
c© 2019 Si Liu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/227472431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESIGN, VERIFICATION AND AUTOMATIC IMPLEMENTATION OF
CORRECT-BY-CONSTRUCTION DISTRIBUTED TRANSACTION SYSTEMS

IN MAUDE

BY

SI LIU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor José Meseguer, Chair
Professor Gul Agha
Professor Indranil Gupta

Professor Peter Csaba Ölveczky

ABSTRACT

Designing, verifying, and implementing highly reliable distributed systems is at present a

hard and very labor-intensive task. Cloud-based systems have further increased this com-

plexity due to the desired consistency, availability, scalability, and disaster tolerance. This

dissertation addresses this challenge in the context of distributed transaction systems (DTSs)

from two complementary perspectives: (i) designing DTSs with high assurance such that

they satisfy desired correctness and performance requirements; and (ii) transforming verified

system designs into correct-by-construction distributed implementations.

Regarding correctness requirements, we provide an object-based framework for formally

modeling DTSs in Maude, explain how such models can be automatically instrumented to

record relevant events during a run, formally define a wide range of consistency properties on

such histories of events, and implement a tool which fully automates the entire specification

instrumentation and model checking process.

Regarding performance requirements, we propose a general, though not yet automated,

method that transforms the untimed, non-probabilistic, and nondeterministic formal Maude

models of DTSs into probabilistic rewrite theories, explain how we can monitor the system

executions of such probabilistic theories, and shows how we can evaluate the performance

of the DTS designs based on the recorded log for different performance parameters and

workloads by statistical model checking.

To bridge the formality gap between verified designs and distributed implementations

we present a correct-by-construction automatic transformation mapping a verified formal

specification of an actor-based distributed system design in Maude to a distributed imple-

mentation enjoying the same safety and liveness properties as the original formal design.

Two case studies, applying this automatic transformation to state-of-the-art DTSs analyzed

within the same formal framework for both logical and performance properties, show that

high-quality implementations with acceptable performance and meeting performance pre-

dictions can be automatically generated in this way.

ii

To the bad romance

&

To my parents

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor José Meseguer for the contin-

uous support of my Ph.D. study and research, for his immense knowledge, motivation, and

patience. Apart from our academic collaboration, I am deeply grateful for our friendship

over the years.

I would also like to extend my appreciation to the rest of my dissertation committee

members: Gul Agha, Indranil Gupta, and Peter Csaba Ölveczky, for their insightful feed-

backs and invaluable advice. Special thanks are due to Indranil Gupta for mentoring me on

distributed systems, and to Peter Csaba Ölveczky for being a co-author in many papers.

I am very thankful to my current and past lab mates and fellow students at University

of Illinois at Urbana-Champaign. In particular, I thank Stephen Skeirik, Liyi Li, Kyungmin

Bae, Musab AlTurki, Camilo Rocha, Qi Wang, and Atul Sandur, for the stimulating discus-

sions and their friendship. I also thank Jatin Ganhotra, Keshav Santhanam, Sihan Li, Wei

Yang, Everett Hildenbrandt, Daejun Park, Muntasir Raihan Rahman, Owolabi Legunsen,

Rohit Mukerji, Andrei Stefanescu, Andrew Cholewa, and Fan Yang. I apologize for any of

the inevitable omissions.

I would like to thank my master advisor Huibiao Zhu at ECNU. Without him I would

never have the opportunity to start my Ph.D. study at UIUC.

The work in this dissertation was supported in part by NSF CNS 1409416, NSF CNS

1319527, AFOSR/AFRL FA8750-11-2-0084, and NRL contract N00173-17-1-G002.

Finally, I would like to express my deepest gratitude to my parents. This dissertation

would not have been possible without their love, friendship, support, and sacrifices through-

out my life. I dedicate this dissertation to the memory of my grandmother, whose role in

my life was, and remains, immense. This last word of acknowledgment I have saved for the

bad romance in my life: thanks for dancing with me!

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 State of the Art . 1
1.2 Design and Verification of Distributed Systems in Maude 2
1.3 From Distributed System Designs to Implementations 4
1.4 Summary of Chapters and Contributions . 5

CHAPTER 2 PRELIMINARIES . 8
2.1 Rewriting Logic and Maude . 8
2.2 Statistical Model Checking and PVeStA 13
2.3 Stuttering Bisimulations . 14
2.4 Transaction Consistency . 16

CHAPTER 3 AUTOMATIC ANALYSIS OF CONSISTENCY PROPERTIES OF
DISTRIBUTED TRANSACTION SYSTEMS . 18
3.1 Modeling Distributed Transaction Systems in Maude 18
3.2 Adding Execution Logs and Monitors . 23
3.3 Formalizing Consistency Models in Maude 28
3.4 Formal Analysis of Consistency Properties 38
3.5 Related Work . 42
3.6 Concluding Remarks . 43

CHAPTER 4 CASE STUDY: RAMP TRANSACTION SYSTEMS 45
4.1 RAMP Transactions . 46
4.2 New RAMP-like Designs . 47
4.3 Modeling RAMP and Its Variants in CAT 48
4.4 Model Checking Consistency Properties . 62
4.5 Probabilistic Modeling of RAMP Designs . 63
4.6 Monitoring Executions . 65
4.7 Quantitative Analysis of RAMP Designs . 68
4.8 Concluding Remarks . 79

CHAPTER 5 CASE STUDY: THE WALTER TRANSACTIONAL DATA STORE 80
5.1 Walter Data Store . 80
5.2 Formal Modeling of Walter . 82
5.3 Model Checking SI and PSI . 96
5.4 Statistical Model Checking of Walter . 97
5.5 Concluding Remarks . 100

v

CHAPTER 6 CASE STUDY: THE ROLA TRANSACTIONAL PROTOCOL . . . 101
6.1 ROLA Transactions . 104
6.2 Correctness Argument for ROLA . 108
6.3 A Formal Executable Specification of ROLA 115
6.4 Model Checking Consistency Properties of ROLA 122
6.5 Statistical Performance Comparison . 123
6.6 Concluding Remarks . 128

CHAPTER 7 AUTOMATIC TRANSFORMATION OF MAUDE DESIGNS INTO
CORRECT-BY-CONSTRUCTION DISTRIBUTED IMPLEMENTATIONS . . . 129
7.1 The D Transformation . 129
7.2 Correctness Preservation . 137
7.3 Prototype and Experiments . 142
7.4 Related Work . 147
7.5 Concluding Remarks . 149

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 150
8.1 Conclusions . 150
8.2 Future Work . 151

APPENDIX A THE RAMP-FAST ALGORITHM 155

APPENDIX B THE ORIGINAL PERFORMANCE EVALUATION RESULTS
FOR RAMP . 156

APPENDIX C THE ORIGINAL PERFORMANCE EVALUATION RESULTS
FOR WALTER . 157

REFERENCES . 158

vi

CHAPTER 1: INTRODUCTION

Cloud computing relies on software systems that store large amounts of data correctly

and efficiently. These cloud systems are expected to achieve high performance, defined as

high availability and throughput, and low latency. Such performance needs to be assured

even in the presence of congestion in parts of the network, system or network faults, and

scheduled hardware and software upgrades. To achieve this, the data must be replicated

across both servers within a site, and across geo-distributed sites. Providing strong consis-

tency guarantees, even in the failure-free case, would require a lot of communication which

would seriously impact the system’s performance. Different storage systems therefore offer

different tradeoffs between the levels of availability and of consistency that they provide.

For example, weak notions of consistency, such as read atomicity, are acceptable for appli-

cations, such as social networks, where availability and efficiency are key requirements, but

where one can tolerate “stale” data. Other cloud applications, including online banking and

medical information systems, require stronger consistency guarantees such as serializability.

Designing and implementing highly reliable high-performance distributed systems is at

present a hard and very labor-intensive task. Cloud-based systems have further increased

this complexity due to the desired consistency, availability, scalability, and disaster tolerance.

For example, the communication needed to maintain strong consistency across sites may

incur unacceptable latencies, so that designers must balance consistency and performance.

Both performance and functional correctness are therefore critical system requirements.

This dissertation aims at addressing this challenge. Specifically, this dissertation answers

the following two major questions:

1. How can cloud storage systems be designed with high assurance that they satisfy

desired correctness and performance requirements?

2. How can a verified system design be transformed into a correct-by-construction dis-

tributed implementation?

1.1 STATE OF THE ART

Standard system development and validation techniques are not well suited for address-

ing the above challenge. Designing cloud storage systems is hard, as the design must take

into account wide-area asynchronous communication, concurrency, and fault tolerance. Ex-

perimentation with modifications and extensions of an existing system is often made very

1

difficult by the lack of a precise description at a suitable level of abstraction and by the need

to understand and modify large code bases (if available) to test the new design ideas. Fur-

thermore, test-driven system development [72] where a suite of tests for the planned features

are written before development starts, and is used both to give the developer quick feedback

during development, and as a set of regression tests when new features are added has tradi-

tionally been considered to be unfeasible for ensuring compliance with a design in complex

distributed systems due to the lack of tool support for testing large numbers of different sce-

narios. It is also very difficult or impossible to obtain high assurance that the cloud storage

system satisfies given correctness and performance requirements using traditional validation

methods. Real implementations are costly and error-prone to develop and modify for exper-

imentation purposes. Simulation tools require building an additional artifact that cannot

be used for much else. Although system executions and simulations can give an idea of the

performance of a design, they cannot give any (quantified) assurance on the performance

measures. Furthermore, such implementations cannot verify consistency guarantees: even

if we executed the system and analyzed the read/write operations log for consistency vio-

lations, that would only cover certain scenarios and cannot guarantee the absence of subtle

bugs. In addition, nontrivial fault-tolerant storage systems are too complex for hand proofs

of key properties based on an informal system description. Even if attempted, such proofs

can be error-prone, informal, and usually rely on implicit assumptions. The inadequacy of

current design and verification methods for cloud storage systems in industry has also been

pointed out by engineers at Amazon in [73]. For example, they conclude that “the standard

verification techniques in industry are necessary but not sufficient. We routinely use deep

design reviews, code reviews, static code analysis, stress testing, and fault-injection testing

but still find that subtle bugs can hide in complex concurrent fault-tolerant systems.”

1.2 DESIGN AND VERIFICATION OF DISTRIBUTED SYSTEMS IN MAUDE

Formal methods have been advocated to develop and analyze high-level models of dis-

tributed system designs. In a formally-based system design and analysis methodology, a

mathematical model M describes the system design at the appropriate level of abstraction.

This system specification M should be complemented by a formal property specification P

that describes mathematically (and therefore precisely) the requirements that the system M

should satisfy. Being a mathematical object, the model M can be subjected to mathemat-

ical reasoning (preferably fully automated or at least machine-assisted) to guarantee that

the design satisfies the properties P .

However, today’s distributed systems present a number of challenges to formal methods:

2

(i) the sheer complexity and heterogeneity of such systems requires a flexible and expressive

formal framework, which nevertheless must be simple and intuitive to be usable by system

developers [73]; (ii) the correctness properties that these systems must satisfy can be quite

complex, and there is a desire in industry for automatic verification techniques [73]; and (iii)

both correctness and performance are, as mentioned, crucial requirements; a correct design

that performs worse than similar designs is usually worthless.

One formal framework that has shown promise in meeting these challenges is Maude [32],

a high-performance language and formal framework for executable specification, verifica-

tion and programming of concurrent systems based on rewriting logic [67, 24, 69]. Maude

meets challenge (i) by being based on a simple and intuitive formalism (algebraic equa-

tional specifications define data types and rewrite rules define dynamic behaviors) that is at

the same time general and expressive. Maude also provides a natural model of concurrent

objects, which is ideal for modeling distributed systems. Regarding challenge (ii), Maude

provides a range of automatic model checking methods, including reachability analysis and

LTL and LTLR temporal logic model checking [32, 13], which allows us to express and ana-

lyze complex properties (see, e.g., [62]). The Maude tool environment also provides theorem

proving verification of invariants in the InvA tool [77], and of reachability logic properties

in Maude’s reachability logic prover [84]. For challenge (iii), the Maude tool environment

includes the PVeStA [7] statistical model checker, which can be used to statistically predict

the performance of a design.

These features have made possible the use of Maude to model and analyze both the

correctness and performance of high-level designs of a wide range of state-of-the art systems

(see the survey [69]). To cite just one example area, Maude has been used to formally

model and analyze, often for the first time, state-of-the-art industrial and academic cloud-

based transaction systems such as Cassandra [2], ZooKeeper [49], Google’s Megastore [16],

P-Store [79], RAMP [14], and Walter [85]; and to design the entirely new system ROLA [59]

(see the survey [22]). Furthermore, model-based performance predictions using PVeStA

have shown good correspondence with experimental evaluation of implementations of systems

such as Cassandra, RAMP, and Walter [55, 57, 61].

Despite of the above promising methodology, there is very little work on its automation.

There is therefore a need for algorithmic methods for automatically verifying consistency

properties, and quantifying performance properties based on executable specifications of

both the systems and their properties. Chapter 3 takes the first step towards this goal by

presenting a general framework for automatic analysis of consistency properties of DTSs in

Maude, followed by three case studies on RAMP, Walter and ROLA in Chapter 4, 5 and 6,

respectively.

3

1.3 FROM DISTRIBUTED SYSTEM DESIGNS TO IMPLEMENTATIONS

We can develop mature designs satisfying given correctness criteria and having good pre-

dicted performance in the above way. However, this still leaves open the problem of how to

pass from a verified system design to a correct-by-construction distributed implementation.

Maude provides TCP/IP sockets as Maude external objects so that they can interact with

standard Maude objects by message passing [32], and a Maude concurrent object system

can be deployed as a distributed system across several machines. Message passing within a

single machine is executed by rewriting; but message-passing across machines is achieved by

Maude TCP/IP socket objects.

Since many different distributed deployments can be chosen for the same concurrent object

system design expressed as a Maude program M , various distributed implementations can be

programmed within Maude by manually transforming the design M into a distributed Maude

program D(M) by importing the SOCKET module [32] and programming the remote message

passing communication through such sockets. This, however, leaves open a formality gap.

Suppose that a given property ϕ has been verified for the system design M . Does ϕ still

hold true for D(M)? Up to now, this formality gap has been filled by developing a formal

model D′(M) of D(M) in Maude and verifying that D′(M) verifies ϕ. For example, the

correctness of both the distributed implementations of the Mobile Maude language, and of

the Orc orchestration language have been verified this way by model checking in, respectively,

[32] and [6].

This situation is unsatisfactory because: (i) one has to manually hand program D(M), and

has to do so for each particular choice of deployment; and (ii) checking the preservation of

formal properties when passing from M to D(M) is required for each M , which defeats the

purpose of carrying out the verification on the simpler model M . One major contribution of

this dissertation (Chapter 7) is to fully automate the passage from M to D(M) and to prove

that M and an abstract model D0(M), which hides the details of D(M)’s TCP/IP-based

network communication, are stuttering bisimilar [71, 66] and therefore satisfy the exact

same CTL∗ temporal logic properties for any formulas not using the “next” operator ©.

Therefore, both safety and liveness properties are preserved by the bisimulation. What a

Maude user provides as input to the automatic M 7→ D(M) transformation is a three-tuple

(M, init , di), where M is the Maude module specifying the given system’s design, init is

an initial state in such a design, and di is a distribution function, indicating the specific IP

address and Maude session1 where each object in init will be located.

1Several concurrent Maude sessions can be executed on the same machine.

4

1.4 SUMMARY OF CHAPTERS AND CONTRIBUTIONS

The work presented in this dissertation can be mainly classified in three categories: (i) a

general framework for formally specifying a distributed transaction system (DTS), and for

automatically analyzing its consistency properties; (ii) case studies of state-of-the-art DTSs

in this framework; and (iii) automatic transformation of a formal Maude design of a DTS

into a correct-by-construction distributed implementation.

The rest of this dissertation is organized as follows:

Chapter 2: This chapter gives preliminaries on rewriting logic and Maude, the statistical

model checking of probabilistic rewrite theories using PVeStA, stuttering bisimulations,

and the consistency properties in DTSs.

Chapter 3: This chapter presents a general framework for formally specifying a DTS in

Maude, and formalizes in Maude nine common consistency properties for DTSs so defined.

Furthermore, it provides a fully automated method for analyzing whether a DTS design

satisfies the desired consistency properties for all initial states up to user-given bounds on

system parameters.

This chapter is based on the joint work [62] with José Meseguer, Peter Csaba Ölveczky,

Qi Wang, and Min Zhang.

Chapter 4: This chapter shows a case study of using framework on formal modeling of

the RAMP transaction system, its variants and new RAMP-like designs of my own, and

on model checking eight such RAMP designs against the desired consistency properties.

Moreover, statistical model checking is used to explore and extend the design space of RAMP

by showing that our results: (i) are consistent with the experimental evaluations of the

implemented designs; (ii) are also consistent with conjectures made by the RAMP developers

for other unimplemented designs; and (iii) uncover some promising new designs that seem

attractive for some applications.

This chapter is based on the joint work [58, 57, 62] with Jatin Ganhotra, Indranil Gupta,

José Meseguer, Peter Csaba Ölveczky, Muntasir Raihan Rahman, Qi Wang, and Min Zhang.

Chapter 5: This chapter describes the second case study of using the framework on formal

modeling of Walter, and on formal verification of various consistency properties by model

checking. To also analyze Walter’s performance we extend the Maude specification of Walter

to a probabilistic rewrite theory and perform statistical model checking analysis to evaluate

5

Walter’s throughput for a wide range of workloads. Our performance results are consistent

with a previous experimental evaluation and throw new light on Walter’s performance for

different workloads not evaluated before.

This chapter is based on the joint work [61, 62] with José Meseguer, Peter Csaba Ölveczky,

Qi Wang, and Min Zhang.

Chapter 6: This chapter presents (i) the design of a new transaction protocol, ROLA, hav-

ing useful applications and guaranteeing a new consistency model, update atomicity, meeting

read atomicity and prevention of lost updates consistency properties with competitive per-

formance; (ii) formal specification and model checking analysis of ROLA; (iii) a detailed

performance comparison by statistical model checking between ROLA and the Walter and

Jessy protocols showing that ROLA outperforms both Walter and Jessy in all such com-

parisons, including higher throughput and lower average latency; and (iv) a demonstration

that, by a suitable use of formal methods, a completely new distributed transaction protocol

can be designed and thoroughly analyzed, as well as be compared with other designs, very

early on, before its implementation.

This chapter is based on the joint work [59, 60, 62] with Indranil Gupta, José Meseguer,

Peter Csaba Ölveczky, Keshav Santhanam, Qi Wang, and Min Zhang.

Chapter 7: This chapter shows (i) the formal definition of the M 7→ D(M) transforma-

tion mapping a Maude concurrent system formal design M to its distributed implementation

D(M); (ii) the proof that for any actor-like Maude specification M the system D0(M) mod-

eling D(M) and the system design M are stuttering bisimilar and satisfy the same safety

and liveness properties; (iii) a Maude prototype automation of the M 7→ D(M) transforma-

tion allowing us to generate, deploy and evaluate correct-by-construction implementations

of state-of-the art system designs, and allowing interaction of such implementations with

workload generators such as YCSB [36]; (iv) two case studies using state-of-the-art DTSs

(including ROLA) evaluating the implementations obtained by the M 7→ D(M) transforma-

tion with respect to: (a) the statistical-model-checking-based performance predictions for M ;

and (b) a conventional implementation. Similar performance trends have been respectively

shown for both case studies.

This chapter is based on the joint work with José Meseguer, Peter Csaba Ölveczky, Atul

Sandur, and Qi Wang.

Chapter 8: This chapter ends the dissertation with some concluding remarks and future

research directions.

6

Acknowledgments. I thank Andrea Cerone, Alexey Gotsman, Jatin Ganhotra, and Rohit

Mukerji for helpful early discussions on the work in Chapter 6, and thank Jatin Ganhotra,

Indranil Gupta, José Meseguer, Son Nguyen, Muntasir Raihan Rahman, and Stephen Skeirik

for the joint work [63, 56, 55] on modeling and analysis of Cassandra, which has inspired my

work in this dissertation.

7

CHAPTER 2: PRELIMINARIES

2.1 REWRITING LOGIC AND MAUDE

A membership equational logic (Mel) [68] signature is a triple Σ = (K,Σ, S) with K a

set of kinds, Σ = {Σw,k}(w,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a K-kinded

family of disjoint sets of sorts. The kind of a sort s is denoted by [s]. A Σ-algebra A

consists of a set Ak for each kind k, a function Af : Ak1 × · · · ×Akn → Ak for each operator

f ∈ Σk1···kn,k, and a subset inclusion As ⊆ Ak for each sort s ∈ Sk. The set TΣ,k denotes the

set of ground Σ-terms with kind k, and TΣ(X)k denotes the set of Σ-terms with kind k over

the set X of kinded variables.

A Mel theory is a pair (Σ, E) with Σ a Mel-signature and E a finite set of Mel sentences,

which are either conditional equations or conditional memberships of the forms:

(∀X) t = t′ if
∧
i

pi = qi ∧
∧
j

wj : sj, (∀X) t : s if
∧
i

pi = qi ∧
∧
j

wj : sj,

where t, t′ ∈ TΣ(X)k and s ∈ Sk for some kind k ∈ Σ, the latter stating that t is a term

of sort s, provided the condition holds. In Maude, an individual equation in the condi-

tion may also be a matching equation pl := ql, which is mathematically interpreted as an

ordinary equation. However, operationally, the new variables occurring in the term pl be-

come instantiated by matching the canonical form of the instance of ql against the pattern

term pl (see [32] for further explanations). Order-sorted notation s1 < s2 abbreviates the

conditional membership (∀x : [s1]) x : s2 if x : s1. Similarly, an operator declaration

f : s1 · · · sn → s corresponds to declaring f at the kind level and giving the membership

axiom (∀ x1 : [s1], . . . , xn : [sn]) f(x1, . . . , xn) : s if
∧

1≤i≤n xi : si.

A Maude module specifies a rewrite theory [67] of the form (Σ, E ∪B,R), where:

1. (Σ, E ∪B) is a membership equational logic theory specifying the system’s state space

as an algebraic data type with B a set of equational axioms (such as a combination

of associativity, commutativity, and identity axioms), to perform equational deduction

with the equations and memberships in E (the equations are oriented from left to right

for equational simplification) modulo the axioms B, and

2. R is a set of labeled conditional rewrite rules specifying the system’s local transitions,

8

each of which has the form:

l : q −→ r if
∧
i

pi = qi ∧
∧
j

wj : sj ∧
∧
m

tm −→ t′m,

where l is a label, and q, r are Σ-terms of the same kind. Intuitively, such a rule

specifies a one-step transition from a substitution instance of q to the corresponding

substitution instance of r, provided the condition holds; that is, that the substitution

instance of each condition in the rule follows from R (where condition tm −→ t′m is

understood as tm −→∗ t′m).

We briefly summarize the syntax of Maude and refer to [32] for more details. Sorts

and subsort relations are declared by the keywords sort and subsort, and operators are

introduced with the op keyword: op f : s1 . . . sn -> s, where s1 . . . sn are the sorts of

its arguments, and s is its (value) sort. Operators can have user-definable syntax, with

underbars ‘_’ marking each of the argument positions, and are declared with the sorts of

their arguments and the sort of their result. Some operators can have equational attributes,

such as assoc, comm, and id, stating, for example, that the operator is associative and

commutative and has a certain identity element. Such attributes are then used by the Maude

engine to match terms modulo the declared axioms. An operator can also be declared to be

a constructor (ctor) that builds up the data elements of its sort.

There are three kinds of logical statements in the Maude language, equations, memberships

(declaring that a term has a certain sort), and rewrite rules, introduced with the following

syntax:

• equations: eq u = v or ceq u = v if condition;

• memberships: mb u : s or cmb u : s if condition;

• rewrite rules: rl [l]: u => v or crl [l]: u => v if condition.

An equation f(t1, . . . , tn) = t with the owise (for “otherwise”) attribute can be applied to a

term f(. . .) only if no other equation with left-hand side f(u1, . . . , un) can be applied. The

mathematical variables in such statements are either explicitly declared with the keywords

var and vars, or can be introduced on the fly in a statement without being declared previ-

ously, in which case they have the form var:sort . Finally, a comment is preceded by ‘***’

or ‘---’ and lasts till the end of the line.

In object-oriented Maude specifications, a class declaration class C | att1 : s1, ...,

attn : sn declares a class C of objects with attributes att1 to attn of sorts s1 to sn. An object

9

instance of class C is represented as a term < O : C | att1 : val1, . . . , attn : valn >, where O,

of sort Oid, is the object’s identifier, and where val1 to valn (of respective sorts s1, . . . , sn)

are the current values of the attributes att1 to attn. A message is a term of sort Msg. A

system’s distributed state, called a configuration, is modeled as a term of the sort Config,

and has the structure of a multiset made up of objects and messages built up with an empty

syntax (juxtaposition) multiset union operator __.

The dynamic behavior of a system is axiomatized by specifying each of its concurrent

transition patterns by a rewrite rule. For example, the rule (with label l)

rl [l] : m(O,w)

< O : C | a1 : x, a2 : O’, a3 : z >

=>

< O : C | a1 : x + w, a2 : O’, a3 : z >

m’(O’,x) .

defines the family of concurrent transitions in which a message m, with parameters O and w,

is read and consumed by an object O of class C, the attribute a1 of the object O is changed

to x + w, and a new message m’(O’,x) is generated. Attributes whose values do not change

and do not affect the next state, such as a3, need not be mentioned in a rule; all such

“superfluous” attributes can be replaced by a variable (such as AS) of sort AttributeSet,

so that the above rewrite rule can also be written

rl [l] : m(O,w)

< O : C | a1 : x, a2 : O’, AS >

=>

< O : C | a1 : x + w, a2 : O’, AS >

m’(O’,x) .

Example 2.1. The following example shows parts of a Maude specification of a very simple

partitioned database system, where each client performs a sequence of read operations on

data items1 (or keys). A table assigns to each data item K the DB object that stores the data

item. When a client wants to read the value of a data item K, it sends a read(K) message to

the DB object storing K (rule getValue). This DB object replies with a value(K,V) message

(rule replyRead). When the client reads this response, it stores the pair (K,V) in its log

(rule readValue). We just show snippets of the Maude code, and omit, e.g., the declarations

of the data types and messages involved:

1By a “data item” we mean (as usual in this area) a key used to store values, and by “data” we mean
(as usual in this area) the values stored in such keys.

10

class Client | operations : OperationList, log : Log .

class DB | database : Map{Key,Value} .

op table : -> Map{Key,Oid} .

vars O O’ : Oid . var K : Key . var OL : OperationList .

var V : Value . var B : Map{Key,Oid} . var LOG : Log .

rl [getValue] :

< O : Client | operations : read(K) :: OL >

=> < O : Client | operations : OL >

(to table[K] from O : read(K)) .

rl [replyRead] :

(to O from O’ : read(K)) < O : DB | database : B >

=> < O : DB | > (to O’ from O : value(K,B[K])) .

rl [readValue] :

(to O from O’ : value(K,V)) < O : Client | log : LOG >

=> < O : Client | log : LOG ++ (K,V) > .

The following shows an initial configuration with two clients and two database partitions,

each storing two data items:

ops c1 c2 db1 db2 : -> Oid .

ops k1 k2 k3 k4 : -> Key .

op init : -> Configuration .

eq init =

< c1 : Client | operations : read(k3) :: read(k2), log : empty >

< c2 : Client | operations : read(k4) :: read(k3), log : empty >

< db1 : DB | database : k1 |-> 54, k2 |-> 8 >

< db2 : DB | database : k3 |-> 9, k4 |-> 7 > .

eq table = k1 |-> db1, k2 |-> db1, k3 |-> db2, k4 |-> db2 .

Reflection and Metaprogramming in Maude. Rewriting logic is reflective [33, 34], in

the sense that important aspects of its metatheory can be represented at the object level in

a consistent way. One important application of reflection is to support metaprogramming in

11

Maude in the sense that a term t in a rewrite theory R is meta-represented as a meta-term t of

sort Term, and a rewrite theory R is meta-represented as a term R of sort Module. A Maude

program (or specification) can then be transformed by means of a module transformation

equationally defined as a Maude function f : Module→ Module.

Example 2.2. To get a feeling for the similarity between the object-level and meta-level

notations, let us consider the metarepresentation of the module on the left as the term (called

a meta-module) displayed on the right:

fmod NAT is fmod ’NAT is

pr BOOL . protecting ’BOOL .

sorts Zero Nat . sorts ’Zero ; ’Nat .

subsort Zero < Nat . subsort ’Zero < ’Nat .

op 0 : -> Zero [ctor] . op ’0 : nil -> Zero [ctor] .

op s : Nat -> Nat [ctor] . op ’s : ’Nat -> ’Nat [ctor] .

op _+_ : Nat Nat -> Nat [ctor] . op ’_+_ : ’Nat ’Nat -> ’Nat [ctor] .

vars N M : Nat .

eq 0 + N = N . eq ’_+_[’0.Nat, ’N:Nat] = ’N:Nat .

eq s(N) + M = s(N + M) . eq ’_+_[’s[’N:Nat], ’M:Nat]

= ’s[’_+_[’N:Nat, ’M:Nat]] .

endfm endfm

where sorts and kinds are metarepresented as terms in subsorts Sort and Kind of the sort Qid

of quoted identifiers. For example, the natural number term s(N) + M shown on the left is

meta-represented as the meta-term ’ + [’s[’N:Nat], ’M:Nat] on the right using the meta-

level operator [] : Qid Term -> Term, the meta-representation of the NAT operators +

and s as quoted identifiers ’ + and ’s, and the meta-representation of variables N and M of

sort Nat as ’N:Nat and ’M:Nat.

Reachability Analysis in Maude. Maude provides a number of high-performance au-

tomatic analysis methods, including rewriting for simulation purposes, reachability analysis,

linear temporal logic (LTL) model checking, and statistical model checking. In this disser-

tation we use reachability analysis to model check consistency properties. Given an initial

state init , a state pattern pattern and an (optional) condition cond , Maude’s search com-

mand searches the reachable state space from init in a breadth-first manner for states that

match pattern and are such that cond holds:

search [bound] init =>! pattern such that cond .

12

where bound provides an upper bound on the number of solutions to be found (if omitted,

there is no such upper bound). The arrow =>! means that Maude only searches for reachable

final states (i.e., states that cannot be further rewritten) that match pattern and satisfies

cond . If the arrow used is instead =>* then Maude searches for all reachable states matching

the search pattern and satisfying cond .

Sockets in Maude. Maude’s erewrite command supports rewriting with external objects

(that do not reside in the configuration) when the “portal” object <> is present in the config-

uration. Objects in a Maude process, called here a session, can communicate with so-called

external objects in the same session by message passing. In particular, they can communi-

cate with Maude’s built-in socket manager object, with object name socketManager, that

supports establishing communication and communicating through TCP sockets with other

remote Maude objects in other Maude sessions, as well as with remote foreign objects (see

Section 7.1.3) in other processes. Some of the messages defining the interface between a

Maude process and Maude’s socket manager are the following:

A message createServerTcpSocket(socketManager,myOid, port, ...) asks Maude’s

socket manager to create a server socket. If the socket is created successfully, Maude’s socket

manager sends the message createdSocket(myOid,socketManager,socketName), where

socketName is the name of the created socket. The message send(socketName,myOid,string)

asks Maude to send string through the socket socketName. The message receive(socketName,

myOid) solicits data through a socket. When some data (string) is received through a socket,

the socket manager sends the message received(myOid,socketName,string).

2.2 STATISTICAL MODEL CHECKING AND PVESTA

Distributed systems are often probabilistic in nature, e.g., network latency such as message

delay may follow a certain probability distribution, plus some algorithms may be probabilis-

tic. Systems of this kind can be modeled by probabilistic rewrite theories [5] with rules of

the form:

[l] : t(−→x) −→ t′(−→x ,−→y) if cond(−→x) with probability −→y := π(−→x)

where the term t′ has additional new variables −→y disjoint from the variables −→x in the term

t. Since for a given matching instance of the variables −→x there can be many (often infinite)

ways to instantiate the extra variables −→y , such a rule is nondeterministic. The probabilistic

nature of the rule stems from the probability distribution π(−→x), which depends on the

13

matching instance of −→x , and governs the probabilistic choice of the instance of −→y in the

result t′(−→x ,−→y) according to π(−→x).

Statistical model checking [80, 94] is an attractive formal approach to analyzing proba-

bilistic systems against quantitative temporal logic properties. Instead of offering a binary

yes/no answer, it provides a quantitative real-valued answer and can verify a property up to

a user-specified level of confidence by running Monte-Carlo simulations of the system model.

The quantitative answer, however, need not be a percentage or a probability: it may instead

be a latency estimation, or a quantitative estimation of some other performance property.

For example, a statistical model checking result may be “86.87% of ROLA transactions

commit successfully with 95% confidence”. Existing statistical model checking verification

techniques assume that the system model is purely probabilistic. Using the methodology in

[5, 41] we can eliminate nondeterminism in the choice of firing rules. We then use PVeStA

[7], an extension and parallelization of the tool VeStA [81], to statistically model check

purely probabilistic systems against properties expressed by QuaTEx quantitative tempo-

ral logic [5]. The expected value of a QuaTEx expression is iteratively evaluated w.r.t. two

parameters α and δ provided as input by sampling until the size of (1-α)100% confidence

interval is bounded by δ, where the result of evaluating a formula is not a Boolean value,

but a real number.

2.3 STUTTERING BISIMULATIONS

For preservation of temporal logic properties between a Maude design of a concurrent

system and its automatic implementation as a distributed system we will use the notion of a

stuttering bisimulation map between Kripke structures. Recall that a Kripke structure A on

a set AP of atomic propositions is a 4-tuple A = (A,→A, a0, LA) where A is a set of states,

→A⊆ A × A is the total transition relation on states (total means that ∀a ∈ A ∃a′ ∈ A

s.t. a →A a′), a0 ∈ A is the initial state, and LA, called the labeling function, is a function

LA : A→ P(AP) assigning to each state a ∈ A the set of atomic state predicates LA(a) true

in state a. A path π in A is function π : N → A such that π(0) = a0 and ∀n ∈ N π(n) →A
π(n+ 1).

Given Kripke structures A and B, intuitively, a bisimulation is a proposition-preserving

correspondence between states of A and states of B such that any action of A can be

replicated by an action of B, and vice versa. In this dissertation, B will be a concurrent

system’s formal design in Maude, and A will be its distributed Maude implementation. The

implementation A will be correct by construction if we can prove that the design B and

its implementation A are bisimilar. Since what is an atomic transition in a design may be

14

realized by a sequence of transitions in its implementation, our bisimulation needs to be a

stuttering bisimulation map in the following sense:

Definition 2.1. [71] Given Kripke structures A = (A,→A, a0LA) and B = (B,→B, b0, LB),

a stuttering bisimulation map, denoted h : A → B, is a function h : A → B such that: (1)

given any path π inA there is a path ρ in B and a strictly monotonic function κ : N→ N such

that: (i) for each n ∈ N and each i, κ(n) ≤ i < κ(n+1), (ii) h(π(κ(n))) = h(π(κ(i))) = ρ(n),

and (iii) LA(π(κ(n))) = LA(π(i)) = LB(ρ(n)). And (2) given any path ρ in B there is a path

π in A and a strictly monotonic function κ : N→ N satisfying the above conditions (i)–(iii).

The states π(i), κ(n) ≤ i < κ(n+1), can be called the “stuttering states” of A bisimulated

by ρ(n) in B. The key property of a stuttering bisimulation map h : A → B is that

all formulas ϕ ∈ CTL∗ \ © satisfied by B are also satisfied by A, and vice versa, where

CTL∗ \© denotes the subset of the CTL∗ temporal logic not involving the “next” operator

© (for more on CTL∗, its LTL sublogic, and the satisfaction relation A |= ϕ between a

Kripke structure and a CTL∗ formula ϕ see [31]). That is, we have:

Theorem 2.1. [71], Thm. 3 (Implementation Correctness). If h : A → B is a stuttering

bisimulation map, for each ϕ ∈ CTL∗ \© we have: B |= ϕ ⇔ A |= ϕ.

Definition 2.1 is conceptually appealing but hard to check directly. As explained in [71],

a more easily checkable characterization by Manolios [66] can be adapted to our setting as

the following theorem:

Theorem 2.2. (Adapted from [66, 71]). If all states in Kripke structures A and B are

reachable from their corresponding initial states a0 and b0, then a function h : A→ B such

that h(a0) = b0 and LA = LB ◦ h is a stuttering bisimulation map h : A → B iff there is a

well-founded order (W,>) and a function µ : A×B → W such that whenever h(a) = b and

a →A a′, then either (i) there is a b′ ∈ B s.t. b →A b′ and h(a′) = b′, or (ii) h(a′) = b and

µ(a, b) > µ(a′, b), and, in addition, whenever h(a) = b and b→B b′, there is a finite sequence

of transitions a →A a1 . . . an →A an+1, with n ≥ 0, such that for 1 ≤ i < n + 1 h(ai) = b,

and h(an+1) = b′.

A concurrent system design is formally specified in Maude as a rewrite theory. For tem-

poral logic reasoning we can associate to a rewrite theory R = (Σ, E,R) and an initial state

init ∈ TΣ/E a corresponding Kripke structure K(R, init) = (Reach(init),−→•R/E, init , L) as

follows [32]: (i) Reach(init) is the set of all states [u] ∈ TΣ/E reachable from init , i.e., such

that [t] −→∗R/E [u], where −→R/E denotes the relation of rewriting E-equivalence classes

with the rules R modulo E; (ii) −→•R/E is the (totalization of) the one-step rewrite relation

15

−→R/E; and (iii) L maps each reachable state [u] to the set L([u]) = {p ∈ AP | u |= p =E

true}, where =E denotes equality modulo E and we assume that Σ contains a sort whose

ground terms are the atomic propositions AP , and E contains equations defining the satis-

faction relation u |= p between states and atomic propositions as a Boolean-valued function

|=.

2.4 TRANSACTION CONSISTENCY

Different applications require different consistency guarantees. There are therefore many

consistency properties for DTSs on partially replicated distributed data stores. This disser-

tation focuses on the following nine, which span a spectrum from weak consistency such as

read committed to strong consistency like serializability:

• Read committed (RC) [18] disallows a transaction2 from seeing any uncommitted or

aborted data.

• Cursor stability (CS) [38], widely implemented by commercial SQL systems (e.g., IBM

DB2 [3]) and academic prototypes (e.g., MDCC [50]), guarantees RC and in addition

prevents the lost update anomaly.

• Read atomicity (RA) [14] guarantees that either all or none of a (distributed) transac-

tion’s updates are visible to other transactions. For example, if Alice and Bob become

friends on social media, then Charlie should not see that Alice is a friend of Bob’s, and

that Bob is not a friend of Alice’s.

• Update atomicity (UA) [29, 59] guarantees read atomicity and prevents lost updates.

• Snapshot isolation (SI) [18] requires a multi-partition transaction to read from a snap-

shot of a distributed data store that reflects a single commit order of transactions across

sites, even if they are independent of each other. Alice sees Charlie’s post before seeing

David’s post if and only if Bob sees the two posts in the same order. Charlie and David

must therefore coordinate the order of committing their posts even if they do not know

each other.

• Parallel snapshot isolation (PSI) [85] weakens SI by allowing different commit orders

at different sites, while guaranteeing that a transaction reads the most recent version

2A transaction is a user application request, typically consisting of a sequence of read and/or write
operations on data items, that is submitted to a (distributed) database.

16

committed at the transaction execution site, as of the time when the transaction begins.

For example, Alice may see Charlie’s post before seeing David’s post, even though Bob

sees David’s post before Charlie’s post, as long as the two posts are independent of

each other. Charlie and David can therefore commit their posts without waiting for

each other.

• Non-monotonic snapshot isolation (NMSI) [9] weakens PSI by allowing a transaction

to read a version committed after the transaction begins. Alice may see Bob’s post

that committed after her transaction started executing.

• Serializability (SER) [75] ensures that the execution of concurrent transactions is equiv-

alent to one where the transactions are run one at a time.

• Strict Serializability (SSER) strengthens SER by enforcing the serial order to follow

real time.

17

CHAPTER 3: AUTOMATIC ANALYSIS OF CONSISTENCY PROPERTIES
OF DISTRIBUTED TRANSACTION SYSTEMS

In this chapter we present a generic framework for formalizing both DTSs and their con-

sistency properties in Maude. The modeling framework is very general and should allow us

to naturally model most DTSs. We formalize nine popular consistency models in this frame-

work and provide a fully automated method—and a tool which automates this method—for

analyzing whether a DTS specified in our framework satisfies the desired consistency prop-

erty for all initial states with the user-given number of transactions, data items, sites, and

so on.

In particular, we show how one can automatically add a monitoring mechanism which

records relevant history during a run of a DTS specified in our framework, and we define

the consistency properties on such histories so that the DTS can be directly model checked

in Maude. We have implemented a tool that uses Maude’s meta-programming features to

automatically add the monitoring mechanism, that automatically generates all the desired

initial states, and that performs the Maude model checking of the desired consistency prop-

erties. We have applied our tool to model check the consistency properties of state-of-the-art

DTSs such as variants of RAMP [14], P-Store [79], ROLA [59], Walter [85], and Jessy [9]. To

the best of our knowledge, this is the first time that model checking of all these properties

in a unified, systematic manner is investigated and supported.

This chapter is organized as follows. Section 3.1 presents our framework for modeling

DTSs in Maude, and Section 3.2 explains how to record the history in such models. Sec-

tion 3.3 formally defines consistency models as Maude functions on such recorded histories.

Section 3.4 introduces our tool which automates the entire process. Finally, Section 3.5

discusses related work and Section 3.6 gives some concluding remarks.

Acknowledgements. This chapter is based on the work [62] partially supported by NRL

contract N00173-17-1-G002, and NSFC Project No. 61872146.

3.1 MODELING DISTRIBUTED TRANSACTION SYSTEMS IN MAUDE

This section presents a framework for modeling in Maude DTSs that satisfy the following

general assumptions:

• We can identify and record “when”1 a transaction starts executing at its server/proxy

1Since we do not necessarily deal with real-time systems, this “when” may not denote the real time, but
means when the event takes place relative to other events.

18

and “when” the transaction is committed and aborted at the different sites involved

in its validation.

• The transactions record their read and write sets.

If such a DTS is modeled in this framework, our tool can automatically model check whether

it satisfies the above consistency properties, as long as it can detect the read and write sets

and the above events: start of transaction execution, and abort/commit of a transaction

at a certain site. This section explains how the system should be modeled so that our tool

automatically discovers these events.

We make the following additional assumptions about the DTSs we target:

• The database is distributed across of a number of sites, or servers or replicas, that

communicate by asynchronous message passing. Data are partially replicated across

these sites: a data item may be replicated/stored at more than one site. The sites

replicating a data item are called that item’s replicas.

• Systems evolve by message passing or by local computations. Servers communicate by

asynchronous message passing with arbitrary but finite delays.

• A client forwards a transaction to be executed to some server (called the transaction’s

executing server or proxy), which executes the transaction.

• Transaction execution should terminate in either a commit or an abort.

3.1.1 Modeling DTSs in Maude

A DTS is modeled in an object-oriented style, where the concurrent state consists of a con-

figuration containing number of replica objects, each modeling a local database/server/site,

and a number of messages traveling between the replica objects. A transaction is modeled

as an object which resides inside the replica object executing the transaction.

Basic Data Types. There are user-defined sorts Key for data items (or keys) and Version

for versions of data items, with a partial order < on versions, with v < v′ denoting that v′ is

a later version of v in <. We then define key-version pairs <key,version> and sets of such

pairs, that model a transaction’s read and write sets, as follows:

sorts Key Version KeyVersion .

op <_,_> : Key Version -> KeyVersion .

pr SET{KeyVersion} * (sort Set{KeyVersion} to KeyVersions) .

19

To track the status of a transaction (on non-proxies, or remote servers) we define a sort

TxnStatus consisting of a transaction’s identifier and its status; this is used to indicate

whether a remote transaction (one executed on another server) is committed on this server:

op [_,_] : Oid Bool -> TxnStatus [ctor] .

pr SET{TxnStatus} * (sort Set{TxnStatus} to TxnStatusSet) .

Modeling Replicas. A replica (or site) stores parts of the database, executes the trans-

actions for which it is the proxy, helps validating other transactions, and is formalized as an

object instance of a subclass of the following class Replica:

class Replica | executing : Configuration, committed : Configuration,

aborted : Configuration, decided : TxnStatusSet .

The attributes executing, committed, and aborted contain, respectively, transactions that

are being executed, and have been committed or aborted on the executing server; decided

is the status of transactions executed on other servers. Recall that transactions themselves

are modeled as objects internal to the replica storing them. That is why the executing,

committed, and aborted attributes have sort Configuration.

To model a system-specific replica a user should specify it as an object instance of a

subclass of the class Replica, perhaps with new attributes.

Example 3.1. A replica in our Maude model of Walter [61] is specified as an object instance

of the following subclass Walter-Replica of class Replica that adds 14 new attributes (only

4 shown below):

class Walter-Replica | store : Datastore, sqn : Nat,

locked : Locks, votes : Vote, ...

subclass Walter-Replica < Replica .

Modeling Transactions. A transaction should be modeled as an object of a subclass of

the following class Txn:

class Txn | readSet : KeyVersions, writeSet : KeyVersions .

where readSet and writeSet denote the key/version pairs read and written by the trans-

action, respectively.

Example 3.2. Walter transactions can be modeled as object instances of the subclass

Walter-Txn with four new attributes:

20

class Walter-Txn | operations : OperationList, localVars : LocalVars,

startVTS : VectorTimestamp, txnSQN : Nat .

subclass Walter-Txn < Txn .

Modeling System Dynamics. We describe how the rewrite rules defining the start of a

transaction execution and aborts and commits at different sites should be defined so that

our tool can detect these events.

• The start of a transaction execution should be modeled by a rewrite rule where the

transaction object appears in the proxy server’s executing attribute in the right-hand

side, but not in the left-hand side, of the rewrite rule.

Example 3.3. A Walter replica starts executing a transaction by moving the trans-

action TID in gotTxns (buffering transactions from clients) to executing:2

rl [start-txn] :

< RID : Walter-Replica | executing : TRANSES, committedVTS : VTS,

gotTxns : < TID : Walter-Txn | startVTS : empty > ;; TXNS >

=>

< RID : Walter-Replica | gotTxns : TXNS,

executing : TRANSES < TID : Walter-Txn | startVTS : VTS > > .

• When a transaction is committed on the executing server, the transaction object must

appear in the committed attribute in the right-hand side—but not in the left-hand

side—of the rewrite rule. Furthermore, the readSet and writeSet attributes must be

explicitly given in the transaction object.

Example 3.4. In Walter, when all operations of an executing read-only transaction

have been performed, the proxy commits the transaction directly:

rl [commit-read-only-txn] :

< RID : Walter-Replica | committed : TRANSES’,

executing : TRANSES

< TID : Walter-Txn | operations : nil, writeSet : empty, readSet : RS > >

=>

< RID : Walter-Replica | committed : (TRANSES’ < TID : Walter-Txn | >),

executing : TRANSES > .

2We do not give variable declarations, but follow the convention that variables are written in (all) capital
letters.

21

• When a transaction is aborted by the executing server, the transaction object must

appear in the aborted attribute in the right-hand side, but not in the left-hand side,

of a rewrite rule. Again, the transaction should present its attributes writeSet and

readSet (to be able to record relevant history).

Example 3.5. If either of the two conflict checks for fast commit fails, the executing

Walter replica aborts the transaction:

crl [fast-commit-failed] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica |

executing : < TID : Walter-Txn | operations : nil, writeSet : WS,

readSet : RS, startVTS : VTS > TRANSES,

aborted : TRANSES’, history : DS, locked : LOCKS >

=>

< TABLE : Table | >

< RID : Walter-Replica | executing : TRANSES,

aborted : TRANSES’ < TID : Walter-Txn | > >

if WS =/= empty /\ allLocalPreferred(WS, RID, REPLICA-TABLE)

/\ (modified(WS, VTS, DS) or locked(WS, LOCKS)) .

• A rewrite rule that models when a transaction’s status is decided remotely (i.e., not

on the executing server) must contain in the right-hand side (only) the transaction’s

identifier and its status in the replica’s decided attribute.

Example 3.6. Upon receiving the “disaster-safe durable” message, the remote Walter

replica “commits” the transaction TID by setting its status to true:

crl [receive-ds-durable-visible] :

msg ds-durable(TID) from RID’ to RID

< RID : Walter-Replica |

recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

committedVTS : VTS’, locked : LOCKS, decided : TSS >

=>

< RID : Walter-Replica |

committedVTS : insert(RID’,SQN,VTS’),

locked : release(TID,LOCKS), decided : (TSS, [TID,true]) >

msg visible(TID) from RID to RID’

if VTS’ gt VTS /\ s(VTS’[RID’]) == SQN .

22

These requirements can be easily met by many systems. The Maude models of the DTSs

RAMP [58], Faster [57], Walter [61], ROLA [59], Jessy [60], and P-Store [74] can all be

seen as instantiations of our modeling framework, with very small syntactic changes, such

as defining transaction and replica objects as subclasses of Txn and Replica, changing the

names of the attributes and sorts, etc. Google’s Megastore [16] is a cloud storage system with

transaction support; its Real-Time Maude model [45] can be adapted into our framework by

removing the nondeterministic communication delays for messages. The Apache Cassandra

[2] NoSQL key-value store can be seen as a transaction system where each transaction is a

single operation; the Maude model of Cassandra in [63] can also be easily modified to fit

within our modeling framework.

3.2 ADDING EXECUTION LOGS AND MONITORS

To formalize and analyze consistency properties of distributed transaction systems we

add an “execution log” that is stored in a monitor and records the history of relevant events

during a system execution. This section explains how this history recording can be added

automatically to a model of a DTS that has been specified according to the requirements

explained in Section 3.1.

3.2.1 Execution Log

To capture the total order of relevant events in a run, we use a “logical global clock”

to order all key events (i.e., transaction starts, commits, and aborts). This logical clock is

incremented by one each time any such event takes place.

A transaction in a replicated DTS is typically committed both locally (at its executing

server) and remotely at different times. To capture this, we define a “time vector” using

Maude’s map data type that maps replica identifiers (of sort Oid) to (typically “logical”)

clock values (of sort Time, which here are the natural numbers: subsort Nat < Time):

pr MAP{Oid,Time} * (sort Map{Oid,Time} to VectorTime) .

where each element in the mapping has the form replica-id |-> time .

An execution log (of sort Log) maps each transaction (identifier) to a record <proxy , issueTime,

finishTime, committed , reads , writes>, with proxy its proxy server, issueTime the start-

ing time at its proxy server, finishTime the commit/abort times at each relevant server,

committed a flag indicating whether the transaction is committed at its proxy, reads the

key-version pairs read by the transaction, and writes the key-version pairs written:

23

sort Record .

op <_,_,_,_,_,_> : Oid Time VectorTime Bool KeyVersions KeyVersions -> Record .

pr MAP{Oid,Record} * (sort Map{Oid,Record} to Log) .

3.2.2 Logging Execution History

We show how the relevant history of an execution can be recorded during a run of our

Maude model by transforming the original Maude model into one which also records this

history.

First, we add to the state a Monitor object that stores the current logical global time in

the clock attribute and the current log in the log attribute:

< M : Monitor | clock : Time, log : Log >.

The log is updated each time an interesting event (see Section 3.1.1) happens. Our tool

identifies those events and automatically transforms their corresponding rewrite rules by

adding and updating the monitor object.

Executing. A transaction starts executing when the transaction object appears in a

Replica’s executing attribute in the right-hand side, but not in the left-hand side, of

a rewrite rule. The monitor then adds a record for this transaction, with the proxy and start

time, to the log, and increments the logical global clock.

Example 3.7. The rewrite rule in Example 3.3 where a Walter replica is served a transaction

is modified by adding and updating the monitor object (in blue):

rl [start-txn] :

< O@M : Monitor | clock : GT@M, log : LOG@M >

< RID : Walter-Replica | executing : TRANSES, committedVTS : VTS,

gotTxns : < TID : Walter-Txn | startVTS : empty > ;; TXNS >

=>

< O@M : Monitor | clock : GT@M + 1 , log : LOG@M,

(TID |-> < RID, GT@M, empty, false, empty, empty >) >

< RID : Walter-Replica | gotTxns : TXNS,

executing : TRANSES < TID : Walter-Txn | startVTS : VTS > > .

where the monitor O@M adds a new record for the transaction TID in the log, with starting

time (i.e., the current logical global time) GT@M at its executing server RID, finish time

(empty), flag (false), read set (empty), and write set (empty). The monitor also increments

the global clock by one.

24

Commit. A transaction commits at its proxy when the transaction object appears in the

proxy’s committed attribute in the right-hand side, but not in the left-hand side, of a

rewrite rule. The record for that transaction is updated with commit status, versions read

and written, and commit time, and the global logical clock is incremented.

Example 3.8. The monitor object is added to the rewrite rule in Example 3.4 for committing

a read-only transaction:

rl [commit-read-only-txn] :

< O@M : Monitor | clock : GT@M, log : LOG@M ,

(TID |-> < RID, T@M, VTS@M, FLAG@M, READS@M, WRITES@M)) >

< RID : Walter-Replica | committed : TRANSES’,

executing : TRANSES

< TID : Walter-Txn | operations : nil, writeSet : empty, readSet : RS > >

=>

< O@M : Monitor | clock : GT@M + 1 , log : LOG@M ,

(TID |-> < RID, T@M, insert(RID,GT@M,VTS@M), true, RS, empty >)

< RID : Walter-Replica | committed : (TRANSES’ < TID : Walter-Txn | >),

executing : TRANSES > .

The monitor updates the log for the transaction TID by setting its finish time at the executing

server RID to GT@M (insert(RID,GT@M,VTS@M)), setting the committed flag to true, setting

the read set to RS and write set to empty (this is a read-only transaction), and increments

the global clock.

Abort. Abort is treated as commit, but the commit flag remains false.

Example 3.9. The monitor object is added to the rewrite rule in Example 3.5 for aborting

a transaction:

crl [fast-commit-failed] :

< O@M : Monitor | clock : GT@M, log : LOG@M ,

(TID |-> < RID, T@M, VTS@M, FLAG@M, READS@M, WRITES@M)) >

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica |

executing : < TID : Walter-Txn | operations : nil, writeSet : WS,

readSet : RS, startVTS : VTS > TRANSES,

aborted : TRANSES’, history : DS, locked : LOCKS >

=>

25

< O@M : Monitor | clock : GT@M + 1 , log : LOG@M ,

(TID |-> < RID, T@M, insert(RID,GT@M,VTS@M), false, RS, WS >)

< TABLE : Table | >

< RID : Walter-Replica | executing : TRANSES,

aborted : TRANSES’ < TID : Walter-Txn | > >

if WS =/= empty /\ allLocalPreferred(WS, RID, REPLICA-TABLE)

/\ (modified(WS, VTS, DS) or locked(WS, LOCKS)) .

Decided. When a transaction’s status is decided remotely, the record for that transaction’s

decision time at the remote replica is updated with the current global time.

Example 3.10. The rewrite rule from Example 3.6 for committing a transaction remotely

is transformed into the following rewrite rule:

crl [receive-ds-durable-visible] :

< O@M : Monitor | clock : GT@M, log : LOG@M ,

TID |-> < VTS1@M, VTS2@M, FLAG@M, READS@M, WRITES@M > >

msg ds-durable(TID) from RID’ to RID

< RID : Walter-Replica |

recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

committedVTS : VTS’, locked : LOCKS, decided : TSS >

=>

< O@M : Monitor | clock : GT@M + 1 , log : LOG@M ,

TID |-> < VTS1@M, insert(RID,GT@M,VTS2@M) , FLAG@M, READS@M, WRITES@M > >

< RID : Walter-Replica |

committedVTS : insert(RID’,SQN,VTS’),

locked : release(TID,LOCKS), decided : (TSS, [TID,true]) >

msg visible(TID) from RID to RID’

if VTS’ gt VTS /\ s(VTS’[RID’]) == SQN .

where the monitor O@M only needs to add the commit time for the replica RID, besides

advancing the global time.

3.2.3 Implementing the Monitoring Mechanism

We have formalized and implemented the transformation from a Maude specification of

a DTS into one having a monitor as a meta-level function monitorRules : Module ->

Module in Maude. Specifically, the transformation takes as input Maude object-oriented

26

modules satisfying the requirements in Section 3.1 and including the rewrite rules specifying

the system dynamics, instruments the “interesting” rewrites rules at the meta-level according

to the monitoring mechanism, and outputs a new flattened model of the system and the

monitor.

The function monitorRules takes as argument a rewrite rule and returns a new one that

is possibly equipped with the monitor and its behavior. The following two equations are

defined to formalize the monitoring mechanism:

ceq monitorRules(rl T => T’ [ATR] .) = (rl T1 => T2 [ATR] .)

if ’__[T1,T2] := monitorTerms(T,T’,false) .

ceq monitorRules(crl T => T’ if COND [ATR] .) =

(crl T1 => T2 if COND [ATR] .)

if ’__[T1,T2] := monitorTerms(T,T’,false) .

The first equation handles an unconditional rewrite rule, while the second one handles a

conditional one.

The meta-level function monitorTerms takes terms T and T’ from both sides of a rule, and

returns, if monitoring is needed, two new ones T1 and T2, forming the new rule with the mon-

itor’s behavior. The monitor’s behavior depends on the input rewrite rule in terms of either

the execution, local commit, remote commit, or abort of the transaction. In the cases where

the monitor should be added, the term T1 is a concatenation of the term T and the monitor

pattern (e.g., < O@M : Monitor | clock: GT@M, log: (TID |-> < VTS1@M, VTS2@M,

FLAG@M, READS@M, WRITES@M), LOG@M)>), while the term T2 is a concatenation of the term

T’, and the resulting monitor pattern determined by the status change of the transaction

encoded by the input rewrite rule.

Example 3.11. The definition of monitorTerms in the case of Commit is defined by the

following meta-level equation:

--- case 2: locally committed

ceq monitorTerms(T,T’) =

’__[’__[newMonitor(getTID(T1)),T],

’__[resultMonitor(getTID(T), getReplicaID(T),’true.Bool,

getAttr(’readSet‘:_,T1),getAttr(’writeSet‘:_,T1)),T’]]

if isCommitted(T,T’) /\ T1 := getAttr(’executing‘:_,T) .

where the function newMonitor is used to construct a new monitor pattern with a given

transaction’s identifier, and resultMonitor constructs the resulting pattern with the trans-

action’s identifier, replica’s identifier, a Boolean value indicating whether the transaction is

27

successfully committed or not, the set of versions read, and the set of versions written by

the transaction. The function isCommitted returns true if the transition from T to T’ is

caused by the local commit of the transition T1, which is determined by whether or not the

transaction appears in the attribute committed in T’, but not in that in T.

3.3 FORMALIZING CONSISTENCY MODELS IN MAUDE

This section formalizes the consistency properties informally described in Section 2.4 as

functions on the “history log” of a completed run.

Read Committed (RC). (A transaction cannot read any writes by uncommitted transac-

tions.) Note that standard definitions for single-version databases disallow reading versions

that are not committed at the time of the read. We follow the definition for multi-versioned

systems by Adya, summarized by Bailis et al. [14], that defines the RC property as follows:

(i) a committed transaction cannot read a version that was written by an aborted transac-

tion; and (ii) a transaction cannot read intermediate values : that is, if T writes two versions

< X,V > and < X,V’ > with V < V’, then no T ′ 6= T can read < X,V >.

The first equation defining the function rc, specifying when RC holds, checks whether

some (committed) transaction TID1 reads version V of key X (i.e., < X,V > is in TID’s read set

< X,V > , RS, where RS matches the rest of TID’s read set), and this version V was written by

some transaction TID2 that was never committed (i.e., TID2’s commit flag is false, and its

write set is < X,V > , WS’). The second equation checks whether there was an intermediate

read of a version < X,V > that was overwritten by the same transaction TID2 that wrote the

version:3

op rc : Log -> Bool .

eq rc(TID1 |-> < O, T, VT, true, (< X,V >, RS), WS >,

TID2 |-> < O’, T’, VT’, false, RS’, (< X,V >, WS’) >, LOG) = false .

eq rc(TID1 |-> < O, T, VT, true, (< X,V >, RS), WS >,

TID2 |-> < O’, T’, VT’, true, RS’, (< X,V >, < X,V’ >,WS’) >,

LOG) = false if V < V’ .

eq rc(LOG) = true [owise] .

3The configuration union and the union operator ‘,’ for maps and sets are declared associative and
commutative. The first equation therefore matches any log where some committed transaction read a key-
version pair written by some aborted transaction.

28

Read Atomicity (RA). A system guarantees RA if it prevents fractured reads and pre-

vents transactions from reading uncommitted or aborted data. A transaction Tj exhibits

fractured reads if transaction Ti writes versions xm and yn, Tj reads version xm and version

yk, and k < n [14]. The function fracRead checks whether there are fractured reads in the

log. There is a fractured read if a transaction TID2 reads X and Y, transaction TID1 writes X

and Y, TID2 reads the version VX of X written by TID1, and reads a version VY’ of Y written

before VY (VY’ < VY):

op fracRead : Log -> Bool .

ceq fracRead(TID1 |-> < O, T, VT, true, (< X,VX > , < Y,VY’ >, RS), WS >,

TID2 |-> < O’, T’, VT’, true, RS’, (< X,VX > , < Y,VY >, WS’) >, LOG)

= true if VY’ < VY .

eq fracRead(LOG) = false [owise] .

We define RA as the combination of RC and no fractured reads:

op ra : Log -> Bool .

eq ra(LOG) = rc(LOG) and not fracRead(LOG) .

Cursor Stability (CS) [38] strengthens RC by also preventing lost updates (LU). LU

can only happen with multiple conditional writes (i.e., a transaction first fetches some value

of an data item, and then updates it with a new value) fetching the same data. Once

one of those transactions commits its writes, the others must be aborted. The function lu

captures the case when there are two committed transactions TID1 and TID2, both of which

read the same version V of data item X (i.e., < X,V > is in the read sets of both TID1 and

TID2), and commit on the same key (i.e., the two transactions wrote < X,VX > and < X,VX’ >,

respectively):

op lu: Log -> Bool .

eq lu(TID1 |-> < O, T, VT, true, (< X,V > , RS), (< X,VX >, WS) >,

TID2 |-> < O’, T’, VT’, true, (< X,V > , RS’), (< X,VX’ >, WS’) >,LOG) = true .

eq lu(LOG) = false [owise] .

CS can then be specified as conjunction of RC and no lost updates:

op cs : Log -> Bool .

eq cs(LOG) = rc(LOG) and not lu(LOG) .

29

Update Atomicity (UA) [29, 59] provides read atomicity and prevents lost updates:

op ua : Log -> Bool .

eq ua(LOG) = ra(LOG) and not lu(LOG) .

Snapshot Isolation (SI) is defined by two properties in [85]:

• SI-1 (snapshot read): All operations in a transaction read the most recent committed

version as of time when the transaction began.

• SI-2 (no write-write conflicts): The write sets of each pair of committed concurrent4

transactions must be disjoint.

The function notSnapshotRead holds when SI-1 is violated. The first conditional equation

handles the case when a transaction TID1 reads another transaction TID2’s version written

(< X,V >), while the most recent committed version from TID1’s perspective is < X,V’ > written

by TID3 (TID3’s commit time T’ at its proxy RID3 is between TID2’s commit time T at its

proxy RID2 and TID1’s start time T1). The second conditional equation checks if TID1 read

some version that was committed after it started (T1 < T):

op notSnapshotRead : Log -> Bool .

ceq notSnapshotRead(

TID1 |-> < RID1, T1, VT1, true, (< X,V > , RS1), WS1 >,

TID2 |-> < RID2, T2, (RID2 |-> T, VT2), true, RS2, (< X,V >, WS2) >,

TID3 |-> < RID3, T3, (RID3 |-> T’, VT3), true, RS3, (< X,V’ > , WS3) >,

LOG) = true if V =/= V’ /\ T’ < T1 /\ T’ > T .

ceq notSnapshotRead(

TID1 |-> < RID1, T1, VT1, true, (< X,V > , RS1), WS1 >,

TID2 |-> < RID2, T2, (RID2 |-> T, VT2), true, RS2, (< X,V >, WS2) >,

LOG) = true if T1 < T .

eq notSnapshotRead(LOG) = false [owise] .

The function wwConflict captures write-write conflicts: there are two transactions TID1

and TID2, both writing key X, and TID2 is committed at its proxy at time T, which comes

after the start time T1 of TID1 but before its commit time T2 at its proxy. The committed

(flag true) transactions TID1 and TID2 are therefore concurrent and write the same key,

and hence we have a write-write conflict:

4Two committed transactions are concurrent if one of them has a commit timestamp (at its proxy)
between the start and the commit timestamp of the other.

30

op wwConflict: Log -> Bool .

ceq wwConflict(

TID1 |-> < RID, T1, (RID |-> T2 , VT2), true, RS, (< X,V > , WS) >,

TID2 |-> < RID’, T3, (RID’ |-> T , VT4), true, RS’, (< X,V’ > , WS’) >,

LOG) = true if T > T1 /\ T < T2 .

eq wwConflict(LOG) = false [owise] .

SI holds when there is no violation of snapshot read and no write-write conflicts:

op si : Log -> Bool .

eq si(LOG) = not notSnapshotRead(LOG) and not wwConflict(LOG) .

Parallel snapshot isolation (PSI) is given by three properties [85]:

• PSI-1 (site snapshot read): All operations read the most recent committed version at

the transaction’s site as of the time when the transaction began.

• PSI-2 (no write-write conflicts): The write sets of each pair of committed somewhere-

concurrent5 transactions must be disjoint.

• PSI-3 (commit causality across sites): If a transaction T1 commits at a site S before a

transaction T2 starts at site S, then T1 cannot commit after T2 at any site.

The function notSiteSnapshotRead checks whether the system log satisfies PSI-1 by

returning true if there is a transaction that did not read the most recent committed version

at its executing site when it began:

op notSiteSnapshotRead : Log -> Bool .

ceq notSiteSnapshotRead(

TID1 |-> < RID1, T, VT1, true, (< X,V > , RS1), WS1 >,

TID2 |-> < RID2, T’, (RID1 |-> T2 , VT2), true, RS2, (< X,V > , WS2) >,

TID3 |-> < RID3, T’’, (RID1 |-> T3 , VT3), true, RS3,(< X,V’ > , WS3) >,

LOG) = true if V =/= V’ /\ T3 < T /\ T3 > T2 .

ceq notSiteSnapshotRead(

TID1 |-> < RID1, T, VT1, true, (< X,V > , RS1), WS1 >,

TID2 |-> < RID2, T’, (RID1 |-> T2 , VT2), true, RS2, (< X,V > , WS2) >,

LOG) = true if T < T2 .

eq notSiteSnapshotRead(LOG) = false [owise] .

5Two transactions are somewhere-concurrent if they are concurrent at one of their sites.

31

In the first equation, the transaction TID1, hosted at site RID1, has in its read set a version

< X,V > written by TID2. Some transaction TID3 wrote version < X,V’ > and was committed

at RID1 after TID2 was committed at RID1 (T3 > T2) and before TID1 started executing (T3

< T). Hence, the version read by TID1 was stale. The second equation checks if TID1 read

some version that was committed at RID1 after TID1 started (T < T2).

The function someWhereConflict checks whether PSI-2 holds by looking for a write-write

conflict between any pair of committed somewhere-concurrent transactions in the system log:

op someWhereConflict : Log -> Bool .

ceq someWhereConflict(

TID1 |-> < RID1, T, (RID1 |-> T1 , VT1), true, RS, (< X,V > , WS) >,

TID2 |-> < RID2, T’, (RID1 |-> T2 , VT2), true, RS’, (< X,V’ > , WS’) >,

LOG) = true if T2 > T /\ T2 < T1 .

eq someWhereConflict(LOG) = false [owise] .

The above function checks whether the transactions with the write conflict are concurrent

at the transaction TID1’s proxy RID1. Here, TID2 commits at RID1 at time T2, which is

between TID1’s start time T and its commit time T1 at RID1.

The function notCausality analyzes PSI-3 by checking whether there was a “bad situa-

tion” in which a transaction TID1 committed at site RID2 before a transaction TID2 started

at site RID2 (T1 < T2), while TID1 committed at site RID after TID2 committed at site RID

(T3 > T4):

op notCausality : Log -> Bool .

ceq notCausality(

TID1 |-> < RID1, T, (RID2 |-> T1 , RID |-> T3 , VT2), true, RS, WS >,

TID2 |-> < RID2, T2, (RID |-> T4 , VT4), true, RS’, WS’ >,

LOG) = true if T1 < T2 /\ T3 > T4 .

eq notCausality(LOG) = false [owise] .

PSI can then be defined by combining the above three properties:

op psi : Log -> Bool .

eq psi(LOG) = not notSiteSnapshotRead(LOG) and

not someWhereConflict(LOG) and not notCausality(LOG) .

Non-monotonic snapshot isolation (NMSI) is the same as PSI except that a transac-

tion may read a version committed even after the transaction begins [8]. NMSI can therefore

be defined as the conjunction of PSI-2 and PSI-3:

32

op nmsi : Log -> Bool .

eq nmsi(LOG) = not someWhereConflict(LOG) and not notCausality(LOG) .

Serializability (SER) means that the concurrent execution of transactions is equivalent

to executing them in some (non-overlapping in time) sequence [75].

A formal definition of SER is based on direct serialization graphs (DSGs): an execution is

serializable if and only if the corresponding DSG is acyclic. Each node in a DSG corresponds

to a committed transaction, and directed edges in a DSG correspond to the following types

of direct dependencies [4]:

• Read dependency: Transaction Tj directly read-depends on transaction Ti if Ti writes

some version xi and Tj reads that version xi.

• Write dependency: Transaction Tj directly write-depends on transaction Ti if Ti writes

some version xi and Tj writes x’s next version after xi in the version order.

• Antidependency: Transaction Tj directly antidepends on transaction Ti if Ti reads some

version xk and Tj writes x’s next version after xk.

There is a directed edge from a node Ti to another node Tj if transaction Tj directly read-

/write-/antidepends on transaction Ti.

The dependencies/edges can easily be extracted from our log as follows:

• If there is a key-version pair < X , V > both in T2’s read set and in T1’s write set, then

T2 read-depends on T1.

• If T1 writes < X, V1 > and T2 writes < X, V2 >, and V1 < V2, and there no version < X, V >

with V1 < V < V2, then T2 write-depends on T1.

• T2 antidepends on T1 if < X, V1 > is in T1’s read set, < X, V2 > is in T2’s write set with

V1 < V2 and there is no version < X, V > such that V1 < V < V2.

We have defined in Maude a data type Dsg for DSGs:

sorts Dsg Edge . subsort Edge < Dsg .

op <_;_> : Oid Oid -> Edge [ctor] .

eq E ; E = E .

op emptyDsg : -> Dsg [ctor] .

op _;_ : Dsg Dsg -> Dsg [ctor assoc comm id: emptyDsg] .

33

We have defined a function dsg that constructs the DSG from a log by iteratively adding

edges between committed transactions (aborted transactions are dropped from the log):

op dsg : Log -> Dsg .

op dsg : Log Log Dsg -> Dsg .

eq dsg(LOG) = dsg(LOG,LOG,emptyDsg) .

eq dsg((TID |-> < O,T,VT,false,RS,WS >,LOG’),LOG,DSG) = dsg(LOG’,LOG,DSG) .

For each transaction in the log, the construction builds up dependency edges with the read

set and write set in order; within the read/write set, the construction checks dependencies

for each version read/written.

First, we find read dependencies for versions read in the read set:

ceq dsg((TID |-> < O,T,VT,true,(KVER,RS),WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(KVER,WS’) >,LOG),DSG)

= dsg((TID |-> < O,T,VT,true,RS,WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(KVER,WS’) >,LOG),

(DSG ; < TID’ ; TID >)) if TID =/= TID’ .

where the transaction TID reads KVER written by another transaction TID’, and thus a new

edge < TID’ ; TID > is added to the DSG.

If version VS’ written by the transaction TID’ is the next version of VS read by the

transaction TID, we add an antidependency edge < TID ; TID’ > to the DSG:

ceq dsg((TID |-> < O,T,VT,true,(< X,VS >,RS),WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(< X,VS’ >,WS’) >,LOG),DSG)

= dsg((TID |-> < O,T,VT,true,RS,WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(< X,VS’ >,WS’) >,LOG),

(DSG ; < TID ; TID’ >))

if VS < VS’ /\ TID =/= TID’ /\ not committedBetween(X,VS,VS’,LOG) .

where the function committedBetween returns true iff (for if and only if) there is a version

committed between the two versions in the version order. It is defined as:

op committedBetween : Key Version Version Log -> Bool .

ceq committedBetween(X,VS,VS’,

(TID |-> < O,T,VT,true,RS, (< X,VS’’ >,WS) >,LOG))

= true if VS’’ < VS’ /\ VS < VS’’ .

eq committedBetween(X,VS,VS’,LOG) = false [owise] .

34

If there are no more edges to be added for the current version read, we move to the next

version read:

eq dsg((TID |-> < O,T,VT,true,(< X,VS >,RS),WS >,LOG’),LOG,DSG)

= dsg((TID |-> < O,T,VT,true,RS,WS >,LOG’),LOG,DSG) [owise] .

Once all versions read in the read set are handled, we continue to build up the DSG by

investigating the write set.

If the transaction TID’ writes the next version VS’ of VS written by another transaction

TID, an write-dependency edge < TID ; TID’ > is added to the DSG:

ceq dsg((TID |-> < O,T,VT,true,empty,(< X,VS >,WS) >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(< X,VS’ >,WS’) >,LOG),DSG)

= dsg((TID |-> < O,T,VT,true,empty,WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(< X,VS’ >,WS’) >,LOG),

(DSG ; < TID ; TID’ >))

if VS < VS’ /\ TID =/= TID’ /\ not committedBetween(X,VS,VS’,LOG) .

If VS written by the transaction TID is the next version of VS’ read by the transaction

TID’, we add an antidependency edge < TID’ ; TID > to the DSG:

ceq dsg((TID |-> < O,T,VT,true,empty,(< X,VS >,WS) >,LOG’),

(TID’ |-> < O’,T’,VT’,true,(< X,VS’ >,RS’),WS’ >,LOG),DSG)

= dsg((TID |-> < O,T,VT,true,empty,WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,(< X,VS’ >,RS’),WS’ >,LOG),

(DSG ; < TID’ ; TID >))

if VS’ < VS /\ TID =/= TID’ /\ not committedBetween(X,VS’,VS,LOG) .

If there are no more edges to be added for the current version written, we move to the

next version written:

eq dsg((TID |-> < O,T,VT,true,empty,(< X,VS >,WS) >,LOG’),LOG,DSG)

= dsg((TID |-> < O,T,VT,true,empty,WS >,LOG’),LOG,DSG) [owise] .

When all dependency edges are handled for a transaction (indicated by empty for both

the read set and write set), we move to the next (committed) transaction:

eq dsg((TID |-> < O,T,VT,true,empty,empty >,LOG’),LOG,DSG)

= dsg(LOG’,LOG,DSG) .

Finally, we get the resulting DSG out of the execution history:

35

eq dsg(empty,LOG,DSG) = DSG .

Based on the constructed DSG, we define a predicate cycle : Dsg -> Bool that checks

whether the DSG has cycles:

op cycle : Dsg -> Bool .

eq cycle(DSG) = cycle(txnIds(DSG),DSG,empty) .

op cycle : OidSet Dsg OidSet -> Bool .

ceq cycle((TID,TIDS),DSG,TIDS’) = true if TID in TIDS’ .

ceq cycle((TID,TIDS),DSG,TIDS’) =

cycle(destNodes(TID,DSG),DSG,(TIDS’,TID))

or cycle(TIDS,DSG,TIDS’) if not (TID in TIDS’) .

eq cycle(empty,DSG,TIDS’) = false .

where the function txnIds returns a set of identifiers of all transactions in the DSG; the

function destNodes computes for some node in the DSG all nodes it directly points to by

the dependency edges:

op txnIds : Dsg -> OidSet .

eq txnIds(DSG ; < TID ; TID’ >) = TID ; TID’ ; txnIds(DSG) .

eq txnIds(emptyDsg) = empty .

op destNodes : Oid Dsg -> OidSet .

eq destNodes(TID,(< TID ; TID’ > ; DSG)) = TID’ ; destNodes(TID,DSG) .

eq destNodes(TID,DSG) = empty [owise] .

SER then holds iff there is no cycle in the constructed DSG:

op ser : Log -> Bool .

eq ser(LOG) = not cycle(dsg(LOG)) .

Strict Serializability (SSER) guarantees that all transactions can be serialized in an

order that also respects the real time order. For example, under SSER, once an update

transaction commits its writes, all later transactions (where “later” is defined by the wall-

clock time modeled by our logical global clock) should return the version of that transaction

or the version of a later update transaction.

Thus we define the following three functions to check if the read, write, or anti- dependency

does not respect the real-time order, respectively.

If a transaction reads some stale data, the read dependency violates the real-time order:

36

op notRtReadDep : Log -> Bool .

ceq notRtReadDep((TID1 |-> < RID,T,VT,true,(< X,VS >,RS),WS >,

TID2 |-> < RID’,T1,(RID’ |-> T2,VT’),true,RS’,

(< X,VS >,WS’) >,LOG)) = true

if T2 < T /\ rtCommittedBetween(X,T2,T,LOG) .

where the transaction TID1 reads the stale data < X,VS > written by TID2. The data is

stale because there is some version committed between TID2’s commit and TID1’s start in

real time. This is determined by the function rtCommittedBetween:

op rtCommittedBetween : Key Time Time Log -> Bool .

ceq rtCommittedBetween(X,T1,T2,

(TID |-> < RID,T,(RID |-> T’,VT),true,RS,(< X,V >,WS) >,LOG))

= true if T1 < T’ /\ T’ < T2 .

eq rtCommittedBetween(X,T1,T2) = false [owise] .

The write dependency violates the real-time order if one version is the next version of the

other in the version order, but there is some version committed in-between in real time:

op notRtWriteDep : Log -> Bool .

ceq notRtWriteDep((

TID1 |-> < RID,T1,(RID |-> T1’,VT),true,RS,(< X,VS >,WS) >,

TID2 |-> < RID’,T2,(RID’ |-> T2’,VT’),true,RS’,

(< X,VS’ >,WS’) >,LOG)) = true

if VS < VS’ /\ not committedBetween(X,VS,VS’,LOG) /\

T1’ < T2’ /\ rtCommittedBetween(X,T1’,T2’,LOG) .

where the version VS’ is the next version of VS, but there is some version committed between

the respective commit times T1’ and T2’.

The antidependency violates the real-time order if the version written is the next version of

the version read in the version order with some version committed between the two versions

in real time:

op notRtAntiDep : Log -> Bool .

ceq notRtAntiDep((

TID1 |-> < RID1,T1,(RID1 |-> T1’,VT1),true,(< X,VS >,RS1),WS1 >,

TID2 |-> < RID2,T2,(RID2 |-> T2’,VT2),true,RS2,(< X,VS’ >,WS2) >,

LOG)) = true

if VS < VS’ /\ not committedBetween(X,VS,VS’,LOG) /\

T1’ < T2’ /\ rtCommittedBetween(X,T1’,T2’,LOG) .

37

Finally, by combining the three checks we have the definition for SSER:

op sser : Log -> Bool .

eq sser(LOG) = not notRtReadDep(LOG) and

not notRtWriteDep(LOG) and not notRtAntiDep(LOG) .

3.4 FORMAL ANALYSIS OF CONSISTENCY PROPERTIES

3.4.1 Parametric Generation of Initial States

Explicit-state model checkers like Maude are typically quite expressive but only analyze

the system from a single initial configuration. To increase coverage, we would like to model

check system models for all possible configurations satisfying certain bounds, for example

having j transactions and k clients. Despite the wealth of Maude applications, we are not

aware of any work doing such comprehensive model checking in Maude. We therefore present

a general technique in Maude for model checking a system from a range of different initial

configurations.

Specifically, we introduce a new operator init so there is a one-step rewrite init(params)

−→ c0 for each possible initial configuration c0 satisfying the given parameter requirements,

and declare a sort for sets of configurations:

sort ConfigSet . subsort Configuration < ConfigSet .

op empty : -> ConfigSet .

op _;_ : ConfigSet ConfigSet -> ConfigSet [assoc comm id: empty] .

We define a function

op initAux : s1 ... sn sn+1 ... sn+m -> ConfigSet .

such that s1 ... sn are the sorts for the user-specified parameters params , and sn+1 ...

sn+m those for the auxiliary parameters params ′, and then initAux(params,params ′) gen-

erates all possible initial states for such parameters. We also add the following rewrite rule

to our model:

var C : Configuration . var CS : ConfigSet .

crl [init] : init(params) => C if C ; CS := initAux(params,params’) .

38

init’s parameters specify the number of each of the following parameters: read-only, write-

only, and read-write transactions; operations for each type of transaction; clients; servers;

keys; and replicas per key.

Here we only illustrate how to generate replicas, and how to replicate keys. The entire

specification is given at https://github.com/siliunobi/cat.

We start by generating the replica table and key-variable pairs. keyVars consists of “;”-

separated key-variable pairs < k1, var1 > ; ... ; < kn, varn >, each of which has a key k

and the associated local variable var. The function kvars extracts KEYS key-variable pairs

from keyVars:

--- generate table and key-var pairs:

crl initAux(RTX,WTX,RWTX,ROP,WOP,RWOP,CLS,SVS,KEYS,RF,none)

=> $initAux(RTX,WTX,RWTX,ROP,WOP,RWOP,CLS,SVS,KVARS,genKeyVarSet(KVARS),RF,

< 0 : Table | table : initTable(KVARS) >)

if KVARS := kvars(KEYS,keyVars) .

The function initTable initializes the replica table for each key with its replicas of nil:

--- initialize table with generated keys:

op initTable : KeyVars -> ReplicaTable .

op $initTable : KeyVars ReplicaTable -> ReplicaTable .

eq initTable(KVARS) = $initTable(KVARS,[emptyTable]) .

eq $initTable((< K,VAR > ; KVARS),[KEYREPLICAS]) =

$initTable(KVARS,[sites(K,nil) ;; KEYREPLICAS]) .

eq $initTable(noKeyVar,[KEYREPLICAS]) = [KEYREPLICAS] .

We now generate replicas, assign the keys to them, and update the replica table accord-

ingly.

Example 3.12. Walter replicas are generated with the attributes in Example 3.1:

--- generate Walter replicas:

rl $initAux(RTX,WTX,RWTX,ROP,WOP,RWOP,CLS,s PARS,KVARS,KS,RF,C)

=> $initAux(RTX,WTX,RWTX,ROP,WOP,RWOP,CLS,PARS,KVARS,KS,RF,C

< s PARS : Walter-Replica | executing : none, committed : none,

aborted : none, decided : empty, store : empty, sqn : 0,

locked : empty, votes : empty, ... >) .

--- assign keys to Walter replicas and update table accordingly:

39

crl $initAux(RTX,WTX,RWTX,ROP,WOP,RWOP,CLS,0,(< K,VAR > ; KVARS),KS,s RF,

< RID : Walter-Replica | store : VS >

< 0 : Table | table : [sites(K,RIDS) ;; KEYREPLICAS] > C)

=> $initAux(RTX,WTX,RWTX,ROP,WOP,RWOP,CLS,0,(< K,VAR > ; KVARS),KS,RF,

< RID : Walter-Replica | store : (VS,K |-> (< [0],version(0,0) >)) >

< 0 : Table | table : [sites(K,RIDS RID) ;; KEYREPLICAS] > C)

if not $hasMapping(VS,K) .

Note that, to assign a key to a replica, we nondeterministically add a replica RID to key K’s

replicating sites. Once the key has been assigned to replication factor replicas, we continue

to the next key by resetting the replication factor to rf:

--- next key

rl $initAux(RTX,WTX,RWTX,ROP,WOP,RWOP,CLS,0,(< K,VAR > ; KVARS),KS,0,C)

=> $initAux(RTX,WTX,RWTX,ROP,WOP,RWOP,CLS,0,KVARS,KS,rf,C) .

3.4.2 The CAT Tool

We have implemented the Consistency Analysis Tool (CAT) that automates the new

method for model checking consistency properties explained in this chapter. CAT takes as

input:

• A Maude model of the DTS specified as explained in Section 3.1.

• The desired number of each of the following initial state parameters: read-only, write-

only, and read-write transactions; operations for each type of transaction; clients;

servers; keys; and replicas per key. The tool analyzes the desired property for all

initial states having the desired number of each of these parameters.

• The consistency property to be analyzed.

Given these inputs, CAT performs the following steps:

1. adds the monitoring mechanism to the user-provided system model;

2. generates all possible initial states with the user-provided numbers of items for the

different parameters; and

3. executes the following command to search, from all generated initial states, for one

reachable final state where the consistency property does not hold:

40

search [1] init =>! C:Configuration

< M:Oid : Monitor | log: LOG:Log clock: N:Nat >

such that not consistency-property(LOG:Log) .

where the underlined functions are parametric, and are instantiated by the user inputs;

e.g., consistency-property is replaced by the corresponding function rc, psi, nmsi,

. . . , or ser, depending on which property to analyze.

CAT outputs either “No solution,” meaning that all runs from all the given initial states

satisfy the desired consistency property, or a counterexample (in Maude at the moment)

showing a behavior that violates the property.

Table 3.1: Model Checking Results w.r.t. Consistency Properties. “X”, “×”, and “-” refer
to satisfying or violating the property, and “not applicable”, respectively.

Maude Model LOC Consistency Property
RC RA CS UA NMSI PSI SI SER SSER

RAMP-F [58] 330 X X × × - - × × ×
RAMP-F+1PW [57] 302 X X × × - - × × ×
RAMP-F+FC [57] 305 X X × × - - × × ×
RAMP-F¬2PC [57] 320 X × × × - - × × ×

RAMP-S [58] 255 X X × × - - × × ×
RAMP-S+1PW [57] 237 X X × × - - × × ×
RAMP-S¬2PC [57] 248 X × × × - - × × ×

Faster [57] 300 X × × × - - × × ×
ROLA [59] 411 X X X X - - × × ×
Jessy [60] 413 X X X X X × × × ×

Walter [61] 830 X X X X X X × × ×
P-Store [74] 438 X X X X X X X X ×

NO WAIT (Chapter 7) 600 X X X X - - X X ×

We have applied our tool to 13 Maude models of state-of-the-art DTSs (different variants of

RAMP and Walter, ROLA, Jessy, P-Store, and NO WAIT) against all nine properties (three

case studies, namely RAMP, Walter, and ROLA, will be presented in detail in Chapter 4,

5, and 6, respectively). Table 3.1 summarizes our experience with CAT: all model checking

results are as expected. It is worth remarking that our automatic analysis found all the

violations of properties that the respective systems should violate. There are also some

cases where model checking is not applicable (“-” in Table 3.1): some system models do not

include a mechanism for committing a transaction on remote servers (i.e., no commit time

on any remote server is recorded by the monitor). Thus, model checking NMSI or PSI is

not applicable.

41

We have performed our analysis with different initial states, with up to 4 transactions, 4

operations per transaction, 2 clients, 2 servers, 2 keys, and 2 replicas per key. Each analysis

command took about 10 minutes (in the worst case) to execute on a 2.9 GHz Intel 4-Core

i7-3520M CPU with 3.6 GB of memory.

Data Availability. The system models, properties specifications, and tool implementation

are available at https://github.com/siliunobi/cat.

3.5 RELATED WORK

Formalizing Consistency Properties in a Single Framework. Adya [4] uses depen-

dencies between reads and writes to define different isolation models in database systems.

Bailis et al. [14] adopt this model to define read atomicity. Burckhardt et al. [26] and Cerone

et al. [29] propose axiomatic specifications of consistency models for transaction systems us-

ing visibility and arbitration relationships. Shapiro et al. [83] propose a classification along

three dimensions (total order, visibility, and transaction composition) for transactional con-

sistency models. Crooks et al. [37] formalize transactional consistency properties in terms of

observable states from a client’s perspective. On the non-transactional side, Burckhardt [25]

focuses on session and eventual consistency models. Viotti et al. [89] expand his work by cov-

ering more than 50 non-transactional consistency properties. Szekeres et al. [86] propose a

unified model based on result visibility to formalize both transactional and non-transactional

consistency properties.

All of these studies propose semantic models of consistency properties suitable for the-

oretical analysis. In contrast, we aim at algorithmic methods for automatically verifying

consistency properties based on executable specifications of both the systems and their con-

sistency models. Furthermore, none of the studies covered all of the transactional consistency

models considered in this work.

Model Checking Distributed Transaction Systems. There is very little work on

model checking state-of-the-art DTSs, maybe because the complexity of these systems re-

quires expressive formalisms. Engineers at Amazon Web Services successfully used TLA+ to

model check key algorithms in Amazon’s Simple Storage Systems and DynamoDB database [73];

however, they do not state which consistency properties, if any, were model checked. The

designers of the TAPIR transaction protocol have specified and model checked correctness

properties of their design using TLA+ [95]. The IronFleet framework [48] combines TLA+

42

analysis and Floyd-Hoare-style imperative verification to reason about protocol-level con-

currency and implementation complexities, respectively. Their methodology requires “con-

siderable assistance from the developer” to perform the proofs. Cai [27] proposes some

basic patterns for modeling real-time transactions, and uses Timed Computation Tree Logic

(TCTL) to specify the timeliness and ACID properties. Li [54] models three multi-version

concurrency control mechanisms using the patterns in [27], and verifies transaction timeli-

ness and SER in UPPAAL. These case studies are based on timed automata, and none of

them checks state-of-the-art DTSs.

Distributed model checkers [51, 93] are used to model check implementations of distributed

systems such as Cassandra, ZooKeeper, the BerkeleyDB database and a replication protocol

implementation.

Our previous work [45, 46, 63, 55, 74, 57, 59, 61, 60, 22] specifies and model checks single

DTSs and consistency properties in different ways, as opposed to in a single framework that,

furthermore, automates the “monitoring” and analysis process.

Other Formal Reasoning about Distributed Database Systems. Cerone et al. [30]

develop a new characterization of SI and apply it to the static analysis of DTSs. Bernardi

et al. [19] propose criteria for checking the robustness of transactional programs against

consistency models. Bouajjani et al. [23] propose a formal definition of eventual consistency,

and reduce the problem of checking eventual consistency to reachability and model checking

problems. Gotsman et al. [44] propose a proof rule for reasoning about non-transactional

consistency choices.

There is also work [91, 53, 82] that focuses on specifying, implementing and verifying

distributed systems using the Coq proof assistant. Their executable Coq “implementations”

can be seen as executable high-level formal specifications, but the theorem proving requires

nontrivial user interaction.

Finally, the authors in [40] apply both model checking and meta-programming techniques

in Maude to a distributed snapshot algorithm and its reachability property, but they do not

consider either transaction systems or consistency properties.

3.6 CONCLUDING REMARKS

In this chapter we have provided an object-based framework for formally modeling dis-

tributed transaction systems (DTSs) in Maude, have explained how such models can be

automatically instrumented to record relevant events during a run, and have formally de-

fined a wide range of consistency properties on such histories of events. We have implemented

43

a tool which automates the entire instrumentation and model checking process. Our frame-

work is very general: we could easily adapt previous Maude models of state-of-the-art DTSs

such as P-Store, RAMP, Walter, Jessy, ROLA, and NO WAIT to our framework. We then

model checked the DTSs w.r.t. all the consistency properties for all initial states with 4

transactions, 2 sites, and so on. This analysis was sufficient to differentiate all these DTSs

according to which consistency properties they satisfy.

44

CHAPTER 4: CASE STUDY: RAMP TRANSACTION SYSTEMS

Database systems can provide scalability by partitioning data across several database par-

titions. Multipartition transactions are often expensive due to coordination-intensive mech-

anisms, which, however, provide useful semantics for correct behaviors of such transactions.

Several efforts have recently emerged to reach an acceptable trade-off between consistency

and performance. One of the most promising is the RAMP transaction system proposed

by Bailis et al. [15, 14]. RAMP allows clients to execute transactions (like in relational

databases) in NoSQL-like storage systems. It offers a correctness property called “Read

Atomicity” (RA) which ensures that a given transaction’s updates are either all visible or

not visible at all, to other transactions. For example, if A and B become “friends” in one

transaction, then other transactions should not see that A is a friend of B but that B is not

a friend of A: either both relationships are visible or neither of them is.

The main contributions of this chapter are fourfold: (i) we instantiate the ideas of Chapter

3 by showing how we can model RAMP and its extensions in the CAT framework; (ii) we

verify the consistency properties of RAMP and its extensions by model checking in CAT; (iii)

we transform the RAMP designs specified in the CAT framework into probabilistic Maude

models; and (iv) we evaluate eight RAMP designs w.r.t. the performance and consistency

measures for different experimental parameters and workloads. Regarding (iv), our results:

(a) are consistent with the experimental results obtained by the RAMP developers for their

implemented designs; (b) confirm the conjectures made by the RAMP developers for their

other three unimplemented designs; and (c) uncover some promising new RAMP-like designs

that seem attractive for some applications.

This chapter is structured as follows. Sections 4.1 and 4.2 give some background on

RAMP, its variants, and our new RAMP design alternative. Sections 4.3 and 4.4 present the

Maude models of RAMP and its extensions in the CAT framework, and show how we can

use them to model check their consistency properties. Section 4.5 shows how we can specify

our RAMP designs as probabilistic rewrite theories. Sections 4.6 and 4.7 explain how we

can monitor the system executions, and how we can evaluate the performance of the designs

based on the recorded log for different performance parameters and workloads. Section 4.8

gives some concluding remarks.

Acknowledgements. This chapter is based on the work [58, 57, 62] supported in part by

NSF CNS 1409416, NSF CNS 1319527, NSF CCF 0964471, AFOSR/AFRL FA8750-11-2-

0084, NRL contract N00173-17-1-G002, and NSFC Project No. 61872146.

45

4.1 RAMP TRANSACTIONS

To deal with large amounts of data, distributed databases partition their data across

multiple servers. However, many systems do not provide useful transactional semantics for

operations accessing multiple partitions, since the latency needed to ensure correct multi-

partition transactional access is often high. Therefore, trade-offs that combine efficiency

with weaker transactional guarantees are needed.

In [14], Bailis et al. propose a new isolation model, called read atomic (RA) isolation, and

Read Atomic Multi-Partition (RAMP) transactions, that together combine efficient multi-

partition operations and partial fault tolerance with some transactional guarantee: either

all or none of a transaction’s updates are visible to other transactions.

RAMP writers attach metadata to each write and the reads use this metadata to get

the correct version. There are three versions of RAMP: RAMP-Fast, RAMP-Small, and

RAMP-Hybrid. The write protocols in these algorithms only differ in the amount of attached

metadata. To guarantee that all partitions perform a transaction successfully or that none

do, RAMP performs two-phase writes by using the two-phase commit protocol (2PC) [20]:1

In the prepare phase, each timestamped write is sent to its partition, which adds the write

to its local database. In the commit phase, each partition updates an index which contains

the highest-timestamped committed version of each item. The RAMP algorithms described

in [14] only deal with read-only and write-only transactions. This dissertation focuses on

RAMP-Fast and RAMP-Small, which lie at the end points. Below we only detail the RAMP-

Fast algorithm, and refer to [14] for the details of the other RAMP algorithms.

RAMP-Fast (abbreviated RAMP-F). In RAMP-Fast, read transactions first fetch the

highest-timestamped committed version of each requested data item from the corresponding

partition, and then decide if they have missed any version that has been prepared but not yet

committed. The timestamp and metadata from each version read produces a mapping from

items to timestamps that represent the highest-timestamped write for each transaction,

appearing in the first-round read set. If the reader has a lower timestamp version than

indicated in the mapping for that item, a second-round read will be issued to fetch the

missing version. Once all the missing versions have been fetched, the client can return the

resulting set of versions, which include both the first-round reads as well as any missing

versions fetched in the second round of reads. The pseudo-code of RAMP-Fast in [14] is

shown in Appendix A.

12PC is an atomic commitment protocol in database systems, which coordinates all the processes that
participate in a distributed atomic transaction on whether to commit or abort the transaction.

46

RAMP-Small (abbreviated RAMP-S). RAMP-Small read transactions proceed by

first fetching the highest committed timestamp of each requested data item; the readers

then send the entire set of those timestamps in a second message. The highest-timestamped

version that also exists in the received set will be returned to the reader by the corresponding

partition. RAMP-Small transactions require two round-trip times (RTTs) for reads and

writes. RAMP-Small writes only store the transaction timestamp, instead of attaching the

entire write set to each write.

Extensions of RAMP. The paper [14] briefly discusses the following extensions and

optimizations of the basic RAMP algorithms, but without giving any details:

• RAMP with one-phase writes (RAMP-F+1PW and RAMP-S+1PW), where writes

only require one prepare phase, as the client can execute the commit phase asyn-

chronously.

• RAMP with faster commit detection (RAMP-F+FC). If a server returns a version with

the timestamp fresher than the highest committed version of the item, then the server

can mark the version as committed. This allows faster updates to correct versioning

and thus fewer round trip time delays.

4.2 NEW RAMP-LIKE DESIGNS

In this section we propose two new RAMP-like designs, both of which trade consistency

off for higher performance.

RAMP without two-phase commit (RAMP¬2PC). RAMP uses 2PC to ensure that

all partitions successfully execute a transaction or that none do. Specifically, writes start to

commit only after all of them are prepared on the partitions. This results in high latency,

even “resource leak” on partitions during failures [14], since one blocked write will cause the

transaction to stall. RAMP¬2PC decouples 2PC from RAMP by committing a prepared

version directly without waiting for all of the writes to be prepared.

RAMP-Faster (abbreviated Faster). Both RAMP and RAMP¬2PC require two RTTs

to commit a write transaction. To further optimize the performance we propose the RAMP-

Faster design (based on RAMP-Fast) that also decouples two-phase commit, but commits a

write transaction in only one RTT.

47

In RAMP-Fast, upon receiving a prepare message, the partition adds the timestamped

write to its local database, and upon receiving the commit message, updates an index con-

taining the highest-timestamped committed version of each item. Instead, in Faster, a

partition performs both operations upon receiving the prepare message, and hence requires

only one RTT. Note that all information required to complete the two operations is provided

by the prepare message: Faster does not need to store more data than RAMP-Fast.

Since each write in Faster needs only one RTT, it should incur lower latency per transaction

and provide higher throughput. Since writes are faster, it also seems reasonable to conjecture

that there is a higher chance that reads fetch the latest write; this means that Faster should

provide better strong consistency (i.e., reads reading the “latest writes) than other RAMP

designs. Even though Faster does not guarantee read atomicity, as the client does not ensure

that each partition has received the prepare message before issuing the commit message, it

would be interesting to check whether Faster indeed provides better performance, and a high

degree of read atomicity, for classes of transactions encountered in practice. If so, Faster

would be an attractive option for multi-partition transactions where a high degree of read

atomicity, good consistency properties, and low latency are desired.

4.3 MODELING RAMP AND ITS VARIANTS IN CAT

This section presents formal models of RAMP and its variants in the CAT framework

described in Chapter 3. We show the specification of RAMP-Fast in detail, and only show

the main differences for the other RAMP algorithms.

4.3.1 Data Types, Objects, and Messages

Data Types. A version is a timestamped version of a data item (or key) and is modeled as

a four-tuple version(key,value, timestamp,metadata) consisting of the key, its value, and

the version’s timestamp and metadata. A timestamp is modeled as a pair ts(Oid,sqn) con-

sisting of a Replica’s identifier Oid and a local sequence number sqn that together uniquely

identify a write transaction. Metadata are modeled as a set of keys, denoting, for each key,

the other keys that are written in the same transaction. For example, if a transaction writes

keys x, y, and z, then versions of x have as metadata the set {y, z}.

sorts Key Value Timestamp Version KeySet Versions

KeyTimestampEntry KeyTimestamps .

subsort Key < KeySet .

48

subsort KeyTimeEntry < KeyTimestamps .

subsort Version < Versions .

op ts : Oid Nat -> Timestamp .

op version : Key Value Timestamp KeySet -> Version [ctor] .

op empty : -> KeySet [ctor] .

op _,_ : KeySet KeySet -> KeySet [ctor assoc comm id: empty] .

op empty : -> KeyTimestamps [ctor] .

op _|->_ : Key Timestamp -> KeyTimestampEntry [ctor] .

op _,_ : KeyTimestamps KeyTimestamps ->

KeyTimestamps [ctor assoc comm id: empty] .

op empty : -> Versions [ctor] .

op _,_ : Versions Versions -> Versions [ctor assoc id: empty] .

A set of keys of sort KeySet is built from singleton sets (identified with keys of sort Key by

means of a subsort declaration) with an associative, commutative, and idempotent union

operator , having empty as its identity element. A set of entries, or mappings from keys to

timestamps, of sort KeyTimestamps is built from singleton sets (identified with entries of sort

KeyTimestampEntry by means of a subsort declaration) with an associative, commutative,

and idempotent union operator , having empty as identity element. A set of versions of sort

Versions is built from singleton lists (identified with versions of sort Version by means of

a subsort declaration) with an associative concatenation operator , with identity empty.

The sort OperationList represents lists of read and write operations as terms such as

(x := read k1) (y := read k2) write(k1, x + y), where LocalVar denotes the “local

variable” that stores the value of the key read by the operation, and Expression is an

expression involving the transaction’s local variables:

sorts Expression LocalVar LocalVarEntry LocalVars Operation .

subsort Operation < OperationList .

subsort LocalVarEntry < LocalVars .

op write : Key Expression -> Operation [ctor] .

op _:=read_ : LocalVar Key -> Operation [ctor] .

49

op nil : -> OperationList [ctor] .

op __ : OperationList OperationList -> OperationList [ctor assoc id: nil] .

op empty : -> LocalVars [ctor] .

op _|->_ : LocalVal Value -> LocalVarEntry [ctor] .

op _,_ : LocalVars LocalVars -> LocalVars [ctor assoc comm id: empty] .

A list of operations of sort OperationList is built from singleton lists (identified with

operations of sort Operation by means of a subsort declaration) with an associative con-

catenation operator with identity nil. A set of entries, or mappings from local variables

to their values, of sort LocalVars is built from singleton sets (identified with entries of sort

LocalVarEntry by means of a subsort declaration) with an associative, commutative, and

idempotent union operator , with identity empty.

We define a collection of votes of sort Vote as a multiset (built with the associative

and commutative operator ; with identity noVote) of votes, where each vote, as a triple

vote(txn,part,result), indicates the voting result by some replica for a certain transac-

tion:

sort Vote .

op noVote : -> Vote [ctor] .

op vote : Tid Oid Bool -> Vote [ctor] .

op _;_ : Vote Vote -> Vote [ctor assoc comm id: noVote] .

The data type TxnOidSet is defined for the situation when a replica is waiting for messages

such as votes from other replicas w.r.t. some transaction:

sorts OidSet TxnOidSet .

subsort Oid < OidSet .

op empty : -> OidSet [ctor] .

op _,_ : OidSet OidSet -> OidSet [ctor assoc comm id: empty] .

op empty : -> TxnOidSet [ctor] .

op Oids : Tid OidSet -> TxnOidSet [ctor] .

op _;_ : TxnOidSet TxnOidSet -> TxnOidSet [ctor assoc comm id: empty] .

where OidSet is defined as a set of replicas (more precisely, each replica is represented by

its identifier of sort Oid), while TxnOidSet is a mapping (set of pairs) from transaction

identifiers (of sort Oid) to sets of replicas.

50

Transactions. RAMP transactions can be modeled as object instances of the subclass

RAMP-Txn with four new attributes:

class RAMP-Txn | operations : OperationList, localVars : LocalVars,

latest : KeyTimestamps, txnSqn : Nat .

subclass RAMP-Txn < Txn .

The operations attribute denotes the transaction’s operations. localVars maps the trans-

action’s local variables to their current values. latest stores the local view as a mapping

from keys to their respective latest committed timestamps. txnSqn stores the transaction’s

sequence number.

Replicas. A replica in our Maude model of RAMP is modeled as an object instance of the

following subclass RAMP-Replica of class Replica that adds nine new attributes:

class RAMP-Replica | datastore : Versions, sqn : Nat,

gotTxns : ObjectList, latestCommit : KeyTimestamps,

votes : Vote, voteSites : TxnOidSet,

1stGetSites : TxnOidSet, 2ndGetSites : TxnOidSet,

commitSites : TxnOidSet .

subclass RAMP-Replica < Replica .

The datastore attribute represents the replica’s local database as a set of versions for each

key stored at the replica. The attribute latestCommit maps each key to the timestamp

of its last committed version. sqn refers to the local sequence number. The attributes

gotTxns stores the transaction object(s) waiting to be executed. The attribute votes stores

the votes from the replicas which participate in the two-phase commit. The remaining

attributes voteSites, commitSites, 1stGetSites, and 2ndGetSites store, respectively,

the replicas from which the executing replica is awaiting votes, committed acks, first-round

get replies, and second-round get replies.

The state also contains a “table” object of class Table mapping each data item to the

replica storing the item:

class Table | table : ReplicaTable .

where the table (of sort ReplicaTable) stored inside a Table object is built with the as-

sociative and commutative operator ;; as a set of mappings, each of which is a pair

sites(key,part).

51

Messages travel between clients and replicas, and have the form:

msg msgContent from sender to receiver

where the message content msgContent is defined in our RAMP-Fast model as follows:

• prepare(txn,version) sends a version from a write-only transaction to its replica;

• prepare-reply(txn,vote) is the reply to the corresponding prepare message, where

vote tells whether this replica can commit the transaction;

• commit(txn,ts) marks the versions with timestamp ts as committed;

• committed(txn) is the reply to commit;

• get(txn,key,ts) asks for the highest-timestamped committed version or a missing

version for key by timestamp ts ;

• response1(txn,version) responds to first-round get request;

• response2(txn,version) responds to second-round get requests.

Initial State. The following shows an automatically generated initial state (with some

parts replaced by ‘...’) with two replicas, r1 and r2, that are coordinators for, respectively,

transactions t1 and t2. r1 stores the data items x and z, and r2 stores y. Transaction t1 is

the read-only transaction (xl :=read x) (yl :=read y), while transaction t2 is a write-

only transaction write(y, 3) write(z, 8). The states also include a table which assigns to

each data item the replica storing it. Initially, the value of each item is [0]; the version’s

timestamp is empty (eptTS), and metadata is an empty set:

eq init =

< tb : Table | table : [sites(x, r1) ;; sites(y, r2) ;; sites(z, r1)] >

< r1 : RAMP-Replica |

gotTxns : < t1 : RAMP-Txn |

operations : ((xl :=read x) (yl :=read y)), readSet : empty, writeSet : empty,

latest : empty, localVars : (xl |-> [0], yl |-> [0]), txnSqn : 0 >,

datastore : (version(x, [0], eptTS, empty) version(z, [0], eptTS, empty)),

sqn : 1, executing : none, committed : none, latestCommit : empty,

votes : noVote, voteSites : empty, 1stGetSites : empty,

2ndGetSites : empty, commitSites : empty >

< r2 : RAMP-Replica |

gotTxns : < t2 : RAMP-Txn | operations : (write(y, 3) write(z, 8)), ... >,

datastore : version(y, [0], eptTS, empty), ... >

52

4.3.2 Formalizing RAMP-Fast

This section formalizes the dynamic behaviors of RAMP-Fast using rewrite rules.2 We also

refer to the corresponding lines of code in the description in Fig. A.1. The entire specification

is given at https://github.com/siliunobi/cat.

Starting a New Transaction (Lines 14–19 for writes and lines 22–26 for reads).

A replica starts executing a transaction by moving the first transaction (TID) in gotTxns

to executing. If the new transaction is a write-only transaction (write-only(OPS)), the

replica: (i) uses the function genPuts to generate all prepare messages; (ii) uses a function

prepareSites to remember the sites RIDS from which it awaits votes for transaction TID in

the voteSites attribute; and (iii) increments its local sequence number by one:

crl [start-wo-txn] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica |

gotTxns : (< TID : RAMP-Txn | operations : OPS, localVars : VARS,

txnSqn : N > ;; TXNS),

executing : TRANSES, sqn : SQN, voteSites : VSTS >

=>

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica |

gotTxns : TXNS,

executing : < TID : RAMP-Txn | operations : OPS, localVars : VARS,

txnSqn : SQN’ > TRANSES,

sqn : SQN’, voteSites : (VSTS ; addrs(TID, RIDS)) >

genPuts(OPS,RID,TID,SQN’,VARS,REPLICA-TABLE)

if SQN’ := SQN + 1 /\ write-only(OPS) /\

RIDS := prepareSites(OPS, RID, REPLICA-TABLE) .

The above function genPuts is defined as follows:

op genPuts : OperationList Oid Oid Nat LocalVars ReplicaTable -> Config .

op $genPuts : OperationList Oid Oid Nat LocalVars ReplicaTable

OperationList -> Config .

eq genPuts(OPS,RID,TID,SQN,VARS,REPLICA-TABLE)

= $genPuts(OPS,RID,TID,SQN,VARS,REPLICA-TABLE,OPS) .

eq $genPuts((write(K,EXPR) OPS),RID,TID,SQN,VARS,REPLICA-TABLE,

2We do not give variable declarations, but follow the convention that variables are written in (all) capital
letters.

53

(OPS’ write(K,EXPR) OPS’’))

= $genPuts(OPS,RID,TID,SQN,VARS,REPLICA-TABLE,(OPS’ write(K,EXPR) OPS’’))

msg prepare(TID,version(K,eval(EXPR,VARS),ts(RID,SQN),md(OPS’ OPS’’)))

from RID to preferredSite(K,REPLICA-TABLE) .

eq $genPuts(((X :=read K) OPS),RID,TID,SQN,VARS,REPLICA-TABLE,OPS’)

= $genPuts(OPS,RID,TID,SQN,VARS,REPLICA-TABLE,OPS’) .

eq $genPuts(nil,RID,TID,SQN,VARS,REPLICA-TABLE,OPS’) = null .

Otherwise, if the first transaction in gotTxns is a read-only transaction, the replica updates

1stGetSites instead to keep track of the replicas from which it receives the versions from

the first-round gets. Similar to genPuts, the function genGets generates all get messages

for the keys concerned by TID. The expression 1stSites gives the corresponding replicas for

those keys:

crl [start-ro-txn] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica | gotTxns :

(< TID : RAMP-Txn | operations : OPS, latest: empty > ;; TXNS),

executing : TRANSES,

1stGetSites : 1STGETS >

=>

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica | gotTxns : TXNS,

executing : < TID : RAMP-Txn | operations: OPS,

latest : vl(OPS) > TRANSES,

1stGetSites : (1STGETS ; addrs(TID,RIDS)) >

genGets(OPS,RID,TID,REPLICA-TABLE)

if (not write-only(OPS)) /\

RIDS := 1stSites(OPS,RID,REPLICA-TABLE) .

Receiving Prepare Messages (Lines 3–5). When a Replica receives a prepare message

for a write-only transaction, the replica simply adds the received version to its local datastore.

The out-going messages always consider successful preparations:

rl [receive-prepare-wo] :

msg prepare(TID,VER) from RID’ to RID

< RID : RAMP-Replica | datastore: VS >

=>

< RID : RAMP-Replica | datastore: (VS, VER) >

msg prepare-reply(TID,true) from RID to RID’ .

54

Receiving Prepared Messages (Lines 20–21). Upon receiving a “true” vote, the

replica first checks whether all votes have now been collected. The expression VSTS’[TID]

extracts for TID the remaining replicas from which it is awaiting votes. If all received votes

are “yes,” the replica starts to commit TID at the associated replicas by invoking genCommits

to generate all commit messages with the commit timestamp including the current sequence

number SQN. The replica also adds to commitSites the replicas from which it is awaiting

committed messages to commit the transaction:

crl [receive-prepare-reply-true-executing] :

msg prepare-reply(TID,true) from RID’ to RID

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica | executing : < TID : RAMP-Txn | operations : OPS,

txnSqn : SQN > TRANSES,

voteSites : VSTS, commitSites : CMTS >

=>

< TABLE : Table | table : REPLICA-TABLE >

if VSTS’[TID] == empty --- all votes received and all yes!

then < RID : RAMP-Replica | executing : < TID : RAMP-Txn | operations : OPS,

txnSqn : SQN > TRANSES,

voteSites : VSTS’,

commitSites : (CMTS ; addrs(TID,RIDS)) >

genCommits(TID,SQN,RIDS,RID)

else < RID : RAMP-Replica | executing : < TID : RAMP-Txn | operations: OPS,

txnSqn : SQN > TRANSES,

voteSites : VSTS’, commitSites : CMTS >

fi

if VSTS’ := remove(TID,RID’,VSTS) /\

RIDS := commitSites(OPS,RID,REPLICA-TABLE) .

Receiving Commit Messages (Lines 6–8). Upon receiving a commit message, the

replica invokes the function cmt to commit the transaction. cmt looks up LC for the latest

committed version’s timestamp, and updates the latest committed version if TS is higher.

A committed message is then sent back to confirm the commit:

rl [receive-commit] :

msg commit(TID, TS) from RID’ to RID

< RID : RAMP-Replica | datastore : VS, latestCommit : LC >

=>

< RID : RAMP-Replica | datastore : VS, latestCommit : cmt(LC,VS,TS) >

55

msg committed(TID) from RID to RID’ .

Receiving Committed Message. Upon receiving a committed message, the replica first

checks if all committed messages have now been collected. The expression CMTS’[TID]

extracts for TID the remaining replicas from which it is awaiting committed messages. If

the projection is empty, the replica commits the transaction:

crl [receive-committed] :

msg committed(TID) from RID’ to RID

< RID : RAMP-Replica | executing : < TID : RAMP-Txn | > TRANSES,

committed : TRANSES’, commitSites : CMTS >

=>

if CMTS’[TID] == empty --- all "committed" received

then < RID : RAMP-Replica | executing : TRANSES,

committed : < TID : RAMP-Txn | > TRANSES’,

commitSites : CMTS’ >

else < RID : RAMP-Replica | executing : < TID : RAMP-Txn | > TRANSES,

committed : TRANSES’, commitSites : CMTS’ >

fi

if CMTS’ := remove(TID,RID’,CMTS) .

Receiving Get Messages (Lines 9–13). Upon receiving a get message, depending on

the associated timestamp TS (if TS is an empty timestamp eptTS, the incoming message

is the first-round get; otherwise, it is the second-round get), the replica replies with the

corresponding version determined by the function vmatch. For a first-round get, vmatch

looks up LC for the latest committed version; for the second-round get, vmatch returns the

matched timestamped version of TS:

rl [receive-get] :

msg get(TID,K,TS) from RID’ to RID

< RID : RAMP-Replica | datastore : VS, latestCommit : LC >

=>

< RID : RAMP-Replica | datastore : VS, latestCommit : LC >

if TS == eptTS

then msg response1(TID,vmatch(K,VS,LC)) from RID to RID’

else msg response2(TID,vmatch(K,VS,TS)) from RID to RID’

fi .

Receiving Response to First-round Get Messages (Lines 25, 27–33). Upon re-

ceiving a returned version for the first-round get, the replica adds it to the read set,

56

and updates localVars accordingly. When the replica has collected all replies to the

first-round gets, it determines whether a second-round get is needed. The expression

gen2ndGets(TID,VL’,RS’,RID,REPLICA-TABLE) generates possible second-round get mes-

sages based on the updated latest, VL’, and readSet, RS’:

crl [receive-response1] :

msg response1(TID,version(K,V,TS,MD)) from RID’ to RID

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica | executing : < TID : RAMP-Txn |

operations : (OPS (X :=read K) OPS’),

readSet : RS, localVars : VARS, latest : VL > TRANSES,

1stGetSites : 1STGETS, 2ndGetSites : 2NDGETS >

=>

< TABLE : Table | table : REPLICA-TABLE >

if 1STGETS’[TID] == empty

then < RID : RAMP-Replica | executing : < TID : RAMP-Txn |

operations : (OPS (X :=read K) OPS’),

readSet : RS’, localVars : insert(X,V,VARS),

latest : VL’ > TRANSES,

1stGetSites : 1STGETS’,

2ndGetSites : (2NDGETS ; addrs(TID,RIDS)) >

gen2ndGets(TID,VL’,RS’,RID,REPLICA-TABLE)

else < RID : RAMP-Replica | executing : < TID : RAMP-Txn |

operations : (OPS (X :=read K) OPS’),

readSet : RS’, localVars : insert(X,V,VARS),

latest : VL’ > TRANSES,

1stGetSites : 1STGETS’, 2ndGetSites : 2NDGETS >

fi

if RS’ := RS, version(K,V,TS,MD) /\

VL’ := lat(VL,MD,TS) /\

1STGETS’ := remove(TID,RID’,1STGETS) /\

RIDS := 2ndSites(VL’,RS’,RID,REPLICA-TABLE) .

Receiving Response to Second-round Get Messages (Lines 32–33). Upon receiv-

ing a returned version for the second-round get, the Replica simply overwrites the version

fetched by the first-round get (the readSet is updated). It then updates the local variables

localVars and the remaining replicas from which it is awaiting second-round gets:

rl [receive-response2] :

57

msg response2(TID,version(K,V,TS,MD)) from RID’ to RID

< RID : RAMP-Replica | executing:

< TID : RAMP-Txn | operations : (OPS (X :=read K) OPS’),

readSet : (RS, version(K,V’,TS’,MD’)),

localVars : VARS >,

2ndGetSites : 2NDGETS >

=>

< RID : RAMP-Replica | executing:

< TID : RAMP-Txn | operations : (OPS (X :=read K) OPS’),

readSet : (RS, version(K,V,TS,MD)),

localVars : insert(X,V,VARS) >,

2ndGetSites : remove(TID,RID’,2NDGETS) > .

Committing Reads (Lines 18–22). If the replica has no remaining replicas from which

it is awaiting replies to either first-round gets or second-round gets (1STGETS[TID] == empty

and 2NDGETS[TID] == empty), it commits the reads by storing the TID object in committed:

crl [commit-reads] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica | executing : < TID : RAMP-Txn | > TRANSES,

committed : TRANSES’, 1stGetSites: 1STGETS,

2ndGetSites : 2NDGETS >

=>

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica | executing : TRANSES,

committed : (TRANSES’ < TID : RAMP-Txn | >),

1stGetSites : 1STGETS, 2ndGetSites : 2NDGETS >

if 1STGETS[TID] == empty /\ 2NDGETS[TID] == empty .

4.3.3 Formalizing RAMP-Small

Instead of attaching the entire write set to each write, RAMP-Small only stores the trans-

action timestamp. This correspond to changing the rule start-wo-txn by letting genPuts

not instantiate metadata for each outgoing write, but instead leave it as an empty set.

Apart from that, only the following two rules in RAMP-Fast need to be modified to define

RAMP-Small.

58

Receiving Response to First-round Get Messages. When a replica has fetched the

(highest-timestamped) committed timestamp for the requested item in the received version,

it proceeds in a similar way as in RAMP-Fast, except that it will not update readSet or

localVars, since RAMP-Small always requires two RTTs for reads. Each outgoing get

message generated by gen2ndGets includes the entire set of timestamps:

crl [receive-response1-small] :

msg response1(TID,version(K,V,TS,MD)) from RID’ to RID

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica | executing :

< TID : RAMP-Txn | latest : VL > TRANSES,

1stGetSites : 1STGETS, 2ndGetSites : 2NDGETS >

=>

< TABLE : Table | table : REPLICA-TABLE >

if 1STGETS’[TID] == empty

then < RID : RAMP-Replica | executing :

< TID : RAMP-Txn | latest : VL’ > TRANSES, 1stGetSites : 1STGETS’,

2ndGetSites : (2NDGETS ; addrs(TID,RIDS)) >

gen2ndGets(TID,VL’,RID,REPLICA-TABLE)

else < RID : RAMP-Replica | executing :

< TID : RAMP-Txn | latest : VL’ > TRANSES,

1stGetSites : 1STGETS’, 2ndGetSites : 2NDGETS >

fi

if VL’ := lat(VL,MD,TS) /\

1STGETS’ := remove(TID,RID’,1STGETS) /\

RIDS := 2ndSites(VL’,RID,REPLICA-TABLE) .

Receiving Get Messages. When a Replica receives a get message for the first time, it

proceeds in the same way as in RAMP-Fast; however, when the second get message arrives

that contains the entire set of timestamps for the requested item, it returns the highest-

timestamped version (determined by maxts) of that key that also exists in the received set

of timestamps (determined by tsmatch). Note that the incoming get message includes a

set of timestamps TSS:

rl [receive-get-small] :

msg get(TID,K,TSS) from RID’ to RID

< RID : RAMP-Replica | datastore : VS, latestCommit : LC >

=>

59

< RID : RAMP-Replica | datastore : VS, latestCommit : LC >

if TSS == empty

then msg response1(TID,vmatch(K,VS,LC)) from RID to RID’

else msg response2(TID,vmatch(K,VS,maxts(tsmatch(X,VS,TSS)))) from RID to RID’

fi .

4.3.4 Formalizing RAMP Extensions

RAMP Without 2PC. We decouple 2PC from RAMP by changing the rule receive-

prepare-reply-true-executing to the following rule, in which a replica simply removes

the write from the pending set and commits it on the RAMP replica, instead of waiting for

all prepare-reply messages to arrive:

rl [receive-prepare-reply-true-executing-decouple-2pc] :

msg prepare-reply(TID,true) from RID’ to RID

< RID : RAMP-Replica | executing : < TID : RAMP-Txn | txnSqn : SQN > TRANSES,

voteSites : VSTS >

=>

< RID : RAMP-Replica | executing : < TID : RAMP-Txn | txnSqn : SQN > TRANSES,

voteSites : remove(TID,RID’,VSTS) >

msg commit(TID,ts(RID,SQN)) from RID to RID’ .

RAMP with Faster Commit. A RAMP replica can mark as committed the version (by

sending a committed message to the replica RID’) that has a fresher timestamp than the

highest committed version of the requested item (indicated by LC[K] < TS). We model this

optimization of RAMP-Fast by replacing the rule receive-get with the following rule. The

other rules are unchanged:

rl [receive-get-faster-commit] :

msg get(TID,K,TS) from RID’ to RID

< RID : RAMP-Replica | datastore : VS, latestCommit : LC >

=>

if TS == eptTS

then < RID : RAMP-Replica | datastore : VS, latestCommit : LC >

msg response1(TID,vmatch(K,VS,LC)) from RID to RID’

else < RID : RAMP-Replica | datastore : VS, latestCommit :

(if LC[K] < TS then insert(K,TS,LC) else LC fi) >

msg response2(TID,vmatch(K,VS,TS)) from RID to RID’

60

(if LC[K] < TS

then msg committed(TID) from RID to RID’

else none

fi)

fi .

RAMP with One-Phase Writes. After collecting all prepare-reply messages, a replica

commits the transaction besides invoking genCommits to generate commit messages. The

other rules are unchanged:

crl [receive-prepare-reply-true-executing-1pw] :

msg prepare-reply(TID,true) from RID’ to RID

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica | executing : < TID : RAMP-Txn | operations : OPS,

txnSqn : SQN > TRANSES,

committed : TRANSES’,

voteSites : VSTS, commitSites : CMTS >

=>

< TABLE : Table | table : REPLICA-TABLE >

if VSTS’[TID] == empty --- all votes received and all yes!

then < RID : RAMP-Replica | executing : TRANSES,

committed : TRANSES’

< TID : RAMP-Txn | operations : OPS, txnSqn : SQN >,

voteSites : VSTS’,

commitSites : (CMTS ; addrs(TID,RIDS)) >

genCommits(TID,SQN,RIDS,RID)

else < RID : RAMP-Replica | executing : < TID : RAMP-Txn | operations: OPS,

txnSqn : SQN > TRANSES,

committed : TRANSES’,

voteSites : VSTS’, commitSites : CMTS >

fi

if VSTS’ := remove(TID,RID’,VSTS) /\

RIDS := commitSites(OPS,RID,REPLICA-TABLE) .

RAMP-Faster. This alternative design integrates the two phases in writes: upon receiv-

ing a prepare message, the RAMP replica adds the incoming version to its local database

VS, and also updates the index containing the highest-timestamped committed version of the

61

item by invoking the function cmt. The following rule replaces the rules receive-prepare-wo,

receive-prepare-reply-true-executing, and receive-commit in our RAMP-Fast model:

crl [receive-prepare-faster] :

msg prepare(TID,version(K,V,TS,MD)) from RID’ to RID

< RID : RAMP-Replica | datastore : VS, latestCommit : LC >

=>

< RID : RAMP-Replica | datastore : VS’, latestCommit : cmt(LC, VS’, TS) >

msg committed(TID) from RID to RID’

if VS’ := (VS, version(K,V,TS,MD)) .

4.4 MODEL CHECKING CONSISTENCY PROPERTIES

As shown in Table 3.1, we have applied our tool CAT to model check eight RAMP designs

against nine properties. All model checking results are as expected. In particular, origi-

nal RAMP designs (i.e., RAMP-F and RAMP-S) and the proposed RAMP variants (i.e.,

RAMP-F+1PW, RAMP-F+FC, and RAMP-S+1PW) by the developers satisfy RA, as well

as RC that is weaker than RA, and violate all consistency properties stronger than RA; our

proposed new RAMP-like designs (i.e., RAMP-F¬2PC, RAMP-S¬2PC, and Faster) satisfy

only RC, and violate RA and any stronger consistency properties.

Here we focus on RA and use the same example to illustrate the impact of decoupling

two-phase commit protocol (the major difference between the developers’ RAMP designs

and our new proposals).

In our model checking experiment we provide the CAT tool with one read-only transaction,

one write-only transaction, two operations for each type of transaction, two replicas, and two

keys. Under the hood, CAT executes the following command to search, from all generated

initial states, for one reachable final state where the RA consistency property is violated:

search [1] init(1,1,0,2,2,0,0,2,2,1) =>! C:Configuration

< M:Oid : Monitor | log: LOG:Log clock: N:Nat > such that not ra(LOG:Log) .

CAT outputs “No solution,” meaning that all runs from all the given initial states satisfy

RA, for the developers’ RAMP designs, while providing a counterexample showing a behavior

that violates RA for RAMP-F¬2PC, RAMP-S¬2PC, and Faster, respectively.

Specifically, the counterexample obtained by analyzing the initial state with the two trans-

actions [write(k1, v1) write(k2, v2)] [read(k1) read(k2)] shows that the read operations

return v1, and v0 (the default version, older than v2), respectively. The reason is that our

62

new proposals, despite of different mechanisms, do not wait for all prepared messages to

arrive before committing a prepared version.

4.5 PROBABILISTIC MODELING OF RAMP DESIGNS

The RAMP models specified in the CAT framework are untimed, non-probabilistic, and

nondeterministic for model checking purpose. In this section we are interested in estimating

the performance (expected latency, percentage of transactions satisfying certain properties,

etc.) of our designs. We therefore need to: (i) include time and probabilities in our models,

and (ii) eliminate any nondeterminism, so that our models become purely probabilistic and

can be subjected to statistical model checking.

The key idea to address both of these issues is to probabilistically assign to each message

a delay. The point regarding issue (ii) is that if: (a) each rewrite rule is triggered by the

arrival of a message, and (b) the delay is sampled probabilistically from a dense/continuous

time interval, then the probability that two messages have the same delay is 0, and hence

no two actions could happen at the same time, eliminating nondeterminism.

All our models are available at https://sites.google.com/site/siliunobi/ramp-smc.

4.5.1 Scheduler

To obtain a deterministic model from the corresponding nondeterministic one we imple-

ment in Maude the scheduling algorithm in the actor PMaude framework [5] for totally

ordering message-triggered rules.

The scheduler object has the form {time | msgs }, where msgs buffers a list of (unripe)

messages ordered by their delays, which need to be scheduled; time of sort Float represents

the global time in real numbers.

In transformed models there are two types of messages, unripe and ripe messages, both of

which wrap messages of sort Msg in original models with timing information (of sort Float):

sorts UnripeMsg RipeMsg .

subsorts UnripeMsg RipeMsg < Config .

op [_,_] : Float Msg -> UnripeMsg .

op {_,_} : Float Msg -> RipeMsg .

An unripe message [d, msg] contains the message delay d for the message msg to become

ripe, while a ripe message {t, msg} includes the global time when msg became ripe. The

63

scheduler only enqueues unripe messages, and dequeues them once they are ripe. Whenever

the scheduler dequeues a message, it also advances the global time by d time units.

Example 4.1. Without loss of generality, let us assume that there are only two unripe

messages in the configuration, [d1, mc1 from o1 to o] and [d2, mc2 from o2 to o],

generated at the global time gt with the respective message delays d1 and d2 with d1 < d2.

The scheduler enqueues both messages for scheduling, and becomes:

{ gt | [d1, mc1 from o1 to o] [d2, mc2 from o2 to o] }

At the global time gt + d1, the scheduler dequeues the first message as a ripe one {gt +

d1, mc1 from o1 to o}, and the configuration becomes (for simplicity we do not show the

objects):

{ gt + d1 | [d2, mc2 from o2 to o] } { gt + d1, mc1 from o1 to o }

Similarly, the message mc2 is ripe and dequeued at the global time gt + d2:

{ gt + d2 | nil } { gt + d2, mc2 from o2 to o }

Note that the message mc1 has been consumed by the object o, and thus disappears from

the configuration. Eventually, the message mc2 will also be consumed. The global time has

been advanced twice by the message delays d1 and d2, respectively.

4.5.2 Wrapping Messages

The transformation decorates the messages in the original model in the following two

manners:

• An incoming messages is wrapped with the current global time.

• An outgoing message is wrapped with a delay sampled probabilistically from the user-

chosen continuous distribution of network latency.

Example 4.2. In the previous Maude model of RAMP-F, when receiving the prepare

message, the replica adds the version to its local data store and replies with a prepared

message (shown in black):

64

rl [receive-prepare-wo-prob] :

{ GT, prepare(TID,VER) from RID’ to RID }

< RID : RAMP-Replica | datastore : VS >

=>

< RID : RAMP-Replica | datastore : (VS, VER) >

[delay, prepare-reply(TID,true) from RID to RID’] .

The transformed rule contains the message wrappers (in blue), indicating that the prepare

message is consumed by RID at the global time GT, and the prepare-reply message will be

consumed by RID’ after delay time units. delay of sort Float is a parameter instantiated

with a certain probability distribution, e.g., the lognormal distribution with µ = 3.0 and

σ = 2.0:

op delay : -> Float .

--- e.g., ‘delay’ is instantiated as:

eq delay = sampleLogNormal(3.0,2.0) .

4.6 MONITORING EXECUTIONS

Inspired by the monitoring mechanism of the CAT framework (Section 3.2) we also equip

the transformed model with an execution log recording the history of relevant events during

a system execution.

Specifically, we also define a “time vector” using Maude’s map data type that maps replica

identifiers (of sort Oid) to global times. The main difference is that global times here are of

sort Float:

pr MAP{Oid,Float} * (sort Map{Oid,Float} to VectorTime) .

where each entry in the mapping is of the form Oid |-> Float.

An execution log (of sort Log) maps each transaction (identifier) to a record <proxy , issueTime,

finishTime, committed , reads , writes>, with proxy its executing server (called client in RAMP),

issueTime the starting time at its proxy, finishTime the commit/abort times at each rele-

vant server, committed a flag indicating whether the transaction is committed at its proxy,

reads the key-version pairs read by the transaction, and writes the key-version pairs written:

sort Record .

op <_,_,_,_,_,_> : Oid Float VectorTime Bool KeyVersions KeyVersions -> Record .

pr MAP{Oid,Record} * (sort Map{Oid,Record} to Log) .

65

We add to the configuration a Monitor object storing the current log in the log attribute:

< M : Monitor | log : Log >

Note that, thanks to the scheduler, the Monitor object here does not need to store the

current logical global time (by the attribute clock) as in the CAT framework.

The log is updated each time an interesting event happens (i.e., the start and commit of

a transaction).3 We (manually) identify those events in a Maude model, and transform the

corresponding rules by adding and updating the monitor object.

Executing. A transaction starts executing when the transaction object appears in a

replica’s executing attribute in the right-hand side, but not in the left-hand side, of a

rewrite rule. The monitor then adds a record for this transaction, with the proxy and start

time, to the log.

Example 4.3. The rewrite rule (in black) where a RAMP replica starts executing a write-

only transaction is modified by adding and updating the monitor object (in blue):

crl [start-wo-txn-monitor] :

< O@M : Monitor | log : LOG@M > { GT, start RID }

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica |

gotTxns : (< TID : RAMP-Txn | operations : OPS, localVars : VARS,

txnSqn : N > ;; TXNS),

executing : TRANSES, sqn : SQN, voteSites : VSTS >

=>

< O@M : Monitor | log : LOG@M, (TID |-> < RID, GT, empty, false, empty, empty >) >

< TABLE : Table | table : REPLICA-TABLE >

< RID : RAMP-Replica |

gotTxns : TXNS,

executing : < TID : RAMP-Txn | operations : OPS, localVars : VARS,

txnSqn : SQN’ > TRANSES,

sqn : SQN’, voteSites : (VSTS ; addrs(TID, RIDS)) >

genPuts(OPS,RID,TID,SQN’,VARS,REPLICA-TABLE)

if SQN’ := SQN + 1 /\ write-only(OPS) /\

RIDS := prepareSites(OPS, RID, REPLICA-TABLE) .

3We do not consider replication or transaction failure in our RAMP models, and therefore interesting
events exclude the abort of a transaction, or transaction commits on remote sites.

66

where the monitor O@M initializes a new record for the transaction TID in the log, with

starting time (the current global time GT) at its executing server RID, finish time (empty),

flag (false), read set (empty), and write set (empty).

Commit. A transaction commits at its executing server when the transaction object ap-

pears in the attribute committed in the right-hand side, but not in the left-hand side, of a

rewrite rule. The corresponding record is updated with commit status, versions read and

written, and commit time.

Example 4.4. The monitor object is added to the rule receive-committed for committing

a write-only transaction. The monitor updates the log entry for the transaction TID by

setting its finish time at the proxy RID to GT (insert(RID,GT,VTS@M)) provided by the

incoming message, the committed flag to true, the read set to RS, and write set to WS:

crl [receive-committed-monitor] :

< O@M : Monitor | log : LOG@M, (TID |->

< RID, T@M, VTS@M, FLAG@M, READS@M, WRITES@M)) >

{ GT, msg committed(TID) from RID’ to RID }

< RID : RAMP-Replica | executing : < TID : RAMP-Txn |

writeSet : WS, readSet : RS > TRANSES,

committed : TRANSES’, commitSites : CMTS >

=>

if CMTS’[TID] == empty --- all "committed" received

then < O@M : Monitor | log : LOG@M, (TID |->

< RID, T@M, insert(RID,GT,VTS@M), true, RS, WS >)

< RID : RAMP-Replica | executing : TRANSES,

committed : < TID : RAMP-Txn |

writeSet : WS, readSet : RS > TRANSES’,

commitSites : CMTS’ >

else < O@M : Monitor | log : LOG@M, (TID |->

< RID, T@M, VTS@M, FLAG@M, READS@M, WRITES@M)) >

< RID : RAMP-Replica | executing : < TID : RAMP-Txn |

writeSet : WS, readSet : RS > TRANSES,

committed : TRANSES’, commitSites : CMTS’ >

fi

if CMTS’ := remove(TID,RID’,CMTS) .

67

4.7 QUANTITATIVE ANALYSIS OF RAMP DESIGNS

The main difference between the RAMP designs in [14] and the new designs we have

proposed is that those in [14] guarantee read atomicity whereas ours do not. On the other

hand, as mentioned in Section 4.2, we conjecture that our designs—in particular, RAMP-

Faster—provide not only better performance (throughput, average latency, etc.) but also

in some ways better “consistency” in the sense of reads more often reading the latest value

written. If this is indeed the case, and, furthermore, a large fraction of transactions in

representative workloads satisfy read atomicity, then our designs should be interesting for

applications where read atomicity is highly desirable but not an absolute requirement. For

example, in a social network, read atomicity is desirable (if A befriends B in a transaction,

then another transaction should not observe a “fractured read” where A is a friend of B but

where B is not a friend of A), but a small percentage of fractured reads might be acceptable

if the performance becomes significantly better.

In this section we compare the performance—along a number of performance parameters,

including throughput, average latency, percentage of strongly consistent reads—of our own

RAMP-like designs with the original RAMP designs using statistical model checking. Be-

sides, we also intend to answer the question “Does statistical model checking of probabilistic

Maude models provide realistic performance estimates for RAMP designs?” by comparing

the performance estimates obtained by our method with the implementation-based evalua-

tions in [14].4

4.7.1 Performance Measures

We start by formalizing the performance metrics as functions of the “history log” of a

completed run. The common performance measures for DTSs are throughput and average

latency.

Throughput. The function throughput computes the number of committed transactions

per time unit. committedNumber computes the number of committed transactions in LOG,

and totalRunTime returns the time when all transactions are finished (i.e., the largest

finishTime in LOG):

op throughput : Log -> Float .

eq throughput(LOG) = committedNumber(LOG) / totalRunTime(LOG) .

4Strong consistency is not considered in [14].

68

op committedNumber : Log -> Float .

op $committedNumber : Log Float -> Float .

eq committedNumber(LOG) = $committedNumber(LOG,0.0) .

eq $committedNumber((TID |-> < O,T,VT,true,RS,WS >,LOG),N)

= $committedNumber(LOG,N + 1.0) .

eq $committedNumber((TID |-> < O,T,VT,false,RS,WS >,LOG),N)

= $committedNumber(LOG,N) .

eq $committedNumber(noRecord,N) = N .

Average Latency. The function avgLatency computes the average transaction latency

by dividing the sum of the latencies of all committed transactions by the number of such

transactions:

op avgLatency : Log -> Float .

eq avgLatency(LOG) = totalLatency(LOG) / committedNumber(LOG) .

where totalLatency computes the sum of all transaction latencies (time between the start

time and the finish time of a committed transaction).

op totalLatency : Log -> Float .

op $totalLatency : Log Float -> Float .

eq totalLatency(LOG) = $totalLatency(LOG,0.0) .

eq $totalLatency((TID |-> < O,T1,(O |-> T2,VT),true,RS,WS >,LOG),T)

= $totalLatency(LOG,T + T2 - T1) .

eq $totalLatency((TID |-> < O,T1,VT,false,RS,WS >,LOG),T)

= $totalLatency(LOG,T) .

eq $totalLatency(noRecord,T) = T .

4.7.2 Consistency Measures

There is considerable interest in how well data consistency properties of interest are met

by different cloud storage systems [88, 43, 10, 64, 76]. Consistency properties include read

consistency guarantees (e.g., strong consistency, and read my writes advocated by Doug

Terry [87]) in general, and transaction isolation models (e.g., the classic read committed

isolation [18], and state-of-the-art read atomicity [14]) in particular for DTSs.

We focus on the following two in this chapter:

• Strong Consistency (SC) guarantees that each read returns the value of the last write

that occurred before that read.

69

• Read Atomicity (RA) ensures that either all or none of a (distributed) transaction’s

updates are visible to other transactions.

Strong Consistency. As all transactions can be totally ordered by their issue times, we

define the function sc that computes the fraction of read transactions satisfying SC:

op sc : Log -> Float .

eq sc(LOG) = scTxns(LOG) / totalReadTxns(LOG) .

where totalReadTxns returns the total number of (committed) read transactions in LOG.

scTxns checks, for each (committed) read transaction in LOG, whether the versions read

match those of the last (committed) write transaction (indicated by WS’):

op scTxns : Log -> Float .

op $scTxns : Log Float -> Float .

eq scTxns(LOG) = $scTxns(rtx(LOG),wtx(LOG),0.0) .

ceq $scTxns((TID1 |-> < O, T, VT, true, WS’,WS >, LOG),

(TID2 |-> < O’, T’, VT’, true, RS’,WS’) >, LOG’), N)

= $scTxns(LOG, (TID2 |-> < O’, T’, VT’, true, RS’, WS’ >, LOG’), N + 1.0)

if T’ < T /\ noWtx(T’,T,LOG’) .

eq $scTxns(noRecord, LOG’, N) = N .

where the functions rtx and wtx return all committed read and write transactions in LOG,

indicated by the non-empty read and write set, respectively. noWtx ensures that there is no

(committed) write transaction issued between the last write transaction’s issue time T’ and

the read transaction’s issue time T.

Read Atomicity. We define the function ra computing the fraction of read transactions

that satisfy RA:

op ra : Log -> Float .

eq ra(LOG) = raTxns(LOG) / totalReadTxns(LOG) .

where raTxns checks, for each (committed) read transaction in LOG, whether it reads RA-

consistent versions.

Specifically, if there is a fractured read (indicated by the matching version V, and V’ < V’’),

then that transaction does not count; otherwise, the total number of RA-consistent trans-

actions (N) increases by one:

70

op raTxns : Log -> Float .

op $raTxns : Log Float -> Float .

eq raTxns(LOG) = $raTxns(rtx(LOG),wtx(LOG),0.0) .

ceq $raTxns((TID1 |-> < O, T, VT, true, (< X,V >, < Y,V’>,RS), WS >, LOG),

(TID2 |-> < O’, T’, VT’, true, RS’, (< X,V >, < Y,V’’>,WS’) >, LOG’), N)

= $raTxns(LOG, (TID2 |-> < O’, T’, VT’, true, RS’,(< X,V >, < Y,V’’ >,WS’) >, LOG’),

N) if V’ < V’’ .

eq $raTxns((TID1 |-> < O, T, VT, true, RS, WS >, LOG),

(TID2 |-> < O’, T’, VT’, true, RS’, WS’ >, LOG’), N)

= $raTxns(LOG, (TID2 |-> < O’, T’, VT’, true, RS’,WS’ >, LOG’),N + 1.0) [owise] .

eq $raTxns(noRecord, LOG’, N) = N .

4.7.3 Generating Initial States

We use an operator init to probabilistically generate initial states:

init(rtx,wtx, rwtx, repl, keys, rops,wops, rwops, distr)

generates an initial state with rtx read-only transactions, wtx write-only transactions, rwtx

read-write transactions, repl replicas, keys data items, rops operations per read-only trans-

action, wops operations per write-only transaction, rwops operations per read-write trans-

actions, and distr the key access distribution (the probability that an operation accesses

a certain data item). To capture the fact that some data items may be accessed more

frequently than others, we also use Zipfian distributions in our experiments.

Each PVeStA simulation starts from init(parameters), which rewrites to a different

initial state in each simulation. The reason is that this expression involves generating cer-

tain values—such as the transactions—probabilistically. The entire specification is given at

https://sites.google.com/site/siliunobi/ramp-smc.

4.7.4 Statistical Model Checking Results

This section shows the result of using statistical model checking from many initial states

to compare all eight RAMP versions w.r.t. the performance (i.e., throughput and average

latency) and consistency measures (i.e., strong consistency and read atomicity).

In our experiments we use lognormal distribution for message delay with the mean µ =

0.0 and standard deviation σ = 1.0 [17]. All properties are computed with a 99% confidence

level of size at most 0.01. Our analyses consider 2 data items, 2 operations per transaction,

71

up to 50 clients (or proxies), and up to 400 transactions. We consider not only the 95% read

transaction and 5% write transaction proportion workloads in [14], but also explore how the

RAMP designs behave for different read/write rates.

Throughput. Figure 4.1 shows the resulting of analyzing throughput against the number

of concurrent clients (top) and percentage of read transactions (bottom).

For the original RAMP designs, under a 95% read proportion, as the number of clients in-

creases, both RAMP-F and RAMP-S’s throughput increases, and RAMP-F provides higher

throughput than RAMP-S. As the read proportion increases, RAMP-F’s throughput in-

creases, while RAMP-S’s throughput keeps nearly constant; and RAMP-F also outperforms

RAMP-S in throughput. These observations are consistent with the experimental results in

[14].

There are no conjectures in [14] about the throughput of the designs that were only

sketched in [14]. We observe that unlike other RAMP-F-like algorithms, whose through-

put increases as read activities increase, RAMP-F+1PW’s throughput keeps high with all

reads/writes. As the right plot shows, at the beginning, when there are more writes than

reads, RAMP-F+1PW and RAMP-Faster perform better than other RAMP-F-like designs.

This happens because RAMP-F requires two RTTs for a write, RAMP-F+1PW needs only

one RTT and RAMP-Faster, our proposed design, performs commit when the PREPARE

message is received. Hence, with all write transactions, RAMP-F+1PW and RAMP-Faster

will always provide higher throughput. However, as read activities increase, other RAMP-F-

like designs increase their throughput, as they require one RTT for all reads. Even though as

the percentage of reads increases, RAMP-F+1PW and RAMP-Faster compensate the extra

RTT incurred due to the races, with the RTT saved during the write operations.

The RAMP-S-like designs provide lower throughput than the RAMP-F-like designs, which

is consistent with the observations in [14]. As expected, as the read percentage increases,

RAMP-S+1PW’s throughput converges with those of other RAMP-S-like designs, because

all RAMP-S-like designs require more RTTs for reads compared to RAMP-F even when

there is no race between reads and writes. In the worst case, when there is a race between

read and write operations, all designs require two RTTs for reads.

Regarding our own designs, RAMP-Faster provides the highest throughput with varying

read load and with larger number of concurrent clients among all RAMP versions. One

reason is that RAMP-Faster’s writes need only one RTT. RAMP-F-2PC (or RAMP-S-2PC)

is not competitive with RAMP-F (or RAMP-S) regarding throughput. The reason is that,

although they sacrifice 2PC, they still need to commit each write operation before committing

the write transaction, which brings no apparent difference in throughput.

72

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

Th
ro
ug
hp

ut
(tx

n/
tim

e
un

it)

of concurrent clients

RAMP-F RAMP-F-2PC RAMP-S
RAMP-S-2PC RAMP-F+FC RAMP-F+1PW
RAMP-S+1PW RAMP-Faster

0

0.5

1

1.5

2

2.5

3

0 25 50 75 100

Th
ro
ug
hp

ut
(tx

n/
tim

e
un

it)

Percentage (reads)

RAMP-F RAMP-F-2PC RAMP-S
RAMP-S-2PC RAMP-F+FC RAMP-F+1PW
RAMP-S+1PW RAMP-Faster

Figure 4.1: Throughput under varying client and read load.

73

4

5

6

7

8

9

10

0 10 20 30 40 50

Av
g.
La
te
nc
y
(ti
m
e
un

it)

of concurrent clients

RAMP-F RAMP-F-2PC RAMP-S

RAMP-S-2PC RAMP-F+FC RAMP-F+1PW

RAMP-S+1PW RAMP-Faster

2

3

4

5

6

7

8

9

10

0 25 50 75 100

Av
g.
La
te
nc
y
(ti
m
e
un

it)

Percentage (reads)

RAMP-F RAMP-F-2PC RAMP-S

RAMP-S-2PC RAMP-F+FC RAMP-F+1PW

RAMP-S+1PW RAMP-Faster

Figure 4.2: Average transaction latency under varying client and read load.

74

Average Latency. Figure 4.2 shows the average transaction latency as the number of

concurrent clients (top) and the proportion of read transactions (down) increases.

Under a 95% read proportion, as the number of concurrent clients increases, the RAMP-

F versions’ average latency increases slightly, and the RAMP-S versions are almost twice

as slow as the RAMP-F variations. And although RAMP-F+1PW and RAMP-S+1PW as

expected have lower latencies than RAMP-F and RAMP-S, respectively, the differences are

surprisingly small. In the same way, removing 2PC does not seem to help much. Although

the differences are small, RAMP-Faster is the fastest, followed by RAMP-F with one-phase

writes.

In Fig. 4.2 (bottom) we see that RAMP-F+1PW and RAMP-Faster significantly outper-

form all the other algorithms when the proportion of write transactions is between 25% and

75-80%.

Regarding our own designs, it seems that RAMP-F-2PC (resp. RAMP-S-2PC) is not

competitive with RAMP-F (resp. RAMP-S) regarding average latency. The reason is that,

although RAMP-F-2PC and RAMP-S-2PC sacrifice 2PC, they still need to commit each

write operation before committing the write transaction, which brings no noticeable differ-

ence in latency. RAMP-Faster incurs the lowest average latency among all RAMP versions

with varying client and read loads.

Strong Consistency. Figure 4.3 shows the percentage of transactions satisfying strong

consistency under varying number of clients and read/write proportions by using statistical

model checking.

In all RAMP designs, the probability of satisfying strong consistency decreases as the

number of clients increases, since there are more races between reads and writes, which

decreases the probability of reading the preceding write.

It is natural that the percentage of transactions satisfying strong consistency increases as

the reads increase: the chance of reading the latest preceding write should increase when

writes are few and far between.

We also observe that RAMP-S-like designs (i.e., RAMP-S/+1PW/-2PC) provide greater

degrees of strong consistency than their RAMP-F counterparts. The reason is that RAMP-

S-like designs always use second-round reads, which might increase the chance of reading

the latest write. The only exception seems to be that RAMP-Faster outperforms all other

RAMP designs for 25-75% read workloads. The reason is that RAMP-Faster only requires

one RTT for a write to commit, which increases a read transaction’s chance to fetch the

latest write.

75

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

%
of

tx
ns
	sa

tis
fy
in
g
st
ro
ng
	co

ns
ist
en

cy

of concurrent clients

RAMP-F RAMP-F-2PC
RAMP-S RAMP-S-2PC
RAMP-F+FC RAMP-F+1PW
RAMP-S+1PW RAMP-Faster

0

10

20

30

40

50

0 25 50 75 100

%
	o
f	t
xn
s	s
at
isf
yi
ng
	st
ro
ng

co
ns
ist
en

cy

Percentage (reads)

RAMP-F RAMP-F-2PC

RAMP-S RAMP-S-2PC

RAMP-F+FC RAMP-F+1PW

RAMP-S+1PW RAMP-Faster

Figure 4.3: Probability of satisfying strong consistency under varying client and read load.

76

90

91

92

93

94

95

96

97

98

99

100

0 10 20 30 40 50

%
of
	tx
ns

sa
tis
fy
in
g
re
ad

at
om

ic
ity

of concurrent clients

RAMP-F/S/+FC/+1PW RAMP-F-2PC

RAMP-S-2PC RAMP-Faster

90

91

92

93

94

95

96

97

98

99

100

0 25 50 75 100

%
of

tx
ns
	sa

tis
fy
in
g
re
ad
	a
to
m
ic
ity

Percentage (reads)

RAMP-F/S/+FC/+1PW RAMP-F-2PC

RAMP-S-2PC RAMP-Faster

Figure 4.4: Probability of satisfying read atomicity under varying client and read load.

77

Read Atomicity. Figure 4.4 shows the percentage of transactions satisfying read atomic-

ity by using statistical model checking. As it should be, all designs in [14] satisfy read atomic

isolation. Our own design alternatives provide 92-100% read atomicity under all scenarios

considered. With 95% read transactions, they all offer 97-100% read atomicity.

Summary. Our formal model-based methodology has allowed us to quickly and easily

analyze the expected performance of a large number of RAMP designs along a number

of performance parameters and with varying number of concurrent clients and read/write

transaction proportions. This allows to predict which design is the best fit for a particular

application.

Our results are consistent with the experimental results in [14]. For example: the through-

put of both RAMP-F and RAMP-S increases with the number of concurrent clients, and

RAMP-F provides higher throughput than RAMP-S; the latency also increases with the

increase of concurrent clients (very minimally for RAMP-S, however).

Our results also confirm the conjectures about the sketched designs in [14], which were

never experimentally validated by the RAMP developers. For example: RAMP-F+FC and

RAMP-F+1PW have lower latency than RAMP-F (and similarly for RAMP-S). We can

also compare RAMP-F-FC with RAMP-F+1PW, and see that RAMP-F+1PW typically

provides better performance among these two optimizations.

We can also evaluate our own designs. It turns out that RAMP without 2PC does not

improve the performance of RAMP. On the other hand, RAMP-Faster is an interesting

design, as it generally provides the smallest average latency and highest throughput among

all RAMP designs, in particular when there are a fair amount of write transactions, while

providing more than 92% read atomicity even for very write-heavy workloads. Maybe slightly

surprisingly, RAMP-Faster does not provide the highest percentage of strongly consistent

reads for read-heavy workloads, but does so for workloads with 25-75% read transactions.

Note that the actual values might differ between the experiments in [14] and our statistical

analysis, due to factors like hard-to-match experimental configurations, the inherent differ-

ence between statistical model checking and implementation-based evaluation5, processing

delay at client/replica side, and different distributions of item accesses. The important ob-

servation is that the relative performance in both sides are similar (see Appendix B for the

RAMP performance in [14]).

It is also worth remarking we only use two data items, while the experiments in [14] use

5In general, implementation-based evaluation is based on a single trace of hundreds of thousands of
transactions, while statistical model checking is based on sampling hundreds of thousands of Monte-Carlo
simulations of hundreds of transactions up to a certain statistical confidence.

78

up to thousands. This implies that we “stress” the algorithms much more, since there are

much fewer potential clashes between small transactions (typically with four operations) in

a 1000-data-object setting that between our two-operation transactions on two data objects.

The time to compute the probabilities for strong consistency is around 15 hours (in the

worst-case), and for other metrics is around 8 hours (in the worst-case) with a workload of

400 transactions on a 2.7 GHz Intel Core i5 CPU with 8 GB of memory. Each point in the

plots represents the average of three statistical model checking results.

4.8 CONCLUDING REMARKS

In this chapter, we have investigated the RAMP transaction systems from both qualitative

and quantitative perspectives.

Regarding correctness analysis, while the original RAMP paper included hand proofs only

for the basic RAMP algorithms, we have adopted a model checking approach where we have:

(i) first developed fully-executable formal models of many RAMP variants and extensions in

the CAT framework; (ii) formally analyzed these models to confirm the original correctness

properties; and (iii) used our models to analyze RAMP’s extensions and optimizations (which

the original RAMP paper did not do).

Regarding performance estimation, we have explored eight design alternatives for RAMP

transactions by using statistical model checking. Substantial knowledge about both imple-

mented and unimplemented RAMP designs has thus been gained. This knowledge can help

find the best match between a given RAMP version and a class of applications. For exam-

ple, we now know how the different designs behave not just for read-intensive workloads, but

understand their behavior across the entire spectrum from read-intensive to write-intensive

tasks. We have also identified promising new design alternatives for given classes of applica-

tions relatively easily before they are implemented. This of course does not replace the need

for implementation and experimental validation, but it allows us to focus implementation

and validation efforts where they are most likely to pay off.

79

CHAPTER 5: CASE STUDY: THE WALTER TRANSACTIONAL DATA
STORE

Walter [85] is a distributed partially replicated data store providing Parallel Snapshot

Isolation (PSI), an important consistency property that offers attractive performance while

ensuring adequate guarantees for certain kinds of applications. In this chapter we formally

model Walter’s design in the CAT framework described in Chapter 3, and formally verify

the desired consistency properties by model checking. To the best of our knowledge, this

is the first formal specification, as well as the first model checking analysis, of Walter. To

also analyze Walter’s performance we extend the Maude specification of Walter to a proba-

bilistic rewrite theory and perform statistical model checking analysis to evaluate Walter’s

throughput for a wide range of workloads. Our performance results are consistent with a

previous experimental evaluation and throw new light on Walter’s performance for different

workloads not evaluated before.

This chapter is structured as follows. Section 5.1 gives an overview of Walter. Section 5.2

provides a detailed formal executable specification of Walter. Section 5.3 formally analyzes

whether the Walter model satisfies PSI or SI (short for Snapshot Isolation). In Section

5.4 we transform the Maude model of Walter from the CAT framework into a probabilistic

rewrite theory, and carry out a systematic statistical model checking analysis of the key

performance metric, transaction throughput, under a wide range of workloads. Finally,

concluding remarks are given in Section 5.5.

Acknowledgements. This chapter is based on the work [61, 62] supported in part by NSF

Grant CNS 1409416, NRL contract N00173-17-1-G002, and NSFC Project No. 61872146.

5.1 WALTER DATA STORE

Walter [85] is a partially replicated geo-distributed data store that supports multi-partition

transactions and guarantees PSI. The key idea to ensure that all operations in a transaction

read a consistent “snapshot” of the distributed data store is that each site s maintains a

(local) vector timestamp {site1 7→ k1, . . . , siten 7→ kn} representing a current snapshot of

the state, as seen by site s, where sitej 7→ kj means that the snapshot includes the first

k transactions executed at site site i. Each time a transactions starts executing at s, the

transaction is assigned the current local snapshot/vector timestamp of site s. Remote reads

can then be performed consistently according to this snapshot. Another key Walter feature

is that each data item has a preferred site, so that writes at preferred sites can be committed

80

fast (e.g., the sites that you usually use could be the preferred site for “your” data).

A transaction is executed as follows. When the “host” site s starts executing transaction

t, t is assigned the current snapshot of s. The site s then executes the read and write

operations in t. For writes, Walter buffers the versions written in the transaction’s write set.

For reads, Walter fetches the latest appropriate version according to t’s start snapshot, by

checking any updates in the write set and its history of previous updates. If the associated

key is not replicated locally, Walter retrieves the right version remotely from the data item’s

preferred site.

When the host site has finished executing the operations in the transaction, it starts

committing the transaction. Read-only transactions and transactions that only write data

items whose preferred site is the host site s can commit locally (fast commit). Walter then

checks whether all versions of each data item in the history of the local site are unmodified

since the start vector timestamp, and whether all data items are unlocked (i.e., not being

committed by another transaction). If either check fails, Walter aborts the transaction;

otherwise, Walter can commit the transaction. If a transaction cannot commit locally (slow

commit), the executing site s uses the two-phase commit (2PC) protocol to check whether

the transaction can be committed, by asking all the preferred sites of data items written by

t whether t can be committed. If the data items written by t are unmodified and unlocked

at such a site, the site replies with a “yes” vote and locks the corresponding data items.

Otherwise, the site votes “no.” If the executing site receives a “no” vote, the transaction is

aborted and the other preferred sites are notified and release the appropriate locks. If all

votes are “yes” votes, the transaction can be committed.

If the transaction t can be (fast or slow) committed, the site s marks t as committed,

assigns it a version (s, seqNo) (where seqNo is a local sequence number), updates the local

history with the updates, and propagates t to other sites, which update their histories and

their vector timestamps. To allow f site failures, a transaction is marked disaster-safe durable

if its writes have been logged at f+1 sites. The propagation protocol first checks whether the

transaction can be marked as disaster-safe durable by collecting acknowledgments from f+1

sites for each data item. Upon receiving the propagation of a transaction, a site acknowledges

it only after it receives all transactions that causally precede the propagated transaction (by

using the transaction’s start vector timestamp), and all transactions at the same executing

site with a smaller sequence number. The protocol then checks whether the transaction can

be marked as globally visible. This is done by committing the transaction at all sites. A

transaction can be committed at a remote site when it learns that the transaction is disaster-

safe durable, all transactions causally preceding the transaction have been committed locally,

and all transactions at the same executing site with a smaller sequence number have been

81

committed locally.

The paper [85] briefly discusses failure handling, but does not give much detail. The au-

thors have implemented Walter in about 30K lines of code, and have implemented Facebook-

and Twitter-like applications on top of Walter using the Amazon EC2 cloud platform to ex-

periment with and evaluate Walter’s performance in isolation, and as a backend for social

networking, in a distributed setting (with nodes in US, Ireland, and Singapore). They use

their distributed deployment to estimate the transaction latency and throughput (committed

transactions per second) for read-only, write-only, and 90% read workloads.

The authors do not prove or justify that Walter actually guarantees PSI.

5.2 FORMAL MODELING OF WALTER

This section defines a formal executable model of Walter in the CAT framework.

5.2.1 Data Types, Classes, and Messages

We formalize Walter in an object-oriented style, where the state consists of a number of

replica (or site) objects, each modeling a local database, and a number of messages traveling

between the objects. A transaction is formalized as an object which resides inside the replica

object that executes the transaction.

Some Data Types. A version is a pair version(oid,sqn) consisting of a site oid where

the transaction is executed, and a sequence number sqn local to that site. A vector times-

tamp is a map from site identifiers to sequence numbers:

pr MAP{Oid,Nat} * (sort Map{Oid,Nat} to VectorTimestamp) .

The sort OperationList represents lists of read and write operations as terms such as

(x := read k1) (y := read k2) write(k1, x + y), where LocalVar denotes the “local

variable” that stores the value of the key read by the operation, and Expression is an

expression involving the transaction’s local variables:

op write : Key Expression -> Operation [ctor] .

op _:=read_ : LocalVar Key -> Operation [ctor] .

op waitRemote : Key LocalVar -> Operation [ctor] .

pr LIST{Operation} * (sort List{Operation} to OperationList) .

waitRemote(k, x) means that the transaction execution is awaiting the value of the key (or

data item) k from a remote site to be assigned to the local variable x.

82

Classes. A Walter transaction is modeled as an object instance of the subclass Walter-Txn

of the class Txn defined in Chapter 3.1:

class Walter-Txn | operations : OperationList, localVars : LocalVars,

startVTS : VectorTimestamp, txnSQN : Nat .

subclass Walter-Txn < Txn .

The operations attribute denotes the transaction’s remaining operations. localVars maps

the transaction’s local variables to their current values. startVTS refers to the vector times-

tamp assigned to the transaction when it starts to execute, and txnSQN is the transaction’s

sequence number given upon commit.

A replica, or site, stores parts of the database, and executes the transactions for which it is

the host/server. A Walter replica is specified as an object instance of the following subclass

Walter-Replica of the class Replica defined in Chapter 3.1:

class Walter-Replica | history : Datastore, sqn : Nat, gotTxns : ObjectList,

gotVTS : VectorTimestamp, locked : Locks,

votes : Vote, voteSites : TxnSites, abortSites : TxnSites,

dsSites : PropagateSites, vsbSites : TxnSites,

dsTxns : OidSet, gvTxns : OidSet,

recPropTxns : PropagatedTxns, recDurableTxns : DurableTxns .

subclass Walter-Replica < Replica .

The history attribute represents the site’s local database, as well as propagated updates also

on data items not stored at the replica, as a map from keys to lists of updates < value, version >:

op <_,_> : Value Version -> ValueVersion [ctor] .

pr LIST{ValueVersion} * (sort List{ValueVersion} to ValueVersionList) .

pr MAP{Key,ValueVersionList} * (sort Map{Key,ValueVersionList} to Datastore) .

The sqn attribute denotes the replica’s current local sequence number. The attribute

gotTxns denotes the transaction (objects) which are waiting to be executed. gotVTS in-

dicates for each site how many transactions of that site have been received by this site. The

locked attribute denotes the locked keys and their associated transactions at this site:

op lock : Oid Key -> Lock . --- Txn Oid locks Key

pr SET{Lock} * (sort Set{Lock} to Locks) .

The votes attribute denotes a collection of votes in the two-phase commit:

83

sort Vote .

op noVote : -> Vote [ctor] .

op vote : Oid Oid Bool -> Vote [ctor] . --- Txn, Participant, vote

op _;_ : Vote Vote -> Vote [ctor assoc comm id: noVote] .

The voteSites attribute refers to, for each transaction, the remaining replicas from which

the coordinator is awaiting votes:

sort TxnSites .

op noTS : -> TxnSites [ctor] .

op txnSites : Oid OidSet -> TxnSites [ctor] .

op _;_ : TxnSites TxnSites -> TxnSites [ctor assoc comm id: noTS] .

Similarly for each transaction, the attribute abortSites denotes the remaining sites from

which the coordinator is awaiting the acknowledgments to abort the transaction. (The

coordinator first notifies the corresponding sites to abort a transaction, and it will abort it

locally after it gets the replies from those sites.)

The remaining attributes refer to the transaction replication. The attribute dsSites

(resp. vsbSites) denotes the remaining sites from which each transaction is awaiting ac-

knowledgments to mark itself as disaster-safe durable (resp. as globally visible). The sort

PropagateSites contains the keys in each transaction’s write set, because for a transaction

to be disaster-safe durable each key must be replicated:

sort PropagateSites .

op noPS : -> PropagateSites [ctor] .

op propagateSites : Oid Key OidSet -> PropagateSites [ctor] .

op _;_ : PropagateSites PropagateSites ->

PropagateSites [ctor assoc comm id: noPS] .

The attributes dsTxns and gvTxns denote the set (of sort OidSet) of disaster-safe durable

and globally visible transactions, respectively. The last two attributes recPropTxns and

recDurableTxns buffer the received propagation and disaster-safe durable messages from

the coordinator.

The state also contains an object mapping each key to the sites storing the key (these

sites are also called the replicas of the key):

class Table | table : ReplicaTable .

84

Elements of sort ReplicaTable are ‘;;’-separated sets of terms sites(ki,replicas i), where

the list replicas i denotes the sites replicating the key ki. The first element in such a list is

the preferred site of the corresponding key:

sort KeyReplicas .

op [_] : KeyReplicas -> ReplicaTable [ctor] .

op eptTable : -> KeyReplicas [ctor] .

op sites : Key OidList -> KeyReplicas [ctor] .

op _;;_ : KeyReplicas KeyReplicas -> KeyReplicas [ctor assoc comm id: eptTable] .

Messages between sites have the form msg content from sender to receiver . The message

content (or simply message) request(key , txn, vts) sends a read request for transaction

txn to key ’s preferred site to retrieve its state from the snapshot determined by vector

timestamp vts . The preferred site replies with a message reply(txn, key , value version),

where value version is chosen based on the incoming vector timestamp. The message

prepare(txn,keys, vts) sends the key(s) keys in transaction txn to their preferred sites

with the transaction’s start vector timestamp vts . Those preferred sites reply with a mes-

sage prepare-reply(txn, vote). The messages abort(txn) and aborted(txn) are sent out

when the coordinator distributes the “abort” decision to the participants, and when the

participants acknowledge the decision. The message propagate(txn, sqn, vts ,ws) sends a

transaction txn’s sequence number sqn, vector timestamp vts , and write set ws to all sites.

The sites reply with a message propagate-ack(txn) to acknowledge that the transaction

txn has been propagated successfully. The message ds-durable(txn) is sent to all sites once

the transaction txn has been marked as disaster-safe durable. The sites then reply with a

message visible(txn) to acknowledge the notification.

Initial State. The following shows an automatically generated initial state (with some

parts replaced by ‘...’) with three replicas, r1, r2, and r3, where r1 and r2 are the coordi-

nators for, respectively, transactions t1, and t2 and t3. Key x is replicated at r1 and r2,

key y at r2 and r3, and key z at r3 and r1, with r1, r2 and r3 the respective preferred sites.

Transaction t1 is the read-only transaction (xl :=read x) (yl :=read y), transaction t2

is a write-only transaction write(y, 3) write(z, 8), while transaction t3 is a read-write

transaction on key x. Initially, the value of each key is [0], and its version is version(0,0):

eq init =

< tb : Table | table : [sites(x, r1 r2) ;; sites(y, r2 r3) ;; sites(z, r3 r1)] >

< r1 : Walter-Replica |

85

gotTxns : < t1 : Walter-Txn | operations : ((xl :=read x) (yl :=read y)),

readSet : empty, writeSet : empty, startVTS : empty,

localVars : (xl |-> [0], yl |-> [0]), txnSqn : 0 >,

history : (x |-> (< [0],version(0,0) >),

z |-> (< [0],version(0,0) >)), sqn : 0, ... >

< r2 : Walter-Replica |

gotTxns : < t2 : Walter-Txn | operations : (write(y, 3) write(z, 8)), ... >

< t3 : Walter-Txn | operations : ((xl := read x)

write(x, xl plus 1)), ... > ... >

< r3 : Walter-Replica | history : (y |-> (< [0],version(0,0) >),

z |-> (< [0],version(0,0) >)), ... > .

5.2.2 Formalizing Walter’s Behavior

This section formalizes the dynamic behavior of Walter using rewrite rules.1

Starting a transaction. A replica starts executing a transaction by moving the first

transaction TID in gotTxns to executing, and assigns its committed vector timestamp VTS

to the transaction’s start vector timestamp:

rl [start-txn] :

< RID : Walter-Replica | gotTxns :

(< TID : Walter-Txn | startVTS : empty > ;; TXNS),

executing : TRANSES, committedVTS : VTS >

=>

< RID : Walter-Replica | gotTxns : TXNS,

executing : < TID : Walter-Txn | startVTS : VTS > TRANSES > .

Executing a transaction. We can now execute the operations of the transaction. Assume

we start with a read operation X :=read K. There are three cases to consider: (i) the

transaction has already written to key K (buffered in the write set); (ii) there is no preceding

write in the transaction but the executing site replicates K; or (iii) neither (i) nor (ii) hold.

In case (i), the local variable X is given the value V buffered in the write set:

rl [execute-read-own-write] :

< RID : Walter-Replica | executing : TRANSES

1We do not give variable declarations, but follow the convention that variables are written in (all) capital
letters.

86

< TID : Walter-Txn | operations : ((X :=read K) OPS),

writeSet : (K |-> V, WS), localVars : VARS > >

=>

< RID : Walter-Replica | executing : TRANSES

< TID : Walter-Txn | operations : OPS,

writeSet : (K |-> V, WS),

localVars : insert(X,V,VARS) > > .

In case (ii) (the site RID replicates K: localReplica(K,RID,REPLICA-TABLE)), the replica

chooses the last update < V,VERSION > in its local history DS that is visible to the transac-

tion’s start snapshot VTS:

crl [execute-read-local] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica | executing : TRANSES

< TID : Walter-Txn | operations : ((X :=read K) OPS), writeSet : WS,

readSet : RS, localVars : VARS, startVTS : VTS >,

history : DS >

=>

< TABLE : Table | >

< RID : Walter-Replica | executing : TRANSES

< TID : Walter-Txn | operations : OPS, localVars : insert(X,V,VARS),

readSet : (< K,VERSION >,RS) > >

if (not $hasMapping(WS,K)) /\ localReplica(K,RID,REPLICA-TABLE) /\

< V,VERSION > := choose(VTS,DS[K]) .

In case (iii), the site sends a request message (with the transaction’s start vector times-

tamp VTS, since the remote site must choose the version consistent with the snapshot) to

K’s preferred site (preferredSite(...)) to fetch the version. The “next operation” of the

transaction changes to waitRemote(K,X):

crl [execute-read-remote] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica | executing : TRANSES

< TID : Walter-Txn | operations : ((X :=read K) OPS), writeSet : WS,

startVTS : VTS > >

=>

< TABLE : Table | >

< RID : Walter-Replica | executing : TRANSES

87

< TID : Walter-Txn | operations : (waitRemote(K,X) OPS) > >

(msg request(K,TID,VTS) from RID to preferredSite(K,REPLICA-TABLE))

if (not $hasMapping(WS,K)) /\ (not localReplica(K,RID,REPLICA-TABLE)) .

The remote (preferred) site responds to such a request by sending the snapshot-consistent

value and version (choose(VTS, DS[K])) of the requested key:

rl [receive-remote-request] :

(msg request(K, TID, VTS) from RID’ to RID)

< RID : Walter-Replica | history : DS >

=>

< RID : Walter-Replica | >

(msg reply(TID, K, choose(VTS, DS[K])) from RID to RID’) .

The executing site then merges the fetched value and version in the local history, and

updates the read set and local variables:

rl [receive-remote-reply] :

(msg reply(TID, K, < V,VERSION >) from RID’ to RID)

< RID : Walter-Replica | history : DS, executing : TRANSES

< TID : Walter-Txn | operations : (waitRemote(K, X) OPS), readSet : RS,

localVars : VARS > >

=>

< RID : Walter-Replica | executing : TRANSES

< TID : Walter-Txn | operations : OPS,

readSet : (< K, VERSION >, RS),

localVars : insert(X, V, VARS) >,

history : merge(K, < V,VERSION >, DS) > .

When the next transaction operation is a write operation write(K, EXPR), the expression

EXPR to be written is evaluated w.r.t. the current values of the local variables, and the

resulting value is added to the write set:

rl [execute-write] :

< RID : Walter-Replica | executing : TRANSES

< TID : Walter-Txn | operations : (write(K, EXPR) OPS),

localVars : VARS, writeSet : WS > >

=>

< RID : Walter-Replica | executing : TRANSES

< TID : Walter-Txn | operations : OPS,

writeSet : insert(K, eval(EXPR, VARS), WS) > > .

88

Commit a Transaction. When all the currently executing transaction’s operations have

been performed, the site starts to commit the transaction. A read-only transaction (writeSet

is empty) is committed locally:

rl [commit-read-only-txn] :

< RID : Walter-Replica | committed : TRANSES’, executing : TRANSES

< TID : Walter-Txn | operations : nil, writeSet : empty > >

=>

< RID : Walter-Replica | committed : TRANSES’ < TID : Walter-Txn | >,

executing : TRANSES > .

There are two cases for committing a write transaction: fast commit if the executing site is

the preferred site of all keys written by the transaction; and slow commit if the transaction’s

write sets contains keys with non-local preferred sites.

Fast Commit. To fast commit a transaction, two checks for conflicts are performed at the

site: one check for any modified key, and another check for any locked key, i.e., a key being

committed concurrently by another transaction. modified(WS, VTS, DS) checks whether

there is a key in the write set WS and a version of that key in the history DS that is not

visible to the snapshot VTS, and locked(WS, LOCKS) checks whether there is a key in WS

that also appears in LOCKS. The following rule shows the case when both checks succeed:

crl [fast-commit-success] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica | executing : TRANSES

< TID : Walter-Txn | operations : nil, writeSet : WS,

startVTS : VTS, txnSQN : TXNSQN >,

committed : TRANSES’, history : DS, locked : LOCKS,

sqn : SQN, committedVTS : VTS’, dsSites : PSTS >

=>

< TABLE : Table | >

< RID : Walter-Replica | executing : TRANSES,

committed : TRANSES’ < TID : Walter-Txn | txnSQN : SQN’ >,

history : update(WS, version(RID,SQN’), DS),

sqn : SQN’, committedVTS : insert(RID, SQN’, VTS’),

dsSites : PSTS ; txnPropagateSites(TID,WS) >

propagateTxn(TID, SQN’, VTS, WS, allSites(REPLICA-TABLE), RID)

if WS =/= empty /\ allLocalPreferred(WS, RID, REPLICA-TABLE) /\

89

(not modified(WS, VTS, DS)) /\ (not locked(WS, LOCKS)) /\

SQN’ := SQN + 1 .

The site commits the transaction by assigning a new local sequence number SQN’, and

updating the local history (update(...)). The site then propagates the transaction to

remote sites. This is done by generating propagation messages using propagateTxn, which

produces one propagation message for each site. The site then keeps track of the sites that

have acknowledged the propagation (txnPropagateSites(...)).

If either check fails, the transaction is aborted:

crl [fast-commit-failed] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica | executing : TRANSES

< TID : Walter-Txn | operations : nil, writeSet : WS, startVTS : VTS >,

aborted : TRANSES’, history : DS, locked : LOCKS >

=>

< TABLE : Table | >

< RID : Walter-Replica | executing : TRANSES,

aborted : TRANSES’ < TID : Walter-Txn | > >

if WS =/= empty /\ allLocalPreferred(WS, RID, REPLICA-TABLE) /\

(modified(WS, VTS, DS) or locked(WS, LOCKS)) .

Slow Commit. Slow commit uses two-phase commit among the preferred sites of the

keys in the transaction’s write set. The executing site distributes the prepare messages to

those preferred sites (allPreferredSites(...)), asking the participants to vote based on

whether the corresponding keys are unmodified and unlocked. The prepare messages are

produced by the function prepareTxn:

crl [slow-commit-prepare] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica | voteSites : VSTS, executing : TRANSES

< TID : Walter-Txn | operations : nil, writeSet : WS, startVTS : VTS > >

=>

< TABLE : Table | >

< RID : Walter-Replica | voteSites : (VSTS ; voteSites(TID,RIDS)),

executing : TRANSES < TID : Walter-Txn | > >

prepareTxn(TID,keys(WS),VTS,RIDS,REPLICA-TABLE,RID)

if WS =/= empty /\ (not allLocalPreferred(WS,RID,REPLICA-TABLE)) /\

RIDS := allPreferredSites(WS,REPLICA-TABLE) /\ (not (TID in VSTS)) .

90

The receiver of a prepare message performs the two checks as in fast commit: if either

check fails, a false vote is sent back; otherwise, the participant locks the key(s) and sends

back a true vote:

rl [slow-commit-receive-prepare] :

(msg prepare(TID,KS,VTS) from RID’ to RID)

< RID : Walter-Replica | locked : LOCKS, history : DS >

=>

if (not locked(KS,LOCKS)) and (not modified(KS,VTS,DS))

then < RID : Walter-Replica | locked : (addLock(KS,TID),LOCKS) >

(msg prepare-reply(TID,true) from RID to RID’)

else < RID : Walter-Replica | >

(msg prepare-reply(TID,false) from RID to RID’) fi .

When the executing replica receives a vote, it first checks whether all votes have been col-

lected (VSTS’[TID] == empty), and then checks whether all votes associated to the transac-

tion are true votes (allYes(TID, VOTES’)). If so, the coordinator decides to propagate the

transaction as in the fast commit; otherwise, the coordinator aborts the transaction, and no-

tifies the participants that voted true to release the locks. This is done by producing “abort”

messages for the corresponding participants RIDS (propagateAbort(TID,RIDS,RID)). The

following rule shows the “aborted” branch:

crl [slow-commit-receive-vote-abort] :

(msg prepare-reply(TID, FLAG) from RID’ to RID)

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica | votes : VOTES, voteSites : VSTS,

abortSites : ABORTS >

=>

< TABLE : Table | >

< RID : Walter-Replica | votes : VOTES’, voteSites : VSTS’,

abortSites : ABORTS ; voteSites(TID,RIDS) >

propagateAbort(TID, RIDS, RID)

if VSTS’ := remove(TID, RID’, VSTS) /\

VOTES’ := VOTES ; vote(TID, RID’, FLAG) /\

VSTS’[TID] == empty /\ (not allYes(TID, VOTES’)) /\

RIDS := yesSites(TID, VOTES’) .

The abort procedure is straightforward: the participant releases the lock(s) held by the

transaction TID, and the executing site aborts the transaction:

91

rl [slow-commit-receive-abort] :

(msg abort(TID) from RID’ to RID)

< RID : Walter-Replica | locked : LOCKS >

=>

< RID : Walter-Replica | locked : release(TID,LOCKS) >

(msg aborted(TID) from RID to RID’) .

crl [slow-commit-receive-aborted] :

(msg aborted(TID) from RID’ to RID)

< RID : Walter-Replica | executing : TRANSES < TID : Walter-Txn | >,

aborted : TRANSES’, abortSites : ABORTS >

=>

(if ABORTS’[TID] == empty --- all acks received; abort the txn locally

then < RID : Walter-Replica | executing : TRANSES,

aborted : TRANSES’ < TID : Walter-Txn | >,

abortSites : ABORTS’ >

else < RID : Replica | abortSites : ABORTS’ > fi)

if ABORTS’ := remove(TID,RID’,ABORTS) .

Transaction Propagation. After a transaction commits, the executing site propagates it

to other sites by invoking the propagation protocol. Upon receiving a propagation message

for transaction TID, the receiving site performs two checks: (i) whether it has gotten all

transactions that causally precede transaction TID, and (ii) whether all transactions from

TID’s executing site have a smaller sequence number. (i) is indicated by VTS’ gt VTS,

meaning that the latest snapshot the site got is greater than the incoming snapshot VTS, and

(ii) by s(VTS’[RID’]) == SQN, meaning that the corresponding latest sequence number the

site got is exactly one smaller than the incoming sequence number SQN. If either check fails,

the site buffers the propagated information regarding the transaction (nonPropagatedTxns),

and waits until the “missing” transactions are propagated to it; otherwise, the transaction

is considered to be propagated successfully (propagatedTxns), and the site updates its local

history (if the site is not the coordinator itself), and then sends back the acknowledgment:

crl [receive-propagate] :

(msg propagate(TID,SQN,VTS,WS) from RID’ to RID)

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica | gotVTS : VTS’, history : DS, recPropTxns : PTXNS >

=>

< TABLE : Table | >

92

(if s(VTS’[RID’]) == SQN and (VTS’ gt VTS)

then if RID =/= RID’

then < RID : Walter-Replica | gotVTS : VTS’’, history : DS’,

recPropTxns : PTXNS’ >

(msg propagate-ack(TID) from RID to RID’)

else < RID : Walter-Replica | gotVTS : VTS’’, recPropTxns : PTXNS’ >

(msg propagate-ack(TID) from RID to RID’)

fi

else < RID : Walter-Replica | recPropTxns : PTXNS’’ >

fi)

if PTXNS’ := propagatedTxns(TID,SQN,VTS) ; PTXNS /\

PTXNS’’ := nonPropagatedTxns(TID,SQN,VTS,WS,RID’) ; PTXNS /\

VTS’’ := insert(RID’,SQN,VTS’) /\

DS’ := update(locRepWS(WS,RID,REPLICA-TABLE),version(RID’,SQN),DS) .

A failed propagated transaction (nonPropagatedTxns) is acknowledged whenever those

two checks pass. The site transforms nonPropagatedTxns to propagatedTxns, and sends

back the acknowledgment:

crl [later-propagate-ack] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica | gotVTS : VTS’, history : DS, recPropTxns :

(nonPropagatedTxns(TID, SQN, VTS, WS, RID’) ; PTXNS) >

=>

< TABLE : Table | >

(if RID =/= RID’

then < RID : Walter-Replica | gotVTS : VTS’’, history : DS’, recPropTxns :

(propagatedTxns(TID, SQN, VTS) ; PTXNS) >

(msg propagate-ack(TID) from RID to RID’)

else < RID : Walter-Replica | gotVTS : VTS’’, history : DS, recPropTxns :

(propagatedTxns(TID, SQN, VTS) ; PTXNS) >

(msg propagate-ack(TID) from RID to RID’)

fi)

if s(VTS’[RID’]) == SQN /\ VTS’ gt VTS /\

VTS’’ := insert(RID’, SQN, VTS’) /\

DS’ := update(locRepWS(WS, RID, REPLICA-TABLE),version(RID’, SQN), DS) .

When the executing site has collected propagation acknowledgments from f + 1 sites, it

marks the transaction as disaster-safe durable. This is done by the function dsDurable,

93

which counts the number of received acks in dsSites. The site also distributes the decision

to all sites by using the function dsDurableTxn to produce a ds-durable message to each

site, and records that information in vsbSites. If there is no need to distribute the decision,

the transaction is marked as globally visible directly (by adding it to gvTxns):

crl [receive-propagate-ack] :

(msg propagate-ack(TID) from RID’ to RID)

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica | dsSites : PSTS, vsbSites : VSBS,

committed : TRANSES < TID : Walter-Txn | writeSet : WS,

startVTS : VTS, txnSQN : SQN > ;; TXNS’,

dsTxns : DSTXNS, gvTxns : GVTXNS >

=>

< TABLE : Table | >

(if dsDurable(TID,PSTS’)

then if RIDS =/= empty

then < RID : Walter-Replica | dsSites : PSTS’, vsbSites : VSBS’,

dsTxns : (TID, DSTXNS) >

dsDurableTxn(TID,RIDS,RID)

else < RID : Walter-Replica | dsSites : PSTS’, vsbSites : VSBS’,

dsTxns : (TID, DSTXNS),

gvTxns : (TID, GVTXNS) >

fi

else < RID : Walter-Replica | dsSites : PSTS’ >

fi)

if PSTS’ := add(TID,keys(WS),RID’,REPLICA-TABLE,PSTS) /\

(not TID in DSTXNS) /\ RIDS := allServers(REPLICA-TABLE) \ RID /\

VSBS’ := VSBS ; voteSites(TID,RIDS) .

A propagation acknowledgment that arrives after the transaction has been marked as

disaster-safe durable is ignored:

rl [receive-propagate-ack-after-ds-durable-mark] :

(msg propagate-ack(TID) from RID’ to RID)

< RID : Walter-Replica | dsTxns : TID , DSTXNS >

=>

< RID : Walter-Replica | > .

Upon receiving the “disaster-safe durable” decision, the site tries to commit the transaction

locally:

94

crl [receive-ds-durable-visible] :

(msg ds-durable(TID) from RID’ to RID)

< RID : Walter-Replica | recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

recDurableTxns : DTXNS, committedVTS : VTS’,

locked : LOCKS >

=>

< RID : Walter-Replica | recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

recDurableTxns : (durableTxns(TID) ; DTXNS),

committedVTS : insert(RID’,SQN,VTS’),

locked : release(TID,LOCKS) >

(msg visible(TID) from RID to RID’)

if VTS’ gt VTS /\ s(VTS’[RID’]) == SQN .

To commit transaction TID, the site must pass three checks: (i) the propagation message

has been received and acknowledged (propagatedTxns(TID,SQN,VTS) shown in recPropTxns),

(ii) VTS’ is greater than VTS, and (iii) all transactions from TID’s executing site with a smaller

sequence number have been received (s(VTS’[RID’]) == SQN). A visible message is then

sent back, and all corresponding locks are released.

The site fails to commit the transaction immediately after receiving the decision if any

check fails. The following rule shows the case when the site has not yet acknowledged the

propagation:

rl [receive-ds-durable-not-visible-not-ack-propagated] :

(msg ds-durable(TID) from RID’ to RID)

< RID : Walter-Replica | recPropTxns : (nonPropagatedTxns(TID,SQN,VTS,WS,RID’)

; PTXNS), recDurableTxns : DTXNS >

=>

< RID : Walter-Replica | recPropTxns : (nonPropagatedTxns(TID,SQN,VTS,WS,RID’)

; PTXNS), recDurableTxns : (nonDurableTxns(TID,RID’)

; DTXNS) > .

The site commits any failed committed transaction (nonDurableTxns) whenever those

checks succeed, by changing nonDurableTxns to durableTxns. It also sends back a visible

message, updates the committed vector timestamp, and releases all corresponding locks:

crl [later-visible] :

< RID : Walter-Replica | recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

recDurableTxns : (nonDurableTxns(TID,RID’) ; DTXNS),

committedVTS : VTS’, locked : LOCKS >

95

=>

< RID : Walter-Replica | recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

recDurableTxns : (durableTxns(TID) ; DTXNS),

committedVTS : insert(RID’,SQN,VTS’),

locked : release(TID,LOCKS) >

(msg visible(TID) from RID to RID’)

if VTS’ gt VTS /\ s(VTS’[RID’]) == SQN .

Finally, after receiving visible messages from all sites, the executing site marks the

transaction as globally visible:

crl [receive-visible] :

(msg visible(TID) from RID’ to RID)

< RID : Walter-Replica | vsbSites : VSBS, gvTxns : GVTXNS >

=>

(if VSBS’[TID] == empty

then < RID : Walter-Replica | vsbSites : VSBS’, gvTxns : (TID , GVTXNS) >

else < RID : Walter-Replica | vsbSites : VSBS’ >

fi)

if VSBS’ := remove(TID, RID’, VSBS) .

5.3 MODEL CHECKING SI AND PSI

As shown in Table 3.1, we have applied our tool CAT to modeling check the Maude model

of Walter against nine properties. All model checking results are as expected. In particular,

the Walter model satisfies consistency properties weaker than or equal to PSI, and violates

SI and any stronger consistency property.

Here we focus on PSI and SI, and investigate in detail whether or not each sub-property

(defined in Section 3.3) of them is satisfied by our Walter model. We have extended the tool

CAT with the associated five sub-properties: snapshot read (SI-1), no write-write conflicts

(SI-2), site snapshot read (PSI-1), no write-write conflicts (PSI-2), and commit causality

across sites (PSI-3). For example, CAT executes the following command to search, from

all generated initial states (with one read-only transaction, two read-write transaction, two

operations per each type of transaction, two sites, two keys, and two replicas per key), for

one reachable final state where the consistency property PSI-1 does not hold:

search [1] init(1,0,2,2,0,2,0,2,2,2) =>! C:Configuration

< M:Oid : Monitor | log: LOG:Log clock: N:Nat >

such that notSiteSnapshotRead(LOG:Log) .

96

Similarly, either of the two results is output: “No solution,” meaning that all runs from

all the given initial states satisfy the desired consistency property, or a counterexample (in

Maude at the moment) showing a behavior that violates the property.

Table 5.1: Model Checking Results w.r.t. SI and PSI. “X” and “×” refer to satisfying or
violating the property, respectively.

SI-1 SI-2 PSI-1 PSI-2 PSI-3
1 read-only, 2 read-write × × X X X

1 read-only, 1 write-only, 1 read-write × × X X X
3 read-write × × X X X

2 read-only, 1 read-write × X X X X
2 read-only, 1 write-only × X X X X

Table 5.1 summarizes our analysis results with the initial states generated with different

combinations of three transactions (all cases share two operations per each type of transac-

tion, two sites, two keys, and two replicas per key). In particular, SI-1 is violated in all the

cases, despite of SI-2 being satisfied in some cases.

5.4 STATISTICAL MODEL CHECKING OF WALTER

To estimate the performance of Walter we adapt its model specified in the CAT framework

into the actor-based framework [5] for statistical model checking using PVeStA.2

5.4.1 A Probabilistic Model of Walter

Following the approach in Section 4.5 we eliminate nondeterminism in our Walter model by

probabilistically assigning to each message a delay. Specifically, the (manual) transformation

wraps the messages in the original Walter model in two ways: (i) an incoming messages is

wrapped with the current global time, and (ii) an outgoing message is wrapped with a delay

sampled probabilistically from a certain distribution of network latency (e.g., the lognormal

distribution [17]).

Example 5.1. In the transformed rule below (the original rule is in black), the incoming

message request is equipped with the current global time GT, and the outgoing message

reply is equipped with a delay:

rl [receive-remote-request-prob] :

2The entire probabilistic model is available at https://sites.google.com/site/siliunobi/walter.

97

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Number of Sites

Read−Only Workload with Zipf

read−tx size=1
read−tx size=5

 0

 50

 100

 150

 200

1 2 3 4

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Number of Sites

Write−Only Workload with Zipf

write−tx size=1
write−tx size=5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Number of Sites

90% Read−Txns Workload with Zipf

read−tx size=1, write−tx size=1
read−tx size=1, write−tx size=5
read−tx size=5, write−tx size=1
read−tx size=5, write−tx size=5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Number of Sites

90% Read−Txns Workload with Uniform

read−tx size=1, write−tx size=1
read−tx size=1, write−tx size=5
read−tx size=5, write−tx size=1
read−tx size=5, write−tx size=5

Figure 5.1: Throughput with fast commit under different workloads.

{GT, msg request(K, TID, VTS) from RID’ to RID}

< RID : Walter-Replica | history : DS >

=>

< RID : Walter-Replica | >

[delay, msg reply(TID, K, choose(VTS, DS[K])) from RID to RID’] .

where the request message is consumed by RID at the global time GT, and the reply message

will be consumed by RID’ after delay time units. delay of sort Float is a parameter

instantiated with a certain probability distribution (see Section 4.5).

5.4.2 Statistical Model Checking Results

Experimental Setup. We performed our experiments with 100 (read-only and/or write-

only) transactions, 1 or 5 operations per transaction, 100 keys, and up to 4 sites (the number

of sites and the transaction size are the same as in the experiments in [85]). All initial states

98

 0

 50

 100

 150

 200

1 2 3 4

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Number of Sites

Write−Only Workload with Zipf

FC write−tx size=1
FC & SC write−tx size=1
FC write−tx size=5
FC & SC write−tx size=5

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Number of Sites

90% Read−Txns Workload with Uniform

read−tx size=1, write−tx size=1
read−tx size=1, write−tx size=5
read−tx size=5, write−tx size=1
read−tx size=5, write−tx size=5

Figure 5.2: Throughput with fast commit (FC) and slow commit (SC).

are generated in the same manner as in Section 4.7. To capture the fact that some keys may

be accessed more frequently than others, we use Zipfian distributions in our experiments.

We also use lognormal message delay distributions with parameters µ = 3 and σ = 1 for

local delays, and µ = 1 and σ = 2 for remote delays.

The plots in Fig. 5.1 show the throughput with only fast commit as a function of the

number of sites, with read-only, write-only or 90% reads workload, and with uniform and

Zipfian distributions. The plots show that read throughput scales nearly linearly with the

number of sites; write throughput also grows with the number of sites, but not linearly.

With a mixed workload, throughput is mostly determined by the transaction size. Our

statistical model checking results are consistent with the system evaluation results in [85]

(see Appendix C). For uniform distribution we only plot the results with a mixed workload.

The plots in Fig. 5.2 show the throughput with mixed (both fast and slow) commit pro-

tocols under the same experimental settings as in Fig. 5.1. As shown in the left plot,

throughput is mostly determined by the transaction size in the mixed workload; the trends

of, and the differences among, various transaction sizes are consistent with those in Fig. 5.1.

We only plot the results with Zipfian distribution, which are consistent with those with

uniform distribution.

Our probabilistic model of Walter, including the infrastructure for statistical model check-

ing, is around 1.8K LOC. Computing the probabilities took a couple of minutes on 30 servers,

each with a 64-bit Intel Quad Core Xeon E5530 CPU with 12 GB memory. Each point in

the plots represents the average of 3 statistical model checking results. The confidence level

for all our statistical experiments is 95%.

99

5.5 CONCLUDING REMARKS

We have formally analyzed and verified in Maude the design of Walter [85], a partially

replicated distributed data store providing multi-partition transactions and guaranteeing

parallel snapshot isolation (PSI), an important consistency property that offers attractive

performance while providing adequate guarantees for certain kinds of applications. No formal

specification of Walter existed before this work. Furthermore, PSI was only informally

described by pseudo-code in [85] and no formal verification existed. This work has used

model checking and systematic generation of initial states to verify that Walter satisfies PSI

for all such states. We have also extended the Maude specification of Walter to model time

and probabilistic communication delays as a probabilistic rewrite theory, and have then used

statistical model checking analysis to study Walter’s latency and throughput performance

for a wide range of workloads. The results of the statistical model checking analysis are

consistent with the experimental results in [85] but offer also new insights about Walter’s

performance for a wider range of workloads than those evaluated experimentally in [85].

100

CHAPTER 6: CASE STUDY: THE ROLA TRANSACTIONAL PROTOCOL

Distributed transaction protocols are complex distributed systems whose design is quite

challenging because: (i) as for other distributed systems, validating correctness is very hard

to achieve by testing alone; (ii) the high performance requirements needed in many applica-

tions are hard to measure before implementation and expensive to compare across different

implementations; and (iii) there is an unavoidable tension between the degree of consistency

needed for the intended applications and the high performance required of the transaction

protocol for such applications: balancing well these two requirements is essential.

In this chapter,1 we present our results on how to use formal modeling and analysis as early

as possible in the design process to arrive at a mature design of a new distributed transaction

protocol, called ROLA (“Read atOmicity and prevention of Lost updAtes”), meeting specific

correctness and performance requirements before such a protocol is implemented. In this

way, the above-mentioned design challenges (i)–(iii) can be adequately met. We also show

how using this formal design approach it is relatively easy to compare ROLA with other

existing transaction protocols. This is also part of meeting design challenge (iii), since the

key comparisons focus on how well each protocol balances the consistency vs. performance

trade-offs for the intended applications.

ROLA in a Nutshell. Different applications require negotiating the consistency vs. per-

formance trade-offs in different ways. The key issue is the application’s required degree of

consistency, and how to meet such requirements with high performance. Cerone et al. [29]

survey a hierarchy of consistency models for distributed transaction protocols. Three of the

weakest consistency models in [29] are: read atomicity (RA), causal consistency (CC),2 and

parallel snapshot isolation (PSI).

A key property of transaction protocols is the prevention of lost updates (PLU). The

weakest consistency model in [29] satisfying both RA and PLU is PSI. However, PSI, and

the well-known protocol Walter [85] implementing PSI, also guarantee CC. Furthermore,

in [9], Ardekani et al. propose a consistency model called non-monotonic snapshot isolation

(NMSI)—and a distributed transaction protocol called Jessy that implements NMSI—that

is weaker than PSI, but still satisfies RA, CC, and PLU. To the best of our knowledge, up

to now NMSI has in fact been the weakest consistency model satisfying both RA and PLU,

1This chapter is based on the work [59, 60, 62] supported in part by NSF CNS 1409416, NSF CNS 1319527,
AFOSR/AFRL FA8750-11-2-0084, NRL contract N00173-17-1-G002, and NSFC Project No. 61872146.

2CC strengthens RA as follows: If transaction T2 is causally dependent on transaction T1, then if another
transaction sees the updates by T2, it must also see the updates of T1 (e.g., if A posts something on a social
media, and C sees B’s comment on A’s post, then C must also see A’s original post).

101

Figure 6.1: ROLA’s update atomic (UA) consistency model added to the hierarchy of con-
sistency models of Cerone et al. [29]

which means that all current such models also satisfy CC. However, Cerone et al. conjecture

in [29] that a system guaranteeing RA and PLU without guaranteeing CC should be useful:

“existing consistency models do not include a counterpart of Read Atomic ob-

tained by adding the NoConflict axiom [preventing lost updates]. Such an

‘Update Atomic’ consistency model would prevent lost update anomalies without

having to enforce causal consistency [...]. Update Atomic could be particularly

useful [...].”

There was until now no distributed database design supporting such “update atomicity”

without also providing CC. Filling this gap, that is, presenting a design, ROLA, that does

exactly this for multi-partition transactions, is what we do in this chapter. As shown in

Fig. 6.1, where we have added ROLA’s update atomic (UA) consistency model to the hier-

archy of consistency models in [29], UA is strictly stronger than RA, incomparable with CC,

and strictly weaker than PSI (and NMSI).

The main idea of the ROLA algorithm is to extend the RAMP algorithm of Bailis et al.

[14], that ensures read atomicity for partitioned data stores (i.e., data are partitioned across

widely distributed data centers, but are not replicated) where a transaction can read and/or

write data stored at different partitions, by adding mechanisms for preventing lost updates.

Therefore, unlike Jessy and Walter, which support partially replicated data stores, ROLA,

like RAMP, at the moment only targets partitioned data stores.

Two key questions about ROLA’s design are:

102

1. Are there natural applications needing high performance where RA plus PLU provide

a sufficient degree of consistency?

2. Can the new ROLA design meeting RA plus PLU outperform existing designs, like

Walter and Jessy, that also guarantee RA and PLU?

Regarding question (a), an example of a transaction that requires RA and PLU but not CC

is the “becoming friends” transaction on social media. Bailis et al. [14] point out that RA

is crucial for this operation: If Edinson and Neymar become friends, then Thomas should

not see a fractured read where Edinson is a friend of Neymar, but Neymar is not a friend of

Edinson. An implementation of “becoming friends” must obviously guarantee PLU: the new

friendship between Edinson and Neymar must not be lost. Finally, CC could be sacrificed for

the sake of performance: Assume that Dani is a friend of Neymar. When Edinson becomes

Neymar’s friend, he sees that Dani is Neymar’s friend, and therefore also becomes friend

with Dani. The second friendship therefore causally depends on the first one. However, it

does not seem crucial that others are aware of this causality: If Thomas sees that Edinson

and Dani are friends, then it is not necessary that he knows that (this happened because)

Edinson and Neymar are friends.

Regarding question (b), Section 6.5 shows that ROLA clearly outperforms both Walter

and Jessy in all performance requirements for all read/write transaction rates. For a fair

comparison, we have compared the performance of ROLA with those of Jessy and Walter

without their replication features.

Main Contributions include: (1) the design, formal modeling, and model checking anal-

ysis of ROLA, a new transaction protocol having useful applications and meeting RA and

PLU consistency properties with competitive performance; (2) a detailed performance com-

parison by statistical model checking between ROLA and the Walter and Jessy protocols

showing that ROLA outperforms both Walter and Jessy in all such comparisons, includ-

ing higher throughput and lower average latency; (3) to the best of our knowledge the first

demonstration that, by a suitable use of formal methods, a completely new distributed trans-

action protocol can be designed and thoroughly analyzed, as well as be compared with other

designs, very early on, before its implementation.

This chapter is structured as follows: Section 6.1 presents an informal overview of ROLA.

Section 6.2 gives an informal correctness argument that ROLA satisfies RA and PLU. Sec-

tion 6.3 presents our executable specification of ROLA in the CAT framework (Chapter

3). Section 6.4 explains how we can use Maude reachability analysis to automatically check

whether ROLA satisfies the desired properties. Section 6.5 shows how we can estimate

103

the performance of ROLA, Walter, and Jessy by using statistical model checking. Finally,

Section 6.6 ends this chapter with some concluding remarks.

6.1 ROLA TRANSACTIONS

This section gives an informal overview of ROLA (Algorithm 6.1) that guarantees both

RA and PLU, but not CC, for transactions accessing multiple partitions in a setting where

the data are partitioned (but not replicated) across a number of widely distributed sites.

ROLA extends RAMP-Fast (see Chapter 4 and Fig.A.1 in Appendix A) to also ensure

PLU. RAMP-Fast guarantees RA, but not PLU, since it allows a write to overwrite conflict-

ing writes: When a partition commits a write, it only compares the write’s timestamp t1

with the local latest-committed timestamp t2, and updates the latest-committed timestamp

with t1 or t2. If the two timestamps are from two conflicting writes, then one of the writes

is lost.

ROLA’s key idea to prevent lost updates is to sequentially order writes on the same key

from a partition’s perspective by adding to each partition a map which maps each incoming

version to an incremental sequence number. For example, suppose the transactions T1 and

T2 both read version x0 (with mapped sequence number 0, or the version 0) of the key x,

and both try to write the respective versions x1 and x2; then if T1 manages to write x1

first (with mapped sequence number 1), T2 is not allowed to overwrite x1, since the local

sequence number has increased by the time T2 tries to write x2. For write-only transactions

the mapping can always be built; for a read-write transaction the mapping can only be built

if there has not been a mapping built since the transaction fetched the value. This can

be checked by comparing the last prepared version’s timestamp’s mapping on the partition

with the fetched version’s timestamp’s mapping. In this way, ROLA prevents lost updates

by allowing versions to be prepared only if no conflicting prepares occur concurrently.

More specifically, ROLA adds two partition-side data structures (Lines 3-4, Algorithm

6.1): sqn, denoting the local sequence number counter, and seq [ts], that maps a timestamp

to a local sequence number. ROLA also changes the data structure of versions in RAMP from

a set to a list (Line 1, Algorithm 6.1). ROLA then adds two methods to the existing RAMP-

F functionality: the coordinator-side3 method update (Lines 17-28, Algorithm 6.1) and the

partition-side method prepare update (Lines 5-10, Algorithm 6.1) for read-write transac-

tions. Furthermore, ROLA modifies two partition-side methods in RAMP: prepare (Lines

11-12, Algorithm 6.1), besides adding the version to the local store, maps its timestamp

3The coordinator, or client, is the partition executing the transaction.

104

Algorithm 6.1 ROLA

Server-side Data Structures
1: versions : list of versions 〈item, value, timestamp tsv, metadata md〉
2: latestCommit [i]: last committed timestamp for item i
3: seq [ts]: local sequence number mapped to timestamp ts
4: sqn: local sequence counter

Server-side Methods
get same as in RAMP-Fast (see Appendix A)

5: procedure prepare update(v : version, tsprev : timestamp)
6: latest← last w ∈ versions : w.item = v.item
7: if latest = null or tsprev = latest.tsv then
8: sqn← sqn+ 1; seq [v.tsv]← sqn; versions .add(v)
9: return ack

10: else return latest

11: procedure prepare(v : version)
12: sqn ← sqn + 1; seq [v.tsv]← sqn; versions .add(v)

13: procedure commit(tsc : timestamp)
14: Its ← {w.item | w ∈ versions ∧ w.tsv = tsc}
15: for i ∈ Its do
16: if seq[tsc] > seq[latestCommit[i]] then latestCommit[i]← tsc

Coordinator-side Methods
put all, get all same as in RAMP-Fast (see Appendix A)

17: procedure update(I : set of items, OP : set of operations)
18: ret ← get all(I); tstx ← generate new timestamp
19: parallel-for i ∈ I do
20: tsprev ← ret [i].tsv; v ← ret [i].value
21: w ← 〈item = i, value = opi(v), tsv = ts tx,md = (I − {i})〉
22: p← prepare update(w,tsprev)
23: if p = latest then
24: invoke application logic to, e.g., abort and/or retry the transaction

25: end parallel-for
26: parallel-for server s : s contains an item in I do
27: invoke commit(tstx) on s
28: end parallel-for

105

to the increased local sequence number; and commit (Lines 13-16, Algorithm 6.1) marks

versions as committed and updates an index containing the highest-sequenced-timestamped

committed version of each item. These two partition-side methods apply to both write-

only and read-write transactions. ROLA invokes RAMP-Fast’s put all, get all and get

methods to deal with read-only and write-only transactions (see Fig.A.1 in Appendix A).

ROLA starts a read-write transaction with the update procedure. It invokes RAMP-

Fast’s get all method to retrieve the values of the items the client wants to update,

as well as their corresponding timestamps (Line 18, Algorithm 6.1). ROLA writes then

proceed in two phases: a first round of communication places each timestamped write on its

respective partition. The timestamp of each version obtained previously from the get all

call is also packaged in this prepare message (Lines 19-25, Algorithm 6.1). A second round

of communication marks versions as committed (Lines 26-28, Algorithm 6.1).

At the partition’s side, the partition begins the prepare update routine by retrieving

the last version in its versions list with the same item as the received version (Line 6,

Algorithm 6.1). If such a version is not found, or if the version’s timestamp tsv matches the

passed-in timestamp tsprev (Line 7, Algorithm 6.1), then the version is deemed prepared. The

partition keeps a record of this locally by incrementing a local sequence counter and mapping

the received version’s timestamp tsv to the current value of the sequence counter (Line 8,

Algorithm 6.1). Finally, the partition returns an ack to the client (Line 9, Algorithm 6.1).

If tsprev does not match the timestamp of the last version in versions with the same item,

then this latest timestamp is simply returned to the coordinator (Line 10, Algorithm 6.1).

If the coordinator receives an ack from prepare update, it immediately commits the

version with the generated timestamp tstx (Line 27, Algorithm 6.1). If the returned value is

instead a timestamp, the transaction is aborted (Lines 23-24, Algorithm 6.1).

Example 6.1. Assume that we have two data items, x and y, and two partitions, Px and

Py, storing x and y, respectively. As depicted in Figure 6.2, two read-write transactions

T1 : r(y);w(x1);w(y1) and T2 : r(y);w(y2) are attempting concurrent writes, and a read-only

transaction T3 : r(x); r(y) proceeds while T1 is writing. T1 and T2 read the same version

y0. Both T1 and T2 perform the two-phase commit protocol on two partitions, Px and Py.

However, T2 fails to prepare y2 after T1 has prepared y1, because when T2’s prepare arrives

at Py, the timestamp of the last version store on Py is 1, which is not equal to tsprev = 0 in

T2’s prepare. T2, upon receiving the returned version y1, could abort the transaction or retry

with a new transaction on y1. Either way, the lost update problem is avoided. Regarding

the case with T1 and T3, T3 reads from Px after Px has committed T1’s write to x, but T3

reads from Py before Py has committed T1’s write to y. Thus, T3’s first-round reads would

106

Figure 6.2: ROLA execution with three transactions in Example 6.1. For simplicity, we
assume that T1 and T2 have fetched the same version y0 (i.e., tsprev = 0), when the sequence
chart starts.

107

violate RA if it returns them. Using the metadata attached to its first-round reads, T3

determines to issue a second-round read to fetch the missing data from Py. After completing

the second-round read, T3 can safely return T1’s writes, not violating RA. Note that in this

example RAMP would allow T2 to commit, thus overwriting T1’s writes, which are then lost.

6.2 CORRECTNESS ARGUMENT FOR ROLA

In this section we give a somewhat informal correctness argument or proof sketch for

ROLA. Since Section 6.3 defines a formal model of ROLA, we could—and should in the

future—formally prove that our formal model of ROLA satisfies RA and PLU.4

6.2.1 Why ROLA Works

ROLA uses a two-phase commit protocol in order to detect concurrent writes. The first

phase declares an intent to commit a write at the partition. Concurrent writes race to the

partition without coordinating with each other. The partition can accept a preparation

if there is no other prepared version after the latest commit associated with the incoming

preparation. This in effect imposes a total order on the preparations, and thus on the

commits, from the partition’s perspective. In other words, the partition sees no logically

concurrent updates. Our algorithm therefore provides read atomicity, and prevents updates

from being lost, as concurrent updates are a necessary condition for lost updates.

By leveraging the partition-side sequence counter to commit, ROLA not only prevents lost

updates, but also makes writes progress at the partition-side, and thus more recent prepared

version can be reflected (we refer to this as ROLA’s progress property). This is different from

RAMP-Fast, where later prepared writes may never be fetched by reads as latestCommit

only updates by simply comparing the coordinator-side timestamps.

6.2.2 Formalizing Consistency Models

We consider transactions to be ordered sequences of reads and writes to arbitrary sets

of data items. Each data item has a single logical copy. We call the set of data items a

transaction respectively reads or writes its read set, resp. write set. Each write creates a

version of a data item. We identify versions of items by a timestamp from a totally ordered

4A fully mechanized proof of the correctness of ROLA (e.g., by using a theorem prover such as Coq
[21], or the constructor-based reachability logic tool [84]) would be needed to claim that ROLA satisfies its
correctness requirements, which is an important next step.

108

set (e.g., natural numbers) which is unique across all versions of each item. Thus, timestamps

induce a total order on versions of each item. We denote version i of item x as xi. Given

two versions xi and xj, we write xi < xj if xj appears later than xi in the version order,

and write xi <next xj if xj is xi’s next version. Each item x has an initial version x0. Each

transaction finishes with being either committed or aborted. A history consists of a set of

transactions, together with the versions the transactions read and/or wrote.

Our correctness argument for ROLA, like that for RAMP in [14], is based on Adya’s

formalization of consistency models [4]. Following the formal reasoning about RAMP in

[14], we also use Adya’s formalization in the context of the above system model. We recall

here the definitions from [4, 14] characterizing the various properties that ROLA (as well as

RAMP [14]) should satisfy.

Between two transactions there may be three types of dependencies: read-dependencies,

write-dependencies and anti-dependencies.

Definition 6.1. (Read-Dependency). Transaction Tj directly read-depends on Ti if trans-

action Tj reads the version xi that Ti has written.

Definition 6.2. (Write-Dependency). Transaction Tj directly write-depends on Ti if trans-

action Ti writes a version xi and Tj writes xi’s next version xj.

Definition 6.3. (Anti-dependency). Transaction Tj directly anti-depends on Ti if transac-

tion Ti reads some version xh, and Tj writes xh’s next version xj.

Definition 6.4. (Direct Serialization Graph). A direct serialization graph (DSG) w.r.t. a

history H, denoted by DSG(H), is defined as a directed graph such that:

• each node in the graph corresponds to a committed transaction;

• each directed edge corresponds to a type of direct dependency: there is a read-/write-

/anti-dependency edge from Ti to Tj if Tj directly read-/write-/anti-depends on Ti.

In our model a transaction could also be a read-write transaction, in addition to read-only

and write-only transactions, which are the only ones considered in [14].

We can formalize various anomalies for distributed transactions in terms of DSGs. These

anomalies are then used to define consistency models.

Definition 6.5. (G0: Write Cycles). A history H exhibits phenomenon G0 if DSG(H)

contains a directed cycle consisting entirely of write-dependency edges.

109

Definition 6.6. (G1a: Aborted Reads). A historyH exhibits phenomenon G1a ifH contains

an aborted transaction Ta and a committed transaction Tc such that Tc reads a version

written by Ta.

Definition 6.7. (G1b: Intermediate Reads). A history H exhibits phenomenon G1b if H

contains a committed transaction Ti that reads a version xj written by Tj, and Tj also wrote

a version xk such that j < k.

Definition 6.8. (G1c: Circular Information Flow). A history H exhibits phenomenon G1c

if DSG(H) contains a directed cycle that consists entirely of read-dependency and write-

dependency edges.

Besides the above criteria, we need the definition of fractured reads to define RA.

Definition 6.9. (Fractured Reads). A transaction Tj exhibits the fractured reads phe-

nomenon if some transaction Ti writes versions xa and yb (in any order, where x and y may

or may not be distinct items), and some transactions Tj reads versions xa and yc, and c < b.

As defined in [14]: RA isolation prevents fractured reads, and transactions from reading

uncommitted, aborted, or intermediate versions:

Definition 6.10. (Read Atomicity). A system provides RA isolation if it prevents the

phenomena G0, G1a, G1b, G1c, and fractured reads.

Lost updates (LU) happen when two transactions simultaneously make conditional modi-

fications to the same data item(s).

Definition 6.11. (Lost Updates). A history H exhibits the phenomenon LU if DSG(H)

contains a directed cycle that consists of one or more anti-dependency edges and all edges

are by the same data item.

6.2.3 Proof Sketch of ROLA’s RA and PLU Properties

We base our proof of ROLA satisfying RA and PLU on Definitions 6.10 and 6.11.

To prove that ROLA provides RA we must, according to Definition 6.10, prove that ROLA

prevents the phenomena G0, G1a, G1b, G1c, and fractured reads. The proof is in general

quite similar to that of RAMP providing RA (Appendix B in [14]), since ROLA reads are the

same as RAMP reads, and ROLA writes are more restricted than RAMP’s, thus decreasing

the possibility of violating RA.

Lemma 6.1. ROLA prevents the phenomenon G0.

110

Proof Sketch. Each partition has a local sequence number that increases once a version is

prepared; the increased sequence number is mapped to that version. Thus, versions (whether

or not for the same item) on a partition are totally ordered. That is, there is no directed

cycle consisting entirely of write-dependency edges.

Lemma 6.2. ROLA prevents the phenomenon G1a.

Proof Sketch. ROLA first-round reads access lastCommit, so each version fetched by a first-

round read is written by a committed transaction. ROLA second-round reads only access

the versions in the same transaction as for the versions fetched by the first-round reads,

which are also committed. Thus, ROLA never reads aborted writes.

Lemma 6.3. ROLA prevents the phenomenon G1b.

Proof Sketch. The proof follows directly from Lemma 6.2.

Lemma 6.4. ROLA prevents the phenomenon G1c.

Proof Sketch. Writes (on possibly different data items) in a transaction are assigned the

same timestamp, which prevents read-dependency and write-dependency cycles.

To prove ROLA preventing fractured reads, we first introduce the notions of sibling ver-

sions, sibling item, companion version, and companion sets.

Definition 6.12. (Sibling Versions). The set of versions produced by a transaction are

called sibling versions.

Definition 6.13. (Sibling Item). Data item x is called a sibling item to a version yj if there

exists a version xk written in the same transaction as yj.

Definition 6.14. (Companion Version). Version xi is a companion version of yj if xi is a

sibling version of yj or if the transaction that wrote yj also wrote xk and i > k.

Definition 6.15. (Companion Sets). A set of versions V is a companion set if, for every

pair (xi, yj) of versions in V where x is a sibling item of yj, xi is a companion version of yj.

Lemma 6.5. (Atomicity of Companion Sets). In the absense of G1c phenomena, if the

set of versions read by a transaction is a companion set, the transaction does not exhibit

fractured reads.

111

Proof Sketch. If V is a companion set, then every version xi in V is a companion version of

every other version yj in V that includes x in yj’s sibling items. Suppose V has fractured

reads. According to Definition 6.9, there are two versions xi and yj such that the transaction

that wrote yj also wrote a version xk with i < k. However, in this case xi is not a companion

version of yj according to Definition 6.14. Therefore we reach a contradiction.

Lemma 6.6. ROLA reads assemble a companion set.

Proof Sketch. Without loss of generality, suppose a transaction reads two versions xi and

yj, and x is yj’s sibling item. The following continues the proof by comparing i and j:

• Case 1. If i ≥ j, then xi is already a companion version of yj, and the set is therefore

a companion set.

• Case 2. If i < j, then ROLA invokes RAMP-Fast’s get all method to issue a second-

round read to fetch the companion version xj. Whether xj has been committed or not

by the time the second-round read reaches the partition, the ROLA partition invokes

RAMP-Fast’s get method to return the prepared version xj in versions.

Therefore, the resulting set of versions is a companion set.

Theorem 6.7. ROLA guarantees RA.

Proof Sketch. The proof follows directly from Lemmas 6.1–6.6.

To prove ROLA preventing LU (Definition 6.11), we must first prove some lemmas.

Lemma 6.8. Versions are ordered by the arrival order of the corresponding prepare mes-

sages.

Proof Sketch. The proof follows directly from Lemma 6.1.

Lemma 6.9. Given a history H that is valid under ROLA, then each node in DSG(H)

directly read-depends on at most one other node with the same data item.

Proof Sketch. Suppose we have a transaction Ti in DSG(H) that directly read-depends on

two different transactions Tj and Tk with item x, namely Tj
r−→ Ti and Tk

r−→ Ti. By Lemma

6.8, xj < xk or xk < xj. In either case Ti exhibits fractured reads and H is not valid under

RA (and thus under ROLA), a contradiction.

Lemma 6.10. If a (read-write) transaction reads version xi, and then writes version xj,

then xi <next xj.

112

Proof Sketch. Since xj has been prepared, it means that there was no prepared versions

between xi and xj; otherwise the condition cannot be satisfied. Thus xi <next xj.

Lemma 6.11. Given a history H that is valid under ROLA, each node in DSG(H) is then

directly write-dependent on at most one other node with the same data item.

Proof Sketch. Suppose we have a transaction Ti in DSG(H) that is directly write-dependent

on two different transactions Tj and Tk with item x, namely, Ti
w−→ Tj and Ti

w−→ Tk. We

then have the following cases:

• Case 1. Tj and Tk are both write-only transactions. Say Tj prepares first, and we have

seq[xj] < seq[xk] because when prepared, the sequence number increases.

– Case 1.1. If Tj also commits first, Tj overwrites Ti and we have Ti
w−→ Tj. Cur-

rently, latestCommit[x] = tsj. When Tk commits later, latestCommit[x] is

mapped to tsk because seq[tsk] > seq[tsj]. Then we have Tj
w−→ Tk, a contra-

diction.

– Case 1.2. If Tk commits first, Tk overwrites Ti and we have Ti
w−→ Tk. Currently,

latestCommit[x] = tsk. When Tj commits later, latestCommit[x] is not updated

because seq[tsj] < seq[tsk]. Then we only have Ti
w−→ Tk, a contradiction.

• Case 2. Tj is a read-write transaction, while Tk is a write-only transaction. According

to Lemma 6.10, Tj reads Ti. Thus Tk cannot prepare first because in that case Tj

aborts. The proof then follows directly from the above Case 1.1.

• Case 3. Tj and Tk are both read-write transactions. According to Lemma 6.10, both

Tj and Tk read Ti. Either of them prepares first, and then the other one has to abort

(the later prepare’s tsprev does not match the latest version’s, i.e., the other prepare’s,

timestamp).

Lemma 6.12. For any history H that is valid under ROLA, DSG(H) does not contain a

sequence Th
anti−−→ Ti

anti−−→ Tj.

Proof Sketch. There is a transaction Ti′ whose version written xi′ is read by Ti, namely

Ti′
r−→ Ti. Tj writes xi′ ’s next version xj, namely Ti′

w−→ Tj. According to Lemma 6.10 and

Lemma 6.11, we have Ti′ 6= Th. From Th
anti−−→ Ti we can build another two dependencies

Th′
r−→ Th and Th′

w−→ Ti. We now have xi′ <next xi and xh′ <next xi. According to Lemma

6.8 we must have xi′ = xh′ , and then we have Ti′
w−→ Ti. Since we already have Ti′

w−→ Tj, we

reach a contradiction (Lemma 6.11).

113

Lemma 6.13. For any history H that is valid under ROLA, DSG(H) does not contain a

sequence Th
w−→ Ti

anti−−→ Tj.

Proof Sketch. There is a transaction Ti′ whose version written xi′ is read by Ti, namely

Ti′
r−→ Ti. Tj writes xi′ ’s next version xj, namely Ti′

w−→ Tj. According to Lemma 6.11,

Th 6= Ti′ . Now we have xh <next xi and xi′ <next xj. The following continues the proof by

comparing the version order of xh and xi′ :

• Case 1. If xh < xi′ , we have xi < xi′ since xh’s next version is xi. According to Lemma

6.10, we have xi′ <next xi. Therefore we reach a contradiction.

• Case 2. If xi′ < xh, because of xi′ <next xj, we have xi′ <next xj < xh <next xi.

According to Lemma 6.10, we have xi′ <next xi. Therefore we reach a contradiction.

Theorem 6.14. ROLA prevents LU.

Proof Sketch. We prove this theorem by contradiction. Suppose there is a history H that

is valid under ROLA, but DSG(H) contains a directed cycle having one or more anti-

dependency edges and all edges are labeled by the same data item x.

• Case 1. Suppose DSG(H) contain a directed cycle having only one anti-dependency

edge Ta
l1−→ ...

l2−→ Th
lhi−→ Ti

lij−→ Tj
l3−→ ...

l4−→ Ta. Let lij be the anti-dependency

edge. Thus, there is a transaction Ti′ whose version written xi′ is read by Ti, namely

Ti′
r−→ Ti; the transaction Tj writes xi′ ’s next version xj, namely Ti′

w−→ Tj. According

to Lemmas 6.13 and 6.9, we have Ti′ = Th. Thus, we have another directed cycle

Ta
l1−→ ...

l2−→ Th
w−→ Tj

l3−→ ...
l4−→ Ta consisting entirely of read-dependency and write-

dependency edges (G1c), which contradicts Theorem 6.7.

• Case 2. Suppose DSG(H) contain a directed cycle having at least two anti-dependency

edges. According to Lemma 6.12, these anti-dependency edges are not consecutive. For

each anti-dependency we directly follow Case 1, and eventually we are able to construct

a directed cycle consisting entirely of read-dependency and write-dependency edges

(G1c), which contradicts Theorem 6.7.

114

6.3 A FORMAL EXECUTABLE SPECIFICATION OF ROLA

This section presents an executable formal specification of ROLA in the CAT framework

(Chapter 3). Since ROLA extends RAMP-Fast, we only show the basic common building

blocks and major extensions, and refer to Chapter 4 for RAMP-Fast’s formal specification.

6.3.1 Data Types, Classes, and Messages

We model ROLA in an object-oriented style: the state comprises a number of replica (or

site) objects (each modeling a replica of the data store), and a number of messages (traveling

between the objects). A transaction is defined as an object residing inside the replica object

that executes it.

Some Data Types. Like in RAMP (Section 4.3.1), a version is a timestamped version of a

data item (or key) and is modeled as a four-tuple version(key,value, timestamp,metadata)

consisting of the key, its value, and the version’s timestamp and metadata. A timestamp is

modeled as a pair ts(Oid,sqn) consisting of a replica’s identifier Oid and a local sequence

number sqn that together uniquely identify a write transaction. Metadata are modeled as a

set of keys, denoting, for each key, the other keys that are written in the same transaction.

Unlike RAMP (Section 4.3.1), a list, instead of a set, of versions of sort Versions is

built from singleton lists (identified with versions of sort Version by means of a subsort

declaration) with an associative concatenation operator with identity nil:

sorts Version Versions .

subsort Version < Versions .

op nil : -> Versions [ctor] .

op __ : Versions Versions -> Versions [ctor assoc id: nil] .

A list of read and write operations of sort OperationList is built from singleton lists

(identified with operations of sort Operation by means of a subsort declaration) with an

associative concatenation operator with identity element nil:

sorts Operation OperationList .

subsort Operation < OperationList .

op nil : -> OperationList [ctor] .

op __ : OperationList OperationList -> OperationList [ctor assoc id: nil] .

115

We also define a collection of votes of sort Vote, and the data type TxnOidSet for the

situation when a replica is waiting for messages such as votes from other replicas w.r.t. some

transaction, in the same way as in RAMP (Section 4.3.1).

Classes. ROLA transactions can be modeled as object instances of the subclass ROLA-Txn

with four new attributes:

class ROLA-Txn | operations : OperationList, localVars : LocalVars,

latest : KeyTimestamps, txnSqn : Nat .

subclass ROLA-Txn < Txn .

The operations attribute denotes the transaction’s operations. localVars maps the trans-

action’s local variables to their current values. latest stores the local view as a mapping

from keys to their respective latest committed timestamps. txnSqn stores the transaction’s

sequence number.

A ROLA replica (storing parts of the database) is modeled as an object instance of the

following subclass ROLA-Replica of class Replica that adds ten new attributes:

class ROLA-Replica | datastore : Versions, sqn : Nat,

gotTxns : ObjectList, tsSqn : TimestampSqn,

latestCommit : KeyTimestamps, votes : Vote,

voteSites : TxnOidSet, 1stGetSites : TxnOidSet,

2ndGetSites : TxnOidSet, commitSites : TxnOidSet .

subclass ROLA-Replica < Replica .

All attributes are defined in the same way as in the RAMP model (Section 4.3.1) except:

(i) the datastore attribute represents the replica’s local database as a list, instead of a set,

of versions for each key stored at the replica; and (ii) the new attribute tsSqn maps each

version’s timestamp to a local sequence number sqn.

Like in the RAMP model, the state also contains a “table” object of class Table mapping

each data item to the replica storing the item. Each mapping is a pair sites(key,part).

Messages travel between replicas, and have the form:

msg msgContent from sender to receiver

where the message content msgContent is defined in our ROLA models as follows:

• prepare(txn,version) sends a version from a write-only transaction to its Replica;

116

• prepare(txn,version, ts) does the same thing for other transactions, with ts the

timestamp of the version it has read;

• prepare-reply(txn,vote) is the reply to the corresponding prepare message, where

vote tells whether this Replica can commit the transaction;

• commit(txn,ts) marks the versions with timestamp ts as committed;

• get(txn,key,ts) asks for the highest-timestamped committed version or a missing

version for key by timestamp ts ;

• response1(txn,version) responds to first-round get request;

• response2(txn,version) responds to second-round get requests.

Initial State. The following shows an automatically generated initial state (with some

parts replaced by ‘...’) with two replicas, r1 and r2, that are coordinators for, respectively,

transactions t1, t2 and t3. r1 stores the data items x and z, and r2 stores y. Transaction t1

is the read-only transaction (xl :=read x) (yl :=read y), transaction t2 is a write-only

transaction write(y, 3) write(z, 8), while transaction t3 is a read-write transaction on

data item x. The states also include a table which assigns to each data item the replica

storing it. Initially, the value of each item is [0]; the version’s timestamp is empty (eptTS),

and metadata is an empty set:

eq init =

< tb : Table | table : [sites(x, r1) ;; sites(y, r2) ;; sites(z, r1)] >

< r1 : ROLA-Replica |

gotTxns : < t1 : ROLA-Txn |

operations : ((xl :=read x) (yl :=read y)), readSet : empty, writeSet : empty,

latest : empty, localVars : (xl |-> [0], yl |-> [0]), txnSqn : 0 >,

datastore : (version(x, [0], eptTS, empty) version(z, [0], eptTS, empty)),

sqn : 1, executing : none, committed : none, aborted : none, tsSqn : empty,

latestCommit : empty, votes : noVote, voteSites : empty, 1stGetSites : empty,

2ndGetSites : empty, commitSites : empty >

< r2 : ROLA-Replica | gotTxns :

< t2 : ROLA-Txn | operations : (write(y, 3) write(z, 8)), ... >

< t3 : ROLA-Txn | operations : ((xl := read x) write(x, xl plus 1)), ... >

datastore : version(y, [0], eptTS, empty), ... >

117

6.3.2 Formalizing ROLA’s Behaviors

This section formalizes the dynamic behaviors of ROLA using rewrite rules, referring to

the corresponding lines in Algorithm 6.1 in Section 6.1.5 Since ROLA reads are the same

with RAMP-Fast reads (Chapter 4.3.2), here we only illustrate ROLA writes. The entire

specification is given at https://github.com/siliunobi/cat.

Starting a Transaction (Lines 17 – 22). A replica starts to execute a transaction

by moving the first transaction (TID) in gotTxns to executing. If the new transaction

is a write-only transaction (write-only(OPS)), the replica: (i) uses the function genPuts

(defined in Section 4.3.2) to generate all prepare messages; (ii) uses a function prepareSites

to remember the sites RIDS from which it awaits votes for transaction TID in the voteSites

attribute; and (iii) increments its local sequence number by one:

crl [start-wo-txn] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : ROLA-Replica |

gotTxns : (< TID : ROLA-Txn | operations : OPS, localVars : VARS,

txnSqn : N > ;; TXNS),

executing : TRANSES, sqn : SQN, voteSites : VSTS >

=>

< TABLE : Table | table : REPLICA-TABLE >

< RID : ROLA-Replica |

gotTxns : TXNS,

executing : < TID : ROLA-Txn | operations : OPS, localVars : VARS,

txnSqn : SQN’ > TRANSES,

sqn : SQN’, voteSites : (VSTS ; addrs(TID, RIDS)) >

genPuts(OPS,RID,TID,SQN’,VARS,REPLICA-TABLE)

if SQN’ := SQN + 1 /\ write-only(OPS) /\

RIDS := prepareSites(OPS, RID, REPLICA-TABLE) .

Otherwise, if the first transaction in gotTxns is a read-only or read-write transaction, the

replica updates 1stGetSites instead to keep track of the replicas from which it receives the

versions from the first-round gets. The function genGets generates all get messages for the

keys concerned by TID (see the executable specification available online for the definition of

this, and other, functions). The expression 1stSites gives the corresponding replicas for

those keys:

5We do not give variable declarations, but follow the convention that variables are written in (all) capital
letters.

118

crl [start-ro-or-rw-txn] :

< TABLE : Table | table : Replica-TABLE >

< RID : ROLA-Replica | gotTxns :

(< TID : ROLA-Txn | operations : OPS, latest : empty > ;; TXNS),

executing : TRANSES, 1stGetSites : 1STGETS >

=>

< TABLE : Table | table : Replica-TABLE >

< RID : ROLA-Replica | gotTxns : TXNS,

executing : < TID : ROLA-Txn | operations : OPS,

latest : vl(OPS) > TRANSES,

1stGetSites : (1STGETS ; addrs(TID,RIDS)) >

genGets(OPS,RID,TID,Replica-TABLE)

if (not write-only(OPS)) /\

RIDS := 1stSites(OPS,RID,Replica-TABLE) .

Receiving prepare Messages (Lines 5–10). When a replica receives a prepare message

for a read-write transaction, the replica first determines whether the timestamp of the last

version (VERSION) in its local version list VS matches the incoming timestamp TS’ (which is

the timestamp of the version read by the transaction). If so, the incoming version is added

to the local store, the map tsSqn is updated, and a positive reply (true) to the prepare

message is sent (“return ack” in our pseudo-code); otherwise, a negative reply (false, or

“return latest” in the pseudo-code) is sent:

crl [receive-prepare-rw] :

msg prepare(TID, version(K, V, TS, MD), TS’) from RID’ to RID

< RID : ROLA-Replica | datastore : VS, sqn: SQN, tsSqn : TSSQN >

=>

if VERSION == eptVersion or tstamp(VERSION) == TS’

then < RID : ROLA-Replica | datastore : (VS version(K,V,TS,MD)), sqn : SQN’,

tsSqn : insert(TS,SQN’,TSSQN) >

msg prepare-reply(TID, true) from RID to RID’

else < RID : ROLA-Replica | datastore : VS, sqn : SQN, tsSqn : TSSQN >

msg prepare-reply(TID, false) from RID to RID’

if SQN’ := SQN + 1 /\ VERSION := latestPrepared(K,VS) .

If instead the received prepare message was for a write-only transaction, the replica simply

adds the received version to its local datastore, and maps the associated timestamp to the

incremented sequence number (insert(TS,SQN’,TSSQN)):

crl [receive-prepare-wo] :

119

msg prepare(TID,version(K,V,TS,MD)) from RID’ to RID

< RID : ROLA-Replica | datastore : VS, sqn : SQN, tsSqn : TSSQN >

=>

< RID : ROLA-Replica | datastore : (VS version(K,V,TS,MD)),

sqn : SQN’, tsSqn : insert(TS,SQN’,TSSQN) >

msg prepare-reply(TID,true) from RID to RID’

if SQN’ := SQN + 1 .

Receiving Negative Replies (Lines 23–24). When a replica receives a prepare-reply

message with false vote, it aborts the transaction by moving it to aborted, and removes

RID’ from the “vote waiting list” for this transaction. If the transaction has been aborted,

the incoming prepare-reply message is simply consumed by the replica:

rl [receive-prepare-reply-false-executing] :

msg prepare-reply(TID, false) from RID’ to RID

< RID : ROLA-Replica | executing : < TID : ROLA-Txn | > TRANSES,

aborted : TRANSES’,

voteSites : VSTS addrs(TID, (RID’ , RIDS)) >

=>

< RID : ROLA-Replica | executing : TRANSES,

aborted : TRANSES’ < TID : ROLA-Txn | >,

voteSites : VSTS addrs(TID, RIDS) > .

rl [receive-prepare-reply-aborted] :

msg prepare-reply(TID,FLAG) from RID’ to RID

< RID : ROLA-Replica | aborted : TRANSES < TID : ROLA-Txn | >,

voteSites : VSTS >

=>

< RID : ROLA-Replica | aborted : TRANSES < TID : ROLA-Txn | >,

voteSites : remove(TID,RID’,VSTS) > .

Receiving Acks (Lines 26–28). Upon receiving a “true” vote, the replica first checks

whether all votes have now been collected. The expression VSTS’[TID] extracts for TID

the remaining replicas from which it is awaiting votes. If all received votes are “yes,” the

replica starts to commit TID at the associated replicas by invoking genCommits to generate

all commit messages with the commit timestamp including the current sequence number

SQN. The replica also adds to commitSites the replicas from which it is awaiting committed

messages to commit the transaction:

120

crl [receive-prepare-reply-true-executing] :

msg prepare-reply(TID,true) from RID’ to RID

< TABLE : Table | table : Replica-TABLE >

< RID : ROLA-Replica |

executing : < TID : ROLA-Txn | operations : OPS > TRANSES,

voteSites : VSTS, sqn : SQN, commitSites : CMTS >

=>

< TABLE : Table | table : Replica-TABLE >

if VSTS’[TID] == empty --- all votes received and all yes!

then < RID : ROLA-Replica |

executing : < TID : ROLA-Txn | operations : OPS > TRANSES,

voteSites : VSTS’, sqn : SQN,

commitSites : (CMTS ; addrs(TID,RIDS)) >

genCommits(TID,SQN,RIDS,RID)

else < RID : ROLA-Replica |

executing : < TID : ROLA-Txn | operations : OPS > TRANSES,

voteSites : VSTS’, sqn : SQN, commitSites : CMTS >

fi

if VSTS’ := remove(TID,RID’,VSTS) /\

RIDS := commitSites(OPS,RID,Replica-TABLE) .

Receiving commit Messages (Lines 13–16). Upon receiving a commit message, the

Replica invokes the function cmt to commit the transaction. cmt looks up tsSqn for the

commit timestamp TS and the latest committed version’s timestamp in LC, and updates the

latest committed version if TS’s local sequence number is higher. A committed message is

then sent back to confirm the commit:

rl [receive-commit] :

msg commit(TID, TS) from RID’ to RID

< RID : ROLA-Replica | tsSqn : TSSQN, datastore : VS, latestCommit : LC >

=>

< RID : ROLA-Replica | tsSqn : TSSQN, datastore : VS,

latestCommit : cmt(LC, VS, TSSQN, TS) >

msg committed(TID) from RID to RID’ .

Receiving committed Messages. (For replicas to commit transactions locally). Upon

receiving a committed message, the replica first checks if all committed messages have now

been collected. The expression CMTS’[TID] projects for TID the remaining replicas from

121

which it is awaiting committed messages. If the extraction is empty, the replica commits

the transaction:

crl [receive-committed] :

msg committed(TID) from RID’ to RID

< RID : ROLA-Replica | executing : < TID : ROLA-Txn | > TRANSES,

committed : TRANSES’, commitSites : CMTS >

=>

if CMTS’[TID] == empty --- all "committed" received

then < RID : ROLA-Replica | executing : TRANSES,

committed : TRANSES’ < TID : ROLA-Txn | >,

commitSites : CMTS’ >

else < RID : ROLA-Replica | executing : < TID : ROLA-Txn | > TRANSES,

committed : TRANSES’, commitSites : CMTS’ >

fi

if CMTS’ := remove(TID,RID’,CMTS) .

6.4 MODEL CHECKING CONSISTENCY PROPERTIES OF ROLA

Section 6.2 gave a proof sketch that ROLA guarantees RA and PLU, i.e., update atomicity

(UA). However, it is well known that hand proofs may be erroneous or may make crucial

assumptions that may not have been made explicit in a formal model. Indeed, we have

experienced that Maude model checking can uncover nontrivial errors as well as both missing

and unclear assumption in a supposedly verified distributed transaction system that is less

complex than ROLA [74].

We therefore have used the CAT tool (Chapter 3) to model check the correctness of

ROLA’s formal model. As shown in Table 3.1, all model checking results are as expected.

In particular, the ROLA model satisfies consistency properties weaker than or equal to UA,

and violates SI and any stronger consistency properties.

Below we show an example model checking experiment, where we provide the tool CAT

with one read-only transaction (of two operations), two read-write transactions (four oper-

ations per each), two replicas, and two keys. Under the hood, CAT executes the following

command to search, from all generated initial states, for one reachable final state where UA

does not hold:

search [1] init(2,0,1,2,0,4,0,2,2,1) =>! C:Configuration

< M:Oid : Monitor | log: LOG:Log clock: N:Nat > such that not ua(LOG:Log) .

122

CAT outputs “No solution,” meaning that all runs from all the given initial states satisfy

UA, for our ROLA model.

6.5 STATISTICAL PERFORMANCE COMPARISON

The weakest consistency models in [29, 9] guaranteeing RA and PLU are PSI and NMSI,

and the main systems providing PSI and NMSI are, respectively, Walter [85] and Jessy [9]. To

be an attractive design option, ROLA should outperform both Walter and Jessy. To quickly

check whether ROLA indeed does so, we have also modeled Walter and Jessy—without

their data replication features—in Maude (see https://github.com/siliunobi/cat), and

have used statistical model checking with PVeStA to compare the performance of ROLA,

Walter, and Jessy in terms of throughput and average transaction latency.

6.5.1 A Probabilistic Model of ROLA

Following the approach in Section 4.5, to introduce both time and probabilities for perfor-

mance estimation, each message gets assigned a message delay that is sampled probabilisti-

cally from a dense time interval according to a certain probability distribution.

Example 6.2. In the transformed rule below (the original rule is in black), the incoming

message prepare is equipped with the current global time GT, and the outgoing message

prepare-reply is equipped with a delay:

crl [receive-prepare-rw-prob] :

{ GT, msg prepare(TID, version(K, V, TS, MD), TS’) from RID’ to RID }

< RID : ROLA-Replica | datastore : VS, sqn: SQN, tsSqn : TSSQN >

=>

if VERSION == eptVersion or tstamp(VERSION) == TS’

then < RID : ROLA-Replica | datastore : (VS version(K,V,TS,MD)), sqn : SQN’,

tsSqn : insert(TS,SQN’,TSSQN) >

[delay, msg prepare-reply(TID, true) from RID to RID’]

else < RID : ROLA-Replica | datastore : VS, sqn : SQN, tsSqn : TSSQN >

[delay, msg prepare-reply(TID, false) from RID to RID’]

if SQN’ := SQN + 1 /\ VERSION := latestPrepared(K,VS) .

where the prepare message is consumed by RID at the global time GT, and the prepare-reply

message will be consumed by RID’ after delay time units. delay of sort Float is a parameter

instantiated with a certain probability distribution (see Section 4.5).

123

6.5.2 Recording Executions

Following the monitoring mechanism in Section 4.6, we also equip the transformed proba-

bilistic model with an execution log recording the history of relevant events during a system

execution. The log is updated each time an interesting event happens (i.e., the start, com-

mit, and abort of a transaction).6 We (manually) identify those events in the model, and

transform the corresponding rules by adding and updating the monitor object.

Example 6.3. Abort a Transaction. When the replica receives a false vote, it aborts the

transaction. The monitor records the abort/finish time GT for that transaction (and the

“committed” flag remains false):

rl [receive-prepare-reply-false-executing-monitor] :

< O@M : Monitor | log : LOG@M, (TID |->

< RID, T@M, VTS@M, FLAG@M, READS@M, WRITES@M)) >

{ GT, msg prepare-reply(TID, false) from RID’ to RID }

< RID : ROLA-Replica |

executing : < TID : ROLA-Txn | writeSet : WS, readSet : RS > TRANSES,

aborted : TRANSES’,

voteSites : VSTS addrs(TID, (RID’ , RIDS)) >

=>

< O@M : Monitor | log : LOG@M, (TID |->

< RID, T@M, insert(RID,GT,VTS@M), false, RS, WS >)

< RID : ROLA-Replica |

executing : TRANSES,

aborted : TRANSES’ < TID : ROLA-Txn | writeSet : WS, readSet : RS >,

voteSites : VSTS addrs(TID, RIDS) > .

6.5.3 Performance Comparison

Experimental Setup. We performed our PVeStA experiments with many different

probabilistically generated configurations.7 Each configuration had, 200 transactions, 2 or 4

operations per read-only or read-write transaction, up to 150 data items and up to 50 par-

titions, with lognormal message delay distributions (obtained by characterizing real-world

6We do not consider replication in our ROLA model, and therefore interesting events exclude transaction
commits on remote sites.

7The number of probabilistically generated configuration for analyzing a given performance property
depends on the chosen level of statistical confidence (in our case 95%), and is determined by the PVeStA
tool, which stops performing more simulations when such a confidence level is reached. Computing the
probabilities took a day (in the worst case) on 20 servers, each with a 64-bit Intel Quad Core Xeon E5530
CPU with 12 GB of memory.

124

data centers [17]), and with uniform and Zipfian data item access distributions (used by

Yahoo! Cloud Serving Benchmark (YCSB) [36], the open standard for comparative perfor-

mance evaluation of data stores). Regarding lognormal’s parameters, local delays use µ = 0

and σ = 1, while remote delays use µ = 3 and σ = 2.

The plots in Fig. 6.3 show the throughput as a function of the percentage of read-only

transactions, and number of keys (data items), sometimes with both uniform and Zipfian

distributions. The plots show that ROLA outperforms Jessy, which itself outperforms Wal-

ter, for all parameter combinations. As the number of keys increases, the throughput of

all three protocols increases. In particular, with 100 or more keys, ROLA with uniform

distribution has significantly higher throughput than Walter and Jessy. We also learn from

the plots that more reads give higher throughput, since read-only transactions in all three

protocols can commit locally without certification. We only plot the results under uniform

key access distribution for the top plot; these results are consistent with the results using

Zipfian distributions.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 50 90

T
h
ro

u
g
h
p
u
t
(t

x
m

/t
im

e
 u

n
it
)

Percentage of Read-only Txns

Workload on 25 Partitions with Uniform Distribution

ROLA-50 keys
Jessy-50 keys

Walter-50 keys
ROLA-200 keys
Jessy-200 keys

Walter-200 keys

 0.4

 0.6

 0.8

 1

 1.2

 1.4

50 100 150

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Number of Keys

Workload on 25 Partitions with 10% Read-only Txns

ROLA-uniform
Jessy-uniform

Walter-uniform
ROLA-zipf
Jessy-zipf

Walter-zipf

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 50 90

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Percentage of Read-only Txns

Workload on 100 Keys with Uniform Distribution

ROLA-10 par
Jessy-10 par

Walter-10 par
ROLA-30 par
Jessy-30 par

Walter-30 par

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 50 90

T
h
ro

u
g
h
p
u
t
(t

x
n
/t
im

e
 u

n
it
)

Percentage of Read-only Txns

Workload on 100 Keys with Zipf Distribution

ROLA-10 par
Jessy-10 par

Walter-10 par
ROLA-30 par
Jessy-30 par

Walter-30 par

Figure 6.3: Throughput comparison under different workload conditions.

The plots in Fig. 6.4 show the average transaction latency as a function of the same

125

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70 80 90 100

Av
g.

 L
at

en
cy

 (1
03

tim
e

un
it)

Percentage of Read-only Txns

Workload on 25 Partitions with Uniform Distribution

ROLA-50 keys
ROLA-200 keys
Walter-50 keys

Walter-200 keys
Jessy-50 keys

Jessy-200 keys

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 50 100 150 200

Av
g.

 L
at

en
cy

 (1
03

tim
e

un
it)

Number of Keys

Workload on 25 Partitions with 90% Read-only Txns

ROLA-uniform
ROLA-zipf

Walter-uniform
Walter-zipf

Jessy-uniform
Jessy-zipf

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70 80 90 100

Av
g.

 L
at

en
cy

 (1
03

tim
e

un
it)

Percentage of Read-only Txns

Workload on 100 Keys with Uniform Distribution

ROLA-10 par
ROLA-30 par
Walter-10 par
Walter-30 par
Jessy-10 par
Jessy-30 par

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Av
g.

 L
at

en
cy

 (1
03

tim
e

un
it)

Percentage of Read-only Txns

Workload on 100 Keys with Zipf Distribution

ROLA-10 par
ROLA-30 par
Walter-10 par
Walter-30 par
Jessy-10 par
Jessy-30 par

Figure 6.4: Average latency comparison across varying workload conditions.

parameters as the plots for throughput. Again, we see that ROLA outperforms Jessy and

Walter in all settings. In particular, the difference between ROLA/Jessy and Walter is

quite large for write-heavy workloads; the reason is that Walter incurs a high overhead for

ensuring causal consistency, which requires background propagation to advance the vector

timestamp. The latency tends to converge under read-heavy workload (because reads in

all three protocols can commit locally without certification), but ROLA still has noticeably

lower latency than the other two protocols.

The plots in Fig. 6.5 present the transaction commit rate as a function of the same param-

eters as for the other two properties. The plots show that Walter has overall higher commit

rate than ROLA, which itself has higher commit rate than Jessy, because Walter trades

latency for more committed transactions. As the number of keys increases, the commit rate

of all three protocols increases. In particular, with 100 or more keys, ROLA has significantly

higher commit rate than Jessy. We also learn from the plots that more reads give higher

commit rate, as read-only transactions in all three protocols can commit directly. We only

plot the results under uniform key access distribution for some parameter combinations,

which are consistent with the results using Zipfian distributions.

126

 20

 30

 40

 50

 60

 70

 80

 90

 100

10 50 90

C
o
m

m
it
 R

a
te

 (
%

)

Percentage of Read-only Txns

Workload on 25 Partitions with Uniform Distribution

Walter-50 keys
ROLA-50 keys
Jessy-50 keys

Walter-100 keys
ROLA-100 keys
Jessy-100 keys

 30

 40

 50

 60

 70

 80

 90

 100

10 50 90

C
o
m

m
it
 R

a
te

 (
%

)

Percentage of Read-only Txns

Workload on 100 Keys with Uniform Distribution

Walter-10 par
ROLA-10 par
Jessy-10 par

Walter-30 par
ROLA-30 par
Jessy-30 par

 50

 55

 60

 65

 70

 75

 80

 85

 90

50 100 150

C
o
m

m
it
 R

a
te

 (
%

)

Number of Keys

Workload on 25 Partitions with 50% Read-only Txns

Walter-uniform
ROLA-uniform
Jessy-uniform

Walter-zipf
ROLA-zipf
Jessy-zipf

Figure 6.5: Transaction commit rate comparison across varying workload conditions.

127

6.6 CONCLUDING REMARKS

We have presented the formal design and analysis of ROLA, a distributed transaction

protocol that supports a new consistency model not present in the survey by Cerone et

al. [29]. Using formal modeling and both standard and statistical model checking analyses

we have: (i) validated ROLA’s RA and PLU consistency requirements; and (ii) analyzed

its performance requirements, showing that ROLA outperforms Walter and Jessy in all

performance measures.

This work has shown, to the best of our knowledge for the first time, that the design and

validation of the consistency and performance properties of a new distributed transaction

protocol can be achieved relatively quickly before its implementation by the use of formal

methods. It also shows that, if Maude specifications of other system designs are available,

it is possible to compare the advantages and disadvantages of the new design w.r.t. those

alternative designs also before their implementations. This of course does not exclude the

additional information and improvements that will be gained by implementing ROLA; but

it substantially reduces the effort required in reaching a mature design.

128

CHAPTER 7: AUTOMATIC TRANSFORMATION OF MAUDE DESIGNS
INTO CORRECT-BY-CONSTRUCTION DISTRIBUTED

IMPLEMENTATIONS

Developing a highly reliable distributed system meeting desired performance requirements

is at present a hard and very labor-intensive task. As shown in the previous chapters in this

dissertation, formal specification of a system design and formal verification and analysis

can yield formally verified designs as well as reliable performance predictions about their

behaviors. But there is still a formality gap between verified designs and distributed im-

plementations. Suppose that a given property has been verified for a given system design.

Does the property still hold true for its distributed implementation?

In this chapter we bridge this formality gap by presenting a correct-by-construction auto-

matic transformation (called the D transformation) mapping a verified formal specification

of a system design in Maude to a distributed implementation with the same safety and live-

ness properties as the formal design. Two case studies, namely the NO WAIT transaction

protocol [47] and the ROLA transaction system (Chapter 6), applying this transformation

to state-of-the-art distributed transaction systems show that high-quality implementations

with acceptable performance and meeting performance predictions can be obtained in this

way. To the best of our knowledge, this is the first time that formal models of distributed

systems analyzed within the same formal framework for both logical and performance prop-

erties are automatically transformed into logically correct-by-construction implementations

in the same programming language for which similar performance trends can be shown.

This chapter is organized as follows: Section 7.1 describes the formal definition of the D

transformation. Section 7.2 shows the proof that the obtained distributed implementation

of a Maude specification is correct by construction. Section 7.3 presents a Maude prototype

automation of the D transformation, and two case studies using state-of-the-art distributed

transaction systems evaluating the implementations obtained by the D transformation. Fi-

nally, Section 7.4 discusses related work and Section 7.5 gives some concluding remarks.

7.1 THE D TRANSFORMATION

We define the transformation M 7→ D(M), mapping a Maude formal design M of a

distributed system to a distributed Maude program D(M) deployed on different machines.

We allow multiple concurrent Maude sessions to run on the same machine.

The transformation D takes as input:

• an object-oriented Maude module M defining an actor system as explained below;

129

• an initial state init of sort Configuration, which is a set of objects

< o1 : C1 | atts1 > ... < on : Cn | attsn >

in TM,Configuration, with distinct object names oi;

• a distribution information function

di : {o1, . . . , on} → String× N

assigning to each “top-level” object1 oj in init a pair (ip, i), where ip is the IP address

(given as a string) of the machine in which the object should reside, and i denotes the

ith Maude session on that machine.

The transformation D then gives us:

• A Maude program MDdi
that runs on each distributed Maude session; and

• an initial state initDdi
(ip, i) for each Maude session (ip, i).

The transformation D is then a function

λM ∈ OModule . λinit ∈ TM,Configuration .

λdi ∈ [oids(init)→ String× N)] . D(M, init, di) ∈ OModule.

Notation. We write MDdi
for D(M, init, di).

The object-oriented module M should model an “actor” system, so that its rewrite rules

must have the form

(to o from o′ : mc) < o :C | ... > => < o :C | ... > msgs [if ...] (†)

or

< o :C | ... > => < o :C | ... > msgs [if ...] (‡)

where msgs is a term of sort Configuration which, applying the equations in the module,

reduces to a multiset of messages

(to o1 from oθ : mc1) ... (to ok from oθ : mck)

1Such “top-level” objects may be hierarchical; i.e., they may have attributes whose values contain other
objects or entire configurations. Such “inner” objects often represent structured data rather than computa-
tional actors.

130

A

B

C
E

F

D

B

A
C

F

E
D

D-transformation

Mediator Mediator Mediator

Figure 7.1: Visualization of the D Transformation

for k ≥ 0, where θ is the substitution used when applying the rule. In such a message, mci

is the message content (or payload) of the message being sent to the object named oi from

the object named oθ. Although no “top-level” objects are created or deleted by the (†), (‡)
rules, object-creating rules can also be added.2

7.1.1 The M 7→MDdi
Transformation

The main idea for defining the distributed Maude program MDdi
is to add middleware for

communication between Maude sessions and with external objects. This is done by adding

to each Maude session a communication mediator object that takes care of communication

with objects that are not local, as illustrated in Fig. 7.1.

This mediator object opens and maintains sockets for communication between pairs of

objects; there is in general one socket for each pair of objects that communicate remotely

(across machine/session boundaries). Objects in the same Maude session communicate with

each other without going through the mediator object.

The only modification of the rewrite rules in M is that a message addressed to a remote

object is “redirected” to the local mediator, which:

2Our framework also allows us to have rules that create new “top-level” objects in their right-hand sides.
A new “child” object will run in the same Maude session as its parent. Furthermore, the name of the child
object must be chosen such that the di function can determine its Maude session. This can, e.g., be achieved
by letting the child’s identifier be a string of which the parent’s is a prefix.

131

• establishes the required socket between the pair of objects if not already established;

• transforms the original message into a string with an “end-of-message” marker; and

• sends the resulting string through the appropriate socket.

For receiving, the mediator object receives external messages through sockets associated to

“its” objects. Since TCP sockets do not preserve message boundaries, the mediator has to

buffer the messages received in each socket. When the buffered string contains the “end-of-

message” string, the mediator extracts the string representing the message, transforms it to

a message, and leaves the message (having a local addressee) in the local configuration.

The distributed program MDdi
consists of:

• A constant di of sort Map{Oid,Pair{String,Nat}} which specifies di in Maude as a

map from Oid to Pair{String,Nat} using an equation eq di =

• The module filter(M), which transforms M with only a minor change in its rules as

described below.

• Declarations and rewrite rules defining the mediator objects and their behaviors (which

import the SOCKET module).

Example 7.1. If the objects in state init in Example 2.1 (Chapter 2.1) are executed on

different machines, say, ip1, ip2, ip3, and ip4, respectively, then the map di can be given in

Maude as follows:

eq di = c1 |-> < "ip1" ; 1 >, c2 |-> < "ip2" ; 1 >,

db1 |-> < "ip3" ; 1 >, db2 |-> < "ip4" ; 1 > .

The module filter(M). The only change made by filter(M) to the rewrite rules in M is

that any message (to o′ from o : mc) generated by a rule in M is replaced by a message

(to di(o′) transfer mc from o to o′)

if o′ and o reside in different Maude sessions. Formally, this is done by adding a subsort

declaration

subsort Pair{String,Nat} < Oid .

stating that a < ip ; session > pair is an object identifier (for the mediator objects), adding

a message constructor

132

op to_transfer_from_to_ : Oid MsgContent Oid Oid -> Msg [ctor] .

and changing each rewrite rule in M of the form (†) to

(to o from o′ :mc) < o :C | ... > => < o :C | ... > filter(msgs) [if ...]

(and similar with rewrite rules of the form (‡)), where filter redirects the messages going

to remote objects to the mediator and leaves the other (internal) messages unchanged3:

op filter : Configuration -> Configuration .

eq filter(none) = none .

eq filter((to O from O’ : MC) CONF)

= if di[O] =/= di[O’] then

(to di[O’] transfer MC from O’ to O) filter(CONF)

else (to O from O’ : MC) filter(CONF) fi .

Specifying the Mediator Each mediator is defined as an object instance of the class

class Med | sockets : Sockets,

contacts : Contacts,

bufferedMsgs : Configuration .

where:

• sockets values are terms [socket1, str1] ... [socketk, strk], denoting that the string

str j has been received through socket socket j (and then buffered) since the last time

a message was extracted from this buffer;

• contacts is a set of triples < localObjId,socket,remoteObjId >, denoting the socket used

to communicate between two objects; and

• bufferedMsgs contains the outgoing messages when the appropriate sockets have not

yet been established.

We refer to https://github.com/anonymous-yokai/fse19 for a complete executable

specification of the mediator object, where most of the rewrite rules deal with establishing

Maude sockets along the lines explained in [32, Chapter 11]. In this chapter we just show

the following three rewrite rules for the mediator.

3We do not show variable declarations in the rest of this chapter, but follow the convention that variables
are written in (all) capital letters.

133

rl [sendRemote] :

(to O transfer MC from O’ to O’’)

< O : Med | contacts : CONTACTS ; < O’, SOCKET, O’’ > >

=>

< O : Med | >

send(SOCKET,O’,

msg2string(to O’’ from O’ : MC) + "[msep]") .

In this rule, the mediator is tasked with transferring the message content MC from the local

object O’ to the remote object O’’. The rule uses Maude’s built-in message send to send the

message through the socket SOCKET, which has already been established between O’ and O’’.

Since sockets transport strings, the function msg2string is used to transform the message

into a string; the end-of-message separator "[msep]" is then appended to the string.

The following rule shows the case when a configuration receives a message received(S,

SKT, DATA). This message denotes that the string DATA has been received through socket

SKT. The mediator object just adds this string DATA to the string STR that it has already

buffered for socket SKT:

rl [receive-data] :

received(S, SKT, DATA)

< O : Med | sockets : SKTS [SKT, STR] >

=>

< O : Med | sockets : SKTS [SKT, STR + DATA] >

receive(SKT, S) .

Finally, when enough data has been received through a socket SKT so that a message MSG

can be extracted from it, the message is extracted from the string, converted into a message

which is added to the configuration to be consumed by a local object, and the remaining

string (after the message and the end-of-message separator have been removed) is buffered

with SKT:

crl [extractRemoteMsg] :

< O : Med | sockets : SKTS [SKT,STR] >

=>

< O : Med | sockets : SKTS [SKT,

substr(STR,find(STR, "[msep]", 0) + 6,length(STR))] >

MSG

if MSG := string2msg(substr(STR,0,find(STR,"[msep]",0))) .

134

Communication between objects in the same Maude session takes place without going

through sockets or mediators. MDdi
also adds functions string2msg and msg2string, con-

verting between messages and strings and satisfying string2msg(msg2string(M)) = M.

The Module MDdi
. To summarize, the distributed Maude program MDdi

executed at

each local host consists of the definition of di and the union of the module filter(M) and

the mediator specification:

mod MDdi
is

including filter(M) + MEDIATOR .

eq di =

endm

7.1.2 Distributed Initial States

The initial state initDdi
(ip, n) at Maude session (ip, n) is a configuration containing:

• the objects in init mapped to (ip, n) by di;

• one mediator object

< < ip ;n > : Med | sockets : empty, contacts : empty,

bufferedMsgs : none >

• one occurrence of the built-in “portal” object <> denoting that we rewrite with external

objects, such as Maude’s built-in socket manager (see Chapter 11 in [32] for more details

about the portal object and external rewriting); and

• one message

createServerTcpSocket(socketManager, o, port#, 5)

for each top-level (non-mediator) object o in the configuration.

7.1.3 Adding Foreign Objects

A distributed Maude object-based system can be easily extended to interact with objects

foreign to it with no changes to the existing rewrite rules: only the new messages and rules

defining the interaction with new foreign objects —databases, web sites, display devices, and

135

so on— need to be specified. This is easy to achieve thanks to the message-passing abstrac-

tion: an object of some class needs no information at all about the internal representation

of objects of other classes which with it communicates. Only the interfaces specifying the

messages are needed.

Within Maude itself, two kinds of objects are supported: (i) standard Maude objects,

which are terms in an object-based rewrite theory, and (ii) external Maude objects. In this

chapter it suffices to focus on socket external Maude objects already described in Section 2.

If the only objects involved in our distributed Maude system are standard Maude objects,

only socket external Maude objects, opened and closed by the communication mediator

objects described in Section 7.1.1, are needed. But how can such a distributed Maude

system communicate with foreign objects, that is, objects such as a display or a database

completely outside Maude? The simple answer has been already hinted at above. Suppose

Cl1 is a class of Maude objects that needs to communicate with, say, database foreign

objects. All we need are three things: (a) a signature of messages sent by objects in Cl1 to

such foreign objects and by foreign objects to objects in Cl1; (b) rewrite rules for the objects

of class Cl1 specifying how messages to foreign objects are generated and how objects of

class Cl1 react to messages sent to them by foreign objects; and (c) a wrapper encapsulating

a foreign object that can transform the string representation of a message from a Cl1 object

into an internal command to the foreign object, and a reply from the foreign object into

the string representation of a message to a Cl1 object. Once items (a)—(c) are specified,

socket-based communication can proceed as before: messages represented as strings will

travel though the sockets communicating Maude standard objects with foreign objects and

vice versa. As explained in Section 7.3, in this chapter we have used some of the steps (a)–(c)

to allow communication of a YCSB [36] foreign object with standard Maude objects to carry

out system evaluations in the two case studies we present. The same methodology can be

used to allow communication of distributed Maude objects with any other foreign objects.

Furthermore, the D transformation explained in Section 7.1.4 can be easily extended to

initial configurations where some of their objects are foreign objects.

7.1.4 Deployment

We have built a simple Python-based prototype that automates the process of deploying

and running the distributed Maude model on distributed machines. The tool takes as input

the IP addresses of the distributed machines and the number of Maude sessions on each

machine.

We have run distributed Maude deployments to perform large-scale experiments on dis-

136

tributed transaction systems. To experiment with realistic workloads, we have connected our

distributed implementation to the well-known YCSB workload generator [36] as explained

in Section 7.1.3. Our deployment tool also invokes the workload generator (e.g., YCSB) to

initialize and to load data into the database, and then invokes the workload generator to

generate transactions for the different Maude instances to execute.

To measure the performance of our distributed implementation, we have added a “log”

attribute to each mediator object that records relevant data during the distributed execution.

A Python script then inspects and aggregates these logs after execution to compute the

overall performance metric of the system.

7.2 CORRECTNESS PRESERVATION

Our goal is to obtain a distributed implementation of a Maude specification that is correct

by construction: If the original Maude model M , with intial state init, satisfies a CTL∗

temporal logic property φ that does not contain the “next” operator ©, then φ should also

hold in the distributed implementation MDdi
when started with corresponding distributed

initial state(s), and vice versa.

Since MDdi
uses Maude external TCP/IP socket objects for communication between dif-

ferent Maude sessions, a full proof of correctness of the M 7→ MDdi
transformation would

require modeling the TCP/IP protocol and its associated network failure model. This is

possible, but is beyond the scope of this chapter. Instead, we adopt here the approach fol-

lowed in other proofs of correctness of distributed systems obtained by transformation from

formal specifications, e.g., [91, 82], where network communication is delegated to a trusted

shim and is abstracted away in correctness proofs. In our case, the Maude TCP/IP socket

objects invoked by the communication mediator objects play the role of such a trusted shim.

Therefore, we present below a proof of correctness, in the form of a stuttering bisimulation,

which uses an intermediate formal model D0(M, init, di) which abstracts away the network

communication details by providing a high-level abstraction of it.

7.2.1 The Model D0(M, init, di)

The rewrite theory D0(M, init, di) is essentially as MDdi
, except that it abstracts away

the establishment of the appropriate sockets, and models the effect of socket communication

in rewriting logic at a higher level of abstraction. The model D0(M, init, di) therefore

simplifies MDdi
as follows.

Concerning the mediator class:

137

• Since we no longer have explicit sockets, the contacts attribute of Med is no longer

needed.

• Since we assume that the sockets have been successfully established, the attribute

bufferedMsgs, used to buffer outgoing messages that could not yet be transmitted

since the appropriate socket was not established, is no longer needed.

• Since we abstract away the fact that TCP sockets do not preserve message boundaries,

we do not need to buffer messages at the receiving end, and therefore the attribute

sockets is no longer needed.

The mediator class therefore no longer needs any attributes, and is declared as follows in

D0(M, init, di):

class Med .

The rewrite rules in D0(M, init, di) differ from the rewrite rules in MDdi
as follows:

• Since we abstract from the establishment of sockets, the rewrite rules in MDdi
dealing

with this issue (not shown in this chapter) are omitted from D0(M, init, di).

• The rule sendRemote in MDdi
is replaced by the rule

rl [sendRemote] :

(to O transfer MC from O’ to O’’)

< O : Med | >

=>

< O : Med | >

transfer(di[O’’], O, msg2string(to O’’ from O’ : MC)) .

op transfer : Oid Oid String -> Msg [ctor] .

where a “transfer” message models socket communication.

• When a mediator receives such a transfer message (modeling socket communication),

it transforms the received string into a message, which is then released into the configu-

ration. The rewrite rules receive-data and extractRemoteMsg in MDdi
are therefore

replaced by the following rewrite rule in D0(M, init, di):

138

crl [receiveRemoteMsg] :

transfer(O, O’, STRING)

< O : Med | >

=>

< O : Med | >

string2msg(STRING) .

Initial States The initial state in D0(M, init, di) corresponding to the state init in M

is just init with an additional mediator object < < ip ;n > : Med | > for each (ip, n) ∈
image(di). We call this initial state initD0 . (Compared to the distributed initial states in

MDdi
, initD0 is the multiset union of all those distributed states, minus <>, where the Med

objects no longer have attributes, and without the messages used to establish sockets.)

It is worth remarking that, although the distributed state is represented as a single flat

configuration of objects in initD0 , “direct” message communication between two objects

assigned to different Maude sessions in di cannot take place due to the “filtering” of generated

messages in MDdi
(and hence also in D0(M, init, di)).

7.2.2 D0(M, init, di) and M are Stuttering Bisimilar

We show that the Kripke structures K(D0(M, init, di), initD0) and K(M, init) are stut-

tering bisimilar for the labeling functions L inK(M, init) and L◦h inK(D0(M, init, di), initD0).

We define the map h : Reach(initD0)→ Reach(init) as follows:

eq h(none) = none .

eq h(< O : Med | > CONF) = h(CONF) .

ceq h(< O : C | > CONF) = < O : C | > h(CONF) if C =/= Med .

eq h((to O transfer MC from O’ to O’’) CONF)

= (to O’’ from O’ : MC) h(CONF) .

eq h((transfer(O,O’,STRING)) CONF)

= string2msg(STRING) h(CONF) .

eq h((to O from O’ : MC) CONF) = (to O from O’ : MC) h(CONF) .

That is, h maps a configuration in D0(M, init, di) to a similar configuration in M with the

following modifications: (i) the mediator objects are forgotten, and (ii) the three intermediate

messages involved in transferring a message content mc from o to a remote o′ are all mapped

to the message (to o′ from o : mc).

139

Theorem 7.1. h is a stuttering bisimulation map

h : K(D0(M, init, di), initD0)→ K(M, init)

with corresponding labeling functions L ◦ h and L.

Proof. According to Theorem 2.2, h is such a stuttering bisimulation map if there is a well-

founded domain (W,>) and a function µ : Reach(initD0)× Reach(init)→ W so that:

1. h(initD0) = init.

2. If h(t) = u and t −→ t′ then either u −→ u′ for some u′ = h(t′), or h(t′) = u and

µ(t, u) > µ(t′, u).

3. If h(t) = u and u −→ u′, then there is a sequence of transitions t −→ t1 −→ · · · −→ tn,

with n ≥ 1, such that h(tn) = u′ and h(t1) = · · · = h(tn−1) = u.

4. h(t) and t satisfy the same atomic propositions, which holds since L ◦ h is

K(D0(M, init, di), initD0)’s labeling function.

(In this proof, terms t, t′, t1, . . . and rewrites between such terms denote states and transitions

in K(D0(M, init, di), initD0), and the u’s denote states and transitions in K(M, init).)

1. As explained in Section 7.2.1, the initial state initD0 just adds a number of Med objects to

the initial state init of M . Since h forgets all Med objects, we have the desired h(initD0) =

init.

2. Assume that t −→ t′ is a rewrite in D0(M, init, di) and h(t) = u.

• If the rule used in the rewrite above is of the form (†):

m < o :C | atts > => < o :C | atts ′ > filter(msgs) [if ...]

(the case with rules of the form (‡) is easier), then there is a substitution θ such that

t = c0 mθ (< o C | atts >)θ and t′ = c0 (< o :C | atts ′ >)θ) filter(msgsθ). Since

h(filter(msgsθ)) = msgsθ, and h(t) = h(c0) mθ (< o :C | atts >)θ, it follows that

h(t) −→ h(t′) with the rule

m < o :C | atts > => < o :C | atts ′ > msgs [if ...].

140

• For the additional rewrite rules inD0(M, init, di), we use (MsgConf , >mul) as the well-

founded order, where MsgConf denotes finite multisets of D0(M, init, di)-messages,

and >mul is the multiset extension induced by the order > given by (to o transfer

mc from o′ to o′′) > transfer(o′′′,o, msg2string(to o′′ from o′ : mc)) > (to

o′′ from o′ : mc). We define µ(t, u) to be the multisets of messages in t.

Since the rules sendRemote and receiveRemoteMsg only replace a message with the

corresponding h-equivalent and >-decreasing message, t −→ t′ using one of these rules

means that h(t) = h(t′) and µ(t, u) >mul µ(t′, u) (for any u).

3. Any step in M can be simulated by a sequence of steps in D0(M, init, di). Suppose

that u −→ u′ in M and h(t) = u. Then either a rule of the form (†), say,

m < o :C | atts > => < o :C | atts ′ > msgs [if ...],

or of the form (‡) is used. We show the case for rule (†); the (‡) case is trivial. For a

(†) rule, u must have the form u = h(c0) h(m′) (< o : C | atts >)θ with h(m′) = mθ and

u′ = h(c0) (< o : C | atts ′ >)θ msgsθ. We can distinguish two cases: (i) if m′ = mθ then t =

c0 mθ (< o : C | atts >)θ and can be rewritten to t′ = c0 (< o : C | atts ′ >)θ filter(msgsθ),

so that h(t′) = u′, as desired. Otherwise, mθ must be of the form (to b from a : x), with

oθ = b, and m′ is either (i) (to di(a) transfer x from a to b), or (ii) transfer(di(b),di(a),

msg2string(to b from a : x)). We do case (i) and leave case (ii) (requiring fewer steps)

to the reader. The c0 has the form c0 = < di(a) : Med | > < di(b) : Med | > c′0 and we have

rewrites t −→ t1 = < di(a) : Med | > transfer(di(b), di(a), msg2string(to b from a : x))

< di(b) : Med | > < b :C | attsθ > c′0 −→ t2 = < di(a) : Med | > (to b from a : x) < di(b) : Med | >

< b :C | attsθ > c′0 −→ t3 = < di(a) : Med | > < di(b) : Med | > < b :C | atts ′θ > filter(msgsθ) c′0.

But then h(t) = h(t1) = h(t2) = t, and h(t3) = u′, as desired.

The main result immediately follows from Theorems 2.1 and 7.1:

Theorem 7.2. Given a rewrite theory M specifying a distributed system and an initial

state init as described in Section 7.1, a distribution information function di mapping the

top-level objects in init to different machines/Maude sessions, a labeling function L over a

set AP of atomic propositions, and a CTL∗ formula ϕ over AP not containing the “next”

operator, then

K(M, init) |= ϕ if and only if K(D0(M, init, di), initD0) |= ϕ

for the labeling function L ◦ h in K(D0(M, init, di), initD0).

141

7.3 PROTOTYPE AND EXPERIMENTS

We have implemented, in around 300 LOC, a prototype of the D transformation that

automatically transforms a Maude model of a distributed system into a distributed Maude

implementation. We have applied our prototype to the Maude specification of: (i) a well-

known lock-based distributed transaction protocol which has been implemented in C++

and evaluated in [47]; and (ii) the ROLA transaction system design (Chapter 6), whose

correctness and performance have been analyzed using Maude and PVeStA, but which has

never been implemented. Using our prototype and the Maude specification of ROLA we

obtain the first distributed implementation of ROLA for free.

We have subjected our two distributed Maude implementations so obtained to realistic

workloads generated by YCSB to answer to the following questions:

Q1: Are the performance evaluations obtained for the distributed Maude implementations

consistent with the performance predictions obtained by statistical model checking for

the original Maude designs? If a conventional distributed implementation of the design

is also available, is its performance consistent with the distributed Maude one and with

the model-based predictions?

Q2: How does the performance of a distributed Maude implementationD(M) automatically

generated by the unoptimized prototype transformation D from a Maude design M

compare with that of an available state-of-the-art distributed implementation in C++

of such a design?

Note that answers to Q1 cannot take the form of an exact or approximate agreement between

the performance values predicted by statistical model checking a Maude model and the

values measured in an experimental evaluation. This is impossible because: (i) measured

values depend on the experimental platform used; (ii) the probability distributions used in

statistical model checking are only approximations of the expected behavior; and (iii) the

sizes (e.g., number of objects) of initial states used in statistical model checking and in

experimental evaluations are typically quite different, due to feasibility restrictions placed

by statistical model checking.

For the above reasons (i)-(iii), the consistency to be expected between the performance

predicted by statistical model checking a model and those obtained by experimentally eval-

uating an implementation is not an agreement between predicted and measured values, but

between predicted and measured trends. For example, if throughput increases as a function

of the proportion of read and write transactions, then consistency means that it should do

so along curves that are similar up to some change of scale.

142

7.3.1 Experimental Setup

Implementation-Based Evaluation. We have evaluated the two case studies using the

Yahoo! Cloud Serving Benchmark (YCSB) [36], which is the open standard for comparative

performance evaluation of data stores. We used the built-in C++ implementation of YCSB in

[47] in our first case study. For ROLA, we used a variant of the original Java implementation

of YCSB adapted to transaction systems [14]. We deployed the two case studies on a cluster

of d430 Emulab machines [90], each with two 2.4 GHz 8-Core Intel Xeon processors and 64

GB RAM. The ping time between machines is approximately 0.13 ms. We also set the same

system and workload configuration. In both cases, we considered 5 partitions (of the entire

database) on 5 machines, and all client processes split across another 5 separate machines;

we considered the same mixture of read-only, write-only, and read-write transactions, with

each transaction accessing up to 8 keys; and we used Zipfian distribution for key accesses

with the parametric skew factor theta.

Statistical Model Checking (SMC). By running Monte-Carlo simulations from a given

initial state, SMC verifies a property (or estimates the expected value of an expression)

up to a user-specified level of confidence. We probabilistically generated initial states so

that each PVeStA simulation starts from a different initial state. To mimic the real-world

network environment, we used the lognormal distribution for message delays [17]. We used

10 machines of the above type to perform statistical model checking with PVeStA. The

confidence level for all our statistical experiments is 95%.

Standard Model Checking. We used our Maude models of NO WAIT and ROLA spec-

ified in the CAT framework (Chapter 3) for model checking consistency properties of dis-

tributed transaction systems. The analysis was performed with exhaustively generated initial

states for a size bound.

Trusted Code Base. Our trusted code base includes the Maude implementation (includ-

ing the implementation of TCP/IP external socket objects) as well as the Python-based tool

used for deploying and initializing the D-transformed distributed Maude system.

7.3.2 Lock-Based Distributed Transactions

This case study considers the protocol NO WAIT implemented in the Deneva framework

[47] using C++. NO WAIT is a strict two-phase locking (strict 2PL)-based distributed

transaction system with two-phase commit (2PC) as its atomic commitment protocol.

143

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Th
ro

ug
hp

ut
 (t

xn
/ti

m
e

un
it)

Skew Factor (Theta)

Statistical Model Checking - Lock_A

50% Updates
100% Updates

 0

 1

 2

 3

 4

 5

 0 25 50 75 100Th
ro

ug
hp

ut
 (t

xn
/ti

m
e

un
it)

Percentage Reads

Statistical Model Checking - Lock_B

Txn_size=4
Txn_size=8

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Th
ro

ug
hp

ut
 (1

03
tx

n/
s)

Skew Factor (Theta)

Distributed Maude Implementation - Lock_A

50% Updates
100% Updates

 0

 2

 4

 6

 8

 10

 12

 0 25 50 75 100

Th
ro

ug
hp

ut
 (1

03
tx

n/
s)

Percentage Reads

Distributed Maude Implementation - Lock_B

Txn_size=4
Txn_size=8

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Th
ro

ug
hp

ut
 (1

03
tx

n/
s)

Skew Factor (Theta)

C++ Implementation - Lock_A

50% Updates
100% Updates

 0

 20

 40

 60

 80

 0 25 50 75 100

Th
ro

ug
hp

ut
 (1

03
tx

n/
s)

Percentage Reads

C++ Implementation - Lock_B

Txn_size=4
Txn_size=8

Figure 7.2: NO WAIT: Throughput comparison between statistical model checking (top),
distributed Maude implementation (middle), and C++ implementation (bottom). Experi-
ments Lock A (left) and Lock B (right) measure throughput of different ratios of updates
and transaction sizes when varying skew factors and ratios of reads, respectively.

144

We formally specified NO WAIT in Maude, and then automatically D-transformed the

Maude specification to its corresponding distributed Maude implementation. We used the

C++ implementation in [47] in our experiments with NO WAIT in [47]. Our Maude model of

NO WAIT is around 600 LOC, whereas the C++ implementation in [47] has approximately

12K LOC.

We performed two sets of experiments (Lock A and Lock B in Fig. 7.2), focusing on

the effect of varying amounts of contention in the system. For each set of experiments

we plot the experimental results of statistical model checking of our Maude model, and

show the corresponding plots for the measurements of the distributed Maude and C++

implementations.

In Lock A we vary the contention by tuning the skew theta, and compare two workloads

with 50% and 100% update transactions, respectively. In Lock B we analyze the throughput

as a function of the percentage of read-only transactions with skew theta = 0.5, and focus on

the impact of transaction sizes (i.e., number of operations in a transaction). Regarding Q1,

all three plots in each experiment show similar trends for the model- and implementation-

based evaluations. That is, our distributed Maude implementation-based evaluation not only

confirms the statistical predictions, but also agrees with the state-of-the-art implementation-

based results.

Regarding Q2, our correct-by-construction lock-based distributed transaction system achieves

lower peak throughput, but only by a factor of 6, than the corresponding C++ implemen-

tation. Some reasons for this lower performance are: (i) the M 7→ D(M) transformation is

an unoptimized prototype; instead, the C++ implementation of NO WAIT is optimized for

high performance (e.g., the socket library nanomsg provides a fast and scalable networking

layer); and (ii) the M 7→ D(M) transformation allows adding any benchmarking tool as a

foreign object, wich is very flexible but adds an extra layer of communication; instead, in the

C++ implementation YCSB and the protocol clients are directly integrated.

Model Checking Consistency Properties. We have used the tool CAT (Chapter 3) to

model check our Maude model of NO WAIT against 6 consistency properties (read commit-

ted, read atomicity, cursor stability, update atomicity, snapshot isolation, and serializability),

without finding a violation of any of them. Under the assumption that our trusted code

base executes correctly, Theorem 7.2 ensures that our distributed Maude implementation of

NO WAIT satisfies the same consistency properties for the corresponding initial states.

145

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 0 25 50 75 100Th
ro

ug
hp

ut
 (t

xn
/ti

m
e

un
it)

Percentage Reads

Statistical Model Checking - ROLA_A

5 Partitions
3 Partitions

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60Th
ro

ug
hp

ut
 (t

xn
/ti

m
e

un
it)

Concurrent Clients

Statistical Model Checking - ROLA_B

95% Reads
50% Reads

 0

 100

 200

 300

 400

 0 25 50 75 100

Th
ro

ug
hp

ut
 (t

xn
/s

)

Percentage Reads

Distributed Maude Implementation - ROLA_A

5 Partitions
3 Partitions

 0

 100

 200

 300

 400

 0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
 (t

xn
/s

)

Concurrent Clients

Distributed Maude Implementation - ROLA_B

95% Reads
50% Reads

Figure 7.3: ROLA: Comparison between statistical model checking (top) and distributed
Maude implementation (bottom). Experiments ROLA A (left) and ROLA B (right) measure
throughput for different number of partitions and different ratios of reads when varying ratios
of reads and concurrent clients, respectively.

7.3.3 The ROLA Transaction System

ROLA is a recent distributed transaction protocol design that guarantees read atomicity

(RA) and prevents lost updates (PLU). As shown in Chapter 6, ROLA has been formalized in

the CAT framework, and model checked against the above consistency properties. Statistical

model checking performance estimation has also showed that ROLA outperforms well-known

distributed transaction system designs guaranteeing RA and PLU (Chapter 6). However, up

to now there was no distributed implementation of ROLA. Using our tool and the Maude

specification of ROLA in the CAT framework (which consists of approximately 850 LOC),

we obtain such a correct-by-construction distributed implementation for free.

We have performed statistical model checking of the Maude specification, and have run

our distributed Maude implementation on YCSB-generated workloads, on two groups of

experiments (see Fig. 7.3). In ROLA A we increase the amount of reads, and compare

throughput with various partitions of the entire database (5 partitions against 3 partitions).

In ROLA B we plot throughput as a function of the number of concurrent clients, and focus

146

on the effect of increasing the amount of contention (95% reads against 50% reads). Both

plots in each experiment agree reasonably well.

All ROLA’s consistency properties model checked in Chapters 3 and 6 are preserved

(Theorem 7.2) assuming correct execution of the trusted code base.

7.4 RELATED WORK

Our work is related to various formal frameworks for specification, verification, and im-

plementation of distributed systems that try to reduce the formality gap [92] between the

formal specification of a distributed system’s design and its implementation. They can be

roughly classified in three categories (only some example frameworks in each category are

discussed):

1. Specification, Verification, and Compilation to Imperative Implementation.

The IOA formal framework [65, 42] formalizes distributed system designs as IO-automata,

provides a toolset for both model checking and theorem proving verification of IOA designs,

and offers also the possibility of generating Java distributed implementations of IO designs

by compilation.

2. Specification, Verification, and Proof of Imperative Implementation. A good

example of state-of-the art recent work in this category is the IronFleet framework [48].

Distributed systems are specified in a mixture of Lamport’s TLA and Hoare logic assertions

for imperative sequential code in Leino’s Dafny language [52]. They are then formally verified

with various tools, including Z3 [39] and the Dafny prover. Dafny code is then complied into

C# code.

3. Specification, Verification, and Transformation into Correct Distributed Im-

plementation. Work in this category has for the most part been based on constructive

logical frameworks such as those of Nuprl [35] and Coq [21] and has been shown effective

in generating sophisticated system implementations. In particular: (i) the Event-ML frame-

work begins with an Event-ML specification and the desired properties both expressed in

Nuprl and extracts a GPM program implementation; (ii) theVerdi framework [91] begins

with a distributed system design and a set of safety properties, both specified in Coq; it

offers the important advantage of allowing the specifier to ignore various network failures

and replication issues: they are delegated to so-called verified system transformers which

automatically transform the design and ensure correct execution of the transformed design

147

under such failure scenarios. After desired properties are verified in Coq, the OCaml code

of a correct implementation is extracted and deployed using a trusted shim; (iii) the Chapar

framework [53] is specialized to extract correct-by-construction implementations of key-value

stores in OCaml from formal specifications of such stores and of their consistency properties

expressed and verified in Coq; and (iv) the Disel modular framework [82] specifies both

distributed system designs and their desired properties in separation logic, it expresses both

the system and property specifications in Coq, uses Coq to prove the desired properties, and

extracts correct-by construction OCaml code, which is then deployed using a trusted shim.

Discussion and Comparison with the Maude Framework. To the best of our knowl-

edge, none of the above frameworks provide support for prediction of performance properties

by statistical model checking,4 whereas Maude does so through the PVeSta tool [7]. Regard-

ing work in category (1), the Maude framework shares the use of executable specifications

and the availability of a formal environment of model checking and theorem proving tools

with IOA; but in comparison with IOA’s automatic generation of Java distributed implemen-

tations from IOA specifications, the Maude approach substantially reduces the “formality

gap” by avoiding compilation into a complex imperative language. The main difference with

the IronFleet framework in category (2) is that imperative programs are a problematic, low

level choice for expressing formal design specifications. Furthermore, system properties can

be considerably harder to prove at that level. Regarding frameworks in category (3), the

present work within the Maude framework shares with them the possibility of generating

correct-by-construction distributed implementations from designs; but adds to them the fol-

lowing additional possibilities: (i) rapid exploration of different design alternatives by testing

and by automatic breadth first search, LTL and statistical model checking analysis of such

designs; (ii) prediction of system performance properties before implementation; and (iii)

flexible range of properties that can be verified of a design: theorem proving verification of

both invariants [77] and reachability logic properties [84] is supported but is not required :

LTL and statistical model checking verification can already yield systems with considerably

higher quality than those developed by conventional methods. The main point is that, for an

entirely new system never specified or built before, beginning with a human-intensive the-

orem proving verification effort may be both premature and costly. Instead, in the Maude

framework designs can be thoroughly analyzed and improved by fully automated methods

before a mature design is fully verified using theorem proving tools.

4Probabilistic system behaviors can be specified using probabilistic IOA [28]. However, we are not aware
of tools supporting statistical model checking analysis of performance properties for distributed system
designs in the IOA framework.

148

7.5 CONCLUDING REMARKS

In this chapter we have presented the M 7→ D(M) transformation and proved that M and

a model D0(M) of D(M) abstracting network communication details are stuttering bisimilar

and therefore satisfy the same safety and liveness properties. We have also presented two

case studies evaluating the performance of D(M) for designs M of two state-of-the-art dis-

tributed transaction systems, and that of a high-perfomance conventional implementation.

These case studies have also confirmed that the statistical-model-checking-based performance

predictions obtained from a design M before implementation are similar to the performance

measures forD(M) and a conventional implementation. This work shows that it is possible to

automatically generate reasonable, but not yet optimal, correct-by-construction distributed

implementations from very high level and easy to understand executable formal specifica-

tions of state-of-the-art system designs which are much shorter (a factor of 20 for the C++

implementation of NO WAIT) than conventional implementations.

149

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

This chapter presents the conclusions of this dissertation, followed by a discussion on

future research directions.

8.1 CONCLUSIONS

Designing, verifying, and implementing highly reliable high-performance distributed sys-

tems is at present a hard and very labor-intensive task. Cloud-based systems have further

increased this complexity due to the desired consistency, availability, scalability, and disas-

ter tolerance. This dissertation has addressed this challenge in the context of distributed

transaction systems (DTSs) from two complementary perspectives: (i) designing cloud stor-

age systems with high assurance such that they satisfy desired correctness and performance

requirements; and (ii) transforming verified system designs into correct-by-construction dis-

tributed implementations.

Regarding the correctness requirements mentioned in (i), we have provided an object-

based framework (called CAT) for formally modeling DTSs in Maude, have explained how

such models can be automatically instrumented to record relevant events during a run, and

have formally defined a wide range of consistency properties on such histories of events.

We have implemented a tool which automates the entire specification instrumentation and

model checking process.

Regarding the performance requirements mentioned in (i), we have proposed a general,

though not yet automated, method that transforms the untimed, non-probabilistic, and non-

deterministic formal Maude models of DTSs in the CAT framework into probabilistic rewrite

theories, have explained how we can monitor the system executions of such probabilistic the-

ories, and have showed how we can evaluate the performance of the DTS designs based on

the recorded log for different performance parameters and workloads using the PVeStA

statistical model checker.

Three DTS case studies, namely, RAMP, Walter, and ROLA, have been presented in

detail to demonstrate the applicability of the above two methodologies. We have shown new

and promising results for each of the three case studies. In particular, we have identified

promising new design alternatives for given classes of applications relatively easily before

they are implemented:

150

RAMP. We have used our models to analyze RAMP’s extensions against a wide range

of consistency properties, which the original RAMP paper did not do. Besides, we have

explored various design alternatives for RAMP transactions, and have been able to make

rigorous comparisons between them in terms of their consistency and performance properties

by means of logical and statistical model checking. In this way, we have gained substantial

knowledge that can help find the best match between a RAMP version and a given class of

applications.

Walter. Our statistical model checking analysis has offered new insights about Walter’s

performance for a wider range of workloads than those evaluated experimentally by the

developers [85], while at the same time showing agreement between the performance pre-

dictions obtained from a Maude model of Walter by statistical model checking, and the

experimental performance evaluations in [85].

ROLA. Our work on ROLA has shown, to the best of our knowledge for the first time,

that the design and validation of a new distributed transaction protocol can be achieved

relatively quickly before its implementation by the use of formal methods.

Regarding challenge (ii), to bridge the formality gap between verified designs of actor-like

distributed systems and their distributed implementations we have presented a correct-by-

construction automatic transformation mapping a verified formal specification of an actor-

based distributed system design in Maude to a distributed implementation enjoying the same

safety and liveness properties as the original formal design. Two case studies, applying this

automatic transformation to state-of-the-art distributed transaction systems analyzed within

the same formal framework for both logical and performance properties, show that high-

quality implementations with acceptable performance and meeting performance predictions

can be automatically generated in this way.

8.2 FUTURE WORK

Extending and Optimizing the CAT framework. We have formalized 9 transactional

consistency properties in the CAT framework, and modeled checked whether they are sat-

isfied or not for 13 DTS models. In future work we should verify the correctness of our

formalization of those consistency properties by formally relating our definitions in Maude

to other (non-executable) formalizations (e.g., Adya’s formalization of transactional consis-

tency models [4]).

151

Although the model checking verification has been made systematic by generating all

possible initial states with certain bounds, there is still room for obtaining higher coverage

and assurance in the future to arrive at stronger claims for our model checking analysis. In

particular, we should (automatically) explore all possible combinations of the user-provided

parameters, instead of (manually) choosing some of them. For example, in Section 5.3 we

have model checked our Walter model against SI & PSI for only 5 (out of 10) combinations

with 3 types of transactions, but of course a full coverage of all combinations would provide

fuller assurance.

The CAT framework focuses only on distributed transaction systems and their transac-

tional consistency properties (read atomiciy, serializability, etc.). In future work we should

extend the CAT framework to formalizing and model checking NoSQL key-value stores1

(e.g., Cassandra [2] and Riak [1]) and their non-transactional consistency properties [89]

(e.g., eventual consistency and strong consistency). Previous work [63, 56, 55] on formal

modeling of Cassandra and formal analysis of its consistency models can be a good basis for

this future research direction.

Automatic Performance Estimation of DTSs. Regarding design and verification of

DTSs, the CAT framework currently focuses only on correctness requirements (i.e., model

checking consistency properties). To meet performance requirements, an automated ap-

proach to performance estimation by statistical model checking is also highly needed. We

plan to integrate the consistency and performance measures formally defined in Chapter 4

into the CAT framework, and to automate the transformation (manually done for RAMP,

Walter, and ROLA in Chapter 4, 5, and 6, respectively) from nondeterministic models into

probabilistic ones that can be subjected to statistical model checking analysis using a tool

such as PVeStA [7].

Toolkit for Automatic Analysis of Cloud Storage Systems. The transformation

in the CAT framework is from nondeterministic models to probabilistic rewrite theories.

Alternatively, we can design a new tool P2ND based on exploring the opposite transformation

direction (from a probabilistic model into a nondeterministic one), which, together with the

CAT tool, provides users with flexible choices in formal design and analysis of DTSs in

Maude. For example, if a user’s first attempt at a formal model is a probabilistic one (resp.

a nondeterministic one), he can choose P2ND (resp. CAT) to perform automatic analysis of

both correctness and performance properties. Both tools should be integrated into a toolkit,

1We classify cloud storage systems into two categories: distributed transactional systems and NoSQL
key-value stores.

152

along with the above feature of also supporting NoSQL data stores, which offers users a

generic framework for modeling and analysis of cloud storage systems.

Infinite-State Model Checking. CAT uses explicit-state model checking to explore the

system behaviors from many initial states generated with user-provided bounds, and there-

fore cannot be used to verify that an algorithm is correct for all possible initial system

configurations, which can be infinite. One promising technique to addressing this limitation

is symbolic model checking, where a possibly infinite number of initial states is described

symbolically by formulas in a theory whose satisfiability is decidable by an SMT solver. In

the Maude context, this form of symbolic model checking is supported by rewriting modulo

SMT [78], which has already been applied to various distributed real-time systems, and by

narrowing-based symbolic model checking [11, 12]. An obvious next step is to verify prop-

erties of cloud storage systems for possibly infinite sets of initial states using this kind of

symbolic model checking.

Deductive Verification in Reachability Logic. In the correct-by-construction trans-

formation from distributed system designs to distributed implementations, the stronger the

properties that have been verified of the design, the stronger the correctness guarantees that

can be claimed for the implementation. Since symbolic model checking does not always

terminate in general, it may not be possible to verify some properties this way. Abstraction

methods may sometimes make a symbolic state space finite, but finding such an abstraction

may not always be possible. A natural next step after infinite-state symbolic model checking

verification is deductive verification. A promising approach available for Maude-based spec-

ification is the constructor-based reachability logic and tool reported in [84] and currently

under active development and experimentation.

Modular Design and Analysis of Cloud Storage Systems. Our work in this disser-

tation is part of a long-term research effort in which we have been using Maude to both

meet the challenges and exploit the opportunities of modular design and analysis for cloud

storage systems (see [22, 70] for surveys). As part of this effort, we have formally specified

13 Maude models of state-of-the-art DTSs in the CAT framework, as well as Cassandra in

[63, 56, 55], and have formally analyzed both the consistency and the performance properties

of these systems. From the analysis of all these systems, which span different points in the

consistency vs. performance spectrum for cloud storage systems, a better, more modular

understanding of the different algorithms that need to be combined to achieve the different

designs and their relationships has been gained. An important next step in the near future

153

is to develop a library of formally specified components and show how system designs such

as those for RAMP, Walter, ROLA, Cassandra, and other future systems can be obtained

as modular compositions out of such a library of components.

Optimizing the D Transformation. Despite of the promising results (i.e., our unop-

timized prototype is only six times slower than a high-performance implementation), there

is still ample room for improvement in the future to arrive at a mature and highly opti-

mized Maude implementation of the D transformation. Extensive experimentation is also

needed to more fully demonstrate the effectiveness and performance of the D transformation

methodology and to optimize the transformation itself.

154

APPENDIX A: THE RAMP-FAST ALGORITHM

Figure A.1 shows the RAMP-Fast algorithm as it is described in [14].

Figure A.1: The RAMP-Fast algorithm as described in [14].

155

APPENDIX B: THE ORIGINAL PERFORMANCE EVALUATION
RESULTS FOR RAMP

Figures B.1 and B.2 show the RAMP performance w.r.t. throughput and average latency

as plotted in [14]. The relative performance for RAMP-Fast and RAMP-Small is indeed

similar to the predictions by our statistical model checking analysis in Chapter 4.7.

Figure B.1: Throughput and latency under varying client load as shown in [14]. Blue and
green curves refer to RAMP-Fast and RAMP-Small, respectively.

Figure B.2: Throughput under varying percentage reads as shown in [14]. Blue and green
curves refer to RAMP-Fast and RAMP-Small, respectively.

156

APPENDIX C: THE ORIGINAL PERFORMANCE EVALUATION
RESULTS FOR WALTER

Figure C.1 shows the Walter throughput under varying workload as plotted in [85], which

is consistent with our statistical model checking results in Chapter 5.4.

Figure C.1: Throughput under varying workload as shown in [85]

157

REFERENCES

[1] Basho Riak. http://basho.com/riak/.

[2] Cassandra. http://cassandra.apache.org.

[3] IBM DB2. https://www.ibm.com/analytics/us/en/db2/.

[4] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations
for Distributed Transactions. PhD thesis, MIT, 1999.

[5] Gul A. Agha, José Meseguer, and Koushik Sen. PMaude: Rewrite-based specification
language for probabilistic object systems. Electr. Notes Theor. Comput. Sci., 153(2),
2006.

[6] Musab AlTurki and José Meseguer. Dist-Orc: A rewriting-based distributed implemen-
tation of Orc with formal analysis. In RTRTS’10, volume 36 of EPTCS, pages 26–45,
2010.

[7] Musab AlTurki and José Meseguer. PVeStA: A parallel statistical model checking
and quantitative analysis tool. In CALCO’11, volume 6859 of LNCS, pages 386–392.
Springer, 2011.

[8] Masoud Saeida Ardekani, Pierre Sutra, Nuno M. Preguiça, and Marc Shapiro. Non-
monotonic snapshot isolation. CoRR, abs/1306.3906, 2013.

[9] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-monotonic snapshot
isolation: Scalable and strong consistency for geo-replicated transactional systems. In
SRDS, pages 163–172. IEEE Computer Society, 2013.

[10] Masoud Saeida Ardekani and Douglas B. Terry. A self-configurable geo-replicated cloud
storage system. In OSDI’14, pages 367–381. USENIX Association, 2014.

[11] Kyungmin Bae, Santiago Escobar, and José Meseguer. Abstract Logical Model Checking
of Infinite-State Systems Using Narrowing. In Rewriting Techniques and Applications
(RTA’13), volume 21 of LIPIcs, pages 81–96. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2013.

[12] Kyungmin Bae and José Meseguer. Infinite-state model checking of LTLR formulas
using narrowing. In Proc. WRLA 2014, volume 8663 of LNCS, pages 113–129. Springer,
2014.

[13] Kyungmin Bae and José Meseguer. Model checking linear temporal logic of rewriting
formulas under localized fairness. Sci. Comput. Program., 99:193–234, 2015.

[14] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Scalable
atomic visibility with RAMP transactions. ACM Trans. Database Syst., 41(3):15:1–
15:45, 2016.

158

[15] Peter Bailis, Alan Fekete, Joseph M. Hellerstein, Ali Ghodsi, and Ion Stoica. Scalable
atomic visibility with RAMP transactions. In Proc. SIGMOD’14. ACM, 2014.

[16] Jason Baker, Chris Bond, James C. Corbett, J. J. Furman, Andrey Khorlin, James Lar-
son, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore:
Providing scalable, highly available storage for interactive services. In CIDR’11, pages
223–234, 2011.

[17] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic characteristics
of data centers in the wild. In IMC’10, pages 267–280. ACM, 2010.

[18] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and
Patrick E. O’Neil. A critique of ANSI SQL isolation levels. In SIGMOD, pages 1–10.
ACM, 1995.

[19] Giovanni Bernardi and Alexey Gotsman. Robustness against consistency models with
atomic visibility. In CONCUR, volume 59 of LIPIcs, pages 7:1–7:15. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016.

[20] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison Wesley, 1987.

[21] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Develop-
ment - Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

[22] Rakesh Bobba, Jon Grov, Indranil Gupta, Si Liu, José Meseguer, Peter Csaba Ölveczky,
and Stephen Skeirik. Survivability: Design, formal modeling, and validation of cloud
storage systems using Maude. In Assured Cloud Computing, chapter 2, pages 10–48.
Wiley-IEEE Computer Society Press, 2018.

[23] Ahmed Bouajjani, Constantin Enea, and Jad Hamza. Verifying eventual consistency of
optimistic replication systems. In POPL, pages 285–296. ACM, 2014.

[24] Roberto Bruni and José Meseguer. Semantic foundations for generalized rewrite theo-
ries. Theor. Comput. Sci., 360(1-3):386–414, 2006.

[25] Sebastian Burckhardt. Principles of Eventual Consistency, volume 1 of Foundations
and Trends in Programming Languages. Now Publishers, 2014.

[26] Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sagiv. Eventually
consistent transactions. In ESOP, volume 7211 of LNCS, pages 67–86. Springer, 2012.

[27] Simin Cai. Modeling real-time transactions in UPPAAL. Technical report, Mälardalen
University, 2015. http://www.es.mdh.se/publications/3911.

[28] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nancy A. Lynch, Olivier
Pereira, and Roberto Segala. Task-structured probabilistic I/O automata. J. Comput.
Syst. Sci., 94:63–97, 2018.

159

[29] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A framework for transactional
consistency models with atomic visibility. In CONCUR. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

[30] Andrea Cerone and Alexey Gotsman. Analysing snapshot isolation. In PODC, pages
55–64. ACM, 2016.

[31] Edmund M. Clarke, Orna. Grumberg, and Doron A. Peled. Model Checking. MIT Press,
2001.

[32] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, and Carolyn L. Talcott. All About Maude, volume 4350 of LNCS. Springer,
2007.

[33] Manuel Clavel and José Meseguer. Reflection in conditional rewriting logic. Theoretical
Computer Science, 285:245–288, 2002.

[34] Manuel Clavel, José Meseguer, and Miguel Palomino. Reflection in membership equa-
tional logic, many-sorted equational logic, Horn logic with equality, and rewriting logic.
Theoretical Computer Science, 373:70–91, 2007.

[35] Robert Lee Constable. Implementing Mathematics with the Nuprl Proof Development
System. Prentice Hall, 1987.

[36] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with YCSB. In SOCC’10, pages 143–154.
ACM, 2010.

[37] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. Seeing is believing: A
client-centric specification of database isolation. In PODC, pages 73–82. ACM, 2017.

[38] C.J. Date. An Introduction to Database Systems. Addison-Wesley, 5 edition, 1990.

[39] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
TACAS’08, volume 4963 of LNCS, pages 337–340. Springer, 2008.

[40] Ha Thi Thu Doan, Kazuhiro Ogata, and François Bonnet. Specifying a distributed
snapshot algorithm as a meta-program and model checking it at meta-level. In ICDCS.
IEEE Computer Society, 2017.

[41] Jonas Eckhardt, Tobias Mühlbauer, José Meseguer, and Martin Wirsing. Statistical
model checking for composite actor systems. In WADT’12, volume 7841 of LNCS.
Springer, 2013.

[42] Chryssis Georgiou, Nancy A. Lynch, Panayiotis Mavrommatis, and Joshua A. Tauber.
Automated implementation of complex distributed algorithms specified in the IOA lan-
guage. STTT, 11(2):153–171, 2009.

160

[43] Wojciech M. Golab, Muntasir Raihan Rahman, Alvin AuYoung, Kimberly Keeton, and
Indranil Gupta. Client-centric benchmarking of eventual consistency for cloud storage
systems. In ICDCS, pages 493–502. IEEE Computer Society, 2014.

[44] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro.
’cause i’m strong enough: reasoning about consistency choices in distributed systems.
In POPL, pages 371–384. ACM, 2016.

[45] Jon Grov and Peter Csaba Ölveczky. Formal modeling and analysis of Google’s Mega-
store in Real-Time Maude. In Specification, Algebra, and Software, volume 8373 of
LNCS. Springer, 2014.

[46] Jon Grov and Peter Csaba Ölveczky. Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In SEFM, volume 8702 of LNCS. Springer,
2014.

[47] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. An eval-
uation of distributed concurrency control. Proc. VLDB Endow., 10(5):553–564, 2017.

[48] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts, S. T. V.
Setty, and B. Zill. IronFleet: proving practical distributed systems correct. In SOSP.
ACM, 2015.

[49] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX ATC’10. USENIX Asso-
ciation, 2010.

[50] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.
MDCC: multi-data center consistency. In EuroSys, pages 113–126. ACM, 2013.

[51] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S. Gunawi. SAMC:
Semantic-aware model checking for fast discovery of deep bugs in cloud systems. In
OSDI. USENIX Association, 2014.

[52] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In LPAR’10, volume 6355 of LNCS, pages 348–370. Springer, 2010.

[53] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: certified causally con-
sistent distributed key-value stores. In POPL’16, pages 357–370. ACM, 2016.

[54] Jinle Li. Model checking transaction properties for concurrent real-time transactions in
UPPAAL. Master’s thesis, Mälardalen University, 2016.

[55] Si Liu, Jatin Ganhotra, Muntasir Rahman, Son Nguyen, Indranil Gupta, and José
Meseguer. Quantitative analysis of consistency in NoSQL key-value stores. Leibniz
Transactions on Embedded Systems, 4(1):03:1–03:26, 2017.

161

[56] Si Liu, Son Nguyen, Jatin Ganhotra, Muntasir Raihan Rahman, Indranil Gupta, and
José Mesegue. Quantitative analysis of consistency in NoSQL key-value stores. In QEST
2015, pages 228–243, 2015.

[57] Si Liu, Peter Csaba Ölveczky, Jatin Ganhotra, Indranil Gupta, and José Meseguer. Ex-
ploring design alternatives for RAMP transactions through statistical model checking.
In ICFEM, LNCS. Springer, 2017.

[58] Si Liu, Peter Csaba Ölveczky, Muntasir Raihan Rahman, Jatin Ganhotra, Indranil
Gupta, and José Meseguer. Formal modeling and analysis of RAMP transaction sys-
tems. In SAC. ACM, 2016.

[59] Si Liu, Peter Csaba Ölveczky, Keshav Santhanam, Qi Wang, Indranil Gupta, and José
Meseguer. ROLA: A new distributed transaction protocol and its formal analysis. In
FASE, volume 10802 of LNCS, pages 77–93. Springer, 2018.

[60] Si Liu, Peter Csaba Ölveczky, Qi Wang, Indranil Gupta, and José Meseguer.
Read atomic transactions with prevention of lost updates: ROLA and its for-
mal analysis. Technical report, University of Illinois at Urbana-Champaign, 2018.
http://hdl.handle.net/2142/101836.

[61] Si Liu, Peter Csaba Ölveczky, Qi Wang, and José Meseguer. Formal modeling and
analysis of the Walter transactional data store. In WRLA, volume 11152 of LNCS,
pages 136–152. Springer, 2018.

[62] Si Liu, Peter Csaba Ölveczky, Min Zhang, Qi Wang, and José Meseguer. Automatic
analysis of consistency properties of distributed transaction systems in Maude. In
TACAS’19, volume 11428 of LNCS. Springer, 2019.

[63] Si Liu, Muntasir Raihan Rahman, Stephen Skeirik, Indranil Gupta, and José Meseguer.
Formal modeling and analysis of Cassandra in Maude. In ICFEM, volume 8829 of
LNCS. Springer, 2014.

[64] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song, Wendy
Tobagus, Sanjeev Kumar, and Wyatt Lloyd. Existential consistency: Measuring and
understanding consistency at facebook. In SOSP, pages 295–310. ACM, 2015.

[65] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[66] Panagiotis Manolios. A compositional theory of refinement for branching time. In
CHARME’03, volume 2860 of LNCS, pages 304–318. Springer, 2003.

[67] José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

[68] José Meseguer. Membership algebra as a logical framework for equational specification.
In Proc. WADT’97, volume 1376 of LNCS. Springer, 1998.

162

[69] José Meseguer. Twenty years of rewriting logic. J. Algebraic and Logic Programming,
81:721–781, 2012.

[70] José Meseguer. Formal design of cloud computing systems in Maude. Technical report,
University of Illinois at Urbana-Champaign, 2018.

[71] José Meseguer, Miguel Palomino, and Narciso Mart́ı-Oliet. Algebraic simulations. J.
Log. Algebr. Program., 79(2):103–143, 2010.

[72] Hussan Munir, Misagh Moayyed, and Kai Petersen. Considering rigor and relevance
when evaluating test driven development: A systematic review. Inf. Softw. Technol.,
56(4):375–394, April 2014.

[73] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff. How
Amazon Web Services uses formal methods. Communications of the ACM, 58(4):66–73,
April 2015.

[74] Peter Csaba Ölveczky. Formalizing and validating the P-Store replicated data store in
maude. In WADT’16, volume 10644 of LNCS, pages 189–207. Springer, 2016.

[75] Christos H. Papadimitriou. The serializability of concurrent database updates. J. ACM,
26(4):631–653, October 1979.

[76] Muntasir Raihan Rahman, Lewis Tseng, Son Nguyen, Indranil Gupta, and Nitin Vaidya.
Characterizing and adapting the consistency-latency tradeoff in distributed key-value
stores. ACM Trans. Auton. Adapt. Syst., 11(4):20:1–20:36, 2017.

[77] Camilo Rocha and José Meseguer. Proving safety properties of rewrite theories. In
CALCO’11, volume 6859 of LNCS, pages 314–328. Springer, 2011.

[78] Camilo Rocha, José Meseguer, and César A. Muñoz. Rewriting modulo SMT and open
system analysis. J. Log. Algebr. Meth. Program., 86(1):269–297, 2017.

[79] Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-store: Genuine partial repli-
cation in wide area networks. In SRDS’10, pages 214–224. IEEE Computer Society,
2010.

[80] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model checking of
stochastic systems. In CAV’05, volume 3576 of LNCS. Springer, 2005.

[81] Koushik Sen, Mahesh Viswanathan, and Gul A. Agha. VESTA: A statistical model-
checker and analyzer for probabilistic systems. In QEST’05. IEEE Computer Society,
2005.

[82] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and proving with
distributed protocols. Proc. ACM Program. Lang., 2(POPL):28:1–28:30, 2017.

163

[83] Marc Shapiro, Masoud Saeida Ardekani, and Gustavo Petri. Consistency in 3D. In
CONCUR, volume 59 of LIPIcs, pages 3:1–3:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

[84] Stephen Skeirik, Andrei Stefanescu, and José Meseguer. A constructor-based reachabil-
ity logic for rewrite theories. In LOPSTR’17, volume 10855 of LNCS, pages 201–217.
Springer, 2017.

[85] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage
for geo-replicated systems. In SOSP’11, pages 385–400. ACM, 2011.

[86] Adriana Szekeres and Irene Zhang. Making consistency more consistent: A unified
model for coherence, consistency and isolation. In PaPoC. ACM, 2018.

[87] Doug Terry. Replicated data consistency explained through baseball. Commun. ACM,
56(12):82–89, 2013.

[88] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,
Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agree-
ments for cloud storage. In SOSP, pages 309–324. ACM, 2013.

[89] Paolo Viotti and Marko Vukolić. Consistency in non-transactional distributed storage
systems. ACM Comput. Surv., 49(1):19:1–19:34, 2016.

[90] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac New-
bold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental
environment for distributed systems and networks. In OSDI. USENIX Association,
2002.

[91] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas Anderson. Verdi: A framework for implementing and formally
verifying distributed systems. In PLDI’15, pages 357–368. ACM, 2015.

[92] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and
Thomas E. Anderson. Planning for change in a formal verification of the Raft consensus
protocol. In CPP’16, pages 154–165. ACM, 2016.

[93] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long, L. Zhang, and
L. Zhou. MODIST: transparent model checking of unmodified distributed systems. In
NSDI, pages 213–228. USENIX Association, 2009.

[94] H̊akan L. S. Younes and Reid G. Simmons. Statistical probabilistic model checking with
a focus on time-bounded properties. Inf. Comput., 204(9):1368–1409, 2006.

[95] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan
R. K. Ports. Building consistent transactions with inconsistent replication. In SOSP
2015, pages 263–278. ACM, 2015.

164

