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ABSTRACT

In deceased donor kidney transplantation, the decision to accept or decline an offer relies

on a clinicians intuition and ability to digest complex information in order to maximize

patient survival. Risks affecting patient survival post-KT must be balanced with the risks

of remaining on the waitlist. These risks include mortality, graft failure, and becoming too

sick to transplant. The allocation system today takes these risk into account by way of

the KDPI and EPTS scores. While these scores are discriminative of patient survival they

were built with an assumption of independence between risks and very few donor-recipient

variables. Deep learning survival analysis can effectively handle competing risks and learn

complex relationships between many more donor-recipient variables. We used DeepHit to

assess the risk benefit associated with accepting a kidney offer or remaining on the waitlist.

Our models achieved comparable, if not better performance in certain tasks, with other

high performing models in the literature and revealed that decoupling competing risks led

to increased clinical information gain. We show that comprehensively modeling competing

risks using machine learning can achieve more granular, meaningful clinical risk analysis

enabling more effective decision making in deceased donor kidney transplantation.
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CHAPTER 1: INTRODUCTION

Organ transplantation is a complex process requiring effective coordination and commu-

nication amongst a highly distributed network of providers within a short window of time in

order for a successful transplantation to occur (Figure 1.1). Over 80% of patients awaiting

organ transplants are waiting for a kidney. Kidney transplantation (KT) is a clinically effec-

tive and cost-effective treatment for patients suffering from end-stage renal disease (ESRD)

[1, 2, 3]. More than $34B of the annual Medicare budget is devoted to paying for the

treatment of patients who require dialysis while awaiting a KT. Transplanting this group

could save $100,000 per year per patient amounting to $46.8B annually [4] and a gain of

6.7 discounted quality-adjusted life years (QALYs) for every dialysis patient who receives a

kidney. Despite the obvious clinical and cost-effectiveness advantages of kidney transplan-

tation, there has been a decades-long rise in the kidney discard rate from 5.1% in 1988 to

19.2% in 2015 [5]. Studies have shown that a portion of these kidney could have provided

a survival benefit to waitlisted patients and that behavioral factors, such as increased risk

aversion, could play a part in the rising discard rate [5, 6, 7]. On the behavioral side, there is

also a demonstrated reduction in acceptance of kidneys on the weekends v.s. the weekdays

[8]. Ultimately, a kidney accept or decline decision comes down to a complex estimation

of risk done by sole physicians relying on experience and intuition. Clinical decision sup-

port (CDS) may significantly increase access, increase quality, and reduce the cost of kidney

transplantation.

Figure 1.1: Complex process of organ allocation and procurement.

Similar to reasoning done by Wey et al.[9], the ultimate question is: does this offer max-
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imize graft and patient survival for the recipient? If it does, the offer should of course be

accepted. It’s important to note that there isn’t one single donor profile that maximizes

those two variables for every recipient. Aside from the baseline compatibility requirements

(e.g. size, blood type, and other medical factors), other factors such as geography and local

organ supply come into play. Therefore, an accept or decline decision comes down to 3

factors:

1. Survival should the offer be accepted.

2. Survival should the offer be declined and the patient remain on the waiting list (WL).

3. Survival opportunity sometime in the future in the form of a better offer.

This thesis attempts to robustly addresses factors 1 and 2 using state of the art deep learning

techniques in survival analysis with competing risk. Factor 3 is left for future work and will

build on work done by Wey et al. and Bertsimas et al [9, 10].

The rest of the thesis is organized as follows. Chapter 2 dives into related work and

provides a good overview on survival analysis within kidney transplantation. Chapter 3

explains our approach and describes the Scientific Registry of Transplant Recipients (SRTR)

data set we used. Chapter 4 shows our results and attempts to demonstrate the clinical

validity using CDS at the time of offer. Chapter 5 concludes this thesis and ventures into

future work.
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CHAPTER 2: RELATED WORK

Kidney transplantation as explained in the introduction is a very complex system involving

multiple patients vying for a perfectly matched kidney. There are multiple data sources in

play from the allocation system, the individual patients, and the organ procurement system.

Machine learning techniques offer a more efficient way at processing this large amount of

data and the complex interactions between them with the ultimate goal of reducing waste,

transplanting more patients, and maximizing patient survival. The following sections will

describe the following work in relation to our work: (1) how survival analysis is used in

kidney transplantation, (2) current allocation policies using machine learning, (3) the SRTR

efforts in providing analytic tools for patient and physician use, and (4) previous applications

of machine learning for kidney offer evaluation.

2.1 SURVIVAL ANALYSIS IN KIDNEY TRANSPLANTATION

Survival analysis is used extensively in medicine to analyze time-to-event data such as from

a cohort study or clinical trial. In the case of post-KT survival, two events are prevalent:

death and graft failure. Survival analysis allows one to find casual relationships, predict

temporal risk, or analyze non-parametric based patient survival. Additionally, this type of

analysis allows for censoring of individuals. For example, if in the study period a patient did

not exhibit any outcome of interest they are considered to be right-censored. Left-censorship

occurs when a birth event is not seen.

Common methods used in KT are the non-parametric Kaplan-Meier (KM) method [11],

the Cox proportional hazard model [12], and the Fine and Gray model [13]. The KM method

estimates the probability of survival across a period of time using only time and censoring

data. A Cox model would be used in evaluating casual relationships between predictive

covariates and survival. It consists of a baseline hazard which represents the hazard of an

individual with baseline covariates. This baseline is affected by each covariate, therefore

allowing one to study the effect of individual covariates on survival. The Fine and Gray

model is a more advanced technique providing sub-distribution hazards in the presence

of competing risks. In addition the cumulative incidence function (CIF) was developed

to overcome some of the shortcomings of the KM method [14]. It effectively shows the

cumulative probability over time due to an event in the presence of competing events.

A proper example of survival analysis in kidney transplant was done by Sapir-Pichhadze

et al. in their study of WL kidney transplant candidates [15] with competing events (death,
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transplant or removal from WL for any other reason). They compared competing event

analysis using a cause-specific Cox model with the Fine and Gray model. Interestingly, they

demonstrated that appropriately handling competing risks leads to more refined predictions

in the presence of competing risks. This thesis takes care to handle competing risks not only

for WL outcomes but also in post-KT outcomes.

2.2 ALLOCATION POLICIES

The US allocation system for kidney’s recently began factoring in survival benefit in

2015. Survival benefit is considered by using a candidates estimated post transplant survival

(EPTS) and a donors kidney donor profile index (KDPI). These scores were developed using

Cox regression. The EPTS score considers the following four factors: candidate time on

dialysis, current diagnosis of diabetes, prior solid organ transplants, and candidate age.1

The KDPI score considers a donors age, ethnicity, creatinine levels, history of hypertension,

history of diabetes, cause of death, height, weight, donor type (deceased or living), and HCV

status.2 Lower KDPI scores have been shown to be associated with higher rates of survival.

For example, The Organ Procurement and Transplantation Network states that the half-life

of a graft from a donor with KDPI of 0%-20% is expected to be around 11 years post-KT

and decreases to about 9 and 5.5 years with KDPI’s of 21%-85% and 86%+, respectively

[16]. Similar expectations of survival with EPTS have been found. To maximize survival

benefit good recipients are matched with good donors using KDPI and EPTS. Candidates

with EPTS scores of 20% or less are matched with kidneys from donors with KDPI scores

of 20% or less before candidates at local, regional, and national levels of distribution [17].

KDPI and EPTS represent proper first steps towards a more efficient allocation system.

However, more robust machine learning methods have shown better discriminative perfor-

mance [18]. It is important to note that the variables used in these metrics are more or less

guaranteed to be on hand at the time of transplant. To maintain usability in practice these

variables should be included along with other ubiquitous variables.

1https://optn.transplant.hrsa.gov/resources/allocation-calculators/epts-calculator/
2https://optn.transplant.hrsa.gov/resources/allocation-calculators/kdpi-calculator/
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2.3 SRTR ANALYSIS TOOLS

The SRTR currently publishes risk adjustment models models for both post-KT outcomes

and WL outcomes among others.3,4 For Post-KT outcomes they include 1 and 3 year

graft and patient survival. For WL outcomes they include transplant rate, deceased donor

transplant rate and WL mortality. By building seperate models for every event they are

employing cause-specific Cox and Poisson survival models. This approach has been found

to be the preferred method for evaluating causal relationships in the presence of competing

risk, but not for predicting the actual risk of the outcome [15]. Indeed the SRTR website

only lists model coefficients allowing a transplant professional to examine the effect of a

predictive variable on the outcome of interest; leaving room for more patient-specific risk

models to be developed. Additionally, usability in practice is limited due to the amount of

manual processing and interpretation needed from a users perspective.

2.4 MACHINE LEARNING FOR KIDNEY OFFER EVALUATION

In kidney transplantation alone, machine learning has been used to predict chronic allo-

graft rejection, delayed graft function (DGF), and allograft survival [19, 20, 21, 22, 23].

Decruyenaere et al. [19] compared logistic regression with more advanced machine learning

methods for predicting DGF after kidney transplantation. DGF means a patient must go

back on dialysis within the first week after transplantation. They concluded that a linear

SVM is most appropriate for this task, not finding any significant performance boost using

random forests (RF), stochastic gradient boosting (SGB), and decision trees (DT) among

others. However, their dataset was relatively small (under 500 samples) and they only had

access to 55 total variables, 20 of which were used in training. Furthermore, the DGF

outcome was only observed in 12.5% of patients.

Krikov et al. [20] built tree-based models to predict the probabiliy of kidney allograft

survival at 1, 3, 5, 7, and 10 years post-KT. They had relatively good success with high AUC

scores of 0.63, 0.64, 0.71, 0.82 and 0.90 for their respective prediction timelines. However,

their models converted the outcome to a binary indicator and potentially missed information

relating to competing outcomes such as death without graft failure and graft failure without

death.

Li et al. [23] used a bayesian network to predict graft rejection and survival period. Their

graft rejection model performed relatively well with 97.8% accuracy, however accuracy was

3https://www.srtr.org/reports-tools/risk-adjustment-models-posttransplant-outcomes/
4https://www.srtr.org/reports-tools/risk-adjustment-models-waiting-list/
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68.2% for the survival period task. Their results indicated that a bayesian network was ill

suited for the former task.

These studies only looked at post-KT events, effectively only addressing factor 1. Studies

that included WL survival have looked at predicting WL mortality and other events pertain-

ing to removal from the WL [9, 18]. Both of these studies addressed factor 1 & 2 and used

survival analysis techniques. Wey et al. also addressed factor 3 by incorporating survival

estimates after declining an offer and receiving a subsequent living or decreased donor offer.

Neither of these studies utilized deep learning to handle survival analysis in the presence of

competing risks nor effectively handled bias in their performance evaluation [24].
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CHAPTER 3: APPROACH

3.1 DATASET

There are multiple large, comprehensive national kidney transplantation datasets avail-

able [25]. Data curated by the Organ Procurement and Transplantation Network (OPTN),

described in Table 3.1, serves as the basis for the most widely used datasets including the

United Network for Organ Sharing (UNOS), the Scientific Registry of Transplant Recipi-

ents (SRTR), and the United States Renal Data System (USRDS) datasets. We used data

obtained from the SRTR. Additional data for the ascertainment of graft failure and death

came from the Centers for Medicare and Medicaid Services (CMS); cancer ascertainment

from the Surveillance, Epidemiology, and End Results program (SEER); and additional

death ascertainment from the National Death Index (NDI).

Table 3.1: The OPTN collects most data via one of three forms described in the table. These
forms provide the basis for many of the larger datasets used by researchers today.

OPTN Form Types of Data Collected

Transplant Candidate Registration (TCR)
Candidate demographic data, clinical infor-
mation and history, organ-specific informa-
tion at the time of listing.

Transplant Recipient Registration (TRR)

Pre-transplant clinical data, infectious dis-
ease status, data on the transplant proce-
dure, post-transplant clinical data, infor-
mation on immunosuppressive medications
from the initial transplant admission.

Transplant Recipient Follow-up (TRF)

Vital status, cause of death if applicable,
graft status patient education and employ-
ment status, and clinical information at
each visit following a transplant.

Deceased Donor Registration (DDR) and
Living Donor Registration (LDR)

Donor demographics, comorbidities, infec-
tious disease status, and cause of death (for
deceased donors) or postoperative clinical
information (for live donors) at the time of
organ donation.
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3.2 STUDY POPULATION

The recipient cohort included all adult (aged 18 and over) KT recipients between Jan-

uary 1, 2005 and December 31, 2016 (n = 114,261). Multi-organ recipients were excluded.

Patients who had received a prior transplant and only deceased donor KT recipients were

included. The waiting list cohort included all adult patients who were activated on the KT

waiting list between January 1, 2005 and December 31, 2016 (n = 217,278). Multi-organ

candidates were excluded. If a candidate didn’t have a removal date they were excluded and

multiple registrations were consolidated.

3.3 TRANSPLANT SURVIVAL

Transplant survival was defined as the time from KT to death or graft rejection, censoring

for the end of the study. We treated graft failure as a competing event to death and noted the

first event that occurred as the primary outcome for that patient. To maintain usability in

practice we limited the features to those used by the SRTR postransplant models (described

in related work) and 12 other variables found to influence post-KT survival in the previous

studies. A sample was excluded if it was missing 20% or more of it’s variables. A total of 25

features were utilized. Missing continuous variables were replaced with their median, while

missing categorical variables were labelled as missing. We used one-hot encoding and all

variables were normalized using the standard score.

3.4 WAITLIST SURVIVAL

Waitlist (WL) survival was defined as the time from activation on the waitlist to 3 com-

peting risks and censoring defined as:

1. death,

2. KT,

3. too sick to transplant,

4. or censorship for the end of the study or removal from the waitlist for any other reason.

Only features that had at least 90% coverage were kept, unless those features were deemed

clinically relevant in previous literature and in the SRTR models. Missing continuous vari-

ables were replaced with their median, while missing categorical variables were labelled as
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missing. Bae et al. showed that the inclusion of time-varying variables that affect survival,

including those used in this study, are sufficient to assume that the association between

these features and survival are consistent regardless of when an offer is received [18]. We

used one-hot encoding and all variables were normalized using the standard score.

3.5 DEEPHIT

Figure 3.1: DeepHit Architecture.

We use a modified version of DeepHit developed by Lee et al. [26] based on code avail-

able on github.1 This deep learning architecture (Figure 3.1) has been shown to enhance

performance in the presence of competing risks. The first network is shared between events

and is followed by cause-specific sub-networks for each competing event. Two loss functions

(Ltotal = L1 + L2) are utilized:

L1 = −
N∑
i=1

[1(k(i) 6= ∅) · log(y
(i)

k(i),s(i)
) + 1(k(i) 6= ∅) · log(1−

K∑
k=1

F̂k(s(i)|x(i)))] (3.1)

L2 =
K∑
k=1

αk ·
∑
i 6=j

Ak,i,j · η(F̂k(s(i)|x(i)), F̂k(s(i)|x(j))) (3.2)

Where,

• F̂k∗ is the estimated CIF for event k∗ at time s∗, F̂k∗(s∗|x∗) =
∑s∗

m=0 y
∗
k,m,

1https://github.com/chl8856/DeepHit
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• Ak,i,j represents acceptable pairs (i,j) that experience event k at a different time and

can thus be compared, Ak,i,j , 1(k(i) = k, s(i) < s(j)),

• αk is chosen to trade off ranking losses of the k-th event,

• η(x, y) is a convex loss function, η(x, y) = exp(
−(x− y)

σ
).

L1 is the log-likelihood of the joint distribution of the first hitting time and event that takes

into account censoring. L2 learns the general representation for the joint distribution of the

first hitting time and events using ranking loss with cause-specific CIFs helping the network

to perform better on time intervals where there are a large number of death events.

3.6 MEASURES OF PERFORMANCE & CALIBRATION

We used a time dependent measure of performance based on the widely used Concordance

index (c-index) in survival analysis. The ordinary c-index [27] represents the fraction of all

patients that were ordered correctly out of all patients that could of been ordered. It doesn’t

take into account the change in risk over time and is biased if the censoring distribution is

influenced by the input variables [24]. For example, in the case of KT-survival the chance of

censoring over the study period is dependent on medical factors at the time of transplant,

such as KDPI and EPTS. In essence, a more risky transplant corresponds to a higher chance

of reduced survival and thus lower chance of censorship in any survival study. The time-

dependent c-index (C(t)) adjusted for censoring [28] and is defined by:

C(t) = P(R(t|xi) > R(t|xj)|∆i = 1, Ti ≤ t, Ti < Tj). (3.3)

To measure calibration we used the Brier Score (BS) [28]:

BS(t) = E[1(Ti ≤ t)−R(t|xi))
2]. (3.4)

3.7 RISK BENEFIT

Risk benefit of KT compared to staying on the WL was calculated by taking the difference

between risks. Only the following risk differences were calculated:

1. KT death vs WL death,

2. KT death vs becoming too sick,
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3. KT graft failure vs WL death,

4. KT graft failure vs becoming too sick.

The ultimate trade-off comes down to KT death vs WL death. The other measures, represent

more granular trade-offs. For example, suppose a patient has a lower risk of death by taking

a KT but a higher risk compared to becoming too sick. In this case, the patient could stay

on the WL and wait for a better kidney since their chances of being removed from the WL

are lower than death post-KT. This is one of the benefits of modeling competing risks.
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CHAPTER 4: RESULTS

4.1 POPULATION CHARACTERISTICS

In the recipient cohort (n = 114,261), 33.9% were African American, the median age was

54 years old, 27.3% had diabetes as the primary diagnosis, median time on dialysis was 3.7

years, and 14.5% had previous transplants. The recipients received organs from donors of

whom 14.3% were African American, the median age was 41, 7.2% had a history of diabetes,

27.8% had a history of hypertension and 33.2% donated after cerebrovascular/stroke death.

The median KDPI and EPTS was 44 and 41, respectively. In the candidate group (n =

217,278), the median age was 55, 31.6% were African American, they had a little bit higher

rates of hypertension (23.9%) and diabetes (36.1%) compared to those in the candidate

group, 26.1% had a functional status of 80%, and the median EPTS score was 36 (Table

4.1).

Table 4.1: Population Characteristics.

Recipient Cohort(n = 114,261) Candidate Cohort(n = 217,278)

Recipient/Candidate Factors

Age at transplant, y 54 (44-63)

Age at waitlisting, y 55 (45-63)

Race, %

White 41.2% 44.9%

African American 33.9% 31.6%

Hispanic/Latino 16.3% 16.5%

Other/multiracial 8.6% 7.0%

Primary Diagnosis, %

Diabetes 27.3% 36.1%

Hypertension 25.7% 23.9%

Glomerular 11.4% 8.6%

Cystic 7.6% 6.2%

Congenital 0.7% 0.5%

Other 26.8% 24.0%

Missing 0.5% 0.6%

Total Albumin, g/dL 3.9 (3.6-4.2) 3.9 (3.6-4.2)

Education Level, %

High School 42.3% 41.6%

College/Technical School 22.7% 22.9%

Undergraduate Degree 13.9% 14.1%

Unknown 8.4% 7.5%

Peripheral Vascular Disease 6.5% 7.5%

Time on Dialysis, y 3.7 (2.0-5.9) 0.0 (0.0-1.2)

Primary Insurance, %

Medicare FFS 51.5% 37.6%

Private 22.2% 37%
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Table 4.1 Continued

Medicare & Choice 19.4% 14.9%

EPTS, % 41 (18-71) 36 (17-58)

Previous Transplant, % 14.5%

Time on the Waitlist, y 2.1 (0.8-3.6)

Cold Ischemic Time, hrs 16.5 (11.4-22.3)

Functional Status, %

80%1 26.1%

90%2 23.5%

70%3 19.4%

100%4 12.1%

Donor Factors

Age, y 41 (26-52)

Race, %

White 82.2%

African American 14.3%

Other/Multiracial 3.5%

Weight, kg 78.8 (66-93)

Height, cm 171.0 (163.0-179.0)

Diabetes, % 7.2%

Hypertension, % 27.8%

Serum Creatinine, mg/dL 0.95 (0.7-1.3)

Hepatitis C virus infection, % 2.7%

Cause of Death, %

Head Trauma 36.0%

Cerebrovascular/Stroke 33.2%

Anoxia 27.5%

Shared Transplant, % 25.8%

KDPI, % 44 (21-68)

Table 4.2: Competing Risks Summary.

Percent Event/Censoring Time (y)

Post-KT Survival

Censored 73.2% 4.5 (2.0-7.7)

Graft Failure 13.9% 2.4 (0.5-4.8)

Death 12.8% 3.0 (0.9-5.4)

WL Survival

KT 50.0% 2.6 (1.2-4.4)

Death 20.1% 2.5 (1.2-4.2)

Censored 17.1% 3.1 (1.7-5.1)

Too sick to transplant 12.7% 3.4 (1.9-5.3)

Values are median(IQR) for event/censoring time.

In the recipient cohort, 13.9% experienced graft failure while 12.8% died. The median

1Normal Activity with effort: some symptoms of disease
2Able to carry on normal activity: minor symptoms of disease
3Cares for self: unable to carry on normal activity or active work
4Normal, no complaints, no evidence of disease
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(IQR) times until graft failure or death was 2.4 (0.5-4.8) years and 3.0 (0.9-5.4) years,

respectively. In the candidate cohort, 50.0% of patients received a KT, 20.1% died on

the waiting list, and 12.7% were removed from the waiting list after becoming too sick to

transplant. The median (IQR) times until the events were 2.6 (1.2-4.4) years, 2.5 (1.2-4.2)

years, and 3.4 (1.9-5.3) years, respectively (Table 4.2). Figures 4.1 and 4.2 show the 1-KM

and CIF curves for each event. The CIF for post-kT outcomes was almost equivalent to the

1-KM curve, albeit the 1-KM curve consistently has higher risk. Meanwhile, the CIF for

WL outcomes was drastically more accurate than the 1-KM curve showing the probability

of KT being greater than 3x as likely to occur compared to death or becoming too sick to

transplant. Interestingly, death and graft failure post-KT had relatively equivalent risk.

Figure 4.1: Distribution function 1-KM and cumulative incidence function of competing
events post-KT.

Figure 4.2: Distribution function 1-KM and cumulative incidence function of competing
events on the waiting list.
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4.2 POST-KT SURVIVAL

For post-KT survival the DeepHit model achieved a 5-year c-cindex of 0.70 and 0.64 for

death and graft failure, respectively. In comparison, KDRI is known to have a c-index of

0.62, while several other methods achieve similar performance to this model going up to

0.724 [29, 30]. LYFTs reported performance for graft survival 0.61 [31]. The 5-year brier

score was 0.46 for both death and graft failure (Figure 4.3).

Figure 4.3: Time dependent C-index and Brier Score for the KT survival model.

The risk of graft failure was slightly greater than death at all time points. 5- and 10-year

risk of death was 11.5% and 13.1%, respectively. While the 5- and 10-year risk of graft failure

was 19.3% and 20.1%, respectively. Interestingly, patients that died had greater accelerated

risk of death at all time points compared to patients that experienced graft failure while

the opposite was observed in patients that experienced graft failure. 5- and 10-year risk of

death was 16.3% and 27.1% for patients that died compared to 11.1% and 18.4% for patients

that experienced graft failure. 5- and 10-year risk for graft failure was 13.1% and 20.6% for

patients that died compared to 15.3% and 22.8% for patients that experienced graft failure

(Figure 4.4).

EPTS showed a strong correlation with 3-, 5-, and 10-year risk of death, while showing

relatively no correlation with 3-, 5- and 10-year risk of graft failure. KDPI on the other

hand showed a stronger correlation with 3-, 5-, and 10-year risk of graft failure compared

to death (Figures 4.5 and 4.6). Clinically this means that EPTS is more indicative of

recipient condition, while KDPI is more indicative of graft condition in the future. This is

consistent with the fact that EPTS and KDPI are derived from recipient and donor variables,

respectively. Patients with low EPTS (≤25th percentile) showed a much lower risk of death

compared to patients with a high EPTS (≥75th percentile). Interestingly, the risk of graft
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Figure 4.4: Median risk for all patients in the test set and for all patients in the test set
seperated by event observed.

Figure 4.5: 3-, 5-, and 10-year post-KT risk and EPTS at the time of KT. Death is shown
on the top row and graft failure on the bottom with their respective years post-KT.

failure was relatively the same with low EPTS patients having marginally higher risk for graft

failure (<2%) from 20 to 90 months post-KT. Patients with low KDPI (≤25th percentile)

16



showed a much lower risk for graft failure and death post-KT (Figure 4.7).

Figure 4.6: 3-, 5-, and 10-year post-KT risk and KDPI at the time of KT. Death is shown
on the top row and graft failure on the bottom with their respective years post-KT.

Figure 4.7: Median risk for all patients in the test set seperated by EPTS and KDPI (25th
and 75th percentiles) observed.

17



0 25 50 75 100

0

20

40

60

80

100
EP

TS

3-year

0 25 50 75 100
KDPI

0

20

40

60

80

100

5-year

0 25 50 75 100

0

20

40

60

80

100

10-year

0 25 50 75 100

0

20

40

60

80

100

EP
TS

3-year

0 25 50 75 100
KDPI

0

20

40

60

80

100

5-year

0 25 50 75 100

0

20

40

60

80

100

10-year

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ri
sk

 o
f D

ea
th

0.06

0.08

0.10

0.12

0.14

0.16

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

Ri
sk

 o
f G

ra
ft 

Fa
ilu

re
Figure 4.8: EPTS, KDPI and Risk at 3-, 5-, and 10-year post-KT risk for death and graft
failure observed in the test set.

Combining EPTS and KDPI showed a linear trend with risk of death, wherein a low EPTS

recipient receiving a low KDPI kidney showed much lower risk of death at 3-, 5- and 10- years

post-KT, compared to the opposite. At 10-years post-KT the risk difference for death was

up to 30% as KDPI and EPTS increase. The risk of graft failure on the other hand showed a

strong trend with KDPI alone, corroborating with results previously discussed. At 10-years

post-KT the risk difference graft failure was up to 20% as KDPI increased. Interestingly,

very low EPTS (<10% EPTS) recipients were found to have higher risks of graft failure

with KDPI donors up to 75%, however this EPTS score range was outside the IQR and the

support for this edge case is likely very low (Figure 4.8).
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4.3 WAITLIST SURVIVAL

For WL survival the DeepHit model achieved a 3-year c-cindex of 0.75, 0.72, and 0.77

for KT, death, and becoming too sick, respectively. In comparison, the LYFT score has a

reported c-index of 0.68 (0-15 years) [31]. The 3-year brier score was 0.34, 0.39 and 0.46 for

KT, death, and becoming too sick, respectively (Figure 4.9).

Figure 4.9: Time dependent C-index and Brier Score for the WL set.
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Figure 4.10: Median risk for all patients in the test set seperated by event cohort.

Patients that died or became too sick on the WL had greater risk for death or becoming

too sick respectively. Patients that had a KT had a much greater chance of receiving a KT

than any other event. Interestingly, in the near term (<12 months) the risk of death for
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patients that died was greater than KT. On a longer time scale the chance of receiving a

KT is greater than any other event. Clinically it makes sense that if a patient survives long

enough he/she will most likely have a KT. For patients that underwent a KT, the median

risk of KT, death, and becoming too sick was 19.0%, 11.1% and 6.3%, respectively at 2

years, and 32.4%, 19.9%, and 12.2% respectively at 4 years. For patients that died on the

WL, the median risk of KT, death, and becoming too sick was 15.2%, 13.8% and 8.1%,

respectively at 2 years, and 29.0%, 22.4%, and 14.6% respectively at 4 years. For patients

that become to sick to transplant, the median risk of KT, death, and becoming too sick was

14.6%, 12.6% and 9.2%, respectively at 2 years, and 28.2%, 21.2%, and 16.1% respectively

at 4 years (Figure 4.10). Modifying a patient to have a higher EPTS (>80) raised their risk

of death and becoming too sick drastically. Again the pattern of risk of death being greater

than KT in the short term emerges (Figure 4.11).
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Figure 4.11: Risk for a patient that was transplanted with modified EPTS.

4.4 DECISION ANALYSIS

1-, 3-, and 5-year risk benefit of KT for graft failure vs death on the WL showed that

higher EPTS patients benefit the most from a KT while very low EPTS patients can safely

remain on the WL. This is also true in comparing graft failure with becoming too sick to

transplant. The risk benefit at 3-years ranges from -5% to +12.5% for death on WL and

-10% to +10% for becoming too sick to transplant. 1-, 3-, and 5-year risk benefit of KT for
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death post-KT vs death on the WL showed that essentially every patient would do better

with a KT. This is important because it corroborates the pre-emptive KT strategy put forth

by clinicians, however only 20% of KTs are performed pre-emptively.5 Ultimately, 3-year

risk benefit ranged from 0% to +8% going up to +10% at 5-years post-KT. Even for low

EPTS patients their risk of death is improved with KT, while their risk of graft failure is not,

meaning the patient would improve their survival simply by continually undergoing a KT

each time their graft fails rather than remaining on dialysis. Similar findings between death

post-KT vs becoming too sick were found. although the risk benefits were comparatively

smaller ranging from -6% to +4% at 5 years (Figure 4.12).

5https://www.mayoclinic.org/tests-procedures/pre-emptive-kidney-transplant/pyc-20384830
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Figure 4.12: EPTS, KDPI and risk benefit of KT at 1-, 3-, and 5-years.
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CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 CLINICAL SIGNIFICANCE

Ultimately, this hypothetical CDS system achieved comparable if not better performance,

while also considering a more robust competing event framework. In particular, the treat-

ment of death and graft failure as competing events proved to capture valuable clinical

information affecting factor 1 (survival with KT). The WL model proved to delineate pa-

tients with higher EPTS scores and patients that died or became to sick on the waitlist,

effectively addressing factor 2 (survival rejecting KT). While this model includes KT as a

WL outcome it doesn’t utilize any location data, other than a candidates permanent state.

To effectively address factor 3 (survival opportunity in the future), more granular data such

as local organ supply and geographical allocation factors are needed. However, it was shown

that for the majority of patients a KT with any KDPI improved their chances of survival

suggesting that a pre-emtpive transplant is a feasible strategy for patients with ESRD. In this

case the only factor to consider is maximizing graft survival. High KDPI kidneys seemed to

have a marginal effect on 3-year patient survival post-KT vs remaining on the waitlist, event

though it does significantly increase the risk of death and graft failure post-KT. Meanwhile,

low KDPI kidneys seem to have the greatest effect on patients with mid tier EPTS. Bea

et al. had similar conclusions, however they did not consider graft survival as a competing

event to death [18]. For graft failure, in low EPTS patients the risk benefit was lower with

higher KDPI kidneys suggesting that waiting for a better kidney would reduce the chance

of re-transplantation, whereas high EPTS patients would still receive a positive risk benefit

with higher KDPI kidneys. In practice this would suggest that low EPTS patients can wait

longer in order to improve graft survival and patient survival , while high EPTS patients

would benefit by being transplanted as soon as possible while having almost no effect on

patient survival.

In the future, this CDS system could be simplified further by adding another model to

analyze the probability distribution of the competing events and reducing the final prediction

to an accept or decline decision. It was shown that for patients that died their risk of death

was greater than any other risk in the short term, suggesting that this pattern would be

highly indicative of a high risk patient that could potentially benefit from any organ offer,

while low risk patients seemed to have a higher chance of KT at all time points suggesting

they have time to wait until graft survival is maximized.
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5.2 IMPLICATIONS FOR CDS SYSTEMS IN PRODUCTION

CDS systems still have a ways to go before widespread adoption. Luckily, the attention

in this field is great with work being done by even the largest companies, such as Google1

and Microsoft2. An interesting example in kidney transplant is OmniLife, a Small Business

Innovation Research (SBIR) funded (among other private investment) startup working in

the transplant space with a unique forward thinking solution for kidney transplant offer and

patient management. During a successful SBIR phase I project, OmniLife proved the feasi-

bility of improving donor management and coordination using a streamlined communication

application, TXP Chat. The key TXP Chat innovation is in its user-focused design and

application specific awareness to the transplant continuum. TXP Chat replaces the slow,

point-to-point call centers reliant on phones, faxes and paper forms (Figure 1.1) with more

advanced technology enabling communication across institutional boundaries (Figure 5.1).

TXP Chat allowed clinicians to communicate more effectively and with higher user interface

satisfaction, thus facilitating more efficient decision making.

Figure 5.1: OmniLife Simplifies the complex communication network and allows rapid ex-
change of information at the time of offer. A clinical decision support system on their system
would be accessible by all parties involved on a transplant case.

In a proposed SBIR phase II research direction, TXP Chat will be enhanced with the

development of a clinical decision support (CDS) system called Ask Alan that will be capable

of delivering predictive insights at the time of offer from powerful machine learning models

(Figure 5.2). Ask Alans predictive capabilities will be improved upon by further integrating

1https://ai.google/healthcare/
2https://www.microsoft.com/en-us/research/research-area/medical-health-genomics/
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the system with powerful data sources inherent in the transplant professionals workflow,

such as the electronic medical record (EMR) (Figure 5.3).

Figure 5.2: The user interface for a clinical decision support system supporting multiple
clinical predictive models.

Figure 5.3: Integration with local EMR and Omnilife databases would allow for more gran-
ular and possibly accurate predictions.

The current opinion among clinicians in organ transplantation is that predictive models

trained with national datasets cannot ensure transportability to local environments [32].

This is a very valid argument and attempts have been made to alleviate this issue [33, 34].
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However, powerful local databases exist within every hospital and even in patient smart-

phones. In kidney transplantation, technology like TXP Chat represent a unique, secure

access point for both predictive models and local data sources, not only removing barriers

for researchers but also for hospitals and medical institutions who might not have the proper

software infrastructure to support CDS systems across institutional boundaries. Other re-

lated solutions exist such as doc.ai3 utilizing blockchain technology to democratize medical

research. In any case, for the majority of models published by researchers to have clinical

meaningfulness they need to demonstrate reproduciblity in local environments, and local

environments need to have the ability to implement and support the model in production.

Besides the infrastructure considerations necessary to support a system like this in produc-

tion, another area that should be explored is in the realm of Human Computer Interaction

(HCI). Representing complex predictions in a manner that can confidently influence clinical

decision making is not a trivial task [35]. While statistically one can ensure the accuracy of

a prediction, one cannot so easily ensure interpretability especially in a rapid paced clinical

environment where patient lives are at stake. Normally, to measure the effectiveness of a

new software feature a company can employ A/B testing, but Narayanan et al. found that

in machine learning these types of studies don’t lead to generalized conclusions about what

properties are most essential in certain contexts [35]. Therefore, more careful studies need

to be done with clinicians to generate guidelines as to what properties lead to increased

trust and usability, aside from performance. As noted in [36], ”designing an algorithm for

implementation in the clinic involves matter well beyond algorithmic performance” and they

conclude that interpretability is the first towards trust. In the context of kidney transplan-

tation, this work was able to show the clinical interpretability of predictions made by the

deep learning model and any attempt to use these predictions in clinical practice would likely

require similar interpretability with every organ offer.

3https://doc.ai/
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