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Abstract

Many real-world systems run with underlying complex networked structures, and system dis-
ruptions or signals of many sorts are transmitted along these networks. This dissertation aims at
investigating the dynamics and operations in different types of complex networked systems, with
two main focuses: i) infrastructure cascading failures in urban interdependent infrastructure net-
works, and ii) infectious disease propagation dynamics and control in population contact networks.
Under each topic, one or several studies are performed with different focuses to reveal insights on
varies aspects of the real-world networked systems, and provide decision-making frameworks to
operational problems.

First, in an urban infrastructure system, local disruptions are likely to propagate to affect a
large fraction of the system due to high infrastructural interdependencies. Meanwhile, urban popu-
lation’s response to the disruptions may further aggravate the cascading failures when they compete
with facilities for limited resources. To capture the mutual impacts between infrastructural inter-
dependencies and population behavior, a generic game-theoretical framework is built to find the
overall equilibrium among the system. Infrastructure systems are modeled as layers of interdepen-
dent networks. Infrastructural interdependencies are captured by both direct support relationships
as well as indirect support via commodity flows through transportation.

On the other hand, epidemic dynamics and control in populations have raised increasing at-
tentions using complex network models. Considering population contact networks as random net-
works, we investigate three topics focusing on different aspects of epidemic control: i) effects
of two control approaches, quarantine and public health advisories are incorporated into an es-
tablished Susceptible-Infected-Removed (SIR) dynamics model, and an optimization framework
is built to find the optimal control strategy; ii) a generic system dynamics model is developed to
account for vaccination during the SIR process, and a game-theoretical framework is built to inves-
tigate population voluntary vaccination behavior under vaccine-phobia during a disease outbreak;
and iii) a minimum required vaccine problem to prevent an epidemic outbreak and an optimal
vaccine allocation problem to mitigate local disease propagation are solved, with consideration of
population heterogeneity.

Results from these studies reveal interesting insights for decision-makers in both urban infras-
tructure planning and public health industries. All these studies highlight the dominating impor-
tance of those infrastructures/individuals that are better connected with the others in the disrup-
tion/disease propagation processes. Moreover, self-interested gaming behavior of a population are
often found to have a negative impact on system-wide utilities.
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CHAPTER 1 – INTRODUCTION

1.1 Motivation

Many real-world systems run with underlying networked structures, such as infrastructure net-
works and population social networks. These systems are often studied using conventional network
modeling approaches, which describe the structure of the systems using graphsG = {V,E}, where
V is a collection of vertices (or nodes) and E is the set of edges (or links). In different contexts,
links can be assigned with drastically different meanings, e.g. sequential/supportive relationship
between nodes in the cases of directed graphs, or connectivity/conductivity in undirected networks,
etc. For instance, road networks where intersections are modeled as nodes and road segments as
links, have been widely used for traffic analysis, logistics, and many other studies. These con-
ventional network modeling, however, is not able to fully describe many sophisticated real-world
systems. Two main reasons for this issue (other than that the systems themselves do not possess
any underlying network structures) are that i) the system is in fact a complex system of different
systems, e.g. a complex network of urban infrastructure networks, and ii) the scale of the sys-
tem is too large for conventional network representation, e.g. population social networks. While
infectious disease modeling and control in the human population have been intensively studied
for almost a century, in the recent years people also come to realize that due to increasing infras-
tructural interdependencies, facility disruptions are more likely to propagate in a complex urban
infrastructure system just like diseases spread in the population. To study the failure/disease prop-
agation dynamics in these complex systems and/or to find proper operational decisions, it calls for
complex network modeling tools.

1.1.1 Cascading failures in interdependent infrastructure systems

Urban infrastructure systems which the modern human society heavily rely on are usually
composed of mutiple sectors of infrastructure systems, such as power, water, transportation, etc. In
these systems, catastrophic cascading infrastructure failures under even minimal local disruptions
have been observed in many past incidents, e.g. the 2003 Northeast blackout and the 2011 To-
hoku earthquake. This is mainly because of the complex interdependencies among infrastructure
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facilities (Rinaldi et al., 2001). On the other hand, urban populations, which are usually associated
with great amount and high density, rely heavily on the infrastructure systems for life-essential
resources. Their resource procurement behavior in the disruption events will be greatly reshaped
and may further exacerbate the infrastructural disruptions when they compete with the facilities
for resources. For example, over concentration of population at resource facilities increases traf-
fic congestion, which further hinders commodity flows through transportation and thus resource
replenishment of the facilities. It is important to capture the infrastructural interdependencies,
population resource procurement behaviors, and the mutual impacts between these two so as to
evaluate the impact of cascading failures and vulnerability of the urban systems under disruptions.
Therefore, it calls for complex networks modeling to describe the multi-layer interdependent in-
frastructure systems (Zhang and Peeta, 2011).

1.1.2 Infectious disease modeling and control

Infectious diseases among human populations have always been among the top threats to the
human beings. The difficulties in modeling and control of infectious diseases largely lie in pop-
ulation heterogeneity, including: i) individuals’ resistance to infections and ability of recovery
from diseases, ii) their interactions with the others and the environment, iii) the effectiveness and
cost of disease control measures on them, and iv) their perspectives toward disease controls and
responses to epidemics, etc. Many complex network modeling approaches have been adopted to
address these heterogeneities in the recent years (Pastor-Satorras et al., 2015), yet there are still a
lot of work that needs to be done, especially on epidemic control in large heterogeneous mixing
populations.

Common disease control approaches include quarantine, health educational campaigns, vacci-
nation, and so on. These control approaches may cause detrimental impacts to the society (e.g.,
disease awareness campaigns may cause panics and reduce social functionality), induce psycholog-
ical sufferings to individuals (e.g., quarantine and isolation), and quite often there are very limited
resources (e.g., insufficient vaccines). In order to make proper epidemic control decisions under
various situations, it is imperative to use complex network modeling tools to fully understand the
disease propagation process in heterogeneous mixing populations.

While enforced epidemic controls by public health agencies play an important role in mitigat-
ing disease impacts, so do autonomous responses of the population to the epidemic. It is important
to study the complex behavior of individuals during an epidemic event so as to understand the
development and consequence of an epidemic outbreak. For example, while vaccination has freed
the human society from the fear of many infectious diseases in the modern world, opposition to
vaccination has long been a non-negligible public health phenomenon resulted from people’s var-

2



ied perceptions toward vaccination (e.g., vaccine-phobia). In addition to the risk of vaccine failures
(e.g., Wu et al. (2011)), McKee and Bohannon (2016) summarized four main reasons for people of
avoid vaccination: religious concerns, philosophical concerns, safety concerns due to side effects,
and insufficient knowledge. As such, the idea that one may be vaccinated at some point often
causes psychological sufferings. Yet the potentially disastrous outcome of infection drives them
toward vaccination in the meantime. Therefore, for each individual the decisions on whether and
when to take vaccine depend on the trade-off between the psychological penalty and the risk of
being infected. Moreover, in a population, the infection risk also depends on the overall vacci-
nation coverage of all individuals – if all others with whom one interacts are all vaccinated, then
there is no fear about the epidemic. Therefore, the decisions of all individuals are simultaneously
influenced by and influencing each other. This problem is referred to as a vaccination game in the
literature. It is important to investigate the vaccination game among the population to understand
the important factors that affect people’s own decision-making processes in an epidemic event.

Furthermore, resources required to carry out epidemic control plans, such as funds, manpower,
and materials are finite and often very limited. In a heterogeneous population, it is important
to properly allocate the limited resources to mitigate the impacts of disease propagation utmost.
Dividing the population into several subpopulations based on their social characteristics and/or
spatial distribution, control strategies targeting different subpopulations may have different cost
efficiencies. Given limited resources during or prior to an epidemic outbreak, it is imperative to
find out the most effective resource allocation strategy.

In light of these challenges, this Ph.D. study aims at investigating the two aforementioned
topics with appropriate complex network modeling approaches. For interdependent infrastructure
networks, we investigate cascading failures considering the mutual impacts between infrastructural
interdependencies and population gaming behavior, and evaluate the impact of system disruptions.
Under the epidemic control topic, three studies are performed with different focuses: i) optimal
dynamic control that considers quarantine and health educational campaigns in a multi-group pop-
ulation; ii) a dynamic vaccination game that investigates people’s autonomous vaccination behavior
under vaccine-phobia; and iii) optimal vaccine allocation in a spatially heterogeneous population.

1.2 Contributions

First, modeling the urban interdependent infrastructure system as a system of layered networks,
this research proposes a mathematical framework to systematically quantify the social impacts of
cascading failures in the infrastructure network system. We i) generalize various types of inter-
dependencies among infrastructures with a layered network model, (ii) estimate entangled system
failure and equilibrium community behavior as part of a game-theoretical model, and (iii) evaluate
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the cascading propagation of disruptions (due to interdependencies) and the consequential societal
impacts (such as demand loss and cost increase).

Moreover, we consider quarantine and health educational campaigns as epidemic control mea-
sures with detrimental influences, and solve for the optimal control to mitigate the impacts of both
the disease propagation and the controls in a population of different social groups. We i) develop an
epidemic dynamics model incorporating quarantine and educational campaign controls, ii) propose
a latent model to evaluate the hidden dynamic system states using observations from quarantine
control, and iii) establish an optimization framework to solve for the best control decisions, and
adopt a heuristic solution algorithm based on value function approximation to solve for the optimal
control.

Next, we investigate the voluntary vaccination behavior of a population during an epidemic
outbreak, where each individual makes its own vaccination decision to minimize its expected disu-
tility from both vaccine-phobia and the risk of infection. We i) build an epidemic dynamics model
to describe the coupled disease propagation process and the vaccination dynamics, with a com-
putation method to conveniently evaluate the final outcome of people’s vaccination decisions, ii)
formulate a Nash game in a large heterogeneous population into a mathematical program, to which
existence and uniqueness of an equilibrium solution are investigated, and iii) propose an efficient
heuristic algorithm to solve the equilibrium solution to the game.

Finally, we look for the optimal vaccine allocation in a spatially heterogeneous population,
with the objective of preventing an epidemic outbreak and minimizing the impacts of local dis-
ease infections. We i) develop a method to compute the expected outbreak size given a vaccine
allocation in a population with spatial heterogeneity, ii) establish an optimization framework to
minimize the expected outbreak size by finding the optimal allocation, and formulate a second
problem to find the minimum required vaccine resources that prevents an epidemic outbreak, and
iii) propose a gradient-based heuristic solution approach to solve the optimal allocation problem,
and a branch-and-bound approach to solve the minimum resource problem.

Numerical experiments are performed in each of these works on semi-realistic or hypothetical
case studies to validate the modeling frameworks and solution approaches. Extensive sensitivity
analysis are as well conducted to examine the important factors in these problems and to help re-
veal useful insights and facilitate decision-makings. The results highlight the crucial importance of
nodes with higher connectivity in the networked systems in the disruption/disease propagation pro-
cesses. Moreover, individuals’ gaming behavior in the network are often found to be detrimental
to the systems’ utilities.
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1.3 Outline

This dissertation is organized as follows. Chapter 2 summarizes literatures in cascading failures
in interdependent infrastructure systems, and infectious disease modeling and control in popula-
tion contact networks. Focusing on interdependent infrastructure systems and facility cascading
failures, Chapter 3 establishes a generic game-theoretical framework to evaluate the vulnerabil-
ity of urban infrastructure systems. Then with insights revealed on complex network systems,
we continue to examine the key factors in epidemic modeling and control in population contact
networks. In Chapter 4, we consider two commonly adopted control approaches, quarantine and
educational campaigns. An optimal control framework is proposed for public health agencies to
balance the trade-off between the impacts of both disease propagation and control in a population
with different social groups. Another common epidemic control approach, vaccination, is studied
in the following two chapters. Realizing that each individual in a population also needs to balance
a trade-off between the penalties of both vaccine-phobia and infection risk, in Chapter 5 we inves-
tigate a dynamic vaccination game to understand the population’s voluntary vaccination behavior
during an epidemic outbreak. This chapter also examines the impacts of delayed vaccination, and
the results highlight the importance of timely vaccination prior to the onset of the epidemic out-
break. This finding motivates the following topic: to find the best vaccine allocation strategy to
protect the population from an upcoming epidemic outbreak given limited vaccines. Therefore,
Chapter 6 studies the optimal vaccine allocation problem in a spatially heterogeneous population,
and the minimum amount of vaccines required to prevent an epidemic outbreak is also found. Fi-
nally, Chapter 7 discusses potential future research topics based on the modeling framework and
preliminary findings of this dissertation.
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CHAPTER 2 – LITERATURE REVIEW

2.1 Infrastructure Cascading Failures under Disruptions

Cascading failures in urban infrastructure systems have raised a great amount of attentions
in the past two decades, especially after the 2003 Northeast blackout incident. One noticeable
cause of such fragility of the urban system under disruptions is the complex interdependencies
across multiple infrastructure systems. Such complex infrastructure interdependencies have been
studied by several teams of researchers. Rinaldi et al. (2001) discuss the challenge of modeling
and simulating the system with a detailed analysis of four interdependency categories. Zhang and
Peeta (2011) review a variety of foregoing work on addressing infrastructural interdependencies
with different approaches and propose a method of using computable general equilibrium theory
to generalize the interdependencies. Focusing on different types of interdependencies, Motter
and Lai (2002) and Buldyrev et al. (2010) respectively perform analytical studies and prove that
disruptions at a small number of components can lead to a disastrous cascading failure in the
system. Moreover, efforts have been made to build a more resilient system (e.g., designing facility
locations for optimal reliability) that capture the same understanding of the interdependencies. For
example, Wang and Ouyang (2013) describe the demand geographical interdependencies among
facilities and developed game-theoretic models to find an optimal spatial distribution of service
facilities; Xie et al. (2015) propose a novel network augmentation approach that is proven to be
able to decompose any infrastructure disruption interdependencies, such that the optimal design
problem can be formulated and solved equivalently with only independent disruptions.

Urban infrastructure failures are likely to stimulate strong reactions from the population. A
direct consequence of most system failure is inadequate access to life-supporting resources. A
number of recent studies focus on the social impacts caused by peopleâĂŹs behavior under infras-
tructure failures and limited resources. Horner and Widener (2011) first consider the impact of
transportation network failure on people accessing disaster relief goods after a hurricane, and then
try to optimize the location of commodity distribution facilities. Many efforts have been made to
model community behaviors after an emergency or a disaster. A game-theoretical model such as
Nash competition has been used to capture peopleâĂŹs reaction to scarcity of resources. In partic-
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ular, it is probably reasonable to assume each community/individual would try to acquire resources
with the least time and monetary cost, taking into account peer reactions. Such a situation, often
referred to as âĂIJequilibrium,âĂİ changes dramatically after infrastructure failures, and its quan-
tification can help evaluate the social impact of the failures. Such game-theoretical models have
been applied in related literature, e.g., within the scope of input-output models (Haimes and Jiang,
2001; Haimes et al., 2005). Zhang and Peeta (2011) further consider an equilibrium taking account
of both spatial and economic factors between household and the infrastructure facilities that pro-
vide the resources. These works have not focused specifically on complex interdependencies of
multiple infrastructure systems, and we suggest that population reaction to cascading failures be
modeled into an equilibrium problem considering spatial distributions of facilities and population.

2.2 Epidemics in Population Contact Networks

2.2.1 Epidemic modeling

Infectious disease modeling and control have been intensively studied in the past century since
the establishment of the fundamental Kermack-Mckendrick model (Kermack and McKendrick,
1927). It is one of the compartmental models, which categorize the population into several com-
partments based on their health status, e.g. susceptible (S), infectious/infected (I) and recov-
ered/removed (R), etc, and investigate the transitions among these groups to study the epidemic
dynamics. The susceptible population are the healthy ones that could be infected; once they are
infected by the infectious population, they may also infect others until they eventually recover
with immunity or decease due to illness. A system of deterministic nonlinear equations was pro-
posed to capture the expected quantities of the three compartments over the course of the disease
propagation, presented as follows.

Ṡ = −rSI, (2.1a)

İ = rSI − uI, (2.1b)

Ṙ = uI, (2.1c)

where S, I and R denotes the numbers/fractions of the susceptible, infected, and removed individ-
uals, respectively; r and u represents the infection and recovery rates, respectively. Most of the
subsequent work on epidemiology are developed within or as extensions to this framework; see
Anderson and May (1992) for a review. These models treat each individuals in the same compart-
ment identically, and use a unified disease transmission rate for the whole population. Therefore,
they are also known as homogeneous mixing population models. These models are particularly
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suitable for disease transmitted via the living environment, such as water-borne (Codeço, 2001;
Tien and Earn, 2010) and vector-borne (Bacaër and Guernaoui, 2006; Stoddard et al., 2009), or
those transmitted among domestic animals (Smith and Gröhn, 2015; Smith, 2016).

However, these compartment models often neglect population heterogeneities and are not suit-
able to describe diseases transmitted via person-to-person contacts. For example, a person with
more interactions with others not only has a higher infection risk himself/herself, but also poses a
greater threat to all those around him/her. Many complex network models have been developed to
address population heterogeneities such as different social/age groups and heterogeneous spatial
distributions (Pastor-Satorras et al., 2015). In particular, facilitated by the development of random
network analysis (Newman et al., 2001), numerous works focus on the disease propagation process
in a population contact network, assuming only statistical information regarding node degrees is
available, but microscopic topologies are unknown and random (Barthélemy et al., 2005; Volz and
Meyers, 2007; Volz, 2008; Lindquist et al., 2011; Miller, 2011; Koch et al., 2013). These mod-
els are known as heterogeneous mixing population models. In particular, a significant part of this
work is established primarily based on the configuration random network models by Newman et al.
(2001), and Volz and Meyers (2007) and Miller (2011). We hereby introduce some fundamental
notions, which will be used and referred to throughout this dissertation.

In a configuration random network, we have a fixed number of nodes, and the actual connec-
tions among these nodes are described probabilistically; i.e., each node is associated with a degree
of stubs, and an edge is formed by randomly connecting two unconnected stubs. The degree of an
arbitrary node follows a given probability distribution, and such degree distribution is expressed in
the form of a probability generating function, as follows (Molloy and Reed, 1995):

g(x) =
∑
k

pkx
k, (2.2)

where pk is the probability that a random node has k degrees, and x is a dummy argument. As such,
g′(1) and g′′(1) are the expected numbers of direct and second-order neighbors of an arbitrary node,
respectively.

Volz (2008) and Miller (2011) propose a system of low-dimensional equations to describe the
SIR epidemic dynamics in a population with heterogeneous mixing. The population is modeled
as a configuration model random network, where each individual in the population is represented
by a node, and an (undirected) edge represents a direct contact between two individuals that may
transmit the disease. This model tries to capture the probability for a randomly selected test node
to be susceptible, based on whether or not any of its incident edges have transmitted disease from
its (infected) neighbors. For convenience, we call such an event as an infectious contact. Two
variables are defined to capture this quantity:
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• θ(t): the probability that a random edge of the test node has not passed an infectious contact
to the test node by time t, assuming the test node does not transmit disease to others;
• φ(t): the probability that a random edge of the test node is connected to an infected neighbor,

but has not passed an infectious contact to the test node by time t, assuming the test node
does not transmit disease to others.

An infectious contact along an edge and the recovery of an infected node are assumed to follow
Poisson processes at a unit transmission/infection rate, denoted r, and a recovery rate, denoted u,
respectively. Moreover, S, I , and R are used to represent the fractions of population in the three
compartments, respectively. The system equations can be summarized as follows:

θ̇ = −rφ, ∀t ≥ 0, (2.3)

φ̇ =

(
−r − u+ r

g′′(θ)

g′(1)

)
φ,∀t ≥ 0, (2.4)

Ṙ = uI,∀t ≥ 0, (2.5)

S(t) = g (θ) ,∀t ≥ 0, (2.6)

S(t) + I(t) +R(t) = 1, ∀t ≥ 0. (2.7)

In (2.4), the first two terms in the parentheses on the right hand side represent, respectively, the
transmission of the disease along an edge that satisfies the definition of φ, and the removal of an
infected neighbor linked by such an edge. The third term is the derivative of −g′(θ)/g′(1), where
g′(θ)/g′(1) represents the probability that an arbitrary neighbor of the test node being susceptible.
Therefore, the third term captures the increment of φ due to new infections at the neighbors of the
test node (i.e., infected by their own neighbors other than the test node).

2.2.2 Epidemic controls

Quarantine and educational campaigns

The purpose of infectious disease modeling is not only for predictions of disease outbreaks,
but more importantly, to serve as building blocks of mathematical frameworks for epidemic con-
trol decision-makings. There are a handful of different approaches in disease control, many of
which eventually lead to two outcomes, reducing the disease transmission rate and/or increasing
the removal rate (Nowzari et al., 2016) (except for vaccination control, which changes the popu-
lation compartment structures directly). For this reason, many existing epidemic control literature
focus on manipulating the disease parameters (Castilho, 2006; Hansen and Day, 2011; Khan et al.,
2017; Xu et al., 2017). Quarantine control that screens the population and then isolates and/or
treats the infected individuals can effectively increase the removal rate of those infected, and nu-

9



merous researches have been conducted in this regard (Yan and Zou, 2008; Xu et al., 2017). Pereira
and Young (2015) study the impact of delayed isolation of infected individuals, and their results
highlight the importance of timely isolation for mitigating disease propagation. Moreover, edu-
cational campaigns increase people’s health awareness, improve their sanitary levels, and guide
them to take precautions when making contacts with others. This control approach has also been
considered in the existing literature, usually by multiplying the infection rate by a discount factor
that captures the effectiveness of the campaign (Castilho, 2006; Mukandavire et al., 2009).

However, the control actions sometimes cause detrimental impacts to both individuals and the
society. Through survey, Hawryluck et al. (2004) reveal that during the SARS epidemic, among the
quarantined individuals in Toronto 28.9% and 31.2% people suffered from post-traumatic stress
disorder and depression, respectively. Moreover, epidemic-awareness propaganda can stimulate
fear and panics, and a very recent example is that the 2014 Ebola propaganda in the U.S. affected
the social functionality by causing a hysteria among the population (Ahmed and Mendoza, 2014;
Innes, 2015). These reports suggest that while the control approaches help reduce the impacts of
disease propagation, they also induce non-negligible social costs in the meantime. Therefore, it is
important to find the optimal control with these considerations.

Most of the existing work focus on homogeneous mixing population without considering popu-
lation heterogeneities regarding either the networked structure or physiological/social differences.
Nowzari et al. (2016) give a review over a variety of epidemic dynamics models and controls with
network models that try to address such heterogeneities, yet it misses recent development on epi-
demic modeling on large scale random networks such as Barthélemy et al. (2005) and Miller et al.
(2012).

Vaccination control

The effect of vaccination could be modeled in a variety of ways, mainly depending on its
timing: i) vaccination prior to the epidemic outbreak, or immediate vaccination once a new pop-
ulation is born (e.g., Madar et al. (2004) and Bauch and Earn (2004)); and ii) vaccination during
disease propagation when the vaccine takers have been exposed to potential risks of infection for
some time (e.g., Lu et al. (2002) and Pang and Chen (2007)). It is worth noting that, if immunity
obtained via vaccination does not wane, early vaccination is always more effective in mitigating
disease propagation because of survival bias.

Bansal et al. (2006) and Mylius et al. (2008) compare two vaccination strategies under differ-
ent vaccination timings, targeting subpopulations that have high infection risks (morbidity-based)
and that more likely to decease once infected (mortality-based), respectively. Their results show
that if vaccines are available prior to the onset of disease outbreak, morbidity-based vaccination
should be adopted as it immunizes the high risk population and mitigates disease propagation most

10



effectively. However, delay in availability of vaccination has a tremendous impact on the epidemic
result, and in that case mortality-based vaccination out-performs its morbidity-based counterpart.

Impacts of network topology and vaccination strategy on SIR-type disease propagation in large-
scale random networks are studied in Ma et al. (2013). Stochastic simulations were conducted for
various combinations of random networks (e.g., Erdos-Renyi model, scale-free, etc.) and vac-
cination strategies (e.g., prioritized, random, etc.). They discover that network topology has a
significant impact on the spread of disease as well as the timing of vaccination. This finding high-
lights the importance of understanding disease transmission in realistic contact networks. The
recent independent effort in Di Muro et al. (2018) incorporate dynamic vaccination into the mod-
els of Volz (2008) and Miller (2011). Despite some similarity in the research goals, there are key
differences in our approaches. For example, their model does not account for population’s hetero-
geneous vaccination behavior, which nonetheless is crucial in modeling the vaccination game in a
heterogeneous mixing population.

Vaccine-phobia and vaccination game

The term “vaccination game” has been used to describe an imitation process where individuals
learn about others’ perspective on vaccine and follow probabilistically each other’s actions (Bauch,
2005; Zhang, 2013; Han and Sun, 2016). In this research, we go back to its literal meaning of a
classic game-theoretical framework, where each individual in a population is a decision maker that
tries to maximize its own utility based on its knowledge on the system. A review on the impacts
of typical vaccination behavior can be found in Funk et al. (2010). However, the sources of such
behavior as a result of people’s decision-making processes in an epidemic outbreak are still not
fully understood.

Modeling the vaccination game is challenging, because it is imperative to account for het-
erogeneity among the individuals, such as different physical conditions and psychological belief
systems. Moreover, the interactions between individuals themselves and those with the environ-
ment also vary drastically from person to person; e.g., depending on how frequently a person
makes disease-transmissive contacts with the others. Consequently, different people often make
different vaccination decisions, and their vaccination decisions also contribute differently to the
epidemic outbreak. Cojocaru (2008) considers population heterogeneity where multiple groups of
population each has a different perception on the infection risk. Nash equilibria is formulated into
evolutionary variational inequalities, and their results highlight the importance of accounting for
social heterogeneity in a vaccination game.

Another challenging issue associated with a vaccination game is the proper modeling of the
epidemic evolution process. Since disease propagation and vaccination decisions are dynamic,
epidemic dynamic models must be developed to evaluate the final or steady state of the system.
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The SIR models usually demand tedious iterations over time steps to evaluate the outcome of a
vaccination strategy; e.g., see Bauch et al. (2003) for an example. In the hope to avoid such diffi-
culty, most of the existing literature on dynamic vaccination game either (i) consider susceptible-
infected-susceptible problems (Reluga, 2009) or a dynamic population (Bauch and Earn, 2004;
Reluga et al., 2006) such that a steady state equilibrium of the epidemic can be found, or (ii) ap-
proximate the results by using a perceived infection risk among the population (Cojocaru, 2008) or
linearized system dynamics (Reluga and Galvani, 2011). A method to conveniently and accurately
evaluate the outcome of a vaccination strategy during a fast-spreading SIR epidemic is yet to be
found.

Moreover, to investigate the vaccination game, it is imperative to quantitatively measure peo-
ple’s disutility due to psychological suffering, based on not only the likelihood of vaccine uptake,
but also how people perceive vaccination (e.g., the level of vaccine-phobia). Existing social studies
try to find the correlation between people’s perception on vaccines and their vaccine uptake deci-
sions from field surveys, e.g. Smith et al. (2011). In light of this, we will next aim at drawing a
bridge between these two aspects of vaccination, by establishing a model on how vaccine-phobia
may affect peopleâĂŹs decision-making process and in turn the disease propagation.
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CHAPTER 3 – VULNERABILITY OF INTERDEPENDENT
INFRASTRUCTURE SYSTEM UNDER POPULATION

GAMING BEHAVIOR

3.1 Introduction

In an urban infrastructure system, interdependencies exist among components (i) within the
same infrastructure network, e.g. a water treatment plant provides resources to downstream water
towers; and (ii) across different infrastructure networks, e.g. a power plant generates the electric-
ity for water pumps, traffic lights, and fuel refineries. Such complex interdependencies usually
leads to disastrous cascading failures in the system when local disruption takes place. Moreover,
urban infrastructure failures are likely to stimulate strong reactions from the population. A direct
consequence of most system failure is inadequate access to life-supporting resources. In reality,
infrastructure failures and community reactions are mutually dependent, which further aggravates
the infrastructure system disruptions. For example, people may have to travel through the trans-
portation network to deliver or gain access to resources, while some infrastructural interdepen-
dencies are realized by delivering a commodity from one facility to another via transportation.
When congestion increases due to peopleâĂŹs response to system failures, it grows harder for
resource supply to be delivered to facilities through transportation network. Therefore, the fluidity
of commodity flow may be compromised and the cascading effect could be further exacerbated.

In this chapter, we propose a mathematical framework to systematically quantify the social im-
pacts of cascading failures in a system of infrastructure network systems. We construct the system
by building different sectors of infrastructure facilities (e.g. electricity, water, transportation) into
layered networks. Infrastructures, the basic system components, are dependent and jointly provide
service to communities. We capture two types infrastructural interdependencies: one based on
direct physical reliance, while the other via indirect resource supply through transportation. With
the multi-sector network system and the interdependency structure, two failure propagation pat-
terns are defined in correspondence to the two interdependency types. As disruption takes place in
the system, the cascading failure begins to develop following the failure propagation patterns, and

13



people start to change the way they access resources. Eventually the disrupted system arrives at
a state where the remaining infrastructures and the impacted population behaviors fall into a new
equilibrium. The impacts of cascading failures are evaluated by assessing the population resource
security and infrastructure functionalities under the new equilibrium. Furthermore, building upon
this methodology, an extended research establishes an optimization framework for decision makers
in the military to evaluate the effectiveness and efficiency of offense and control operation actions.

This rest of chapter is organized as follows. Section 3.2 establishes the model framework,
including the infrastructure network, community behavior, and two types of infrastructure failure
mechanisms. Then, Section 3.3 presents the solution approach. Section 3.4 applies the proposed
model framework to a case study of Maiduguri, Nigeria, and presents a series of sensitivity analyses
to examine the impacts of several factors.

3.2 Model

We focus on a geographic region Ω, such as a small country or a city. The infrastructure system
is characterized by a grand network that contains seven layers. Each of these layers represents a
basic type of infrastructure; i.e., water, food, electricity, fuel, transportation, healthcare, and edu-
cation. We assume each layer consists of a finite number of infrastructure nodes as the functional
unit, with specific locations (e.g., latitude and longitude) and attributes. For example, a water node
can be a water tank, a fuel node can be a gas station, and a transportation node can be a road seg-
ment. In addition, we create a community layer where sub-communities (e.g. neighborhoods or
housing complexes reflecting the population distribution) are served by components from the in-
frastructure layers. Particularly, food, water, fuel, healthcare, and education layers directly provide
necessary resources to the community layer, hence are referred to as resource layers. Fuel, elec-
tricity and transportation layers serve as the backbone that supports not only the communities but
also the operation of other resource layers. Hence, there are a total of seven layers in the system.
We denote a generic node in the entire network by i ∈ I . We further let r ∈ R be a resource type
(i.e., water, electricity, food, healthcare) and Ir ⊆ I be the corresponding set of type-r resource
nodes; similarly, let It ⊆ I, Ic ⊆ I be the respective sets of transportation and community nodes.

3.2.1 Community behavior

In communities, especially after disasters, a population may need to travel to obtain life-
supporting resources via the transportation layer. (The trivial case that people get resources within
the community, e.g., tap water at each household, can be incorporated as traveling a distance of
zero.) Under infrastructure disruption, some resource nodes can no longer provide service, which
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may lead to overwhelming demand concentration at the remaining nodes (and likely long queues)
and longer travel detours (and likely more severe traffic congestion). Such delay and detours fur-
ther increase the difficulties for people to access resources and may force some of the people to
give up service. We implement a variant of traffic equilibrium model to capture this issue.

Suppose the demand of resource for each community i ∈ Ic is independent of each other,
denoted by dri , and the corresponding resource access incurs a time and monetary cost cri . Un-
der infrastructure disruptions, the procurement of resources normally becomes more difficult (e.g.,
traveling to a well rather than using tap water from a local pipeline due to a water network disrup-
tion). This will lead to an increase of cri , and hence a decrease of dri , that is,

dri = Dr
i

(
cri ; d̂

r
i

)
, (3.1)

where Dr
i (·) is a monotonic decreasing demand function capturing the elasticity of demand with

respect to cost cri , and parameter d̂ri is the maximum demand when cost cri is zero. In reality, the
calculation of cri is complicated. To this end, we consider the following assumptions.

First, each community i can access resource r from a collection of resource nodesj ∈ Iri ⊆ Ir

, with a resource access cost
cij := cij,t + cij,s, (3.2)

where cij,t is the travel time along the shortest path from i to j via the transportation layer and
cij,s captures service (queueing) time at j, and Iri may not be the same for all i due to certain
restrictions.

In particular, let p ∈ Pij be a path (i.e., p ⊆ It) connecting i and j through the transportation
layer and gk, k ∈ It be the demand flow on transportation node k. Then, we have

cij,t = min
p∈Pij

∑
k∈p

Tk (gk), (3.3)

where
Tk(gk) = δk

(
1 + αk(gk/γk )βk

)
(3.4)

is the conventional BPR functiona (BPR, 1964) with node specific parameters αk, βk, γk, δk. Road
segments (i.e., a type of infrastructure) are also represented by nodes in this paper, just like other
infrastructure components. The âĂIJlink" in this model is not physically existent in the real world,
but rather, it indicates the adjacency of real infrastructure components, e.g., a community node and
its entry node to the transportation network are linked. This is equivalent to consider road segments
as links because we compute the cost as that of traversing a node.

aMore suitable transportation cost functions can also be used. To illustrate the model, we use BPR function as it
is still a widely used tool for planning purposes (e.g. Bayram et al. (2015)).
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Furthermore, we consider the resource procurement at node j lines up as an M/M/1 queueb.
Hence, we have the average waiting cost

cij,s = 1/(λj − hj), (3.5)

where λj is the service capacity and hj < λj is the total acceptable demand flow to j. Note that
this cost is not necessarily the waiting cost, but essentially a reflection on the resource scarcity.
The service capacity of a facility is associated with its functionality, which will be discussed in the
next section.

The second assumption presumes that, community i will choose the resource node(s) with the
minimum access cost, i.e.,

cri = min
j∈Iri

cij. (3.6)

Then, given fpij
∗ as the optimal demand allocation along path p, we further have∑

j∈Iri ,p∈Pij

fpij
∗ = dri , ∀i ∈ I, (3.7)

∑
i∈I,p∈Pij

fpij
∗ = hj, ∀j ∈ Ir, ∀r ∈ R, (3.8)

and ∑
i∈I,j∈Iri ,p∈{Pij ,k∈p}

fpij
∗ = gk, ∀k ∈ It. (3.9)

(3.7)-(3.9) are flow conservation constraints at the communities, the facilities, and the transporta-
tion network nodes, respectively. Given the available resource nodes, the transportation layer
reaches the above equilibrium, i.e. (3.1)-(3.9), when no community can reduce its resource access
cost by unilaterally changing its resource destination or the travel path choices.

3.2.2 Disruption propagation mechanism

Now we consider the scenario where there are disrupted infrastructures. First, similar to a
community node, to maintain working status, some infrastructure nodes need resource supply,
which are also fulfilled via the transportation layer (e.g., a diesel generator accesses fuel from
diesel tanks). Therefore, as these facilities travel through transportation layer for resource supply,
the traffic congestion caused by the community behavior may significantly delay or block resource
procurement as well, or even cause failures to the infrastructure. We refer to this type of failure as

bOther suitable cost functions can also be used. We adopt M/M/1 model as it properly reflects the difficulty of
resource accessing due to resource scarcity (e.g. Bhaskar and Lallement (2010)).
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a resource failure.
Second, infrastructure disruptions could also be due to direct and obvious dependencies based

on physical connections. For example, a water tank with an electrical pump must be supported by
a nearby power source (e.g., a power grid). Such a dependency is normally established for the long
run, at a large set-up cost, and hence difficult to modify. We call this type of failure, caused by
supporting infrastructure disruption, as support failure.

Comparing the two types of failure, we can find support failure is one major cause of cascading
disruptions. In particular, a network with a tree structure can be very vulnerable âĂŞ the failure
of the root node will propagate and disrupt the entire system. In contrast, resource failures may
also pose a potential risk, but is more difficult to foresee in advance. However, resource failures
can also bring devastating damage to the entire system, especially when it happens at some critical
node that can cause consequential cascading support failures.

To model infrastructure cascading disruption, we first let xi ∈ [0, 1] be the working status of
each node i, where the node is fully functioning if xi = 1, completely failed if xi = 0, and partially
working otherwise. We assume the working status of a resource node linearly reflects its service
capacity:

λj = xjλ̄j + (1− xj)λj, ∀j ∈ Ir,∀r ∈ R, (3.10)

where λ̄j > 0and λj ≥ 0 are respectively the maximum and minimum service capacity of facility
j.

As previously discussed, the working status of a node is a joint impact of both resource failures
and support failures. For an infrastructure node i ∈ I\(It ∪ Ic), suppose (3.1)-(3.9) also hold, and
let Si ⊆ I\(It ∪ Ic) be the set of nodes that provide functional support to it. Then, we model the
working status for node i due to interdependencies as the following,

xi = Fi (yi, zi) ,∀i ∈ I\(It ∪ Ic), (3.11)

where yi = {xj}∀j∈Si
is a vector of states of all facilities that influence the state of facility i (i.e.,

via functional support), and zi =
(
dri/d̂

r
i

)
∀r∈R

captures the fulfillment of resource needs at facility
i (i.e., related to resource support). We call Fi an interdependency function, and in most realistic
cases it is non-decreasing with respect to its arguments, taking value from 0 to 1. We can use
various forms for Fi to capture different interdependencies. An example is the Leontief form as
shown in (3.12), such that the facility status is either determined by its worst supporting facility or
the least satisfied resource demand:

xi = min

(
min
j∈Si

xj,min
r∈R

dri/d̂
r
i

)
,∀i ∈ I\(It ∪ Ic). (3.12)
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The first term on the RHS is the worst status of facility iâĂŹs supporting facilities, and the second
term is the fulfilled fraction of least fulfilled resource demand; i.e., the status of i is determined by
either its worst support facility or its least fulfilled resource demand.

In addition to interdependencies of infrastructure facilities within the system, we also take
account of external factors. For example, a cascading failure usually start from a subset of facilities
due to outside natural hazards or human actions. The status of these initially disrupted facilities is
not determined by the interdependency function, but rather remain disrupted during the cascading
process. We define Idis ⊆ I\(It ∪ Ic) to be the set of these initially disrupted facilities, and they
satisfy:

xi = 0,∀i ∈ Idis. (3.13)

3.2.3 System equilibrium

One might have realized that the resource-seeking behavior of communities and facilities can
somehow be related to the well-known Wardrop principles for network equilibrium, where all
decision makers in a network choose their least cost routes to reach destinations. In this section
we will first propose an equilibrium problem in an augmented network representation, and then
discuss the existence, uniqueness, and solution method.

Augmented network representation

To account for elastic demand and queueing, we construct an equivalent augmented network
representation with added âĂIJdummy" nodes and âĂIJvirtual" links to capture demand loss. Such
treatment allows the original problem to be solved equivalently as if the demand is fixed (Sheffi,
1985). Several types of nodes, as well as corresponding virtual links, are added into the augmented
network, including: sink nodes that represent demand destinations, queueing nodes at resource
locations, and virtual âĂIJdummy" nodes that capture demand loss. Figure 3.1 illustrates a simple
example of the new network representation. In the original network, there are trip demands from
origins (i.e. resource seekers) i1, i2 ∈ I\It to resource locations j1, j2 ∈ Ir as d̂ri1 , d̂

r
i2
> 0, and

the flow travels through the transportation network. The trip demand dri1 , d
r
i2

varies as a function
of cost based on (3.1), and due to exogeneous access restrictions, i1 may visit both j1 and j2 while
i2 can only visit j1.

We will next show that by adding virtual nodes and links the augmented network can equiva-
lently represent queueing cost, resource access restriction, and demand loss. First, for every node
i ∈ I\It and resource type r ∈ R, we add a corresponding virtual node sri to represent a virtual
âĂIJsink", and set the demand from i to sri be the constant d̂ri . In Figure 3.1, the demands from
i1 and i2 to j1 and j2 are directed into the sinks sri1 and sri2 respectively with fixed values d̂ri1 and
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Figure 3.1: Illustration for the augmented network representation.

d̂ri2 . Then, to allow queueing at the resource node and resource access restrictions, a virtual queue-
ing node and two types of virtual links will be added. We add a node qj for each resource node
j ∈ Ir,∀r ∈ R to represent the queue, and add link (j, qj); further if j ∈ Iri for some i ∈ I\It then
add link (qj, s

r
i ). This assures each node i will and can only access resource r through j ∈ Iri . In

Figure 3.1 the queueing nodes qj1 and qj2 are linked to sri1 , meaning i1 can visit both j1 and j2 for
resource r (i.e. j1, j2 ∈ Iri1), while qj1 is not connected to sri2 , meaning i2 is not allowed to visit j1

(i.e. j2 ∈ Iri2 , j1 /∈ I
r
i2

). The cost of travelling on qj is

Tqj(λj, gqj) = 1/(λj − gqj). (3.14)

This guarantees all the demand that come to resource node j contributes to the queue and will pay
the queueing cost. Hence, gqj takes exactly the value of hj as in (3.5) and the queueing cost is
converted to an equivalent transportation link cost.

Next, since the resource seekers may give up service, we add a virtual node (with proper links)
as an alternative route to capture the demand loss. For all i ∈ I\It and r ∈ R, we add a virtual
node vri and two corresponding links (i, vri ) and (vri , s

r
i ). In Figure 3.1, vri1 and vri2 are added to

connect i1 to sri1 and i2 to sri2 respectively. It allows the demand to flow from the origin to the sink
via the dummy node vri instead of traversing across the transportation/queuing layer, with a cost of

Tvri (gvri ) = D̃r
i

(
d̂ri − gvri

)
, (3.15)

where D̃r
i is the inverse function of Dr

i as in (3.1), and gvri essentially represents the lost demand
from node i ∈ I\It for resource r ∈ R. Particularly if there is no demand loss (which means
gvri = 0), Tvri (0) = ĉri is the actual cost of traveling to sri via transportation and queuing, when
there is no disruption in the infrastructure system. When disruption happens, some flow will go
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through vri to reach sri if the resource access cost becomes greater than ĉri ; meanwhile, Tvri (gvri )

also increases with gvri . The value of ĉri is computed as the cost for the flow from node i to go to
sink sri when λj = λ̄j, ∀j ∈ Ir,∀r ∈ R and Tvri → ∞ so the cost of using virtual node to reach
sink (i.e., giving up service) is always greater than that of actual traveling, and demand loss will
not occur. Furthermore, to differentiate the priorities of procurement of different resources for the
same user, we let the cost function Tvri be more sensitive to the lost demand for resource r that with
higher importance.

For notational convenience, we define A as the set of all nodes in the augmented network, such
that

A := I
⋃
{sri , vri }∀i∈I\It,r∈R ∪ {qj}∀j∈Ir,r∈R.

In so doing, all resource demands at i are constant regardless of the resource procurement cost or
working status of infrastructures (overflows or lost demand are “captured" via virtual links), and
the demand destinations are fixed regardless of the choice of resource locations. Moreover, we can
write (3.11) as a function of demand lost instead of demand satisfaction to exploit the convenience
of such a network representation:

xi = Fi(yi, zi), ∀i ∈ I\(It ∪ Ic), (3.16)

where yi = {xj}∀j∈Si
, zi =

{(
d̂ri − gvri

)
/d̂ri

}
∀r∈R

.

Equilibrium definition

With the augmented network representation, we are now ready to analyze system equilibrium.
System equilibrium is defined as a state where the interdependency constraints (3.10) and (3.16)
are satisfied, and all the communities and facilities find their best resource-seeking strategy in the
network. That means that (i) given the facilitiesâĂŹ status and capacity, the network flow reaches
an equilibrium where none of the resource consumers can unilaterally reduce its access cost, and
(ii) based on such a flow pattern, the facility status is consistent with the resource support and
functional support it receives. To show a more rigorous definition, we first propose the following
convex optimization problem that captures the resource-seeking strategy of consumers, which is in
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the form of a user equilibrium:

min
f,g

∑
k∈It

∫ gk

0

Tk(x)dx+
∑
j∈Ir
r∈R

∫ gqj

0

Tqj(x)dx+
∑
i∈I\It
r∈R

∫ gvr
i

0

Tvri (x)dx (3.17)

s.t.
∑
p∈Pisr

i

fpisri = d̂ri , ∀i ∈ I,∀r ∈ R, (3.18)

∑
p∈Pisr

i
:qj∈p

i∈{i∈I\It:j∈Iri }

fpisri = gqj , ∀j ∈ Ir, ∀r ∈ R, (3.19)

f
p:vri ∈p
isri

= gvri , ∀i ∈ I\It, ∀r ∈ R, (3.20)∑
p∈Pisr

i
:kt∈p

i∈I\It,r∈R

fpisri = gkt ,∀kt ∈ It, (3.21)

fpisri ≥ 0,∀p ∈ Pisri ,∀i ∈ I,∀r ∈ R, (3.22)

gqj + εj ≤ λj, ∀j ∈ Ir,∀r ∈ R. (3.23)

Here, Tk(gk) is defined by (3.4), Tvri (gvri ) by (3.15), and conditional on λj , Tqj(gqj) only depends
on gqj :

Tqj(gqj) = 1/
(
λj − gqj

)
. (3.24)

The objective function (3.17) is standard for equilibrium problems, where we consider three
components for transportation nodes, queueing nodes, and lost-demand nodes respectively; Con-
straints (3.18)-(3.21) are for flow conservation, and (3.22) for flows non-negativity. Moreover,
Constraints (3.23) enforce that the arrival rates at the queues cannot be greater than the service
capacities, and εj is a sufficiently small positive number, in light of (3.24), to obtain a closed fea-
sibility region; in addition, as the queueing function (3.24) is not well-defined when xi = 0 and

λj = 0, we let λj
′ =

λj, if λj ≥ εj

εj, if λj < εj
. be the truncated minimum service capacity, i.e., now

λj = xjλ̄j + (1 − xj)λj ′. The following two lemmas are proposed to show that such numerical
treatment does not affect the equilibrium solution.

Lemma 1. For sufficiently small εj , the truncated minimum service capacity λj
′ only brings a

negligible error to the optimal solution to (3.17)-(3.24).

Proof. see Appendix.

Lemma 2. For sufficiently small εj , the inclusion of εj in (3.23) does not affect the optimal solution

to (3.17)-(3.24).
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Proof. see Appendix.

We are now ready to define the system equilibrium:

Definition 1. Given the collection of all system parameters

θ :=

{
αk, βk, γk, δk, λ̄j, λ

−j
, d̂ri

}
k∈It,i∈I,j∈Ir,r∈R

,

the collection of system variables

Γ(θ) :=

xi, λj, d
r
i , c

r
i , f

p
isri
, ga :

s.t.Constaints (3.10) and (3.16),and
(
fpisri , ga

)
solves (3.17)-(3.24)


form a collection of equilibrium states. With boundary conditions (3.13), the state

σ := {σ′ ∈ Γ(θ) : xi = 0,∀i ∈ Idis}

describes equilibrium of both the infrastructure system and the community.

Particularly, we let σ∅ := {σ′ ∈ Γ(θ) : xi = 1, ∀i ∈ I} be the system equilibrium in the nor-
mal scenario without disruptions; i.e., Idis = ∅.

Social impact evaluation

In this subsection, we quantitatively evaluate the social impact of system failure. In general,
the social impacts can be multi-faceted. First, from an economic perspective, the resource procure-
ment cost significantly increases; meanwhile, the disrupted infrastructure may need significant
investment to enable recovery. Second, from a humanitarian perspective, the reduction of commu-
nity demand may reflect the extent of population suffering under the disruption(s). To this end,
we consider the following three measures as proxies of social impacts: (i) total demand loss, (ii)
average procurement cost increase, and (iii) total infrastructure failures, for each type of resource.

Given the initial disrupted nodes Idis, the system equilibrium moves from the normal scenario
σ∅ to σ. Hence, for each resource r ∈ R, we have the total demand loss

∆r
d =

∑
i∈Ic

(
d̂ri − dri |σ

)
, (3.25)

the average procurement cost increase

∆
r

c =
∑
i∈Ic

(cri |σ − ĉ
r
i )/|Ic|, (3.26)

22



and the total infrastructure failures

∆r
x =

∑
i∈Ir

(xi|σ∅ − xi|σ). (3.27)

3.3 Equilibrium Analysis and Solution Approach

With the augmented network representation, we have converted the equilibrium problem into
a modified traffic assignment problem with link interactions. In particular, the parameters of each
link performance function depend on not only the demand flow on its own link, but also those
on other links. For example, the queueing cost at a resource location is affected by the facility
status, which further depends on its resource support, i.e. the amount of resource it can obtain.
The following proposition provides the conditions for the existence of such an equilibrium.

Proposition 1. (sufficient condition) There exists an equilibrium that satisfies the boundary con-

dition (3.13), if the interdependency function Fi,∀i ∈ I\(It ∪ Ic)is continuous, concave, and

non-decreasing w.r.t. yi, and zi.

Proof. see Appendix.

It is intuitive to have a strictly increasing demand-loss penalty and non-decreasing interde-
pendency function. The concavity of the interdependency function means facility status is less
sensitive to disturbance in the system when it still has relatively sufficient functional and resource
support. In other words, the facilities are more robust to disruption when the other facilities are
relatively well-functioning, and the functionality reduces faster when the other facilities are more
disrupted.

Although we have shown the existence of a system equilibrium, it is still challenging to find.
The aforementioned traffic equilibrium problems with asymmetric link interactions usually cannot
be formulated into typical convex optimization problems. In the remainder of this section, we
propose an iterative algorithm to compute the equilibrium. Noticing that when we fix the facility
service capacity in (3.24), the problem can be reduced to a standard traffic assignment problem. We
hereby consider a diagonalization method (Sheffi, 1985) to solve it. In particular, we first ignore
link interactions and solve a degenerated traffic equilibrium sub-problem, then update the link cost
functions based on the degenerated traffic equilibrium, and then repeat such a process until the
equilibrium converges. To improve converging speed, we take affine combinations of both facility
status and flow across consecutive iterations.

Diagonalization Algorithm
We use Frank-Wolfe algorithm based diagonalization method to obtain σ. We iteratively update
facilitiesâĂŹ status and resource capacity given the flow using the interdependency functions, and
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compute new flow assignment based on the updated link cost functions with Frank-Wolfe algo-
rithm. The iterations are terminated when maximum iteration number is reached, or the updated
flow shows little difference from the previous step. Note that the queueing nodes have strict ca-
pacity constraints; in the Frank-Wolfe algorithm we use a linear projection for the cost function
when the flow approaches and exceeds the capacity, so the constraints are removed by Lagrangian
relaxation.

We now discuss the solution uniqueness and algorithm convergence. First, for each facility
j, we define its âĂIJresource-dependent upstream support" Vj as a collection of facilities which
has positive resource demand and provide functional support directly or indirectly through other
facilities. In particular,

Vj =


i :

∃r ∈ R, s.t. d̂ri > 0, and

∃i1, i2, ..., iK ∈ I, s.t. i ∈ Si1 , iK ∈ Sj, and ik ∈ Sik+1
,∀1 ≤ k < K

 ,

Then, we have the following proposition.

Proposition 2. The diagonalization method gives the unique equilibrium point with guaranteed

global convergence if either one of the following two conditions is satisfied:

1. The facility status is not sensitive to resource failure such that
∣∣∣∂Fj (yj, zj)/∂gvr̃j

∣∣∣ is suffi-

ciently close to 0 ∀j ∈ Ir,∀r, r̃ ∈ R;

2. The resource demand is inelastic enough such that
∣∣dTvri (gvri )/dgvri ∣∣ is sufficiently large,

∀i ∈ I\It, r ∈ R. Particularly, when the interdependency functions take the form of (3.12),
the requirements are:

Tvri
′ ≥
(
λj/εj d̂

r
i

)2

, ∀i ∈ Vj, r ∈ R, ∀j ∈ Ir̂, r̂ ∈ R.

Proof. see Appendix.

The conditions in Proposition 2 are sufficient conditions for solution uniqueness and algorithm
convergence. While these conditions are seemingly restrictive for application, there are many real-
world scenarios where they are satisfied. For example, some facilities may be regulated to serve
the civilians even when it is difficult for them to access resource supply. Furthermore, in some
test numerical experiments, the algorithm converges even when the conditions are not satisfied,
indicating a weaker condition for algorithm convergence exists. Therefore, the conditions stated
in this proposition, while not exhausting all the possible scenarios for solution uniqueness and
algorithm convergence, provide valuable insights on the problem.
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3.4 Numerical Experiments

In this section, we implement our model to analyze the social impact of infrastructure failures
based on a combination of real-world and inferred data from the city of Maiduguri, Nigeria. Maid-
uguri is the capital city of Borno State (11◦51′N, 13◦05′E), with a total estimated population of
1.2 million. Concurrently with urban growth, the local government has been facing additional se-
vere challenges. First, natural hazards such as drought and floods cause significant adverse effects
(Odihi, 1996). Next, both active military events and terrorist attacks threaten peopleâĂŹs daily life
and the security of urban infrastructure. In addition, large numbers of internally displaced persons
have fled into Maiduguri after terrorist attacks, exhausting the resources in the city and resulting
further pressure on the system. From this angle, our model aims to (i) better quantify, understand
and evaluate these pressing social concerns, and (ii) provide policy insights into how to best protect
critical infrastructure, reserve emergency supplies, and avoid humanitarian disasters.

Figure 3.2: Community and population distribution.
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3.4.1 Illustrative case study

Communities within the urban area of Maiduguri, Nigeria are categorized into four groups
based on income and land use characteristics: mixed-use commercial/residential, middle-income
residential, poor residential, and shantytown (AGC, 2015), and their geographic distributions are
shown in Figure 3.2. The population as represented by the LandScan2010 dataset (ORNL, 2010)
is clustered near the city center (mostly in the mixed-use areas) and gradually diminishes toward
the periphery while clustering along the major roads into the city. For simplicity in the numerical
experiment, we assume the population within each category of community is identical and esti-
mated as 7,500, 750, 250, and 500 for mixed-use, middle-income, poor-income, and shantytown,
respectively. We further estimate the resource demand for community i ∈ Ic by

d̂ri =


dPi ,

0.4dPi ,

0,

if r ∈ {water, food}
if r ∈ {education, healthcare}
otherwise

,

where dPi is the population of community i. The factor 0.4 reflects the resource demand for edu-
cation and healthcare is relatively less critical than water and food. The interdependency functions
take the form of (12), such that the status of each facility is either determined by the critical sup-
port failure or the most devastating resource failure. In addition, we consider an inverse demand
function of resource r for community i as

Dr
i

(
cri ; d̂

r
i

)
=

{
d̂ri , if cri < ĉri

d̂ri − (cri − ĉri )/mr
i , otherwise

, (3.28)

where ĉri is the resource procurement cost under the normal scenario and mr
i is a constant that

satisfies mr
i ≥

(
λj/εj d̂

r
i

)2

,∀i ∈ Vj, r ∈ R, ∀j ∈ Ir̂, r̂ ∈ R, such that the second condition in
Proposition 2 is met and convergence is guaranteed.

Representative infrastructure locations are presented in Figure 3.3, where each point indicates
an infrastructure node, and the type/layer is differentiated by the marker shape. The structure of
the seven modeled infrastructure layers are summarized here as follows: (i) the electricity layer
supports the water layer, and they jointly support education and healthcare layers; (ii) the trans-
portation layer neither is supported nor supports other layers, but purely provides mobility to the
system; (iii) the food layer only provides food to the community, where the downstream food
market node seeks supply from the upstream food processing facilities; and (iv) the fuel layer only
provides fuel to the infrastructure nodes such as those in the electricity layer. The resource demand
of these infrastructure nodes normally do not generate huge traffic, hence we simply assign d̂ri = 1

for each infrastructure node seeking resources (e.g., fuel and food); the inverse demand function
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of an infrastructure i is the same as (3.28). We should also note that some infrastructure nodes
within a resource layer, such as water treatment plants, the central fuel depot, and food processing
facilities, might not directly provide resources but support other downstream resource nodes. The
maximum resource capacityλ̄j is computed by assigning all the resource seekers to their nearest
resource locations and computing the demand at j, and λ̄j is set to be 1.1 times the demand, so
that there are sufficient resources in normal scenario; furthermore, if the computed demand at a
resource facility is lower than a certain threshold λ̂j , the threshold value is assigned to λ̄j for real-
ism. In other words, let the Inear j ⊆ I\It be the set of nodes that need resource r and their closest

resource location is j ∈ Ir, then λ̄j =

κcap
∑

i∈Inear j

d̂ri , if
∑

i∈Inear j

d̂ri ≥ λ̂j

κcapλ̂j, o.w.
where κcap = 1.1.

Figure 3.3: Infrastructure distribution.

The rest of parameters are set as follows: αk = 0.15 min, βk = 4, γk = 10, 000 vehicle per lane
per day, δk is computed based on actual distance between nodes at a free-flow speed of 35 mph.

We consider a scenario that disruption initiates at the main power substation in the center
of the city (the star in Figure 3.3), and investigate the failure propagation and social impacts.
The electricity substation is a critical node that supports a variety of other infrastructure nodes,
including water treatment plants and a large number of local transformers. After implementing our
algorithm, the system converges to an equilibrium. In the last few iterations of the diagonalization
algorithm, the change in the total infrastructure failures ∆r

x is no greater than 2 · 10−3 between
consecutive iterations, and the change continues to diminish. This demonstrates the convergence
of the result. The resulting infrastructure status is shown in Figure 3.4, where a component having
a working status less than 0.5 is represented by a hollow symbol to indicate either complete or
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partial loss of functionality. As expected, all electricity transformers are shut down, the electricity
network is disabled, while only local electricity generators can work based on fuel, providing
limited power supply to nearby communities. Furthermore, the water network is also disrupted,
while only local commercial water vendors that can pump water from wells using generators still
function. As a result, education institutions and healthcare facilities are all disrupted due to the
shortage of power and water.

Figure 3.4: Community water access cost ratio after versus before disruption.

The social impacts are estimated as follows. In total, 62.4% of the water nodes, 0.0% of the
food nodes, 0.0% of the fuel nodes, and 100.0% of education and healthcare nodes are disrupted
(i.e., ∆water

x = 17.5, ∆food
x = 0.0, ∆fuel

x = 0.0, ∆education
x = 84.0, and ∆healthcare

x = 4.0).
There is no demand loss for water and food, but all demand for education and healthcare are lost.
Interestingly, after disruption, the average access cost for food even decreases from 0.35 to 0.32.
This is mainly due to the loss of education and healthcare needs which relieve traffic congestion
in some parts of the city. The overall average access cost for water increases from 0.25 to 1.42,
and 4.3% of population lost access to water, which is caused by the increase of queueing cost at
remaining water facilities. The spatial distribution of changes in communitiesâĂŹ water access
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costs (Figure 3.4) shows that costs increase significantly around several of the commercial water
providers as competition increases for those limited resources.

3.4.2 Sensitivity analysis

We denote the above case study as a benchmark Scenario 0, and now examine several represen-
tative scenarios under different parameter settings. Scenario 1 considers only transportation cost
to examine the assumption that there is no queueing cost at resource locations; scenario 2 and 3
investigated the model sensitivity to facility service capacity; scenario 4, 5, and 6 were selected to
test the reliability of the system when other critical components were disrupted. The corresponding
societal impacts are summarized in Table 3.1. The augmented network contains 3266 nodes and
15319 links, with 1105 O-D pairs . Due to the giant network size, it took the algorithm from 20
minutes to approximately 1 day to evaluate each of the six disruption scenarios. First, in Scenario
1, we remove the consideration of queueing cost at resource location. To do that, we set the max-
imum resource capacityλj of each facilityj ∈ Ir, r ∈ R to be infinity, and let the interdependency
function take a binary value, such that:

xi =

 1, if min
(

min
j∈Si

xj,min
r∈R

dri/d̂
r
i

)
≥ δi,∀i ∈ I\ (It ∪ Ic)

0, otherwise
,

where δi is a constant that represents a threshold value. In this case we let δi = 0.9. Moreover, the
removal of queueing makes the transportation cost the only resource procurement. cost, which is
far less sensitive to the flows, hence the elastic demand function of facilities is changed into:

Dr
i

(
cri ; d̂

r
i

)
=


d̂ri , if cri < max

{
0.6 ·max ĉrj

j∈Ir′
, 1.2ĉri

}
0,

, (3.29)

where ĉrj represents the resource procurement cost for resource r of facility j under no disruption,
and Ir′ is the set of facilities of the same type as facility i (i.e. i ∈ Ir′). The factors “0.6" and “1.2"
are chosen based on past experiences and status quo, such that facility has a relatively competitive
ability to change its resource locations compared to other facilities of the same type, and the fa-
cilities have an overall low flexibility to change their resource locations. Since the transportation
cost is the total access cost, the reduction of traffic leads to a more noticeable decrease in the food
access cost. There is no significant change in the water access cost after disruption, which means
the negative effect of water facilities failure is cancelled out by the reduced traffic congestion.

Scenario 2 and 3 examines the impact of facility maximum resource capacity λj . It is expected
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Table 3.1: Sensitivity analysis results of different disruption scenarios and different parameters.

Food Water

Scenarios
Access cost Demand # Node failed Access cost Demand # Node failed

increase loss (total 11) increase loss (total 28)
0: Case Study -7% 0.00% 0 458% 4.30% 17.5
1: No Queueing -36% 0.00% 0 0.50% 0.00% 18
2: κcap = 5.0 -49% 0.00% 0 -25% 0.00% 17.5
3: κcap = 10.0 -54% 0.00% 0 -35% 0.00% 17.5
4: Init. Water -27% 0.00% 0 20% 2.90% 9.3
5: Init. Fuel 22% 1.30% 0.5 157% 5.90% 10.6
6: Water and Fuel -2% 0.00% 0.3 860% 8.70% 16.2

that an infrastructure system with higher maximum resource capacity would have greater resiliency
to system disruption. In Scenario 0, we let the resource users visit their nearest resource locations,
and compute the resource capacity of the resource locations based on the demand by multiplying
a factor κcap of 1.1. In Scenario 2 and 3, κcap is changed to 5.0 and 10.0 respectively to consider
an infrastructure system with moderate and high resource capacity. Similar to what we observe
in Scenario 1, as the queueing cost reduces, the transportation cost takes a greater portion in the
overall access cost, hence the alleviation of traffic congestion results in a greater percent reduction
in access cost. We observe a decrease of 49% and 25% respectively in food and water access cost
in Scenario 2 and 54% and 35% in Scenario 3.

Scenario 4 explores a different initial disruption at a water treatment plant. Counter-intuitively,
although water treatment plant is the key infrastructure in the water layer, shutting it down does
not significantly affect the entire system. Although 4.0 water towers (due to support failures), 3.0
water tanks and 2.3 water vendors (due to resource failures) are disrupted, the water access cost
only slightly increases by 20%, and there is 2.9% water demand loss. This is mainly because
of the high inelasticity of resource demand of facilities makes resource failures very unlikely to
happen. Further, we find no disruptions in the food layer, and there is a decrease of 27% in food
procurement cost.

In Scenario 5, we assume the initial disruption occurs at the central fuel depot, which directly
cut down the fuel supply to the entire system. As a result, ten local water vendors are completely
disrupted (due to resource failures), and the status of several water tanks are impaired due to
increased congestion. Similarly, the food markets are also affected due to congestion, with a total
status reduction of 0.5. The community can still survive well without fuel supply, whereas the
access cost for water and food have a moderate increase. Therefore, the fuel layer does not play a
critical role in the infrastructure system if the power grid and water network still function well.

In Scenario 6, the water treatment plant and the fuel depot are both failed in the initial disrup-
tion. The result turns out to be more devastating than the simple summation of the results where
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the two facilities are disrupted respectively. The water access cost is increased by 860%, with a
population of 8.7% lost water access. The demand loss appears to be low while there is a dramatic
increase in access cost, because both of the inelasticity of resource demand and that there is still
relatively sufficient resource supply in the infrastructure system.

The results could be sensitive w.r.t. the cost function parameters as well as the elasticity of
facilitiesâĂŹ resource demand. Through the numerical experiments, the result is observed to be
sensitive w.r.t. the facilitiesâĂŹ maximum resource capacity, especially when the capacity is at
the low end. Moreover, the solution can also be sensitive w.r.t. the elasticity of facilitiesâĂŹ
resource demand. To be specific, the demand elasticity affects the facilitiesâĂŹ resiliency against
resource failures, and the resiliency has a significant impact on the resource seeking behavior of the
communities. However, the demand elasticity of the population does not have such a remarkable
impact on the solution âĂŞ change in the demand elasticity only means that the population can
endure higher/lower resource access cost, and it only brings in a negligible change to the traffic.
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CHAPTER 4 – SIR EPIDEMIC CONTROL IN A
MULTI-GROUP POPULATION WITH QUARANTINE AND

EDUCATIONAL PROGRAMS

4.1 Introduction

The previous chapter focuses on interdependent infrastructure systems and facility failure prop-
agation. Starting from this chapter, the following parts of this dissertation focus on population con-
tact networks and infectious disease propagation among the population. We inherit the notation
and the formulas from Section 2.2.1 for the rest of this dissertation.

A critical issue in epidemic modeling and control is social heterogeneity among populations.
First, individuals differ from each other in their ability to resist potential infections and that to
recover/survive if infected. The reasons for such differences include physiological features such
as age and gender, as well as social characteristics such as career and income level. Moreover, the
contact networks of people also highly depend on their physiological/social traits; e.g., people that
share similar characteristics often interact more among themselves than with others. Furthermore,
the effectiveness of epidemic control measures on different subpopulations can be different. For
example, it may require less efforts to monitor and control disease propagation among school
children than that among working class adults.

On the other hand, the detrimental impacts of disease control measures are non-negligible, and
it is important to balance the trade-off between the impact of disease propagation and that of the
control. For instance, quarantine and isolation of infected individuals help provide timely treatment
to them and protect the susceptible population to mitigate disease propagation, yet it may cause
psychological sufferings to the isolated personnels and might raise political concerns. Moreover,
the intensity and timing of an educational campaign can greatly affect the disease spreading process
as well as the consequential social impacts due to societal panics toward the disease.

To address such challenges, this chapter proposes an optimization framework to find the op-
timal control strategies during an epidemic in a multi-group and networked population with the
aforementioned considerations. We incorporate the effects of two control approaches, educational
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program and quarantine into an existing multi-group epidemic dynamics model. A system state
evaluation model is developed based on observations from quarantine control to help decision mak-
ers understand the disease propagation status. Then an optimization framework is established and
a value function approximation approach is adopted to solve for the optimal control.

The rest of this chapter is organized as follows. Section 4.2 develops an epidemic dynamics
model with educational programs and quarantine controls, and proposes a latent model to estimate
the dynamic system states. Next, Section 4.3 establishes a control framework and introduces a
solution approach to solve the optimal control problem. Then in Section 4.4, a semi-realistic case
study is performed to validate the modeling framework and the solution approach, and sensitivity
analysis results are presented to reveal some key factors that affect the operational decisions and
the impacts of disease propagation.

4.2 Epidemic Dynamics and Control Strategies

4.2.1 Epidemic dynamics model

We categorize the population into several groups based on their physical and social charac-
teristics, such as age, gender, career, etc. We let the set of groups be I, and each group i ∈ I
is associated with a subpopulation size Ni. In a multi-group population, the degree distribution
generating function for a group-i node is given as follows:

gi(x) =
∑
kj ,j∈I

Pi (. . . , kj, . . . )
∏
j∈I

x
kj
ij ,∀i ∈ I, (4.1)

where kj is the degree of this group-i node to group j nodes, Pi (. . . , kj, . . . ) is the probability that
this node has degree kj to group j, ∀j ∈ I, and xij is a dummy variable.

Miller and Volz (2013) extend their earlier model (2.3) - (2.7) to incorporate population spatial
heterogeneity, which could also be generalized to address a much broader spectrum of population
heterogeneities. The system dynamics equations of the multigroup heterogeneous mixing epidemic
dynamics model are quite similar to those of the single-group model Eq (2.3) - (2.7), presented as
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follows:

˙θij = −rijφij, ∀i, j ∈ I, (4.2)

φ̇ij = (−rij − uj)φij −
1

∂gj(1)/∂xi

d

dt
(∂gj(θj)/∂xi) ,∀i, j ∈ I, (4.3)

Ṙi = uiIi,∀i ∈ I, (4.4)

Si(t) = gi (θi(t)) ,∀i ∈ I, t ≥ 0, (4.5)

Ii(t) = 1− Si(t)−Ri(t),∀i ∈ I, t ≥ 0, (4.6)

where θij(t) denotes the fraction of edges between group i and j that has not transmitted disease
from group j to i at time t, φij(t) is the fraction of edges between group i and j that has not
transmitted disease from group j to i at time t where the j node is infectious, and θi = (θij)∀j∈I .
Moreover, rij and ui are the Poisson process rates of an infectious contact from group j to i and
the recovery of a group-i infected node, respectively. In (4.3), the first part on the right hand side
means the decrease of φij due to (i) disease transmission along the (j, i) edges, and (ii) the natural
removal of infected group-j nodes. The second part means the increase of φij due to the susceptible
group-j neighbors of the group-i test node becoming infected by their own neighbors (other than
the test node as infection from the test node is prohibited).

Moreover, whether an infected individual recovers or deceases has no impact on the disease
propagation process; however, they have completely different impacts and can lead to different
control objectives and decisions. In particular, we separate the recovered population from the
deceased, and denote uic and uid as the natural recovery rate and death rate of infected group-i
nodes, respectively, such that ui = uic + uid,∀i ∈ I; then we let Ric and Rid be the corresponding
population fractions, respectively:

Ṙic = uicIi,∀i ∈ I, (4.7a)

Ṙid = uidIi,∀i ∈ I. (4.7b)

4.2.2 Disease control strategies

There exists a public health agency that takes two control actions, educational programs and
random screening-based quarantine, to mitigate the disease propagation process. There might be
limited medical resources for the agency, and that the agency’s control actions may cause detri-
mental impacts to the society, such that the it needs to optimize its course of actions when making
control decisions. We examine each of them over their effects in the dynamic process, their re-
source requirements, and detrimental impacts, respectively.
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Caution contact advisory

When an epidemic outbreak happens, the public health agency can improve the people’s aware-
ness to the disease, e.g. by posting sanitary advisories to the population. In doing so, precautions
are taken when individuals interact with the others, and people’s personal sanitary levels increases.
Consequently, the transmission rates of the infectious disease are reduced.

When the public agency posts an advisory to group i, the transmission rates from other groups
to group i and those from group i to others are reduced at the same proportion. To be specific, we
define a discount factor γi(t) to capture the effect of advisory to group i, where γi(t) ∈

[
γ
i
, 1
]
,

and γ
i
> 0 is a constant lower bound, for i ∈ I. Then the reduced transmission rate from group

j ∈ I to group i, is γi(t)γj(t)rij , and that of the opposite direction is γi(t)γj(t)rji. In reality, the
effect of an advisory may gradually wear off, and we assume that the discount factor approaches 1
exponentially over time:

γ̇i = ηi (1− γi) ,∀i ∈ I, (4.8)

where ηi > 0 is the diminishing rate of the advisory effect.
There will be detrimental impacts caused by the educational programs, such as social panics

and functionality loss. These impacts will be accumulated over time, while the instantaneous
impact of an advisory diminishes with the advisory effects. We use a function fi(γi) to capture the
instantaneous impact. It can take arbitrary form that is non-increasing and satisfies fi(1) = 0. An
example is as follows:

fi (γi) = −ai logbi (γi) ,∀i ∈ I. (4.9)

where ai > 0, bi > 1 are constant parameters. Then the total impact from t = 0 to the end of the
control horizon T , is given by

∫ T
0
fi (γi(t)) dt.

Moreover, constantly changing warning levels in a short time frame might damage the agency’s
authority and thus the effectiveness of advisories. Therefore, the agency must decide the best
combination of warning levels and timings. In particular, we denote γ̃i as the agency’s decision
variable on the warning level of the advisory to group i, and t̃i as the time of posting the warning
to group i. Then the discount factor γi can be expressed as follows:

γi(t) =

1, if t ≤ t̃i,

(γ̃i − 1) e−ηi(t−t̃i) + 1, o.w.
, ∀i ∈ I, (4.10)

By definition, γ̃i takes value between a lower bound γ
i

and a upper bound of 1:

γ̃i ∈
[
γ
i
, 1
]
,∀i ∈ I. (4.11)
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Random-screening-based quarantine

Quarantine controls are usually carried out by screening the population randomly; e.g., by
setting up checkpoints and testing the passersby. It then provides treatment to and/or isolates the
detected infected individuals, such that the infected ones are removed from the disease transmission
network. We assume an infected group-i individual is detected by the agency at detection rate µi(t)

following Poisson distribution.a Since the detection and natural removal of the infected nodes are
independent processes, the overall removal rate at time t of an infected group-i node is µi(t) + ui,
∀i ∈ I. Therefore, by re-writing (4.2), (4.3), and (4.4) with the discounted transmission rates
and overall removal rates, the new system dynamics of the spread of disease under both control
strategies are presented as follows:

˙θij = −rijγiγjφij,∀i, j ∈ I, (4.12)

φ̇ij = (−rijγiγj − uj − µj)φij −
1

∂gj(1)/∂xi

d

dt
(∂gj(θj)/∂xi) ,∀i, j ∈ I. (4.13)

Ṙi = (ui + µi) Ii,∀i ∈ I. (4.14)

Due to varying health-related characteristics, subpopulation sizes, and degree distributions of
different groups, the effectivenesses of quarantine can differ drastically among groups. We let L
be the set of screen actions the agency can take, each of which has a different effect on various
groups. We let ωl(t) be the intensity of action l ∈ L at time t, namely how much effort the agency
put into action l, then

A(t)ω(t) = µ(t),∀t ≥ 0. (4.15)

where ω = (ωl)∀l∈L, µ = (µi)i∈I , and A(t) ∈ R|I|×|L| is a matrix that maps action intensity to the
detection rate in each group at time t. In other words, the elements in A reflect the actual detection
rate in each group per unit of intensity for each action. The entries in A could be increasing over
time, as when some population are deceased or isolated and the potential quarantine subjects are
reduced, higher detection rate could be achieved with the same level of action intensity.

Moreover, the agency needs to properly allocate different types of resources q ∈ Q to each
screen action. To be specific, we denote cql as the amount of resource q required to achieve 1 unit
of intensity of action l, the resource consumption at t due to screening actions is cTq ω(t), where
cq = (cql)∀l∈L:

cTq ω(t) ≤ Bq(t),∀q ∈ Q, t ≥ 0, (4.16)

Bq(t) is the available amount of type-q non-accumulative resource at t. In addition, the action

aSome infected people may actively seek for help from the authority, and such consideration can be easily incor-
porated into the natural removal rate of the associated group.
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intensities and detections rates can only take non-negative values:

µ(t),ω(t) ≥ 0,∀t ≥ 0. (4.17)

Quarantine as well induces negative social impacts among population. We use another penalty
function hi (µi(t)Ii(t)) to reflect the impact caused by quarantine. hi can take arbitrary forms that
is non-decreasing and satisfies that hi(0) = 0. For example,

hi (µiIi) = ci
(
ediµiIi − 1

)
,∀i ∈ I, (4.18)

where ci, di > 0 are constant parameters.
Now we have presented the epidemic dynamics along with effects of the agency’s controls. In

order to make optimal control decisions, the agency needs complete knowledge of all system state
variables, including some unobservable quantities such as θ and φ. In the following subsection,
we propose a latent model to infer the hidden state variables based on observations obtained by the
quarantine.

4.2.3 System state evaluation

Although the system state is not completely observable, certain observations can be made on
the system over time. They are compared with the decision-maker’s current perception of the
system state, such that the perception can be adjusted along the way. We first set up the latent
model framework, and then discuss how observations are fed into the model.

First, as the dynamic system (4.5), (4.6), (4.12)-(4.14) is deemed as deterministic in statistical
senses, once the initial conditions and the controls are known, the trajectory of the system can
be computed. Therefore, the system state at any time can be derived based on merely the initial
condition and the controls. The initial condition of the system can be approximated as follows:

(θi(0),φi(0), Si(0), Ii(0), Ri(0)) ≈ (1, ei, 1, 0, 0) ,∀i ∈ I. (4.19)

The fractions of infected and removed populations are assumed to be small and thus approximated
by 0; naturally, the susceptible fraction is approximated by 1, as well as θi(0), ∀i ∈ I. These
approximations only introduce a negligible error into the dynamics. However, it has been observed
that the system is quite sensitive to the initial condition of φ, namely e = (ei)∀i∈I . Ideally, the
agency should be able to assess the initial condition e based on the early endemic phase disease
propagation. We assume the agency has a prior distribution for the initial condition e, which is a
Gaussian distribution with mean ē and variance Σ2, i.e., the estimation of e has prior distribution
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N (ē,Σ2
e). However, such perception might well be biased, and the agency needs to validate and

adjust its perception on e based on available observations.
In practice, there might be many possible methods of making different observations on the

system. In this paper, we utilize the observations that made available by the random screening to
demonstrate the latent model, but the model can also be easily generalized if other observations
become available. We assume that, once detected, an infected individual’s social group information
will be revealed to the agency, which allows the agency to keep track of the number of detected
infectious individuals in each group. We denote Tt as the set of time instants when observations
are made from the beginning to time t, and denote the fraction of group-i individuals that are
recently detected at time t′ as δi(t′), ∀i ∈ I, t′ ∈ Tt. Moreover, the observations may contain
errors because, for example, the disease detection approach is not perfectly accurate. We assume
δi follows Gaussian distribution with mean µiIi + εi and variance Σ2

δi
, where εi is the bias of the

observation, i.e., δi ∼ N
(
µiIi + εi,Σ

2
δi

)
.

Based on the current estimation of e, denoted as ê(t), the system state at any time t′ can be
computed following the system equations (4.5), (4.6), and (4.12)-(4.14), and we denote Îi

(
t′, ê(t)

)
as the prediction of infected fraction of group i population Ii given ê(t) at time t′, ∀i ∈ I, t, t′ ≥
0. At time t, we solve the following optimization problem, which is essentially a maximum a
posteriori (MAP) model, to obtain the best estimation on the system initial condition:

SEP1t max
0≤ê(t)≤1

P

(
δi(t

′)− εi
µi(t′)

= Îi
(
t′, ê(t)

)
,∀i ∈ I, t′ ∈ Tt

∣∣∣ê(t)

)
P
(
ê(t)
)

(4.20)

s.t. (4.5), (4.6), and (4.12)− (4.14).

The objective (4.20) is to find the “most likely" value of the initial condition e that may yield the
observations δi. In a special case where the observation is unbiased and the observation randomness
is negligible, i.e., εi,Σ2

δi
= 0, ∀i ∈ I, we have:

P

(
δi(t

′)− εi
µi(t′)

= Îi
(
t′, ê(t)

)
,∀i ∈ I, t′ ∈ Tt

∣∣∣ê(t)

)
=

1, if δi(t
′)

µi(t′)
= Îi(t

′), ∀i ∈ I, t′ ∈ Tt,

0, o.w.
(4.21)

In this case, the problem SEP1t is equivalent to the following problem by observation:

SEP2t max
0≤ê(t)≤1

P
(
ê(t)
)

(4.22)

s.t.
δi(t

′)

µi(t′)
= Îi(t

′),∀i ∈ I, t′ ∈ Tt, (4.23)

and (4.5), (4.6), and (4.12)− (4.14).
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Figure 4.1: Control scheme illustration.

The nonlinear system equations (4.5), (4.6), (4.12)-(4.14), and (4.23) defines the feasible set of
SEP2t, whose size naturally decreases as observations are accumulated over time. We conjecture
that there exists a t > 0, such that the feasible set of SEP2t contains one unique solution, which is
the ground-truth value of the initial condition e.

4.3 Optimal Control and Solution Approach

So far we have discussed the control strategies and presented the system state evaluation model,
we are will now present the optimal control problem, and propose a solution approach to solve the
problem.

4.3.1 Optimal control problem

The continuous time system dynamics and controls is discretized into small time intervals. We
choose a period with moderate length such as a day as a suitable time step for discretization of
the dynamic equations, and an equal or larger interval such as a week, as a plausible length of a
decision epoch in reality. We denote the length of an epoch in terms of ∆ periods, and consider a
control horizon ofK epocs, which corresponds to a time span of T = K∆ periods. We also denote
t = 0 as time of the initial state of the system. By the end of each period, the number of detected
infected individuals in each group will be reported to the agency for system state evaluation, i.e.,
the observation time instants Tt = {1, . . . , t}, ∀t = 1, . . . , T .

The overall control scheme is illustrated in Figure 4.1. At the current epoch, the agency solves
an optimal control problem based on its knowledge on the system state, and determines the best
control decisions for the current epoch as well as the future; then it carries out the optimal decisions
to intervene the natural evolution of the epidemics; through screening, the agency is able to obtain
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new observations to calibrate its perception on the initial condition and the current state of the
system; in the next decision epoch, the agency uses the updated perceived system state to solve
another optimal control problem, and repeat this process until the end of the control horizon.

Although variables t̃i and γ̃i are time-invariant decisions as the agency can only post advisories
to each group for once, in order to unify the notions with the other decision variables, they are still
treated as time-dependent variables and expressed as t̃i,t and γ̃i,t, respectively. Correspondingly,
constraints must be added to regulate these decision variables to avoid multiple warning-posts. To
this end, we define a binary indicator yi,t to capture the status of the post:

yi,t = 1t̃i,t≤t,∀i ∈ I, t = 0, . . . , T, (4.24)

If yi,t−1 = 0, a warning has not been posted to group i by the beginning of period t, and yes
otherwise. Without loss of generality, we denote yi,0 = 0,∀i ∈ I. Then the constraints on t̃i,t and
γ̃i,t are presented as follows:

t(1− yi,t−1) + t̃i,t−1yi,t−1 ≤ t̃i,t ≤ T (1− yi,t−1) + t̃i,t−1yi,t−1,∀i ∈ I, t = 1, . . . , T, (4.25)

γ
i
(1− yi,t−1) + (γi,t−1 + ηi(1− γi,t−1)) yi,t−1 ≤ γ̃i,t ≤ 1− yi,t−1 + (γi,t−1 + ηi(1− γi,t−1)) yi,t−1,

∀i ∈ I, t = 1, . . . , T.

(4.26)

Constraints (4.25) state that once a warning is posted, t̃i,t remains the same as the actual posting
time t̃i, ∀t ≥ t̃i; and Constraints (4.26) regulate that only when the warning has not been posted,
γ̃i,t can take values other than that naturally deteriorated from the previous period. Without loss of
generality, we let t̃i,0 = T and γi,0 = 1. Moreover, for simplicity we assume the advisories can
only be posted at the beginning of each epoch, i.e.,

t̃i,t ∈ {(k − 1)∆ + 1|k = 1, . . . , K} ,∀i ∈ I. (4.27)

At the beginning of the epoch k, namely period t = (k − 1)∆ + 1, the agency solves the
following optimization problem in a discretized dynamic system. For notational brevity, we use
the subscript k interchangeably with t = (k − 1)∆ + 1. Note that when solving the following
problem at epoch k, decision variables with subscript t′ ≤ (k − 1)∆ belong to the past, and thus
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are no longer decisions to make in the current epoch.

OCPk min
ωt′ ,µt′ ,γt′ ,

γ̃t′ ,t̃t′ ,yt′ ,
∀t′=t,...,T

T∑
t′=t

∑
i∈I

α1Ni

∑
j∈I

∂gi(θi,t′−1)

∂xj
γi,t′γj,t′rijφij,t′−1

+ α2NiuidIi,t′−1 + α3fi (γi,t′) + α4hi (µi,t′Ii,t′−1)

(4.28)

s.t. θij,t′ = θij,t′−1 − rijγi,t′γj,t′φij,t′−1,∀i, j ∈ I, t′ = 1, . . . , T, (4.29)

φij,t′ = (1− γi,t′γj,t′rij − uj − µj,t′)φij,t′−1

+

∑
m∈I γj,t′γm,t′rjmφjm,t′−1

∂2gj(θj,t′−1)

∂xi∂xm

∂gj(1)/∂xi
,∀i, j ∈ I, t′ = 1, . . . , T,

(4.30)

Si,t′ = gi (θi,t′) , ∀i ∈ I, t′ = 1, . . . , T, (4.31)

Ric,t′ = Ric,t′−1 + uicIi,t′−1,∀i ∈ I, t′ = 1, . . . , T, (4.32)

Rid,t′ = Rid,t′−1 + uidIi,t′−1, ∀i ∈ I, t′ = 1, . . . , T, (4.33)

Ri,t′ = Ri,t′−1 + (ui + µi,t′) Ii,t′−1,∀i ∈ I, t′ = 1, . . . , T, (4.34)

Ii,t′ = 1− Si,t′ −Ri,t′ ,∀i ∈ I, t′ = 1, . . . , T, (4.35)

γi,t′ = γ̃i,t′yi,t′−1 + (1− yi,t′−1)
(
1t̃i,t′=t

′ γ̃i,t′ + 1− 1t̃i,t′=t′
)
,∀t′ = t, . . . , T, i ∈ I,

(4.36)

A′tωt′ = µ′t, t
′ = t, . . . , T, (4.37)

cTq ωt′ ≤ Bq,t′ ,∀q ∈ Q\Q̃, t′ = t, . . . , T, (4.38)

µt′ ,ωt′ ≥ 0,∀t′ = t, . . . , T, (4.39)

ωt′ = ωk′ ,∀(k′ − 1)∆ + 1 ≤ t′ ≤ k′∆, k′ = k, . . . , K, (4.40)

(θi,0,φi,0, Si,0, Ii,0, Ri,0) =
(
1, ê

(k−1)
i , 1, 0, 0

)
,∀i ∈ I, (4.41)

and (4.9), (4.18), (4.24)− (4.27).

The objective contains four parts: (i) the total number of predicted infections occurred by time T ,
(ii) the total predicted death tolls caused by the disease, (iii) the social impact caused by quaran-
tine of infected individuals, and (iv) the impact caused by the warnings. Different weight factors
αm,m = 1, . . . , 4 are assigned to these terms respectively to reflect different objectives. Con-
straints (4.36) states that if the warning has not been posted and the decision is to post the warning
later than t′, γi,t′ = 1, otherwise it equals γ̃i,t′ . Constraints (4.40) regulate that the quarantine
control must be consistent throughout a period. Moreover, Constraints (4.41) are the perception of
the initial condition at current stage, where ê

(k−1)
i is the optimal solution to SEP1(k−1)∆.

Proposition 3. If the detection rate µi,k′ is always bounded by a finite numberM , ∀k′ = k, . . . , K, i ∈
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I, then the objective (4.28) is bounded, and the solution to OCPk exists for a finite K > 0 and

k = 1, . . . , K.

Proof. It is straightforward to see that the first two terms in the objective (4.28) is bounded, as
Si(T ) ≥ 0. Furthermore, as µi is bounded and Ii ≤ 1, ∀i ∈ I, we can always find a linear function
h̄i(x) = Aix, such that h̄i(x) ≥ hi(x),∀x ∈ [0,M ]. Then we have

T∑
t′=t

hi (µi,t′Ii,t′−1) ≤
T∑
t′=t

h̄i (µi,t′Ii,t′−1) =
T∑
t′=t

Aiµi,t′Ii,t′−1 ≤ Ai (Ri,T −Ric,T −Rid,T ) ≤ Ai.

Moreover, since γi’s are bounded by γ
i

as indicated by (4.26),
∑T

t′=t fi(γi) is as well bounded, and
the objective is well-defined and bounded. Furthermore, the solution set defined by Constraints
(4.9), (4.18), (4.27) and (4.29) - (4.41) is bounded and closed, the solution to problem OCPk
exists.

4.3.2 Approximate dynamic programming

Problem OCPk is a multistage decision problem in a highly nonlinear dynamic system, and
it appears especially formidable as the agency needs to solve a similar problem at each epoch
with the updated perception on the system states. We use approximate dynamic programming
(ADP) (Powell, 2007) to solve the discretized optimal control problem. In particular, we use value
function approximation (VFA) is utilized to help make decisions at each stage, which is obtained
from iteratively performing value iteration.

To elaborate, we first define state as the collection of variables that fully captures the systems
status at the beginning of stage k′, and denote it by

ψk′ :=
(
θ(k′−1)∆,φ(k′−1)∆,R(k′−1)∆,γ(k′−1)∆,y(k′−1)∆

)
,∀k′ = k, . . . , K, k = 1, . . . , K, (4.42)

where y(k′−1)∆ is the collection of yi,(k′−1)∆,∀i ∈ I. We also denote the action, i.e. the collection
of decision variables at stage k′ by Ωk′ =

(
ωk′ ,µk′ ,γk′ , γ̃k′ , t̃k′ ,yk′

)
. At epoch k, for the current

and future stages k′ = k, . . . , K, the agency makes control decisions by solving the following
subproblem to achieve optimal solution to OCPk:

Ω∗k′ = argmin
Ωk′

Vk′+1 (ψk′+1 (ψk′ ,Ωk′)) +
k′∆∑
t′′=t′

∑
i∈I

α1Ni

∑
j∈I

∂gi(θi,t′′−1)

∂xj
γi,t′′γj,t′′rijφij,t′′−1

+ α2NiuidIi,t′′−1 + α3fi (γi,t′′) + α4hi (µi,t′′Ii,t′′−1) ,

(4.43)

42



s.t. (4.9), (4.18), (4.24)− (4.27), and (4.29)− (4.41),

where value function Vk′+1(ψk′+1) is defined as:

Vk′+1(ψk′+1) = min
Ωk′′ ,

k′′=k′+1,...,K

T∑
t′′=t′

∑
i∈I

α1Ni

∑
j∈I

∂gi(θi,t′′−1)

∂xj
γi,t′′γj,t′′rijφij,t′′−1

+ α2NiuidIi,t′′−1 + α3fi (γi,t′′) + α4hi (µi,t′′Ii,t′′−1) ,

∀k′ = k, . . . , K − 1, k = 1, . . . K − 1,

(4.44)

and
VK+1(ψK+1) = 0,∀ψK+1, (4.45)

where ψK+1 is the final state of the system. The value functions, by definition, should follow the
backward Bellman equation:

Vk′(ψk′) = min
Ωk′

k′∆∑
t′′=t′

∑
i∈I

[
α1Ni

∑
j∈I

∂gi(θi,t′′−1)

∂xj
γi,t′′γj,t′′rijφij,t′′−1

+ α2NiuidIi,t′′−1 + α3fi (γi,t′′) + α4hi (µi,t′′Ii,t′′−1)

]
+ Vk′+1 (ψk′+1 (ψk′ ,Ωk′)) ,∀k′ = k, . . . , K, k = 1, . . . K,

(4.46)

In conventional dynamic programming approach, to obtain the value function requires solving
the Bellman equation (4.46) for all possible states, which is computationally intractable for high
dimension continuous state spaces. We use value function approximation (VFA) techniques to
address such an issue. To be specific, we use an approximation to Vk′(ψk′), denoted as V̂k′(ψk′), to
help solve the subproblems (4.43). By iteratively taking sample paths and evaluating the “value” of
sample states at each stage, we try to obtain an increasingly accurate VFA, which known as value

iteration. We propose the following approach for value iteration, and use feed-forward neural
network (FNN) to approximate the value functions, for its theoretical applicability to fit arbitrary
shapes of functions. First, we denote the number of hidden nodes in the FNN as N0, and let s be a
parameter to control the batch size of the sample paths in each iteration.

To obtain a good approximation to the value functions stills require a large number of sample
paths in each iteration, which is due to the intrinsic complexity of the problem. However, while
generating sample paths, random feasible solutions can be easily obtained, which significantly
reduces the time on optimization using likely poorly trained VFAs as in conventional value iteration
approaches. Moreover, each sample path do not interfere with the others, which enables parallel
programing to further reduce the computation time.

43



Algorithm 1 Approximate dynamic programing

Step 1.1 Initialize the training set Vk = ∅,∀k = 1, . . . , K, set V̂K+1 = 0;

Step 1.2 For k = K, . . . , 2, do:

• Let Nk = N0s(K − k + 1), and generate a set of Nk different initial conditions
Ek = {el}l=1,...,Nk

;
• For l = 1, . . . , Nk, do:

– Let ψ0 = {1, el,0,1,0,Pq}, let k′ = 1;
– While k′ ≤ k − 1: i) generate a random feasible solution Ωk′ , ii) compute
ψk′+1 = ψk′+1 (ψk′ ,Ωk′); iii) let k′ ← k′ + 1;

– While k′ ≤ K: i) solve Bellman equation (4.46) with the approximated value
function V̂k′+1, to obtain the objective Vk′(ψk′) and the corresponding new
system state ψk′+1 (ψk′ ,Ω

∗
k′); ii) let Vk ← Vk ∪ {(Vk′(ψk′),ψk′)}; iii) let

k′ ← k′ + 1;
• For k′ = k, . . . , K, (re)train the FNN using Vk to obtain V̂k′ .

4.4 Numerical Experiment

In this section, we present the numerical results obtained from a semi-realistic case study.
We first validate the applicability of the latent model, and then demonstrate the results of the
optimization framework. Moreover, through extensive numerical experiments, we also examine
the sensitivity of the results with respect to the model parameters and input data.

4.4.1 Case study

We consider a college town whose population is composed of mostly faculties and students,
i.e., I = {s, f}, and a hypothetical disease which spreads quickly and diminishes relatively slowly.
Moreover, we assume a students/faculties ratio of 20, which is close to that of a public university,
and the population in each group is Ns = 20000 and Nf = 1000, respectively. Based on existing
researches including Kossinets and Watts (2006) and Srinivasan et al. (2006), real-life contact net-
works are more suitably described by degree distributions without heavy tailed property. Poisson
distribution is chosen as the degree distribution function for that it is not heavy-tailed and its wide
applications in the existing literature (Newman et al., 2001; Barthélemy et al., 2005; Volz, 2008).
We assume the following parameters for the mean degrees: λs,s = 7.5, λs,f = 0.6, and λf,f = 4.5,
where λi,j represents the average degrees of a group i node connecting to group j. Naturally, we
have λf,s = 12 due to degree conservation. The overall average degrees in the network is 8.5.
The disease parameters are given as follows: rs,s = 1.5 × 10−2 per day, rs,f = 5 × 10−3 per day,
rf,s = 5 × 10−3 per day, and rf,f = 8 × 10−3 per day; moreover, ui = 8 × 10−3 per day with
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ui,d = 5× 10−3 and ui,c = 3× 10−3 for i ∈ I. Therefore, the students have higher connectivities
among themselves compared to that among faculties, and they are much easier to be infected by
other students. However, an infected faculty may infect more people than an infected student.

We consider 1 day as a period and ∆ = 14 days as an epoch, and K = 6 epochs in total.
Therefore, the control horizon is T = 84 days. For the hypothetical epidemic with the presented
parameters, such a control horizon is appropriate. The observations on the infected fraction are
accumulated over each period to feed into the latent model.

The other parameters in the objective and in the solution algorithm are given as follows: ηi =

0.04, γ
i

= 0.01,∀i ∈ I; the action intensity-detection rate matrix A is a 2× 2 identity matrix, i.e.,
there are two independent screening actions, each of which quarantines one group. We consider
one resource type, and the cost for the screening actions cq,s = 20 and cq,f = 3 units of resource
per unit intensity for the two groups, respectively, with a total resource Bq,t = 0.08 units, ∀t.
Furthermore, the objective weights are α1 = $1.0, α2 = $10.0, α3 = $2.0, and α4 = $0.5. The
impact penalty function parameters are given as follows: as = 1000, af = 50, and bi = 150, ci =

300, di = 150, ∀i ∈ I. Finally, the batch size control parameter s = 50.
In the latent model, the mean of the prior distribution, namely ē, is randomly generated from

a uniform distribution with mean 2.5 · 10−3. Each element of the variance matrix Σ2
e is as well

randomly generated from another uniform distribution with mean 0.05. The ground-truth value of
the initial condition e is given as follows: φs,s(0) = 1 · 10−3, φs,f (0) = 2 · 10−3, φf,s(0) = 1 · 10−3,
and φf,f (0) = 0.5 · 10−3. Moreover, we assume the observations are unbiased, such that the
formulation of SEP2t can be adopted in the latent model.

The results of the natural disease process is presented in Figure 4.2. By the end of the 84-days
control horizon, the susceptible fraction of each group decreases to 0.3430 for students and 0.3834
for faculties, respectively, and a total accumulated infected population of 13,756 people. Moreover,
there are death tolls of 1097 and 50 people among the students and faculties, respectively. It leads
to a total cost of $25,226 in total, due to both infections and deaths. Therefore, without proper
infectious disease control, the result of the epidemic can be devastating.

The major computation burden is on obtaining the training data for VFAs, which requires
solving a large amount of nonlinear optimization problems. With the aforementioned parameter
settings, it takes approximately 1 hour on a 4-core CPU (i7-4800MQ CPU @ 2.70 GHz) laptop
with parallel computing to obtain the approximated value functions. Once the VFA is completed,
solving the latent model and the optimal control problem following the framework as shown in
Figure 4.1 is rather efficient and can be finished within 5 minutes.

After the VFAs are obtained, we run a total of 50 realizations of the control scheme to validate
the latent model as well as the control framework. In each simulation, a different prior distribution
of the initial condition is generated. Figure 4.3 demonstrates the good performance of the latent
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Figure 4.2: The epidemic dynamics of the system without disease control measures.

model. The relative error is computed as |ê−e|
|e| × 100%. Within 10 days, The relative error on the

initial condition is reduced to below 50% in 60% of the cases. Even if the prior distribution falls
far away from the ground-truth value, the estimation error is always reduced to below 95% with
the first few observations. Moreover, after 33 periods, the estimated initial conditions converge to
the ground-truth value within 1% error in over 90% realizations, which shows agreement with our
earlier conjecture, as suggested by Figure 4.3b.
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Figure 4.3: Convergence results of the latent model.

As a result, the average objective is reduced to $13,634 across the 50 simulations, with average
infections of 4,054 incidents, and a total death of 262 incidents. The objective is reduced by
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46.0% compared to the case without the control actions, with 70.5% less infections and 77.2% less
mortality counts. Therefore, the disease propagation is significantly mitigated with the applied
control actions. Moreover, the average cost due to the impacts caused by the control actions are
$217 and $6,741, respectively, which compose a significant portion of the total cost.

The quarantine resource allocation to each group in each decision epoch is presented in Figure
4.4. The usage of the quarantine resource reduces over decision epochs (except for epoch 1, which
is likely due to biased perception of the system state), and it stops screening the population in the
last two epochs. The reasons are two-folds: i) screening the population at an earlier stage is more
effective, because high-degree susceptible individuals would be infected sooner than the others
and then infect more of the others, and timely quarantine can better preserve these high-degree
individuals than delayed quarantine; ii) the infected population have grown to a significant amount
in the later epochs such that quarantine the infected leads to a remarkably higher cost. Moreover,
most of the quarantine efforts are spent on the students group. This might look counter-intuitive
at the first glance, as the faculties have a high average degree. It is because not only that students
require a lower screening cost per capita (i.e. cq,s/Ns < cq,f/Nf ), but also that disease transmission
among students are more frequent (high average degree) and faster (high unit infection rate).
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Figure 4.4: Total quarantine resources allocated to each group over control epochs, averaged over
50 realizations.

Moreover, the health advisories are usually posted at a relatively early stage of the control
horizon. For example, in 21 of the simulations, the advisories to the students are posted at the
beginning of the first epoch, i.e., t̃s = 1 day, with an average intensity of γ̃s = 0.5012; in another
18 simulations, t̃s = 15, and γ̃s = 0.4067, and in the rest of the simulations the advisory is posted
to students at the third epoch with γ̃s = 0.3965. These results are intuitive: the later the advisory
is posted, the higher intensity it requires to achieve the same effect in mitigating the disease prop-
agation, and the same phenomenon is observed on the faculty group as well. Furthermore, for the
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faculty group, the advisory is almost always posted no earlier than that to the students, i.e. t̃s ≤ t̃f

in 49 simulations, and it is strictly later in 20 of these simulations. The average advisory posting
times are at day 12.2 and at day 18.6, with mean intensity of 0.4442 and 0.4536 to students and to
faculties, respectively. The slight delay of advisories to faculties is interesting but also intuitive:
as the effect of advisories would be diminishing over time, a delayed advisory renews the effect
of the waned control and might eventually outperform than posting all advisories simultaneously.
Finally, for the same reason that quarantine resources are mostly allocated to students, the health
advisories are posted to them prior to that to faculties as well.

4.4.2 Sensitivity analysis

We perform several expriments to test the sensitivity of the results, validate the robustness of
the framework, and to reveal operational insights on these two control strategies. We change the
diminishing rate of the epidemic warning ηi, the objective weighing parameters αm, the resource
budget for quarantine Bq,t, the connectivity of the network λij , as well as the disease transmission
and death rates rij’s and ui,d’s, respectively, and present the objective and operation decisions in
these cases. We denote the benchmark case in the previous subsection as Case 0, and compare the
results of the different cases under various settings. The results are averaged over 50 realizations
in each case, and are summarized in Table.4.1.

Table 4.1: Sensitivity analysis results of optimal epidemic control with quarantine and health ad-
visories.

Cases
Advisory decisions Quarantine resource

allocation (%)
Costs (×103$)

Posting time t̃i (day) Posting intensity γ̃i Infection
cost

Death toll
cost

Quarantine
impact

Advisory
impact

Total
Students Faculties Students Faculties Students Faculties

0. (benchmark) 12.2 18.6 0.44 0.45 51.8 6.5 4.05 2.62 0.22 6.74 13.63
1. (ηi = 0.02) 4.9 49.2 0.48 0.71 28.9 7.5 2.08 1.44 0.21 10.81 14.54
2. (ηi = 0.06) 9.1 13.0 0.31 0.25 44.7 10.6 5.02 3.00 0.31 6.27 14.60
3. (α3, α4 reduces by 50%) 4.6 7.7 0.22 0.22 69.8 10.8 2.21 1.33 0.16 5.50 9.21
4. (α3, α4 increases by 50%) 6.3 25.9 0.59 0.33 33.0 16.3 5.89 3.92 0.78 7.60 18.18
5. (λs,s = 3.0) - 33.5 - 0.86 27.0 2.5 0.44 0.46 0.03 0.08 1.00
6. (λs,s = 12.0) 13.0 22.5 0.09 0.35 56.7 7.2 12.92 7.83 1.95 13.41 36.11
7. (Bq,t = 0.04) 5.8 6.0 0.46 0.24 66.0 4.7 4.21 2.61 0.22 6.76 13.79
8. (Bq,t = 0.12) 6.0 6.0 0.41 0.28 61.7 4.6 3.29 2.02 0.47 7.61 13.39
9. (rij reduces by 50%) - - - - 52.8 4.7 0.75 0.69 0.10 0.00 1.54
10. (rij increases by 50%) 11.9 22.6 0.12 0.26 61.3 15.6 9.93 6.04 2.11 13.15 31.23
11. (ui,d reduces by 50%) 14.4 25.9 0.48 0.39 50.6 14.4 4.90 1.56 0.30 5.93 12.69
12. (ui,d increases by 50%) 5.2 13.9 0.39 0.31 47.0 6.0 2.96 2.65 0.19 7.70 13.50

The outcome of all these cases fall within our expectations, and the decisions yields some inter-
esting insights on the model. Comparing the benchmark case with the Cases 1 and 2, it is observed
that the diminishing rate of the health advisory effect ηi has a complex impact on the objective.
While a lower diminishing rate (Case 1) prevents more infections and further mitigates the disease
propagation, the detrimental impact caused by the control measure is also non-negligible. There-
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fore, the objective could be higher with either a lower or a higher diminishing rate ηi. Moreover,
the lower diminishing rate the longer time interval between the two advisory posts, which is as
well expected as the effect of the early post lasts longer.

Cases 3 and 4 evaluate the impacts of the objective weights. The result turns out to be quite
sensitive to these parameters. With a lower weight of the control approach penalties, the decision-
maker can adopt stronger controls: in Case 3, the advisories are posted earlier than the benchmark
case at a higher intensity level; in Case 4, the advisory posting decisions are more complex, but
the cost of advisory impact indicates that these advisories are less intense than the benchmark case
(6.74× 150% > 7.60). Moreover, the quarantine resource usage is monotonically decreasing with
the weight factors α3.

When the average degree among the students is changed by ±4.5, respectively, the control de-
cisions and the results are completely different. In Case 5, both the impacts of disease propagation
and controls have been significantly mitigated because of the reduced network connectivity; the
result is on the contrary in Case 6, where not only the impacts of disease propagation is drastically
increased, but in order to preserve the population from an even worse situation, stronger control
actions are adopted which leads to higher penalties as well. Moreover, the impact of quarantine
resource amount is negligible on both the control decisions as well as the objective, which is likely
due to that the resource level is still too low to cause significant changes.

Furthermore, the disease transmission rate has a significant impact on the results as shown by
Cases 9 and 10, similar to that of the connectivity among students, which is as expected. However,
Cases 11 and 12 suggests that the effect of the death rate is more complex. For one thing higher
death rate leads to higher mortalities, and on the other hand it also mitigates the disease propagation
process such that the infected number is reduced. As a result of these mutually canceling effects,
the total objective is not significantly changed.

As a final observation, we find that the first health advisory is always posted to the students
group at a relatively early stage of the epidemic, while that to the faculties could be delayed and
the delay depends on the diminishing rate of the effect of the first advisory. Moreover, the students
are always allocated with more quarantine resources in these experiments.
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CHAPTER 5 – DYNAMIC VACCINATION GAME

5.1 Introduction

While the human society are freed from the fear of many infectious diseases in the modern
world, largely thanks to the invention of vaccines, people start to cast vaccines aside as an option
rather than a necessity (The College of Physicians of Philadelphia, 2018). A handful of reports
show that due to various reasons, many people may choose to avoid vaccination during an epi-
demic event (Sun, 2018; Thomas, 2018; Calandrillo, 2003; Myers and Goodwin, 2011; Chor et al.,
2009; Tozzi et al., 2009). Therefore, “vaccine-phobia” is not merely a subculture among a certain
group of people, but rather a serious issue that demands attention in the public health industry.
During an epidemic outbreak, each individual makes its own vaccination decision to minimize its
expected disutility from both vaccine-phobia and the risk of infection. Such a problem is known as
a vaccination game, as people’s vaccination decisions not only affect their own disutilities but those
of all others through probabilistic disease transmissions. It is important to study the complex be-
havior of individuals in a vaccination game so as to understand the development and consequence
of an epidemic outbreak, and in turn to reveal insights on epidemic controls.

This chapter investigates the autonomous vaccination behavior of a heterogeneous mixing pop-
ulation. To stay focused, we consider population heterogeneity in terms of a person’s number of
contacts, while every individual shares the same level of vaccine-phobia. The rest of this chapter
is organized as follows. Section 5.2 presents the developed SIRVA (susceptible-infected-removed-
vaccinated-activated) dynamics model and the analytical results on the final epidemic size; some
properties of the vaccination game equilibrium are also presented, based on which a heuristic solu-
tion approach to solve for the equilibrium solution is proposed. Next, Section 5.3 discusses several
different vaccination schemes, including delayed and non-differential vaccinations. Section 5.4.2
presents the case study and the sensitivity analysis, and discusses the insights revealed by the ex-
periments.
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5.2 Methodology

5.2.1 Vaccination dynamics

We consider a dynamic vaccination game in a large population with heterogeneous degree dis-
tributions, where the natural disease propagation follows an SIR process. In order to accommodate
the vaccination process, we further define two compartments based on individuals’ health status:
vaccinated (V) and activated (A). A susceptible node becomes vaccinated once being injected with
a vaccine and thus obtaining immunity. When a vaccinated node receives an infectious contact,
instead of becoming infected (like a susceptible node), it activates its immunity and thus become
activated. The transition among the different health states are summarized below:
• A susceptible node becomes infected upon receiving an infectious contact from one of its

neighbors;
• An infected individual deceases or recovers by itself (with immunity) following the natural

removal rate;
• A susceptible node becomes vaccinated at a certain rate (based on its own decision process);
• A vaccinated node becomes activated upon receiving an infectious contact from one of its

neighbors.a

We now use S(t), I(t), R(t), V (t), A(t) to denote the fraction of susceptible, infected, re-
moved, vaccinated, and activated individuals at time t, respectively.b The size of population is
fixed, such that the equivalent of (2.7) now becomes:

S(t) + I(t) +R(t) + V (t) + A(t) = 1,∀t ≥ 0. (5.1)

Furthermore, we differentiate nodes by their degrees; denote Xk as the fraction of degree-k nodes
in compartment X ∈ {S, I, R, V,A}. Naturally, we have

∑K
k=1Xk(t) = X(t),∀t ≥ 0, X ∈ {S, I, R, V,A} , (5.2a)∑
X∈{S,I,R,V,A}Xk(t) = pk,∀t ≥ 0, k = 1, . . . , K. (5.2b)

where K ≥ 0 is the maximum possible degree of a node.
In the vaccination game, we consider the Nash game; i.e., each individual tries to minimize

aWe assume perfect vaccination without vaccine failures, such that vaccine uptake guarantees immunity. This
assumption can be easily relaxed in the dynamics model, but in order to stay focused, we will not incorporate the risk
of vaccine failures in this dissertation.

bIt might appear cumbersome to differentiate the activated from the vaccinated as they both represent the same
immunized status. However, it is quite necessary to do so, because the model described by (2.3) - (2.7) focuses on the
status of edges (i.e., whether or not they have passed infectious contacts), and hence the status of the nodes can only
be derived from the edge status.
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its own expected penalty by deciding its vaccination rate, given others’ vaccination decisions.
We use vk(t) to denote the average vaccination rate of degree-k nodes at time t. The expected
penalty includes the psychological penalty from vaccine-phobia (if vaccinated), and the penalty of
eventually getting infected (if not vaccinated).

For notational brevity, in the rest of this section we omit the time argument t for all time
dependent variables such as θ, φ, vk, Sk, Ik, Rk, Vk and Ak unless otherwise specified. Now we
study the status of a degree-k node who has not received any infectious contacts from its neighbors.
The fraction of such nodes is given by pkθk, and these nodes can either be susceptible or vaccinated,
which yields the following equation:

Sk + Vk = pkθ
k,∀t ≥ 0, k = 1, . . . , K. (5.3)

The dynamics of Sk contain two parts: the vaccinations and the infections of the degree-k popula-
tion, respectively. The former is simply −vkSk. Moreover, the test node being vaccinated or not
does not affect the infectious contacts it receives, and thus the node being vaccinated or suscep-
tible is random (as long as there is no infectious contact yet). Therefore, the latter is the rate of
reduction among those who have not received infectious contacts, d

(
pkθ

k
)
/dt, times the fraction

of susceptible nodes, Sk/pkθk. Furthermore, the dynamics of θ still follow (2.3) by definition. As
such, we have

Ṡk = −vkSk +
d
(
pkθ

k
)

dt

Sk
pkθk

=

(
−vk − kr

φ

θ

)
Sk,∀t ≥ 0, k = 1, . . . , K. (5.4)

The dynamics of φ, i.e. (2.4), should be slightly modified. Recall its dynamics include three
parts: (i) transmission of disease along edges to the test node, (ii) removal of the infected neighbors,
and iii) new infections of the susceptible neighbors. Vaccination of the susceptible does not affect
the already infected nodes nor occurrence of infectious contacts, thus the first two terms remain
unchanged. The third term is essentially the rate at which a susceptible neighbor of the test node
becoming infected, i.e., infectious contacts happening to the neighbor while the neighbor is not
vaccinated. The probability that a random neighbor of the test node is a degree-k node who has not
received any infectious contacts from others is kpkθk−1/g′(1). The rate at which infectious contacts
happen to this neighbor is then d

(
−kpkθk−1/g′(1)

)
/dt. Using the same argument that leads to

(5.4), the rate of the neighbor being infected is −
(
Sk/pkθ

k
)
· d
(
kpkθ

k−1/g′(1)
)
/dt. Therefore,

(2.4) becomes

φ̇ =

(
−r − u+

r

g′(1)θ2

K∑
k=1

Skk(k − 1)

)
φ.∀t ≥ 0. (5.5)

Finally, a degree-k vaccinated node becomes activated at the same rate as a degree-k susceptible
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node becomes infected. Therefore,

Ȧk = kr
φ

θ
Vk,∀t ≥ 0, k = 1, . . . , K, (5.6)

To this point, we have formulated the complete system dynamics with (2.3), (2.5), and (5.1)-
(5.6). One can evaluate the impacts of the population’s vaccination decisions by iteratively com-
puting the dynamic equations over time from the beginning of the epidemic to the end. This is
computationally burdensome for a large population and cannot easily reveal insights on the vac-
cination game. In light of this, we further assume that people’s vaccination strategies vk follow a
special form, such that the outcome of the epidemics can be derived analytically in closed form.
This will be the focus of the remainder of this paper.

5.2.2 Final epidemic size

In reality, people often determine their vaccination rate based on the current propagation rate
of the disease. Therefore, we consider a vaccination strategy in which the vaccination rate is
proportional to the fraction of infectious contacts that is going to happen. From now on, we use
an explicit argument t for all the time-dependent variables so as to distinguish them from time-
invariant parameters. Then the vaccination strategy is presented as follows:

vk = µkr
φ

θ
,∀t ≥ 0, k = 1, . . . , K, (5.7)

where µk ≥ 0 is a constant parameter determined by the degree-k population. It reflects the likeli-
hood of the population taking vaccines, and we call it vaccine adoption level.c The higher vaccine
adoption level µk among the population, the lower infection risk but a greater psychological suf-
fering (due to the vaccine-phobia).

With (5.7), we have the following equation:

Sk = pkθ
k+µk ,∀t ≥ 0. (5.8)

Readers can easily verify this by taking derivative over (5.8) and comparing it with (5.4).
Then we use the same approach as in Miller (2011) to obtain the final epidemic size. First,

we denote θ(∞) as θ∞, and the total immunized fraction as M , i.e., M = V (∞) + A(∞) =

cHere µk represents an averaged vaccine adoption level to capture the overall vaccination rate of the degree-k
population. Yet in fact each individual could make its own decision and their vaccine adoption levels may differ.
However, as we will show later, individual decisions should be equal under equilibrium for nodes with the same
degree. Thus it is safe to use an aggregated rate in the following derivations.
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∑
k

∫∞
0
vk(τ)Sk(τ)dτ . With (5.7) and (5.8), we have

M =
K∑
k=1

µkpk
k + µk

(
1− θk+µk

∞
)
. (5.9)

By the end of the epidemic, the degree-k uninfected population is the summation of susceptible,
vaccinated, and activated nodes:

Sk(∞) + Vk(∞) + Ak(∞) =
pkkθ

k+µk
∞ + µkpk
k + µk

,∀k = 1, . . . , K. (5.10)

Moreover, we let π be the probability that a random neighbor of the test node has never been
infected by the end of the epidemic, given that the test node does not transmit the disease. This
could happen under two mutually exclusive events: (i) no infectious contact has ever happened to
this neighbor, and (ii) this neighbor has already been vaccinated when an infectious contact arrives,
i.e. this neighbor is activated. The first probability is given by g′(θ∞)/g′(1). The second can be
computed via integrating

∑K
k=2

Vk
pkθk

d
(
−pkkθ

k−1

g′(1)

)
/dt from t = 0 to∞. The result is presented as

follows:

π =
1

g′(1)

(
g′(θ∞) +

K∑
k=2

pkk

(
µk

k + µk − 1
− θk−1

∞ +
k − 1

k + µk − 1
θk+µk−1
∞

))
. (5.11)

We further denote the transmissibility of disease as T = r
r+u

. It gives the probability that, con-
ditional on the fact that one end of a random edge is infected, an infectious contact happens along
this edge before that infected end is removed (recall, that both events follow Poisson processes).
The probability that a random edge of the test node has never transmitted an infectious contact is
then 1− T (1− π), which, from (5.11), yields the following nonlinear equation:

θ∞ = 1−T +
T

g′(1)

(
g′(θ∞) +

K∑
k=2

pkk

(
µk

k + µk − 1
− θk−1

∞ +
k − 1

k + µk − 1
θk+µk−1
∞

))
. (5.12)

The solution can be easily found by searching from 1 to 0 with a small step size. Then, the final un-
infected population, from (5.10), as well as the final epidemic size, R(∞) = 1−(S(∞)+V (∞)+

A(∞)), can be computed accordingly. Moreover, the fraction of nodes in other compartments in
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the final state can be computed as follows:

Ak(∞) = pk

(
µk

k + µk
− θk∞ +

k

k + µk
θk+µk
∞

)
,∀k = 1, . . . , K, (5.13)

Ik(∞) = 0,∀k = 1, . . . , K, (5.14)

Rk(∞) = pk

(
1− kθk+µk

∞ + µk
k + µk

)
,∀k = 1, . . . , K. (5.15)

5.2.3 Vaccination game

We are now ready to formulate the vaccination game that determines µk for each degree-k
subpopulation. We denote µ = {µk}∀k as the overall vaccine adoption level across the population.
Since the vaccine guarantees perfect immunity, the probability of a degree-k individual i eventually
getting infected is the probability that it is infected conditional on it is not vaccinated (NV) times
the probability that it is not vaccinated. Given its own vaccine adoption level, denoted µi+k , and all
others’ decisions, denoted µi− = {µk′}∀k′ 6=k

⋃{
µi−k
}

, the infection probability of i isd:

Pr
{

Infected
∣∣µi+k ,µi−, k}

=Pr
{

Infected
∣∣NV, µi+k ,µ

i−, k
}
Pr
{

NV
∣∣µi+k ,µi−, k}

=Pr
{

Infected
∣∣NV,µi−, k

}
Pr
{

NV
∣∣µi+k ,µi−, k} ,∀k = 1, . . . , K.

We assume f(·) is a function that captures the psychological penalty caused by vaccine-phobia.
Given people’s vaccine-phobia level, the penalty function f is identical for every individual, strictly
increasing w.r.t. µk, and satisfying f(0) = 0. We assume that the total expected penalty (or disu-
tility) for a degree-k node i is a linear combination of its own psychological penalty and infection
risk, as follows:

Ei
k

[
µi+k ,µ

i−] = α1f(µi+k ) + α2Pr
{

Infected
∣∣µi+k ,µi−, k} ,∀k = 1, . . . , K, (5.16)

where α1, α2 ≥ 0 are weights.
In a large population, the vaccination decision of one individual does not significantly affect

the overall vaccination coverage, i.e., µi− is approximately the same for all i’s, and hence approx-
imated by µ. The expected penalty of i can be written as:

Ei
k

[
µi+k ,µ

i−]
≈α1f(µi+k ) + α2Pr

{
Infected

∣∣NV,µ, k
}
Pr
{

NV
∣∣µi+k ,µ, k} , ∀k = 1, . . . , K.

(5.17)

dAgain, we adopt the perfect vaccination assumption here, such that only the unvaccinated individuals could be
infected. The infection probability should be derived differently if there is non-negligible risk of vaccine failures.
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Since all not-vaccinated degree-k nodes are probabilistically identical, the probability for one
of them to get infected shall be simply the following ratio:

Pr
{

Infected
∣∣NV,µ, k

}
=

Rk(∞,µ)

Rk(∞,µ) + Sk(∞,µ)
,∀k = 1, . . . , K. (5.18)

Moreover, we need to find out the probability of i not getting vaccinated, Pr
{

NV
∣∣µi+k ,µ, k}. We

first denote the probability of node i being in status X at time t as X i
k(t), ∀X ∈ {S, I, R, V,A}.

Conditional on that i is susceptible at time t, the vaccination rate is vi+k , and the infection rate is the
same with all other degree-k susceptible nodes. Therefore, the dynamics of Si+k follow a similar
form as (5.4):

Ṡik =

(
−vi+k − kr

φ

θ

)
Sik,∀t ≥ 0, k = 1, . . . , K. (5.19)

We easily obtain Sik(t) = θk+µi+k as a solution. The probability that i eventually being vaccinated
or activated is

∫∞
0
vi+k S

i
kdt, which leads to the following equation:

Pr
{

NV
∣∣µi+k ,µ, k} =

k + µi+k (θ∞ (µ))k+µi+k

k + µi+k
,∀µi+k ,µ ≥ 0, k = 1, . . . , K. (5.20)

(5.20) is a strictly decreasing and strongly convex function with respect to µi+k for any θ∞ ∈ (0, 1),
which can be verified from its first and second order derivatives. If f(µi+k ) is convex with respect to
µi+k , (5.17) is also strongly convex with respect to µi+k for any α1, α2 > 0. In this case, there exists
a unique µi+∗k that minimizes the expected penalty for i, and it is the best response of individual i
given all others’ decisions:

Bi

(
µi−
)

= µi+∗k = argmin
µi+k

Ei
k

[
µi+k ,µ

]
,∀k = 1, . . . , K. (5.21)

These results naturally lead to the following proposition, which highlights the Nash Equilibrium
among the subpopulation with the same degree.

Proposition 4. For any fixed average vaccination rates of all other subpopulations, µk′rφ/θ, ∀k′ 6=
k, and ∀α1, α2 > 0, if the penalty function for vaccination f(x) is convex, the vaccination rates

among all degree-k nodes should be equal at Nash Equilibrium; i.e., Bi (µ
i−) = Bj (µj−) if i and

j both have degree k,∀k = 1, . . . , K.

Proposition 4 states that the optimal vaccination rate of nodes with the same degree should be
equal under equilibrium. This is as well intuitive because nodes with the same degree are proba-
bilistically identical. The following proposition further speaks to the existence and uniqueness of
such a solution.
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Proposition 5. (Sufficient condition) Suppose f(x) is a convex function and Proposition 4 holds.

The solution to following equations:

α1
∂f(µ∗k)

∂µk
+ α2

Rk(∞,µ∗)
Rk(∞,µ∗) + Sk(∞,µ∗)

∂

∂µk

(
k + µ∗kθ

k+µ∗k∞

k + µ∗k

)
= 0, k = 1, . . . , K, (5.22)

µ∗ ≥ 0, (5.23)

denoted µ∗ = {µ∗k}∀k, exists and characterizes the vaccination decisions among the entire popula-

tion under Nash Equilibrium. Moreover, if f ′(0) = 0 and f is strongly convex, there always exists

a unique µ∗ that satisfies (5.22) and (5.23).

Proof. (5.22) are simply the first order conditions of an individual’s objective function, which
come naturally with the equilibrium definition and Proposition 4. To show the existence and
uniqueness of the equilibrium, we first observe that for any µ ≥ 0, and any fixed θ̃∞ ∈ [θ∞ (0) , 1),
where θ∞ (0) is the final state of θ under µ = 0, there always exists a unique solution µ̃k to

α1
∂f(µ̃k)

∂µk
+ α2

k − kθ̃k+µk
∞

k + µkθ̃
k+µk
∞

∂

∂µk

(
k + µ̃kθ̃

k+µ̃k
∞

k + µ̃k

)
= 0, k = 1, . . . , K. (5.24)

This is because while f ′(µk) is an strictly increasing function from 0 (at µk = 0), the second term is
also strictly increasing with a negative starting value at µk = 0, and it approaches 0 when µk →∞.
Therefore, there always exists a unique solution to (5.24), and we can write it as a function of θ̃∞,
namely µ̃k

(
θ̃∞

)
, k = 1, . . . , K.

Moreover, by taking partial derivatives on (5.24) over θ̃∞, we see that µ̃k should be continuous
and strictly decreasing with θ̃∞, ∀k = 1, . . . , K. Furthremore, θ∞(µ) is continuous and mono-
tonically increasing with respect to µk,∀k = 1, . . . , K. Therefore, there must exists a unique
θ̃∞ ∈ [θ∞ (0) , 1), such that θ∞ (µ∗) = θ̃∞, where µ∗ =

{
µ̃k

(
θ̃∞

)}
∀k

.

Proposition 5 characterizes the vaccination game equilibrium condition using a simple first
order condition, and proposes a sufficient condition for the existence and uniqueness of the equi-
librium. The requirements that f ′(0) = 0 and f be strongly convex are essentially stating that
the marginal psychological penalty of vaccination increases with the vaccine adoption level, which
could be easily satisfied in many real-world cases.e

It is not possible to directly obtain an analytical solution to the equilibrium, however, because
θ∞ lacks an explicit form in terms of µ∗, and requires solving the non-linear equation (5.12). In

eThe convexity of the penalty function is analogous to an individual’s risk aversion behavior in general, which is
represented by a concave utility function, or equivalently a convex disutility function.
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the next subsection, we utilize Proposition 5 to design a heuristic algorithm that solves for the
equilibrium point.

5.2.4 Solution algorithm

The basic idea of the heuristic solution algorithm is to iteratively find the optimal vaccine
adoption level for a constant value of θ∞, and then update θ∞ with the new vaccination rate. Given
θ∞ in each iteration, the problems are convex so the optimal vaccination rates are found via a
bisection search; then θ∞ is updated by solving (5.12).

Algorithm 2 Vaccination game equilibrium solver

Step 2.1 Set n = 0, µ(n) = 0. Solve for θ(n)
∞ = θ∞

(
µ(n)

)
and Rk

(
∞,µ(n)

)
with (5.12) and

(5.15), respectively, and solve for µ̂k such that α1f (µ̂k) = α2Rk

(
∞,µ(n)

)
, ∀k;

Step 2.2 Use 0 and µ̂k as the lower and upper bounds, respectively, and perform bisection search
to find the solution µ(n+1)

k to the following equations:

α1

∂f
(
µ

(n+1)
k

)
∂µk

+ α2

k − k
(
θ

(n)
∞

)k+µ
(n)
k

k + µ
(n)
k

(
θ

(n)
∞

)k+µ
(n)
k

∂

∂µk

k + µ
(n+1)
k

(
θ

(n)
∞

)k+µ
(n+1)
k

k + µ
(n+1)
k

 = 0,

k = 1, . . . , K.

(5.25)

Step 2.3 Solve for θ(n+1)
∞ using (5.12) with µ(n+1);

Step 2.4 If any of the following conditions are satisfied, terminate and return µ(n+1); otherwise,
let n← n+ 1 and go to Step 1. The termination conditions include:

• Maximum iteration number is reached;

•
∣∣µ(n+1) − µ(n)

∣∣ ≤ ε, where ε is a user-defined convergence threshold; and

•
∣∣∣θ(n+1)
∞ − θ(n)

∞

∣∣∣ ≤ ε.

In each iteration, we need to solve K nonlinear equations as suggested by (5.25), which might
appear formidable when K is large. Luckily, existing research show that real-life contact networks
are more suitably described by degree distributions without a heavy tail (Kossinets and Watts,
2006; Srinivasan et al., 2006), which means the probability of k exceeding a finite large number
can be neglected. Moreover, bisection search solves each one of the one-dimensional nonlinear
equations fairly efficiently.
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Although theoretical convergence of the above algorithm is not guaranteed, it is not difficult to
see that the algorithm terminates when the equilibrium point is reached. In fact, good convergence
performances are observed through intensive experiments in many realistic Nash game contexts. In
addition, we also found that the convergence and/or stability of the algorithm is rather insensitive
to the step size.

5.3 Other Vaccination Schemes

In the dynamic vaccination game, we have implicitly assumed that people vaccinate them-
selves during the course of the epidemic outbreak (i.e., called delayed vaccination), and people
make different decisions based on degree heterogeneity (i.e., called heterogeneous vaccination).
Note, however, that in the real world, people may also choose vaccination prior to the onset of
the outbreak (which will be called early vaccination), and/or enforce a vaccination rate indiscrim-
inatively (e.g. vaccination programs enforced by a public health agency, which will be called
homogeneous vaccination). While it is expected that early vaccination should outperform its de-
layed counterpart, we aim to quantitively measure the impacts caused by the delay and in so doing
provide useful insights for decision makers.

To evaluate the impacts of these alternative vaccination options, we compare the following
three schemes (I) early and homogeneous vaccination; i.e., prior to the disease outbreak, a frac-
tion of M = V (∞) + A (∞) population are randomly vaccinated regardless of their degrees; (II)
early and heterogeneous vaccination; i.e., prior to the disease outbreak, a (Ak(∞) + Vk(∞)) /pk

fraction among the degree-k population are vaccinated, ∀k = 1, . . . , K; and (III) delayed and
homogeneous vaccination; i.e., during the epidemic propagation process, the population are vacci-
nated homogeneously following the same total rate as the vaccination game, i.e., there is a fraction
of
∑

k vk(t)Sk(t)dt susceptible individuals vaccinated in the time interval [t, t + dt), ∀t ≥ 0. In
each of these schemes, the total number of individuals eventually receiving vaccination is set to be
the same as that of the dynamic vaccination game in the previous section. However, the disease
propagation process and the final epidemic size may be different.

We first follow Newman (2002) to compute the final epidemic size of Scheme I. The vaccina-
tion scheme is equivalent to randomly removing a fraction of M nodes from the network before
the disease starts to propagate. After removing these nodes, not only the total number of nodes,
but also the degree distribution in the remaining network changes. To find the new degree distri-
bution in the remaining network, we note that randomly removing M fraction of nodes from the
network is equivalent to removing M fraction of the stubs. The probability of a degree-k node
having m stubs connected to a remaining stub is given by a binomial distribution with probability(
k
m

)
(1 − M)mMk−m. Then the degree generating function of the remaining nodes, denoted as
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g1(x), is:

g1(x) =
∑
m

xm
∑
k

pk

(
k

m

)
(1−M)mMk−m

=
∑
k

pk
∑
m

(
k

m

)
(x(1−M))mMk−m

=
∑
k

pk (x(1−M) +M)k

= g (x(1−M) +M) .

(5.26)

The same result is also derived in Buldyrev et al. (2010).
When the infectious disease starts to propagate in the network, there are two possibilities: (i)

there are only local outbreaks such that the epidemic size does not scale with the population;
and (ii) there is a pandemic outbreak such that a single disease seed leads to a giant connected
subnetwork of infected nodes. Newman (2002) presents the critical condition on the disease trans-
missibility to determine whether a pandemic outbreak could happen; i.e., a pandemic outbreak
may occur only when T > Tc, where

Tc =
g′1(1)

g′′1(1)
=

g′(1)

(1−M) g′′(1)
. (5.27)

If there is no pandemic outbreak, the average number of infected nodes, is given by:

s0 = 1 +
Tg′1(1)

1− Tg′′1(1)/g′1(1)
= 1 +

T (1−M) g′(1)

1− T (1−M) g′′(1)/g′(1)
. (5.28)

Otherwise, if the pandemic outbreak occurs, the fraction of the giant infected subnetwork out of the
unvaccinated population is given by 1− g1(1 + (y− 1)T ), where y is the solution to the following
self-consistency relation:

y =
1

g′1(1)
g′1(1 + (y − 1)T ). (5.29)

Then the following equation yields the pandemic size in terms of fraction among the original
population:

s1 = (1−M) (1− g1 (1 + (y − 1)T )) . (5.30)

Moreover, the average outbreak size among the nodes not belong to be giant subnetwork is still
given by (5.28).

For Scheme II, the population is heterogeneously vaccinated. Although there exists a similar
analytical approach in finding the final epidemic size, e.g. as in Huang et al. (2011), it requires
the vaccination probability of nodes to follow a certain special form. Therefore, in this paper, we
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will simply use stochastic simulations to compute the system evolution and the final epidemic size.
Finally, we note that Scheme III is a special case of dynamic vaccination. Hence, the outcome of
Scheme III can be easily computed using the developed SIRVA dynamics model.

5.4 Numerical Results

In this section, we first validate the proposed SIRVA dynamic model (Eqs. (2.3), (2.5), and
(5.1) - (5.6)) as well as the derived final epidemic size (Eqs. (5.11) and (5.12)), by comparing
these analytical formulas with agent-based simulation outcomes. Then we present the results of the
vaccination game and evaluate the impacts of delayed and homogeneous vaccinations. Sensitivity
analysis is then conducted to reveal interesting insights.

The benchmark case involves a population with a Poisson degree distribution and a hypothetical
epidemic event with moderate disease transmissibility. Poisson distribution is chosen because it
does not possess heavy-tailed properties and has been widely recognized in the existing literature
(Newman et al., 2001; Barthélemy et al., 2005; Volz, 2008). The average degree g′(1) = 7, with a
cutoffK = 22 (such that P (k ≥ K) ≤ 10−5). The disease parameters are as follows: the infection
rate r = 0.01, the removal rate u = 0.01, and consequently the disease transmissibility T = 0.5.
Moreover, the initial condition at time t = 0 is set as follows: θ(0) = 1.0, and φ(0) = 0.001.

5.4.1 Model validation

In the agent-based stochastic simulations, configuration model random networks are built fol-
lowing Molloy and Reed (1995), where open edges are generated and assigned to the nodes fol-
lowing the degree distribution, and then randomly paired up with other open edges. The number
of nodes (i.e., the population size) is set to be 104; in every simulation, initial disease seeds are
randomly located at 10 of these nodes.

We perform a total of 50 simulations, each with a new realization of network topology and ini-
tial disease seeds. In each discretized time step (e.g., a day), disease transmission, node removal,
and node vaccination, and node activation are randomly simulated with corresponding probabili-
ties. The vaccination rate follows (5.7), with µk = 0.4k, ∀k. In the simulations, since θ and φ are
virtual quantities which cannot be measured directly, we use the following approximation of φ/θ
to compute vk:

r
φ

θ
≈ ∆I∑

k kSk
, (5.31)

where ∆I is the fraction of recent infections.
The simulation results can be compared with those from the system dynamics equations, as
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Figure 5.1: Compare simulation with system dynamic equations and theoretical final states.

well as the analytical formulas (5.12) and (5.11). The colored dots in Figure 5.1 show results from
the 50 stochastic simulations, sampled every 50 days. While these simulated samples show some
variations in the early stages of the simulation, the final state of the epidemic converges fairly well
to the same value across all simulations: the total fraction of immunized population is 0.2687,
that of the remaining susceptible is 0.0510, and that of the removed is 0.6803. The results from
system dynamics equation coincide well with the simulation results: the final epidemic size R(∞)

computed from (2.3), (2.5), and (5.1)-(5.6) is 0.6786, which is only 0.3% different from that of the
simulations, and the fraction of remaining susceptible is 0.0501. Considering the stochasticity of
the simulations, the error shows excellent agreement between the SIRVA dynamic model and the
simulations. In fact, we believe the relative difference will further reduce if the population size
increases. Furthermore, Eqs. (5.12) and (5.11) can be used directly to compute θ∞ = 0.6738 and
the final epidemic size equals 0.6780. The relative error between the theoretical final epidemic
size and that of the system equations is negligible regardless of initial condition of φ. These results
give us reasonable confidence to use the established systems dynamics models and the derived
analytical results to study vaccination games.
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5.4.2 Vaccination game results

We proceed to present the results of a hypothetical vaccination game with the same population
and disease. For convenience, we set the weight factors α1 = 10−4 and α2 = 1. The penalty for
vaccination is set to be a polynomial function in the form of f(x) = xb where b = 2. As such, f(x)

is a monotonically increasing function, and it satisfies the equilibrium uniqueness requirements in
Proposition 5, thus the vaccination game has a unique equilibrium solution. The heuristic algorithm
terminates after 11 iterations when ε reaches 1× 10−4.
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Figure 5.2: Validation of the vaccination game results

Figure 5.2 presents an individual’s disutilities due to vaccine-phobia and infection risk, as well
as the first order derivatives of these disutilities at the equilibrium. As expected, the infection
risk penalties are strictly decreasing functions of µi+k for all k’s, and that of vaccine-phobia is a
strongly convex and increasing function; see Figure 5.2a. Moreover, Figure 5.2b shows the first
order derivatives of these disutilities. For each k, the intersection of the vaccination derivative
curve and that of the infection is exactly the solution to the equilibrium condition (5.22).

The equilibrium solutions are presented in Figure 5.3. Figure 5.3a shows that the equilibrium
vaccination adoption level increases with the node degree; meanwhile, the total disutilities are
strictly increasing with k. Figure 5.3b shows the final state compositions of nodes with different
degrees. Interestingly, even though the equilibrium vaccination rate strictly increases with k, the
probability for a node to eventually get vaccinated first increases but then declines. This is because,
the vaccination rate vk and infection rate are both proportional to rφ/θ, whereas the multiplicative
factor equals µk for vaccination and k for infection. Thus the infection rate grows proportionally
to k, yet the vaccination rate grows sub-linearly as shown in Figure 5.3a. Consequently, the ratio
of vaccination rate to infection rate declines as the node degree increases. Implementing the vacci-
nation decisions at the equilibrium in the systems dynamics model (2.3), (2.5), and (5.1)-(5.6), the
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Figure 5.3: Vaccination game equilibrium results

final epidemic size is 0.1770, with θ∞ = 0.9124, and a total fraction of 0.7866 of the population
are eventually vaccinated. Compared to the results in Sec. 5.4.1 where a relatively low vaccinate
rate is adopted, we find that the disease propagation has been significantly mitigated as a result of
the vaccination game.

5.4.3 Delayed and homogeneous vaccinations

Following Scheme I and considering vaccinating the same fraction 0.7866 of the population (as
in the vaccination game) indiscriminatingly before the epidemic outbreak, we find that Tc = 4.69 >

T from (5.27). There will only be several endemic infections, and the average outbreak size is 1.8

from (5.28). This means that each disease seed is expected to infect only 0.8 additional susceptible
individual during the entire outbreak. Since there are 10 initial disease seeds, and in the large
population their neighbors are highly unlikely to overlap, the total infected fraction is expected to
be approximately 0.0018. Scheme II requires that the population be vaccinated heterogeneously
based on their degrees prior to the epidemic outbreak. The mean infection fraction over 50 random
simulations is 0.0051.

The comparison between early and delayed vaccinations is consistent with our expectation.
In Schemes I and II, the infection fractions are 99.0% and 97.1% smaller than that of the vacci-
nation game case, respectively. This shows that, with preventive vaccination ahead of time, the
pandemic outbreak is prevented from happening; in contrast, delaying the vaccination allows dev-
astating outbreak to take place and infect a large fraction of the population. This is intuitive –
the higher-degree individuals are more easily infected and then pose larger threats to others once
infected, thus vaccinating these individuals before the outbreak can greatly counteract the disease
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propagation. Furthermore, if we compare Schemes I and II, we find that non-discriminative vacci-
nation is helpful if done prior to epidemic outbreak. Scheme I outperforms Scheme II because the
high-degree nodes have higher vaccination probabilities in Scheme I, as implied by Figure 5.3b.

Scheme III, with both delayed and homogeneous vaccination, yields a final epidemic size of
0.1805. Comparing Scheme III and the dynamic vaccination game from Sec.5.4.2, we observe
that homogeneous vaccination is slightly less effective than heterogeneous vaccination if they are
“delayed.âĂİ This is in sharp contrast to the comparison between Schemes I and II, mainly be-
cause the vaccination rate (instead of vaccination probability) of the high degree nodes are higher
in the vaccination game as suggested by Figure 5.3a, which helps protect the other susceptible
individuals.

These results are interesting and insightful. The coverage and timing of vaccination for the
high-degree nodes almost dictate the outcome of a disease outbreak. As discussed in Section 5.4.2,
in a vaccination game people with more social connections tend to take vaccines sooner. Therefore,
it would be more effective to encourage voluntary vaccine uptake than blindly vaccinate the whole
population once the epidemic outbreak has started. This finding would be particularly helpful
when vaccines are scarce during the course of an epidemic outbreak. However, despite their high
vaccine adoption level, the high-degree nodes are likely to be quickly infected before they can be
vaccinated, as we have also seen in Section 5.4.2. This facilitates disease propagation and leads
to a much wider spread of disease. Therefore, it is important to vaccinate as many high-degree
nodes as possible (prior to the outbreak) to provide them with timely protection. In this case,
non-discriminative vaccination is not a bad option âĂŞ compared to the voluntary (but delayed)
vaccination scheme, the high-degree nodes now have a better chance of getting vaccinated in time.
Targeting individuals with many social connections would greatly cut the possibility of disease
propagation in both early and delayed vaccination schemes. Nevertheless, we shall also notice that
such a measure is often not practical and may raise social/equity concerns.

5.4.4 Sensitivity analysis

We conduct additional experiments to investigate the outcome of vaccination games under
different disease-related, network-related, and penalty function related parameters. In all these
tested cases, the equilibrium solution was found in no more than 15 iterations. For convenience,
we call the vaccination game in Section 5.4.2 as Scenario 0.

We first change the degree distribution of the population, by considering the following cases:
Scenarios (i) and (ii) change the average degree and the degree cutoff of the Poisson distribution, to
g′(1) = 4 andK = 16, and g′(1) = 10 andK = 27, respectively; Scenario (iii) changes the degree
distribution to a uniform distribution with the same average degree g′(1) = 7; then Scenarios (iv)
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and (v) consider uniform distributions with the same average degrees as Scenarios (i) and (ii),
respectively. The vaccination rate decisions of all these scenarios are presented in Figure 5.4.
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Figure 5.4: Compare vaccination decisions under different degree distributions.

Interestingly, if the degree distributions, no matter Poisson or uniform, share the same average
degree, they would lead to similar vaccination decisions for individuals of the same degrees. As
the figure shows, Scenarios in the followings pairs, 0 and (iii), (i) and (iv), and (ii) and (v), all show
exceptional agreement with each other. This suggests that the vaccine adoption level may not be
affected by the shape of the degree distribution as long as they have the same average degree.
However, it is worth mentioning that same vaccination decisions do not necessarily lead to the
same epidemic outbreak outcome, including people’s disutilities and final epidemic sizes, as the
degree distributions still affects the disease propagation process. For instance, the final epidemic
sizes in these scenarios are 0.1086, 0.2368, 0.1755, 0.1079, and 0.2287, respectively.

Moreover, the relationship between the average degree in the population and the equilibrium
vaccination decisions is somewhat more complex. Figure 5.4 shows that for low degree nodes
(e.g., k < 5), higher average degree leads to higher vaccination rate; however, it is the opposite
for the high degree nodes (e.g, k ≥ 15). This phenomenon is probably due to two contradicting
mechanisms. First, it is straightforward that high network connectivity increases the infection risk
and thus encourages higher vaccination rate. However, with higher network connectivity, high
degree nodes will be infected much faster such that in order to even slightly reduce their infection
risk, a remarkably high vaccination adoption level is required. This induces a high psychological
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suffering due to vaccine-phobia. Consequently, they would simply give up vaccination. A similar
phenomenon can be observed in a later example.

Next, we examine the impact of the disease-related parameters r and u. Note that in all the
equations used to solve for the equilibrium, these two parameters appear together in the form of
the disease transmissibility T . Therefore, we only need to tune the value of T . Since in Scenario 0
T takes a moderate value of 0.5, we consider three additional cases: Scenario (vi) and (vii) where
T = 0.3 and 0.7, respectively; and an extreme case Scenario (viii) where T = 1 (i.e., the removal
rate u = 0).

The results are presented in Figure 5.5. Again, the influence of disease transmissibility on
people’s vaccination decisions appears to be highly complex. The impact seems greater on low-
degree nodes but becomes negligible for the high-degree nodes. Furthermore, the final epidemic
sizes of these three cases are 0.1611, 0.1873, and 0.1931, respectively, suggesting that disease
transmissibility does not have a significant impact on the outcome of the epidemic in a vaccination
game. This is probably because the overall vaccination coverage is already sufficiently high.
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Figure 5.5: Compare vaccination decisions with different disease transmissibilities.

Finally, we investigate the impact of the weight factors and the penalty function parameter.
This is to examine the influence of different levels of vaccine-phobia compared to various infec-
tion penalties. Different combinations of the vaccination penalty parameters α1 and b are tested,
with α2 fixed to be 1, and the consequential infection and vaccination fraction, i.e. R (∞) and
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V (∞) + A (∞) are presented, respectively. The results are summarized in Table 5.1. These re-
sults show that people’s vaccination decisions and the final outcome of the epidemic is largely
dependent on the weighing of infection risk over vaccination, and the vaccination penalty func-
tion. It suggests that vaccine-phobia has a huge impact on population vaccination decisions, and
therefore the outcome of the epidemic outbreak.

Table 5.1: Sensitivity analysis on the penalty function parameters.

Cases α1 = 1× 10−5, b = 1.5 α1 = 1× 10−4, b = 1.5 α1 = 1× 10−3, b = 1.5
Infection fraction 0.0263 0.0736 0.2009
Vaccination fraction 0.9201 0.8805 0.7596
Cases α1 = 1× 10−5, b = 2.0 α1 = 1× 10−4, b = 2.0 α1 = 1× 10−3, b = 2.0
Infection fraction 0.0790 0.1767 0.3646
Vaccination fraction 0.8792 0.7851 0.6024
Cases α1 = 1× 10−5, b = 2.5 α1 = 1× 10−4, b = 2.5 α1 = 1× 10−3, b = 2.5
Infection fraction 0.1594 0.2950 0.4958
Vaccination fraction 0.8033 0.6711 0.4742

Moreover, a fairly counter-intuitive phenomenon is observed when the weighing of vaccination
penalty is relatively high. Taking the case where α1 = 1 × 10−3 and b = 2.5 for instance, we
demonstrate the vaccine adoption level of the population in Figure 5.6a. It shows that high degree
nodes (e.g., k ≥ 10) tend to give up on vaccinating themselves, as their vaccine adoption level is
even lower than those with fewer degrees. Figure 5.6b demonstrates that at the equilibrium, the
marginal benefit in reducing the infection risk intersects with the marginal vaccine-phobia penalty
at a low vaccine adoption level for the high degree nodes, suggesting it is difficult for the high
degree nodes to further reduce their infection risk without inducing a much higher vaccination
penalty. This implies that when the vaccine-phobia level is high, or equivalently the penalty of
infection is low, those who can be easily infected would rather take the infection risk than imposing
a high psychological suffering on themselves. In this case, non-differential vaccination enforced
by the public health agency may outperform the result of the vaccination game.

In another angle, we see that in a vaccination game, people’s vaccination decisions are mostly
affected by their relative perception of infection risk over vaccine-phobia, instead of the popula-
tion connectivity or the disease transmissibility. Therefore, if a public health agency wishes to
mitigate the propagation of an infectious disease by encouraging voluntary vaccine uptake among
the population, it is important to alleviate people’s fear towards vaccines and to properly inform
them about the seriousness of the disease infection. Reducing population connectivity and disease
transmissibility (e.g., using other disease control approaches such as quarantine) would not greatly
affect people’s vaccination behaviors; however, these measures can mitigate the propagation of the
disease and should be considered during the course of disease spread.
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Figure 5.6: Vaccination decisions and equilibrium conditions of the high vaccination penalty sce-
nario
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CHAPTER 6 – OPTIMAL VACCINE ALLOCATION IN A
POPULATION WITH SPATIAL HETEROGENEITY

6.1 Introduction

In the previous chapter, we investigate a dynamic vaccination game where each individual in a
population makes its own vaccination decisions during a disease outbreak. The detrimental impacts
of delayed vaccination is revealed in the numerical experiments. If there are insufficient vaccine
resources at the beginning of an epidemic event (which happens quite often in reality), such delay
will take place. Therefore, another important question for public health agencies is, given limited
vaccines, where to allocate the vaccine resources to minimize the expected impact of an upcoming
epidemic outbreak.

In a large geographical region, a population’s distribution and their contact network structure
may possess high spatial heterogeneity. For instance, a population in an area with higher density
might interact more frequently among themselves than those with lower densities do; two popula-
tions living in nearby areas might also have a higher connectivity with each other than with those
in farther regions. Moreover, the probability that the outbreak starts in a certain area also varies
greatly depending on the spatial information. For example, port cities and metropolises have a
significantly greater chance of being the source of disease outbreak than inland and rural areas.
Therefore, for infectious disease transmitted via direct contacts, it is important to account for such
spatial heterogeneities when considering optimal vaccine allocation.

To address these challenges, this chapter investigates the optimal vaccine allocation that min-
imizes the expected impact of a disease outbreak with consideration of population spatial hetero-
geneity. Following the previous chapters of this dissertation, we consider heterogeneous mixing
populations using random networks. Moreover, spatial heterogeneity is accounted for in the fol-
lowing three aspects: i) population distribution, ii) subpopulation connectivity, and iii) disease
source distribution.

The rest of this chapter is organized as follows. Section 6.2 develops an approach to evaluate
the effectiveness of an allocation decision by computing the expected disease outbreak size. Sec-
tion 6.3 formulates two optimization problems to solve for the minimum required resource and
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optimal allocation, and proposes solution approaches to solve for the two optimization problems,
respectively. Next, Section 6.4 performs numerical experiments on a hypothetical case study to
validate the modeling frameworks and solution approaches.

6.2 Vaccine Allocation and Expected Outbreak Sizes

Consider a planar area Ω where a population of size N lives within, and the entire area is
partitioned into m subregions. The population is distributed heterogeneously across Ω, and each
subregion contains a fraction of λi population such that

∑m
i=1 λi = 1. The contact network between

the population in subregions i and j is described by the probability generating function of the
degree distribution:

gij(xij) =
∞∑
k=0

pij(k)xkij,∀i, j = 1, . . . ,m. (6.1)

where pij(k) represents the probability that an arbitrary node in subregion i has k edges connected
to the nodes in subregion j, and xij is a dummy variable. Degree correlations between different
pairs of subregions are igonored. Naturally, the following degree conservation law should always
hold:

λig
′
ij(1) = λjg

′
ji(1),∀i, j = 1, . . . ,m. (6.2)

In this spatially-heterogeneous population contact network, the decision-maker needs to allo-
cate vaccines to different subregions to minimize the expected outbreak size. It is the expected
number of infections caused by a single initial infection, including the seed node. The outbreak
size depends on the location of the seed, because the network connectivity is spatially heteroge-
neous. We denote the conditional expected outbreak size given the initial seed lives in subregion i
by si. The agency may have an anticipation over the seed distribution, and we let wi be the prob-
ability that the epidemic starts in subregion i, such that

∑m
i=1wi = 1. The objective of the agency

is to minimize the expected outbreak size incorporating such prior distribution:

min
δ

m∑
i=1

wisi, (6.3)

where δi is the fraction of vaccinated population in subregion i ∀i = 1, . . . ,m, and δ is the collec-
tion of all δi’s. Furthermore, since there is a limit amount of total vaccines, denoted Q, we have
the following budget constraint:

NλTδ ≤ Q. (6.4)

We assumed that vaccines directly remove the nodes when they are applied to the population,

71



and the edges connected to the vaccinated nodes are removed as well. Since the connections are
random, for an unvaccinated subregion-i node with a degree of k to subregion j, the probability
that r out of the k edges are connected to unvaccinated subregion j nodes is given by Binomial
distribution

(
k
r

)
(1 − δj)

rδk−rj . Therefore, the degree distribution from subregion i to j of the
unvaccinated subregion i nodes is given by:

gij,1(xij) =
∞∑
k=0

k∑
r=0

(
k

r

)
pij(k)(1− δj)rδk−rj xrij = gij ((1− δj)xij + δj) ,∀i, j = 1, . . . ,m.

(6.5)

When all of the nodes in subregion j are removed, gij,1(xij) = 1, which means the resulting degree
distribution pij,1(k) = 0, ∀k ≥ 1. After vaccination, degree conservation law still holds, such that:

(1− δi)λig′ij,1(1) = (1− δj)λjg′ji,1(1),∀i, j = 1, . . . ,m. (6.6)

The proof is straightforward using (6.5).
Moreover, we inherit the disease transmissibility, denoted T , from previous chapters. By sam-

pling the edges in the remaining network after vaccination with probability T , we can construct
a (possibly fragmented) network containing only the selected edges. We choose a random unvac-
cinated node as the initial seed, then the expected size of the component containing this node in
this network represents the expected outbreak size. The mathematical derivation for the degree
distribution of such a network is highly similar to (6.5), as the number of selected edges of a node
also follows a Binomial distribution, given by

(
k
r

)
T r (1− T )k−r. We let gij,2 be the corresponding

degree distribution:

gij,2 (xij) = gij,1 (T (xij − 1) + 1) = gij (T (xij − 1) (1− δj) + 1) , ∀i, j = 1, . . . ,m. (6.7)

As such, the actual disease transmission network can be properly described by gij,2, with which
the expected outbreak size can be found, and the existence of a giant connected component can
be examined. To begin with, we first select a random edge that connects subregion i and j, and
follow it to the j end, the probability that excluding this edge, the j end has k edges to subregion j′,
namely the excess degree, is denoted by pijj′(k). Its distribution is given by the generating function
gijj′ (xjj′):

gijj′ (xjj′) =


g′ji,2(xji)

g′ji,2(1)
, if j′ = i,

gjj′,2(xjj′), o.w.
(6.8)

Then, let Hij(x) be the generating function for the distribution of the size of components that
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are reached by choosing a random (i, j) edge and following it to the j end. The following self-
consistency equation must be satisfied:

Hij(x) =x

[
m∏
j′=1

pijj′(0) +
m∑

j′′=1

Hjj′′(x)pijj′′(1)
∏
j′ 6=j′′

pijj′(0) + . . .

]

=x
m∏
j′=1

gijj′ (Hjj′(x)) ,∀i, j = 1, . . . ,m.

(6.9)

To illustate, Figure 6.1 demonstrates a simple example with 2 subregions. A square means a
component found by following an edge to one of its end, and a circle represents a node. Following
a (2, 1) edge to the subregion-1 end, the node may have k1 and k2 edges to subregion 1 and 2,
respectively, ∀k1, k2 ≥ 0. The probability that the end node is vaccinated is given by δi; and
the probability distributions of k1 and k2, i.e., the excess degrees, are given by g211 and g212,
respectively.

Figure 6.1: An explanatory example for component size distribution with 2 subregions.

(6.9) gives the probability distribution of component sizes found by selecting an edge and
following it to one end. Starting at a randomly chosen unvaccinated node in subregion i, the
generating function for the component size distribution is given as follows:

Hi(x) = x
m∏
j=1

gij,2 (Hij(x)) ,∀i = 1, . . . ,m. (6.10)

Finally, the average component size obtained by selecting a random node in subregion i can be
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computed as follows:

si = (1− δi)H ′i(1)

= (1− δi)

[
1 +

m∑
j=1

g′ij,2(1)H ′ij(1)

]

= (1− δi)

[
1 +

m∑
j=1

T (1− δj) g′ij(1)H ′ij(1)

]
,∀i = 1, . . . ,m.

(6.11)

where H ′ij(1) is the solution to the following system of equations, obtained from (6.8) and (6.9).
For notational brevity, we denote H ′ij(1) as yij:

yij = 1 +
m∑
j′=1

g′ijj′(1)yjj′

= 1 +
g′′ji,2(1)

g′ji,2(1)
yji +

∑
j′ 6=j

g′jj′,2(1)yjj′

= 1 + T (1− δi) yji
g′′ji (1)

g′ji(1)
+
∑
j′ 6=i

T (1− δj′)g′jj′(1)yjj′ ,

∀i, j = 1, . . . ,m.

(6.12)

To differentiate these two types of component sizes in the following discussion, we call them node
and edge component sizes, respectively. In the case where there is only one subregion, the result
is consistent with Newman (2002). Therefore, for a given combination of vaccination decisions
(q, δ), we can compute the expected outbreak size. For convenience, we call this linear system
with respect to (w.r.t.) yij’s given δ as LP (δ). We observe that the solution y to LP (δ) is non-
increasing and continuous for δi ∈ [0, 1], ∀i = 1, . . . ,m. In particular, when δ = 1, yij = 1 is the
minimum value, ∀i, j = 1, . . . ,m.

As a final remark, an implicit assumption of (6.9), which can also be observed from Figure
6.1, is that the connected components contain no loops. When the population size is large and the
component sizes are small, the probability that a loop exists among the connected components is
negligible since the connections are random. Therefore, the proposed approach to calculate the
expected outbreak size is valid with negligible errors. However, if a connected component takes
a non-negligible portion of the population, this assumption can be easily violated. In a simplest
1-subregion case, the solution to LP (δ) is given by y = 1

1−T (1−δ) g′′(1)
g′(1)

. Suppose T > g′(1)/g′′(1),

when δ approaches δ̂ = 1 − g′(1)
Tg′′(1)

from right, y diverges to∞. Indeed, δ̂ is the critical threshold
where a giant component starts to form, namely an epidemic outbreak occurs. In this case, (6.9) and
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all the results obtained thereupon may not hold. Therefore, these equations start to lose accuracy
when the magnitude of the connected component size grows comparable to that of the population.

6.3 Optimal Allocation and Solution Approaches

6.3.1 Preventing an epidemic and minimizing local infections

We first formualte the optimal vaccine allocation problem into a mathematical program, and
discuss a few analytical properties of the problem. It can be written as follow.

P1 min
δ,y,s

z = wT s (6.13)

s.t. si = (1− δi)

[
1 +

m∑
j=1

T (1− δj) g′ij(1)yij

]
,∀i = 1, . . . ,m, (6.14)

1 ≤ y ≤ Λ, (6.15)

0 ≤ δ ≤ 1, (6.16)

and (6.4), (6.12).

The objective (6.13) is to minimize the expected outbreak size with consideration of the disease
source distribution w. Constraints (6.14) are directly from the previous derivation. Since yij
represents an expected edge component size, it can only be a non-negative number, and from (6.12)
we can derive its lower bound as 1. Moreover, Constraints (6.15) impose a numerical upper bound
Λ for yij’s, where Λ > 1 is an insignificant number compared to the size of the population, i.e.,
Λ � N . This numerical treatment is to satisfy the premise that the probability that a loop exists
among the connected components can be neglected. Furthermore, Constraints (6.16) regulate that
vaccinated fraction in each subregion can only be between 0 and 1. Note that in this problem, y

and s are both auxiliary variables, which can be computed correspondingly once δ is determined.
Therefore, the objective z can also be expressed as a function of δ.

Given a vaccine allocation decision δ, if the set of y defined by (6.12) and (6.15) is empty, such
a vaccine allocation decision is insufficient to prevent an epidemic outbreak, and either a better
allocation strategy or a larger amount of vaccines is required. Indeed, there are three possible
scenarios: i) the disease will not lead to an epidemic outbreak even if there is no vaccination;
ii) the epidemic may occur without vaccination, but there are sufficient vaccines to confine the
disease within local networks; and iii) the vaccine resource is insufficient to prevent an epidemic
outbreak. Although the first case is easy to identify, it is quite difficult to distinguish the latter two
scenarios. Unless a feasible vaccine allocation is found that leads to component sizes satisfying
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(6.15), we have no proof that the feasible solution set is nonempty. However, even finding an initial
feasible solution is quite challenging in this problem due to the non-convexity of the solution set.
Therefore, it is important for the agency to know the minimum amount of vaccines required to
prevent an epidemic outbreak, which guarantees that the problem is feasible.

To this end, we propose the a mathematical program that solves for the minimum amount of
vaccines required. It is presented as follows:

P2 min
δ,y
λTδ (6.17)

s.t. (6.12), (6.15), (6.16).

The objective is to minimize total vaccine usage, such that the average edge component sizes are
within a limit. We use

(
δ̂, ŷ

)
to denote the optimal solution to P2, then ∀Q ≥ NλT δ̂, and there

exists at least one feasible solution to P1, which can be constructed using
(
δ̂, ŷ

)
.

Therefore, the agency can find the minimum vaccine resources required to prevent an epidemic
outbreak by solving P2. Given sufficient resources, P1 finds the optimal vaccine allocation strategy
to mitigate local disease propagation and minimize expected infections. In the next section, we
discuss the solution algorithms to solve for the optimization problems P1 and P2.

6.3.2 Solution approach to P2

Observing that the difficulty in solving P2 is mainly caused by Constraints (6.12) which con-
tain bilinear terms, we propose a branch and bound algorithm with McCormick relaxation that
is guaranteed to find the global optimum. First, we define an instance ψ to be a quadruple
(δUB, δLB,yUB,yLB), where δUB, δLB,yUB,yLB are the upper and lower bounds of δ and those of
y, respectively. The natural bounds of these variables are given by Constraints (6.15) and (6.16).
Then following McCormick relaxation approach (McCormick, 1976), which tries to replace the
nonlinear terms in the contraints with linear approximations, we let Wij = (1− δj) yij , and con-
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sider the following relaxed problem.

P3 (ψ) min
δ,y,W

λTδ (6.18)

s.t. yij = 1 + TWji

g′′ji (1)

g′ji(1)
+
∑
j′ 6=i

Tg′jj′(1)Wjj′ , ∀i, j = 1, . . . ,m, (6.19)

Wij ≥
(
1− δUB

j

)
yij − yLB

ij δj + δUB
j yLB

ij ,∀i, j = 1, . . . ,m, (6.20)

Wij ≥
(
1− δLB

j

)
yij − yUB

ij δj + δLB
j yUB

ij ,∀i, j = 1, . . . ,m, (6.21)

Wij ≤
(
1− δUB

j

)
yij − yUB

ij δj + δUB
j yUB

ij , ∀i, j = 1, . . . ,m, (6.22)

Wij ≤
(
1− δLB

j

)
yij − yLB

ij δj + δLB
j yLB

ij ,∀i, j = 1, . . . ,m, (6.23)

yLB ≤ y ≤ yUB, (6.24)

δLB ≤ δ ≤ δUB. (6.25)

Upon solving this problem, we are able to obtain a lower bound to the objective of P1 within the
solution space defined by (6.12), (6.24), and (6.25). However, using the natural bounds of (6.15)
and (6.16) usually over-relaxes the problem and yields a poor lower bound to P1. To address this
issue, we adopt the branch and bound method to provide tighter bounds to the problem so as to
improve the lower bound to P1. The algorithm is summarized in Algorithm 3.

Given an instance ψ, finding a feasible solution can be done by looking for a minimum stepsize
θ ∈ [0, 1] such that the solution y to LP (θδLB + (1− θ) δUB) satisfies Constraints (6.15). This
can be done efficiently via bisection search.

The convergence to the optimal solution of Algorithm 3 is guaranteed, as branch and bound
method iteratively partitions the solution space and provides McCormick relaxation with increas-
ingly tighter variable bounds, so that the lower bound could keep approaching the global optimum
over iterations (Mitsos et al., 2009). To improve the performance of this algorithm, several treat-
ments are adopted. First, instead of finding a new feasible solution in Step 3.2 in each iteration, it is
done with a probability Pn, which is set to be increasing over iterations. This is to reduce the com-
putation time, and it does not hinder the optimal solution to be found eventually. This is because,
even if the instance that contains the optimal solution is not used to construct a feasible solution at
the current iteration, one of its partitioned instance must still contain the optimal solution and will
be added to the instance set H. As the lower bound approaches the optimum over iterations, this
instance must be visited again. This process will be repeated until the optimality is attained.

Moreover, before solving for the relaxed problem for newly partitioned instances, Step 3.4
checks the new instance feasibility by evaluating the performance of the largest possible vaccine
allocation given the upper bound, and Step 3.5 evaluates the objective of the new instance’s lower
bound. Only if a new instance has a feasible upper bound and a lower bound better than the best
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Algorithm 3 P2 solver

Step 3.1 Check if the solution y0 to LP (0) satisfies Constraints (6.15). If yes, return δ = 0
as the solution and terminate; otherwise, initialize n ← 0, solve LP (1) to get ỹ0; let
ψ ← (1,0,Λ, ỹ0), solve P3(ψ) to get the corresponding lower bound, let H ← {ψ};
initialize the upper bound zUB at N ;

Step 3.2 Select an instance ψn from H with the lowest lower bound, denoted as zLB; with probabil-
ity Pn, construct a feasible solution using ψn; if this solution leads to an objective lower
than the upper bound zUB, update the best known solution as zUB as well;

Step 3.3 Select a variable δi where i = argmaxj δ
UB
ψn,j
− δLB

ψn,j
, and create two new instances ψn1

amd ψn2 such that both of them inherit the bounds
(
δUB
ψn
, δLB

ψn
,yUB

ψn
,yLB

ψn

)
from ψn except

for that δLB
ψn1 ,i
←
(
δUB
ψn,i

+ δLB
ψn,i

)
/2, and δUB

ψn2 ,i
←
(
δUB
ψn,i

+ δLB
ψn,i

)
/2; remove ψn from H;

Step 3.4 If the solution ỹn to LP
(
δUB
ψn2

)
satisfies Constraints (6.15), update yLB

ψn
← ỹn; solve

P3(ψn2) to obtain the lower bound of instance ψn2; if this lower bound is no greater than
the upper bound zUB, let H← H ∪ {ψn2};

Step 3.5 IfNλTδLB
ψn1

is smaller than the upper bound zUB, solve P3(ψn1) to obtain the lower bound
of instance ψn1; if this lower bound is no greater than the upper bound zUB, let H ←
H ∪ {ψn1};

Step 3.6 Find the new lowest lower bound zLB in H, and compute the optimality gap as zUB−zLB
zB
×

100%; if the optimality gap is smaller than a threshold ε1, or the maximum iteration
number nMAX is reached, terminated and return the best known solution and the gap;
otherwise, let n← n+ 1 and repeat Step 3.2 - Step 3.6.

known solution, McCormick relaxation is performed on this instance. This is also to improve the
algorithm performance, as feasibility check and objective evaluation take negligible computation
time compared to solving the relaxed problem.

With Algorithm 3, we can find the minimum vaccine resource required to eliminate giant com-
ponents in the population Qmin = NλT δ̂, as well as a corresponding solution

(
δ̂, ŷ

)
with known

optimality gap. As long as the total vaccine resource is no smaller than Qmin, this solution also
provides us with a good starting point to solving P1. Without loss of generality, in the following
discussions we assume the minimum resource requirement is always satisfied.

6.3.3 Solution approach to P1

Yet with a feasible solution constructed using
(
δ̂, ŷ

)
knowing that there are sufficient vaccine

resources, it is still difficult to solve P1 directly because of the non-convexity of the solution set.
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Although a similar approach as the branch and bound in the previous subsection can be devised,
(6.14) contain cubic terms and requires an extra step of McCormick relaxation, which makes the
convergence speed of the algorithm an even greater issue than in Algorithm 3. To solve P1 effi-
ciently, we propose a modified conditional gradient algorithm as a heuristic solution approach.

It is natural to deem the vaccine allocation variable δ as the only decision variable in the
problem, while y and s are intermediate results that solely depend on δ. As such, the number
of decision variables is reduced from O (m2) to O (m). Moreover, the constraints directly on δ,
namely (6.4) and (6.16), are both linear inequalities that can be handled easily. However, doing
so also leads to two issues: i) given a vaccine allocation decision δ that satisfies (6.4) and (6.16),
a system of linear equations, namely LP (δ), needs to be solved for feasibility check; and ii) the
gradient of the objective to δ is unavailable.

To address these issues and solve the problem, we first adopt an approximate gradient, denoted
by f ∈ Rm, to reflect the marginal gain when the decision variable δ is changed by 1 unit. Given
a feasible solution (δ,y, s), f is computed as follows:

fi = −wi

(
1 +

m∑
j=1

T (1− δj) g′ij (1) yij

)
−

m∑
j=1

wjT (1− δj) g′ji(1)yji,∀i = 1, . . . ,m. (6.26)

This approximation is obtained assuming y does not change with δ. We conjecture that the error
induced by such approximation is negligible around the local area of the current solution. Then we
can use conditional gradient method such that a vaccine allocation decision δ̃ satisfying the linear
constraints (6.4) and (6.16) can be found. Next, δ̃ is used in a line search algorithm to update the
vaccine allocation decisions and improve the objective. This process is repeated until convergence.
The solution approach is presented in Algorithm 4.

In Step 4.1, a convex combination of δ̂ and 1 is used as the initial solution of δ to exploit all
the available vaccines. This solution guarantees feasibility and performs reasonably well. Step
4.2 tries to find a search direction that could hopefully improve the objective by solving a linear
program, and Step 4.3 performs a line search to update the solution. As such, the non-linear
constraints are only encountered in the line search problem, which can be easily handled by one-
dimensional enumeration. Unfortunately, it is difficult to prove the convergence of the algorithm.
Yet its performance is tested in several numerical experiments, and the quality of the solutions are
validated to some extent.
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Algorithm 4 P1 solver

Step 4.1 Initialize n ← 0, and construct the initial feasible solution
(
δ(n),y(n), s(n)

)
by letting

δ(n) = N−Q
N−Qmin

δ̂ +
(

1− N−Q
N−Qmin

)
1.

Step 4.2 Compute the approximate gradient f (n) at
(
δ(n),y(n), s(n)

)
; find a feasible solution δ̃(n)

by solving the following linear program:

min
δ

f (n)Tδ (6.27)

s.t. (6.4) and (6.16).

Step 4.3 Find the optimal stepsize t(n) to the following problem:

min
t,δ,y,s

wT s (6.28)

s.t. δ = (1− t)δ(n) + tδ̃(n), (6.29)
0 ≤ t ≤ 1, (6.30)

and (6.12), (6.14), (6.15).

Let δ(n+1) ←
(
1− t(n)

)
δ(n) + t(n)δ̃, and construct the corresponding solution(

δ(n+1),y(n+1), s(n+1)
)
.

Step 4.4 If any of the following conditions are met, terminate and return the solution(
δ(n+1),y(n+1), s(n+1)

)
:

• t(n) ≤ ε2;

•
∣∣∣δ(n) − δ̃(n)

∣∣∣ ≤ ε3;

• n reaches the maximum iteration number n′MAX.

where ε2 and ε3 are convergence thresholds. Otherwise, let n ← n + 1 and repeat Step
4.2 - Step 4.4 .

6.4 Numerical Experiments

In this section, we demonstrate the capability of the model and the proposed solution algorithms
through numerous numerical experiments. We first consider a toy case with 10 subregions to test
the optimization framework and the solution approaches, and perform sensitivity analysis to further
validate the results and to reveal operational insights.
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6.4.1 10-subregion toy case

We consider a hypothetical case where a population of N = 1 × 106 are distributed among
m = 10 subregions in an area. The fraction population in subregion i, λi = i

55
. The degree distri-

bution between any pair of subregions is assumed to follow Poisson distribution with mean degree
g′ij(1) = 3.0,∀i ≤ j, and g′ij(1)’s with i > j are computed from (6.2). Therefore, subregions with
a smaller index is associated with a smaller population size, but higher average degrees to other
subregions, and the average degree across the entire network is 21. The disease transmissibility T
is set to be 0.05 such that there will be a significant fraction of population infected if not vaccinated.
The probability of the disease starting in any subregion is equal, i.e. wi = 1

m
,∀i = 1, . . . ,m. We

also set Λ = 30, such that Nλi � Λ,∀i. The other parameters in the solution algorithms are given
as follows: ε1 = 0.05, nMAX = 2× 105, ε2 = 1× 10−8, ε3 = 1× 10−10, and n′MAX = 100.

We first find the minimum required vaccine resources by solving P2 with Algorithm 3. The
algorithm is run on a laptop computer with an Intel Core i5-7300U CPU @ 2.60GHz, and the
computation is finished within 2 minutes with an optimality gap of 3.8% and an objective of 6.93×
104 units of vaccines. The corresponding vaccine allocation decision is presented in Figure 6.2.
For result validation, we also use a meta-heuristic algorithm known as basin hopping algorithm
to solve P2 and compare the results. Python Scipy package built-in function basinhopping is
used. After 6 minutes and 20 iterations, the basin hopping algorithm yields an objective of 6.72×
104 units of vaccines, which is 3.0% lower than the objective obtained via Algorithm 3. The
corresponding vaccine allocation is presented in Figure 6.2 for comparison as well. The vaccine
allocation decisions from both approaches are highly similar with tolerable differences. Due to
their higher network connectivities and fewer population, the subregions with smaller indices are
vaccinated at a higher rate. Such results are consistent with our expectations.

Figure 6.2: Vaccine allocation decisions obtained using Algorithm 1 and basin hopping, respec-
tively.

Next, with the solution to P1 obtained via Algorithm 3, we proceed to solve P1 given a number
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of vaccine amount Q = 1.0 × 105, which guarantees that the problem is feasible. At the optimal
solution, 10% entire population will be vaccinated, and the expected outbreak size will be mini-
mized. Algorithm 4 finishes in 10 seconds on the same computer. The vaccine allocation decision
presented in Figure 6.2 yields of objective of 18.5, i.e. approximately 18.5 infections is expected
to be caused by a single initial seed. This objective is reduced to 10.0 at the solution given by
Algorithm 4, and the resource allocation decision is presented in Table 6.1. It suggests to allocate
all the vaccine resources to the subregions with smaller indices. This is because not only these
nodes have higher connectivities, but also that as the outbreak probability wi’s are equal ∀i while
the population density are different, these individuals have a higher probability to be an initial seed,
and thus they are vaccinated with higher priorities.

6.4.2 Sensitivity analysis

We proceed to perform sensitivity analysis based on the toy case. We examine the impact of
different resource amount Q and outbreak seed distribution w on the optimal vaccine allocation,
and also investigate the impact of different disease transmissibility T and degree distribution on
both the minimum required vaccine problem and the allocation problem. For convenience, we
denote the benchmark case of the minimum required vaccine problem Scenario 0, and that of
the allocation problem Scenario 0.o. Scenarios 0.i and 0.ii consider different vaccine resources
compared to the benchmark case, with Q = 1.5 × 105 and Q = 2.0 × 105, respectively; 0.iii and
0.iv have different probability distributions of the disease seed location, given as wi = λi,∀i, and
wi = λ2

i /
∑

j λ
2
j ,∀i, respectively. Scenarios 1 and 2 examines different disease transmissibilities

with T = 0.075 and T = 0.025, respectively; Scenarios 3, 4, and 5 assume different degree
distributions among the population, whose details will be given shortly. The minimum required
vaccine problem is solved for each of these cases, and the optimal vaccine allocation is solved
for the cases o-iv, respectively. For example, the Scenario 1.ii considers the optimal allocation
problem with T = 0.075 and Q = 2.0× 105. The results are summarized in Table 6.1.

Comparing Scenarios 0, 1, and 2, we find that the results are highly sensitive to the disease
transmissibility. With a 50% increase of disease transmissibility T , the minimum require resources
is increased by over 360%; meanwhile with a−50% change in T , an epidemic outbreak would not
occur even without any vaccination. Consequently, the instances in Scenarios 1.o - 1.iv become
infeasible as there are insufficient vaccines to prevent an epidemic outbreak, and the results of
Scenarios 2.o - 2.iv show the disease propagation can be very well controlled with the given amount
of vaccines. Furthermore, comparing Scenarios o, iii, and iv in both cases 0 and 2, we observe
that the higher probability that the epidemic starts in larger population subregions, the larger the
expected outbreak size. This is a result of the contradicting effects of low connectivity against high
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Table 6.1: Sensitivity analysis results of the minimum vaccine resource and the optimal allocation
problems.

Scenarios
Vaccination fraction δi (×10−1) Computation

time (min.)
P2 P1 Obj.

(#)1 2 3 4 5 6 7 8 9 10 Gap (%) Obj. (×104)

0. (Benchmark)
Min. required vaccines (P2) 8.9 8.9 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 3.8 6.93 19.3

Opt. vaccine
allocation (P1)

o) (Benchmark) 10.0 10.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 - - 7.8
i) (Q = 1.5× 105) 10.0 10.0 10.0 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.2 - - 3.9
ii) (Q = 2.0× 105) 10.0 10.0 10.0 10.0 2.0 0.0 0.0 0.0 0.0 0.0 0.2 - - 2.5
iii) (wi = λi) 10.0 10.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 - - 9.4
iv) (wi =

λ2i∑
j λ

2
j
) 9.0 9.0 1.7 1.7 0.3 0.3 0.4 0.4 0.4 0.4 0.1 - - 12.0

1. (T = 0.075)
Min. required vaccines (P2) 9.2 8.4 8.4 8.4 8.4 3.4 0.9 0.9 0.8 0.8 233.8 16.6 32.05 19.2

Opt. vaccine
allocation (P1)

o) (Benchmark) - - - - - - - - - - - - - Infeasible
i) (Q = 1.5× 105) - - - - - - - - - - - - - Infeasible
ii) (Q = 2.0× 105) - - - - - - - - - - - - - Infeasible
iii) (wi = λi) - - - - - - - - - - - - - Infeasible
iv) (wi =

λ2i∑
j λ

2
j
) - - - - - - - - - - - - - Infeasible

2. (T = 0.025)
Min. required vaccines (P2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3

Opt. vaccine
allocation (P1)

o) (Benchmark) 10.0 10.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 - - 1.3
i) (Q = 1.5× 105) 10.0 10.0 10.0 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.1 - - 1.1
ii) (Q = 2.0× 105) 10.0 10.0 10.0 10.0 2.0 0.0 0.0 0.0 0.0 0.0 0.1 - - 0.9
iii) (wi = λi) 10.0 10.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 - - 1.6
iv) (wi =

λ2i∑
j λ

2
j
) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.2 0.1 - - 1.7

3. (Homogeneous connectivity)
Min. required vaccines (P2) 6.5 1.5 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 201.3 5.0 7.94 25.9

Opt. vaccine
allocation (P1)

o) (Benchmark) 10.0 10.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 - - 13.0
i) (Q = 1.5× 105) 10.0 10.0 10.0 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.1 - - 6.0
ii) (Q = 2.0× 105) 10.0 10.0 10.0 10.0 2.0 0.0 0.0 0.0 0.0 0.0 0.1 - - 3.6
iii) (wi = λi) 5.6 1.4 0.4 1.4 1.4 0.6 0.6 0.6 0.6 1.4 0.1 - - 16.4
iv) (wi =

λ2i∑
j λ

2
j
) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.1 - - 15.6

4. (Homogeneous connectivity with higher inner-subregion connectivity)
Min. required vaccines (P2) 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.6 0.7 3.1 4.5 5.0 8.00 22.4

Opt. vaccine
allocation (P1)

o) (Benchmark) 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.8 0.9 3.3 0.1 - - 14.3
i) (Q = 1.5× 105) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.3 1.4 3.7 0.1 - - 7.2
ii) (Q = 2.0× 105) 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.8 1.9 4.0 0.1 - - 4.7
iii) (wi = λi) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 2.1 3.3 55.7 - - 13.2
iv) (wi =

λ2i∑
j λ

2
j
) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 1.6 3.5 0.6 - - 13.7

5. (Distance-based connectivity)
Min. required vaccines (P2) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.6 4.3 1.0 11.7 5.0 12.89 15.1

Opt. vaccine
allocation (P1)

o) (Benchmark) - - - - - - - - - - - - - Infeasible
i) (Q = 1.5× 105) 0.3 0.3 0.3 0.3 0.3 0.4 1.2 2.6 4.0 1.1 0.2 - - 9.1
ii) (Q = 2.0× 105) 0.8 0.8 0.8 0.8 0.8 1.2 2.2 3.1 4.0 1.4 0.2 - - 4.7
iii) (wi = λi) - - - - - - - - - - - - - Infeasible
iv) (wi =

λ2i∑
j λ

2
j
) - - - - - - - - - - - - - Infeasible

disease source probability and large population of the subregions with high indices, which makes
it more difficult to effectively allocate the vaccines.

Scenario 3 assumes there is no spatial heterogeneity in population connectivity such that all
individuals in the population are probabilistically identical with a total expected degree of 21,
and they are connected randomly independent on their subregions, namely gij = 21λj,∀i, j =

1, . . . ,m. It requires a larger amount of vaccines to prevent an epidemic outbreak compared to
Scenario 0, because there are not subregions with higher connectivity but fewer population which
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make targets for vaccination. Therefore, the vaccine allocation decision of P2 in this scenario is
more dispersed compared to the benchmark case - in fact any resource allocation is equally effec-
tive in this case as long as the total vaccine amount is the same. It also leads to a larger expected
outbreak size, as the disease source probabilities are higher in regions with smaller indices. The
results of Scenario 2.iii and 2.iv seem to contradict our earlier findings, as the expected outbreak
size in 2.iv is slightly lower than that in 2.iii. This is because while the connectivity is homoge-
neous, in 2.iv subregions that have higher disease source probabilities per capita can be vaccinated
with higher priorities, which helps improve the result. Therefore, spatial connectivity and outbreak
source distribution together could make the vaccine allocation problem quite complex.

In Scenario 4, the populations are better connected within each subregion, while their connec-
tivities with nodes in other subregions are homogeneous. To be specific, g′ij(1) = c1λj, ∀j 6= i

and g′ii(1) = 10.0c1λ
1.5
i , ∀i, where c1 is a normalization factor such that the average degree of the

entire population equals 21.0. As such, the population are better connected within each subregion
compared to Scenario 3, and the greater population the better inner-connectivity. In this case, sub-
regions with higher populations have higher total degrees and are thus assigned with more vaccine
resources. The minimum required vaccine is lower than Scenario 3, and higher than Scenario 0,
which is expected. With more vaccine resources, the expected outbreak size can also be signifi-
cantly reduced, as suggested by the results of 4.i and 4.ii. In Scenario 4.iii, with a homogeneous
disease source probability, the vaccine allocation decision is to focus more on the subregions with
higher connectivities. The results of 4.iv, however, appears to be suboptimal, as with higher source
probabilities, subregions with large indices (e.g. 8, 9, and 10) ideally should have been allocated
with even more resources than they are in Scenario 4.iii, and the objective should be further re-
duced. This is indeed the case when the vaccine allocation decision δ in Scenario 4.iii is taken as
initial solution in Algorithm 4, suggesting that the algorithm converged to a suboptimal solution
while solving the problem for Scenario 4.iv.

Finally, Scenario 5 considers distance-based connectivity where population in each subregion
are more closely connected with others in index-wise closer subregions. The average degrees
are given as: g′ij(1) = c2e

i−jλj, ∀i ≤ j, and g′ij(1) where i > j are computed from (6.2), and
c2 is a normalization factor to ensure the overall average degree equals 21. As expected, the
required vaccine resources to prevent the epidemic is greater than the previous cases except for
Scenario 1. This is straightforward because in this case, subregions with high populations not
only have high inner-connectivities, but they are also better connected with each other because
their are closer in distance - this is somewhat similar to an assortative mixing population where
high degree individuals are linked with higher probabilities. Therefore, it requires large amount of
vaccine resources to be used on these subregions to effectively protect the population. Interestingly,
subregion 10 is not vaccinated as much as subregions 8 and 9 even though it has the highest inner-
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connectivity. This is likely due to that individuals in subregions 8 and 9 have higher total mean
degrees than those in 10, and they are the only ones closely connected to 10, it is sufficient to
vaccinate a greater fraction of population in these subregions 8 and 9 to preserve the population in
10. Scenarios 5.o, 5.iii, and 5.iv do not have sufficient vaccine resources and are thus infeasible.

Through these experiments, we find that the computation time of both Algorithms 3 and 4
heavily rely on the problem instance. The branch-and-bound-based approach Algorithm 3 can take
a tremendous amount of time to converge for some problem instances, which is widely known in
the literature. Yet these approaches are still often used for its theoretical guarantee of convergence
and being able to provide the optimal gap to validate the solution quality. Algorithm 4 converges
with acceptable time in most cases. However, it may converge to some local optimal solutions,
which is unfortunately a common drawback of gradient-based approaches in solving non-convex
problems. Using different initial feasible solutions as the starting point may help resolve such
issues.
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CHAPTER 7 – FUTURE RESEARCH

Building upon the modeling framework and preliminary findings from this dissertation, there
are several possible future research directions regarding disruption/disease propagations and con-
trol in the networked systems.

First, regarding the interdependent infrastructure system, the proposed model can serve as a
building block to identify the most critical infrastructure in a given system. Based on this, we
can further seek geospatially informed reinforcement or interdiction strategies that will best pro-
tect an urban system as a whole or certain vulnerable communities within it. Second, our model
assumes that transportation network is rather independent on other infrastructures. Incorporating
the interdependencies between transportation network and others will make the model more ap-
plicable to situations where transportation network efficiency is influenced by others. Moreover,
our modeling framework focuses on the steady state disruption aftermath; the dynamic process of
failure propagation, possibly based on Monte-Carlo simulation, may help reveal more insightful
and realistic results. In addition, for effective use of this type of model for planning purposes,
it will be critical to better understand structural differences in the input data that define the joint
infrastructure-community network (e.g., with consideration of communication layer and its inter-
actions with other layers). Finally, we could also use similar approaches for infectious disease
modeling and control to investigate complex interdependent infrastructure systems.

On epidemic dynamics and control in a heterogeneous population, there are also a variety of
potential research topics. This dissertation mainly considers a fast-spreading disease propagates
in a heterogeneous mixing population, and Chapter 4 and Chapter 6 further assume limited re-
sources for epidemic control and consider population heterogeneities in terms of social groups and
spatial distribution, respectively. Therefore, when the disease’s spreading speed is insignificant as
compared to the population birth/death rates, or the individuals change their contact network as a
response to the infectious disease, a different dynamics model would be required. Moreover, the
configuration model random network largely neglects real-world clustering effects among human
contact networks. A different network representation is needed to model the epidemics process in
clustered networks, and the optimal control strategies might be different as well .

Furthermore, in Chapter 5, while investigating the population’s vaccination behavior under
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vaccine-phobia, we made several assumptions: i) the vaccine resources are always abundant, ii)
vaccine uptake always guarantees immunity, and iii) the population share similar perceptions to-
ward vaccination. It would thus be very interesting to model a vaccination game where i) people
need to compete for limited supply of vaccines, and/or ii) vaccines do not function as expected, or
even directly cause morbidity (e.g. Chen and Fu (2019) and Wu et al. (2011)), and/or iii) different
vaccine-phobia levels exist among different social groups of population.

On the other hand, vaccine distribution cost/time may largely depend on the distance from
distribution centers to destinations, which is however neglected in Chapter 6. It might be interesting
to investigate a scenario where there is a limit fund for distribution and/or the time required to
deliver the vaccine to some destinations may result in delayed vaccination. Furthermore, in this
dissertation we do not cover another potential vaccination strategy, which is to target the individuals
who have contacts with the infected ones. This approach is also worth investigating, as targeting
the neighbors of the infected individuals can effectively cutoff the disease transmission links and
mitigate disease propagation.

Another important issue need to be addressed in the future is real-world data collection. A
lot of existing work have been conducted to estimate the disease transmission and removal rates.
Moreover, many studies have also tried to understand social networks using survey or social media
data. However, these models are not necessarily suitable for modeling infectious disease trans-
missions (e.g., because of the difference between physical contact and online communications).
Therefore, it is imperative to design a proper method to fully understand the population disease
transmission contact network structure. Furthermore, population’s vaccine-phobia level and the
social penalties caused by epidemic control measures also need to be adequately captured.

Finally, it is important to validate these models using real-world observations. If the real-
world data is consistent with the model prediction, it suggests the modeling framework could be
useful for the decision-makers for application. Otherwise, certain important factors must be been
unfortunately neglected in our models, and it is imperative to investigate these omitted factors -
this does not damage the value of the existing work, as revealing the key factors in the disease
propagation process could also be a potential contribution of this dissertation.

87



REFERENCES

AGC, 2015. Urban tactical planner URL: http://www.agc.army.mil/Media/FactSheets/
FactSheetArticleView/tabid/11913/Article/480931/urban-tactical-planner.aspx. data retrieved
from Army Geospatial Center.

Ahmed, S., Mendoza, D., 2014. Ebola hysteria: An epic, epidemic overreaction. CNN 20. URL:
www.cnn.com/2014/10/20/health/ebola-overreaction/index.html. accessed: 2018-08-24.

Anderson, R.M., May, R.M., 1992. Infectious diseases of humans: dynamics and control. Oxford
university press, Oxford.

Bacaër, N., Guernaoui, S., 2006. The epidemic threshold of vector-borne diseases with seasonality.
Journal of Mathematical Biology 53, 421–436.

Bansal, S., Pourbohloul, B., Meyers, L.A., 2006. A comparative analysis of influenza vaccination
programs. PLoS Medicine 3, e387.

Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A., 2005. Dynamical patterns of
epidemic outbreaks in complex heterogeneous networks. Journal of Theoretical Biology 235,
275–288.

Bauch, C.T., 2005. Imitation dynamics predict vaccinating behaviour. Proceedings of the Royal
Society of London B: Biological Sciences 272, 1669–1675.

Bauch, C.T., Earn, D.J., 2004. Vaccination and the theory of games. Proceedings of the National
Academy of Sciences of the United States of America 101, 13391–13394.

Bauch, C.T., Galvani, A.P., Earn, D.J., 2003. Group interest versus self-interest in smallpox vacci-
nation policy. Proceedings of the National Academy of Sciences 100, 10564–10567.

Bayram, V., Tansel, B.Ç., Yaman, H., 2015. Compromising system and user interests in shelter
location and evacuation planning. Transportation Research Part B: Methodological 72, 146–163.

Bhaskar, V., Lallement, P., 2010. Modeling a supply chain using a network of queues. Applied
Mathematical Modelling 34, 2074–2088.

88

http://www.agc.army.mil/Media/FactSheets/FactSheetArticleView/tabid/11913/Article/480931/urban-tactical-planner.aspx
http://www.agc.army.mil/Media/FactSheets/FactSheetArticleView/tabid/11913/Article/480931/urban-tactical-planner.aspx
www.cnn.com/2014/10/20/health/ebola-overreaction/index.html


BPR, 1964. Traffic assignment manual for application with a large, high speed computer. Wash-
ington : U.S. Dept. of Commerce, Bureau of Public Roads, Office of Planning, Urban Planning
Division.

Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S., 2010. Catastrophic cascade of
failures in interdependent networks. Nature 464, 1025.

Calandrillo, S.P., 2003. Vanishing vaccinations: why are so many americans opting out of vacci-
nating their children. U. Mich. JL Reform 37, 353.

Castilho, C., 2006. Optimal control of an epidemic through educational campaigns. Electronic
Journal of Differential Equations (EJDE)[electronic only] 2006, Paper–No.

Chen, X., Fu, F., 2019. Imperfect vaccine and hysteresis. Proceedings of the Royal Society B:
Biological Sciences 286, 20182406.

Chor, J.S., Ngai, K.L., Goggins, W.B., Wong, M.C., Wong, S.Y., Lee, N., Leung, T.f., Rainer,
T.H., Griffiths, S., Chan, P.K., 2009. Willingness of Hong Kong healthcare workers to accept
pre-pandemic influenza vaccination at different WHO alert levels: two questionnaire surveys.
Bmj 339, b3391.

Codeço, C.T., 2001. Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir.
BMC Infectious Diseases 1, 1.

Cojocaru, M.G., 2008. Dynamic equilibria of group vaccination strategies in a heterogeneous
population. Journal of Global Optimization 40, 51–63.

Di Muro, M., Alvarez-Zuzek, L., Havlin, S., Braunstein, L., 2018. Multiple outbreaks in epidemic
spreading with local vaccination and limited vaccines. arXiv preprint arXiv:1805.01564 .

Funk, S., Salathé, M., Jansen, V.A., 2010. Modelling the influence of human behaviour on the
spread of infectious diseases: a review. Journal of the Royal Society Interface , rsif20100142.

Haimes, Y.Y., Horowitz, B.M., Lambert, J.H., Santos, J.R., Lian, C., Crowther, K.G., 2005. Inoper-
ability input-output model for interdependent infrastructure sectors. I: theory and methodology.
Journal of Infrastructure Systems 11, 67–79.

Haimes, Y.Y., Jiang, P., 2001. Leontief-based model of risk in complex interconnected infrastruc-
tures. Journal of Infrastructure systems 7, 1–12.

Han, D., Sun, M., 2016. An evolutionary vaccination game in the modified activity driven network
by considering the closeness. Physica A: Statistical Mechanics and its Applications 443, 49–57.

89



Hansen, E., Day, T., 2011. Optimal control of epidemics with limited resources. Journal of
Mathematical Biology 62, 423–451.

Hawryluck, L., Gold, W.L., Robinson, S., Pogorski, S., Galea, S., Styra, R., 2004. SARS control
and psychological effects of quarantine, Toronto, Canada. Emerging Infectious Diseases 10,
1206.

Horner, M.W., Widener, M.J., 2011. The effects of transportation network failure on peopleâĂŹs
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