM estimate for image registration

T̂MM = arg max
T

I (X1(x);X2(T2(x)); . . . ;Xn(Tn(x))) (4.13)

is exponentially consistent with T̂ML, as we showed in [63, Theorem 7]. Let
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X̂i be Xi sampled at or above the rate of innovation for i = 1, . . . , n. Then

there is no loss of information from Xi(Ti(x)) to X̂i(Ti(x)) [64], and

I (X1(x);X2(T2(x)); . . . ;Xn(Tn(x))) = (4.14)

I
(
X̂1(x); X̂2(T2(x)); . . . ; X̂n(Tn(x))

)
. (4.15)

Thus T̂MM of the FRI-sampled images is equivalent to T̂MM of the original

images, which is asymptotically optimal.

Although MM is theoretically optimal, multiinformation is costly to com-

pute even for FRI-sampled signals, so in practice we have used nearest neigh-

bor clustering of sampled images. We have demonstrated that this heuristic

approximation is effective. In the future, we aim to examine efficacy and

computational efficiency of our technique for image-based transcriptomics at

the massive scale of the Human Cell Atlas.
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CHAPTER 5

CONCLUSION

As data collection methods become more efficient and computer processors

more powerful, researchers are able to analyze larger amounts of data and

better understand the complex interactions in different types of systems,

biological or otherwise. New algorithms must be developed to better under-

stand the data, and new theoretical bounds should be found to benchmark

the algorithms.

In this thesis, we first introduced missing values as a common form of data

corruption and presented an imputation algorithm based on optimal recovery.

This is a useful approach when data is clustered, and it does not rely on

any statistical assumptions. We found deterministic and probabilistic error

bounds for our algorithm when used in the context of non-negative matrix

factorization and tested our algorithm on imaging and mouse protein data.

We then showed that missingness mechanisms can be modeled as erasure

channels, and demonstrated the use of Fano’s inequality to find lower bounds

for missing values settings. We illustrated with a group testing example.

Finally, we looked at mis-registered images as a form of corrupted data. We

performed multi-image registration by maximizing multiinformation, which

is a theoretically optimal approach. We retained optimality while speeding

up registration by using finite rate of innovation sampling, and we tested our

algorithm on multispectral images and fluorescent RNA images.

Future work includes characterizing MAR and MNAR mechanisms as noisy

channels to find new lower bounds. This can be used to find missing value

bounds in the NMF context for non-MCAR settings. On the image regis-

tration side, we assumed that certain features (e.g. corners and fluorescent

markers) in images carried most of the information. One can compare the

information content of different features in a more systematic way or discover

the features that carry the most information [89].
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