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ABSTRACT

Question Answering (QA) system is an automated approach to retrieve correct responses

to the questions asked by human in natural language. Reading comprehension (RC)in con-

trast to information retrieval, requires integrating information and reasoning about events,

entities, and their relations across a full document. Immense progress has been made in the

recent years for this task, since the advent of deep learning and use of sequence to sequence

models for NLP. This thesis deals with two complex tasks in Question Answering with their

own inherent challenges: Multi Task Learning for Narrative Question Answering, which in-

volves developing models to deal with the complexity of the domain of stories, movie scripts

and human written answers, and second task is to develop novel ways of incorporating com-

mon sense knowledge from external knowledge bases for automated question answering. The

models developed for these tasks help to advance research in the area of question answering

and highlights some of the shortcomings of the methods proposed in literature.
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CHAPTER 1: INTRODUCTION

Question Answering (QA) systems have emerged as powerful platforms for automati-

cally answering questions asked by humans in natural language using either a pre-structured

database or a collection of natural language documents. Building intelligent agents with ma-

chine reading comprehension (MRC) or open-domain question answering (QA) capabilities

using real world data is an important goal of artificial intelligence. Progress in developing

these capabilities can be of significant consumer value if employed in automated assistants

e.g., Cortana, Siri, Alexa, or Google Assistanton mobile devices and smart speakers, such

as Amazon Echo. The rising popularity of spoken interfaces makes it more attractive for

users to use natural language dialog for question answering and information retrieval from

the web as opposed to viewing traditional search result pages on a web browser. All of these

scenarios can benefit from fundamental improvements in QA models.

Question Answering systems can be defined by the paradigm each one implements: Infor-

mation Retrieval QA- Usage of search engines to retrieve answers and then apply filters and

ranking on the recovered passage, Natural Language Processing QA: Usage of linguistic intu-

itions and machine learning methods to extract answers from retrieved snippet, Knowledge

Base QA: Find answers from structured data source (a knowledge base) instead of unstruc-

tured text. Standard database queries are used in replacement of word-based searches and

a hybrid QA system which is the combination of IR QA, NLP QA and KB QA.

Reading Comprehension (RC), or the ability to read text and then answer questions about

it, is a challenging task for machines, requiring both understanding of natural language and

knowledge about the world. Successful reading comprehension systems should be able to

learn good representations from raw text, infer and reason over learned representations, and

finally generate a summarized response that is correct in both form and content. This thesis

will attempt to explore this challenging task of question answering by developing an NLP QA

system and a Knowledge Base QA system and highlights the challenges and shortcomings

from each of the models.

1.1 THESIS STATEMENT

In this thesis we explore Question Answering from two perspectives. First , we deal with

the complexity associated with the domain of stories and movie scripts by developing models

for the Narrative QA Dataset [1], recently released by the researchers at Google DeepMind.

This task allows us to explore the different types of complicated reasoning required to answer
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questions from text and unearth some of the shortcomings of models proposed in literature

for similar challenges.

Second, we deal with a novel task of incorporating common sense knowledge, extracted

from external structured databases to augment the reasoning process during automated

question answering. We develop models for the McScript dataset [2] recently proposed as

a SemEval Task and discover the challenges machine faces in making inferences from text

that come pretty intuitively to humans.

1.2 CONTRIBUTIONS

Multi Task Learning For Narrative Question Answering : In Chapter 3 we will

explore the novel model proposed by us to perform reasoning over long texts and generate

answers that are correct and human understandable. We also present ablation studies of the

model and future improvements that we plan to implement.

Incorporating Common Sense Knowledge for Question Answering : In Chapter

4 we explore the proposed model for MCScript dataset and some of the novel methods

introduced by us to efficiently incorporate external knowledge from structured databases to

augment the model’s learning process.
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CHAPTER 2: QUESTION ANSWERING

Enabling a computer to understand a document so that it can answer comprehension

questions is a central, yet unsolved goal of NLP. A key factor impeding its solution by

machine learned systems is the limited availability of human-annotated data. In this chapter

we would go over some of the most popular datasets for question answering, the challenges

they present to the models and their respective shortcomings. We would also cover some of

the best performing models and the key contributions to their high performance.

Generally, the input to a question answering system consists of three parts: The text p

containing the answer to the question, the question q and the answer a. To test the model’s

text understanding ability the problem is presented in two ways, first where the answer is

a given span of words in the text and second where the actual answer is a human written

answer. The first version of the problem is simpler since it does not depend upon the model’s

ability to generate coherent and grammatically correct answers. It only focuses on the ability

to find the correct subset of words in text. Even though this problem is not representative of

the real world problem but it acts as a good proxy for developing models , and is currently

the major focus of most models present in literature.

Below we present some of the different question-answer pairs that test the model’s natural

language understanding abilities in various ways.

Multiple Supporting Facts : These questions require the model to chain multiple sup-

porting facts , potentially amongst a set of other irrelevant facts, to find the answer.

QUESTION: Where was the apple before the kitchen?

EVIDENCE: John picked up the apple. John went to the office. John went to the kitchen.

John dropped the apple.

ANSWER: office

Time Reasoning : These questions test the model’s ability to understand time expres-

sions.

QUESTION: Where did Julie go after the park?

EVIDENCE: In the afternoon Julie went to the park. Yesterday Julie was at school. Julie

went to the cinema this evening.

ANSWER: cinema

Compound Coreference resolution : These tests refer to multiple subjects present in

a single sentence and the model’s ability to perform coreference resolution efficiently.
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QUESTION: Where is Daniel?

EVIDENCE: Daniel and Sandra journeyed to the office. Then they went to the garden.

Sandra and John travelled to the kitchen. After that they moved to the hallway.

ANSWER: garden

The above examples represent some of the challenging reasoning capabilities that the models

should posses to be able to successfully answer these questions. In the following section we

will review some of the datasets that were presented in literature and claim that they cover

most of the basic reasoning skills which are possessed by humans.

2.1 CORPORA

The public availability of large datasets has been instrumental in many AI research break-

throughs. For example, ImageNets [3] release of 1.5 million labeled examples with 1000

object categories led to the development of object classification models that perform better

than humans on the ImageNet task. Similarly Penn TreeBank for syntactic parsing and

large scale speech recognition databases have enabled breakthroughs by deep learning mod-

els. Several MRC and QA datasets have also recently emerged. Existing datasets (published

before those mentioned here) for RC have one of two shortcomings: (i) those that are high in

quality[4] are too small for training modern data-intensive models, while (ii) those that are

large [5][6] are semi-synthetic and do not share the same characteristics as explicit reading

comprehension questions. In this study we summarize some of the recent datasets which

overcome a lot of these shortcomings.

The Stanford Question Answering Dataset (SQuAD) [7]: consists of 107,785

question-answer pairs from 536 articles. A large number of a questions and answers are

provided for a set of documents, where the answers are spans of the context document i.e.

contiguous sequences of words from the document. Although the answers are not just single

word/entity answers, many plausible questions for assessing RC cannot be asked because no

document span would contain its answer.

MS MARCO [8]: is a dataset which contains 1,010,916 questions, 8,841,823 compan-

ion passages extracted from 3,563,535 web documents, and 182,669 editorially generated

answers. This a large scale real world dataset. It comprises of anonymized search queries

issued through Bing or Cortana. Corresponding to each question, they provide a set of ex-

tracted passages from documents retrieved by Bing in response to the question. The passages

and the documents may or may not actually contain the necessary information to answer the

question. For each question, crowd-sourced editors are required to generate answers based
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on the information contained in the retrieved passages.

Narrative QA [1]: This dataset contains questions created by editors based on summaries

of movie scripts and books. The dataset contains about 45,000 question-answer pairs over

1,567 stories, evenly split between books and movie scripts. This dataset offers tasks based

on both summaries as well as entire novels/movie scripts.The full version of NarrativeQA

requires reading and understanding entire stories (i.e., books and movie scripts). This task

as the authors argue is at present intractable for existing neural models out of the box. This

is also one of the datasets for which we develop models in this thesis. Fig 2.1 presents an

example from this dataset.

Figure 2.1: Example of question answer pair from Narrative QA and associated summary
and story snippets

MCScript Dataset [2]: This dataset presented as part of the SemEval Task 2018, as-

sesses how the inclusion of commonsense knowledge benefits natural language understanding

systems. In particular, authors focus on commonsense knowledge about everyday activities,

referred to as scripts. Scripts are sequences of events describing stereotypical human ac-

tivities (also called scenarios), for example baking a cake, taking a bus, etc. Many times

context may be absent or may lack sufficient information to resolve the ambiguity. In such

cases, authors hypothesize it would be beneficial to include commonsense knowledge about

the world in an NLU system. It comprises of 2,119 texts and a total of 13,939 questions.

The texts in the data set talk about everyday activities and cover 110 script scenarios of

differing complexity. 27.4% of the questions require commonsense inference about everyday

activities. Following are some examples from this dataset that highlight its novelty:
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TEXT: My backyard was looking a little empty, so I decided I would plant something.

I went out and bought tree seeds. I found a spot in my yard that looked like it would get

enough sunshine. There, I dug a hole for the seeds. Once that was done, I took my watering

can and watered the seeds.

QUESTION/ANSWER: Why was the tree planted in that spot?

1. to get enough sunshine

2. there was no other space

While the above question should be easily answerable from text, the following question an-

swer pair requires common sense knowledge, which can be incorporated into the model in

various ways and is explored in further depth as part of this thesis in later sections.

QUESTION/ANSWER: What was used to dig the hole?

1. a shovel

2. their bare hands

This is one of the first few large scale datasets that help tackle the challenge of augmenting

model’s reasoning capabilities with common sense knowledge and hence is a novel task.

2.2 COMPARISON OF DATASETS

Ideal datasets should posses the following characteristics for model development:

1. Large enough to allow training of large deep learning models.

2. Contain questions which are not about the surface form of the text, but rather about

the underlying narrative,which should require the formation of more abstract represen-

tations about the events and relations expressed in the course of the document.Answering

such questions requires that readers integrate information which may be distributed

across several statements throughout the document, and generate a cogent answer on

the basis of this integrated information. That is, they test that the reader comprehends

language, not just that it can pattern match.

3. Question answer pairs should be more representative of a natural distribution of infor-

mation need that users may want to satisfy using, say, an intelligent assistant.
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Table 2.1 highlights some of the salient features of above mentioned datasets:

Table 2.1: Comparison of Datasets

Dataset Documents Questions Answers

MCTest [4] 660 short stories,
grade school level

2640 human
generated

multiple choice

CNN/Daily Mail [5] 93K+220K news
articles

387K+997K
Cloze-form, based

on highlights

entities

Childrens Book
Test (CBT) [6]

687K of 20 sentence
passages from 108

childrens books

Cloze-form, from
the 21st sentence

multiple choice

SQuAD [7] 23K paragraphs
from 536 Wikipedia

articles

108K human
generated, based on

the paragraphs

spans

MS MARCO [8] 1M passages from
200K+ documents
retrieved using the

queries

100K search queries human generated,
based on the

passages

NarrativeQA [1] 1,572 stories (books,
movie scripts) and
human generated

summaries

46,765 human
generated, based on

summaries

human generated,
based on summaries

MCScript [2] 2,119 texts based on
everyday activities

13,939 questions multiple
choice,require
common sense

knowledge

As we can see from the Table 2.1 that the three datasets SQUAD, MS MARCO and Nar-

rative QA require answers to be more than single word/ entities and offer a more challenging

task than simple answer ranking problem. Among, these three datasets SQUAD provides a

large number of questions. However, these are from a relatively small number of documents,

which are themselves fairly short, thereby limiting the lexical and topical diversity of models

trained on this data can cope with. Simple models scoring and/or extracting candidate spans

conditioned on the question and superficial signal from the rest of the document do well on

both SQUAD and MS MARCO [9].These models will not trivially generalize to problems

where the answers are not spans in the document or several discontinuous spans are needed

to generate a correct answer. Baselines provided in NarrativeQA for summary based ques-

tions have the span prediction models to be the best performing too. However there still

remains a huge gap between the human generated answers and predicted spans. Moreover,
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fictional stories in Narrative QA have number of advantages as a domain as they are largely

self-contained, summaries contain more complex relationships and timelines than news arti-

cles or short paragraphs from the web and thus provide a task different in nature. However,

real-world text is messy: they may include typos or abbreviations and transcription errors

in case of spoken interfaces. Both SQUAD and NarrativeQA, contain high-quality stories

or text spans from sources such as Wikipedia. Real-world machine reading comprehension

systems should be bench-marked on realistic datasets where they need to be robust to noisy

and problematic inputs. MS MARCO alleviates that issue since the questions correspond to

actual search queries that users submitted to Bing. Also, none of these datasets specifically

assess the commonsense reasoning ability of a model, which is crucial when the relevant con-

text for a question might not be explicitly present in text and requires drawing inferences

from external knowledge bases. This limitation is overcome by the MCScript Dataset.

Thus, it can be seen that all the datasets have their own limitations and their still remains

scope to develop more datasets that would enable the modelling of real world question

answering systems.

2.3 PREVIOUS APPROACHES

End to end neural network architectures have proven to perform best on the reading

comprehension datasets presented in the previous section. The general structure of these

networks can be broken down into three steps as follows:

Encoding: First, all the words in the corpus are mapped to d- dimensional vectors via

an embedding lookup matrix. Next these vectors are usually passed through a bidirectional

RNN encoder to obtain contextual embeddings for the words in the paragraph as well as

those in the question. The encoder could be GRU or LSTM based, the choice being made

usually to reduce the computational complexity of the models since the performance of the

two cells is usually comparable.

Attention: In this step, the goal is to compare the question embedding and all the

contextual embeddings, and select the pieces of information that are relevant to the question.

This is the step where most research has been conducted and brings about the biggest

differences in performance.

End-to-end machine comprehension using attention mechanisms can usually be broken

down into three distinct groups. The first group uses a dynamic attention mechanism (first

proposed for the task of machine translation [10]), in which the attention weights are updated

dynamically given the query and the context as well as the previous attention. Herman et

al.[5] argue that the dynamic attention model performs better than using a single fixed
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query vector to attend on context words on CNN and DailyMail datasets. Chen et al. [11]

show that simply using bilinear term for computing the attention weights in the same model

drastically improves the accuracy. Their model performed well on several of the datasets

shown above.

The second group computes the attention weights once, which are then fed into an output

layer for final prediction [12][13]. The third group (considered as variants of Memory Network

[14]) repeats computing an attention vector between the query and the context through

multiple layers, typically referred to as multi-hop.

Decoding: This layer usually depends upon the task at hand and often involves applying

a softmax over the entire vocabulary to convert the outputs to a probability distribution.

The tasks usually vary from cloze style one word prediction to span based contiguous pre-

diction of words to the use of RNN based decoders for generating answers. This stage often

involves some kind of optimizations such as use of hierarchical softmax layers and beam

based decoding to reduce the computation time or obtain high probability sequences, which

we will explore in further detail in the sections below.

The following sections explore each of these stages in further detail and will do a deep dive

of some of the innovative modelling techniques that have been proposed for each of them to

design robust question answering systems.

2.3.1 Embeddings

Words in natural language follow a Zipfian distribution whereby some words are frequent

but most are rare. Learning representations for words in the long tail of this distribution

requires enormous amounts of data. Representations of rare words trained directly on end

tasks are usually poor and fail to generalize well, requiring the use of pre-trained embeddings

on external data, or treat all rare words as out-of-vocabulary words with a unique represen-

tation. The two most popular methods for inducing word embeddings from text corpora are

GloVe [15] and word2vec [16]. These packages also provide off-the shelf (OTS) embeddings

trained on large corpora.

Dhingra et al. [17] show that minor choices such as the use of which kind of pretrained

word embeddings and techniques for handling out of vocabulary words at test time can lead

to substantial differences the final performance of the model. These differences are usually

much larger than the gains reported due to architectural improvements.

The typical remedy to the rare word problem is to learn embeddings for some proportion of

the head of the distribution, possibly shifted towards the domain-specific vocabulary of the

dataset or task at hand, and to treat all other words as out-of-vocabulary (OOV), replacing
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them with an unknown word UNK token with a shared embedding. This essentially heuristic

solution is inelegant, as words from technical domains, names of people, places, institutions,

and so on will lack a specific representation unless sufficient data are available to justify their

inclusion in the vocabulary. This forces model designers to rely on overly large vocabularies,

which are parametrically expensive, or to employ vocabulary selection strategies.

Badhanau et al. [18] proposes a method for computing embeddings on the fly, which jointly

addresses the large vocabulary problem and the paucity of data for learning representations in

the long tail of the Zipfian distribution. They train a network to predict the representations of

words based on auxiliary data. Such auxiliary data need only satisfy the general requirement

that it describe some aspect of the semantics of the word for which a representation is

needed. Examples of such data could be dictionary definitions, Wikipedia infoboxes or

knowledge bases such as Wordnet. The auxiliary data encoders are trained jointly with the

objective, ensuring the preservation of semantic alignment with representations of within-

vocabulary words. Quantitative results show that auxiliary data improves performance of

models proposed for the SQUAD dataset. Qualitative evaluation indicates that their method

allows models to draw and exploit connections defined in auxiliary data, along the lines of

synonymy and semantic relatedness.

2.3.2 Attention Mechanisms

As mentioned before attention is a process of extracting the relevant context form the

reading comprehension which can be used for answering the given question. We will now

explore an architecture from each of the three classes of attention.

Dynamic Attention [11]: Authors in this paper propose a simple modification to the

original attention mechanism proposed in [10] for machine translation. They show that sim-

ply using bilinear term for computing the attention weights in the same model drastically

improves the accuracy on the CNN/Daily Mail datasets. The attention weights for the con-

text words are computed as follows:

αi = softmaxiq
TWpi (2.1)

using which the final context vector becomes,

c =
∑
i

αipi (2.2)

where WεRh×h represents the bilinear term and allows computing attention between ques-
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tion and context words much more flexibly. The authors report an improvement of 7-10%

over the original architecture.

Attention Sum Reader [12] : This architecture is designed for cloze style RC tasks

where the answer is one of the omitted tokens from the context. They use two bidirectional

GRU encoders to encode the document and the question.Then they compute a weight for

every word in the document as the dot product of its contextual embedding and the query

embedding. This weight might be viewed as an attention over the document d. To form a

proper probability distribution over the words in the document, they normalize the weights

using the softmax function, as follows:

si ∝ exp(diqi) (2.3)

then the probability of a token being an answer is simply the sum of these products,

P (wi|q,d) =
∑

si (2.4)

No weighted sum is taken to compute a final document embedding i.e no blending of vector

representation. Since the summation of attention in their model inherently favours frequently

occurring tokens, authors visualize how the accuracy depends on the frequency of the correct

answer in the document.They show that the accuracy significantly drops as the correct

answer gets less and less frequent in the document compared to other candidate answers. Also

accuracy drops with increasing document length and greater number of candidate answers.

Attention is all you Need [19] : This paper has has not yet been applied for question

answering task, however the authors in this paper show that multiple blocks of attention

could be stacked together to replace the sequence to sequence models that we have seen

above. The major motivation for this paper was that RNN units are sequential in nature

and do not allow parallelization across training examples which becomes critical at longer

sequence lengths, as memory constraints limit batching across examples.

The basic attention mechanism employed here is a simple dot product between the queries

and keys followed by a softmax. Authors argue that dot-product attention is much faster

and more space-efficient in practice than additive attention [10], since it can be implemented

using highly optimized matrix multiplication code.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.5)

Parallelization is achieved by projecting each of the queries, keys and values to smaller
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dimension components and then computing the attention for each component in parallel,

the results for which are concatenated back to original dimension values. The authors call

this Multi-Head Attention.

MultiHead(Q,K, V ) = Concat(head1, ...headh)WO (2.6)

Attention is used in this architecture in three different ways: To compute the attention

between encoder decoder layers where the query comes from the decoder layer and values

and keys are the output of the encoder layers. And in the self attention layers of the encoder

and decoder where all the queries, keys and values come from the same place.

Self Attention: Authors perform a detailed comparison between the performance of the

self attention layers and use of RNN/CNN for encoding and decoding. They argue that self

attention can compute long range dependencies between any two position in the input/output

in a constant number of operations achieved through their multi-head attention architecture.

The same operation is proportional to sequence length when RNN s are used. CNNs are

generally more expensive than RNNs. Moreover self attention has the added side benefit for

providing more interpretable models.

2.3.3 Decoding

Decoding layer depends on the kind of output desired for the particular task. If the task

is span prediction then models usually just try to predict the start and the end indices of

the answer span, such as in SQUAD, whereas if the answer needs to be generated from the

words in the entire vocabulary then usually an RNN based decoder is employed. Here, we

will explore some different decoder architectures proposed in literature to combat some of

the issues faced by RNNs.

Pointer Networks [20]: RNN based decoding methods require the size of the output

dictionary to be fixed a priori. Because of this constraint we either have to choose a very

huge vocabulary to be able to generalize the model performance, which slows down training

since softmax needs to be applied over this entire vocabulary at every decoding time step

or we have to resort to methods such as hierarchical softmax etc. This paper addresses

this limitation by re purposing the attention mechanism of [10] to create pointers to input

elements. It is suitable for problems where output vocabulary depends upon the input

sequence and could be used to handle the out of vocabulary issue at test time. Using the
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attention mechanism in [10] the decoding step becomes,

uij = vT tanh(W1ej +W2di) (2.7)

P (wi|w1...Wi − 1) = softmax(ui) (2.8)

where softmax normalizes the vector ui (of length n) to be an output distribution over

the dictionary of inputs, and v, W1, and W2 are learnable parameters of the output model.

Here, they do not blend the encoder state ej to propagate extra information to the decoder,

but instead, use uij as pointers to the input elements.

Intra-Decoder Attention: A decoder can generate repeated phrases based on its own

hidden states, especially when generating long sequences. To prevent that, we can incor-

porate more information about the previously decoded sequence into the decoder. Looking

back at previous decoding steps will allow a model to make more structured predictions and

avoid repeating the same information, even if that information was generated many steps

away. To achieve this authors in [21] introduce intra-decoder attention. For each decoding

step t, their model computes a new decoder context vector cdt , for t > 1 as follows:

ett′ = hTt Wattnht′ (2.9)

αtt′ =
exp(ett′ )∑t−1
j=1 exp(etj)

(2.10)

ct =
t−1∑
j=1

αtjhj (2.11)

Hybrid learning objective : The most widely used method to train a decoder RNN for

sequence generation, called the teacher forcing algorithm , minimizes a maximum-likelihood

loss at each decoding step. The maximum-likelihood training objective is the minimization

of the following loss,

Lml = −
n∑

t=1

logp(yt|y1....tt−1, x) (2.12)

However, minimizing Lml does not always produce the best results on discrete evaluation

metrics such as ROUGE . There are two main reasons for this discrepancy. The first one,

called exposure bias, comes from the fact that the network has knowledge of the ground

truth sequence up to the next token during training but does not have such supervision

when testing, hence accumulating errors as it predicts the sequence. The second reason is

due to the large number of potentially valid output sequences. The ROUGE metrics take
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some of this flexibility into account, but the maximum-likelihood objective does not.

One way to remedy this is to learn a policy that maximizes a specific discrete metric

instead of minimizing the maximum-likelihood loss, which is made possible with reinforce-

ment learning. In [21], authors use a self-critical policy gradient training algorithm. For

this training algorithm, model produces two separate output sequences at each training it-

eration: ys, which is obtained by sampling from the p(yst |ys1....yst−1) probability distribution

at each decoding time step, and yb, the baseline output, obtained by maximizing the output

probability distribution at each time step, essentially performing a greedy search. Authors

define r(y) as the reward function for an output sequence y, comparing it with the ground

truth sequence y∗ with the evaluation metric of choice (ROUGE,BLEU etc).

Lrl = (r(yb)− r(ys))
n∑

t=1

logp(yst |ys1....yst−1) (2.13)

Minimizing Lrl is equivalent to maximizing the conditional likelihood of the sampled

sequence ys if it obtains a higher reward than the baseline yb, thus increasing the reward

expectation of the model.

One potential issue of this reinforcement training objective is that optimizing for a specific

discrete metric like ROUGE does not guarantee an increase in quality and readability of the

output. It is possible to game such discrete metrics and increase their score without an

actual increase in readability or relevance. Therefore, to tackle this issue authors propose a

mixed learning objective as follows,

Lmixed = γLrl + (1− γ)Lml (2.14)

Authors hypothesize that Lml can assist policy learning algorithm to generate more nat-

ural output sequences. The paper shows that this hybrid learning objective achieves the

highest discrete metric scores for a given task as compared to only RL or ML learning ob-

jectives. Moreover the RL+ML loss function also leads to more readable and natural output

sequences.

2.3.4 Incorporating Common Sense Knowledge

Most of the approaches incorporating common sense knowledge include the models devel-

oped for the SemEval Task 2018. These include neural and non-neural approaches. Non-

neural approaches such as IUCM [22] applied an unsupervised approach that assigns the

correct answer to a question based on text overlap. Text overlap is computed based on the
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given passage and text sources of the same topic. Different clustering and topic modeling

techniques are used to identify such text sources in MCScript and DeScript. Neural based

approaches employ different variants of attention mechanism discussed in the previous sec-

tion. Some of these models also include ensemble of LSTMs with attention mechanisms

and logistic regression model using patterns based on the vocabulary of the training set.

There also has been significant experimentation with different embeddings such as Glove,

Word2vec, Numberbatch etc.

Another popular approach recently proposed by Bishan et al. [23] tackle an important

challenge of incorporating external knowledge relevant to the textual context. In general

KBs involve polysemy, such as ”Washington” can refer both a person or a place and if

the right meaning is not captured, can mislead the model. At each time step, the model

retrieves KB concepts that are potentially related to the current word. Then, an attention

mechanism is employed to dynamically model their semantic relevance to the reading context.

Furthermore, authors introduce a sentinel component in BiLSTMs that allows flexibility in

deciding whether to attend to background knowledge or not. This is crucial because in

some cases the text context should override the context-independent background knowledge

available in general KBs. Experimental results show that their model achieves accuracies that

surpass the previous state-of-the-art results for both entity extraction and event extraction

on the widely used ACE2005 dataset [24].
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CHAPTER 3: NARRATIVE QUESTION ANSWERING

Reading comprehension in contrast to information retrieval, requires integrating informa-

tion and reasoning about events, entities, and their relations across a full document. The

dataset should contain questions that are not superficial and cannot be answered by surface

pattern matching. NarrativeQA dataset tackles this challenge by presenting text from sto-

ries and movie scripts. In this chapter we will explore some of the intricacies of this dataset

and the deep learning based models developed by us to solve the challenge.

3.1 NARRATIVE QUESTION ANSWERING DATASET

The dataset consists of stories, which are books and movie scripts, with human written

questions and answers based solely on human-generated abstractive summaries. Books were

collected from Project Gutenberg and movie scripts scraped from the web. They matched the

stories with plot summaries from Wikipedia using titles and verified the matching with help

from human annotators. In this way authors obtained 1,567 stories. This provides with a

smaller set of documents, compared to the other datasets mentioned in the previous section,

but the documents are long which provides us with good lexical coverage and diversity.

Each story is associated with 30 question answer pairs, leading to 45,765 human generated

questions and answers in total. The questions are grammatical questions written by human

annotators, average 9.8 tokens in length, and are mostly formed as WH-questions. Answers

in the dataset are human written, short, averaging 4.73 tokens, but not restricted to spans

from the documents. There are 44.05% and 29.57% answers that appear as spans of the

summaries and the stories, respectively. Fig 3.1 represents some of the statistics of the

questions available in this dataset.

(a) Frequency of question types in training set (b) Question categories in training set

Figure 3.1: Summary statistics for NarrativeQA Dataset
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In the remainder of this chapter, we describe the data preprocessing methodology we used,

the modelling techniques employed and experimental results on the summary-reading task.

3.2 DATA PREPARATION

3.2.1 Entity Anonymization

The provided narratives contain a large number of named entities (such as names of char-

acters or places). Inspired by Hermann et al. [5], we replace such entities with markers,

such as @entity12. These markers are permuted during training and testing so that none of

their embeddings learn a specific entity's representation. This allows us to build representa-

tions for entities from stories that were never seen in training, since they are given a specific

identifier (to differentiate them from other entities in the document) from a set of generic

identifiers re-used across documents. We first perform coreference resolution on the given

text and corresponding question and answer pairs together, using the Stanford CoreNLP

parser and then we replace entities with the random entity markers.

In one of our experiments we also include the named entity tag in the marker such as

@entity PERSON 42, however this does not provide any performance improvements and

also leads to the addition of more unique combinations of entity marker to the vocabulary,

thus we do not proceed further with that approach. Table 3.1 demonstrates an example of

this preprocessing step.

Table 3.1: Entity Anonymization

Original Version Anonymized Version

Mark Hunter (Slater), a high school
student in a sleepy suburb of Phoenix,

Arizona, starts an FM pirate radio station
that broadcasts from the basement of his

parents’ house. Mark is a loner, an
outsider, whose only outlet for his teenage
angst and aggression is his unauthorized

radio station .

entity 12 (entity 10), a high school
student in a sleepy suburb of entity 4 ,
entity 18 , starts an FM pirate radio

station that broadcasts from the basement
of his parents house . entity 12 is a loner

, an outsider , whose only outlet for his
teenage angst and aggression is his

unauthorized radio station
Who is Mark Hunter ? Who is entity 12 ?

He is a high school student in Phoenix. He is a high school student in entity 4 .

Clearly a human reader can answer both queries correctly. However in the anonymised

setup the context document is required for answering the query, whereas the original version
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could also be answered by someone with the requisite background knowledge. Therefore,

following this procedure, the only remaining strategy for answering questions is to do so

by exploiting the context presented with each question. Thus performance on NarrativeQA

corpora truly measures reading comprehension capability.

3.2.2 Determine Answer Spans

In our multi task learning model , one arm of the model is trained by predicting answer

start and end indices of spans in text which correspond closest to the actual answer and

the other arm corresponds to the decoder which generates the answer word by word. The

reason behind this approach is two fold: First, neural span prediction models are the best

performing baselines for the NarrativeQA dataset, but there still remains significant room

for improvement which we expect is due to the presence of questions whose answers are not

direct spans in the text. Second, we employ the Bidirectional Attention Flow module[9] in

our model, which was initially used for SQUAD dataset, a span prediction task. Hence, we

speculate that training of this attention module will be benefited if use direct spans from

texts rather than human generated answers. We use start and end indices of the span achiev-

ing the highest Rouge-L score with respect to the reference answers as labels on the training

set. The model is then trained to predict these spans by maximizing the probability of the

indices. Rouge-L measures longest matching sequence of words using longest common subse-

quence (LCS). An advantage of using LCS is that it does not require consecutive matches but

in-sequence matches that reflect sentence level word order. Since it automatically includes

longest in-sequence common n-grams, you dont need a predefined n-gram length. We also

experimented with BLEU-N scores, however ROUGE-L led to the best overall results, hence

we employed that as our metric for generating answer labels. Following shows an example

of the generated answer label:

QUESTION : Who is entity 12 ?

ACTUAL ANSWER : He is a high school student in entity 4.

ANSWER SPAN : a high school student in a sleepy suburb of entity 4

3.2.3 Miscellaneous Data Preprocessing

In addition to the above steps for data preparation we also used other standard NLP

methods for preprocessing the given dataset, before feeding into the model. This includes :
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• Tokenization of the summary, question and answer pairs using the Stanford CoreNLP

parser.

• Modify the actual answers to include the start and the end symbols. This is important

for the RNN based decoder during training, as it needs it to understand when to stop

generating the answer and also provides more flexibility in decoding rather than using

a fixed length for all answers.

• We limit the our training vocabulary size to around 33k tokens. Words which appear

with a frequency of less than 10, are not part of the vocabulary. It is important to

keep the size of the vocabulary small, else it slows down the training process for the

model since we are required to take a softmax over the entire vocabulary each time

the decoder generates the answer.

• We create batches by first sorting the summaries according to their lengths. This

reduces the per epoch time by over 50%, since it reduces the amount of padding

required to keep all the examples in the batch of the same size, thereby reducing the

amount of unrolling that the RNN based encoder needs to perform.

• We filter summaries that are larger than 900 tokens and questions longer than 20

tokens. This is done to avoid out of memory GPU issues and reduce the training time.

Moreover, the performance of the LSTM deteriorates for very long summaries and is

is another challenge of NarrativeQA dataset.

3.3 MODEL

In this section we provide the details of the proposed model for the summary task of

NarrativeQA, results and the ablation study for our model. Fig 3.2 shows the schematic of

the model used for this dataset.

Word Embedding Layer: We map each word in the context and question into a vector

space using pre trained word embedding. For this model, we use 300 dimensional Glove

embedding. Experiments were conducted using Word2Vec emebeddings too, however there

was no significant difference in performance. Moreover, we also tried to train our own

embedding but noticed that the NarrativeQA dataset was not large enough and hence it

soon lead to overfitting, thereby decreasing the performance.

Contextual Embedding Layer: Summary and question word vectors are passed through

a bi-directional LSTM layer, before feeding into the attention module. This allows us to
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Figure 3.2: Model for Narrative QA dataset

modify the word embedding to capture the context from the surrounding words and encode

information from them into these vectors.

Attention Layer: The attention layer for the model is adopted from the Bidirectional

Attention Flow Module by Seo et al. [9]. BiDAF attention mechanism offers following im-

provements to the previously presented attention paradigms. First, their attention layer is

not used to summarize the context paragraph into a fixed-size vector. Instead, the attention

is computed for every time step, and the attended vector at each time step, along with the

representations from previous layers, is allowed to flow through to the subsequent modeling

layer. This reduces the information loss caused by early summarization. Second, authors

use a memory-less attention mechanism. That is, while they iteratively compute attention

through time as in [10], the attention at each time step is a function of only the query

and the context paragraph at the current time step and does not directly depend on the

attention at the previous time step. The output of the attention layer is fed to a Bi-RNN

(modelling layer) which computes the interaction between the embeddings of the attention

layer. The authors hypothesize that this leads to division of labor as the attention layer is

supposed to compute the interaction between the context and query for a single time step,

and relations between time steps is computed by modelling layer. Third, they use attention
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mechanisms in both directions, query-to-context and context-to-query, which provide com-

plimentary information to each other, which has been shown to beneficial in visual QA [25].

Moreover, their model never summarizes any information computed at each layer, instead

all the computed representations always flow till the last layer.

The model computes attention in two directions : Context to query and query to context,

which are derived from a similarity matrix computed based on the contextual H and query

Q embeddings as follows,

Stj = α(H:t,Q:j) (3.1)

where α is a trainable function. The context-query and query-context attentions are com-

puted as follows,

Context-to-Query:

at = softmax(St:) (3.2)

U:t =
∑
j

atjU:j (3.3)

Query-to-Context:

b = softmax(maxcol(S)) (3.4)

h =
∑
t

btH:t (3.5)

Finally the contextual embeddings and the attention vectors are combined together to feed

query aware representation of each context word into the modelling layer.

Modelling Layer: The output of the modeling layer captures the interaction among the

context words conditioned on the query. This is different from the contextual embedding

layer, which captures the interaction among context words independent of the query. We

use a single layer of bi-directional LSTM, with the output size of d for each direction. Hence

we obtain a matrix M , which is passed onto the output layer to predict the answer. Each

column vector of M is expected to contain contextual information about the word with

respect to the entire context paragraph and the query.

Output Layer: Since this is multi task learning our output layer consists of two parts,

for predicting the answer spans and also generating the actual answers.

For answer span prediction, we predict the start and the end indices separately. The start

index is derived from the following equation,

p1 = softmax(W T
p1 [G;M ]) (3.6)

and end index is obtained by passing the output of the modelling layer through another
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LSTM before prediction,

p2 = softmax(W T
p2 [G;M2]) (3.7)

For generating the actual answers, we first compute attention over the output of the mod-

elling layer to derive the context vector as in [10],

ci =
T∑

j=1

αijhj (3.8)

where αi is computed as follows,

αij =
exp(eij)∑T
k=1 exp(eik)

(3.9)

eij = β(si−1, hj) (3.10)

At every time step we compute the similarity between the output of the LSTM decoder and

the output of the modelling layer. This is used to obtain the context vector which is the

weighted representation of the modelling layer’s query and context aware word embeddings.

The output of the decoder is then passed through a softmax layer over the entire vocabulary

to predict the next answer token.

Loss Function: We define two loss functions for both arms of the output layer. For the

span prediction output, the loss function is defined as the sum of the negative log probabilities

of the true start and end indices by the predicted distributions, averaged over all examples.

And for the decoding layer we use the softmax cross entropy loss for the predicted tokens.

The model is trained such that for half of the iterations span prediction arm is active and

for the rest the decoder arm is active. During validation phase we only use the decoder arm

of the output layer to make predictions.

3.3.1 Implementation Details

The hidden state size d of the model is 100. We use the Adam optimizer, with a minibatch

size of 20 and an initial learning rate of 0.001, for 20 epochs. A dropout rate of 0.2 is used for

all LSTM layers, and the linear transformation before the softmax for the answers. During

training, the moving averages of all weights of the model are maintained with the exponential

decay rate of 0:999. At test time, the moving averages instead of the raw weights are used.

The training process takes roughly 23 hours on a single Titan X GPU.
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3.4 RESULTS

We present the results of our model along with the best performing baselines for the

NarrativeQA dataset in the following table:

Table 3.2: Results on Summaries

Model BLEU-1 BLEU-4

Seq2Seq (no context) 15.89 1.26

Attention Sum Reader 23.20 6.39

Span Prediction 33.72 15.53

Our Model 16.77 4.437

Human 44.43 19.65

As can be seen from Table 3.2 we are still not able to beat the strongest baseline , which

is a span prediction model using the BIDAF attention module. One reason for this is that

our model is too big (8 million trainable parameters) to be trained on the given corpus and

we would need to resort to smaller models to be successfully able to train on this dataset

and generate grammatically correct answers or pretrain our model on another daatset.

3.4.1 Error Analysis

Below we present some examples from the test set to demonstrate certain flaws of our

model and aid in the debugging process.

SUMMARY : The play begins with three pages disputing over the black cloak usually worn

by the actor who delivers the prologue. They draw lots for the cloak, and one of the losers,

Anaides, starts telling the audience what happens in the play to come; the others try to sup-

press him, interrupting him and putting their hands over his mouth. Soon they are fighting

over the cloak and criticizing the author and the spectators as well. In the play proper, the

goddess Diana, also called Cynthia, has ordained a ”solemn revels” in the valley of Gargaphie

in Greece. The gods Cupid and Mercury appear, and they too start to argue. Mercury has

awakened Echo, who weeps for Narcissus, and states that a drink from Narcissus’s spring

causes the drinkers to ”Grow dotingly enamored of themselves.” The courtiers and ladies

assembled for the Cynthia’s revels all drink from the spring. Asotus, a foolish spendthrift

who longs to become a courtier and a master of fashion and manners, also drinks from
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the spring; emboldened by vanity and self-love, he challenges all comers to a competition of

”court compliment.” The competition is held, in four phases, and the courtiers are beaten.

Two symbolic masques are performed within the play for the assembled revelers. At their

conclusion, Cynthia (representing Queen Elizabeth) has the dancers unmask and shows that

vices have masqueraded as virtues. She sentences them to make reparation and to purify

themselves by bathing in the spring at Mount Helicon..

QUESTION: What did the symbolic vices disguise themselves to be?

ANSWER: Virtues

PREDICTED ANSWER : Mount Helicon

QUESTION: Who enters with Mercury?

ANSWER: Cupid

PREDICTED ANSWER : Echo

From the above examples it can be seen that the model’s attention is close to the cor-

rect answer in text but is not able to generate the correct answer token. We hypothesize

that more data is needed to be able to train this model further and improve its accuracy.

These kinds of errors are the biggest contributor to the model failures.

QUESTION: What name was Cynthia more famously known by?

ANSWER: The goddess Diana

PREDICTED ANSWER : Cynthia

QUESTION: What is another name for the Goddess Diana?

ANSWER: Cynthia

PREDICTED ANSWER : Cynthia

In the above question answer pairs, both are similar questions but the model answers it

correctly only the second time. We suspect that the phrase ”famously known” affects the

model prediction and it ends up performing shallow pattern matching between the question

and answer tokens thereby assigning ”Cynthia” higher probability.

QUESTION: What does a drink from Narcissus’s spring cause the drinker to do?

ANSWER: Fall in love with themselves

PREDICTED ANSWER : The drinkers to grow dotingly
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In the above example, it can be seen that our model does generate a correct answer, how-

ever, since these are human written answers, the BLEU score for this example is still very

low due to very little overlap. This shows that we might need other metrics to evaluate the

performance of our question answering models, which do not rely solely on string overlap.

QUESTION: How many phases does the competition have?

ANSWER: four

PREDICTED ANSWER : four

QUESTION: What challenge does Asotus propose to all comers?

ANSWER: Court Compliment

PREDICTED ANSWER : court compliment competition

The above examples demonstrate the model’s ability to successfully tackle some of the chal-

lenges of this dataset presented in the previous chapter such as time reasoning, multiple

supporting facts etc.

3.4.2 Ablation Study

Table 3.3 presents results with different variants of our model and help us to further

understand the effects of different components to the model prediction.

Table 3.3: Ablation Study

Model BLEU-1 BLEU-4

w/o Span prediction 6.67 0.13

w/o Entity Anonimization 11.73 3.19

Own Word Embedding
(w/o Glove)

11.2 2.87

BLEU Score for Answer
Span

8.82 2.82

Additional BiLSTM in
Modelling layer

12.31 4.43

Increased Dropout 10.13 2.89

It can be observed from the above table that if we remove the span prediction arm from

our model, the BLEU scores drop drastically, which confirms our initial intuition that the
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BIDAF attention module does require direct supervision from the given text rather than

using just the human generated answers as training labels. Addition of another BiLSTM in

the modelling layer also does not provide any performance gains and again starts to overfit

pretty quickly.

Another, interesting observation is that using ROUGE-L for finding closest answer spans

in text performs much better than using BLEU scores. This is because it automatically

includes the longest in-sequence common n-grams and we do not need a predefined n-gram

length. Also, we observe that the entity anonimization is an important data preprocessing

step as it prevents overfitting and allows the model to learn general entity representations.

Moreover, we also notice that if we train our own word embeddings, model tends to overfit

pretty quickly which deteriorates the performance further.

3.5 CONCLUSION

In this chapter we presented the details of the model developed for the Narrative Question

Answering dataset. We observed that this task posits several challenges such as, it deals

with the domain of stories,movie scripts which has much more complex timelines and named

entities present when compared to news and Wikipedia articles. Moreover, the training

labels are human written answers rather than spans from summaries.

We employed a multi task learning approach for this dataset and observed that the models

are too big, requiring significant compute resources and susceptible to overfitting since the

dataset might not be large enough to allow these models to generalize well. We also observed

that certain data preprocessing techniques such as entity anonimization,batch sorting can

help improve the performance of the models significantly. However, we still need to improve

our models further to perform well on this task, either by pretraining on similar datasets,

employing different attention modules or incorporating external knowledge from structured

databases. The last avenue is explored further in the context of MCScript dataset and is

presented in the following chapter.
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CHAPTER 4: MACHINE COMPREHENSION USING COMMON SENSE
KNOWLEDGE

Natural language comes with its own complexity and inherent ambiguities. Ambiguities

can occur, for example, at the level of word meaning, syntactic structure, or semantic in-

terpretation. Traditionally, Natural Language Understanding (NLU) systems have resolved

ambiguities using information from the textual context. However, many times context may

be absent or may lack sufficient information to resolve the ambiguity. In such cases, it

would be beneficial to include commonsense knowledge about the world in an NLU system.

MCScript dataset introduced as part of the SemEval Task 2018 tackles this challenge by

providing reading comprehension questions which require common sense knowledge to be

answered correctly.

4.1 MCSCRIPT DATASET

This Dataset focuses on commonsense knowledge about everyday activities, referred to as

scripts. Scripts are sequences of events describing stereotypical human activities (also called

scenarios), for example baking a cake, taking a bus, etc. Factual knowledge is mentioned

explicitly in texts from sources such as Wikipedia and news papers. On the contrary, script

knowledge is often implicit in the texts as it is assumed to be known to the comprehender.

Because of this implicitness, learning script knowledge from texts is very challenging and

requires information from external knowledge bases such as ConceptNet etc.

The dataset comprises of 2,119 such texts and a total of 13,939 questions and cover 110

script scenarios of differing complexity. 27.4% require commonsense inference about everyday

activities. Fig 4.1 provides a distribution of different type of questions in this dataset.

Figure 4.1: Distribution of Question Types in McScript Dataset
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In the remainder of this chapter, we describe the data preprocessing methodology we used,the

modelling techniques employed and experimental results on the summary-reading task.

4.2 DATA PREPARATION

For data preprocessing, we use spaCy for tokenization, part-of-speech tagging and named

entity recognition. To explicitly model commonsense knowledge, relation embeddings based

on ConceptNet [26] are used as additional features. ConceptNet is a large-scale graph of gen-

eral knowledge from both crowd sourced resources and expert-created resources. It consists

of over 21 million edges and 8 million nodes. ConceptNet shows state-of-the-art performance

on tasks like word analogy and word relatedness. To extract relations from the ConceptNet

we extract all the relations between words which are present in our training vocabulary and

the weights of the relations is greater or equal to one. Some of the examples of relation and

word pair triples extracted from Conceptnet is as follows:

Antonym: absence - presence

Used For: yard - storage

Synonym: youth - young person

4.2.1 Data Augmentation

The main contribution of this thesis for this task is to explore methods of extracting

information from Conceptnet and augmenting the model with it to enhance its accuracy.

We experimented with multiple methods and the following procedure provided us with the

best results.

• For every word in the question (excluding the stop words) we consider words in the

corresponding text for which there exists an edge in the ConceptNet graph. For all

these edges, we represent the relations found in the ConceptNet, as text, and append

the summary with this text. Following is an example of this augmentation,

Used For: bath - relaxing

Text: a bath is used for relaxing.

• We filter out edges which have the relation ”Related to” associated with them. This is

done , since these edges do not provide any relevant information to the given context

and also result in a decrease in the model accuracy. We suspect that this happens be-

cause on addition of such edges increases the length of the text considerably, thereby
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preventing the model’s attention module to focus on the most relevant parts of context

for a given question. Some of the examples of such edges are as follows:

Related To: apologize - fault

Text: Apologize is related to fault.

This relation might be relevant but does not provide the model with any explicit

knowledge such as a person might apologize after making a fault or why did the per-

son apologize? This is the kind of common sense knowledge we need to provide our

model which is absent for these edges.

• To compensate for the removal of the above edges, we make a second hop in the Con-

ceptNet graph, associated with the paragraph word and try to find a node which might

be related to the question word. Following is an example of this modification,

Original text: fix is related to repair

Modified text: fix is a synonym of repair

The above modification helps the model understand the specific relation between the

two words and make better inferences.

• In addition to the above steps , we also consider pairs of question word and summary

bigrams. This is done since a significant percentage of the nodes in ConceptNet are

bigrams and help provide relevant information for the given context. Following is an

example of these relations.

Has Last Sub event: bathe - dry off

Text: The last thing you do when you bathe is dry off.

• As a variant of the above rules, we also append text for every question separately

i.e. we create separate copies of text for each question and append the passage with

information that is only relevant for that question. This is done to avoid addition of any

irrelevant information for a particular question and should provide further improvement

in model accuracy.

4.3 MODEL

In this section we provide the details of the model employed for the McScript dataset,

results and error analysis for our model. This model is inspired by the contributions made
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Figure 4.2: Model for McScript dataset

by YuanFundao et al. [27], which was one of the top performing models for this task. Fig 4.2

shows the schematic of the model used for this dataset.

Embedding Layer: We employ 300 dimensional word embeddings to convert the words

of text and question answer pairs into vector space. We train our own embeddings for the

part of speech tag, named entity and ConceptNet based relational embeddings. The relation

is determined by querying ConceptNet and whether there is an edge between the paragraph

word and any word in question or answer. If there exist multiple different relations, just

randomly choose one.

The POS vocabulary size is 51 and 12 dimensional embeddings are trained for it, NER

has a vocabulary of 20 and 8 dimensional embeddings are trained and there are 39 different

relation types with an embedding size of 10. The final representation of the paragraph word

is a concatenation of these vectors before it is input into the model as follows,

wPi
= [EGlove

Pi
;Epos

Pi
;Ener

Pi
;Erel

Pi
; fPi

] (4.1)

where fPi
is a co-occurrence binary feature, which is True if the word in the paragraph is

present in the corresponding question or answer. Similar concatenation is also used to obtain

the embeddings for the words in question and answer.

Attention Layer: We use word-level attention to model interactions between the given

passage, the question and the answer. The attention mechanism is defined as follows,

Attseq(u, {vi}ni=1) =
n∑

i=1

αivi (4.2)
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αi = softmaxi(f(W1u)Tf(W1vi)) (4.3)

f is non linear activation function set to RelU. Question-aware passage representation{wq
Pi
}Pi=1

can be calculated as:

wq
Pi

= Attseq(E
Glove
Pi

, {EGlove
Qi
}Qi=1) (4.4)

Similarly passage aware answer representation {wp
Ai
}ai=1and question aware answer represen-

tation {wq
Ai
}ai=1 is computed. Three separate BiLSTMs are applied to the concatenation of

these vectors to encode the temporal dependency as follows:

hq = BiLSTM({wQi
}Qi=1) (4.5)

hp = BiLSTM({[wPi
;wq

Pi
]}Pi=1) (4.6)

ha = BiLSTM({[wAi
;wq

Ai
;wp

Ai
}Ai=1) (4.7)

These are the the vector representations which encode the modified context representations.

Output Layer: Question sequence and answer sequence representation hq; ha are sum-

marized into fixed-length vectors with self-attention which is defined as follows:

Attself ({ui}ni=1) =
n∑

i=1

αiui (4.8)

αi = softmaxi(W
T
2 u) (4.9)

Then we have question representation q = Attself ({hq
i}

Q
i=1), answer representation a =

Attself ({ha
i }Ai=1) and paragraph representation p = Attseq(q, {hp

i }Pi=1). The final output is

the bilinear interaction between these vectors as follows:

y = σ(pTW3a+ qTW4a) (4.10)

We feed a triple of context, question and answer into the model for each of the two answer

options for a question and the maximum probability output of the two, is chosen as the final

predicted answer for the given question.

4.3.1 Implementation details

The model is implemented in Tensorflow. Models are trained on a single GPU Titan X and

each epoch takes about 320 seconds. The dimension of both forward and backward LSTM

hidden state is set to 96. Dropout rate is set to 0.4 for both input embeddings and BiLSTM
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outputs. For parameter optimization, we use Adam optimizer with an initial learning rate

0.001. The model converges after 70 epochs. Gradients are clipped to have a maximum L2

norm of 10. Minibatch with batch size 32 is used.

4.4 RESULTS

We present the results of the model along with the best performing baselines for the

McScript in the following table:

Table 4.1: Results on McScript

Model CommonSense Knowledge
Source

Accuracy

Yuanfudao(Ensemble) [27] ConceptNet 0.84

Mitre [28] - 0.82

ELiRF-UPV [29] ConceptNet 0.75

Our Model ConceptNet 0.8225

Our Model+ Data
Augmentation

ConceptNet 0.82321

Our Model+ Data
Augmentation (per

question)

ConceptNet 0.81773

As can be seen from Table 4.1 that we are very close to the best performing model on

this dataset. The best performing model is an ensemble model which average the output

probabilities of 9 models trained with the same dataset and network architecture but different

random seeds. The authors also pre train the model on a separate dataset, RACE [30]. Our

motivation is not to beat the best ensemble model but to show that our data augmentation

technique does help boost the performance of this model, which is indeed the case in the

above reported table. However, contrary to our intuition the model performance does not

improve when data augmentation is performed for every question separately. We explore

this further in the following sections.

4.4.1 Error Analysis

Below we present some examples from the test set to demonstrate how the data augmen-

tation helps the model in certain situations and the areas where it can be refined further.

All the added text is in italics.
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PASSAGE: I had been having issues with heartburn. It’s like every time I had a meal,

I was in pain and in agony.Finally, I decided it was time to see the doctor. I called the

receptionist at the office to make an appointment. She asked me what my problems were

and booked me down for the next week. I came in early for my appointment. They had me

update my health insurance card and fill out some paper work. Then it was a short wait

before the nurse called my name. She brought me to the back and got my weight and other

information. We talked a bit and she led me into the exam room. It was not long before

the doctor came in. He checked me out and talked to me about my condition He gave me a

prescription , but also told me to stay away from foods that made me hurt.long is not short.

A doctor is supposed to make people feel better. Doctor is related to health. Something you

find at the hospital is a doctor.

QUESTION: Were they in a hospital?

ANSWER: Yes

The above question answer pair is an example where the model answers correctly only

after data augmentation, since the information that a doctor is at a hospital is not explicitly

present in text and the model is not able to make the correct inference without this infor-

mation.

PASSAGE: Last weekend, my wife and I had some friends over. After the party ended,

we decided that we wanted to watch a movie. I decided to run to the Redbox booth to get

a new movie that was out. I got my keys and went to the booth. I paid with my card for

the movie that we wanted. I drove back to our house and I got the DVD out of the case. I

own a PS4 , so I placed the DVD right into the machine without opening the console. I had

to get the controller out of a drawer to play, but I found it easy to find out where to start

the movie. We all relaxed on the couch and ate some candy while we watched the movie.

We laughed at the funny parts and stayed awake for the whole movie, even when it got a

little boring. Some movies are funny. A watch is a machine. A watch is a easy to

carry clock. The last thing you do when you travel is stand in front of your home. The

first thing you do when you travel is find out where you are going . If you want to travel

then you should decide where to. Play is a type of plan of action.

In the above passage we observe one of the issues with our approach, which is the addi-

tion of text which is not relevant to the desired context. Here, we see that the word ’watch’

refers to watching a movie, however the text that gets added is in the context of clock. This
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is the cause of one of the biggest failures of this model.

PASSAGE: Yesterday I decided to boil some milk so I could make cottage cheese. The

first thing I did was select a pan to boil the milk. I decided to choose the widest pan I had,

because the wider pan would let me boil the milk more quickly. It is important to select

the right pan, a narrow pan will take longer for the milk to come to a boil and will increase

the risk of burning the milk on the bottom of the pan. Once I selected the pan, I poured

the milk into the pan , and turned the heat on the stove top to medium high heat. For the

next ten minutes, I constantly stirred the milk as it heated, to evenly distribute heat and

to reduce the risk of the milk burning in the pan. After ten minutes of heating, the milk

came to a boil, so I removed the pan from the heat, ready to use my sterilized milk to make

cottage cheese. You are likely to find a bottle in something to drink. Milk can be poured.

Boil causes boil. Heat can cause water to boil. Heat is related to high.

Other relations in ConceptNet is as follows:

Has Last Sub-event - cook meal - grab potholder - The last thing you do when you cook a

meal is grab a potholder.

Is A - potholder - pad - potholder is a type of pad.

The above example shows that there is some other relevant evidence available in Concept-

Net that could be useful to answer questions for this passage, but could not be extracted

because we could not find the required query word/bi-grams in the passage according to our

extraction rules.

PASSAGE: Today was the start of Spring, so I decided it was time to get some clean-

ing done. The first and largest thing to deal with was my apartment flat. I started by

picking up any loose items that were not in their proper place. I put as many items into

drawers and closets as possible to reduce clutter. I then moved all the furniture so I could

clean the floors where the furniture is normally sitting. I vacuumed the exposed floor then

moved the furniture back into place with a couple changes in the arrangement for fun. Then

I swept the rest of the floor after dusting any surfaces that needed it. Afterwards , I cleaned

all the windows, inside and out, and moved to the bathroom. After wiping down all the

surfaces in the bathroom with a disinfecting cleaner, I took a look around my flat to assess

my work. My apartment was now clean and it felt great! change is a type of thing. Loosen

is a type of change.A house has furniture.A house has a floor.You are likely to find a passage

in a house.A house has a bathroom.Day is related to time. Pick is a synonym of clean. Dirty

is not clean. A soap is for cleaning. A soap can be used to clean something.
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Something you need to do before you take a bath is soap.

QUESTION: Was a lot of soap used to clean the flat?

ACTUAL ANSWER: No

PREDICTED ANSWER: Yes

In the above example it can be seen, that the model makes a mistake in making a pre-

diction because text related to soap gets appended to the context which was not present

earlier and allowed the model to predict the correct answer.

4.5 CONCLUSION

In this chapter we presented the details of the model for the SemEval Task 2018 machine

comprehension using commonsense knowledge. We observed that data augmentation tech-

niques using the knowledge extracted from structured databases such as ConceptNet can

help improve the performance of the models for this task. We can conclude that this task

helps researchers tackle the problem of question answering where the relevant information to

resolve ambiguity might not be present in the provided passage. This is especially important

since other famous datasets such as SQUAD, MS-MARCO etc. do not asses the model’s

ability to draw inferences from implicit knowledge which is very intuitive to humans.

However, we also observed that the data augmentation techniques suggested in this sec-

tion have certain flaws and need to be refined further. Specifically, we need to take into

consideration the relevant context before querying these databases and also design more

sophisticated data mining techniques to be able to extract all the required information for a

given question. Moreover, we also observed that ConceptNet might not always be sufficient

to provide the required knowledge for answering questions and we need to explore other

large scale knowledge bases to improve the performance of these systems.
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CHAPTER 5: CONCLUSION

This thesis focused on developing deep learning based models for the task of question

answering. We targeted two challenging problems in this area and introduced models that

helped further improve the performance of the systems present in literature. The experi-

ments we have presented demonstrate that these are complex problems and require further

development of new datasets, techniques that could help tackle some of the issues we dis-

covered during our research.

In chapter 3 we dealt with narrative question answering, which was based on the domain

of stories, movie scripts and required generating answers that were not fixed spans in text.

We proposed a multi task approach for this task and observed that the models had become

too big to be trained on this dataset. We concluded that we either need to pretrain our

model on similar datasets or resort to other techniques to prevent overfiiting.

In chapter 4, we dealt with the unique problem of incorporating common sense knowledge

into machine reading comprehension systems. This is important for answering questions

where the relevant context might not be explicitly present in the provided text. We developed

novel information extraction rules from structured data bases and demonstrated that these

improved the performance of the models developed for this task. However, we also observed

from our experiments, certain flaws in our approach and the need to develop more robust

inference rules. We also concluded that ConceptNet alone might not be sufficient to answer

all questions and the requirement to explore other knowledge bases.

Through this thesis it can be seen that significant progress has been made in the recent

past to develop elaborate QA systems. Development of huge datasets, synthetic or human

generated have been the major supporter for driving the growth of these systems. However,

each of these datasets have their own limitations and there still remains further scope for

development of new datasets to allow modelling robust systems which are closer to the real

world applications. Moreover, there seems to be a recent trend emerging in NLP literature

where there is a push to move away from RNN based architecture [19]. Development of such

models could be crucial for QA systems as they tackle some of the fundamental limitations of

RNN. Also, the use of Reinforcement learning to generate more natural and human readable

output sequences brings these systems one step closer to commercial deployment. However,

progress on building systems that truly understand language is only possible if our evaluation

metrics can distinguish real intelligent behavior from shallow pattern matching. Therefore,

we feel that exploring ways to discover the limitations of these models is a promising future

research direction and is contingent for the development of new deep learning models.
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