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Abstract

Flux coupling identifies sets of reactions whose fluxes are “coupled" or correlated in genome-
scale models. By identifying sets of coupled reactions, modelers can 1.) reduce the dimensionality
of genome-scale models, 2.) identify reactions that must be modulated together during metabolic
engineering, and 3.) identify sets of important enzymes using high-throughput data. We present
three computational tools to improve the efficiency, applicability, and biological interpretability of
flux coupling analysis.

The first algorithm (cachedFCF) uses information from intermediate solutions to decrease the
runtime of standard flux coupling methods by 10-100 fold. Importantly, cachedFCF makes no
assumptions regarding the structure of the underlying model, allowing efficient flux coupling
analysis of models with non-convex constraints.

We next developed a mathematical framework (FALCON) that incorporates enzyme activity as
continuous variables in genome-scale models. Using data from gene expression and fitness assays,
we verified that enzyme sets calculated directly from FALCON models are more functionally
coherent than sets of enzymes collected from coupled reaction sets.

Finally, we present a method (delete-and-couple) for expanding enzyme sets to allow redun-
dancies and branches in the associated metabolic pathways. The expanded enzyme sets align with
known biological pathways and retain functional coherence. The expanded enzyme sets allow
pathway-level analyses of genome-scale metabolic models.

Together, our algorithms extend flux coupling techniques to enzymatic networks and models
with transcriptional regulation and other non-convex constraints. By expanding the efficiency
and flexibility of flux coupling, we believe this technique will find new applications in metabolic

engineering, microbial pathogenesis, and other fields that leverage network modeling.
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1 Introduction

Constraint-based modeling allows genome-scale networks to be simulated using minimal kinetic
information [1]. Using tools from mathematical programming, modelers can identify fluxes [2],
gene expression levels [3, 4], and metabolite concentrations [5, 6] that satisfy thermodynamic,
stoichiometric, and mass-balance constraints. These methods enable researchers to explore the
physiology of microbes with as little as a genome sequence [7].

Flux balance analysis (FBA) and other constraint-based modeling techniques assume a steady
state (or quasi-steady state) [8]. No metabolites accumulate or deplete during steady state. Conse-
quently, the fluxes of several reactions in the metabolic model are coupled, or perfectly multicollinear
[9]. Specifying the flux of any one reaction in a set of coupled reactions constrains the fluxes of the
other reactions in the coupled set to a scalar multiple of the specified flux. The simplest example
of a coupled set of reactions is a linear, unbranched pathway [8].

Coupled reactions are useful in at least three ways. First, in metabolic engineering, sets of
coupled reactions can be modulated together to increase flux through a pathway, as coupled
reaction sets may mimic natural regulatory patterns in microbes [10]. Second, coupled reaction
sets can be used as surrogates for metabolic pathways. Genes associated with coupled reaction
sets are enriched for genetic interactions and have correlated expression [11]. While “standard"
pathway definitions exist for metabolic reactions, these definitions are biased toward the metabolic
networks of model organisms like the bacterium E. coli, the yeast S. cerevisiae, or humans [12, 13].
Reactions in standard pathways may not function together in non-model organisms. Grouping
reactions by function (e.g, as correlated reaction sets) may avoid the biases of pathway databases.
Finally, finding coupled variables reduces the dimensionality of metabolic models. Since fully
coupled variables are multicollinear, a set of coupled variables can be replaced with a single
variable without loss of information. The reduced models may be more efficient when fitting
parameters or applying computationally expensive algorithms [14, 15].

Applications of coupled reaction sets (like the examples above) focus primarily on the enzymes
associated with the reactions, not the reactions themselves. While constraint-based algorithms
often focus on fluxes, most experimental studies examine metabolic enzymes on the gene or
protein level. Proteomics and especially transcriptomics data are easier and cheaper to acquire
on a genome-wide scale than flux profiles, and many metabolic studies involve gene- or protein-
centric views of metabolic pathways. Unfortunately, creating “coupled enzyme sets" from coupled
reaction sets is not trivial [16]. Gene products associate combinatorially to catalyze reactions.
Protein subunits can interchangeably combine to form enzyme complexes, so the relationship
between gene products and the flux through reactions involves logical “or" and “and" operations.
Enzymes can also be associated with multiple reactions across several pathways. The coupling
between enzymes is different from the coupling between reactions due to the logic and promiscuity
in the gene-protein-reaction (GPR) network. One cannot find coupled enzyme sets by collecting
all enzymes associated with each coupled reaction set.

We present three algorithmic improvements for identifying coupled reactions and enzymes.



First, we describe a mathematical transformation for constraint-based metabolic models that in-
corporates enzyme activities as continuous variables. We call this framework Flux and Activity
Linked Constraints, or FALCON. For enzyme activities to be directly coupled to reaction fluxes,
all models with reversible reactions must be described using a set of binary variables. The binary
variables destroy the convexity of the FALCON model’s solution space, making the model more
difficult to solve. Without a convex solution space, fast methods for identifying coupled reaction
sets cannot be used. Instead, we present modifications to the original method for identifying cou-
pled reactions (flux coupling finder, or FCF). By caching intermediate solutions, we should how an
improved FCF algorithm can quickly find couplings between variables in convex and non-convex
models.

Next, we compare coupled enzyme sets calculated directly from the FALCON model with sets
found indirectly by mapping enzymes to coupled reaction sets. We show that when compared
to enzymes associated with reaction sets, the FALCON-derived sets are smaller, have stronger
correlation in expression levels, and are more likely to share fitness changes when deleted. Thus,
the FALCON-derived sets behave in many ways as a single unit, consistent with our intuition
regarding correlated sets.

Finally, we apply our faster flux coupling algorithm to identify sets of reactions or enzymes
that include singly redundant pathways. By extending the definition of coupling, we can create
enzyme sets from redundant enzymes that are widely considered to be in the same pathway but
are not placed into coupled sets by previous methods. Enzymes in these expanded sets retain close
ties regarding expression changes and phenotypic importance.



2 Results and Methods

2.1 Notation

We use the term “R sets" to denote sets of fully coupled reactions as defined by Burgard and
Maranas [9]. A model’s R sets can be found using the Flux Coupling Finder (FCF) algorithm [9].
Our faster cachedFCF algorithm changes only the speed of finding R sets, not their definition. A
standard metabolic model will produce the same R sets via FCF or cachedFCF.

The standard method to find enzyme sets is to collect all enzymes associated with the reactions
in an R set using the gene/protein/reaction relationships in the model. Because these enzyme sets
are constructed using the R sets, we call the corresponding enzyme sets “E:(R) sets". Note that R
sets are disjoint, i.e. each reaction in a model appears in exactly one R set. By contrast, the E;(R)
sets are not disjoint (Figure 1B). Enzymes in a model can be associated with many reactions, and
these many-to-many relationships can associate one enzyme with multiple R sets.

Finally, we refer to sets of enzymes calculated directly from a FALCON model as “&gyicon
sets". (Since Egurcon Sets are not constructed from R sets, we do not write them as a function of R.)
Unlike E:(R) sets, the Epcon sets calculated from FALCON models are disjoint, regardless of the

complexity of the enzyme associations in the model.

2.2 Reactions and enzymes couple differently in the same model

Enzymes can be associated with multiple reactions, and vice versa. The many-to-many relationship
between enzymes and reactions can be seen in the GPRs of constraint-based models. For example,
a single enzyme in P. aeruginosa PAO1 is associated with 30 reactions (Figure 1a). By consequence,
the mapping between enzymes and coupled reaction sets is also not one-to-one. The P. aeruginosa
metabolic network contains 5 enzymes that each map to more than 10 difference sets of coupled
reactions (Figure 1b). There are multiple methods for defining enzymes sets, even for small reaction
networks. Consider the network of six reactions and seven enzymes shown in Figure 1c. Flux
coupling identifies two coupled reaction sets (Figure 1d). We can create enzyme sets by mapping
the reaction sets to their associated enzymes (Figure le). However, one enzyme appears in both
sets even though the reaction sets are disjoint (Figure 1e). One of the enzyme sets also contains two
isozymes (Figure 1e). It is unlikely that the isozymes are coupled (i.e. one has activity if and only
if the other does), especially when many isozymes are not co-expressed [17]. A better partitioning
of the enzymes appears in Figure 1f. The enzymes in each set are fully coupled. The enzyme sets
in Figure 1f are the result of applying flux coupling to a metabolic network model that includes
both reactions and enzymes as continuous variables using FALCON.

2.3 Linking enzyme activity with reaction flux

Simulations on COBRA models with enzyme associations follow a two-step procedure [16]. The

process begins with a genetic state describing the subset of genes in the model that are expressed
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Figure 1. A. Enzyme associations in the P. aeruginosa metabolic model [18] are not one-to-one between enzymes and
reactions. Counting the number of enzymes (vertical) used in the GPR of each reaction (horizontal) reveals that 38.9%
of enzymes associate with multiple reactions. B. Enzymes are not uniquely associated with coupled reaction sets.
Coupled reaction sets were identified with cachedFCF and enzymes were mapped using GPRs in the P. aeruginosa
model. Many enzymes are associated with reactions that belong to separate coupled reaction sets. C. A small reaction
network illustrates how complex enzyme associations and shared enzymes affect reaction coupling. D. If enzymes
are ignored, the network contains two sets of coupled reactions. E. Simply mapping all associated enzymes onto the
reaction sets produces two sets of enzymes. The enzyme sets are not disjoint (e5 is shared) and contain several enzymes

that should not be coupled (e1, e, e5, and eg). F. Calculating enzyme sets directly with a FALCON model identifies the

correct couplings.



for a set of model parameters (environment, mutations, etc.). In the first step, the rules for each
reaction are evaluated in the context of the genetic state. A reaction is removed from the model if its
rule is not satisfied. In the second phase, the sub-model containing all reactions with satisfied rules
is solved or optimized. Separating GPR evaluation and flux optimization into two sequential stages
prevents algorithms from fully interrogating the relationship between the enzymatic network and
the reaction network. Multiple frameworks consolidate the GPR logic and reaction stoichiometry
into a single optimization problem. One of the earliest frameworks, SR-FBA [19], treated enzymes
as binary variables and added mixed integer constraints to enforce the GPR logic. Although
SR-FBA includes both enzymes and reaction fluxes in a single optimization problem, one cannot
identify fully coupled sets of enzymes when the enzymes are represented as binary, “on/off"
variables.

To consider enzymes as continuous values in a model, multiple quasi-stoichiometric frame-
works have been developed [20, 21]. These frameworks rewrite all reactions in a model to consume
a pseudo-metabolite representing the activity of the associated enzyme (Figure 2). In the simplest
case, an irreversible reaction A — B catalyzed by enzyme e is rewritten as A + Activity(e) — B,
so every unit of flux through the reaction consumes not only a unit of the metabolite A but also
a unit of activity for the enzyme e (Figure 2A). If two or more enzymes (or enzymatic subunits)
are required to catalyze a reaction, a reaction in a FALCON model consumes activity from both
enzymes (Figure 2B). When two or more enzymes can independently catalyze a reaction, activity
from either enzyme can be consumed (Figure 2C). Separate reactions associated with the same en-
zyme all draw from the same pool of enzyme activity (Figure 2D). Sharing enzyme activity across
reactions adds additional constraints from the enzyme association network that are not enforced

when only reaction fluxes are included in a model.
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Figure 2. FALCON links enzymes with reactions by consuming a “pseudometabolite” representing enzyme activity
(A). FALCON can represent enzymatic subunits (B), isozymes (C), and enzymes that are associated with multiple
reactions(D). To avoid activity cycles, FALCON uses mixed-integer constraints to limit flux to a single direction in
reversible reactions (E). Without the integer constraints, enzyme activity for reversible reactions could exceed the net

reaction flux by an arbitrary value.



Data: Base Model
Result: MILP with Genes
initialization;
Nixns= number of reactions in COBRA model;
Coupled[Nrxns,Nrxns] = coupling matrix from FCF or cachedFCF;
Routine getGenePaths(gpr string) :
| return(list of gene combinations which fulfill the logic conditions)
Routine addGeneActivityToReaction(reaction, newmetabolites, reversible):
if lreversible then
| add two non-reversible (forward and reversible) reactions with newmetabolites to model

else
L add one reversible reaction with newmetabolites to model
| return(model)
Routine addOrLogicGeneActivityToReaction(reaction, genecombinationlist, reversible, split):
for set in genecombinationlist do
if split == TRUE then
| add two non-reversible (forward and reversible) reactions with set as new metabolites to model

else
L add one reversible reaction with set as new metabolites to model
model = addGeneActivityToReaction(reaction = reaction, newmetabolites = rxnactivity, reversible = reversible)
return(model)
for rxn in unmarked reactions do

add geneactivity metabolite to model;
| add geneactivity exchange reaction to model

genevector = matrix of FALSE values of size 1 by length(genes) reactionsvector = matrix of FALSE values of size 1 by
length(reactions)

generxnpromiscuity = list of integers indicating how many reactions each gene is associated with;

loyalgenes = genes associated with only one reaction loyalrxns = reactions only associated with loyalgenes for reaction in
loyalrxns do

genepaths = getGenePaths(gpr) if only one logic condition then
L model = addGeneActivityToReaction(reaction, newmetabolites = genes, split = FALSE) genevector[genes] =

TRUE reactionvector[reaction] = TRUE
else
genes = getAllGenes(genepaths) model = addOrLogicGeneActivityToReaction(reaction = reaction,
genecombinationlist = genepaths, reversible = TRUE, split = TRUE) genevector[genes] = TRUE
reactionvector[reaction] = TRUE

unmarkedgenes = which(genevector = TRUE) unmarkedreactions = which(reactionvector != TRUE)

for reaction in unmarkedreactions do
genepaths = getGenePaths(gpr) model = addOrLogicGeneActivityToReaction(reaction = reaction,

genecombinationlist = genepaths, reversible = FALSE, split = TRUE) reactionvector[reaction] = TRUE

MILP = convertToMILP(model) rxns = reactions which consume reactionactivity but not geneactivity for rxn in rxns do
| add constraint so that reactionactivity is only consumed or produced to avoid futile cycles

return(model)

Algorithm 1: Building a Falcon Model



Table 1. Model sizes for constraint-based reconstructions of P. aeruginosa [18], S. mutans [24], and S. cerevisiae [25] before

and after conversion to FALCON models.

Original Model FALCON Model
Model Metabolites Reactions Enzymes Constraints ~ Variables
P. aeruginosa 1,300 1,551 1,148 6,696 6,946
S. mutans 511 715 400 1,907 2,105
S. cerevisiae 2,222 3,566 926 10,802 12,146

Our FALCON method can be applied to all enzyme associations, regardless of their complexity.
The Boolean rule describing a reaction’s enzyme association can be factored into disjunctive normal
form [22]. A rule in disjunctive normal form is a series of conjunctions (variables joined by and’s)
connected by or’s into a disjunction. For enzyme associations, each conjunction describes a minimal
set of enzymes or subunits that can independently catalyze a reaction. At least one conjunction of
enzymes is necessary for a reaction to carry flux. In FALCON, complex enzyme associations are
tirst factored into disjunctive normal form. The enzyme conjunctions are subsequently linked to
reactions using a combination of the rules shown in Figure 2B and Figure 2D.

Reversible reactions must be split into two separate irreversible reactions — one carrying the
forward flux and the other carrying the reverse flux (Figure 2E). Splitting reversible reactions
ensures that enzyme activity is always consumed regardless of the flux direction. However,
splitting reactions also creates the potential for a net consumption of enzyme activity with zero net
flux through the associated reaction. If both the forward and reverse reactions carry the flux v, the
net flux through the reaction will be v — v = 0 even though the reactions consume 2v of enzyme
activity. To avoid these futile loops, we use a binary indicator variable to restrict flux through either
the forward or reverse reactions. Using binary variable to restrict fluxes is a common approach
to avoid infeasible loops in metabolic models [23]. The binary variables make FALCON models a
non-convex MILP, as opposed to other convex LP formulations used to link enzymes and reactions
[20, 21]. The added complexity of FALCON models is necessary to identify flux coupled reactions.
If the binary variables are removed, any enzyme associated with a reversible reaction can decouple
itself by forcing additional activity in the forward and reverse reactions. A complete description
of the FALCON method is available in the Algorithm 1.

2.4 Efficient flux coupling with solution caching

As shown in Figure 1, the coupling between enzymes is not the same as the coupling between
reaction fluxes. The nonlinearities in the enzyme associations must be considered when searching
for coupled enzyme sets. Since FALCON models include enzyme activities as variables in the
metabolic model, we can in principle use Flux Coupling Finder (FCF) to identify coupled enzymes.
Unfortunately, FALCON models are more difficult to solve due to their increased size and mixed-



integer constraints. FCF requires solving O(n?) optimizations to identify coupled sets in a model
with n variables [9]. Other methods exist to find coupled sets without solving optimizations [26, 9],
but these methods require the model be convex (which mixed-integer models are not). Finding
enzyme couplings with FALCON requires an efficient variant of FCF that supports non-convex
mixed-integer models.

We developed an algorithm that uses caching to reduce the number of optimizations required
by FCFE. Our method, called cachedFCF, begins with the same strategy as FCF. We fix a single
variable in the model (xixed) to @ nonzero value. We choose another variable x; and perform two
optimizations to find the maximum and minimum values for x; while holding xfeq4 constant. The
variables x; and xgixeq are fully coupled if and only if max(x;) = min(x;), i.e. if fixing Xfixeq also
fixes the value of x;. If max(x;) # min(x;), we know that x; and xixeq cannot be fully coupled. FCF
tests all pairs of variables for coupling. FCF uses shortcuts to avoid unnecessary optimizations.
Fully coupling is symmetric, so testing x; and x; avoids the need to test for full coupling between
xj and x;. Similarly, any variable placed in a coupled set can be skipped when testing subsequent
variables. Using these shortcuts, the original FCF study reduced the number of optimizations to
far below the (n% — n)/2 optimizations required for a brute-force approach on a model with n
reactions [9].

By saving solutions for every optimization, we can further improve FCF’s efficiency. After
testing if x; is coupled to xfixed, FCF moves on to the next variable in the model, x;;1. Before
testing if x;,1 is fixed, we check the solutions from maximizing and minimizing x;. If the value of
xi+1 changed in either of the previous solutions, we know that x;1 cannot be coupled to Xfixeq. If
the value of x;,1 is unchanged we still need to maximize and minimize x;,1 before declaring that
xi+1 and Xgixeq are coupled. Moving on to variable x;.,, we check if x;,, was not fixed in all the
solutions found for x; and x;,1. If so, we know x;,; is not coupled to xfieq without maximizing or
minimizing x;».

In general, any variable that takes more than one value in any solution where x4 is constant
cannot be coupled to xfieq. By saving the solutions to any optimization with constant xfyeq4, we can
identify several variables that cannot be coupled to xfixeq. Using the cached solutions avoids many
costly optimization when searching for variables coupled to xfixq4. Note that we cannot used cached
solution to infer that two variables are coupled; a non-constant variable x; cannot be coupled to a
constant Xfyed, but the converse is not true unless we have tried forcing x; to move by maximizing
and minimizing it. Most pairs of variables in a model are not coupled, so quickly identifying
uncoupled variables can still yield substantial savings. Our cachedFCF algorithm requires up to
three-fold fewer optimizations than standard FCF (Table 2). As expected, cachedFCF also reduced
the runtime required to find all fully coupled reactions (Table 2).



Data: MILP COBRA model
Result: Boolean matrix indicating coupling between variables
Nyars= number of variables in model;

Cthresh = threshold for correlation between variables;

lobal . . e s
?n‘;(‘"‘ [Nvars] = maximum observed values for each variable. Initialized to 0;

lobal . . 1
xﬁlgxa [Nyars] = minimum observed values for each variable. Initialized to 0;

X

xlocali N ] = maximum observed values when a single variable is fixed. Initialized to Infinity;

local
min
Cache[Nyars,Necache] = matrix of cached solutions. Initialized to 0;

x 2% Nyars] = minimum observed values when a single variable is fixed. Initialized to -Infinity;

Routine update(solution[Nyars]) :

fori € 1: Nyas do

global global
olob Hlobal

1. bal . . .

Xax [i] = max{xpay [i], solution[i]};
local local
min min
xlocel]i] = max{xIQS[i], solution[i]};
if Cache is full then

‘ add solution to Cache;

x [i] = min{x [i], solution[i]};

%2 [7] = min{x°%[{], solution[i]};

else
L replace oldest Cache entry with new solution;

Coupled[Nyars,Nvars] = coupling matrix. If Coupled|i,] is true, variables i and j are coupled;
isBlocked[Nyars] = vector identifying blocked variables. Initialized to false;

isCoupled[Nyars] = vector identifying variables that are not yet coupled. Initialized to false;
for i in model.variables do

reinitialize xiﬁfgl and xloc!;

if model.ub[i] # 0 then

L solution <« maximize variable i;

update(solution);

if model.lb[7] # 0 then
L solution « minimize variable i;

update(solution);
if x50 i] = xB7[i] = 0 then

‘ isBlocked[i] = true;
else
L Coupled[i,i] = true;

isCoupled[i] = false;
global .. _global .
choose € #0 € (x7, " [i], xmax []);
fix variable i at € (model.lb[i] = € and model.ub[i] = ¢€);
for j in model.variables[i + 1:end] do
if isBlocked[j] or isCoupled[] then next j;
if xlocal o xlgfnal then next j;
if correlation(Cachel:,i], Cache[:,j]) < Cthresh then next j;
solution < maximize variable j;

update(solution);
if xlocal = xiﬁfﬁl then

solution < minimize variable j;
update(solution);

if xlocal = xigicfl‘l then
Coupled[i,j] = true;
isCoupled[;] = true;

| reset model.lb[i{] and model.ub[i];

return Coupled;

Algorithm 2: Cached Flux Coupling Finder (cachedFCF).
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Table 2. Caching reduces the number of optimizations and runtime when identifying coupled reaction sets. “Brute
force" is the number of optimizations required to test all pairs without the shortcuts in FCF. “cachedFCF" uses only local
caching. “cachedFCF + correlation" uses local and global caching. Analogous results for calculating coupled enzyme

sets are presented in Table S1.
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P. aeruginosa 1,202,035 620,212 449,945 2,214 36.1 18.8 1.7
(51.6%) (37.4%) (0.18%)

S. mutans 255,255 133,328 38,426 1,145 5.7 1.6 0.5
(52.2%) (15.1%)  (0.45%)

S. cerevisiae 6,356,395 3,437,559 1,471,499 6,211 7479 2205 134

(541%)  (23.1%)  (0.1%)

We call saving all solutions for a single fixed variable (xfixeq) “local caching". After searching
for variables coupled to Xfixed, We remove the constraint holding xfyeq constant and fix the next
variable in the model. We must clear the local cache since our cached FCF methodology only holds
when all solutions contain a single fixed variable. Although we cannot directly test for coupling
using solutions from a previous local cache, there is still valuable information in these solutions.
All fully coupled variables in the model are perfectly correlated, i.e. the value of one variable is a
scalar multiple of another. If we look across a large number of solutions, any two variables whose
values are not perfectly correlated (or anticorrelated) cannot be coupled. Instead of discarding
solutions from the local cache, we move them to a global cache. Before testing any pair of variables
for coupling by optimization, we calculated the correlation coefficient between the variables using
the samples in the global cache. The pair is not coupled and the optimizations are skipped unless
the variables are significantly correlated.

Global caching and correlation testing drastically reduces the runtime of cachedFCF (Table 2).
To limit the memory requirements for the global cache, we set an upper limit on the number of
saved solutions (4,000 for our simulations). After the global cache is full, the cache is updated by
randomly replacing existing solutions with new ones. A complete description of the cachedFCF
algorithm can be found in Algorithm 2.

2.5 Enzymes in &paicon Sets are functionally coupled

We used cachedFCF to identify coupled enzyme sets in a genome-scale metabolic model of the
human pathogen Pseudomonas aeruginosa. We calculated E;:(R) sets by identifying fully coupled
reaction sets and collecting enzymes associated with the reactions in each set. We also calculated

11



Sracon sets directly by converting the P. aeruginosa model to a FALCON model and applying
cachedFCEF. The E;:(R) are larger (contain more enzymes) than the &g, con sets calculated directly
with the FALCON model (Figure 3a). By definition, enzymes belong to only one &gy con set,
whereas 38.9% (447/1149) of the enzymes in P. aeruginosa appear in more than one E;(R) set.

We tested if the enzymes in the smaller Egcon Sets show stronger functional connections.
We previously used a collection of 214 gene expression datasets for P. aeruginosa to calculate the
correlation coefficient for all pairs of metabolic genes [27]. Overall, pairs of genes assigned to
the same &g, con are more correlated than either pairs of genes selected from the entire metabolic
network or the E(R) sets (Figure 3b). Each E;(R) set in P. aeruginosa contains one or more Egaicon
set. We observed several cases where genes in the &g, con sets are strongly correlated but genes
in different Egacon Sets but the same E;:(R) set are uncorrelated or anticorrelated (Figure 3c-d).
Some, but not all, of the Econ sets are putative operons with adjacent genes on the genome.
Genes in the larger Ex:(R) sets are often not near each other on the chromosome, which could
contribute to the poor correlation between expression levels in some E;(R) sets.

Changes in gene expression or fitness assort non-randomly into enzyme sets. (We use the
term “fitness change" to describe the change in a bacterium’s fitness when the gene’s function is
interrupted.) If the &g, con sets are fully coupled, we expect the genes in an g, con set to follow an
“all-or-nothing" pattern regarding fitness or expression changes. If deleting one enzyme in a set
creates a fitness defect, deleting any enzyme in the set should create a similar defect. We tested our
“all-or-nothing" hypothesis using genome-wide expression (RNA-seq) and fitness (Tn-seq) profiles
for P. aeruginosa during antibiotic stress [28] or a transition from in vitro minimal media to an in
vivo mouse infection model [29]. We compared the fraction of Egicon sets where all enzymes had
significant expression changes or fitness changes. As a control, we randomly reassigned the fitness
and expression changes to genes in P. aeruginosa (Figure 3c-d). Consistent with our hypothesis,
the fraction of “all-or-nothing" sets was higher than expected; the fitness and expression changes
cluster in the &gy con S€LS.

2.6 Expanding Epaicon Sets to branched and redundant pathways.

Enzyme sets defined by flux coupling are used as surrogate pathways when analyzing high-
throughput data. Most pathway databases or gene ontologies define pathways based on the
metabolic network of a model organism, usually humans [12, 13]. Metabolic pathways vary
widely across organisms, limiting the interpretability of pathways defined for other organisms.
For example, the TCA cycle central is present in many organisms but absent in lactic acid bacteria.
Some of the TCA enzymes are functional in lactic acid bacteria, but these enzymes are used
as branchpoints into other pathways, not as a complete cycle [30]. Defining pathways de novo
with enzyme sets avoids biasing our view of an organism’s metabolism with another organism’s
pathways.

The enzyme sets identified by full flux coupling (and the weaker directional or partial coupling)

are often incomplete when compared with standard pathways. Consider the example pathway
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Figure 3. A. Enzyme sets computed directly from a FALCON model of P. aeruginosa are smaller than sets of enzymes
associated with coupled reaction sets. The inset highlights sets with five or more enzymes per set. B. A meta-analysis of
P. aeruginosa expression data [27] reveals strong pairwise correlations between enzymes in directly computed sets. The
pairwise correlations are weaker among enzymes associated with the same coupled reaction set. C. Data from stress
response studies in P. aeruginosa were used to test if gene expression or fitness changes clustered in enzyme sets. The
observed number of gene sets with more than 50% of the enzyme differentially expressed (Aexp sets) is higher than
a null distribution where the same number of expression changes were randomly assigned to genes. D. The number
of sets with the majority of enzymes associated with a fitness defect (Afit sets) is also higher than expected. In (C-D)
the red dashed line marks the observed value in P. aeruginosa. The grey histograms summarize 1000 randomization
experiments. E-G. Pairwise gene expression correlations in Egcr(R) sets. Each panel (E, F, or G shows genes in a single
Ercr(R) set. The colored sidebars indicate the Egarcon Sets inside the E(R) set. Genes in Eparcon Sets are correlated, but

genes in the same Ecx(R) set but different Egparcon sets are weakly or anti-correlated.
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Figure 4. Branched pathways are not captured by flux coupling analysis. A. As an example branched pathway, either
of two isozymes (PA4846 or PA(0245) can independently catalyze the formation of 3-dehydroquinate (3-DS) from 5-
dehydroshikimate (5-DQ). The redundancy in reactions 2 and 3 (B) are not coupled to either reaction 1 or reaction 4
by flux coupling analysis (C). D. If either of the branched reactions are removed, the remaining three reactions become
fully coupled. The coupled sets from each perturbation can be merged into a complete pathway by delete-and-couple
analysis. E. Expanded enzyme sets computed by delete-and-couple with a FALCON model are smaller than sets of
enzymes mapped to expanded reaction sets. The inset highlights sets with five or more enzymes per set. F. Pairs of
enzymes in the expanded enzyme sets retain pairwise correlation in P. aeruginosa, while enzymes mapped to expanded

reaction sets do not.
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in Figure 4a. In P. aeruginosa, the transformation of 5-dehydroshikimate to 3-dehydroquinate can
be independently catalyzed by either enzyme PA4846 or enzyme PA0245. Most biologists and
pathway databases consider this set of four reactions to be one pathway. However, only two of the
reactions (the reactions not catalyzed by the isozymes) are fully coupled by flux coupling analysis.
Depending on the reversibility of the reactions, all four reactions are not always directionally or
partially coupled either.

The redundancy in a four reaction, branched pathway (Figure 4b) prevents coupling of the
entire pathway. Since flux can can travel through either branch, the branched reactions will never
be coupled to the unbranched reactions. However, if one of the branched reactions is removed, the
remaining three reactions are fully coupled since flux must travel through the remaining branch.
We observed that any singly branched pathway can be forced into a subset of fully coupled
reactions by removing one of the branches. (For pathways with three or more branches, all but one
of the branches need to be removed to force coupling.) Based on this observation, we developed
a computational method called “delete-and-couple” to identify coupled sets from redundant or
branched pathways. Delete-and-couple removes one reaction from the model and identifies fully
coupled sets using cachedFCF. The process is repeated by removing every reaction individually.
The coupled sets from all the deletions are pooled and merged based on shared reactions. For the
simple branched pathway in Figure 4d, single reaction deletions create two coupled sets containing
either the left or right branch. Because both sets share the unbranched reactions, they are merged
into a single, branched pathway.

We ran our delete-and-couple algorithm on the P. aeruginosa genome-scale model. For effi-
ciency, we deleted only one reaction in each coupled reaction set since deleting any reaction in a
coupled set has the same effect on the model. Fortunately, the efficiency of the cachedFCF makes
delete-and-couple tractable, requiring 1.7 minutes to complete on a desktop computer. We found
“expanded" enzyme sets for P. aeruginosa in two ways. First, we applied delete-and-couple to the
P. aeruginosa metabolic model to identify expanded reaction sets. We collected enzymes associated
with the reactions in each set, producing E::(R") sets. (The R* notation indicates that the reaction
sets were expanded with delete-and-couple and subsequently mapped to enzymes.) We also cal-
culated expanded enzyme sets directly (&;,, o\ sets) by applying delete-and-couple to enzymes in
a FALCON model. The &;,, . sets directly calculated with the FALCON model are smaller than
the E;:(R") sets, just as the Epycon Sets are smaller than the E;(R) sets (Figure 4e). On average,
both the E.:(R*) and &} sets are larger than the E;:(R) and &paicon sets, respectively. The

FALCON

*
FALCON

*
FALCON

delete-and-couple & sets each contain one or more &g, con Sets. Visually, the expanded &

sets align with traditional views of metabolic pathways, while the &g, con Sets alone are often small
linear branches of more complex pathways (Figure 5).
The expanded &;,, . sets contain more enzymes per set, but the enzymes in each set remain

functionally linked. Looking again at pairwise correlations in P. aeruginosa gene expression, we see

*

that pairs of enzymes in the same &;,, o\

have higher gene expression correlation than randomly

selected pairs of enzymes or enzymes in E:(R") sets (Figure 4f). The enzymes added when Eg,con
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sets are expanded with delete-and-couple are often co-expressed with other enzymes in the set.
Our analysis also showed that fitness and expression changes cluster within Epycon sets.

*

racon Sets, but are the Econ sets in each & alike? Do

Multiple Epicon Sets comprise each & T ALCON

the Epacon sets with all expression changes join together, or are fitness and expression changes

sets? We can view each & set as a network of connected &y con SEtS

. . .
consolidated into & FALCON

FALCON

(Figure 6a). The Epyicon Sets are connected based on shared enzymes identified during the delete-

*

rarcon Set if the Erarcon Sets were

and-couple procedure. Two Eeaicon sets are connected inside a &
fully coupled during at least one perturbation. We tested how often delete-and-couple connected
pairs of Eeacon Sets with fitness or expression changes. Sets with expression changes (Aexp sets)
connected with other Aexp sets more often than expected by chance (Figure 6b). Sets with fitness
changes (Afit sets) connected with other Afit sets more often than expected. We also observed
frequent connections involving both a sets with fitness and expression changes (Figure 6c). Of all
the ways to connect sets with both fitness and expression changes, only the case where a set with
both expression and fitness changes connects to another set with both changes is overrepresented
(Figure 6e-g). Other cases, such as connections between a Afit set and a Aexp set (Figure 6e), occur

randomly.
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Figure 6. Expanded enzyme sets (&g, con) link enzyme sets with similar functional profiles. A. An expanded enzyme
set viewed as a network of individual enzymes sets (Egarcon). TWo Egarcon sets are connected if they are joined by shared
enzymes during a perturbation in the delete-and-couple analysis. To test if Egarcon sets join with similar Eparcon sets,
we compared the frequency of connections in P. aeruginosa (red dashed line) with a null distribution of 1000 simulations
where Aexp and Afit changes are randomly assigned to genes (grey histograms). Connections between two Aexp sets
or two Afit sets occur more frequently than expected (B, D). Connections between two sets that both have Aexp and Afit

genes are also overrepresented (G). Other connections (E, F) occur randomly.
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3 Discussion

Flux coupling is a powerful tool for analyzing genome-scale, constraint-based models. Unfortu-
nately, users of current flux coupling algorithms face three challenges: 1.) identifying coupled
reactions is computationally expensive, especially for non-convex models; 2.) complex associations
between enzymes and reactions make it difficult to translate coupled reaction sets into coupled
enzyme sets; and 3.) fully coupled sets are often too small, while partial or directionally coupled
sets can be large and diffuse [9]. Our cachedFCF, FALCON, and delete-and-couple tools overcome
these obstacles.

Like the original FCF algorithm, cachedFCF has a worst-case runtime that scales quadratically
with the number of model variables. In practice, we see a 100-1000 fold reduction in the number of
optimizations and a 10-100 fold decrease in runtime using cachedFCF. The efficiency of cachedFCF
enables new applications of flux coupling, such as our delete-and-couple method. Delete-and-
couple has cubic worst-case scaling but runs in hours for the P. aeruginosa genome-scale model.

The COBRA Toolbox [14] uses random sampling to identify flux couplings by calculating
correlation coefficients between all pairs of fluxes. Our global cache screening takes a similar
approach, although we use the lack of correlation to identify non-coupled reactions. By only
skipping pairs of reactions with clear evidence of no coupling, cachedFCF avoids missing couplings
due to incomplete or non-uniform random sampling. We believe cachedFCF balances the efficiency
of random sampling with the completeness of the original FCF algorithm. Most importantly,
cachedFCF makes no assumptions about the structure of the metabolic model. The algorithm is
compatible with any mathematical program (LPs, MILPs, MIQCPs, etc.), allowing researchers to
add regulatory constraints or true enzyme associations with FALCON.

FALCON is not the first framework to incorporate enzyme activities as continuous variables
in constraint-based models [20, 21]. It is the first approach that fully couples activity to the
corresponding reaction fluxes. FALCON models require binary variables to prevent cycles of
activity in reversible reactions. FALCON models are non-convex because of the binary variables.
Activity cycles are not a problem for many FBA-type analyses where surplus enzyme activity
would be suboptimal. For algorithms like FCF, activity cycles can break the correlation between
coupled reactions by allowing physiologically meaningless activity distributions. While FALCON
models are more computationally demanding than models using other frameworks, they allow
analyses like flux coupling to be applied directly to enzymes.

Using FALCON models, many constraint-based modeling algorithms that operate on reactions
can be applied to enzymes. Combining FALCON with common methods like flux variability anal-
ysis [31], MOMA [32], and random sampling [33] could offer new insights on how the enzymatic
network coordinates the metabolic network. Gene or protein expression profiles are far cheaper
and more comprehensive than flux profiles, so moving to an enzyme-centric view of metabolism

would accelerate data-driven approaches to constraint-based modeling.
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