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Abstract

The frame-synchronized framework has dominated many speech processing systems, such as

ASR and AED targeting human speech activities. These systems have little consideration

for the science behind speech and treat the task as a simple statistical classification. The

framework also assumes each feature vector to be equally important to the task. However,

through some preliminary experiments, this study has found evidence that some concepts

defined in speech perception theories such as auditory roughness and acoustic landmarks can

act as heuristics to these systems and benefit them in multiple ways. Findings of acoustic

landmarks hint that the idea of treating each frame equally might not be optimal. In

some cases, landmark information can improve system accuracy through highlighting the

more significant frames, or improve the acoustic model accuracy by training through MTL.

Further investigation into the topic found experimental evidence suggesting that acoustic

landmark information can also benefit end-to-end acoustic models trained through CTC

loss. With the help of acoustic landmarks, CTC models can converge with less training data

and achieve lower error rate. For the first time, positive results were collected on a mid-

size ASR corpus (WSJ) for acoustic landmarks. The results indicate that audio perception

information can benefit a broad range of audio processing systems.
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Chapter 1

Introduction

Speech processing systems have come a long way from machines with tight limitations on

vocabulary size, recording channel and noise level to the robust, portable and accurate

systems they are today. Recent studies on neural networks have resulted in significant

performance gains for modern ASR systems [1, 2] and speech-related AED systems [3].

Under clean recording conditions, the accuracies of some of these systems are approaching

human level.

In some scenarios, some speech processing tasks have been considered to be solved prob-

lems or engineering questions. However, in most cases, the current state-of-the-art perfor-

mance is still far from ideal. Take ASR for example: the systems [1, 2] that demonstrate

close to human performance accuracy need to operate in very restricted conditions. When-

ever there is noise, room reverberation or other channel effect present, machine performance

drops dramatically below what can be achieved by a human. What is more, there is the

case of multiple speakers. The classic cocktail party problem [4] is still a very difficult re-

search question today. Yet, despite many efforts, the machine performance in this scenario

is still not remotely close to human performance. There still seems to be audio perception

ability common to humans that machines cannot not master. It is fair to claim that speech-

processing researchers still face many meaningful challenges today. Active research findings

appear rapidly and people benefit from their contributions.

Since the tri-phone acoustic model was introduced [5], a considerable amount of time

ago, the GMM-HMM framework has dominated the ASR area. GMM was also applied

to many other speech processing systems, such as AED targeting human vocal events [6].
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Many of these systems have one key characteristic in common: they embrace a frame-

synchronized methodology. Under this methodology, speech features have been extracted at

a fixed rate and all extracted feature vectors will be scored against the pre-trained acoustic

model. For a subset of these systems that come with a temporal model, usually in the form

of a HMM, more informative feature vector frames might contribute to the decoding process

more significantly. However, these systems always assume each feature vector to be equally

important. This assumption is common for statistic model handling sequential input, where

no heuristics on the input is available. In recent years, abundant training data and more

powerful computing platforms contributed to the rise of deep neural network models [7].

The GMM acoustic model has been replaced by DNN and even recurrent models such as

LSTM.

This work intends to find out if there exists useful information defined in speech per-

ception theories that can augment audio processing systems. The audio processing systems

under investigation are ASR and AED targeting speech event such as screaming and affective

speech. Needless to say, both applications have significant impact on people’s daily lives.

Improving their performance will benefit the human society undoubtedly. The audio per-

ception theories mentioned above are theories defined in audio perception and articulation

science. These studies include articulatory phonetics, the study of how the speech sound is

produced through the interaction of different physiological structure, illustrated in Fig 1.1.

They also include acoustic perception, which is how different characteristics in sound affect

the way we perceive them. We will cover more details on the theory in the background

section in each respective chapter.

The natural followup question that calls for an answer is why audio perception infor-

mation is chosen over other measures. Further, why do audio processing systems bother

with extra information in addition to classic MFCC or Fbank features? The second problem

can be easily answered. Take ASR for example, where speaker identity, gender and a lot of

0https://en.wikipedia.org/wiki/File:Illu01_head_neck.jpg
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Figure 1.1: Human vocal tract.

other speech attributes contributed heavily to improving ASR accuracy. Without the help

of different kinds of speaker adaptation (FMLLR [8] and I-Vector [9]), ASR systems cannot

reach the accuracy level they have achieved today. The answer to the first question will be

more complex and depend on the actual perception information under discussion. The main

purpose of this study will be to provide theory and experimental support to their inclusion in

audio processing. However, in general, audio perception and articulation theories approach

the audio process from different angles. Many of the measures and cues introduced in these

theories are salient to human perception. Consider the classic MFCC and Fbank features,

for example; they are also based on human perception, and there is a good chance that this

audio perception information contributes positively.

Since many cues and measurements defined in audio perception have outstanding instan-

taneous signature on the power spectrum, it is more intuitive to assume this information

benefits frame synchronized audio processing systems over end-to-end systems. End-to-end
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systems are usually trained on more abstract label and loss criteria. As a result, the con-

nection between output labels and audio characteristics is less direct. As we will see in the

background parts of Chapters 3 and 4, many previous works attempt to augment audio pro-

cessing, specifically speech processing systems, with speech perception information. These

works, without exception, focus on frame-synchronized systems.

While frame-synchronized statistical models still play a key role and are dominant in

speech processing systems, systems that do not fall in the same framework are also gaining

attention. This is because frame-synchronized systems, compared to end-to-end systems,

have shortcomings. First of all, these systems tend to be more complex in terms of the kind

of computations conducted. Since audio processing systems, especially speech processing

systems, tend to have fairly high frame rate, a single frame usually is too short to last a

full acoustic unit or event. As a result these systems tend require a temporal model in

parallel to an acoustic model. The type of computations used to infer the acoustic models

and temporal model tend to be dramatically different. Secondly, training an acoustic model

for these systems requires state alignment information. This alignment information usually

comes from inferring another acoustic model. As a result, training an accurate acoustic

model usually requires a number of iterations. In addition, since the frame rate of frame-

synchronized systems tends to be high, the acoustic units used by these systems tend to be

much more fine-grained than the audio units that are familiar to human understanding. Take

speech for example: these systems usually operate on tri-phone states, instead of grapheme

or phoneme. Compared to 24 letters or around 40 to 60 phones in English, a LVCSR system

in the same language tends to have a couple thousand tri-phone states. This introduces a

significant size burden on the temporal model, making it hard to efficiently store and slow

to infer.

To address these issues, audio processing systems based on an end-to-end framework

were introduced. Among these end-to-end systems, there are systems based on connection-

ist temporal classification (CTC) models [10] and systems based on attention models [11].
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Although there is still no clear indication that these end-to-end systems are fully replacing

classic frame-synchronized systems yet, these systems [12, 13, 14] are already gaining more

and more attention. However, for these models, very little abstract audio information can

be extracted directly, and so trying to extend the use of audio perception information to

these systems can be very difficult. Frankly, no previous work has successfully demonstrated

a successful example.

Figure 1.2: Unidirectional context-dependent CTC output.

Take the CTC models for ASR for example. Figure 1.2 from [10] illustrates a classic

output of a CTC model. CTC defines loss based on mismatch in the output and target

phone sequence as opposed to hard frame-by-frame difference between frame-wise output

and label. Therefore, the training procedure does not penalize phone labels generated outside

of the phone duration, as far as it is part of a correct sequence. This results in output similar

to that presented in Fig 1.2. As we can see, prediction of many phones, ‘m’ for example,

appeared long after the pronunciation of ‘m’ ended.

Heuristics are deemed beneficial to speech processing systems if applying them to the sys-

tem results in either improvement in the recognition or detection accuracy or a reduction in

the computational complexity while maintaining similar accuracy. Due to the rapid increase

in computational capability, especially as cloud computing becomes more and more practical

and reliable, many new models have traded heavier computational load for higher accuracy;

however, porting mobile platforms and the framework of IoT still pose a serious restriction
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on computational load. Therefore, if for the same or similar accuracy, computational load

can be reduced, speech applications still benefit.

Partnering with collaborators, we have examined multiple speech perception concepts and

found two of them promising. Chapter 2 presents experimental findings supporting auditory

roughness [15, 16, 17] as a pre-filtering feature for screaming and affective speech AED. We

found that with computational complexity comparable to that of STE, auditory roughness

outperforms STE, or other features with similar complexity, when used to detect screaming

or affective speech. Chapter 3 presents preliminary results on augmenting the ASR acoustic

model scoring process with acoustic landmark [18, 19] information. Experimental results

tend to confirm that over-weighting feature frames containing acoustic landmarks reduces

ASR PER. In addition, dropping frames not containing acoustic landmarks can dramatically

reduce acoustic model scoring computational load at the expense of relatively small accuracy

loss. In Chapter 4, acoustic landmark information is used to improve ASR DNN acoustic

model through MTL [20, 21, 22]. Experimental results were encouraging on an English

corpus. In addition, landmark detector trained in English was also able to reduce WER

on corpus in a different language. The strongest contribution of this work is explained in

Chapter 5, where acoustic landmark information is employed for the first time in an end-

to-end system and experimental results show that this information can improve CTC AM

accuracy and improve model convergence ability. To the best of our knowledge, this is the

first work to apply acoustic landmarks to an end-to-end ASR system; it is also the first work

to conduct experiments with acoustic landmarks on mid-size ASR corpus.

To allow for a compact illustration of each study, each chapter contains background,

methodology, experimental results and recapitulation section specific to the study. Unlike

the work on auditory roughness, where the study can be concluded, the study of applying

acoustic landmarks to ASR is still open. We conclude the thesis and talk about potential

future directions to advance the study in Chapter 6.
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Chapter 2

Using Auditory Roughness as
Pre-filtering Feature for Human
Screaming and Affective Speech AED
Internet of Things (IoT) has provided a new approach to many applications. When power-

ful and reliable computational capability meets distributed wireless sensor networks, many

tasks that used to suffer from cost, practicality and low-accuracy benefit [23]. Audio event

detection (AED) based security or surveillance systems are one of these applications.

Figure 2.1: Distributing AED across the network.

AED for security purposes has been an interesting topic to both the research commu-

nity [24, 6, 25, 26] and to commercial entities [27, 28]. Security events such as gunshots

and explosions are relatively easy to detect, and commercial products based on AED have

already been deployed in many US cities [27, 28]. Security related human speech events,

such as screaming, shouting, and other manifestations of fear and anger have proven to

be more difficult to detect accurately; many works train dedicated models to detect these

speech events [6, 25]. State-of-the-art methods include deep neural networks (DNN) and

hidden markov models (HMM) [29] and long short-term memory recurrent neural networks

(LSTM RNN) [30]. The computational complexity of these methods is high. The IoT ap-
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proach, presented in Fig 2.1, does offer AED access to powerful computation capability.

However, having enough power dedicated to each and every sensor all the time is inefficient

and impractical for large sensor networks. AED systems targeting human speech therefore

use pre-filtering mechanisms: algorithms with low computational complexity that can de-

tect events of interest with a low missed detection rate, and with a false alarm rate that

may be relatively high, but that is low enough to limit the computation expended by the

second-pass classifier [24, 25, 31]. Pre-filtering can reduce communication and computation

costs by discarding audios when an event is likely absent.

Previously published pre-filtering algorithms fail to meet the three simultaneous require-

ments of high recall, acceptable precision, and extremely low complexity. The problem

usually is the intrinsic limitation of the features used for pre-filtering. Some of these

works [24, 31] rely on windowed short-term energy (STE). STE, although light in com-

putation, as we will show later, fails to differentiate affective speech and neutral speech

effectively. Other work [25] uses spectral features, which are much complex, on the order of

over 10×, to extract than STE [32].

This chapter considers the potential of a classical acoustic feature called the auditory

roughness [15, 16, 17], as a pre-filter feature. Auditory roughness is a classic measure of

“harsh and unpleasant” sound with a long history. Although it used to be an acoustic

concept, recent biological studies have found evidence that fear is triggered in the mind by

perceiving human screaming [17]. First, the standard auditory roughness feature is used to

detect anger and fear in the Mandarin Affective Speech corpus [33], and screaming in the

Youtube AudioSet [34], with recall and precision better than STE. Second, since the standard

roughness computation has complexity similar to that of spectral features, an approximate

roughness measure is proposed, with computational complexity similar to STE and at least

10× lighter than MFCC. The approximated auditory roughness feature is demonstrated to

have recall and precision better than other pre-filtering features with similar computational

complexity, including STE.
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We will briefly introduce the concept of distributed AED and auditory roughness in

Sec 2.1. We will explain how and why we approximate roughness in Sec 2.2. Experiment

setup and results are then presented in Sec 2.3. We conclude and discuss the work at the

end.

2.1 Background

2.1.1 Distributed AED

A distributed surveillance system designed under the framework of [23] would look like

Fig 2.1. A large number of sensing nodes with wireless capability are deployed. Different

kinds of sensors are grouped into each node and correlated by a hub controller. The controller

must run non-stop to serve the sensors conducting minimum surveillance; it must also power-

on and control more powerful sensors when needed. If pre-filter operations find signs of an

event happening, features collected by the sensors will be uploaded to the cloud for further

analysis.

In an AED scenario, if pre-filtering features do not exceed normal level, the audio is only

buffered for a couple of seconds. Hubs will inform the cloud that everything is fine. If the

pre-filtering feature exceeds a preset threshold, a request is initialized: the buffered audio

is packed and uploaded for further analysis. Depending on the connection, further audio

is either packed into chunks and uploaded, or streamed to the cloud as the event unfolds.

On the cloud side, more powerful servers can be accessed on demand. If a request comes

in, the servers will run much more sophisticated algorithms such as DNN+HMM or LSTM

to conduct more complicated analysis. To build and run a system with a large number

of sensors, both the sensors and the controllers must be cheap and low-power. Hardware

targeting sensor hubs have limited resources, e.g., they typically have no dedicated multiplier.
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2.1.2 Auditory Roughness

The term “auditory roughness” originated as a musical expression in the 19th century [15].

The term is now defined to be a psychophysical dimension, describing the human percep-

tion of harsh, raspy hoarse sounds [16]. The musical and perceptual concept was formal-

ized as a sound quality measurement, with several standard definitions and published al-

gorithms. 1 Recent studies have identified apparent neurobiological correlates of perceived

auditory roughness [35].

Amplitude modulation frequency is one of the most important physical acoustic correlates

of auditory roughness [36, 17]. In music and other non-vocal sounds, a modulation frequency

of 30Hz or below is usually perceived as beats [36]. When modulation frequency exceeds

30Hz, it is considered rapid and the sensation of roughness appears. Though speech is

complex, the same modulation frequency thresholds seem to apply: neutral speech has most

of its modulation spectral energy at 1–10Hz [37], and modulation frequencies above 30Hz will

trigger the brain’s fear center [35]. The sense of roughness peaks at modulation frequencies

of 70Hz [17] or 75Hz [36], but persists in response to modulations of up to 150Hz [36] or

300Hz [17].

Further studies [36] claim carrier frequency and the strength of amplitude modulation

also affect the level of roughness. Some auditory roughness calculators [38, 36] consider each

spectral peak as a carrier frequency, compute the modulation frequency and modulation

strength of each carrier, and add the roughness effects from each carrier frequency together.

Other algorithms compute auditory roughness by analyzing the distribution of energy within

pre-determined frequency bands, e.g., in 24 bands uniformly distributed on a Bark scale [39,

17]. 1

1http://www.ni.com/product-documentation/8169/en/#toc4
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2.2 Method

2.2.1 Building the Front-end of a Distributed AED on FPGA

Overall IoT System Design

A block diagram of our design is found in Fig 2.2. For the purposes of the DAC-IoT compe-

tition, we have designed and manufactured a new PCB board, which consists of four micro-

phones, associated amplifiers, and I2S analog to digital converters. This board interfaces to

the Lattice XO3 Starter Kit through a pin-header. The XO3 FPGA receives the digitalized

audio, normalizes the amplitude, and extracts 4 DSP features. These features consist of:

short-term energy (STE), subtracting windowed median (SWM), zero-crossing rate (ZCR),

and auditory roughness (AR). The FPGA buffers a window of 64 samples and computes

the features across the window. The features are then fed into a small classifier module

on the FPGA, which detects and classifies the event type, while rejecting non-suspicious

events. Suspicious audio events are combined with sound localization data, which provides

an event direction using the microphone array. An encrypted packet with the classification

and beamforming is transmitted wirelessly to a centralized hub using the FPGA’s UART

port. One centralized hub may control multiple FPGA IoT edge devices. If live video is

desired, the centralized hub can control a camera and stream video of the event to a human

operator after suspicious sound is detected. The human operator would make the eventual

decision to activate an alarm or to notify authorities; such a human-in-the-loop strategy can

significantly reduce false positives. Since our device can localize the sound, it can also guide

the camera to mechanically turn to the direction of the suspicious sound, zoom in, and trace

the event in real time. Our IoT device can also be used for other purposes. For example, the

centralized hub would activate the recording from the camera only when a suspicious sound

is detected, thus both saving power and avoiding privacy concerns. Nonetheless, given the

limited time and the focus of the FPGA-based IoT design, the camera part is beyond the
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scope of the scope of this discussion.

Figure 2.2: The AED system.

Our demonstration focuses on the suspicious sound recognition and localization. The

novelty of our design includes: 1) There is no existing IoT device that detects screaming

for security surveillance purposes using FPGAs. 2) We study various types of light-weight

classifiers, including decision tree, neural network, and LSTM (long-short term memory),

and carry out a thorough design space exploration. The final design is optimized for the

best resource-accuracy trade-off. 3) The four features developed (STE, SWM, ZCR, and AR)

can be used as IPs and be selected with different combinations targeting different accuracy

levels for different FPGAs. 4) Our way of implementing beamforming is unique and novel,

which can deliver high accuracy with very limited resource.

Signal Processing on the FPGA

A significant challenge in our design is the use of the Lattice Mach XO3 FPGA as a sensor

hub and DSP. While the XO3s flexible PLLs and high performance I/O make interfacing

with the audio converters straightforward and the small FPGA is most ideal for low power
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and low cost IoT designs, the low number of 4-LUTs (6900 in our provided board) combined

with the lack of hardware DSP blocks do make the signal processing a great challenge. To

explore the design space and determine the best way to efficiently use the limited FPGA

resource to fulfill our ambitious goal, we implement four DSP features which require relatively

low DSP complexity. The first feature is ZCR, which counts the number of sign changes

of the audio signal within a fixed number of samples and therefore is strongly correlated

to the fundamental frequency of the signal. The next feature is STE, which is the sum of

signal power in each sample within a fixed number of samples. STE is very effective at

loudness detection and is widely considered as one of the best computational-light feature

for gunshot or screaming detection. However, we have found that by itself, STEs ability

to discriminate between screaming and loud speech is weak, as loud speech and speaking

near the recording device usually registers high STE independent of the speaker emotional

status. Therefore, STE must be used in conjunction with other features. The next feature is

SWM, which computes the median for a sliding window around each sample and subtracts

the sample with the windowed median. Since computing median involves sorting and can be

computationally expensive, we approximated the feature with windowed mean and obtained

similar results. Compared to all other features SWM is extracted at a sample rate, rather

than the classifier rate of about 125 Hz. Therefore, we take the maximum within a fixed

amount of samples to obtain the SWM at the classifier rate. Finally, the feature AR is used

to be a psychophysical dimension, describing the human perception of harsh, raspy hoarse

sounds and can be considered an industry standard for unpleasant sound level measurement.

The standard procedure of calculating AR involves calculating the amplitude modulation

rate, frequency and magnitude modulation between mono-frequencies within the audio. We

approximated the calculation by looking at the signal amplitude around the key frequency

(75Hz) of the audio amplitude. To effectively obtain the approximation, we use a short

infinite impulse filter (IIR) to high-pass filter the modulated audio amplitude. Finally, we

explored different combinations of these features targeting the best result for our IoT design
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given the very tight resource limit on the FPGA.

2.2.2 Acting as a Pre-filtering Front-end

The motivation behind building such hardware was to demonstrate the practicality of the

pre-filtering ideal. It has been proven that the proposed approximated is small enough and

can be deployed on the FPGA mentioned above. However, we have to reduce the filter

weights to 8-bit fixed point to accommodate for the resource limitation. The front-end

board was given the ability to stream out pre-filter classification result and audio through a

wireless communication link as shown in Fig 2.3 and Fig 2.4. The link is built based on a

Zigbee module. To the machine on the receiving side, the pre-filtering results arrives from

the serial port.

Figure 2.3: Transmitter for the AED front-end.

When building the demonstration, we also created a GUI to run a computer representing

the centralized server. The GUI, as shown in Fig 2.5, is written based on Matlab and displays

the pre-filtering alarms and the detected direction of the event.

A screen shot taken during actually running the device can be found in Fig 2.6. In the
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Figure 2.4: Receiver for the AED front-end.

Figure 2.5: GUI for the AED on the host machine.
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case shown in this figure, some screaming pre-filtering alarm was triggered on the left side

of the front-end board.

Figure 2.6: GUI demonstrating the AED results.

Challenges, Optimizations, and Limitations

As stated previously, a major challenge was the implementation of real-time DSP as well

as NN (neural network) based classification on a small FPGA without DSP blocks. We

overcame this by careful selection of the audio features (none of our features required the

use of a Fourier transform), as well as careful optimization of the Verilog RTL to timeshare

expensive modules. For example, in the AR module, a single MAC module was shared in

the implementation of the IIR filter. Wireless transmission was done using a UART module,

to avoid the complexities of implementing a TCP stack on the FPGA. Our final resource

usage is shown in Tab 2.1.

Due to some limitations of the FPGA, we were not able to simultaneously implement all

the modules we designed on the Mach XO3-6900. For example, we found that implementing

the ANN resulted in too much FPGA routing congestion unless the localization buffer size
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Table 2.1: Resource utilization.

Number of Slices Number of Block RAMs Number of PLLs
2298 out of 3432 (67%) 7 out of 26 (27%) 2 out of 2 (100%)

was decreased, which would cause the localization accuracy to suffer. Use of a larger XO3-

9400 would allow us to implement the entirety of the design simultaneously, improving

classification and localization accuracy. With XO3-6900, our current implementation used

the decision tree as the classifier. However, we believe our device demonstrates a useful

application for the Lattice Mach XO3 in IoT applications.

2.2.3 Approximating Auditory Roughness

In our attempt to detect human screaming, fear, and anger, auditory roughness seems to be

a good candidate feature. However, both of the standard methods used to compute auditory

roughness are far too complicated for pre-filtering. We therefore propose a computationally

much simpler approach to approximate roughness. Psycho-acoustic studies [35] agree that

rapid and strong amplitude modulation, at around 30-150Hz, is the most important physical

correlate of perceived roughness. Existing algorithms are computationally expensive because

they assume that the speech signal contains many different carrier frequencies, and perform

coherent demodulation and/or analysis of each. In this section, we assume that there is only

one instantaneous carrier frequency, whose modulation spectrum can be derived using fast

non-coherent demodulation.

Non-coherent demodulation begins with envelope detection, |x[n]|, where x[n] is the audio

signal, and || denotes absolute value. A standard envelope detector extracts the envelope

as a signal in its own right, by immediately lowpass filtering |x[n]|. The goal of auditory

roughness detection is not, however, to perform an exhaustive analysis of the spectrum of

|x[n]|; rather, we simply want to identify components of that spectrum in the neighborhood
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of 75Hz. To do so, we modulate several different frequency components down to baseband:

ek[n] = |x[n]| sin (Ωkn) (2.1)

where ΩK are a set of K different modulation frequencies in the neighborhood around 75Hz.

Instantaneous roughness, y[n], is then defined to be the weighted sum of demodulated en-

velopes:

y[n] =

K/2∑
k=1

wk|x[n]| (sin [Ωkn] + sin [ΩK+1−kn]) (2.2)

In Eq 2.2, Ωk are frequencies near 75 ∗ 2π/Fs, chosen symmetrically so that ΩK+1−k =

300π/Fs− Ωk and with symmetric combination weights wK+1−k = wk. To smooth out the

signal, y[n] is lowpass filtered to create the smoothed roughness signal z[n]:

z[n] =
255∑
m=0

b[m]y[n−m] (2.3)

where b[m] are the coefficients of a 256-tap FIR filter with a cutoff of 62.5Hz, and Fs is the

sampling frequency. The smoothed roughness signal z[n] is then downsampled by a factor of

128, to a sampling frequency of 62.5Hz. In order to match the output range of the original

algorithms, its absolute value is computed as the approximated auditory roughness A[n]:

A[n] = |z[n]| (2.4)

In our approximation, Eq 2.4 requires either one or no additions, and no multiplications.

The FIR filter in Eq 2.3 requires 256 real MAC. The weighted summation in Eq 2.2 requires

K/2 = 2 real MAC per sample for K = 4, which returns very similar results compared

to larger K value. Since all factors in Eq 2.2 operate on the |x[n]|, we could pre-compute

the result and store
∑K/2

k=1 wk (sin [Ωkn] + sin [ΩK+1−kn]) in our look-up-table, reducing the

complexity of this operation down to 1MAC/sample. When we implement Eq 2.3 using a
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multi-phase filter, the downsampling operations allow us to carry out both Eq 2.2 and 2.3

once every 128 samples, thus requiring only 256 ∗ (1 + 1)/128 ≈ 4MAC/sample. If the

hardware specification allows, we can duplicate the filter coefficients for all possible multiplets

in Eq 2.2; this brings the complexity down to 2MAC/sample, but at the cost of more memory.

In practice, since our measure is not at all sensitive to phase, we can reduce memory usage

at the cost of phase discontinuity. The Goertzel algorithm [40] is a promising alternative

for extracting the power around the frequency of interest. The Goertzel algorithm requires

N real MAC and 1 CMAC to extract the power of a single discrete frequency, where N

is the DCT window size. When we are only interested in 1 frequency component, the

Goertzel algorithm has an advantage. But this advantage vanishes when the components

of interest exceed 2. The final computation has a complexity level similar to STE, which

requires 1 MAC per sample. In comparison, mel-frequency cepstral coefficients (MFCCs)

require the computation of a full FFT once per frame; a 256-sample FFT computed once

per 128 samples requires 256 log2(256)/128 = 16 complex multiply-accumulate (CMAC)

operations per sample, not including the filterbank accumulation, DCT, delta and second

delta extractions. If we consider the remaining operation, the total complexity will not

be less than 20 CMAC; the proposed approximated roughness calculation is at least 10×

less complex than MFCC, and is therefore well-suited to a sensor hub with no dedicated

multiplier and with dozens of sensors to monitor.

2.3 Results

2.3.1 Performance of the AED

As introduced before, we implemented several promising classifiers. The first classifier is

a decision tree, which evaluates the DSP features against a set of thresholds determined

at training time. We also implemented and tested an artificial neural network (ANN). The

ANN consists of 3 fully connected layers of 16 neurons, 4 neurons and 1 neuron, respectively.
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To fit it into the FPGA, we implemented the ANN around a single fixed-point multiplier unit

of 16-bit, using a state machine to time-share the multiplier unit. An accuracy comparison

between the ANN and decision tree is shown in Fig 2.7, which plots the true positive (TP)

rate as a function of the false positive (FP) rate. Note this experiment used sound samples

with noisy background. When background noise level is low, the FP rate can be considerably

lower. We also implemented a LSTM classifier, which demonstrated 2% better accuracy

over ANN. However, it used a large amount of resource so we cannot use it for the current

FPGA. For the sound localization module, the FPGA constantly keeps a circular buffer

of stereo audio samples. When a suspicious event is determined to have happened, the

localization module computes the minimum delayed difference between the left and the

right channels, yielding the number of samples by which the left channel is delayed from the

right, which may be positive or negative. This is different from the usual cross-correlation

method, which requires the use of a fast multiply-accumulate (MAC) module leading to a

high resource usage. Our design is much leaner but yields similar results. After a positive

event is detected, the FPGA uses the XBee X2 wireless module to transmit the direction

and localization data to a host computer.

2.3.2 Mandarin Affective Speech

The Mandarin Affective Speech corpus [33] includes short phrases and sentences recorded

from 68 speakers under different emotional states. Three of these emotions are neutral, anger

and panic. One phrase is repeated by the same person under all emotion states. All audio

files are normalized to have the same maximum amplitude.

In our experimental setup, we extracted a collection of features from every phrase under

all emotional states. Features from every phrase pronounced under anger and panic were

compared to the same phrase spoken neutrally. The five features include auditory roughness,

which we extracted using open access Matlab toolbox MIRtoolbox [38], approximated rough-

ness, STE, and the signal remainder after subtraction of its windowed media (SWM, [41]).
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Figure 2.7: Classifier accuracy comparison for the AED.

Zero crossing rate (ZCR) was also included as it is a common feature for speech detection [42]

and used in many previous papers to detect screaming and/or emotional speech [24, 6, 25, 26].

Figure 2.8 presents an example of the features for a short phrase spoken by the same person

under three different emotional status. As we can see from Fig 2.8, STE and SWM fail to

effectively separate affective speech, especially angry speech, from neutral. STE is closely

related to the loudness of the original audio, and as a result, natural speech recorded at

close distance will have high STE as well. SWM worked mainly through detecting impulse

in the audio waveform; however, affective speech shows limited difference in this measure.

On the other hand, the auditory roughness value of angry speech is much larger than that

of neutral speech. The maximum value of the angry speech is many times higher than the

neutral speech. One can observe the shape of the auditory roughness is different from any

other measure: it does not resemble the envelope of the audio input. Our approximated

roughness cannot reach the same level of separation as the original auditory roughness, yet

21



it still records observably higher peaks for angry and frightened speech. One could also

observe, throughout the audio, auditory roughness and our approximated roughness do not

maintain a high value, but rather peak out in the middle.

We ran through all short phrases in the corpus. Figure 2.9 presents overall statistics and

confirms our finding above. The left-most boxplot, for example, represents the ratio between

2 maximum values, one of which is for the feature extracted from an angry speech, the other

being features extracted from the same speech under neutral state.

The 5 letters in Fig 2.9 represent auditory roughness (R), approximated auditory rough-

ness (A), STE (E), SWM (M) and ZCR (Z). In all cases, a significant difference [43], with

confidence level 0.005, can be found between the max value of roughness in any given audio

file (both Auditory Roughness and our approximated roughness) in angry versus neutral

speech. However, we can see roughness is less effective in separating panic and neutral

speech. Also the average value of roughness, in any given waveform file, is less effective in

separating affective versus neutral speech.

2.3.3 Youtube AudioSet

To test our approximated roughness in a more realistic setup, we built a simple test on the

Google AudioSet [34] for screaming. This dataset contains video recordings of screaming and

shouting, many happening in real life and recorded through smart phones. The events are

typically shorter than scream events in movies and other sources, but the recording quality

varies from video to video. Annotation is at a relatively coarse temporal granularity: a win-

dow of 10s is marked in every video, which either contains some short affective speech events,

separated by pauses, or contains non-stop screaming extending outside the 10s window. We

found this difficult to use as the event boundaries are not comprehensive, and markings for

non-screaming regions are not presented. We took some time to conduct more fine-grained

annotation on the balanced training subset and extended the duration of the feature window

from 10s to 30s to include non-screaming regions. A couple of the files were dropped as they
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Figure 2.8: Feature measures for the same short phrase by the same person under different
emotional states.
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Figure 2.9: Ratio between maximum (left 2) mean (right 2) values of angry to neutral (1,
3) and panic to neutral speech.
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clearly contain no human vocalizations. We annotated 55 files with a total of 0.5h duration.

Since our features are extracted at relatively high rate, this transfers to 112k sample. About

33% of the 0.5h audio is screaming or affective speech; this is a larger dataset than any

other open-access corpus of human scream audio we found. These annotations are available

online, 2 and will be released with a creative commons CC-BY license.

We designed a simple experiment to mimic the pre-filter operation explained in Sec 2.1.

We marked out screaming as audio events of interests and labeled the begin and end of each

event. For each event in the video, if the feature value exceeds a pre-selected threshold, we

considered the event detected; during the time between events, feature values exceeding the

threshold are considered false alarms. Any event longer than 2s is separated into multiple

events. The ROC curves comparing different features are presented in Fig 2.10. We sweep

through different threshold value to obtain this ROC curve. It is worth mentioning, in

most videos, human vocal do not span the full duration, yet we did not run speech activity

detection on top of the algorithm. Doing so would add more computation and therefore

undermine the purpose of pre-filtering. As we can see in Tab 2.2, this made the detection

task difficult even for relatively complex feature and classifiers.

We can see from Fig 2.10 that, mostly, our approximated roughness returns better value

than all other features. To our surprise, our approximated roughness actually outperforms

the original auditory roughness; the original auditory roughness measure has the advantage

only in limited cases. We suspect this is because the majority of the events in our collection

are screaming and shouting, making them more fitted to the category described in [35],

and less similar to affective speech. The equal error rate for our approximated roughness is

around 30%.

2https://github.com/dihe2/Audioset-Balanced-Training-Annotation
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2.3.4 Beyond Pre-filtering

We ran more experiments, in the interest of answering the following two more questions.

First, how hard is our AudioSet corpus? The dataset was released very recently, and not

much work has been published using it. Second, how well will our low complexity feature

work in a classifier, say linear SVM; and how will it compare to high complexity features

like MFCC? We stacked 5 frames, each containing approximated roughness, STE and ZCR

and used a linear SVM to conduct a detection task. Our low complexity three-dimensional

feature vector is compared to a standard MFCC vector extracted at 50ms per frame. As we

can see in Tab 2.2, MFCC returns reasonable results compared to previous work, though

with accuracy below that of most previous affective speech studies, suggesting that this

corpus is difficult to classify. A feature vector with only STE and ZCR achieves an F1 score

about 10% worse than that of MFCC; the same feature vector with approximated auditory

roughness included is only 8% worse than MFCC. The MFCC are extracted using the open

source toolbox RASTA for Matlab [37] and the SVM is trained using SVMLight [44]. More

could be compared between MFCC and our low-complexity features. But as the goal of this

work is to study the potential of our approximated roughness, more detailed experiment on

a complex classifier is beyond this work.

Table 2.2: Linear SVM on AudioSet.

stack5(wo Rough) stack5(w Rough) MFCC
Prec 65.12% 67.25% 72.13%
F1 63.34% 65.47% 73.73%

2.4 Recapitulation

In this work, we evaluated the auditory roughness as a feature for pre-filtering the audio for

AED targeting human screaming and affective speech. Detecting these events is of interest to

distributed security and surveillance AED systems. In order to be useful in a large distributed
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system, detection must have extremely low computational cost; MFCC is too expensive. We

proposed a method to approximate roughness using a combination of frequency modulation

and multiphase filtering. This allows us to extract a feature with computational cost similar

to STE. We proved through experiments on the Mandarin Affective corpus, and a subset

of the Google AudioSet, that our approximated roughness also is more accurate than other

low-complexity features.
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Chapter 3

Using Acoustic Landmarks to
Improve ASR through Frame
Dropping and Frame Re-weighting
Ideas from speech science – which may have the potential to further improve modern auto-

matic speech recognition (ASR) – are not often applied to ASR systems [1]. Speech science

has demonstrated that perceptual sensitivity to acoustic events is not uniform in either time

or frequency. Most modern ASR uses a non-uniform frequency scale based on perceptual

models such as critical band theory [45]. In the time domain, however, most ASR systems

use a uniform or frame synchronous time scale: systems extract and analyze feature vectors

at regular time intervals, thereby implementing a model according to which the content of

every frame is equally important.

Acoustic landmark theory [18, 19] is a model of experimental results from speech science.

It exploits quantal nonlinearities in articulatory-acoustic and acoustic-perceptual relations

to define instances in time (landmarks) at which abrupt changes or local extrema occur in

speech articulation, in the speech spectrum, or in a speech perceptual response. Landmark

theory proposes that humans perceive phonemes in response to acoustic cues, and that such

cues are anchored temporally at landmarks, i.e., that a spectrotemporal pattern is perceived

as the cue for a distinctive feature only if it occurs with a particular timing relative to a

particular type of landmark. Altering distinctive features alters the phone string; distinctive

features in turn get signaled by different sets of cues anchored at landmarks.

The theory of acoustic landmarks has inspired a large number of ASR systems. Acoustic

landmarks have been modeled explicitly in ASR systems such as those reported by [46, 47,

48]. Many of these systems have accuracies comparable to other contemporaneous systems -

in some cases, even returning better performance [46]. However, published landmark-based
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ASR with accuracy comparable to the state of the art has higher computation than the state

of the art; conversely, landmark-based systems with lower computational complexity tend to

also have accuracy lower than the state of the art. No implementation of acoustic landmarks

has yet been demonstrated to achieve accuracy equal to the state of the art at significantly

reduced computational complexity. If acoustic landmarks contain more information about

the phone string than other frames, however, then it should be possible to significantly

reduce computational complexity of a state of the art ASR without significantly reducing

accuracy, or conversely, to increase accuracy without increasing computation, by forcing the

ASR to extract more information from frames containing landmarks than from other frames.

We assume that a well trained frame-synchronous statistical acoustic model (AM), hav-

ing been trained to represent the association between MFCC features and triphones, has

also learned sufficient cues and necessary contexts to associate MFCCs and distinctive fea-

tures. However, because the AM is frame-synchronous, it must integrate information from

both informative and uninformative frames, even if the uninformative frames provide no

gain in accuracy. The experiments described in this chapter explore whether, if we treat

frames containing acoustic landmarks as more important than other frames, we can get bet-

ter accuracy or lower computation. In this work, we present two methods to quantify the

information content of acoustic landmarks in an ASR feature string. In both cases, we use

human annotated phone boundaries to label the location of landmarks. The first method

seeks to improve ASR accuracy by over-weighting the AM likelihood scores of frames con-

taining phonetic landmarks. By over-weight, we mean multiplying log-likelihoods with a

value larger than 1 (Sec 3.2.1). The second method seeks to reduce computation, without

sacrificing accuracy, by removing frames from the ASR input. Removing frames makes the

computational load decrease, but usually causes accuracy to decrease also: Which frames

can be removed that cause the accuracy to drop the least? We searched for a strategy that

removes as many frames as possible while attempting to keep the phone error rate (PER)

low. We show that if we know the locations of acoustic landmarks, and if we retain these
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frames while dropping others, it is possible to reduce computation for ASR systems with

a very small error increment penalty. This method for testing the information content of

acoustic landmarks is based on past works [49, 50, 51] that demonstrated significantly re-

duced computation by dropping acoustic frames, with small increases in PER depending on

the strategy used to drop frames. In this chapter we adopt the PER increment as an indirect

measure of the phonetic information content of the dropped frames.

If the computational complexity of ASR can be reduced without sacrificing accuracy, or

if the accuracy can be increased without increasing the computational load, these findings

should have practical applications. It is worth emphasizing that this work only intends to

explore these potential applications, assuming landmarks can be accurately detected. Our

actual acoustic landmark detection accuracy, despite increasing over time, has not reached

a practical level yet.

Section 3.1 briefly reviews the acoustic landmark theory and relevant works which apply

it to ASR systems. Sec 3.2 presents the theoretical basis for our experiments. Section 3.3

proposes the hypothesis. Experimental setup is explained in Sec 3.4 and results are presented

in Sec 3.5. Discussion, including a case study of the confusion characteristics, is presented

in Sec 3.6. At last, our conclusions are drawn in Sec 3.7.

3.1 Background and Literature Review

Acoustic landmark theory was first proposed as a theory of the perception of distinc-

tive features; therefore many landmark-based ASRs use distinctive features rather than

triphones [52] as their finest-grain categorical representation. Distinctive features are an

approximately binary encoding of perceptual [53], phonological [54], and articulatory [18]

speech sound categories. A feature is called “distinctive” if and only if it defines a phoneme

category boundary; therefore distinctive features are language dependent. The distinctive

features used by each language often have articulatory, acoustic, and/or perceptual correlates
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that are similar to those of distinctive features in other languages, however [55, 56], so it is

possible to define a set of approximately language-independent distinctive features as follows:

if an acoustic or articulatory feature is used to distinguish phonemes in at least one of the

languages of the world, then that feature may be considered to define a language-independent

distinctive feature. Each phoneme of a language is a unique vector of language-dependent

distinctive features. Automatic speech recognition may distinguish two different allophones

of the same phoneme as distinct phones; in most cases, the distinctions among phones can

be coded using distinctive features borrowed from another language, or equivalently, from

the language-independent set.

The ASR community has explored a number of encodings similar to distinctive fea-

tures, e.g., articulatory features [57, 58, 59, 60, 61, 62] and speech attributes [63]. These

concepts have different foci, but are also very similar. Distinctive features are defined

by phoneme distinctions; therefore they are language dependent. It is possible to define

a language-independent set of distinctive features based on quantal nonlinearities in the

articulatory-acoustic [64] and acoustic-perceptual [18] transformations. Although both the

articulatory-acoustic and acoustic-perceptual transformations contain quantal nonlineari-

ties that may define distinctive features, a much larger number of nonlinearities in the

articulatory-acoustic transformation has been demonstrated. Many studies therefore focus

only on the set of phoneme distinctions defined by nonlinearities in the articulatory-acoustic

transformation, which are called “articulatory features” in order to denote their defining

principle. Of these, some studies focus on the articulatory-acoustic transform because it

implies a degree of acoustic noise robustness [57, 58, 59], others because it implies a compact

representation of pronunciation variability [60], others because it is demonstrably language-

independent [61, 62]. Speech attributes, on the other hand, are a super-set of distinctive

features; they are deliberately defined to introduce other purposes to speech recognition. In

Lee’s framework [63], speech attributes are quite broadly defined to be perceptible speech

categories, of which phonological categories are only a subset. Under this definition, speech
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attributes include not only distinctive feature but also a wide variety of acoustic cues signal-

ing gender, accent, emotional state and other prosodic, meta-linguistic, and para-linguistic

messages.

As opposed to modern statistical ASR where each frame is treated with equal importance,

landmark theory proposes that there exist information rich regions in the speech utterance,

and that we should focus on these regions more carefully. These regions of interest are

anchored at acoustic landmarks. Landmarks are instantaneous speech events near which

distinctive features are most clearly signaled. These key points mark human perceptual foci

and key articulatory events [65]. Stevens [18] first introduced these instantaneous speech

events, where, for some phonetic contrasts, humans focus their attention in order to extract

acoustic cues necessary for identifying the underlying distinctive features. Initially Stevens

named these key points “acoustic boundaries”; the name “acoustic landmarks” was intro-

duced in 1992 (Stevens1992), and has been used consistently since. At roughly the same

time [66] and [67] made similar observations when studying children’s speech perception in

Japanese.

Liu [65] demonstrated algorithms for automatically detecting acoustic landmarks.

Hasegawa-Johnson [68] measured the phonetic information content of known acoustic land-

marks. He defined a set of landmarks including consonant releases and closures (at phone

boundaries) and vowel/glide pivot landmarks (near the center of the corresponding phones).

In contrast, Lulich [69] argued that the center of vowels and glides are not as informative and

should not be considered as landmarks. He defined, instead, formant-subglottal resonance

crossing, which is known to sit between boundaries of [-back] and [+back] vowels, to be more

informative. Wang et al. [70] showed that the latter improves performance for automatic

speaker normalization application. Hasegawa-Johnson [68] defined a small number of pivot

and release landmarks at +33% and −20% locations after the beginning or before the end of

certain phones (where +33% indicates delaying the location by 33% of the total duration of

that phone; −20% indicates advancing the location by 20%), in order to better approximate
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the typical timing of the spectrotemporal events defined earlier in Liu’s work [65]. Later

works [46, 71] labeled these landmarks right on the boundary and returned performance

similar to that of [68]. Figure 3.1 illustrates the landmark labels for the pronunciation of

word “Symposium”.1 The details of the landmark labeling heuristics applied in this example

are further described in Tab 3.1.

Figure 3.1: Acoustic landmark labels (LM) for the pronunciation of the word “Symposium”.
TIMIT phone symbols (PHN) and international phonetic alphabet (IPA) symbols are both
used in this example. The dashed red lines denote the landmark positions. The symbols
under the dashed red lines are landmark types, where Fc and Fr are closure and release for
fricatives; Sc and Sr are closure and release for Stops; Nc and Nr are closure and release
for nasals; V and G are vowel pivot and glide pivot; MC is manner-change landmark.

Many works have focused on accurately detecting acoustic landmarks. The first of these

assumed that landmarks correspond to the temporal extrema of energy or energy change

in particular frequency bands. For example, Liu [65] detected consonantal landmarks in

this way, [72] detected vowel landmarks, [73] classified consonant voicing, and [74, 75, 76,

77] classified place of articulation. Support vector machines (SVMs) were popularized for

landmark detection by [78], who showed that an SVM trained to observe a very small

1The pronunciation of “Symposium” is selected from audio file: TIMIT/TRAIN/DR1/FSMA0/SX361.WAV
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acoustic feature vector (only four measurements, computed once per millisecond) can detect

stop release landmarks more accurately than a hidden Markov model. Both [79] and [80]

target the detection of all landmarks using one kind of acoustic features. Their results are

reasonably accurate, but are still less accurate and more computationally expensive than the

best available classifier for each distinctive feature. Xie and Niyogi [81] expanded the work

of [78] by demonstrating detection of several different types of landmark using a very small

acoustic feature vector. In Qian’s paper [82], a small vector of acoustic features was learned,

using the technique of local binary patterns, and resulting in accuracy above 95% for stop

consonant detection. In a paper from [71], a convolutional neural network (CNN) trained on

MFCC and additional acoustic features achieved around 85% on consonant voicing detection.

This system was trained on the English corpus TIMIT [83], but tested on Spanish and

Turkish corpora. Over time, new techniques and more specific features have been developed

for landmark detection, and the detection accuracy has been improving steadily. Acoustic

landmarks were first introduced as part of an ASR in 1992 [84], and have been used in a

variety of ASR system architectures. These systems, without considering the mechanism

used for landmark detection, can be clustered into two types. The first type of system, such

as those described by [65, 48, 47], computes a lexical transcription directly from a set of

detected distinctive features. Due to the complexity of building a full decoding mechanism

on distinctive features, some of these systems only output isolated words. However, other

systems (e.g.,work from [48]) have full HMM back-ends that can output word sequences. The

other type of system, such as that described by [46], conducts landmark-based re-scoring

on the lattices generated by an MFCC-based hidden Markov model. Acoustic likelihoods

from the classic ASR systems are adjusted by the output of the distinctive feature classifier.

Many landmark based ASRs demonstrated performance slightly [46] or even significantly [57]

better than baseline ASR systems, especially in noisy conditions.

35



3.2 Measures of the Information Content of Acoustic

Frames

An acoustic landmark is an instantaneous event that serves as a reference time point for the

measurement of spectrotemporal cues widely separated in time and frequency. For example,

in the paper that first defined landmarks, Stevens proposed classifying distinctive features

of the landmark based on the onsets and offsets of formants and other spectrotemporal

cues up to 50ms before or 150ms after the landmark [18]. The 200ms spectrotemporal

dynamic context proposed by Stevens is comparable to the 165ms spectrotemporal dynamic

context computed for every frame by the ASR system of [85]. Most ASR systems use

acoustic features that are derived from frames 25ms long, with a 10ms skip, as human

speech is quasi-stationary for this short period [86]. Because spectral dynamics communicate

distinctive features, however, ASR systems since 1981 [87] have used dynamic features;

since deep neural nets (DNNs) began gaining popularity, the complexity of the dynamic

feature set in each frame has increased quite a lot, with consequent improvements in ASR

accuracy. This trend not only applies to stacking below 100ms. With careful normalization,

features like TRAPs [88], with temporal window equal or longer than 500ms, continue to

demonstrate accuracy improvement. Experiments reported in this chapter are built on a

baseline described by [85], and schematized in Fig 3.2. In this system, MFCCs are computed

once every 10ms, with 25ms windows (dark gray rectangles in Fig 3.2). In order to include

more temporal context, we stack adjacent frames, three preceding and three succeeding,

for a total of seven frames (a total temporal spanof (7 − 1) × 10 + 25 = 85 ms). These

are shown in Fig 3.2 as the longer, segmented dark gray rectangles, with the red segments

representing the center frames of each stack. The seven-frame stack is projected down to

40 dimensions using linear discriminant analysis (LDA). For input to the DNN but not the

GMM, LDA is followed by speaker adaptation using mean subtraction and feature-space

maximum likelihood linear regression, additional context is provided by a second stacking
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operation afterwards, in which LDA-transformed features, represented by yellow rectangles,

are included in stacks of 9 frames (for a total temporal span of (9− 1)× 10 + 85 = 165ms),

as represented by the top path in Fig 3.2. It is believed that the reason features spanning

longer duration improve ASR accuracy is that long lasting features capture coarticulation

better, including both neighboring-phone transitions and longer-term coarticulation. The

dynamics of the tongue naturally cause the articulation of one phoneme to be reflected in

the transitions into and out of neighboring phonemes, over a time span of perhaps 70ms.

Longer-term coarticulation, spanning one or more syllables, can occur when an intervening

phoneme does not require any particular placement of one or more articulators; e.g., [89]

demonstrated that the tongue body may transition smoothly from one vowel to the next

without apparently being constrained by the presence of several intervening consonants.

Figure 3.2: Stacking of feature frames before the scoring process for DNN AM (top path)
and GMM AM (bottom path). The dark gray, red and green rectangles indicate frames and
stacks of frames.

3.2.1 Frame Re-weighting

HMM-based ASR searches the space of all possible state sequences for the most likely state

sequence given the observations. During the state likelihood estimation, results of all frames

are weighted equally. Weighting more informative frames more heavily could potentially

benefit speech recognition. Ignoring the effects of the language model, the log-likelihood of
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a state sequence S given the observations O is

L(S|O) =
T∑
t=1

w(t)log(p(ot|st)) + log(p(st|st−1)) (3.1)

where st and ot are respectively the state and observed feature vector associated with the

frame at time t. The state st at any time should be associated with one of the senones

(i.e., monophone or clustered triphone states). Here p(st|st−1) is the transition probability

between senones, which we will not consider modifying in this study. In most systems, beam

search parameters constrain the number of active states, thus we only need to evaluate

the necessary posteriors. In our over-weighting framework, if ot contains a landmark, the

value of log p(ot|st) will be scaled. To simplify the computation, we operate directly on

log-likelihoods. In this case, log(p(ot|st)) is multiplied by factor w(t) which takes the value 1

when frame t contains no landmark and a value greater than 1 otherwise. This is effectively

applying a power operation on the likelihoods.

The key in this strategy is that the likelihood of all model states will be re-weighted. If

the frame over-weighted is a frame that can differentiate the correct state better, the error

rate will drop. In contrast, if the likelihood of a frame is divided evenly across states, or

even worse, is higher for the incorrect state, then over-weighting this frame will mislead the

decoder and increase chances of error. For this reason, over-weighting landmark frames is

a good measure to tell how meaningful landmark frames are compared to the rest of the

frames. If the landmarks are indeed more significant, we should observe a reduction in the

PER for the system over-weighting the landmark.

3.2.2 Frame Dropping

The wide temporal windows used in modern ASR, as mentioned in the beginning of Sec 3.2,

are highly useful to landmark-based speech recognition: all of the dynamic spectral cues

proposed by [18] are within the temporal window spanned by the feature vector of a frame
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centered at the landmark; therefore it may be possible to correctly identify the distinctive

features of the landmark by dropping all other frames, and keeping only the frame centered

at the landmark. Our different frame dropping heuristics modify the log probability of a

state sequence by replacing the likelihood p(ot|st) with an approximation function f . In

terms of log probabilities, Eq (3.1) becomes

L(S|O) =
T∑
t=1

logf(p(ot|st), t) + log(p(st, st−1)) (3.2)

The class of optimizations considered in this chapter involve a set of functions f(p(ot|st))

parameterized as:

f(p(ot|st)) =


R(O, t) if g(t) = 1

p(ot|st) otherwise

(3.3)

The method of replacement is characterized by R, and the frame-dropping function by g(t).

This work considers multiple methods to verify that the finding with respect to landmarks

is independent of the replacement method. The four possible settings of the R(o, t) function

are as follows:

R(O, t) ∈



RCopy(O, t) = p(ot′|st′), t′ = maxτ≤t, g(τ)=0 τ

RFill 0(O, t) = 1

RFill const(O, t) =
(∏T

t=1 p(ot|st)
)1/T

RUpsample(O, t) = exp
(∑

t′:g(t′)=0 h(t− t′) log p(ot|st)
)

(3.4)

In other words, the Copy strategy copies the most recent observed value of p(ot|st), the

Fill 0 strategy replaces the log probability by 0, the Fill const strategy replaces the log

probability by its mean value, and the Upsample strategy replaces it by an interpolated

value computed by interpolating (using interpolation filter h(t)) the log probabilities that

have been selected for retention. The Upsample strategy will only be used if the frame-
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dropping function is periodic, i.e., if frames are downsampled by a uniform downsampling

rate.

The pattern of dropped frames can be captured by the indicator function g, which is

true for frames that we want to drop. Experiments will test two landmark-based patterns:

Landmark-drop drops all landmark frames (g(t) = 1 if the frame contains a landmark), and

Landmark-keep keeps all landmark frames (g(t) = 1 only if the frame does not contain a

landmark). In the case where landmark information is not available, the frame-dropping

pattern may be Regular, in which g(t) = δ( t mod K ) indicates that every K-th frame

is to be dropped, or it may be Random, in which case the indicator function is effectively

a binary random variable set at a desired frame dropping rate. As we will demonstrate

later, to achieve a specific function and dropping ratio, we can sometimes combine output

of different g functions together by taking a logical inclusive OR to their output.

If acoustic landmark frames contain more valuable information than other frames, it can

be expected that experiment setups that retain the landmark frames should out-perform

other patterns, while those that drop the landmark frames should under-perform, regardless

of the method of replacement chosen.

3.3 Hypotheses

This chapter tests two hypotheses. The first is that a window of speech frames (in this case

9 frames) centered at a phonetic landmark has more information than windows centered

elsewhere – this implies that over-weighting the landmark-centered windows can result in a

reduction in PER. The second hypothesis states that keeping landmark-centered windows

rather than other windows causes little PER increment, and that dropping a landmark-

centered window causes greater PER increment as opposed to dropping other frames. In

the study we focused on PER as opposed to word error rate (WER) for two reasons. First,

the baseline Kaldi recipe for TIMIT reports PER. Second, this study is oriented towards
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speech acoustics; focusing on phones allowed us to categorize and discuss the experiment

and results in better context.

Table 3.1: Landmark types and their positions for acoustic segments. Fc and Fr are closure
and release for fricatives; Sc and Sr are closure and release for Stops; Nc and Nr are closure
and release for nasals; V and G are vowel pivot and glide pivot; ‘start’, ‘middle’, and ‘end’
denote three positions across acoustic segments.

Manner of
Articulation

Landmark Type and
Position

Observation in Spectrogram

Vowel V: middle maximum in low- and mid-frequency amplitude
Glide G: middle minimum in low- and mid-frequency amplitude
Fricative Fc: start, Fr: end

amplitude discontinuity occurs when consonantal
constriction is formed or released

Affricate Sr,Fc: start, Fr: end
Nasal Nc: start, Nr: end
Stop Sc: start, Sr: end

In order to test these hypotheses, a phone boundary list from the TIMIT speech cor-

pus [83] was obtained, and the landmarks were labeled based on the phone boundary infor-

mation. Table 3.1 briefly illustrates the types of landmarks and their positions, as defined

by the TIMIT phone segments. This marking procedure is shared by [56, 46, 71]. It is worth

mentioning that this definition disagrees with that of [69]. Lulich claims that there is no

landmark in the center of vowel and glide; instead, a formant-subglottal resonance cross-

ing, which is known to sit between the boundaries of [-Back] and [+Back] vowels, contains

a landmark. Frames marked as landmark are of interest. To test hypothesis 1, landmark

frames are over-weighted. To test hypothesis 2, either non-landmark or landmark frames are

dropped.

3.4 Experimental Methods

Our experiments are performed on the TIMIT corpus. Baseline systems use standard ex-

amples distributed with the Kaldi open source ASR toolkit.2 Specifically, the GMM-based

baseline follows the configurations in the distributed tri2 configuration in the Kaldi TIMIT

2http://kaldi-asr.org/
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example files.3 The clustered triphone models are trained using maximum likelihood estima-

tion of features that have been transformed using linear discriminant analysis and maximum

likelihood linear transformation. For the DNN baseline, speaker adaptation is performed

on the features, and nine consecutive frames centered at the current frame are stacked as

inputs to the DNN, as specified in the distributed tri4_nnet example. Respectively, the

two systems achieved PER of 23.8% (GMM) and 22.6% (DNN) without any modification.

We performed a 10-fold cross validation (CV) over the full corpus, by first combining

the training and test sets, and creating 10 disparate partitions for each test condition. The

gender balance was preserved to be identical to the canonical test set for each test subset,

while the phonetic balance was approximately the same but not necessarily identical. This

is in order to improve the significance of our PER numbers. The TIMIT corpus is fairly

small and the phone occurrence of some phones, or even phone categories, in the test set is

lower than ideal. Conducting cross validation on the full set allows us partially address this

issue.

For the control experiments of our tests, all configurations of feature extraction and

decoding process are retained the same as the baseline. In this case, fair comparisons are

guaranteed, and we can fully reveal the effects of our methods in the acoustic model (AM)

scoring process.

3.5 Experimental Results

Experimental results examining the two hypotheses proposed above will be presented in this

section. We will present the results of over-weighting the landmark frames first. Evaluation

of frame dropping will be presented second, and includes several phases. In the first phase,

a comparison of different methods of replacement is presented, to provide the reader with

more insight into these methods before they are applied to acoustic landmarks. In the

3https://github.com/kaldi-asr/kaldi/tree/master/egs/timit/s5
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second phase, we will then leverage our findings to build a strategy that both drops non-

landmark frames, and over-weights landmark frames, using the best available pattern of

dropped frames and method of replacement. We open source the code used to carry out the

following experiments online. 4

3.5.1 Hypothesis 1: Over-weighting Landmark Frames

Figure 3.3 illustrates the PER of the strategy of over-weighting the landmark frames during

the decoding procedure, and how it varies with the factor used to weight the AM likelihood

of frames centered at a landmark. The PER for GMM-based models drops as the weighting

factor increases until the factor is 1.5; increasing the weighting factor above 1.5 causes the

PER to increase slightly. When the factor is increased to greater than 2.5, the PER increases

at a higher slope. Similar trends can be found for DNN models, yet in this case the change

in PER is non-concave and spans a smaller range. If landmark frames are under-weighted,

or over-weighted by a factor of 1.5 or up to 2.0, PER increases. Over-weighting landmark

frames by a factor of 3.0 to 4.0 reduces PER. In this experiment, Wilcoxon tests [90] have

been conducted, through Speech Recognition Scoring Toolkit (SCTK) 2.4.10,5 and tests

concluded the difference to be insignificant.

3.5.2 Methods of Replacement for Dropped Frames

Figure 3.4 compares the performance of three methods of replacement : Copy, Fill 0 and

Fill const when a Regular frame dropping pattern is used. Results show that Fill 0

and Fill const suffer very similar PER increments as the percentage of frames dropped is

increased, while Copy shows a relatively smaller PER increment for drop rates of 40% or 50%.

As for the comparison between acoustic models, DNN-based models outperform GMM-based

at all drop rates. Notably, the Copy approach synergizes well with DNN models, and is able

4https://github.com/dihe2/kaldi/tree/master/egs/timit/s5
5https://www.nist.gov/itl/iad/mig/tools
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Figure 3.3: Over-weighting landmark frames for GMM and DNN.
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to maintain low PER increments even up to 75% drop rate; this finding is similar to findings

reported in papers from [50].
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Figure 3.4: Comparison of different methods of frame replacement (Copy, Fill 0 and
Fill const) assuming a Regular pattern of frame replacement.

Figure 3.5 compares the performance between two patterns of dropping frames – Regular,

Random. In both of these the Copy method for replacement was used. We also provide for

comparison, the Regular pattern, but using an Upsample replacement method. This scheme

uses a 17-tap anti-aliasing FIR filter. The method that offered the lowest phone error rate

increment is obtained using a Regular pattern with a Copy replacement scheme. Results

show that Regular-Copy outperforms other methods by a large margin in terms of PER

increment independent of which AM is used.
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Figure 3.5: Comparison of different patterns of dropping frames assuming Copy (Regular
and Random) and Interpolation through low-pass filtering (Upsample) method of re-
placement.
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3.5.3 Hypothesis 2: Dropping Frames with Regard to

Landmarks

At the beginning of this section, experiments that test hypothesis 2 directly are described.

The focus is to subject the ASR decoding process to frames missing acoustic likelihood

scores, and see how the decoding error rate changes accordingly. Obviously we are interested

in using the presence vs. absence of an acoustic landmark as a heuristic to choose the frames

to keep or drop. To quantify the importance of the information kept vs. the information

discarded, dropping strategies (Landmark-keep and Landmark-drop) are compared to the

non-landmark-based Random strategy. Notice the Regular strategy has been shown to be

more effective than Random (e.g., in Fig 3.5); however, to make the PER result meaningful,

the same number of frames should be dropped across different patterns being compared.

When we keep only landmarks (Landmark-keep) or drop only landmarks (Landmark-drop),

the percentage of frames dropped cannot be precisely controlled by the system designer: it is

possible to adjust the number of frames retained at each landmark (thus changing the drop

rate), but it is not possible to change the number of landmarks in a given speech sample.

Therefore, precisely adjusting the drop rate to meet a different pattern is not practical.

Depending on the test set selected, the portion of frames containing landmarks ranges from

18.5% to 20.5%. As opposed to Random, Regular does not give us the ability to select a drop

rate that exactly matches the drop rate of the Landmark-drop or Landmark-keep strategies.

Therefore, it is not covered in the first 2 experiments. However, in the 3rd experiment,

we will compare a frame dropping strategy using landmark as heuristic against Regular

dropping. But that experiment will serve a slightly different purpose.

As in the over-weighting experiment, two types of frame replacement are tested. The

Fill 0 strategy is an exact implementation of hypothesis 2: when frames are dropped,

they are replaced by the least informative possible replacement (a log probability of zero).

Figure 3.4 shows, however, that the Copy strategy is more effective in practice than the
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Fill 0 strategy; therefore these two strategies are tested using a landmark-based frame drop

pattern. Figure 3.4 shows that the Fill const strategy returns almost identical results to

Fill 0, so it is not separately tested here.

Experiment results are presented for both the TIMIT default test split, and for cross-

validation (CV) using the whole corpus. The baseline implementation is as distributed

with the Kaldi toolkit. Since no frames are dropped, it returns the lowest PER. How-

ever, likelihood scoring for the baseline AM will require more computation when com-

pared to a system that drops frames. For CV we report the mean relative PER increment

(∆PER = 100 × (modified PER − baseline PER)/(baseline PER)), with its standard devi-

ation in parentheses, across all folds of CV. Every matching pair of frame-drop systems

(Landmark-keep versus Random) is tested using a two-sample t-test [43], across folds of the

CV, in order to determine whether the two PER increments differ. During the t-test, we

assume PER numbers from different folds are samples of a random variable. The two-sample

t-test intends to find out whether the random variables representing PER for different setups

(Landmark-keep versus Random) have the same mean.

Keeping or Dropping the Landmark Frames

Table 3.2 illustrates the changes in PER increment that result from a Landmark-keep strat-

egy (score only landmark frames) versus a Random frame-drop strategy set to retain the

same percentage of frames. For each test set, we count the landmark frames separately and

match the drop rate exactly between the Landmark-keep and Random strategy. In all cases,

the Landmark-keep strategy has a lower PER increment. A Wilcoxon test, rather than the

two-sample t-test, has been conducted on the default test set; the differences between all

pairs but the DNN Fill0 pair is significant on this test.

For the next experiment we inverted the setup: instead of keeping only landmark frames,

we drop only landmark frames (call this the Landmark-drop strategy). Tab 3.3 compares the

PER increment of a Landmark-drop strategy to the increment suffered by a Random frame
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Table 3.2: PER increments for scoring landmark frames only compared to randomly dropping
similar portion of frames (CV stands for cross validation; if the two increments differ, then
the lower of the two is marked with either ∗ (p < 0.05) or ∗∗ (p < 0.001).)

Acoustic model GMM DNN
Test regime Default CV Mean (Stdev) Default CV Mean (Stdev)
Metric PER PER Inc PER PER Inc PER PER Inc PER PER Inc

(%) (%) (%) (%) (%) (%) (%) (%)
Baseline 23.8 0.0 22.8 0.0 22.7 0.0 20.8 0.0
Fill 0

Landmark-keep 36.1 51.7 33.4 46.5(1.34)** 49.6 118.5 49.7 139(10.3)*
Random 42.3 77.7 42.1 84.6 (8.35) 50.9 124.2 52.8 154 (14.8)
Copy

Landmark-keep 35.2 47.7 32.3 41.5(1.08)** 29.4 29.3 26.9 29.3(0.653)**
Random 44.0 84.9 44.1 93.5 (0.734) 38.4 69.3 37.6 80.9 (0.942)

drop strategy with the same percentage of lost frames. The Landmark-drop strategy always

return higher PER. However, only for the GMM setup Copy did we obtain a significant p

value during cross validation. The p values for other setups range from 0.13 to 0.17. Again,

a Wilcoxon test, rather than the two-sample t-test, has been conducted on the default test

set, with the conclusion that only the GMM Copy pair demonstrated significant difference.

Table 3.3: PER increments for dropping landmark frames during scoring compared to ran-
domly dropping a similar portion of frames (CV stands for cross validation)

Acoustic model GMM DNN
Test regime Default CV Mean (Stdev) Default CV Mean (Stdev)
Metric PER PER Inc PER PER Inc PER PER Inc PER PER Inc

(%) (%) (%) (%) (%) (%) (%) (%)
Baseline 23.8 0.0 22.8 0.0 22.7 0.0 20.8 0.0
Fill 0

Landmark-drop 25.6 7.56 24.0 5.33(1.36) 24.2 6.61 23.1 11.1(1.58)
Random 24.1 1.26 23.4 2.68 (1.23) 23.6 3.96 22.4 7.53 (1.24)
Copy

Landmark-drop 25.6 7.5 24.1 5.83(0.873)* 24.3 7.1 22.1 6.44(0.836)
Random 24.6 3.3 23.1 1.14 (0.948) 23.6 4.0 21.6 3.85 (0.760)

The results in Tab 3.2 demonstrate that keeping landmark frames is better than keeping

a random selection of frames at the same drop rate, in all but one of the tested comparison

pairs. The results in Tab 3.3 demonstrate that random selection tends to be better than

selectively dropping the landmark frames, though the difference is only significant in one of

the four comparison pairs. These two findings support the hypothesis that frames containing

49



landmarks are more important than others. However, the PER increments in some setups

are very large, indicating the ASR might no longer be functioning under stable conditions.

Using Landmark as a Heuristic to Achieve Computation Reduction

Methods in Tab 3.2 and 3.3 compared the Landmark-keep, Landmark-drop, and Random

frame drop strategies. Table 3.4 illustrates PER increment (%) for the Landmark-keep and

Regular frame-dropping strategies. In this experiment, we are no longer directly testing

Hypothesis 2. Instead, we are trying to achieve high frame dropping rate subject to low

PER increment. As dropped frames need not be calculated during the acoustic model scoring

procedure, a high dropping ratio can benefit the ASR by reducing computational load. The

strategy leveraging landmark information is a hybrid strategy: on top of a standard Regular

strategy, it keeps all landmark frames and over-weights the likelihoods of these frames as

in 3.5.1. For each acoustic model type (GMM vs. DNN), three different percentage rates

of frame dropping are exemplified. In each case, we select a Regular strategy with high

dropping rate, modify it to keep the landmark frames, measure the percentage of frames

dropped by the resulting strategy, then compare the result to a purely Regular frame-drop

strategy with a similar drop rate. The baseline Regular strategies have three standard drop

rates: 33.3% (one out of three frames dropped, uniformly), 50% (one out of two frames

dropped), and 66.7% (two out of three frames dropped). Table 3.4 highlights results for one

of the setups in bold, as that setup achieves a very good trade-off between high dropping

ratio and low PER increment.

As we can see, for DNN acoustic models, the Landmark-keep strategy results in lower

error rate increment than a Regular strategy dropping a similar number of frames. Wilcoxon

tests demonstrated a statistically significant difference at all three drop rates. For GMM

acoustic models, avoiding landmarks does not seem to return a lower error rate. In fact, the

error rate is higher for 2 out of 3 different drop rates. The highlighted case in Tab 3.4 is

intriguing because it the PER increment is so low, and this row will therefore serve as the
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Table 3.4: PER increments comparison between Landmark-keep and Regular drop strategies
for GMM and DNN.

Copy
Default Cross Validation

Drop Rate% PER Inc% Drop Rate% PER Inc% Inc STD% Inc pVal

G
M

M

Land 41.0 1.26 44.4 1.84 0.0133 0.962
Reg 33.3 3.78 33.3 1.81 0.0119

Land 54.2 2.94 54.1 2.86 0.0140 0.598
Reg 50 2.1 50 2.58 0.00780

Land 64.3 12.1 65.0 8.10 0.0182 0.159
Reg 66.7 10.1 66.7 6.91 0.0181

D
N

N

Land 41.0 0.44 44.4 1.84 0.0115 0.0011
Reg 33.3 3.98 33.3 4.20 0.0153

Land 54.2 0.44 58.4 1.90 0.167 0.0029
Reg 50 2.21 50 4.12 0.0115

Land 64.2 3.08 69.0 5.86 0.0121 0.0391
Reg 66.7 6.17 66.7 7.04 0.0160

Table 3.5: PER increments for Landmark-keeping strategy for DNN with dropping rate near
54.2% and over-weighting factor near 4 times

PER Inc% Over-weighting Factor
3.5 4 4.5

Drop Rate%
52.1 1.42 0.84 0.93
54.2 0.88 0.44 0.88
56.3 0.62 0.40 0.40

basis for further experimentation in the next section. In this setup for DNN, over 50% of the

frames were dropped, but the PER only increased by 0.44%. This result seems to support

the hypothesis that landmark frames contain more information for ASR than other frames,

but in Tab 3.4, this row has the appearance of an anomaly, since the error increment is so

small. In order to confirm that this specific data point is not a special case, we conducted

additional experiments with very similar setups. The results for these additional experiments

are presented in Tab 3.5.

Additional results presented in Tab 3.5 are obtained through applying an over-weighting

factor close to 4, which is the optimal value found for DNNs in Fig 3.3. The first and third

rows in this table randomly keep or drop a small number of non-landmark frames, in order

to obtain drop rates of 52.1% and 56.3% respectively. Since the selection is random, multiple
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runs of the experiment result in different PER for the same drop rate; therefore we repeated

each experiment 10 times and reported the mathematical mean. Since there is a level of

randomness in these results, we do not intend to evaluate our hypotheses on these data;

rather, the goal of Tab 3.5 is merely to confirm that the highlighted case in Tab 3.4 is a

relatively stable result of its parameter settings, and not an anomaly. Since good continuity

can be observed across nearby settings, results in Tab 3.5 lend support to the highlighted

test case in Tab 3.4.

3.6 Discussion

Results in Sec 3.5.1 tend to support hypothesis 1. However, the tendency is not statistically

significant. The tendency is consistent for the GMM-based system, for all over-weighting

factors between 1.0 and 3.0. Similar tendencies appeared for over-weight factors between 3.0

and 5.0 for DNN-based system.

Experiments in Sec 3.5.2 tested different non-landmark-based frame drop strategies, and

different methods of frame replacement. It was shown that, among the several strategies

tested, the Regular-Copy strategy obtains the smallest PER. There is an interesting synergy

between the frame-drop strategy and the frame-replacement strategy, in that the PER of

a 50% Regular-Copy system (one out of every two frames dropped) is even better than

that of a 33% Regular-Copy system (one out of every three frames dropped). This result,

although surprising, confirms a similar finding reported by [91]. We suspect that the reason

may be relevant to the regularity of the 50% drop rate. When we drop 1 frame out of every

2 frames, the effective time span of each remaining frame is 20ms, with the frame extracted

at the center of the time span. Dropping 1 frame out of every 3 frames, on the other hand,

results in an effective time span per frame of 15ms, but the alignment of each frame’s signal

window to its assigned time span alternates from frame to frame.

It is worth mentioning that our definition of acoustic landmarks differs from that of [69] –
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specifically, Lulich claims that there is no landmark in the center of Vowel and Glide. Instead,

formant-subglottal resonance crossing, which is known to sit between the boundaries of [-

Back] and [+Back] vowels, contains a landmark. It is possible that an alternative definition

of landmarks might lead to better results.

We can also observe that GMM and DNN acoustic models tend to perform differently in

the same setup. For example, for GMM, randomly dropping frames results in a higher PER

than up-sampling; this is not the case for DNN models. Results also demonstrate that DNN

models perform quite well when frames are missing. A PER increment of only 6% occurs

after throwing away 2/3 of the frames. GMM models tend to do much worse, especially

when the drop rate goes up.

All experiments on DNN tend to support the strategy to avoid dropping landmarks.

However, the 2 test cases covered in Tab 3.3 lack statistical confidence. Scoring only the land-

mark frames (the Landmark-keep strategy) outperforms both Random and Regular frame-

drop-strategies. On the other hand, if landmark frames are dropped (the Landmark-drop

strategy), we obtain higher PER when compared to randomly scoring a similar number of

frames.

We find, at least for ASR with DNN acoustic models, that landmark frames contain

information that is more useful to ASR than other frames. In the most striking case, the

highlighted result in Tab 3.4 indicates that it is possible to drop more than 54% of the frames

but only observe a 0.44% increment in the PER compared to baseline (PER increases from

22.7 to 22.8). We conclude, for DNN-based ASR, that experiments support hypothesis 2

(with statistically significant differences in two out of the three comparisons). In comparison,

we failed to find support for hypothesis 2 in GMM-based ASR.

3.6.1 How Landmarks Affect the Decoding Results

Having proven that the Landmark-keep strategy is more effective than a Random or Regular

drop strategy, we proceeded to investigate the resulting changes in the rates of insertion,
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deletion and confusion among phones. We compared the normalized increment of each type

of error, separately, when the confusion matrices of the baseline system are subtracted from

the confusion matrices of the Landmark-keep and Random frame-drop systems. Figure 3.6

compares the normalized error increment, of different types of errors, for the Landmark-keep

and Random strategies. The numbers reported in the figure are normalized error increment.

They are calculated using error increment divided by the occurrence of each kind of phone.

We use this measure to reflect the increment ratio while avoiding having to deal with situa-

tions that could lead to division by zero.

We look into the effect of land-mark based frame dropping in more depth. Figure 3.7

presents the error increment rate table of confusion pairs, insertion and deletion for phones

and phones grouped into the types mentioned in Tab 3.1. The numbers reported in the

tables are normalized error increment. They are calculated using error increment divided

by the phone or phone type occurrence. We use this measure to reflect the increment ratio

while avoiding having to deal with situations having to divide-by-0. We compared the error

increment rate of dropping all non-landmark frames to randomly dropping frames. The later

is set up to drop equal amount of frame as the former. The likelihood scores of the dropped

frames have been replaced will a vector filled with 0s. In both tasks, roughly 80% of the

frames have been dropped.

Overall, dropping frames causes a minor reduction to the phone insertion rate, while the

phone deletion rate significantly worsens. We suspect that after dropping frames, the de-

coder is less effective at capturing transitions between phones, resulting in correctly detected

phones spanning over other phones. In Fig 3.6b we can see that the Landmark-keep strategy

is more effective than the Random strategy, since it returns a lower deletion rate increment.

We believe this is because the landmark contains sufficient acoustic information about each

phone to force it to be recognized. However, we do not know why the GMM-Landmark-keep

strategy is less effective at preventing phone deletions than the DNN-Landmark-keep strat-

egy. A possible reason might be that more frames were stacked together in the splicing
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process for the DNN than for the GMM [85]. If we do consider providing landmarks as

extra information to ASR, in order to reduce computation load for example, the difference

between GMM and DNN models should be considered.

On the other hand, stacking more feature vectors together does benefit DNN from the

confusion perspective, as we can see the confusion pairs error increment rate is marginally

lower for the DNN models. We could also see that, in terms of confusion for GMM AM,

landmarks do not seem to outperform random on GMM models, as illustrated in Fig 3.7a

and 3.8a. Especially for vowels, landmarks actually bring about more confusions than ran-

dom dropping. This is not the case for DNN models; Fig 3.7c and 3.8c show many deep-blue

boxes along the diagonal of the heat map, indicating landmark to be effective at reducing

confusion within the same phone type.

When we inspected the phone substitution error information, we found something rather

interesting. When only landmark frames have been scored, even though the overall phone

confusion increment was small (on average substitution error for DNN increased by 11.2%,

for GMM this number increased by 19.3%), we observed dramatic change in substitution

count for some phone pairs. For example, there is no confusion from /I/ to /o/ in the baseline

setup for both DNN and GMM. However, when we only scored frames containing landmarks,

we observed a significant increment in the number of /I/ phones mis-recognized as /o/. For

both GMM and DNN, the confusion count from /I/ to /o/ went from 0 to 5. Initially, we

suspected the landmark setup failed to recognize /I/ in general. However, we found out that,

on average, the confusion count of /I/ decreased by 1.16 for DNN and only increased for

0.0526 for GMM. We examined the distinctive features of /I/ and /o/, however, and found

that these two phones have comparable tongue height and sonority, differing only in the

features [back] and [constricted pharynx]. In order to determine whether or not it is true,

in general, that the Landmark-keep strategy tends to make increased substitution errors

for phone pairs with low distinctive-feature distance, we mapped the distinctive features
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table6 for the International Phonetic Alphabet (IPA) into the Carnegie Mellon Pronouncing

Dictionary Alphabet7 using rules listed in IPACMUTI36. Note that the mapping from IPA

to CMU is not one-to-one, so we tried to avoid phones that have multiple counterparts in the

other alphabet. We found that, many phone pairs with increased substitution errors in the

Landmark-keep condition were those with similar distinctive features, e.g., /tS/ and /t/, /dZ/

and /z/. Conversely, there are examples of phone pairs with similar acoustics but quite

different distinctive features whose substitution error count goes down when the baseline is

compared with a Landmark-keep strategy. For example, phone /w/ was confused into /v/

in the baseline setup for both GMM and DNN, however, when we only scored the landmark

frames, substitution from /w/ to /v/ disappeared. Though both are [+lips], they differ in

the feature [consonantal], which is the conditioning feature determining whether or not a

number of other features are even labeled; therefore the distinctive feature vectors of these

two phones are quite different. However, a number of phone pairs that do not support this

finding have been observed, therefore, the tendency cannot be generalized. We do suspect

the non-ideal mapping between CMU and IPA might be affecting the results.

Nevertheless, this tendency found for some of the phones confirms that frames extracted

at landmarks placed a stronger emphasis on the distinctive features than the baseline. We

can see that when we only score landmark frames, the substitution count of some phone

pairs seems to be correlated with how similar their distinctive features are. On the other

hand, this also exposes a shortcoming of leveraging landmarks heavily. Phones with similar

distinctive features might be confused more frequently using a Landmark-keep strategy than

using a baseline or Regular strategy.

Phone-type-wise, the landmark strategy, compared with random dropping, does seem to

perform differently on vowel, stop, fricative and affricative. However, the effect is different

for GMM and DNN. While, on average, landmarks reduce the errors for these type of phones

6http://isle.illinois.edu/sst/data/g2ps/English/English_segments.html
7http://roch.sdsu.edu/cs682/IPA-CMU-TIMIT-Phoneset.pdf
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for DNN, for GMM they actually generate significantly more error. Also landmarks tend

to have very different effects on individual phones; as we can see, the outlining boxes in

Figs 3.8a and 3.8c are different from their random counterparts. Such effects also vary with

AM type; for example, landmarks generate a lot more confusion errors for phone aw for

GMM, but not for DNN.

3.7 Recapitulation

Phones can be categorized using binary distinctive features, which can be extracted through

acoustic cues anchored at acoustic landmarks in the speech utterance. In this work, we

proved through experiments for DNN-based ASR systems operating on MFCC features,

on the TIMIT corpus, using both the default and cross validation train-test splits, that

frames containing landmarks are more informative than others. We proved that paying

extra attention to these frames can potentially compensate for accuracy lost when dropping

frames during acoustic model likelihood scoring. We leveraged the help of landmarks as a

heuristic to guide frame dropping during speech recognition. In one setup, we dropped more

than 54% of the frames while adding only 0.44% to the phone error rate. This demonstrates

the potential of landmarks for computational reduction for ASR systems with DNN acoustic

models. We conclude that a DNN-based system is able to find a nearly-sufficient summary

of the entire spectrogram in frames containing acoustic landmarks, in the sense that, if

computational considerations require one to drop 50% or more of all speech frames, one

is better off keeping the landmark frames than keeping any other tested set of frames.

GMM-based experiments return mixed results, but results for the DNN are consistent and

statistically significant: landmark frames contain more information about the phone string

than frames without landmarks.
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Figure 3.6: Insertion and deletion.
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(a) gmm land7 (b) gmm rand7

(c) dnn land7 (d) dnn rand7

Figure 3.7: Confusion matrices for phone groups.
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(a) gmm land39 (b) gmm rand39

(c) dnn land39 (d) dnn rand39

Figure 3.8: Confusion matrices for phones.
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Chapter 4

Using Acoustic Landmarks to
Improve ASR through MTL

In the early 1980s, Furui [92] demonstrated that the identity of both consonant and vowel

can be perceived from a 100ms segment of audio extracted from the C-V transition; in 1985,

Stevens [18] proposed that acoustic landmarks are the primary cues for speech perception,

and that steady-state regions are secondary or supplemental. Acoustic landmarks produce

enhanced response patterns on the mammalian auditory nerve [93], and it has been demon-

strated that non-speakers of a language can identify features such as the primary articulator

of the landmark [94]. Automatic speech recognition (ASR) systems have been proposed that

depend completely on landmarks, with no regard for the steady-state regions of the speech

signal [95], and such systems have been demonstrated to be competitive with phone-based

ASR under certain circumstances. Other studies have proposed training two separate sets

of classifiers, one trained to recognize landmarks, another trained to recognize steady-state

phone segments, and fusing the two for improved accuracy [46] or for reduced computational

complexity [96, 97]. It has been difficult to build cross-lingual ASR from such systems, how-

ever, because very few of the world’s languages possess large corpora with the correct timing

of consonant release and consonant closure landmarks manually coded. In this chapter we

propose a different strategy: we propose to use reference landmark labels in only one lan-

guage (the source language). A landmark detector trained in the source language is ported

to the target language in two ways: (1) by automatically detecting landmark locations in

target language test data, and (2) by using landmark detection as a secondary task for the

purpose of training a triphone state recognizer that can be more effectively ported cross-

lingually. The neural network is trained with triphone state recognition as its primary task;
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landmarks are introduced as a secondary task, using the framework of multi-task learning

(MTL) [98].

MTL has shown the ability to improve the performance of speech models, especially those

based on neural networks [20, 21, 22, 99]. MTL is a mechanism for reducing generalization

error. A single-task neural net is provably optimal, for large enough training datasets: as

the size of the training dataset goes to infinity, if the number of hidden nodes is set equal to

the square root of the number of training samples, the difference between the network error

rate and the Bayes error rate goes to zero [100]. MTL is useful when the training dataset

is too small to permit zero-error learning [20], or when the training dataset and the test

dataset are drawn from slightly different probability distributions (e.g., different languages).

In either case, MTL proposes training the network to perform two tasks simultaneously. The

secondary task is not important during test time, but if the network is forced to perform the

secondary task during training, it will sometimes learn network weights (and consequently,

hidden layer activation functions) that are either (1) less prone to over-fitting on the train-

ing data than a single-task network, or (2) better generalizable from the distribution of the

training data to the distribution of the test data. Landmark detection could potentially be

an ideal secondary task for automatic speech recognition (ASR; Fig 4.1), since it detects in-

stantaneous events that are informative to phone recognition. Because landmarks have been

demonstrated to correlate with non-linguistic perceptual signals (e.g., enhanced response on

the auditory nerve [93]) and because features of a landmark can be classified by non-speakers

of the language [94], it is possible that the secondary task of landmark detection and classi-

fication will force a neural net to learn weights that are more useful for cross-language ASR

adaptation [71] than those of a single-task network. These characteristics are especially

helpful for under-resourced languages: in an under-resourced language, training data may

be limited, e.g., there may be little or even no transcribed speech. A landmark-based sys-

tem trained on a well-resourced language might be adapted to an under-resourced language,

thus improving ASR accuracy in the under-resourced language. Furthermore, we carried out
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experiments reducing the training data in the secondary language, examining the effective-

ness of landmark detection as a secondary task for MTL in very low-resourced (40 minutes)

scenarios. To our best knowledge, this is the first study where acoustic landmarks have been

applied to under-resourced ASR training.

Figure 4.1: MTL neural metwork jointly trained on phone states and landmark types.

The work is presented as follows: After we review some background in Sec 4.1, key

methodology and techniques used to apply the landmark theory to MTL are explained in

Sec 4.2. Results are presented in Sec 4.3, and the chpter concludes in Sec 4.4.

4.1 Background

Before we talk about our methodology, we would like to briefly review MTL as a neural

network training method and talk about the under-resourced corpus we used in this study.

4.1.1 Multi-task Learning

Multi-task learning (MTL) [98] has shown the ability to improve statistical model perfor-

mance by jointly training a single model for multiple purposes. The multiple tasks in MTL

share the same input, but generate multiple outputs predicting likelihoods for a primary
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and one or more secondary tasks. When the multiple tasks are related but not identical,

or (in the ideal case) complementary to each other, MTL models offer better generalization

from training to test corpus [20]. A number of works [20, 21, 22] have proved MTL to be

effective on speech processing tasks. Among them [22] proved MTL effective at improving

model performance for under-resourced ASR.

When we conduct MTL, for the same input x, we prepare two sets of labels. The label lphi

specifies the phone or triphone state associated with a frame, while llaj encodes the presence

and type of acoustic landmark. The network is trained in order to minimize, on the training

data, a multi-task error metric as shown in Eq 4.1, where P ph
i (x) (1 ≤ i ≤ Cph) is the

probability of monophone or triphone state i at frame x as estimated by the neural network,

P la
j (x) (1 ≤ j ≤ C la) is the probability of landmark label j at frame x as estimated by the

network, and α is a trade-off value we use to weight the two sets of labels. We sweep through

a small list of candidate α’s to find the value that returns the best result on development

test data.

Lmtl = (1− α)
Cph∑
i=1

(lphi log(P ph
i (x)))

+α
Cla∑
j=1

(llaj log(P la
j (x))) (4.1)

4.1.2 The Iban Corpus

The under-resourced language studied in this chapter is Iban [101]. Iban is a language spoken

in Borneo, Sarawak (Malaysia), Kalimantan and Brunei. The Malay phone set is similar to

English, e.g., the two languages have the same inventory of stop consonants and affricates;

Malay also has a relatively transparent orthography, in the sense that the pronunciation of a

word is usually well predicted by its written form. If Iban orthography is as transparent as

Malay, and if its phone set is as similar to English (an approximated mapping between the
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Iban phone set and IPA can be found at github1), then it is possible that a landmark detector

trained on English may perform well in Iban. However, we are not trying to claim Malay

or Iban is a perfect secondary language, when compared to English, for our experiments.

These languages are different in many aspects; for example, English in particular is notable

for its consonant clustering and use of diphthongs and even triphthongs; this is not the case

in Malay. Iban is also selected because of the recent release of an Iban training and test

corpus with particularly good quality control [101]. The Iban corpus contains 8 hours of

clean speech from 23 speakers. Seventeen speakers contributed 6.8h of training data, and

the test-set contains 1.18h of data from 6 speakers. The language model was trained on a

2M -word Iban news dataset using SRILM [102]. We foresee that if the primary and under-

resource languages share more similarities than English and Iban, we have a good chance of

observing better results than what we have obtained.

4.2 Methods

We trained an ASR on the TIMIT corpus using the methods of multi-task learning (Sec 4.1.1),

using the detection and classification of landmarks (Sec 4.2.1) as a secondary task. The same

ASR is then adapted cross-lingually to the Iban corpus (Sec 4.2.3)

4.2.1 Defining and Marking Landmarks

Landmark definitions in this chapter, listed in Tab 4.1, are based primarily on those of [65],

with small modifications. Modifications include the elimination of the +33% and -20% offsets

after the beginning or before the end of some phones, reported in [65] and [68], in favor of

the simpler definitions in Tab 4.1.

We extracted landmark training labels by referencing the TIMIT human annotated phone

boundaries. An example of the labeling is presented in Fig 3.1. This example from [97]

1https://github.com/dihe2/interspeech18/blob/master/phone_mapping.txt
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Table 4.1: Landmark types and their positions for acoustic segments, where ‘c’, and ‘r’
denote consonant closure, and release; ‘start’, ‘middle’, and ‘end’ denote three positions
across acoustic segments, respectively.

Manner of Articulation Landmark Type and Position
Vowel V: middle
Glide G: middle

Fricative Fc: start, Fr: end
Affricate Sr,Fc: start, Fr: end

Nasal Nc: start, Nr: end
Stop Closure Sc: start, Sr: end

illustrates the labeling of the word “Symposium”.2 The figure is generated using Praat [103].

Landmarks are relatively infrequent compared to phone-state-labeled speech frames: ev-

ery frame has a phone label, but fewer than 20% of frames have a landmark label. Because of

the sparsity of landmark-labeled frames, we explored different ways to adjust the landmark

labels to achieve the best MTL performance. We found, expanding the range of a landmark

to include the nearby 2 frames returns the highest accuracy for the primary task.

To further address the imbalance among different landmark classes, the training criterion

was computed using a weighted sum of training data, with weights inversely proportion to

the class support [104].

4.2.2 Adjusting Landmark Labeling

When applying the landmark labels to MTL, we did encounter difficulties. We failed to

realize that our main goal was to train a landmark detector that can effectively compliment

the phone state recognizer, not to train a landmark detector that can optimally detect

landmark locations. An MTL that over-emphasizes the landmark detection criterion tends

to perform poorly as an ASR acoustic model, because landmarks are relatively infrequent

compared to phone-state-labeled speech frames: every frame has a phone label, but fewer

than 20% of frames have a landmark label. Because of the sparsity of landmark-labeled

2selected from file: TIMIT/TRAIN/DR1/FSMA0/SX361.WAV
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frames, weighting the MTL criterion to emphasize landmark accuracy increased the number

of frames receiving the same label, No Landmark, and reduced the benefit of landmark

detection as a secondary task for MTL.

We explored different ways to adjust the landmark labels. Table 4.2 covers some of these

adjustments. When we label the landmark on only the frame in which it occurs (ver1), the

MTL AM returns high WER. Expanding the range of a landmark to include the nearby

2 frames (ver3) returned the best result (in comparison, ver2 only includes the nearby 1

frame). The forth labeling (ver4) expanded the landmark region, but split the center frame

and nearby frames into different classes. The verison ver5 marked landmark labels similarly

to ver4, but distinctly labeled frames before vs. after the landmark. Expanding the domain

of the landmark was helpful (ver3), but separate classes for frames far from the landmark

(ver4 and ver5) seemed to be less helpful.

To further address the imbalance among different landmark classes, the training criterion

was computed using a weighted sum of training data, with weights inversely proportion to

the class support.

Table 4.2: Iban tri-phone WER comparison of different landmark labeling techniques.

Baseline ver1 ver2 ver3 ver4 ver5
18.40 18.31 18.23 18.03 18.16 18.27

4.2.3 Cascading the MTL to Iban

After we trained a landmark detector on TIMIT, we ran the detector on Iban. The English-

trained landmark detector output is used to define reference labels for the secondary task

of the Iban acoustic model MTL. An example of the detector output on an arbitrary utter-

ance3 in Iban is given in Fig 4.2. We found that the results are good at outlining fricative

landmarks. The detector can also find stop closure landmarks near the correct locations,

but with less precision than the fricative landmarks. The performance on vowel and glide

3iban/data/wav/ibm/003/ibm_003_049.wav
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landmarks is only fair: the detector often mixes up the two classes, and incorrectly labels

sonorant consonants as vowels.

Figure 4.2: Landmark detection result on Iban for utterance ibm 003 049, pronouncing
selamat tengah ari (s-aa-l-a-m-a-t t-aa-ng-a-h a-r-i in Iban phone set). Transcription
labels: e=empty (No Landmark); fr, fc, sr, sc, nr, nc, v, g are as in Tab 4.1.

When applying the landmark detector to Iban, we are concerned with the error generated

by the detector. The automatically detected landmark labels are treated as ground truth

for MTL in landmark-task MTL in Iban; therefore it is possible that erroneously detected

landmarks may mislead the network training. To minimize the effect of these mistakes, we

introduce an extra weighting factor in the MTL training criterion based on the confidence

of the landmark detector output, as shown in Eq 4.2.

Lx = (1− αcx)
Cph∑
i=1

(lphi log(P ph
i (x)))

+αcx

Cla∑
j=1

(llaj log(P la
j (x))) (4.2)

where cx is a confidence value derived based on the landmark detector output for feature

frame x based on Eq 4.3.

cx = P la de
m (x)− 1

C la − 1

Cla∑
k=1,k 6=m

(P la de
k (x)) (4.3)
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where P la de
i (x) is the softmax output for landmark class i. The class index m =Cla

i P la de
i (x),

which is also the index for the class the landmark detector predicted.

The intuition behind this extra layer of weighting is to assign a penalty, during training

of the ASR, that is proportional to our certainty of its error. If the detector is not confident

separating the output class from other classes, then we reduce the loss it generates in the

MTL process.

We experimented with multiple ways to initialize the landmark detector and the phone

recognizer in the second language. We found that using a network trained through MTL

in TIMIT to initialize the MTL network in the second language yields the best results. We

found the technique marginally but consistently outperforms other initializations including

deep belief networks (DBN) [105].

4.3 Results

All experiments were conducting using the Kaldi [106] toolbox. We extracted an acoustic

feature vector using the same algorithm and parameters as [21]. The acoustic model (AM)

is a deep neural network with 4 hidden, fully-connected layers, 2048 nodes/layer. The same

features and network structure were used for both the landmark detector, the MTL model

and the baseline. The baseline is initialized using a DBN [105]. No speaker adaptation is

used in any of the ASR systems in this chapter.

Results are reported in Tab 4.3 for both English (TIMIT) and Iban. TIMIT results are

reported to indicate the performance of landmark-based MTL in the source language, prior

to cross-language adaptation.

On development test sets in both corpora, the value α = 0.2 returned the lowest error

rate (with little variability in the range 0.1 ≤ α ≤ 0.3), and was therefore used for evaluation.

For larger α values, such as α > 0.4, the WER starts to drop significantly. Error rate higher

than the baseline starts to appear, for some setups, when α ≥ 0.6. The landmark detector
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achieves 80.11% frame-wise accuracy in validation. Phone error rate (PER) was reasonably

good: 20.6% for the baseline system, and 20.0% for the MTL system, as compared to 22.7%

for the open-source Kaldi tri4 nnet recipe.

Decoding results for Iban are reported using word error rate (WER), because the Iban cor-

pus is distributed with automatic but not manual phonetic transcriptions. The comparison

between PER in TIMIT and WER in Iban permits us to demonstrate that landmark-based

MTL can benefit PER in a source language (English), and WER in an adaptation target

language (Iban). Triphone-based ASR trained without MTL on TIMIT, then adapted to

Iban, achieves 18.4% WER; a system that is identical but for the addition of landmark-task

MTL can achieve 17.93% WER. Neither system includes speaker adaptation, and therefore

neither system is better than the 17.45% state of the art WER for this corpus4 with the

same language model.

Table 4.3: Decoding error rate for mono-phone (Mono) and tri-phone (Tri) on TIMIT and
Iban.

Corpus AM Baseline MTL MTL w/ Confid
TIMIT
(PER)

Mono 24.6 24.2 NA
Tri 20.6 20.0 NA

Iban-full
(WER)

Mono 24.62 24.22 24.18
Tri 18.40 18.03 17.93

Iban-25%
(WER)

Mono 28.87 27.97 27.64
Tri 21.31 20.70 20.63

Iban-10%
(WER)

Mono 31.16 28.49 28.48
Tri 25.12 23.64 23.57

As we can see in Tab 4.3, in all cases, regardless of AM and corpus, the ASR system

jointly trained with landmark and phone information returns lower error rate. The setups

Iban-25% and Iban-10% train the AM on only 25% (100 minutes) and 10% (40 minutes)

of the training data uniformly selected at random from the Iban training set (maintaining

speaker and gender ratio), but evaluates the error rate on the full test set. As the amount

of training data decreases, the benefits of MTL increase. When only 10% of training data

4https://github.com/kaldi-asr/kaldi/blob/master/egs/iban/s5/RESULTS
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is available, simulating a very low resource case, MTL reduces the word error rate by the

greatest margin: 8.7% for monophone ASR and 6.17% for triphone ASR. Weighting the

MTL loss according to confidence results in a small but consistent error rate reduction. All

systems use the same language model, and all systems use acoustic models with the same

network architecture and feature set; the error rate change we observe is caused entirely by

the use of landmark-task MTL. We foresee that the difference between English and Iban

may have some negative effect on the experimental results, and that 2 languages that share

more similarities may benefit from our approach even more.

4.4 Recapitulation

This demonstrates that landmark-task MTL results in a neural network that can be more

effectively ported cross-lingually. As the amount of training data in the under-resourced

language is reduced (from 400 minutes to 100 or 40 minutes), the benefits of landmark-task

MTL increase. In addition, introducing a loss weighting according the landmark detector

confidence seems to reduce the effect of landmark detector error as it consistently produces

lower error rate.

While a cross-language landmark detector provides useful information complementary to

the orthographic transcription, visual inspection indicates that a cross-language landmark

detector is not as accurate as a same-language landmark detector. Future work, therefore,

will train a more accurate landmark detector, using recurrent neural network methods that

do not depend on human-annotated phone boundaries, and that can therefore be more

readily applied to multi-lingual training corpora.
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Chapter 5

Using Acoustic Landmarks to
Improve CTC Training through Label
Sequence Augmenting
Automatic speech recognition (ASR) is a sequence labeling problem that translates a speech

waveform into a sequence of words. Recent success of hidden Markov model (HMM) com-

bined with deep neural networks (DNNs) or recurrent neural networks has achieved a word

error rate (WER) on par with human transcribers [1, 2]. These hybrid acoustic models (AMs)

are typically optimized by cross-entropy (CE) training which relies on accurate frame-wise

context-dependent state alignments pre-generated from a seed AM. The connectionist tem-

poral classification (CTC) loss function [107], in contrast, provides an alternative method of

AM training in an end-to-end fashion—it directly addresses the sequence labeling problem

without prior frame-wise alignments. CTC is capable of learning to construct frame-wise

paths implicitly bridging between the input speech waveform and its context-independent

target, and it has been demonstrated to outperform hybrid HMM systems when the amount

of training data is large [10, 108, 12]. However, its performance degrades and is even worse

than traditional CE training when applied to small-scale data [109].

Training CTC models can be time-consuming and sometimes models are apt to converge

to even a sub-optimal alignment, especially on resource-constrained data. In order to al-

leviate such common problems of CTC training, additional tricks are needed, for example,

ordering training utterances by their lengths [12] or bootstrapping CTC models with models

CE-trained on fixed alignments [110]. The success of bootstrapping with prior alignments

indicates that external phonetic knowledge may help to regularize CTC training towards

stable and fast convergence. Furthermore, another investigation [111] reveals that the spiky

predictions of CTC models tend to overlap with the vicinity of acoustic landmarks where
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abrupt manner changes of articulation occur [56]. The possible coincidence of CTC peaks

overlapping acoustic landmarks suggests a number of possible approaches for reducing the

data requirements of CTC, including cross-language transfer (using the relative language-

independence of acoustic landmarks [112]) and informative priors.

Many efforts have been made to augment acoustic modeling with acoustic landmarks [112,

96, 97] which are detected by accurate time-aligned phonetic transcriptions. To the best of

our knowledge, only TIMIT [83] (5.4 hours) provides such fine-grained transcriptions. The

value of testing these approaches is limited since the only available corpus is very small. It is

worth further exploring the power of landmark theory when scaled up to large corpus speech

recognition.

In this chapter, we propose to augment phone sequences with acoustic landmarks for

CTC acoustic modeling and leverage a two-phase training procedure with pretraining and

finetuning to address CTC convergence problems. Experiments on TIMIT demonstrate that

our approaches not only help CTC models converge more rapidly and smoothly, but also

achieve a lower phone error rate, up to 8.72% phone error rate reduction over CTC baseline

with phone labels only. We also investigate the sensitivity of our approaches to the size

of training data on subsets of TIMIT (smaller corpora) and WSJ [113] (a larger corpus).

Our findings demonstrate that label augmentation generalizes to larger and smaller training

datasets, and we believe this is the first work that applies acoustic landmark theory to a

mid-sized ASR corpus.

5.1 Background

5.1.1 Connectionist Temporal Classification (CTC)

Recent end-to-end systems have attracted much attention, for example, because they avoid

time-consuming iterations between alignment and model building [107, 114]. The CTC

loss computes the total likelihood of the target label sequence over all possible alignments
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given an input feature sequence, so that the computation is more expensive than frame-wise

cross-entropy training. A blank symbol is introduced to compensate for the difference in

length between an input feature sequence and its target label sequence. Forward-backward

algorithms are used to efficiently sum the likelihood over all possible alignments. The CTC

loss is defined as

Lctc = − log p (y|x) = − log
∑

π∈B−1(y)

p(π|x)

where x is an input feature sequence, y is the target label sequence of x, π is one of

blank-augmented alignments of y, and B−1(y) calculates the set of all such alignments.

During decoding, the n-best list of predicted label sequences can be achieved by either a

greedy search or a beam search based on weighted finite state transducers (WFSTs). In the

following experiments, our acoustic models are trained by the phoneme CTC loss, and we

report phone error rates on TIMIT (a smaller corpus) through an one-best greedy search

and word error rates on WSJ (a larger corpus) through an one-best WFSTs beam search,

respectively.

A hybrid neural net-hidden Markov model (NN-HMM), represented by that trained by

Kaldi [106], is usually trained on the level of context-dependent sub-phone units, for example,

tied tri-phone states. Unfortunately, the mapping between AM states and language model

states is not one-to-one. In order to map from AM states to language model states, NN-

HMMs must learn and then store a set of state-mapping tables, possibly in the form of

weighted finite state transducers. CTC training [107] incorporates all state mapping into

a single learning process, reducing the number of incompatibly formatted data tables that

must be learned and stored, and the number of steps one has to go through to train them.

That said, CTC models are not without shortcomings.

CTC suffers from long training time to converge and requires a large amount of training

data, especially when the neural networks are deep [91, 115]. Even for corpora with size

over 100 hours, such as Wall Street Journal (WSJ) [113], CTC models under-perform hybrid
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HMM systems [108].

The key difference of CTC compared to an NN-HMM is that the latter requires target

labels for every frame, whereas CTC computes p(y|x) through accommodating π that satisfy

π ∈ B−1(y). The mapping function B(·) is many-to-one.

As a result, the loss calculation process needs to exhaustively enumerate all possible paths

that map to the same label sequence y. Despite efforts to speed up this search process, these

models still suffer from longer training time compared to DNN-HMM hybrid models.

5.1.2 Acoustic Landmarks

Acoustic landmark theory originates from experimental studies of human speech produc-

tion and speech perception. It claims there exist instantaneous acoustic events that are

perceptually salient and sufficient to distinguish phonemes [56]. Automatic landmark de-

tectors can be knowledge-based [65] or learned [46]. Landmark-based ASR has been shown

to slightly reduce the WER of a large-vocabulary speech recognizer, but only in a rescoring

paradigm using a very small test set [46]. Landmarks can reduce computational load for

DNN/HMM hybrid models [96, 97] and can improve recognition accuracy [112]. Previous

works [112, 96, 97, 116] annotated landmark positions mostly following experimental findings

presented in [117, 68]. Four different landmarks are defined to capture positions of vowel

peak, glide valley in glide-like consonants, oral closure and oral release.

5.2 Methods

5.2.1 Distinctive Features and Landmark Definition

Distinctive features (DFs) concisely describe sounds of a language at a sub-segmental level,

and they have direct relations to acoustics and articulation. These features take on binary

encodings of perceptual, phonological, and articulatory speech sounds [118]. A collection
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of these binary features can distinguish each segment from all others in a language. Au-

tosegmental phonology [119] also suggests that DFs have an internal organization with a

hierarchical relationship with each other. We follow these linguistic rules to select two pri-

mary features—sonorant and continuant—that distinguish among the manner classes of

articulation, resulting in a four-way categorization shown in Tab 5.1. We define landmarks

to be changes in the value of one of these two distinctive features using the TIMIT phone

inventory.

The standard phoneme set used by WSJ ignores detailed annotations of oral closures, for

example /bcl/, so that we merge together [-,+continuant ] features under [-sonorant ] column

in Tab 5.1, resulting in a three-way categorization for WSJ experiments instead.

Table 5.1: Broad classes of sounds on TIMIT.

Manner -sonorant +sonorant

-continuant bcl dcl gcl kcl em en eng m n ng
pcl q tcl

+continuant b d g k p t ch jh aa ae ah ao aw ax ax-h
dh f hh hv s sh axr ay dx eh el ey ih ix
th v z zh iy l nv ow oy r uh uw

ux w y er

5.2.2 Augmenting Phone Sequences with Landmarks

We defined two methods of augmenting phone label sequences with acoustic landmarks.

Mixed Label 1 only inserts landmarks between two broad classes of sounds where manner

changes occur; Mixed Label 2 inserts landmarks between phones even if manner changes

don’t exist. Figure 5.1 demonstrates an example of our two augmentation methods.

CTC only requires a single target label sequence, so that augmenting phone sequences

with landmarks can relax the need for time-aligned phone transcriptions. With a blank label

present between two phones in the training target sequence, the vanilla CTC training can be

considered as already experimenting with the scenario where a dedicated phone boundary
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pcl p l ey s

pcl p l ey s-+cont 
--sono

++cont 
-+sono

++cont 
+-sono

pcl p l ey s-+cont 
--sono

++cont 
-+sono

++cont 
++sono

++cont 
+-sono

mixed label 1

mixed label 2

phone label

Figure 5.1: Examples of target label sequences for the word “PLACE”. The audio clip is
selected from SI792 on TIMIT.
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label is added to the label set. CTC is thus an ideal baseline for our experiments.

As mentioned in Sec 5.2.1, we designed two mixed labels with manner changes. Figure 5.1

illustrates the details of our annotations.

Depending on the labeling methods selected as mentioned in Sec 5.2.1, we might add

a landmark label between two phones according to the respective manner changes between

the phones. Take the word lag (l, ae, g) for example, the new mixed label sequence will

become l, ae, cont+sono+ ⇒ cont+sono-, g if we use the first labeling method and l,

cont+sono+ ⇒ cont+sono+, ae, cont+sono+ ⇒ cont+sono-, g if we use the second

method. In the above example, cont+sono- and cont+sono+ represent phones falling

into the bottom left and right category of Tab 5.1.

5.2.3 Acoustic Modeling using CTC

We follow a pretraining and finetuning procedure to train our CTC models. At the phase of

pretraining, the AM initializes weights randomly and is trained by one of our mixed label

sequences until convergence; at the phase of finetuning, the AM initializes weights from

the pretrained model and continues to be trained by a label sequence with only phones.

These two phases of training take the same acoustic features. Figure 5.2 briefly illustrates

the whole procedure. The top output layer calculates a posterior distribution over symbols

combined with both phones and landmarks, while the bottom output layer calculates it over

only phones.

5.3 Experiments

5.3.1 Configurations

We conducted our experiments on both the TIMIT [83] and WSJ [113] corpora. We used

40-dimensional log mel filterbank energy features computed with 10ms shift and 20ms span.
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Figure 5.2: Two-phase acoustic modeling: top output layer pretrains with mixed labels and
bottom output layer finetunes with phone labels only.

No delta features or frame stacking were used. The recurrent neural networks stacked two

layers of bidirectional LSTMs, each with 1024 cells (512 cells per direction), capped by a fully

connected layer with 256 neurons. Weights are initialized randomly from Xavier uniform

distribution [120]. New-Bob annealing [121] is used for early stopping after a minimum

waiting period of two epochs. The initial learning rate is 0.0005. The TIMIT baseline

is trained on 61 phones. The WSJ baseline is trained on 39 phones1 defined in the CMU

pronunciation dictionary. One-best greedy search is applied to calculate the phone error rate

(PER). We did not map TIMIT phones to CMU phone set (39 phones). In order to make a

fair comparison, all baselines went through the same two-phase training with pretraining and

finetuning. One-best beam search based on WFSTs is applied to calculate the word error

rate in WSJ experiments using decoding graphs with a primitive trigram (tg) and pruned

trigram (tgpr) from EESEN.2 We use the same train/dev/test split from Kaldi Recipes for

TIMIT and WSJ.

1https://github.com/Alexir/CMUdict/blob/master/cmudict-0.7b.phones
2https://github.com/srvk/eesen/blob/master/asr_egs/wsj/run_ctc_phn.sh
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5.3.2 Experiments on TIMIT

Figure 5.3 presents the development set PER as a function of training epoch. The PER for

mixed sequence represented by the red and yellow lines in Fig 5.3 is calculated after landmark

labels have been removed from the output sequence. In the pretrain phase, models trained

on augmented labels do not seem to have any advantage in terms of error rate. However, the

models converge much more rapidly and smoothly. After pretraining, both the baseline and

mixed-label systems are finetuned; the mixed-label system (purple line in Fig 5.3) returns a

model that is more accurate.
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Figure 5.3: PER as a function of training epoch. PER is calculated against only phones
after landmarks are removed.

The exact PERs for different setups on the TIMIT test set are reported in Tab 5.2. Our

baseline achieved a PER of 30.36%, which was not improved by finetuning. This is higher

than PER reported elsewhere (e.g., [107]), because nobody else calculates PER on the full

TIMIT set of 61 phones. As shown in Tab 5.2, if we train with mixed labels and strip

away landmarks from the hypothesis sequence, landmarks provide little benefit. However,

the Mixed 1 and Mixed 2 systems achieved lower PER after the finetuning stage by 4.64%

and 8.72% relative, respectively. Apparently, a phone sequence augmented with landmarks

can be learned more accurately than a raw phone sequence, perhaps because the acoustic
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features of manner transitions are easy to learn, and help to time-align the training corpus.

The Mixed Label 2 set outperforms Mixed Label 1, apparently because the extra boundary

information in Mixed Label 2 is useful to the training algorithm.

Table 5.2: Comparison between baseline and our proposed models with augmented target
labels in PER (%). Number in the parentheses denotes the relative reduction over baseline.

Baseline Mixed 1 Mixed 2
random init 30.36 30.98 29.10
finetuned 30.36 28.96 (4.64%) 27.72 (8.72%)

It is not clear why a finetuning stage is needed in order for Mixed 1 to beat the baseline.

One possibility is that landmark labels are helpful for some tokens, and harmful for others;

pretraining uses the helpful landmarks to learn better phone alignments, then finetuning

permits the network to learn to ignore the harmful landmark tokens. We looked into the

prior distribution on TIMIT, presented in Fig 5.4, of both phones (top subplot, with phones

ordered in the same way as they occurred in Tab 5.1) and landmarks (bottom subplot,

Mixed Label 2 ordered in category permutation using continuant as the first variable and

sonorant as the second). The table reveals that the distribution of landmarks is not balanced.

Most labels indicate a transition related to the [+continuant,+sonorant ] phones. A skewed

landmark support is not ideal for augmenting phone recognizer training as it tends to provide

the same and redundant information for many training sequences.

5.3.3 Datasets Smaller and Larger than TIMIT

To confirm our findings, we further investigated the sensitivity of our approaches to the size

of training data on subsets of TIMIT (smaller corpora) and WSJ (a larger corpus). In this

section, we only demonstrate the experiments using Mixed Label 2 augmentation method

since it outperforms Mixed Label 1 in the previous discussion. We report PER/WER results

for finetuned models.

Figure 5.5 shows the PER results by stretching the amount of training data on TIMIT.
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Figure 5.4: Prior distributions of phones and acoustic landmarks.
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Figure 5.5: PERs by stretching the amount of training data on TIMIT.
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Both the proposed model and baseline fail to converge when 75% of the training data is

used. We observe that both models start to predict a constant sequence (usually made up

of two to three most frequent phones) for all utterances. Scheduled reducing the learning

rate by New-Bob annealing cannot help to converge to an optimal. Increasing the amount

of training data helps both models converge. The baseline needs 90% of TIMIT to converge,

while the proposed system only needs 80% of TIMIT.

When scaling up to a even larger corpus on WSJ, the proposed Mixed Label 2 system

could achieve better performance over the baseline consistently in terms of all metrics as

shown in Tab 5.3. Our baseline system slightly under-performs the results published in

EESEN [108] because our network is shallower and the acoustic inputs do not include any

dynamic (delta) features, but the benefit of the proposed landmark augmentation method

still applies. To our knowledge, this is the first work to show that manner-change acoustic

landmarks reduce both PER and WER on a mid-sized ASR corpus.

Table 5.3: Label error rate (%) on WSJ, where tg and tgpr denote decoding graphs with
primitive and pruned trigrams.

PER WER ( tgpr / tg )
eval92 dev93 eval92 dev93

Baseline 8.7 12.38 8.75/8.17 13.15/12.31
Mixed 2 8.12 11.49 8.35/8.19 12.86/12.28

5.4 Recapitulation

We proposed to augment CTC with acoustic landmarks. We modified the classic landmark

definition to suit the CTC criterion and implemented a pretraining-finetuning training pro-

cedure to improve CTC AMs. Experiments on TIMIT and WSJ demonstrated that CTC

training becomes more stable and rapid when phone label sequences are augmented by land-

marks, and achieves a significantly lower (8.72% relative reduction) asymptotic PER. The

advantage is consistent across corpora (TIMIT, WSJ) and across metrics (PER, WER).
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CTC with landmarks converges when the dataset is too small to train the baseline, and it

also converges without the need of time alignments on a mid-sized standard ASR training

corpus (WSJ).
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Chapter 6

Conclusion and Future Work

In this study, we attempt to introduce audio perception theories for the aid of audio process-

ing systems. Audio perception theories, in this study, specifically auditory roughness and

acoustic landmark, came from a more science-oriented background where human perception

and acoustic articulation are the focus of the study. In contrast, research on audio processing

systems originated from the need for practical applications (AED and ASR) and is much

more engineering focused. A study that bridges the two sub-areas of audio research benefits

both sides. The findings of this study are summarized in Sec 6.1.

6.1 Summary of Key Contributions

A list of findings resulting from this study follows. These findings have been published in

multiple conferences and journals [122, 96, 123, 97, 112, 124].

6.1.1 List of Contributions

• Found experimental evidence that Auditory Roughness (AR) can serve as a pre-filtering

feature for AED systems targeting screaming or human affective speech.

• Developed a low complexity approximation to the classic AR feature that provides

comparable discriminate capability but only requires computational load similar to

STE to extract.

• Demonstrated the approximated AR on a low-pow, low-cost FPGA-based multi-microphone,
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wireless AED system. This system won the first Hardware Design Contest held by DAC

2017.

• Found experimental evidence that acoustic landmarks can improve DNN-based AM

accuracy through over-weighting landmark frames during AM likelihood inference.

• Designed a strategy that combines over-weighting and dropping likelihood of feature

frames to reduce the DNN-based AM inference computational load by over 54% while

taking very minor, 0.44% relatively, accuracy lost.

• Backed the frame over-weighting and dropping experiment with rich experiments and

significant tests, solidly confirming the effectiveness of landmarks on DNN-based AM.

• Augmented DNN-based AM training with acoustic landmark information and observed

model error rate reduction.

• Migrated Acoustic Landmark detector trained in a resource-rich language to a sec-

ondary language and found experimental evidence that shows the output of landmark

detector can be used as MTL labels; landmark detector training in one language can

be used to benefit a different language for DNN-based AM training.

• Developed a pre-train and finetuning strategy to leverage acoustic landmark augmented

label sequence to train an end-to-end AM with CTC loss.

• For the first time, found experimental evidence that acoustic landmark can benefit non-

frame synchronized AM (CTC-based) and presented supportive results on a mid-size

LVCSR corpus (WSJ).

• Found experimental evidence that acoustic landmark augmented CTC models have

better convergence characteristics when training data is limited.
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6.1.2 Connecting the Findings

The first three contributions listed above can be summarized in Fig 6.1.

Figure 6.1: Improving AED with auditory roughness.

The studies related to acoustic landmarks can be summarized by Fig 6.2. The left of the

figure expresses the relationship between the studies on frame-synchronized ASR systems

while the right side covers works on end-to-end systems. The top left part of Fig 6.2 focuses

on experimenting with the feature frames assuming a pre-trained AM, which refers to the

4th to 6th points mentioned in Sec 6.1.1. The bottom left part considers re-training an AM

with the help of acoustic landmarks. This is covered by the 7th and 8th point in Sec 6.1.1.

6.2 Future Work

Even though the work on auditory roughness is concluded, work on applying acoustic land-

mark to ASR still faces many open questions. Preliminary results presented in Chapter 3

and 4 lend support to the hypothesis that acoustic landmarks can potentially augment ASR

systems. However, the results are not strong and convincing enough. The most significant

weakness of these results is that the same findings have not been observed on a larger speech

corpus. Obviously, repeating the work in Chapter 4 on more corpora from more languages
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Figure 6.2: Improving ASR with acoustic landmarks.

will provide a thorough test. However, the same cannot be said for Chapter 3. This is,

mainly due to the limitation on speech corpus. Chapter 3 claims that if we are able to

accurately detect acoustic landmark, we can benefit the ASR. Yet considering the landmark

detection reported in Sec 3.1, there really is a significant gap between machine detected

landmarks and landmarks derived though human annotated phone boundaries. A better

landmark detector can also benefit MTL on a different corpus or language. Reducing detec-

tion error can potentially close the gap between error rate reduction on the native corpus

(TIMIT) and the test corpus (Iban or other corpus).

6.2.1 A Better Acoustic Landmark Detector

As we can see in Fig 4.2, the landmark detection on Iban is far from perfect. It is ques-

tionable whether forced-aligned results can be used to cross-compare landmark detection

results. Forced-aligned boundaries tend to move around significantly as different acoustic

models have been used to conduct the alignment. However, we could at least reference this

alignment. The alignment in the figure is generated using tri3b acoustic model from the

default Kaldi recipe. As we can see, vowels and glides really do not return good detection

results. Many vowels are detected as glides, and consonants have been interpreted as glides
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as well. Even if we do not consider the problem of vowel and glide, the detection result

of consonants also needs more improvement, especially near the center of the utterance,

around where the phone ‘m’ and the second ‘t’ is pronounced, where a lot of insertion can

be observed. When a number of detection results have been checked, problems with vowel

or glide seem to be common issues. As we will discuss in more detail later, studies exist

claiming vowel and glide landmarks are harder to detect, and easily confused [69].

A number of future plans are listed below to improve landmark detection accuracy.

These attempts do not necessarily depend on each other. However, they are listed in the

chronological order in which I plan to explore them. More easy and conventional attempts

will be carried out first, while more innovative, yet also challenging, methods will be tried out

later. The early attempts have a good chance of improving the detection accuracy, yet they

also have foreseeable limitations. The later attempts will be more unconventional, and they

might not return improvement at all. However, if found effective, they have great potential.

Applying More Advanced Neural Network Models

The current landmark detection result reported in Chapter 4 is obtained through fully con-

nected neural networks. However, as ASR and other applications with sequential input have

proven, models with memory, such as LSTM [125], or the ability to look into wider context,

such as TDNN [126], return higher accuracy. For a collection of corpora (including TIMIT,

Iban), the lowest error rate ASR, according to Kaldi examples, uses TDNN acoustic model.

While landmark detection is a different task than the phone recognition conducted by

ASR, experiments reported in Chapter 4 found that setups that improve phone recognition

accuracy also benefit landmark detection. Therefore, the chance that a landmark detector

based on LSMT or TDNN can return higher accuracy is promising. Yet, altering the neural

network model is not a major change. Based on experience from ASR, the change will

improve accuracy, but improvements are usually bounded to single-digit percentage.

However, this simple approach is not without problems. The reason is that LSTM and
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TDNN models usually require higher computational load when compared to fully connected

models. This is not a problem for using landmark detection as a task for MTL. Since all

computation involving landmarks in the the MTL flow is carried out during training, a more

complicated model only means longer training time. This, however, might pose a challenge

for frame dropping and re-weighting methods mentioned in Chapter 3. In order for frame-

dropping and re-weighting to be carried out during recognition, landmark detection has

to be carried out at the same time. If landmark detecting models are too complicated to

evaluate, the computational reduction from dropping frames might not make up for landmark

detection. This will render the frame-drop strategy pointless. It will be challenging trying

to find a balance between a model that is accurate and a model that is cheap to compute.

Training a CTC Model for Acoustic Landmark Detection

CTC [10] has offered a new solution to training statistic models based on neural network

when the input is in the form of sequences. The model resulting from the training is not

necessarily more accurate, yet it usually simplifies the training procedure. As opposed

to the classic training procedure leveraging training labels from forced alignment, which

needs to be generated by another already trained acoustic model, CTC training does not

require frame-wise labels. This means CTC training does not require forced alignment

results, which means that, systematically, it does not need phone boundary information

for the training. This opens new possibilities for landmark detector training. The current

limitation of landmark detector training is largely imposed by shortage of training data. The

unfortunate truth is only very limited corpora such as TIMIT have good human-annotated

phone boundaries. TIMIT is not a very large corpus (around 10h). However, larger corpora

with more realistic conditions do not have phone boundary annotations. This fact prevents

them from being used as training corpus for landmark detection. One might argue that forced

alignment results can be used as a replacement for human-annotated phone boundaries, and

unfortunately, some attempts have been carried out to leverage forced alignment on TIMIT.
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However the study covered in Chapter 3 also found that forced alignment does not return

the same performance as human-annotated phone boundaries. When CTC is introduced

into landmark detector training, it is possible to train landmark detectors on much larger

corpora. However, it is not clear if CTC will find the landmarks, or if what is found by CTC

is in fact acoustic landmarks.

Figure 1.2 from [10] illustrates a classic output of a CTC model. Since CTC defines

loss based on mismatch in the output and target phone sequence as opposed to hard frame-

by-frame difference between frame-wise output and label, the training procedure does not

penalize phone labels generated outside of the phone duration as far as it is part of a

correct sequence. This results in output similar to that presented in Fig 1.2. As we can

see, prediction of many phones, ‘m’ for example, appeared long after the pronunciation

of ‘m’ ended. If applied directly, CTC models have little chance of pointing out where

landmarks actually are. One potential solution to this problem is to add an extra criterion

during the CTC training procedure to penalize landmark labels predicted at the wrong

location. Figure 6.3 illustrates the idea in a rough way. The model will be trained on

TIMIT with landmark location loss and other corpora without this restriction. The ideal

result of this combination is that extra training data from corpora without human-annotated

boundaries can improve the model performance by showing it more variants of phones while

the boundary information of TIMIT is good enough to teach to the model to find where the

landmark occurs.

Unfortunately, due to the fact that CTC models are more difficult to train and converge

slower, it is probably more realistic to relax the restriction on label location, for example to

penalize only labels falling far away from landmark location. In this case, it is not clear if the

CTC model will present landmarks as they are currently defined. However, if the outcome

serves the task in Chapter 3 and 4 well, there is no need to stay with the conventional

definition of acoustic landmark.
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Figure 6.3: Training a CTC-based landmark detector with location information.

6.2.2 Re-defining Acoustic Landmarks

As we have observed in Fig 4.2, as vowel and glide landmarks are defined in their current

form, detectors have difficulty finding and locating them. Works such as [69] even claim that

vowels do not contain landmarks. Even though acoustic landmarks demonstrate potential,

they are only the means of this study; the end is still improving ASR and other speech

processing systems. As a result, there is no reason not to re-define landmarks to better serve

the need of augmenting ASR. In fact, studies based on the attention model, such as [127],

have attempted to re-define the TIMIT phone set and have shown experimental evidence

suggesting that a set of phone labels can be found through a data-driven procedure using

the attention framework.

CTC models tend to hold back until evidence of a phone is sufficient; this behavior, in

many cases, resulted in phone labels being predicted outside the phone boundary. However,

if in a context-dependent situation, the location phone labels tend to appear to converge to

a fix location, or if there is a mean to restrict it to appear in a desired range, such as the

method mentioned in Sec 6.2.1, then can we define these locations as landmarks? One step

further, if we supply these locations to a frame-synchronized system, would the latter also

benefit from the extra information through methods illustrated in Chapter 3 and 4?

In contrast, if we address head-on the problem of vowel and glide landmarks, what can
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we do? A simple change to the current framework is to remove vowel and glide landmarks.

However, this change has a negative effect on the usefulness of landmarks as a heuristic since

a great portion of phones are made up by vowel and glide. A compensating move might be to

augment ASR with phone boundaries as opposed to landmarks. Phone boundaries overlap

landmarks if we do not count the vowel and glide landmark. This idea’s effectiveness is yet

to be checked. Some experiments conducted in the early phase of Chapter 3 hint that they

are not as not as informative as landmarks, yet if they can be detected more accurately, the

trade-off just might turn out to be in favor of ASR.

6.2.3 Augment CTC Training through Other Means

The study presented in Chapter 5 pre-trains the CTC AM model with landmark augmented

label sequence. The AM is then finetuned on a different output layer to ensure the estimated

acoustic likelihood by model is consistent with the phone set defined for the language model.

However, the model occasionally suffers an illy initialized output layer at the beginning of

the finetune procedure and the results are not ideal. This problem is especially significant

when the training data is limited. In some cases, the model will not converge in the finetune

phase of the training despite converging in the pre-train stage. From this perspective, the

pre-train and finetuning strategy is not ideal and other means should also be considered in

order to leverage the acoustic landmark information.

The key shortcoming of the pre-train and finetuning strategy is that the transition be-

tween the two phases is not necessarily smooth. If the old weights can be leveraged after

the transition or the finetuning procedure can start during the pretrain, the negative effect

can be minimized. Preliminary attempts have been made during the study, and stacking

the output layer of the finetuning network on top of the pre-train network does not seem

to return better results. However, methods leveraging MTL frameworks similar to studies

presented in Chapter 4 return encouraging results.

When leveraging the MTL framework, the same network is trained simultaneously on
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Table 6.1: CTC AM model trained in very under-resource setup.

LER % 70% TIMIT training data 75% TIMIT training data
Baseline 91.84 (not converging) 91.66 (not converging)
Pre-train & finetune 89.77 (not converging) 93.22 (not converging)
MTL 33.8 32.66

both the original phone sequence and acoustic landmark augmented label sequence. The

network branches out on the final fully-connected layer. Each layer layer is trained on a

separate sequence. The loss of the two final layers is weighted while calculating the gradient

for back-propagation. As we can see in Fig 5.5, when the resource used to train AM is

reduced below 80% of the TIMIT training set, even with the pre-train and finetuning strategy

presented in Chapter 5, the AM has a weak chance of converging. However, preliminary

results, illustrated in Tab 6.1, using the MTL framework show that, despite relatively high

LER, an AM trained on 70% of the training data can still converge.

The findings presented in Tab 6.1 open new potential for the study presented in Chapter 5

and merit further investigation.

6.2.4 Acoustic Landmark and Attention Models

One of the most meaningful findings of Chapter 3 is that in an input feature frame sequence,

some frames are more informative than others. In addition, focusing on these frames benefits

an ASR system. In the study, acoustic landmarks were found to indicate the location of these

more significant frames. However, this idea that an ASR system can focus on on a subset

of the feature sequence is in fact very similar to the core idea of recent studies based on

attention [11] and self-attention framework [128]. In the later framework, it is believed that

paying different levels of attention to different parts of the input feature sequence creates

better prediction results.

Considering that acoustic landmarks have been proven to contain indicative cues, it is

very possible that this information might serve as a good heuristic for attention-based AMs.
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Past works, such as [127], have already looked into the potential of leveraging attention-based

models to conduct AM study from a phonetic perspective. However, these works follow a

purely data-driven approach. It is of great importance that audio perception information

such as acoustic landmarks might play a positive role in these discoveries.

6.2.5 Verify the Findings on Larger Corpus

Experiments conducted in Chapter 3 and 4 still need to be repeated on larger corpora. The

corpora returning the current results are small by today’s standard, so they do not lend

strong support to the conclusion. More importantly, the result on the current corpus alone

is not enough to generalize the conclusions.

For the findings in Chapter 3, this means repeating the experiment on a larger English

corpus such as the WSJ.1 However, this will not be possible without a reasonably reliable

landmark detector.

The findings in Chapter 4 should be examined with a larger English corpus and larger

second-language corpora in more languages. This might mean conducting the same results

on a corpus such as BABEL.2 Due to the vast difference between languages, there is a good

chance that experimental findings will diverge, yet it is still useful to identify a subset of

languages that can benefit from landmark detectors trained in English.

1https://catalog.ldc.upenn.edu/ldc93s6a
2http://mi.eng.cam.ac.uk/~mjfg/BABEL/index.html
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