
c© 2019 Fardin Abdi Taghi Abad

SAFETY AND SECURITY OF CYBER-PHYSICAL SYSTEMS

BY

FARDIN ABDI TAGHI ABAD

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor Marco Caccamo, Chair
Professor Sibin Mohan, Co-Chair
Professor Lui R. Sha
Professor Taylor Johnson, Vanderbilt University

ABSTRACT

The number of embedded controllers in charge of physical systems has rapidly increased

over the past years. Embedded controllers are present in every aspect of our lives, from

our homes to our vehicles and factories. The complexity of these systems is also more than

ever. These systems are expected to deliver many features and high performance without

trading off in robustness and assurance. As systems increase in complexity, however, the

cost of formally verifying their correctness and eliminating security vulnerabilities can quickly

explode. On top of the unintentional bugs and problems, malicious attacks on cyber-physical

systems (CPS) can also lead to adverse outcomes on physical plants. Some of the recent

attacks on CPS are focused on causing physical damage to the plants or the environment.

Such intruders make their way into the system using cyber exploits but then initiate actions

that can destabilize and even damage the underlying (physical) systems.

Given the reality mentioned above and the reliability standards of the industry, there is

a need to embrace new CPS design paradigms where faults and security vulnerabilities are

the norms rather than an anomaly. Such imperfections must be assumed to exist in every

system and component unless it is formally verified and scanned. Faults and vulnerabilities

should be safely handled and the CPS must be able to recover from them at run-time.

Our goal in this work is to introduce and investigate a few designs compatible with this

paradigm. The architectures and techniques proposed in this dissertation do not rely on the

testing and complete system verification. Instead, they enforce safety at the highest level

of the system and extend guaranteed safety from a few certified components to the entire

system. These solutions are carefully curated to utilize unverified components and provide

guaranteed performance.

ii

ACKNOWLEDGMENTS

No man is an island and no Ph.D. comes to fruition without the inspiration,

companionship, and support of an entire community. It is impossible for me to thank each

soul that helped me along the way. There are a great many who contributed in ways I may

have understood at the time and did so with kindness.

Before all else, I have to thank my advisor Professor Marco Caccamo for providing

his mentorship and intellectual support during my Ph.D. My path was not smooth, nor

straight but Marco always had clear, constructive advice that helped me navigate through

the numerous challenges. This dissertation simply would not have been possible without

him. Thank you, Professor Sibin Mohan, for being especially energetic and insightful on all

our collaborations. I am particularly grateful for your willingness to view me as a colleague

and valuing my ideas and opinions in ways that always provided me with much-needed

confidence. I would like to also thank Professor Lui Sha for sharing not only his academic and

technical expertise but also his personal wisdom and experiences with me. I am also grateful

to Professor Taylor Johnson for taking part in my committee and providing his valuable

insight into my work. To the University of Illinois at Urbana-Champaign, Department of

Computer Science and its excellent staff, I am thankful for allowing me to learn from and

work alongside the world-class experts. I would like to seize the opportunity to thank my

professors in University of Tehran and my teachers in Modarres high school of Khoy who

helped me forge a solid scientific foundation.

I am fortunate to have been surrounded by many bright souls during my time in

Champaign-Urbana. First and foremost, I want to thank Renato Mancuso for being so

generous with his sharp mind and brilliant humor which made all the difference. Thanks to

you I have watched Rick and Morty three times so far and check Reddit regularly every day.

Cheers to Neriman Tokcan who quickly became and remains the closest thing I have had in

the States to a sister. While I am pretty sure she is grateful I introduced her to Renato,

I can honestly say that my Ph.D. experience was richer, more humane, and more colorful

because Renato and Neriman Were in it.

I am indebted to Stanley Bak for his mentorship and guidance in the early years of my

graduate school. I also must thank Rohan Tabish, Chien-Ying Chen, and Monowar Hassan

for being excellent collaborators and friends. Through long days, long nights, hard projects,

and tough reviewers, we all came out stronger. I am also grateful to Or Dantsker for his

hard work building our experimental airplanes and how well he helped me get to know the

iii

local cornfields when searching through them later.

I also want to express how thankful I am for the community of friends I found in Urbana-

Champaign. Cheers to all my roommates who helped me acclimate and build a home base.

Many breakthroughs happened among friends in a grad student living room with a glass of

tea in one hand and a question in the other. I must thank Nikita Spirin for the way we could

bond over remarkable ideas. To Mohammad Babaeizadeh and Hadi Hashemi, I am deeply

grateful though I cannot explain just how meaningful their insights and friendships were.

Hadi and Shekoofeh Mokhtari kept me rooted and whole while Mohammad always brought

a new game or debate to the table in the style that only he can. Cheers to Adel Ahmadyan,

the one person that I can always turn into for anything and he is always there, with the

most vibrant, generous smile. To my other roommate, Faraz Faghri, and for the friendships

of Siddharth Gupta, Jackie Alexandra, and Amin Ansari I am also indebted. Amin was and

is my go-to person whenever I face hard decisions and , somehow, he always manages to

find an angle that I have missed. I am grateful to Paul Rauch. Despite never really living

in Champaign-Urbana, he is an indispensable part of my most unforgettable times there. I

want to thank my dear friend Hossein Tagharobi Nia whom I have known since high school

and has been like an older brother to me – despite being the same age. I am also grateful

and consider myself lucky that I have known Prakalp Srivastava, Jeremy Goodsitt. Hassan

Eslami, Babak Behzad, Sam Hamedirad, Austin Walters, Rasoul and Jalal Etesami, Xing

Gao, and Kuan-Yu Tseng.

I want to thank my wonderful wife, Alia Bellwood especially. I could not have asked

for a better partner. Not only she is the most supportive person at times of stress and

uncertainty, but also she is a very gifted writer whose expertise I have greatly benefited from

during my Ph.D., in ways that only she is aware of. I am thankful to University of Illinois

that introduced her to my life.

Finally, I dedicate this entire dissertation to the memory of my father, Mehran Abdi, and

to my mother, Hajiyeh Soltani, who both sacrificed the most for it. My mom is undoubtedly

the happiest that it is now finished. And to my little brother, Armin Abdi, I am impressed

with how well he held down the fort without me. He thrived on raw determination and love

and I could not be prouder. I know that his hard work gave me peace of mind to focus on

the task I now finish.

Fardin Abdi

Apr 2019, Seattle

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Safety of Single Node CPSs . 3
1.2 Security of Single Node CPS . 4
1.3 Guaranteed Safety in Distributed CPS . 5

CHAPTER 2 RELATED WORK . 8
2.1 Single Node CPS Safety . 8
2.2 Single Node Security . 10
2.3 Distributed CPS Safety . 12

CHAPTER 3 PRELIMINARIES . 14
3.1 Simplex Design . 14
3.2 Real-Time Reachability . 16
3.3 Notations . 17

CHAPTER 4 SINGLE NODE CPS SAFETY THROUGH CONTROLLER DESIGN 19
4.1 Design Approach . 20
4.2 Base Controller Design . 24
4.3 Case study and Evaluation . 33
4.4 Summary and Discussion . 40

CHAPTER 5 SINGLE NODE CPS SAFETY THROUGH SCHEDULABILITY
ANALYSIS . 42
5.1 System Model and Assumptions . 43
5.2 Fault Detection and Task Re-execution . 47
5.3 RBR-Feasibility Analysis . 48
5.4 Limited Preemptions . 53
5.5 Evaluation . 61
5.6 Summary and Discussion . 64

CHAPTER 6 SINGLE NODE CPS SECURITY . 65
6.1 Applications, Threats and Adversaries . 67
6.2 Methodology . 70
6.3 TEE-Assisted Design Implementation . 75
6.4 Evaluation and Feasibility Study . 79
6.5 Summary and Discussion . 91

v

CHAPTER 7 SAFETY IN DISTRIBUTED CPS 94
7.1 Providing Safety . 97
7.2 Guaranteeing Progress . 103
7.3 Eliminating Runtime Reachability . 108
7.4 Vehicles in a Shared Environment . 111
7.5 Summary and Discussion . 119

CHAPTER 8 FAIL-SAFE DESIGN PATTERNS 120

CHAPTER 9 CONCLUDING REMARKS . 123

REFERENCES . 124

vi

CHAPTER 1: INTRODUCTION

Embedded controllers with smart capabilities are increasingly used to implement cyber-

physical systems (CPS) with applications in many areas such as the Internet of Things.

Modern medical devices, smart home appliances, smart vehicles, and avionics systems to

name a few, are required to deliver increasingly high performance without trading off

in robustness and assurance. Unfortunately, satisfying the increasing demand for smart

capabilities and high performance means deploying increasingly complex systems. Even

seemingly simple embedded control systems often contain a multitasking kernel, support

networking, utilize many open source libraries [1], and a number of specialized hardware

components (GPUs, DSPs, DMAs, etc.). As systems increase in complexity, however, the

cost of formally verifying their correctness and eliminating security vulnerabilities can quickly

explode.

In the past, many products that fell into the CPS category were also considered highly

safety critical and therefore, were subject to serious safety standards. Such projects were

required by various government and/or safety regulatory organizations to demonstrate a

certain level of reliability and assurance through testing and/or verification before they

could acquire operation certificates. These projects also were expected by corporations and

government to be expensive, high-budget with a long development to market cycle and

infrequent upgrades. Numerous examples of such projects can be found in areas such as

avionics, medical equipment, or manufacturing devices and automotive industry. For these

projects, the cost of verification and testing could add up to 40 percent of the total production

cost.

Today, we live in a different world where refrigerators that keep our food safe also connect

to the Internet and thermostats that control the temperature of our infants’ rooms also

connect to our smart-phones. Many of these seemingly benign products can cause real

damage that in some cases is comparable with earlier safety-critical systems. Think about

the following scenario; a malfunctioning thermostat can drop cause the temperature to fall

below a level that is unsafe for a newborn baby. Or a malfunctioning refrigerator may

cause food poisoning for the entire household. Modern seemingly benign CPS compose a

significant part of the Internet of Things applications. The physical components of these

systems may not be as sophisticated and unstable as the traditional safety-critical CPS, but

the risks they can pose are indeed as real.

In an ideal world, software is fully verified and scanned for logical and implementation

correctness as well as security vulnerabilities. This is, however, infeasible for the modern

1

real-world systems due to their level of complexity. Today, Linux Kernel contains more

than 250,000 lines of code which resembles the complexity level in many other operating

systems as well. To achieve the stringent safety requirements1, the software and hardware

need to be exhaustively tested to ensure nothing will ever go wrong. That includes covering

every condition on every line of code. Most tools developed to work with the programming

language and software architecture need to be formally verified as well. On top of that,

costly testing needs to be done to evaluate any changes. This creates a lot of inertia and

means adding new features much less a complete overhaul of an existing product or starting

from scratch for a new product is often not cost-effective.

Simply put, formal verification and exhaustive testing are not the right solutions given the

realities of the current market. Many of today’s start-ups and corporations need to bring

their ideas into the market and iterate through many versions very rapidly. Customers also

expect new features and upgrades every year. It is not possible to expect companies like

SAMSUNG or Google to develop their next smart thermostat in the same time-line and

using the same budgets that are expected for the development of airplane parts. Given the

reliability requirements of these new products, there is a need to embrace new CPS design

paradigms where faults and security vulnerabilities are the norms rather than an anomaly.

Such imperfections must be assumed to exist in every system and component. Faults and

vulnerabilities must be handled safely and the CPS must be able to recover from them at

runtime.

My goal in this work is to demonstrate that it is possible to create low-cost, safe-by-design

architectures for CPS that allow quick iterations and frequent upgrades. The architectures

and techniques introduced in this dissertation do not rely on the testing and full verification.

Instead, they enforce safety at the highest level of the system and extend guaranteed safety

from a few certified components to the entire platform. These solutions are carefully curated

to utilize unverified components and provide guaranteed performance.

In Chapter 4, I present a restart-based fault-tolerant design that can be applied to a wide

variety of embedded controller to ensure the safety of the physical plant under control. In

the same chapter, we offer a complementary approach enables the use of this design in plants

with non-linear dynamics. Applying this approach CPS with large number of dimensions can

be challenging at times. In Chapter 5, I provide an alternative restart-based approach such

that safe-by-construct architecture is not impacted by the complexity of physical dynamics.

When a CPS is under attack, many of the assumptions necessary for the previous techniques

do not hold anymore. Consequently, those architectures will not provide safety guarantees

1In avionics, for example, Level A certified software often requires one failure per 109 operation hours.

2

under attacks. In chapter 6, we study safety in presence of an intelligent adversary and

lay out a design pattern that can maintain the physical safety. Finally, in Chapter 7, I

investigate the safety of multiple coordinating CPS where the communication channels are

not reliable. We demonstrate the conditions necessary to maintain safety and progress and

incorporate them in a case-study.

In the rest of this chapter, I review the contribution made in each chapter of this

dissertation.

1.1 SAFETY OF SINGLE NODE CPSS

The work presented in Chapter 4 and 5 of this dissertation provides techniques and

designs that allow utilizing unverified software components to implement a CPS controller

with guaranteed safe performance. Presented designs rely on a critical observation that

restarting a computing system and reloading a fresh image of all the software (i.e., RTOS,

and applications) from a read-only source appears to be an effective approach to recover the

system from unexpected faults.

Restartable Controller Design

Chapter 4 proposes a software/hardware co-design methodology that provides fault-

tolerance and liveliness guarantees only using one commercial-off-the-shelf (COTS)

computing platform. I provide a procedure for the synthesis of abstraction-based correct-

by-construction controllers for linear and nonlinear physical systems that enables the entire

computing system to be safely restarted at runtime. This controller can keep the control

system inside a subset of safety region, only by updating the actuator input at least once

after every system restart.

The key contributions of this chapter are:

• Construction of formally verified base controllers for safety-critical applications with

linear and nonlinear physical components which guarantee safe full system restart for

application and system level fault tolerance.

• Tolerating application-level faults as well as system-level faults using only one COTS

processing unit.

• Empirical validation of both the practicality of our proposed design and the safety

guarantees through fault-injection testing on a prototype controller for the nonlinear

inverted pendulum system and a 3-degree-of-freedom helicopter.

3

Schedulability Analysis of Restarts

In Chapter 5, I propose another restart-based fault-tolerant design that is not impacted

by the complexity or number of dimensions of the dynamics of the physical plant under

control.

The controllers are constructed following the principles of Simplex architecture [2]. As a

result, the task set running on the platform can be divided into two categories of critical

and non-critical tasks such that the timely execution of critical task set is sufficient for

maintaining the system safety. I propose the following: as soon as a fault that disrupts the

execution of critical software tasks is detected, the entire system is restarted. After a restart,

all the safety-critical tasks that were impacted by the restart are re-executed. If restart and

re-execution of critical tasks can be performed fast enough, i.e., such that timing constraints

are always met in spite of task re-execution, the physical system will remain oblivious to

and will not be impacted by the occurrence of faults.

From a scheduling perspective, safety is guaranteed if safety controller tasks have enough

CPU cycles to re-execute and finish before their deadlines in spite of restarts. In this chapter,

I present the conditions for a periodic task set to be schedulable in the presence of restarts

and re-execution. I assume that when a restart occurs, the task instance executing on

the CPU and any of the tasks that were preempted before their completion will need to

re-execute after the restart. In particular, I make the following contributions:

• I propose a design based on Simplex Architecture that enables fault-recovery via

restarts and can be implemented on a single processing unit;

• I derive the response time analysis under fixed-priority with fully preemptive and fully

non-preemptive disciplines in the presence of restart-based recovery and discuss the

pros and cons of each one;

• I propose response time analysis of fixed-priority scheduling in the presence of restarts

for tasks with preemption thresholds [3] and non-preemptive ending intervals [4] to

improve feasibility of task sets;

• To evaluate the practicality of the design, I perform a proof-of-concept implementation

on a 3-DOF helicopter and test the system against various types of faults.

1.2 SECURITY OF SINGLE NODE CPS

There are always unforeseen vulnerabilities that enable intruders to bypass the security

mechanisms and gain administrative access to the controllers. Once an attacker gains such

4

access, all bets are off with regards to the safety of the physical subsystem. In Chapter 6,

I develop analytical methods that can formally guarantee the baseline safety of the physical

plant even when the controller unit’s software has been entirely compromised. The main idea

is to carry out consecutive evaluations of physical safety conditions, inside secure execution

intervals, separated in time such that an attacker with full control will not have enough

time to destabilize or crash the physical plant in between two consecutive intervals. These

intervals are referred by Secure Execution Interval (SEI). The time between consecutive SEIs

is dynamically calculated in real time, based on the mathematical model of the physical plant

and the current state. The key to providing such formal guarantees is to make sure that

each SEI takes place before an attacker can cause any physical damage.

I discuss two different approaches to achieve this goal; (i) restart-based implementation

Under which, control platform is restarted in each cycle, and the uncompromised image of

the controller software is reloaded from read-only storage (ii) TEE-based implementation

which utilizes Trusted Execution Environments (TEE) such as ARM TrustZone [5] or Intel’s

Trusted Execution Technology (TXT) [6] that are available in some hardware platforms.

This design can significantly improve the applicability of our method to physical plants with

faster dynamics.

In summary, the contributions of the work are:

• A design method is introduced for embedded control platforms with formal guarantees

on the base-line safety of the physical subsystem when the software is under attack.

• A restart-based design implementation is proposed that enables trusted computation

in an untrusted environment using platform restarts and common-off-the-shelf (COTS)

components, without requiring chip customizations or specific hardware features.

• An alternative design implementation is proposed using TEE features that eliminates

the restarting overhead and enables the core safety-guarantees to be provided on more

challenging physical plants.

• I implemented and tested our approach against attacks through a prototype

implementation for a realistic physical plant and a hardware-in-the-loop simulation. I

will compare both design implementation options and illustrate their use cases.

1.3 GUARANTEED SAFETY IN DISTRIBUTED CPS

In this chapter, I investigate the safety of distributed CPSs – safety premise of each

node is defined with regards to the environment as well as the state of other nodes in the

5

system. Distributed CPSs combine networked communication along with interactions with

the physical world. In particular, I consider a CPS scenario consisting of several embedded

computing components each interacting and sensing the physical world and communicating

with a central coordinator over an unreliable channel, such as wireless or the Internet. A

distributed CPS is considered globally safe if and only if all the nodes are safe. These low-level

controllers attempt to accomplish some task in a coordinated fashion. Since the physical

world is being manipulated, it is essential that the supervisory control logic is carefully

designed and satisfies strict safety requirements. This system is difficult to reason about

because both (1) the communication layer can experience unbounded message delays and

drops, and (2) the dynamics of the physical world are represented by interacting relationships

in a continuous space.

In the context of a distributed CPS, a designer is typically interested in two properties:

safety and progress. Proof of safety will guarantee that the system will never enter an

undesirable state. I formally specify safety as a predicate on the variables of the agents of

the distributed CPS which is true at all times (a safety invariant). The notion of progress

that I consider is that roughly speaking, all the agents will receive and follow the desired

goal command in finite time. The ultimate guarantee that this design provides is that the

system will remain safe at all times (even if the network fails) while being able to meet the

progress property as long as the communication network is functioning.

In this chapter, I propose a Runtime Command Monitor interposed between the

supervisory control logic and the network. If the supervisory control logic attempts to send

control commands which, for any amount of message delay, can lead to a system state that

violates the safety predicate, the Runtime Command Monitor will reject commands which

could lead to unsafe states. It will be demonstrated that this design results in a fail-safe

system.

The main contributions are as follows:

• I prove that run-time properties provide necessary and sufficient conditions for safety

in a distributed CPS system. By encoding these checks into a Runtime Command

Monitor, a fail-safe system can be developed (Section 7.1).

• The proposed run-time properties require computing the reachability of the system

online, which can be an expensive operation. Through a combination of reachability

reduction transformations and input and state enumeration, this operation is performed

off-line (Section 7.3).

• I provide sufficient conditions for providing progress guarantees. This requires

6

constructing a chain of compatible actions, as well as a network which eventually

delivers packets that are sent. (Section 7.2)

• The presented approach is applied to a simulated system of vehicles moving in a shared

environment, where the runtime command monitor prevents vehicle collisions. (Section

7.4)

7

CHAPTER 2: RELATED WORK

Hereby, I review some of most relevant work in the literature.

2.1 SINGLE NODE CPS SAFETY

The notion of restarting as a means of recovery from faults and improving system

availability was previously studied in the literature. Most of the previous work, however,

target traditional non-safety-critical computing systems such as servers and switches. These

approaches are generally divided into two categories, viz., i) revival, reactively restart a failed

component and ii) rejuvenation, prophylactically restart functioning components to prevent

state degradation [7]. Our designs, as described in Chapters 4 and 5 of this dissertation, fit

in the former category. Authors in [8] introduce recursively restartable systems as a design

paradigm for highly available systems and use a combination of revival and rejuvenation

techniques. Earlier literature [9, 10, 11] illustrates the concept of microreboot which consists

of having fine-grain rebootable components and trying to restart them from the smallest

component to the biggest one in the presence of faults. The works in [12, 13, 14] focus

on failure and fault modeling and try to find an optimal rejuvenation strategy for various

systems. In this context, our previous work in Reset-Based Recovery [15] was an attempt to

utilize restarting as a recovery method for computing systems in safety-critical environments.

In an earlier work [15], we used System-Level Simplex architecture and proposed to restart

only the complex subsystem upon the occurrence of faults. This is feasible because the

safety subsystem runs on a dedicated hardware unit and is not impacted by the restarts in

the complex subsystem. The approach of the current paper is significantly different and uses

only one hardware unit.

The concept of utilizing an unverified, complex controller along with a simple, verified

safety controller for fault tolerance was initially proposed as Simplex Architecture in [16,

2, 17]. The Simplex Architecture was developed as an approach to increase system safety

for individual Linear Time-Invariant (LTI) control systems, by filtering commands from an

untrusted controller and switching over to a safe backup mode. It deploys two controllers: (i)

a high-performance (yet unverifiable) controller and (ii) a high-assurance, formally verified,

safety controller. A decision module (formally verifiable) is used to take over the control

in the case that the high-performance controller is pushing the physical system beyond a

pre-computed safety envelope.

In earlier simplex designs, fault tolerance was achieved in one of two ways. In some of

8

these designs such as [16, 18, 2, 17, 19], all three components (safety controller, complex

controller, and decision unit) share the same computing hardware (processor) and software

platform (OS, middleware). As a result, these designs only protect the safety against the

faults in the application logic of the complex controller and do not guarantee the correct

behavior in the presence of system-level faults.

Some Simplex-based designs such as System-Level Simplex [20], Secure System Simplex

Architecture (S3A)[21], and other variants [22] run the safety controller and the decision logic

on an isolated, dedicated hardware unit. By doing so, the trusted components are protected

from the faults in the complex subsystem. However, exercising System-Level Simplex design

on most COTS multicore platforms/SoC (system on chip) is challenging. The majority of

commercial multicore platforms are not designed to achieve strong inter-core fault isolation

due to the high-degree of hardware resource sharing. For instance, a fault occurring in a

core with the highest privilege level may compromise power and clock configurations of the

entire platform. To achieve full isolation and independence, one has to utilize two separate

boards/systems. In contrast, the approaches proposed in Chapters 4 and 5 need only one

processor and tolerate system-level faults.

One way to achieve fault-tolerance in real-time systems is to use time redundancy. Using

time redundancy, whenever a fault leads to an error, and the error is detected, the faulty

task is either re-executed or a different logic (recovery block) is executed to recover from the

error. It is necessary that such recovery strategy does not cause any deadline misses in the

task set. Fault tolerant scheduling has been extensively studied in the literature. Hereby,

those works that are more closely related are surveyed.

A feasibility check algorithm under multiple faults, assuming EDF scheduling for aperiodic

preemptive tasks is proposed in [23]. An exact schedulability tests using checkpointing for

task sets under fully preemptive model and transient fault that affects one task is proposed

in [24]. This analysis is further extended in [25] for the case of multiple faults as well as for

the case where the priority of a critical task’s recovery block is increased.

In [26], authors propose the exact feasibility test for fixed-priority scheduling of a periodic

task set to tolerate multiple transient faults on uniprocessor. In [27] an approach is presented

to schedule under fixed priority-driven preemptive scheduling at least one of the two versions

of the task; simple version with reliable timing or complex version with potentially faulty.

Authors in [28] consider a similar fault model to ours, where the recovery action is to

re-execute all the partially executed tasks at the instant of the fault detection i.e., executing

task and all the preempted tasks. This work only considers preemptive task sets under rate

monotonic and shows that single faults with a minimum inter-arrival time of largest period

in the task set can be recovered if the processor utilization is less than or equal to 50%. In

9

[29], the authors investigate the feasibility of task sets under fault bursts with preemptive

scheduling. The recovery action in this work is to re-execute the faulty job along with all

the partially completed (preempted) jobs at the time of fault detection.

Most of these works are only applicable to transient faults (e.g., faults that occur due to

radiation or short-lived HW malfunctions) that impact the task and do not consider faults

affecting the underlying system. Additionally, most of these works assume that an online

fault detection or acceptance test mechanism exists. While this assumption is valid for

detecting transient faults or timing faults, detecting complex system-level faults or logical

faults is non-trivial.

2.2 SINGLE NODE SECURITY

There is a considerable number of techniques in the area of fault-tolerant CPS design that

focuses on protecting the physical components in the presence of faults1. Although similar,

there are fundamental differences between protecting against faults vs. protecting against

an intelligent adversary. In what follows I review some of the papers and elaborate the

differences and similarities.

As mentioned earlier, Simplex architecture [2] is a well known fault-tolerant design for

CPS. It deploys two controllers: (i) a high-performance (yet unverifiable) controller and (ii)

a high-assurance, formally verified, safety controller. A decision module (formally verifiable)

is used to take over the control in the case that the high-performance controller is pushing

the physical system beyond a pre-computed safety envelope. A few variants of Simplex

design exist; some use a varying switching logic [30, 31] while others utilize a different safety

controller [32, 33]. Nevertheless, all these designs assume that only a subset of the software

misbehaves (for instance, they assume that switching unit cannot misbehave), which is

invalid when the systems are under attack, and no other mechanism – such as restarts or

TEE features are employed.

Another variant of the Simplex architecture is System-Level Simplex [20] where the safety

controller and the decision module run on dedicated hardware to isolate them from any

fault or malicious activities on the complex controller (i.e., the high-performance controller).

Techniques based on this architecture [20, 15, 34, 35] guarantee the safety of the physical

plant even when the complex controller is under attack. However, implementing the

1Where the safety invariants of the physical plant must be preserved despite the possible implementation
and logical errors in the software. Here, ‘faults’ refer to bugs in the software implementations. Another
definition for faults exists that includes physical problems (e.g., broken sensors/actuators/etc) – such faults
are out of scope of this work.

10

System-Level Simplex design on most COTS platforms is challenging since most commercial

multicore platforms are not designed to support strong inter-core isolation (due to the high

degree of hardware resource sharing). For instance, an adversary residing in the high-

privileged core may compromise power and clock configurations of the entire system. Hence,

full isolation can only be achieved by utilizing two separate boards.

Trusted hardware features are commonly employed in the literature to achieve security

goals. Some works have deployed the Trusted Platform Module (TPM) to build trusted

computing environments on servers and hypervisors [36, 37, 38]. ARM TrustZone has been

utilized in recent literature [39, 40, 41] to implement security monitors in the secure world.

Authors in [42], leverage TrustZone and propose TZ-RKP to protect the integrity of the

operating system kernel running in the normal, non-secure world. The analytical framework

proposed in Chapter 6 could be combined into these techniques to develop a diverse set of

CPS platforms that can provide physical safety guarantees.

Restart-based recovery is previously explored in some of the aforementioned Simplex-based

works [34, 15]. Specifically, these works restart the isolated, dedicated complex controller

unit – equivalent to the mission controller. Restarting the complex controller while a safety

controller running on separate hardware maintains the safety during the restart is more

straightforward than restarting the entire platform. Another Simplex-based work in which

the authors use a single hardware unit implements full-system restarts [32]. Nevertheless, this

work assumes that the safety controller and the decision module may not be compromised

and are always correct. Again, this assumption is invalid in the security context, and the

physical safety cannot be guaranteed when the system is under attack.

There is a trend in systems dependability that applies the concepts and mechanisms of fault

tolerance in the security domain, intrusion tolerance (or Byzantine fault tolerance) [43, 44].

These works advocate for designing intrusion-tolerant systems rather than implementing

prevention against intrusion. Many works in intrusion-tolerant systems have targeted

distributed services in which replication and redundancy are feasible. Their goals are mainly

to ensure the availability of the system service even if some of its nodes are compromised.

One paper proposes to proactively restore the system code from a secure source to eliminate

any potential transformations carried out by an attacker [43]. With proactive recovery, the

system can tolerate up to f faults/intrusions, as long as no more than f faults occur in

between rejuvenations. In [45], the authors propose a general hybrid model for distributed

asynchronous systems with partially synchronous components, named wormholes. In [46],

the authors take wormholes as a trusted secure component which proactively recovers

the primary function of the system. The authors suggest that such a component can

be implemented as a separate, tamper-proof hardware module in which the separation

11

is physical; or it can be implemented on the same hardware with virtual separation and

shielding enforced by software. A proactive-reactive recovery approach is introduced in [47]

(built on top of [46]) that allows correct replicas to force the recovery of a faulty replica.

While these techniques are useful for some safety-critical applications such as supervisory

control and data acquisition (SCADA), they may not be directly applicable to safety-critical

CPS. Potentially, a modified version of these solutions might be utilized to design a cluster

of replicated embedded controllers in charge of a physical plant.

2.3 DISTRIBUTED CPS SAFETY

Networked control systems have been employed in a variety of industrial automation

applications. Industrial wireless protocols and products have been developed as replacements

for wired control systems [48, 49]. These were made not only to reduce costs due to

materials (wiring), installation and wire maintenance, but also provide benefits in flexibility

by allowing easy modification to the existing communication infrastructure. One benefit of

using these solutions is that they strive to reduce (but cannot eliminate) problems arising

from communication delay and packetloss when wireless is used in industrial control systems.

A network extension of Simplex has also been developed [50]. This work extended

the Simplex approach to Linear Parameter Varying (LPV) systems, and incorporated

network delays into the design. However, the analysis requires having a fixed upper

bound on communication delay with no packetloss, which cannot be guaranteed under

wireless communication. Our guarantee of safety holds without a fixed upper bound on

communication delay and we allow unrestricted packet loss to occur.

Our approach for safety of distributed CPS draws inspiration from the NASS framework

developed to provide safety for medical systems communicating over wireless [51]. This

system uses discrete dynamics with formal safety properties in a supervisory control system

over wireless. Each command message includes a backup command vector, which is used

if no further commands arrive. A safety filter provides protection from faults in the high-

level control. This filter needs to reason about the worst-case packet delivery combinations,

which in the case of the considered discrete system involves model-checking the possible

combinations of packet reception and agent states.

Run-time approaches have been considered to create verified systems [52]. The advantage

of this approach is, since at runtime some of the variables are known, only a smaller state

space needs to be considered. This is also the argument we make when advocating the

design of the Runtime Command Monitor. Real-time ways of computing reachability have

also been recently developed [53], which are quick enough to run in within a control loop

12

(on the order of tens of milliseconds). Such methods can reduce the burden of enumeration

from the proposed work, but at the cost of extremely limited runtime, which can increase

error in the computed over-approximation of the reachable set of states.

For partially synchronous systems, where messages get bounded nondeterministic delays

or dropped, a sufficient condition for verifying convergence properties has been established

[54]. The sufficient conditions require that (i) messages get delivered infinitely often and (ii)

there exist some invariant neighborhood topology of the system satisfying a Lyapunov-type

property.

For asynchronous distributed systems, where messages get nondeterministic but bounded

delay, a static approach for reasoning about the convergence of an asynchronous system has

been proposed [55]. The approach shows that under some additional assumptions about

the shape of the sublevel sets of the Lyapunov function, if convergence occurs in perfect

communication, where messages get delivered instantly without dropping, convergence will

also occur in the corresponding synchronous system.

Similar problems also exist in the area of air traffic management where at any given

moment each, all the airplanes need to maintain a minimum distance from each other and

avoid collision. On a typical day, more than 40,000 commercial flights operate within the

US airspace [56]. In order to efficiently and safely route this air traffic, current traffic flow

control relies on a centralized, hierarchical routing strategy that performs flow projections

ranging from one to six hours. As an aircraft travels through a given airspace division, it

is monitored by the one or more air traffic controllers responsible for that division. The

controllers monitor this plane and give instructions to the pilot. As the plane leaves that

airspace division and enters another, the air traffic controller passes it off to the controllers

responsible for the new airspace division.

13

CHAPTER 3: PRELIMINARIES

In this section, I provide definitions and background on some of the concepts used

throughout the rest of the dissertation.

3.1 SIMPLEX DESIGN

Our proposed approach is designed for the control tasks that are constructed following

Simplex verified design guidelines [16, 2, 17]. In the following, I review Simplex design

concepts which are essential for understanding the methodology of this chapter. The goal of

original Simplex approach is to design controllers, such that the faults in controller software

do not cause the physical plant to violate its safety conditions.

Definition 3.1. Admissible and Inadmissible States: States that do not violate any of the

operational constraints of the physical plant are referred to as admissible states and denoted

by S. Likewise, those states that do violate the constraints are referred to as inadmissible

states and denoted by S ′.

Operational limits and safety constraints of the physical system dictate what S is and it

is outside of our control.

Under Simplex Architecture, each controlled physical process/component requires a safety

controller, a complex controller, and a decision module. In the following, the properties of

each component are defined.

Definition 3.2. Recoverable states: are defined with regards to a given Safety Con-

troller (SC) and denoted by R. R is a subset of S such that if the given SC starts controlling

the plant from the state x ∈ R, all future states will remain admissible.

Definition 3.3. Safety Controller is a controller for which a subset of the admissible states

called recoverable states exists with the following property; If the safety controller starts

controlling the plant from one of those states, all future states will remain admissible. The

set of recoverable states is denoted by R. Safety controller is formally verified i.e., it does

not contain logical or implementation errors.

Definition 3.4. Complex Controller or Mission Controller is the main controller task of

the system that drives the plant towards mission set points. However, it is unverified i.e., it

may contain unsafe logic or implementation bugs. As a result, it may generate commands

that force the plant into inadmissible states.

14

Definition 3.5. Decision Module includes a switching logic that can determine if the physical

plant will remain safe (stay within the admissible states) if the control output of complex

controller is applied to it.

Note: Safety Controller is only capable of keeping plant safe and does not push it towards

its goal/mission. A meaningful system, therefore, cannot run under SC at all times and

requires another mission controller to make progress.

There are multiple approaches to design a verified safety controller and decision module.

Ideally, we would want a SC that can stabilize the system from all the admissible states

S. However, it is not usually possible. The first proposed way is based on solving linear

matrix inequalities [57], which has been used to design Simplex systems as complicated as

automated landing maneuvers for an F-16 [58]. According to this approach, safety controller

is designed by approximating the system with linear dynamics in the form: ẋ = Ax + Bu,

for state vector x and input vector u. In this approach, safety constraints are expressed as

linear constraints in the form of linear matrix inequalities. These constraints, along with

the linear dynamics for the system, are the inputs to a convex optimization problem that

produces both linear proportional controller gains K, as well as a positive-definite matrix P .

The resulting linear-state feedback controller, u = Kx, yields closed-loop dynamics in the

form of ẋ = (A+BK)x. Given a state x, when the input Kx is used, the P matrix defines

a Lyapunov potential function (xTPx) with a negative-definite derivative. As a result, the

stability of the physical plant is guaranteed using Lyapunov’s direct or indirect methods.

Furthermore, matrix P defines an ellipsoid in the state space where all safety constraints

are satisfied when xTPx < 1. If sensors’ and actuators’ saturation points were provided as

constraints, the states inside the ellipsoid can be reached using control commands within

the sensor/actuator limits.

In this way, when the gains K define the safety controller, the ellipsoid of states xTPx < 1

is the set of recoverable states R. This ellipsoid is used to determine the proper switching

logic of the decision module. As long as the system remains inside the ellipsoid, any

unverified, complex controller can be used. If the state approaches the boundary of the

ellipsoid, control can be switched to the safety controller which will drive the system towards

the equilibrium point where xTPx = 0.

An alternative approach for constructing a verified safety controller and decision module

is proposed in [30]. Here, safety controller is constructed similar to the above approach [57].

However, a novel switching logic is proposed for decision module to decide about the safety

of complex controller commands. Intuitively, this check is examining what happens if the

complex controller is used for a single control interval of time, and then the safety controller

15

is used thereafter. If the reachable states contain an inadmissible state (either before the

switch or after), then the complex controller cannot be used for one more control interval.

Assuming the system starts in a recoverable state, this guarantees it will remain in the

recoverable set for all time.

A system that adheres to this architecture is guaranteed to remain safe only if safety

controller and decision module execute correctly. In this way, the safety premise is valid

only if safety controller and decision module execute in every control cycle. Original Simplex

design, only protects the plant from faults in the complex controller. For instance, if a fault

in the RTOS crashes the safety controller or decision module, safety of the physical plant

will get violated.

3.2 REAL-TIME REACHABILITY

For runtime computation of reachable states of a plant within a future time, this work

makes use of a real-time reachability tool (Bak et al. [30]). This low-cost algorithm is

specifically designed for embedded systems with real-time constraints and low computation

power.

Note that constructing a safety controller similar to that specified in section 3.1 (e.g.,

having a recoverable region where any trajectory starting from that region will stay within

that region) is generally not possible for non-linear systems. However, for specific classes

of non-linear systems, our approach will be applicable if: (i) a safety controller with the

properties mentioned above can be constructed and (ii) we can define a function that returns

the minimum and maximum derivative in each dimension given an arbitrary box in the state

space. This technique can also handle hybrid systems where the state invariants are disjoint

and cover the continuous state Rn, there are no reset maps in the transitions between discrete

states and the state invariants define the guards of incoming transitions. In these piecewise

systems, the state of the hybrid automaton can be determined solely by the continuous state;

although separate differential equations can be used in various parts of the state space. This

algorithm requires that the derivatives are defined in the entire state space and that they

are bounded.

This technique uses the mathematical model of the dynamics of the plant and a n-

dimensional box to represent the set of possible control inputs and the reachable states.

A set of neighborhoods, N [i] are constructed around each face i of the tracked states with

an initial width. Next, the maximum derivative in the outward direction, dmaxi , inside each

N [i] is computed. Then, crossing time tcrossingi = width(N [i])/dmaxi is computed over all

neighborhoods and the minimum of all the tcrossingi is chosen as time to advance, ta. Finally,

16

every face is advanced to face i+d
max
i ×ta. For further details on inward neighborhood versus

outward neighborhoods, and the choosing of neighborhood widths and time steps refer to

[30]. In this algorithm a parameter called reach-time-step is used to control neighborhood

widths. This parameter lets us tune the total number of steps used in the method, and

therefore alter the total runtime to compute the reachable set. This allows us to cap the

total computation time of the reachable set – which is essential in any real-time setting.

Moreover, authors have demonstrated that this algorithm is capable of producing useful

results within very short computation times e.g., result achieved with computation times as

low as 5ms using embedded platforms [30]. All these features make this approach a suitable

tool for our target platforms as well.

3.3 NOTATIONS

The symbols N, N0, Z, R, R+, and R+
0 denote the set of natural, nonnegative integer,

integer, real, positive, and nonnegative real numbers, respectively. We use Rn×m to

denote a vector space of real matrices with n rows and m columns. The identity

matrix in Rn×n is denoted by In and zero matrix in Rn×m is denoted by 0n×m. For

a, b ∈ (R ∪ {−∞,∞})n, a ≤ b component-wise, the closed hyper-interval is denoted by

Ja, bK := Rn ∩ ([a1, b1] × [a2, b2] × . . . × [an, bn]). We identify the relation R ⊆ A × B with

the map R : A → 2B defined by b ∈ R(a) iff (a, b) ∈ R. Given a relation R ⊆ A × B.

R−1 = {(b, a) ∈ B × A | (a, b) ∈ R}. Q ◦ R denotes the composition of maps Q and R,

Q ◦R(x) = Q(R(x)). The map R is said to be strict when R(a) 6= ∅ for every a ∈ A.

3.3.1 Control Systems

Definition 3.6 (Nonlinear control systems). A nonlinear control system is a tuple Σ =

(Rn,U,U , f), where Rn is the state space; U ⊆ Rp is a bounded input set; U is a subset of

the set of all functions of time from R+
0 to U; and f is a locally Lipschitz continuous map

from Rn × U to Rn.

The trajectory ξ is said to be a solution of Σ if there exists υ ∈ U satisfying:

ξ̇(t) = f(ξ(t), υ(t)), (3.1)

for any t ∈ R+
0 . It should be emphasized that the locally Lipschitz continuity assumption on

f ensures existence and uniqueness of solution ξ [59]. We use notation ξx,υ(t) to denote the

value of solution at time t under the input signal υ and starting from initial state x = ξx,υ(0).

17

Definition 3.7 (Linear control systems). A linear, time-invariant control system is a special

case of non-linear systems where f is defined as ξ̇(t) = Aξ(t) + Bυ(t) where A ∈ Rn×n and

B ∈ Rn×m.

3.3.2 Formulating Safety

In physical systems, maintaining all states and control inputs within safe limits is very

important in order to avoid damages to the system itself or the environment around it. In

this chapter, the safety region S is defined as a subset of the state space. For example, one

can define it as:

• polytope S = {x ∈ Rn | Hx · x ≤ hx} parameterized by Hx ∈ Rq×n, hx ∈ Rq, or

• ellipsoid S = {x ∈ Rn | ‖L(x− y)‖2 ≤ 1} parameterized by L ∈ Rn×n and y ∈ Rn.

In a similar way, the bounds on operational ranges of control inputs can be expressed as:

• polytope Su = {u ∈ U | Hu · u ≤ hu} parameterized by Hu ∈ Rq̄×p and hu ∈ Rq̄, or

• ellipsoid Su = {u ∈ U | ‖Lu(u− u)‖2 ≤ 1} parameterized by Lu ∈ Rp×p and u ∈ U.

The nonlinear control system Σ is said to be safe if the states of the system remain inside S
using only the control commands in Su.

3.3.3 Reachable Set

Consider a nonlinear control system as in (3.1) and a set X0 ⊂ Rn. The reachable set of

states that can be reached starting from set X0 under input signal υ at time τ is given by

Reachτ(X0, υ) :=
⋃
x∈X0

ξx,υ(τ). We use notation Reach[0,τ](X0, υ) to denote the reachable

set that can be reached starting from X0 under input signal υ up to time τ and can be

defined as Reach[0,τ](X0, υ) :=
⋃
t∈[0,τ] Reacht(X0, υ). We use the notation Reachτ(X0, υ)

to denote an over-approximation of the set Reachτ(X0, υ).

18

CHAPTER 4: SINGLE NODE CPS SAFETY THROUGH CONTROLLER
DESIGN

In this chapter, I propose a novel approach to design a controller that provides safety

guarantees for the physical component in the presence of application-level and system-level

faults. Our solution provides fault-tolerance and liveliness guarantees using only commercial-

off-the-shelf (COTS) computing platform. This approach uses full system restart to recover

from such application and system-level faults. Restarting in the safety-critical environment is

very challenging and this chapter provides a procedure for the synthesis of abstraction-based

correct-by-construction controllers for linear and nonlinear physical systems that enables

the entire computing system to be safely restarted at runtime. This controller can keep

the control system inside a subset of safety region, only by updating the actuator input at

least once after every system restart. In this chapter, we refer to this controller as Base

Controller (BC).

Restarting a system is an effective approach for recovery from unknown faults at runtime,

with a very predictable outcome. As soon as a fault occurs that disrupts the execution of

critical software components, a hardware watchdog timer (WD) restarts the system. After

a restart, a fresh image of all the software (middleware, RTOS and applications) is loaded

from a read-only storage that recovers the system into an operational state. Prior to this

work, restarting was proposed as a way to increase the availability of non-safety critical

systems [8, 9, 10, 11, 12, 13, 14]. In addition, some works investigated the partial restarting

of safety-critical systems using extra hardware [15, 20]. To the best of our knowledge,

this is the first work that proposes safe restarting of the entire system in a safety-critical

environment that contains nonlinear physical components.

RTOS

Trusted
Components

WD Timer

Fl
us

hi
ng

Ta

sk

HW RESET PIN

Base
Controller

Mission
Controller

- User Input
- Network
- Peripherals
- …

Read-Only
Mem

Decision
Module

Plant

Actuators

Sensors

Figure 4.1: The logical view of the proposed design.

19

Having only BC and the WD mechanism (to enable restarting), allows the system to

remain safe, tolerate faults and recover from them. However, it does not aid in making

progress towards its mission goal. To address this issue, BC is complemented with a Mission

Controller (MC) (e.g., a neural network) and a Decision Module (DM). The MC is an

unverified, high-performance, complex controller that drives the system towards the mission

setpoints. It may contain unsafe logic or bugs that jeopardize safety. To maximize the

progress towards the mission goals, in every control cycle, DM checks the MC command.

If it satisfies the safety requirements, DM allows it to be sent to the actuators. Otherwise,

BC command is applied to the system. By doing so, MC drives the system for as long as

possible, and, whenever it is not possible, BC takes the control.

In the proposed design, the only components that need to be verified for correct

functionality are BC, DM and Flushing Task. Any fault in the system software (System-Level

or Application-Level) that results in a fail-silent failure (also known as fail-stop) of these

two components leads to WD triggering a system-wide restart and recovery. However, our

design does not protect the system from faults that alter the logic of BC or DM at execution

times. In summary, this design enables the system to provide formal safety guarantees by

verifying only the correctness of BC, DM and a Flushing Task – we will discuss this later –

instead of entire MC, RTOS and middleware.

The key contributions of this chapter are:

• Construction of formally verified base controllers for safety-critical applications with

nonlinear physical components which guarantee safe full system restart for application

and system level fault tolerance.

• Tolerating application-level faults as well as system-level faults using only one COTS

processing unit.

• Empirical validation of both the practicality of our proposed design and the safety

guarantees through fault-injection testing on a prototype controller for the nonlinear

inverted pendulum system and a 3-DOF helicopter.

4.1 DESIGN APPROACH

As depicted in Figure 4.1, the proposed design consists of three main components; Base

Controller (BC), Mission Controller (MC) and Decision Module (DM).

The BC is a verified, reliable controller that is only concerned with safety. It does not make

progress towards the mission set points of the system (i.e., it does not provide liveness). The

20

MC, on the other hand, is the main controller which is concerned with the mission-critical

requirements. This controller may have complex logic, can be changed and upgraded while

the system is running and may even contain unsafe logic and bugs. As an example, MC may

be a neural network resulted from machine learning techniques.

All the components of the system run on top of the RTOS. The length of one control cycle

of the system is τc. The kth control cycle refers to the period [(k − 1)τc, kτc], where k ∈ N.

The cycles count and the time origin are restarted after every system restart. Therefore,

k = 1 always refers to the first cycle after the latest system restart. Furthermore, we assume

that the length of the restart time1, i .e., τr, of the system is an integer multiple2 of τc

(i.e., τr = mτc, where m ∈ N). While the system is running, sensor values are sampled at

t = kτc − ε where ε� τc and actuator inputs are updated at t = kτc.

In every control cycle, after MC runs and generates its output umc, DM evaluates the safety

requirements under umc and decides whether umc can be applied to the actuators. Then,

DM writes its output, along with the corresponding MC command and a timestamp (cycle

number) to a fixed memory address.

At the end of the control cycle, at time kτc − ε after sensors are sampled, BC runs

and generates ubc. Then a flushing task retrieves umc, ubc, the decision of DM and the

corresponding timestamp from the memory. If the timestamp matches with the current

cycle number, k, it updates the actuator commands with umc or ubc based on the decision

of DM and resets watchdog timer (WD). Non-matching timestamps indicate that one or

both of the DM and BC tasks did not execute or missed their deadlines. In such cases, the

flushing task does not update the WD. Consequently, WD expires at t = kτc and triggers a

restart. Note that as a result of this mechanism, restarts are only triggered at times t = kτc

and do not occur in between control cycles. The steps are illustrated in Figure 4.2.

In the rest of this section, the assumptions and the fault model of the system are discussed

followed by a description of the properties of the BC and how it is able to safely handle the

restarts. Finally, the safe switching logic of the DM is presented.

4.1.1 Assumptions and Fault Model

In this chapter, following assumption are made about the faults and the components of

the system.

• Hardware faults are not a concern in this chapter and we assume that hardware is

1It includes the time for reloading the bootloader, OS, and the applications from the read-only storage,
initializing the necessary sensors and peripheral, booting the OS and executing the control applications.

2Restart time can be rounded up to match the closest kτc.

21

MC DM

At t = 𝑘𝜏& − 𝜖
1. Read sensors
2. Run BC and generate 𝑢*&
3. Retrieve output of DM from memory and verify the time stamp

𝜏&

At t = 𝑘𝜏&
1. Update the Actuators with 𝑢+& or 𝑢*& based on DM’s decision
2. Reset the watchdog to 𝜏&

𝜖
Figure 4.2: Sequence of events within one control cycle.

reliable.

• BC, DM, and flushing task are independently verified and fault-free. They might,

however, fail silently (no output is generated) due to the faults in the previously

dependent software layers or other applications.

• System-level and application-level faults may cause BC, DM, and flushing task to fail

silently but may not change their logic or alter their output.

• Once a command is sent to an actuator input; the actuator holds that value until

the control system sends a new actuation command. Therefore, during a system-level

restart, the actuators operate with the last command that was sent before the restart

occurred3.

• It is assumed that the system-level faults do not happen within the first τr seconds

after the boot is complete so that the BC has the chance to execute correctly at

least once. In other words, this assumption implies that the system is not completely

dysfunctional. In Section 4.1.2, we demonstrate the necessity of this assumption.

4.1.2 Properties of the Base Controller

In this section, we provide the properties required for the BC as follow:

There exists a subset I of the state space, such that for all x ∈ I at time t0 ∈ R+
0 , there

exists a control command ubc ∈ Su, such that:

3Commercial chips such as [60] are available that provide programmable PWM controller. Using these
intermediate chips one can prevent the invalid signals that may appear on the general-purpose input/output
(GPIO) port of the board during a restart, from changing the actuation command.

22

(i) ξx,ubc(t0 + τc) ∈ I,

(ii) ξx,ubc(t0 + τc + τr) ∈ I, and

(iii) ξx,ubc(t) ∈ S for t ∈ [t0, t0 + τc + τr].

Note that, in the rest of the paper we assumed that the actuators hold the control input

constant within the period of [t0, t0 + τc + τr].

Intuitively, above properties imply that if the current state of the system is inside I,

BC is able to generate a control command that keeps the physical system safe. For the

intuition, consider t0 = kτc. Property (i) implies that one control cycle after ubc is applied

to the actuators, at the end of (k + 1)th cycle, state is inside I. Therefore, if the system

is still running and no faults have occurred, BC is able to find another safe command at

t = (k + 1)τc. If a fault had occurred within the (k + 1)th cycle, a restart will be triggered

at the end of the cycle and BC will not be available to update the actuator input. Property

(ii) implies that in such a case, the system will be in I, after the restart completes. This

guarantees that the system can be kept safe after the restart completes. Finally, property

(iii) ensures that the system remains inside the safety region during (k + 1)th cycle and a

possible consequent restart.

A BC with the above properties, without any other components, can keep the system safe,

only if it updates the actuator commands at least once after every restart τr. Therefore, it

is necessary for the system to not have any system-level faults within the first τr seconds

after the restart.

4.1.3 Switching Logic of DM

A system with only BC remains safe and tolerates restarts but it does not make any

progress towards the mission goal. In order to maximize the progress towards the mission

goal, it is desirable to use the MC command in every cycle whenever it is possible.

In every cycle k, DM runs and evaluates the following conditions. If those conditions hold,

umc is safe to be applied to the actuator inputs at the end of the cycle (i.e., at time t = kτc).

Otherwise, DM chooses ubc. Following conditions guarantee that the system remains safe

and recoverable under umc whether it restarts or not.

(i) Reachτc(x̄[k], umc) ⊆ I

(ii) Reachτr+τc(x̄[k], umc) ⊆ I

(iii) Reach[0,τr+τc](x̄[k], umc) ⊆ S

23

Here, τr and τc are the length of the restart time and of the control cycle of the platform.

Notation x̄[k] denotes the state of the system when the actuator command is going to be

applied to the system (i.e., the end of the cycle at time t = kτc).

From properties of the BC, it is known that if the state is inside I, BC can find a control

command that keeps the system in safe and restartable region. Condition (i) ensures that one

control cycle after umc is applied to the system the state will be inside I. If no faults occur

within the control cycle, BC is guaranteed to be able to find a safe control for the system.

However, if a fault occurs within the cycle, WD triggers a system restart at the end of the

cycle. Condition (ii) ensures that state will be inside I when the restart completes (i.e., at

τc + τr). Furthermore, condition (iii) guarantees that during the control cycle and restart

time (if it happens) state remains inside the safety region.

Note that, in the real implementation, calculating reachable set and therefore evaluating

these conditions requires time and does not happen instantaneously. Therefore, assuming

k is the current cycle, above conditions have to be assessed before t = kτc. At this time,

however, x[k] = x(kτc) (state of the system when the actuator command is going to be

updated) is not available yet. To address this issue, above conditions use x̄[k] which is the

over-approximated prediction of x[k] based on x[k−1] (sampled sensor values in the previous

cycle). Prediction x̄[k] can be computed in the following way:

x̄[k] = Reachτc(x[k − 1], uk−1),

where x[k−1] is the sampled state at the previous cycle (state of the system at the beginning

of the current control cycle). Input uk−1 is the control command sent to the actuators in the

previous cycle. Since, in the first control cycle after a restart, uk-1 is not available, the DM

always chooses the BC in the first cycle. To compute an over-approximation of reachable set

for nonlinear control systems there are various approaches available in literature for example

see [61, Section VIII.c], [62], and [63].

4.2 BASE CONTROLLER DESIGN

In this section, a systematic approach is provided to design base controllers ensuring

properties mentioned in Subsection 4.1.2. To design BC, we use symbolic controller synthesis

approach which uses the discrete abstractions of nonlinear physical systems [64]. The

advantage of using this approach is that it provides formally verified controllers for high-

level specifications (usually expressed as linear temporal logic (LTL) formulae [65]). One

can readily see that the properties given in Subsection 4.1.2 are equivalent to invariance

24

specification.

4.2.1 Transition Systems and Equivalence Relation

We recall the notion of transition system introduced in [64] which will later be used

as unified framework to represent nonlinear control systems and corresponding discrete

abstractions.

Definition 4.1 (Transition system). A transition system is a tuple S = (X,X0, U,−→)

where X is a set of states, X0 ⊆ X is a set of initial states, U is a set of inputs,

−→⊆ X × U ×X is a transition relation.

We denote by x
u−→ x′ an alternative representation for transition (x, u, x′) ∈−→, where

state x′ is called a u-successor (or simply successor) of state x , for some input u ∈ U .

Postu(x) denotes the set of all u-successors of state x, and by U(x) the set of all admissible

inputs u ∈ U for which Postu(x) is non-empty. Now, I provide the notion of feedback

refinement relation between two transition systems, introduced in [61], which is later used

to construct discrete abstractions and base controllers for nonlinear control systems Σ.

Definition 4.2 (Feedback refinement relation). Consider two transition systems S1 =

(X1, X10, U1,−→
1

) and S2 = (X2, X20, U2,−→
2

) with U2 ⊆ U1. A strict relation Q ⊆ X1×X2

is a feedback refinement relation from S1 to S2 if following conditions hold for every pair

(x1, x2) ∈ Q:

(i) U2(x2) ⊆ U1(x1),

(ii) u ∈ U2(x2)⇒ Q(Postu(x1)) ⊆ Postu(x2),

and the feedback refinement relation from S1 to S2 is denoted by S1 �Q S2.

Intuitively, the above relation says that all admissible inputs of S2 can be used in transition

system S1 such that all transitions in S1 are associated with corresponding transitions in

S2. As a result, one can easily refine controller synthesized for S2 using feedback refinement

relation Q to make it compatible for S1. Further details about feedback refinement relation

and its role in the controller synthesis can be found in [61].

4.2.2 Sampled-Data Control System as a Transition System

As discussed in the previous sections, the sampling time can take any value in h =

{τc, τr + τc} depending on the occurrence of fault. It is assume that the value of control

25

input is held for the respective sampling period. The transition system associated with the

nonlinear control system Σ with such a sampling behavior can be given by the tuple

Sh(Σ) = (Xh, Xh0, Uh,−→
h

), (4.1)

where

• Xh = Rn, Xh0 = Rn, Uh = U, and

• x u−→
h

x′ is a transition if and only if there exists x′ = ξx,u(τc) or x′ = ξx,u(τr + τc),

where u ∈ Uh.

Note that we abuse notation above by identifying u with the constant input curve with

domain [0, τc] or [0, τr + τc] and value u.

For the transition system Sh(Σ), the finite or infinite run generated from initial state

x0 ∈ Xh0 is given by x0
u0−→
h

x1
u1−→
h

x2
u2−→
h

. . . such that xi
ui−→
h

x′i+1, for i ∈ N0.

By considering properties of BC mentioned in Subsection 4.1.2, one can view it as a safety

controller synthesis problem for Sh(Σ).

Definition 4.3 (Safety controller). Consider a safe set S ⊆ Rn as given in Subsection 3.3.2,

a safety controller for Sh(Σ) is given by a map Ch : Xh → 2Uh such that:

(i) for all x ∈ Xh, Ch(x) ⊆ Uh(x),

(ii) its domain dom(Ch) = {x ∈ Xh | Ch 6= ∅} ⊆ S,

(iii) for all x ∈ dom(Ch) and u ∈ Ch(x), Postu(x) ⊆ dom(Ch).

Essentially, a safety controller generates infinite runs x0
u0−→
h

x1
u1−→
h

x2
u2−→
h

. . . such that

xi ∈ S, for all i ∈ N0. At the end of this section, we provide a systematic way to compute

such controller for linear control systems. However, finding such a control strategy for com-

plex nonlinear control systems is quite difficult. This motivates the use of abstraction-based

synthesis methods described below.

4.2.3 Discrete Abstraction

To design controllers for the concrete system Sh(Σ) from its abstraction, the system and

its abstraction must satisfy formal behavioural inclusions in terms of feedback refinement

26

relations. Consider sampling times τc, τr + τc ∈ R+ and quantization parameter η ∈ (R+)n.

The discrete abstraction of Sh(Σ) is given by the tuple

Sq(Σ) = (Xq, Xq0, Uq,−→
q

), (4.2)

where

• Xq is a cover of Xh and elements of the cover Xq are nonempty, closed hyper-intervals

referred to as cells. For computation of the abstraction, we consider subset Xq ⊆ Xq of

congruent hyper-rectangles aligned on a uniform grid parameterized with quantization

parameter η ∈ (R+)n and given by ηZn = {c ∈ Rn | ∃k∈Zn∀i∈{1,2,...,n}ci = kiηi}, i.e.,

xq ∈ Xq implies that there exists c ∈ ηZn with xq = c +
q
η
2
, η

2

y
. The remaining cells

Xq \Xq are considered as ”overflow” symbols, see [66, Sec III.A]

• Xq0 ⊆ Xq,

• Uq is a finite subset of Uh,

• for xq ∈ Xq and u ∈ Uq,
define A := {x′q ∈ Xq | (x′q ∩ Reachτc(xq, uq)) ∪ (x′q ∩ Reachτr+τc(xq, uq)) 6= ∅}. If

A ⊆ Xq, then Postu(xq) = A, and otherwise Postu(xq) = ∅. Moreover, Postu(xq) = ∅
for all xq ∈ Xq \Xq.

For the exact procedure to compute such discrete abstraction, we refer interested readers to

[67].

Theorem 4.1. If Sq(Σ) is a discrete abstraction of Sh(Σ) with sampling times τc, τr + τc ∈
R+, and quantization parameter η ∈ (R+)n, then Sh(Σ) �Q Sq(Σ).

Proof. The proof is similar to the proof of [61, Theorem VIII.4].

The abstract safe set Ŝ for Sq(Σ) is given by Ŝ := {xq ∈ Xq | Q−1(xq) ⊆ S}.

4.2.4 Controller Synthesis and Refinement

In this section, I consider the problem of synthesis of safety controller Ch for Sh(Σ) and safe

set S. Because of the feedback refinement relation, the safety controller synthesis problem

can be solved for the discrete abstraction Sq(Σ) and abstract safe set Ŝ. Let Cq : Xq → Uq

be the maximal safety controller satisfying conditions in Definition 4.3 for Sq(Σ) and safe

set Ŝ. Since Sq(Σ) has finite states and inputs, standard maximal fixed-point computation

27

algorithm [64] canbe used for the computation of Cq. One can easily refine this controller

for Sh(Σ) and safe set S using the following theorem:

Theorem 4.2. If Sh(Σ) � Sq(Σ) and Cq is the safety controller for Sq(Σ) and Ŝ, then the

refined controller Ch := Cq ◦Q solves the safety problem for Sh(Σ) and S.

Proof. The proof is similar to the proof of [61, Theorem VI.3].

Intuitively, the refined controller Ch for Sh can naturally be obtained from the abstract

controller Cq by using the feedback refinement relation Q as a quantizer to map xh to

xq ∈ Q(xh).

Remark 4.1. The obtained controller Ch solves the safety problem for the sampled system,

i.e., the obtained base controller satisfies the first two properties mentioned in Subsection

4.1.2 with invariant set I = dom(Ch). However, one can ensure safety guarantee of inter-

sampling trajectory (i.e., third property in Subsection 4.1.2) by shrinking the safe set by a

magnitude computed using the global Lipschitz continuity property of map f .

Despite the applicability of the proposed approach for complex and nonlinear control

systems, it suffers from the curse of dimensionality, i.e., the computational complexity

increases exponentially with state-space dimensions of concrete systems. There are few

results available to address this issue for some class of nonlinear control systems [68, 69]. In

next subsection, I provide an alternative approach to compute invariant set I and BC for

linear control systems.

4.2.5 Base Controller for Linear Control Systems

In this subsection, I provide an algorithm to compute I using discretized linear-control

systems. The continuous linear control system can be converted to a discrete control system

with the sampling time of τc as:

ξ̇(t) = Aξ(t) +Bυ(t)→ x[k + 1] = Adx[k] +Bdu[k], (4.3)

where Ad = eAτc =
∑∞

k=0
1
k!

(Aτc)
k '

∑p
k=0

1
k!

(Aτc)
k, and Bd =

(∫ τc

0
eAtdt

)
·B.

In this subsection, it is shown how to construct a BC with the properties: ∀x[k] ∈ I, ∃u0,

where u[p] = u0, p ∈ {k, k+ 1, ..., k+m} such that (i) x[k+ 1] ∈ I and (ii) x[k+ 1 +m] ∈ I,

where m = τr/τc and m ∈ N.

28

In this section, I will show how to construct a BC that satisfies the following property,

∀x[k] ∈ I,∃u0 where u[p] = u0, p ∈ {k, k + 1, ..., k +m}
such that (i) x[k + 1] ∈ I and (ii) x[k + 1 +m] ∈ I,

(4.4)

where m = τr/τc and m ∈ N.

4.2.6 Readjusting the Safety Region

There is one issue that needs to be addressed before calculating I and the BC. The

property presented in Equation 4.4 implies that the state will remain inside I after one

control cycle and one restart time after that. However, it does not imply anything about

the trajectory of state within the restart time. To guarantee safety, trajectory of the plant

during the restart interval must remain inside S.

To enforce this, I find a subset S ′ ⊆ S such that if x[t0] ∈ S ′, then ξ(t) ∈ S for any

υ(t) ∈ Su and t ∈ [t0, t0 + τr]. Later on, we enforce I to be a subset of S ′. This ensures

that if the state is in I at the sampling time, it cannot go outside of S within τr time.

This approach uses some similar concepts that are used in [30] for computing real-time

reachability.

Before explaining the procedure, some notations and definitions are necessary. Note

that from the definition of S in Section 3.3.2, S is a convex polyhedron because it is the

intersection of a finite number of half-spaces. For a real vector c and a real number d, a

linear inequality cTx ≤ d is called valid for S if cTx ≤ d holds for all x ∈ S. A subset f of a

polyhedron S is called a face of S if there exists a valid inequality cTx ≤ d for S, so that f

is represented as f = S ∩ {x : cTx = d}.
For a given face f , let its surface normal be ~n. The outward direction normal will be either

~n or −~n. To determine which, let v be a point such that v ∈ S and v 6∈ f and let one of the

vertices of the face f be p. Now, consider the two vectors ~n and ~pv = v−p. If ~n· ~pv is negative,

then ~n is facing outwards or vice versa (Figure 4.3). Furthermore, for a given face f , there

exists a linear inequality cTx ≤ d that is valid for S and we have f = S ∩ {x : cTx = d}.
The inward neighborhood of the face f with width l ≥ 0 is nf = S ∩ {x : cTx ≥ d− l}.

Following steps describe the procedure to find S ′:

1. The maximum outward derivative along each face (in the direction of outward

normal vector of the face) of the S over all the inputs (Su) is computed. One

inward neighborhood is constructed for each face (Figure 4.3), where the width

29

of the corresponding neighborhood is based on the observed maximum outward

derivative (the width is the derivative multiplied by the τr).

2. The neighborhoods are all constructed based on the computed widths, such that the

edges overlap as shown in Figure 4.3.

3. In each constructed neighborhood (ni), the maximum outward derivative is calculated

over the states in that neighborhood (ni) and all the inputs (Su). If it is larger than

the previously observed maximum, the width of the neighborhoods are recomputed,

and the process repeats by returning to step 2.

L1

n
1

n2

𝑓" #

𝑓"

n 3

𝑓$
#

𝑓$

𝑓 % 𝑓 %#

𝑓& and 𝑓&
#

Direction of

outward

derivative

of face 1

Figure 4.3: An example to illustrate construction of S ′ from S. The area confined with f1, f2, f3

and f4 is S. The area confined with f ′1, f
′
2, f
′
3 and f ′4 is S ′.

The computed subset is called adjusted safety region, is denoted by S ′, and can be

represented with some matrix Ha
x and a vector hax of appropriate dimensions in the form

of Ha
x · x ≤ hax, where the inequality is interpreted by components. Any trajectory starting

from a point in the S ′, will not reach any state outside of S within a τr time unit.

To guarantee the termination, the number of times the algorithm can return to step4 2

are limited. For some systems, this procedure may result in an empty set. An empty set

indicates that the restart time τr of the platform is too long for the given physical plant i.e.,

physical plant has fast dynamics and its state can change very quickly relative to the time

it takes to restart the controller unit.

4For the given system with linear dynamics, if a maximum derivative exists over the given S and for all
inputs, the procedure is guaranteed to terminate in a finite number of steps.

30

Note that, to compute a more efficient S ′, the algorithm above can be repeated q ∈ N
times and each time using a time parameter of τr/q instead of τr in steps 1, 2, and 3.

Increasing the value of q can lead to finding a larger S ′ region and also may increase the

computation time of S ′.

4.2.7 Finding the Invariant Subset I

To compute the set I, we closely follow the usual construction method based on backwards

reachable sets to compute the largest invariant set for linear discrete-time systems (see

e.g. in [70]). This procedure is modified slightly (Algorithm 4.1) to compute the subset

I ⊆ S ′, such that for the discrete-time system in Equation 4.3, I satisfies the properties in

Section 4.1.2 or Equation 4.4.

Algorithm 4.1: Computing the invariant subset I.

1 ComputeInvRegion(Ha
x ,h

a
x,Hu,hu,Ad,Bd,A

(m+1)
d ,B

(m+1)
d)

2 I(0) := Polytope(Ha
x · x ≤ hax) and k = 0

3 while p <pmax do

4 [H ′x, h
′
x] := PolytopeToMatrix(I(k))

5 pt := Polytope H ′x
H ′x
Hu

 A
(m+1)
d B

(m+1)
d

Ad Bd
0m×n Im×m

[x
u

]
≤
[
h′x
hu

]
6 I(p+1) := pt.projectOnStateSpace()

7 if I(p) ⊆ I(p+1) then

8 [HIx , h
I
x] := PolytopeToMatrix(I(p))

9 STOP successfully.

10 else if I(p+1) is empty then
11 STOP unsuccessfully.
12 else
13 p:=p+1
14 end

15 end
16 return HIx , h

I
x

In this algorithm, matrix Ha
x and vector hax represent the adjusted safety region S ′, and

matrix HIx and vector hIx represent I. We have m = τr/τc. A
(m+1)
d and B

(m+1)
d are the

matrices to find the state after m + 1 cycles i.e., x[k + m + 1] = A
(m+1)
d x[k] + B

(m+1)
d u[k].

We have A
(m+1)
d = (Ad)

m+1 and B
(m+1)
d = (Amd + Am−1

d + ...+ I)Bd.

Intuitively, this algorithm starts from S ′ as initial region (line 2). In every iteration of

this algorithm, this region is augmented in the extended state-control space Rn+m (line 5).

31

This linear inequality is then projected back into the state space (line 6). The outcome of

lines 5 and 6 is to calculate I(p+1) which is the subset of states in I(p) where a control value

in Su exists such that, the state in one cycle and m+ 1 cycle after is inside I(p).

The algorithm proceeds until either I(p) ⊆ I(p+1) or I(p+1) = ∅. In the former case,

procedure successfully ends (lines 7 to 8). The latter case indicates that the dynamics of the

system does not allow such a region, for the given restart time. There are cases in which the

procedure does not stop in a finite number of steps unless a finite pmax is fixed. This may

happen if I(∞) has an empty interior, but it is not empty [70].

If matrix Ad and Bd are controllable, we can use ideas from [71] to ensure convergence.

However, in general we cannot guarantee that the procedure in Algorithm 4.1 will converge

to a non-empty I. In such cases, one may have to loosen the safety constraints of the

system (i.e., S) or may have to switch to a hardware platform with a shorter restart time,

to take advantage of our approach.

4.2.8 Base Controller in Runtime

All the previous steps introduced in Subsections 4.2.6 and 4.2.7 are offline and take place

at the design time. What remains is to describe how the BC calculates the control command

in runtime. Assuming that k is the current sampling instance, the goal of BC is to find a

control input u[k] that satisfies following conditions:
Hu · u[k] ≤ hu

HIx · x[k + 1] ≤ hIx

HIx · x[k +m+ 1] ≤ hIx

(4.5)

With replacing the x[k + 1] and x[k + m + 1] from the discrete-time model (4.3) in the

above equations we have the following linear inequalities:
Huu[k] ≤ hu

HIxBdu[k] ≤ hIx −HIxAdx[k]

HIxB
(m+1)
d u[k] ≤ hIx −HIxA

(m+1)
d x[k]

(4.6)

All of the parameters of the above linear inequalities except x[k] and u[k] are known at

the design time. At runtime, BC samples the sensors values i.e., x[k], and calculates u[k]

by solving the inequalities in Equation 4.6. From properties of I, it is guaranteed that if

x[k] ∈ I, the solution of these linear inequalities, solved for u[k], is a non-empty set.

32

4.3 CASE STUDY AND EVALUATION

To demonstrate the practicality of the proposed approach, we implemented a controller for

two benchmark systems: (i) inverted pendulum system and (ii) 3-DOF helicopter [72] and

empirically verify fault-tolerance guarantees. We utilize one COTS platform to implement

our controller. We inject faults in the control logic, control application, and the operating

system to demonstrate that the system remains safe, despite the faults, and recovers.

4.3.1 Experimental Setup

For the prototype of the proposed design, an i.MX7D application processor is used. This

SoC provides two general purpose ARM Cortex-A7 cores capable of running at the maximum

frequency of 1 GHz and one real-time ARM Cortex-M4 core that runs at the maximum

frequency of 200MHz. The real-time core runs from tightly coupled memory to ensure

predictable behavior required for the real-time applications/tasks. The real-time core of the

considered platform runs FreeRTOS [73], an operating system for real-time applications.

Because our control tasks have real-time constraints, we implement our controller on the

real-time core. Ideally, the general purpose cores would have been completely disabled for

the experiments. However, in i.MX7D platform, only Cortex-A7 cores have direct access to

the flash memory and, only these two cores can load the binary images of the real-time core

from flash into the real-time core’s memory after each restart. Hence, instead of permanently

disabling those cores, they are only disabled after the software of the real-time core is loaded

from flash into the memory. Note that, this mechanism is specific to this particular platform

and does not impact the generality of our proposed technique.

The manufacturer’s boot procedure of the board is designed to boot the general purpose

cores and the real-time core at the same time. It includes extra initialization procedures

that are necessary only for running the general purpose core’s kernel and mounting its file

system. It loads the real-time core code only after those procedures are completed.

To reduce the boot time of the real-time core, we made two modifications to the

bootloader (u-boot) source code which can be found in [74]. (i) We included the binary

of the real-time core executables (FreeRTOS, MC, BC, DM, and flushing task) as a static

array in the u-boot source code and made it part of the u-boot binary after compilation. (ii)

In our modified boot process, at the boot time, the general purpose processor copies u-boot

binary (that includes the FreeRTOS and application binaries) from the SD-card into the

RAM. After successful initialization of only the necessary peripherals and configuring the

clock by the u-boot procedures, u-boot loads the binaries of the real-time core in its tightly

33

Figure 4.4: Inverted pendulum

coupled memory and releases it from reset. These modifications reduce the real-time core’s

boot time from seconds to less than 250ms5.

4.3.2 Example 1: Inverted Pendulum

For the first case study, we consider a nonlinear inverted pendulum system [66] given by

nonlinear differential equations as:

ξ̇1(t) = ξ2(t)

ξ̇2(t) = −ω2
(

sin(ξ1(t)) + cos(ξ1(t))υ(t)
)
− 2γξ1(t), (4.7)

with parameters ω = 1 and γ = 0.0125. The states ξ1 and ξ2 are the angular position with

respect to a downward vertical axis and the angular velocity of the pendulum, respectively.

The control input υ(t) is restricted to [−4, 4]. We design MC as υmc = 2(π − ξ1 − ξ2) to

stabilize the pendulum at upright position that is ξ = [π, 0]T which runs with frequency of

20Hz (i.e. τc =50ms) on real-time core of i.MX7D. To ensure safety of the system (i.e. to

avoid pendulum to fall down), we consider safety region for the states given by a polytope

5BC task activates one of the GPIO pins immediately after it executes. The restart time is measured
externally using the signal on this pin. After multiple experiments, a conservative upper bound was picked
for the restart time.

34

2.5 3 3.5 4

1

-1

-0.5

0

0.5

1

2

Safe Region

Invariant Set

Figure 4.5: Invariant set obtained using abstraction based approach and a simulated closed-loop
trajectory of the system under u = 3 which is inside I (red region) at times τc = 50 ms (blue
mark) and τc + τr = 300 ms (green mark). White circle marks the beginning of the trajectory
ξ = [3.04,−0.8]T .

parameterized by

Hx =

−1 0

1 0

0 −1

0 1

 and hx =

−0.75π

1.25π

1

1

 .

To ensure fault-tolerance and safety during restart, we designed BC using abstraction-based

approach as discussed in Section 4.2. To synthesize BC, we first constructed a discrete

abstraction of the pendulum system in (4.7) using quantization parameter η = [0.05, 0.1]T ,

sampling time τc = 0.050, and restart time τr = 0.250. Further, we synthesize a safety

controller using maximal fixed point computation algorithm. For the controller synthesis, we

used toolbox SCOTS [67] with some modifications to adapt the construction of abstraction

given in Subsection 4.2.3 . The invariant states computed using the proposed approach is

shown in Figure 4.5. To verify the efficacy of the designed controller, we implemented it

on our experimental setup (i.MX7D) and tested in the closed-loop with inverted pendulum

dynamics simulated in the computer under various test scenarios discussed in Subsection

4.3.4.

35

4.3.3 Example 2: 3-DOF Helicopter

3-DOF helicopter (displayed in Figure 4.6) is a simplified helicopter model, ideally

suited to test intermediate to advanced control concepts and theories relevant to real-world

applications of flight dynamics and control in the tandem rotor helicopters, or any device

with similar dynamics [72]. It is equipped with two motors that can generate force in the

upward and downward direction, according to the given actuation voltage. It also has three

sensors to measure elevation, pitch, and travel angle as shown in Figure 4.6. We use the

linear model of this system obtained from the manufacturer manual [72]. The BC is designed

as discussed in Subsection 4.2.5.

Elevation

Pitch

Travel

Figure 4.6: 3 Degree of freedom (3-DOF) helicopter.

For 3-DOF helicopter, the safety region is defined in such a way that the helicopter fans

do not hit the surface underneath, as shown in Figure 4.6, while respecting the maximum

angular velocities. The six dimensional state vector is given by x = [ε, ρ, λ, ε̇, ρ̇, λ̇]T , where

variables ε, ρ, and λ are the elevation, pitch, and travel angles, respectively, ε̇, ρ̇,and λ̇ are

the corresponding angular velocities. The u = [vl, vr]
T represents input vector, where vl and

vr are the voltages applied to right and left motors. The safe region for the state and input

spaces are represented using polytopes as discussed in Subsection 3.3.2 and parametrized

36

(a) Projecttion to ε and ρ (b) Projecttion to ε and ρ̇

(c) Projecttion to ε̇ and ρ (d) Projecttion to ρ and ρ̇

Figure 4.7: Simulated trajectory of the system under vr = 0.6863 and vl = 0.7709 is inside
I (red region) at times τc = 50 ms (blue mark) and τc + τr = 300 ms (green mark). White circles
mark the beginning of the trajectory. The trajectory is projected into the four planes for clarity.

with

Hx =

−1 −0.33 0 0 0 0

−1 0.33 0 0 0 0

0 0 0 1 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 −1 0

, hx =

0.3

0.3

0.4

0.4

1.5

1.5

, Hu =

−1 0

−1 0

0 1

0 −1

 , and hu =

1.1

1.1

1.1

1.1

 .

37

FreeRTOS on the Cortex-M4 core restarts in 250 ms (upper bound). By using Algorithm

4.1, we computed readjusted safety constraint parameters as hax = [0.1418, 0.1418, 0.2828,

0.2828, 0.0825 ,0.0825]T and Ha
x = Hx. Using this readjusted safety constraints the invariant

region and BC are constructed using the Algorithms described in Subsections 4.2.7 and 4.2.8.

Algorithm 4.1 computed a region I confined with 106 inequalities after 14 iterations. The

offline computation took four hours on Mac Book Pro with 2.5 GHz Intel Core i7 and 16

GB of memory. Finally, the BC is derived by solving linear inequalities in (4.6).

Hardware Interface

The control tasks on the real-time core of i.MX7D run with a frequency of 20 Hz (τc =

50 ms). Our controller interfaces with the 3DOF helicopter through a PCIe-based Q8 High-

Performance H.I.L. Control and data acquisition unit [75] and an intermediate Linux-based

PC. The PC communicates with the i.MX7D through the serial port. At the end of every

control cycle, a flushing task on the real-time core communicates with the PC to receive the

sensor readings (elevation, pitch, and travel angles) and send the motors’ voltages. It also

updates the hardware WD of the platform after sending the motor voltages. The PC uses

a custom driver written for Linux to send the voltages to the 3DOF helicopter motors and

reads the sensor values.

Testing the Base Controller

To verify that the constructed base controller has the desired properties, we simulated

the system with this controller from all vertices of region I as starting points and observed

that the system’s state at τc and τc + τr time units after actuation was inside I. Figure 4.7

outlines one extreme example. The trajectory starts at ε = −0.1410, ρ = 0, ε̇ = −0.0281

and ρ̇ = 0.0513 (λ and λ̇ do not impact safety). The control command in this trajectory

is vr = 0.6863 and vl = 0.7709. As shown in Figure 4.7, the trajectory remains inside the

safety region.

Further, we implemented the obtained BC on the i.MX7D platform to validate our design

approach under different fault scenarios given in the next section.

4.3.4 Fault Injection

In Table 4.1, a list of faults that were tested on the implementations are provided. We

also compare them with Application-Level Simplex and System-Level Simplex. For the

38

application-level faults, we verified that the mission controller was able to actuate the system

as long as it did not jeopardize the safety and when the system states approached the states

where the safety conditions violated, BC took over and ensure safety. For the system-level

faults, we observed that the WD restarted the system and after restart, the system continued

its operation.

Some of these faults are elaborated in the rest of this section.

Maximum Control Input in Wrong Way

The system should not leave safe region even if the MC outputs a control input that

normally would result in a crash. We consider an extreme case of this scenario where the

MC generates a control input that forces system towards the unsafe region. The unsafe MC

commands were detected by DM (they did not satisfy the system safety conditions), and the

control was switched to the BC until the system was in the safety region and then control

was handed back to MC.

Timing Faults (CPU and Resource)

The proposed solution also protects the system from timing faults. A faulty task may

behave differently in runtime from its expected/reported behavior. For instance, it may lock

a particular resource used by other critical tasks for more than the intended duration. Or,

it may run for more time than its reported worst-case execution time (WCET) which was

used for the schedulability test of the system. Timing faults may also originate from RTOS

or driver misbehaviors. If the fault delays/stops the execution of the DM or BC, WD will

trigger a system-wide restart. This recovers the system from the fault and keeps the physical

system safe. We perform two experiments to test the fault-tolerance against timing faults.

In the first experiment, we run an additional task on the system that uses the serial port

in parallel to the flushing task to communicate with the PC. We inject a fault into this task

so that in random execution cycles, it holds the lock on the serial port for more than its

intended period. This prevents the flushing task from updating the actuator (which needs

the serial port) before the end of the control cycle. As a result, WD expires and restarts

the system. We verified that the system recovers from the fault and remains safe during the

restart.

In the second test, we introduce a task that runs at the same priority as the BC and

DM. We inject a fault into the task such that in some cycles, its execution time exceeds its

reported WCET. FreeRTOS runs the tasks with equal priority using round-robin scheduling

39

Safety

Failure Type
Fault

Category

App-Level
Simplex

(Single HW
Board/SoC)

Sys-Level
Simplex

(Additional
HW/SoC)

Our Approach
(Single HW
Board/SoC)

Restarted

No Output App. 4 4 4 No

Maximum Voltage App. 4 4 4 No

Time Degraded Control App. 4 4 4 No

Timing Fault - CPU OS/App. 7 4 4 Yes

Timing Fault - Resource OS/App. 7 4 4 Yes

FreeRTOS Freeze RTOS 7 4 4 Yes

Computer Reboot RTOS 7 4 4 Yes

Table 4.1: Our approach tolerates system-level faults using only one hardware unit. Whereas,
System-Level Simplex [20] needs an extra board/SoC to tolerate these faults.

with a context switch at every 1ms. Therefore, the faulty task delays the response time of

the DM and BC. If the interference is too long, the output of BC may not be ready by the

time the flushing task needs to update the actuators. When this happens, WD restarts the

system.

4.4 SUMMARY AND DISCUSSION

In the modern complex systems, faults are a norm rather than an abnormality and safety-

critical systems need to be designed with faults in mind. For many traditional computing

systems, restarting has always been an effective way to recover the system and bring it back to

a functional state so much that the very first diagnosis tip from any product customer service

agent would be ”have you tried restarting it?”. Restarting safety-critical CPS, specially in

runtime, is, however, challenging and non-trivial. The work we presented in this chapter

enables a system to utilize this tool in a calculated manner, enabling safety-critical CPS to

tolerate software faults and continue operation despite their presence. This design, as we

mentioned in the Introduction chapter, enables low cost development of safe CPS.

As any other approach, this design has also known limitations. it is limited in handling

software faults that modify the logic or output of the BC and the DM at the execution time.

The runtime calculation of these units is the very important logic that enables the system

to preserve safety. If the logic gets corrupted, the system can fail catastrophically.

Another limitation of this work is the fact that as the restart time of the platform increases,

the domain of the BC shrinks. For many systems with very quick physical dynamics, relative

to the restart time of the platform that runs the controller, the BC domain may be empty

– such systems cannot take advantage of this design. In such cases, the architect may need

to loosen the system safety requirements, reduce the restart time of the platform, or find

40

another platform with a shorter restart time. The proposed design, therefore, may not suit

some platforms, particularly, the ones running on more complex hardware with long restart

time.

These restrictions are the main motivation behind the alternative designs presented in the

next two chapters. In Chapter 5, instead of relying on the controller to maintain the safety, we

rely on timing analysis to ensure that the tasks interrupted due to a restart can completed

in a timely manner and meet their deadlines. This approach allows the use of a simpler

controller with a larger domain. This approach can be applied to certain system where the

current design cannot. In Chapter 6, we incorporate the Trusted Execution Platforms (TEE)

such as ARM TrustZone [76] into our architecture and use it to limit access to the critical

software components as well as reduce the frequency of system restarts. This allows the

system to handle more diverse types of faults (faults that may have altered the logic of BC

and DM can be handled with this design) and more applications (lower restart frequency

enables this design on systems with even faster dynamics or longer platform restart times).

41

CHAPTER 5: SINGLE NODE CPS SAFETY THROUGH
SCHEDULABILITY ANALYSIS

By this point in this dissertation, hopefully, it is established that restarting a computing

system and reloading a fresh image of all the software (i.e., RTOS, and applications) from a

read-only source appears to be an effective approach to recover from unexpected faults. In

the previous chapter we discussed how to construct a BC able to tolerate system restart and

preserve physical safety. The caveat is that for complex physical dynamics, computation of

BC could become very expensive and effectively impossible. To avoid this problem, we must

ensure that the critical control tasks will meet their deadline despite a system restart and

complete within a safe time window. If this is the case, the physical system will be oblivious

to the ongoing system restarts and the control system will operate as expected.

In this chapter we describe this new design and all the required safety conditions. The

work in this chapter relies on a key observation learned from working with embedded

system for many years: by performing careful boot-sequence optimization, many embedded

platforms and RTOS that are used in automotive industry, avionics, manufacturing, etc.can

be entirely restarted in a very short frame of time.

Here, we propose a software/hardware co-design methodology to deploy safety-critical CPS

that (i) provides strong safety guarantees and (ii) can utilize unverified software components

to implement complex safety-critical functionalities. More specifically, as soon as a fault

that disrupts the execution of critical components is detected, the entire system is restarted.

After a restart, all the safety-critical applications that were impacted by the restart are re-

executed. If restart and re-execution of critical tasks can be performed fast enough, i.e. such

that timing constraints are always met in spite of task re-executions, the physical system

will not be impacted by the occurrence of faults.

The effectiveness of the proposed restart-based recovery relies on timely detection of faults

to trigger a restart. Since detecting logical faults in complex control applications can be

challenging, we utilize the Simplex Architecture [16, 2, 17] to construct the control software.

In the Simplex architecture, each control application is divided into three tasks; safety

controller, complex controller and decision module. The safety of the system relies solely

on timely execution of the safety controller tasks. From a scheduling perspective, safety is

guaranteed if the safety controller has enough CPU cycles to re-execute and finish before

their deadlines in spite of restarts. In this chapter, we analyze the conditions for a periodic

task set to be schedulable in the presence of restarts and re-executions. We assume that

when a restart occurs, the task instance executing on the CPU and any of the tasks that were

preempted before their completion will need to re-execute after the restart. In particular,

42

we make the following contributions:

• We propose a Simplex Architecture that can be recovered via restarts and implemented

on a single processing unit;

• We derive the response time analysis, under fixed-priority, with fully preemptive and

fully non-preemptive disciplines in presence of restart-based recovery and discuss pros

and cons of each one;

• We propose response time analysis of fixed-priority scheduling in presence of restarts

for tasks with preemption thresholds [3] and non-preemptive ending intervals [4] to

improve feasibility of task sets;

5.1 SYSTEM MODEL AND ASSUMPTIONS

In this section we formalize the considered system and task model, and discuss the

assumptions under which our methodology is applicable.

5.1.1 Periodic Tasks

We consider a task set T composed of n periodic tasks τ1 . . . τn executed on a uniprocessor

under fixed priority scheduling. Each task τi is assigned a priority level πi. We will implicitly

index tasks in decreasing priority order, i.e.,, τi has higher priority than τk if i < k. Each

periodic task τi is expressed as a tuple (Ci, Ti, Di, φi), where Ci is the worst-case execution

time (WCET), Ti is the period, Di is the relative deadline of each task instance, and φi is

the phase (the release time of the first instance). The following relation holds: Ci ≤ Di ≤ Ti.

Whenever Di = Ti and φi = 0, we simply express tasks parameters as (Ci, Ti). Each instance

of a periodic task is called job and τi,k denotes the k-th job of task τi. Finally, hp(πi) and

lp(πi) refer to the set of tasks with higher or lower priority than πi i.e., hp(πi) = {τj | πi < πj}
and lp(πi) = {τj | πi > πj}. We indicate with Tr the minimum inter-arrival time of faults

and consequent restarts; while Cr refers to the time required to restart the system.

5.1.2 Critical and Non-Critical Workload

It is common practice to execute multiple controllers for different processes of physical

plant on a single processing unit. In this work, we use the Simplex Architecture [16, 2, 17]

to implement each controller. As a result, three periodic tasks are associated with every

43

controller: (i) a safety controller (SC) task, (ii) a complex controller (CC) task, and (iii)

a decision module (DM) task. In typical designs, the three tasks that compose the same

controller have the same period, deadline, and release time.

Remark 5.1. SC’s control command is sent to the actuator buffer immediately before the

termination of that job instance. Hence, the timely execution of SC tasks is necessary and

sufficient for the safety of the physical plant.

As a result, out of the three tasks, SC must execute first and write its output to the

actuator command buffer. Conversely, DM needs to execute last, after the output of CC is

available, to decide if it is safe to replace SC’s command which is already in the actuator

buffer. Hence, the priorities of the controller tasks need to be in the following order1:

π(DM) < π(CC) < π(SC). Note that, the precedence constraint that SC, CC and DM

tasks must execute in this order can be enforced through the proposed priority ordering if self-

suspension and blocking on resources are excluded and if the scheduler is work-conserving.

We consider fixed priority scheduling, which is work-conserving and we assume SC, CC

and DM tasks do not self-suspend. Moreover, tasks controlling different components are

independent; SC, CC and DM tasks for the same component share sensors and actuator

channels. Sensors are read-only resources, do not require locking/synchronization and

therefore cannot cause blocking. A given SC task, may only share actuator channels with the

corresponding DM task. However, SC jobs execute before DM jobs and do not self-suspend,

hence DM cannot acquire a resource before SC has finished its execution.

The set of all the SC tasks on the system is called critical workload. All the CC and DM

tasks are referred as non-critical workload. Safety is guaranteed if and only if all the critical

tasks complete before their deadlines. Whereas, execution of non-critical tasks is not crucial

for safety; these tasks are said to be mission-critical but not safety-critical. We assume that

the first nc tasks of T are critical. Notice that with this indexing strategy, any critical task

has a higher priority than any non-critical task.

5.1.3 Fault Model

In this chapter, we consider two types of fault for the system; application-level faults and

system-level faults. We make the following assumptions about the faults that our system

safely handles:

A1 The original image of the system software is stored on a read-only memory unit (e.g.,

E2PROM). This content is unmodifiable at runtime.

1We assume enough priority levels to assign distinct priorities.

44

A2 Application faults may only occur in the unverified workload (i.e., all the application-

level processes on the system except SC and DM tasks).

A3 SC and DM tasks are independently verified and fault-free. They might, however, fail

silently (no output is generated) due to faults in software layers or other applications

on which they depend.

A4 We only consider system- and application-level faults that cause SC and DM tasks to

fail silently but do not change their logic or alter their output.

A5 Faults do not alter sensor readings.

A6 Once SC or CC tasks have send their outputs to the actuators, the output is unaffected

by system restart. As such, a task does not need to be re-executed if it has completed

correctly before a restart.

A7 Re-executing a task even if it has completed correctly does not negatively impact system

safety.

A8 Monitoring and initializer tasks (Section 5.2) are independently verified and fault-free.

We assume that system faults can only cause silent failures in these tasks (no output

or correct output).

A9 Tr is larger than the least common multiple (hyper-period2) of critical tasks, i.e.

Tr > LCM{Tk | k ≤ nc}

5.1.4 Scheduler State Preservation and Absolute Time

In order to know what tasks were preempted, executing, or completed after a restart

occurs, it is fundamental to carry a minimum amount of data across restarts. As such,

our architecture requires the existence of a small block of non-volatile memory (NVM). We

also require the presence of a monotonic clock unit (CLK) as an external device. CLK is

used to derive the absolute time after a system restart. Since we assume periodic tasks,

the information provided by CLK is enough to determine the last release time of each task.

Whenever a critical task is completed, the completion timestamp obtained from CLK is

written to NVM, overwriting the previous value for the same task. We assume that a

timestamp update in NVM write can be performed in a transactional manner.

2Length of the hyper-period can be significantly reduced if the control tasks have harmonic periods.

45

Figure 5.1: Example of fully preemptive system with 3 tasks τ1 = (1, 3); τ2 = (2, 8); τ3 = (4, 22),
and restart at t = 10− ε (Cr = 0). The taskset is schedulable without restarts, however, restart
and task re-execution causes a deadline miss at t = 22.

5.1.5 Recovery Model

The recovery action we assume in this paper is to restart the entire system, reload all

the software (RTOS and applications) from a read-only storage unit, and re-execute all the

jobs that were released but not completed at the time of restart. The priority of a re-

executing instance is the same as the priority of the original job. Within Cr time units, the

system (RTOS and applications) reloads from a read-only image, and re-execution is initiated

as needed. Figure 5.1 depicts how restart and task re-execution affect the scheduling of 3

real-time tasks (τ1, τ2, andτ3). When the restart happens at t = 10− ε, τ1 was still running.

Moreover, τ2 and τ3 were preempted at time t = 9 and t = 8, respectively. Hence all the

three task will need to be re-executed after the restart.

System restart is triggered only after a fault is detected. The following definition of fault

is used throughout this paper:

Definition 5.1 (Critical Fault:). any system misbehavior that leads to a non-timely execution

of any of the critical tasks is a critical fault.

It follows that (i) the absence of critical faults guarantees that every critical task completes

on time; that (ii) the timely completion of all the critical tasks ensures system safety by

Assumptions A3-A7; and that (iii) being able to detect all critical faults and re-execute

critical tasks by their deadline is enough to ensure timely completion of critical tasks in

spite of restarts. We discuss critical fault detection in Section 5.2; and we analyze system

46

schedulability in spite of critical faults in Section 5.3 and 5.4. Since handling critical faults

is necessary and sufficient (Remark 5.1) for safety, in the rest of this paper, the term fault

is used to refer to critical faults.

5.1.6 RBR-Feasibility

A task set T is said to be feasible under restart based recovery (RBR-Feasible) if the

following two conditions are satisfied; (i) there exists a schedule such that all jobs of all

the critical tasks, or their potential re-executions, can complete successfully before their

respective deadlines, even in the presence of a system-wide restart, occurring at any arbitrary

time during execution. (ii) All jobs, including instances of non-critical tasks, can complete

before their deadlines when no restart is performed.

5.2 FAULT DETECTION AND TASK RE-EXECUTION

As described in the previous section, a successful fault-detection approach must be able to

detect any fault before the deadline of a critical task is missed, and to trigger the recovery

procedure. Another key requirement is being able to correctly re-execute critical jobs that

were affected by a restart.

Fault detection with watchdog (WD) timer: to explain the detection mechanism,

we rely on the concept of ideal worst-case response time, i.e. the worst-case response time of

a task when there are no restarts (and no re-executions) in the system. We use R̂i to denote

the ideal worst-case response time of τi. R̂i can be derived using traditional response-time

analysis, or with the analysis proposed in Section 5.3 and 5.4 by imposing all the overhead

terms Ox
y = 0.

If no faults occur in the system, every instance of τi is expected to finish its execution

within at most R̂i time units after its arrival time. This can be checked at runtime with

a monitoring task. Recall that each critical job records its completion timestamp tcompi to

NVM. The monitoring task checks the latest timestamp for τi at time instants kTi + R̂i. If

tcompi < kTi it means that τi has not completed by its ideal worst-case response time. Hence,

a restart needs to be triggered. A single WD can be used to always ensure a system reset

if any of the critical tasks does not complete by its ideal worst-case response time. The

following steps are performed:

47

1. Determine the next checkpoint instant tnext and checked critical task τi as follows:

tnext = min
i≤nc

(
b(t− φi)/TicTi + φi + R̂i

)
. (5.1)

In other words, tnext captures the earliest instant of time that corresponds to the

elapsing of the ideal worst-case response time of some critical task τi;

2. Set the WD to restart the system after t− tnext + ε time units;

3. Terminate and set wake-up time at tnext;

4. At wake-up, check if τi completed correctly: if tcompi obtained from NVM satisfies

tcompi ≥ b(t − φi)/TicTi + φi, then acknowledge the WD so that it does not trigger a

reset. Otherwise, do nothing, causing a WD-induced reset after ε time units.

5. Continue from Step 1 above.

Notice that this simple solution utilizes only one WD timer, and handles all the silent

failures. The advantage of using hardware WD timers is that if any faults in the OS or other

applications, prevent the time monitor task from execution, the WD which is already set,

will expire and restart the system.

To determine which tasks to execute after a restart, we propose the following. Immediately

after the reboot completes, a initializer task calculates the latest release time of each task τi

using b(t− φi)/TicTi + φi where t is the current time retrieved from CLK. Next, it retrieves

the last recorded completion time of the task, tcompi , from NVM. If tcompi < b(t−φi)/TicTi+φi,
then the task needs to be executed, and is added to the list of ready tasks. It is possible that

a task completed its execution prior to the restart, but was not able to record the completion

time due to the restart. In this case, the task will be executed again which does not impact

the safety due to Assumption A7.

5.3 RBR-FEASIBILITY ANALYSIS

As mentioned in Section 5.2, re-execution of jobs impacted by a restart must not cause

any other job to miss a deadline. Also, re-executed jobs need to meet their deadlines as

well. The goal of this section is to present a set of sufficient conditions to reason about the

feasibility of a given task set T in presence of restarts (RBR-feasibility). In particular, in

Sections 5.3.1 and 5.3.2, we present a methodology that provides a sufficient condition for

exact RBR-Feasibility analysis of preemptive and non-preemptive task sets.

48

Definition 5.2. Length of level-i preemption chain at time t is defined as sum of the executed

portions of all the tasks that are in the preempted or running state, and have a priority greater

than or equal to πi at t. Longest level-i preemption chain is the preemption chain that has

the longest length over all the possible level-i preemption chains.

For instance, consider a fully preemptive task set with four tasks; C1 = 1, T1 = 5, C2 =

3, T2 = 10, C3 = 2, T3 = 12, C4 = 4, T3 = 15, and π4 < π3 < π2 < π1. For this task set, the

longest level-3 and level-4 preemption chains are 6 and 10, respectively.

5.3.1 Fully Preemptive Task Set

Under fully preemptive scheme, as soon as a higher priority task is ready, it preempts

any lower priority tasks running on the processor. To calculate the worst-case response

time of task τi, we have to consider the case where the restart incurs the longest delay on

finishing time of the job. For a fully preemptive task set, this occurs when every task τk for

k ∈ {2, . . . , i} is preempted immediately prior to its completion by τk−1 and system restarts

right before the completion of τ1. In other words, when tasks τ1 to τi form the longest level-i

preemption chain. An example of this case is depicted in Figure 5.1. In this case, the restart

and consequent re-execution causes a deadline miss at t = 22. The example uses only integer

numbers for task parameters, hence tasks can be preempted only up to 1 unit of time before

their completion. In the rest of the paper, we discuss our result assuming that tasks’ WCETs

are real numbers.

Theorem 5.1 provides RBR-feasibility conditions for a fully preemptive task set T , under

fixed priority scheduling.

Theorem 5.1. A set of preemptive periodic tasks T is RBR-Feasible under fixed priority

algorithm if the response time Ri of each task τi satisfies the condition: ∀τi ∈ T , Ri ≤ Di.

Ri is obtained for the smallest value of k for which we have R
(k+1)
i = R

(k)
i .

R
(k+1)
i = Ci +

∑
τj∈hp(πi)

⌈
R

(k)
i

Tj

⌉
Cj +Opi (5.2)

where the restart overhead Opi on response time is

Opi =

{
Cr +

∑
τj∈hp(πi)∪{τi}Cj i ≤ nc

0 i > nc
(5.3)

Proof. First, note that Equation 5.2 without the overhead term Opi , corresponds to the

49

classic response time of a task under fully preemptive fixed priority scheduling [77]. The

additional overhead term represents the worst-case interference on the task instance under

analysis introduced by restart time and the re-execution of the preempted tasks. We need to

show that the overhead term can be computed using Equation 5.3. Consider the scenario in

which every task τk is preempted by τk−1 after executing for δi time units where k ∈ {2, ..., i}.
And, a restart occurs after τ1 executed for δ1 time units. Due to the restart, all the tasks have

to re-execute and the earliest time τi can finish its execution is Cr+δi+ ...+δ1 +Ci+ ...+C1.

Hence, it is obvious that the later each preemption or the restart in τ1 occurs, the more delay

it creates for τi. Once a task has completed, it no longer needs to be re-executed. Therefore,

the maximum delay of each task is felt immediately prior to the task’s completion instant.

Thus, the overhead is maximized when each τk is preempted by τk−1 for k ∈ {2, .., i} and

restart occurs immediately before the end of τ1.

As seen in this section, the worst-case overhead of restart-based recovery in fully

preemptive setting occurs when system restarts at the end of longest preemption chain.

Therefore, to reduce the overhead of restarting, length of the longest preemption chain must

be reduced. In order to reduce this effect we investigate the non-preemptive setting in the

following section.

5.3.2 Fully Non-Preemptive Task set

Under this model, jobs are not preempted until their execution terminates. At every

termination point, the scheduler selects the task with the highest priority amongst all the

ready tasks to execute. The main advantage of non-preemptive task set is that at most one

task instance can be affected by restart at any instant of time.

Authors in [78] showed that in non-preemptive scheduling, the largest response time of

a task does not necessarily occur in the first job after the critical instant. In some cases,

the high-priority jobs activated during the non-preemptive execution of τi’s first instance

are pushed ahead to successive jobs, which then may experience a higher interference. Due

to this phenomenon, the response time analysis for a task cannot be limited to its first job,

activated at the critical instant, as done in preemptive scheduling, but it must be performed

for multiple jobs, until the processor finishes executing tasks with priority higher than or

equal to πi. Hence, the response time of a task needs to be computed within the longest

Level-i Active Period, defined as follows [79, 80].

Definition 5.3. The Level-i Active Period Li is an interval [a, b) such that the amount of

processing that still needs to be performed at time t due to jobs with priority higher than or

50

equal to πi, released strictly before t, is positive for all t ∈ (a, b) and null in a and b. It can

be computed using the following iterative relation:

L
(q)
i = Bi + Ci +

∑
j∈hp(πi)

dL(q−1)
i /TjeCj +Onpi (5.4)

Here, Onpi is the maximum overhead of restart on the response time of a task. In the following

we describe how to calculate this value. Li is the smallest value for which L
(q)
i = L

(q−1)
i . This

indicates that the response time of task τi must be computed for all jobs τi,k with k ∈ [1, Ki]

where Ki = dLi/Tie.

Theorem 5.2 describes the sufficient conditions under which a fault and the subsequent

restart do not compromise the timely execution of the critical workload under fully non-

preemptive scheduling. Notice that, as mentioned earlier, it is assumed that the schedule is

resumed with the highest priority active job after restart.

Theorem 5.2. A set of non-preemptive periodic tasks is RBR-feasible under fixed-priority

if the response time Ri of each task τi, calculated through following relation, satisfies the

condition: ∀τi ∈ T ;Ri ≤ Di.

Ri = max
k∈[1,Ki]

{Fi,k − (k − 1)Ti} (5.5)

where Fi,k is the finishing time of job τi,k given by

Fi,k = Si,k + Ci (5.6)

Here, Si,k is the start time of job τi,k, obtained for the smallest value that satisfies S
(q+1)
i,k =

S
(q)
i,k in the following relation

S
(k+1)
i,k = Bi +

∑
τj∈hp(πi)

(⌊
S

(k)
i,k

Tj

⌋
+ 1

)
Cj +Onpi (5.7)

In Equation 5.7, term Bi is the blocking from low priority tasks and is calculated as

Bi = maxτj∈lp(πi) {Cj}. The term Onpi represents the overhead on task execution introduced

by restarts and is calculated as follows:

Onpi =

{
Cr +max {{Cj | j ∈ hp(πi)} ∪ Ci} i ≤ nc

0 i > nc
(5.8)

51

Proof. Equation 5.7 and 5.6, without the restart overhead term Onpi , are proposed in [79, 80]

to calculate the worst-case start time and response time of a task under non-preemptive

setting.

We need to show that the overhead term can be computed using Equation 5.8. Under

non-preemptive discipline, restart only impacts a single task executing on the CPU at the

instant of restart. There are two possible scenarios that may result in the worst-case restart

delay on finish time of task τi. First, when τi is waiting for the higher priority tasks to finish

their execution, a restart can occur during the execution of one of the higher priority tasks

τj and delay the start time τi by Cr + Cj. Alternatively, a restart can occur infinitesimal

time prior to the completion of τi and cause an overhead of Cr + Ci. Hence, the worst-case

delay due to a restart is caused by the task with the longest execution time among the task

itself and the tasks with higher priority (Equation 5.8). The restart overhead is not included

in the response-time of non-critical tasks (Onpi = 0 for i > nc).

Figure 5.2: Example of fully non-preemptive system with 3 tasks
τ1 = (1, 3); τ2 = (2, 8); τ3 = (4, 22), and restart at t = 5− ε (Cr = 0). Restart and task
re-execution causes a deadline miss at t = 9.

Unfortunately, under non-preemptive scheduling, blocking time due to low priority tasks,

may cause higher priority tasks with short deadlines to be non-schedulable. As a result,

when preemptions are disabled, there exist task sets with arbitrary low utilization that

despite having the lowest restart overhead, are not RBR-Feasible. Figure 5.2 uses the same

task parameters as in Figure 5.1. The plot shows that the considered task system is not

schedulable under fully non-preemptive scheduling when a restart is triggered at t = 5− ε.

52

5.4 LIMITED PREEMPTIONS

In the previous section, we analyzed the RBR-Feasibility of task sets under fully

preemptive and fully non-preemptive scheduling. Under full preemption, restarts can cause a

significant overhead because the longest preemption chain can contains all the tasks. On the

other hand, under non-preemptive scheduling, the restart overhead is minimum. However,

due to additional blocking on higher priority tasks, some task sets, even with low utilization,

are not schedulable.

In this section we discuss two alternative models with limited preemption. Limited

preemption models are suitable for restart-based recovery since they enable the necessary

preemptions for the schedulability of the task set, but avoid many unnecessary preemptions

that occur in fully preemptive scheduling. Consequently, they induce lower restarting

overhead and exhibit higher schedulability.

5.4.1 Preemptive tasks with Non-Preemptive Ending

As seen in the previous sections, reducing the number and length of preempted tasks in

the longest preemption chain, can reduce the overhead of restarting and increase the RBR-

Feasibility of task sets. On the other hand, preventing preemptions entirely is not desirable

since it can impact feasibility of the high priority tasks with short deadlines. As a result, we

consider a hybrid preemption model in which, a job once executed for longer than Ci − Qi

time units, switches to non-preemptive mode and continues to execute until its termination

point. Such a model allows a job that has mostly completed to terminate, instead of being

preempted by a higher priority task. Qi is called the size of non-preemptive ending interval

of τi and Qi ≤ Ci. The model we utilize in this section, is a special case of the model

proposed in [4] which aims to decrease the preemption overhead due to context switch in

real-time operating systems. In Figure 5.3, we consider a task set with the same parameters

as in Figure 5.1, where in addition task τ3 has a non-preemptive region of length Q3 = 1.

The preemption chain that caused the system in Figure 5.1 to be non-schedulable cannot

occur and the instance of the task becomes schedulable under restarts. With the same setup,

Figure 5.4 considers the case when a reset occurs at t = 9− ε.

RBR-Feasibility Analysis

Theorem 5.3 provides the RBR-feasibility conditions of a task-set with non-preemptive

ending intervals. In this theorem, Si,k represents the worst case start time of the non-

53

preemptive region of the re-executed instance of job τi,k. Similarly, Fi,k is used to represent

the worst-case finish time. The arrival time of instance k of task τi,k is (k − 1)Ti.

Theorem 5.3. A set of periodic tasks T with non-preemptive ending regions of length Qi,

is RBR-Feasible under a fixed priority algorithm if the worst-case response time Ri of each

task τi, calculated from Equation 5.9, satisfies the condition: ∀τi ∈ T , Ri ≤ Di.

Ri = max
k∈[1,Ki]

{Fi,k − (k − 1)Ti} (5.9)

where

Fi,k = Si,k +Qi (5.10)

and Si,k is obtained for the smallest value of q for which we have S
(q+1)
i,k = S

(q)
i,k in the following

S
(q+1)
i,k = Bi + (k − 1)Ci + Ci − Qi +

∑
τj∈hp(τi)

(⌊
S

(q)
i,k

Tj

⌋
+ 1

)
Cj + Onpei (5.11)

Here, the term Bi is the blocking from low priority tasks and is calculated by

Bi = max
τk∈lp(πi)

{Qk}. (5.12)

Onpei is the maximum overhead of the restart on the response time and is calculated as follows:

Onpei =

{
Cr +WCWE(i) i ≤ nc

0 i > nc
(5.13)

where WCWE(i) is the worst-case amount of the execution that may be wasted due to the

restarts. It is given by the following where WCWE(1) = C1 and

WCWE(i) = Ci +max

(
0,WCWE(i− 1)−Qi

)
(5.14)

Ki in Equation 5.9 can be computed from Equation 5.4 by using Onpei instead of Onpi .

Proof. Authors in [3] show that the worst-case response time of task τi is the maximum

difference between the worst case finish time and the arrival time of the jobs that arrive

within the level-i active period (Equation 5.9).

Hence, we must compute the worst-case finish time of job τi,k in the presence of restarts.

When a restart occurs during the execution of τi,k or while it is in preempted state, τi,k

needs to re-execute. Therefore, the finish time of the τi,k is when the re-executed instance

54

completes. As a result, to obtain the worst-case finish time of τi,k, we calculate the response

time of each instance when a restart with longest overhead has impacted that instance. We

break down the worst-case finish time of τi,k into two intervals: the worst-case start time of

the non-preemptive region of the re-executed job and the length of the non-preemptive region,

Qi (Equation 5.10). Si,k in Equation 5.10, is the worst-case start time of non-preemptive

region of job τi,k which can be iteratively obtained from Equation 5.11. Equation 5.11 is

an extension of the start time computation from [80]. In the presence of non-preemptive

regions, an additional blocking factor Bi must be considered for each task τi, equal to the

longest non-preemptive region of the lower priority tasks. Therefore, the maximum blocking

time that τi may experience is Bi = maxτj∈lp(πi) {Qj}. Bi is added to the worst-case start

time of the task in Equation 5.11.

For a task τi with the non-preemptive region of size Qi, there are two cases that may

lead to the worst-case wasted time. First case is when the system restarts immediately

prior to the completion of τi, in which case the wasted time is Ci. Second case occurs

when τi is preempted immediately before the non-preemptive region begins (i.e., at Ci−Qi)

by the higher priority task τi−1. In this case, the wasted execution is Ci − Qi plus the

maximum amount of the execution of the higher priority tasks that may be wasted due to the

restarts (i.e.,WCWE(i−1)). The worst-case wasted execution is the maximum of these two

values i.e.,WCWE(i) = max(Ci, Ci−Qi+WCWE(i−1)) = Ci+max(0,WCWE(i−1)−Qi).

Similarly, WCWE(i− 1) can be computed recursively.

Optimal Size of Non-Preemptive Regions

RBR-Feasibility of a taskset depends on the choice of Qis for the tasks. In this section,

we present an approach to determine the size of non-preemptive regions Qi for the tasks to

maximize the RBR-Feasibility of the task set.

First, we introduce the the notion of blocking tolerance of a task βi. βi is the maximum

time units that task τi may be blocked by the lower priority tasks, while it can still meet

its deadline. Algorithm 5.1, uses binary search and the response time analysis of task (from

Theorem 5.3) to find βi for a task τi.

In Algorithm 5.1, Ri,Bi=middle is computed as described in Theorem 5.3 (Equation 5.9),

where instead of using the Bi from Equation 5.12, the blocking time is set to the value of

middle.

Note that, if Algorithm 5.1 cannot find a βi for task τi, this task is not schedulable at all.

This indicates that there is not any selection of Qis that would make T RBR-Feasible.

55

Figure 5.3: Example of system with 3 tasks τ1 = (1, 3); τ2 = (2, 8); τ3 = (4, 22), where τ3 has a
non-preemptive region of size Q3 = 1. Restart occurs at t = 7− ε (Cr = 0). The task set is
schedulable with restarts.

Algorithm 5.1: Binary Search for Finding βi

1 FindBlockingTolerance(τi, T , Q1, ..., Qi)
2 start = 0; end = Ti /* Initialize the interval */
3 if Ri(start) > Ti then return τi Not Schedulable;
4 while end - start > ε do
5 middle = (start + end)/2
6 if Ri,Bi=middle > Ti then end = middle ;
7 else start = middle

8 end
9 return βi = start;

Given that task τ1 has the highest priority, it may not be preempted by any other task;

hence we set Q1 = C1. The next theorem shows how to drive optimal Qi for the rest of the

tasks in T . The results are optimal, meaning that if there is at least one set of Qis under

which T is RBR-Feasible, it will find them.

Theorem 5.4. The optimal set of non-preemptive interval Qis of tasks τi for 2 ≤ i ≤ n is

given by:

Qi = min
{
min{βj | j ∈ hp(πi)}, Ci

}
(5.15)

assuming that βj ≥ 0 for j ∈ hp(πi).

Proof. Increasing the length of Qi for a task reduces the response time in two ways. First,

from Equation 5.11, increasing Qi reduces the start time of the job Si,k which reduces the

56

Figure 5.4: Example of system with 3 tasks τ1 = (1, 3); τ2 = (2, 8); τ3 = (4, 22), where τ3 has a
non-preemptive region of size Q3 = 1. Restart occurs at t = 9− ε (Cr = 0). The task set is
schedulable with restarts.

finish time and consequently the response time of τi. Second, from Equation 5.14, increasing

Qi reduces the restart overhead Onpei on the task and lower priority tasks which in turn

reduces the response time. Thus Qi may increase as much as possible up to the worst-case

execution time Ci; Qi ≤ Ci. However, the choice of Qi must not make any of the higher

priority tasks unschedulable. As a result, Qi must be smaller than the smallest blocking

tolerance of all the tasks with higher priority than πi; Qi ≤ min{βj|j ∈ hp(πi)}. Combining

these two conditions results in the relation of Equation 5.15.

5.4.2 Preemption Thresholds

In the previous section, we discussed non-preemptive endings as a way to reduce the length

of the longest preemption chain and decrease the overhead of restarts. In this section, we

discuss an alternative approach to reduce the number of tasks in the longest preemption

chain and thus reduce the overhead of restart-based recovery.

To achieve this goal, we use the notion of preemption thresholds which has been proposed

in [3]. According to this model, each task τi is assigned a nominal priority πi and a

preemption threshold λi ≥ πi. In this case, τi can be preempted by τh only if πh > λi.

At activation time, priority of τi is set to the nominal value πi. The nominal priority is

maintained as long as the task is kept in the ready queue. During this interval, the execution

of τi can be delayed by all tasks with priority πh > πi, and by at most one lower priority

57

Figure 5.5: Example of system with 3 tasks τ1 = (1, 3); τ2 = (2, 8); τ3 = (4, 22), where τ2 and τ3

have a preemption threshold of λ2 = 1 and λ3 = 2, respectively. Restart occurs at t = 7− ε
(Cr = 0). In this case, the task set remains schedulable.

task with threshold λl ≥ πi. When all such tasks complete, τi is dispatched for execution,

and its priority is raised to λi. During execution, τi can be preempted by tasks with priority

πh > λi. When τi is preempted, its priority is kept at λi.

Restarts may increase the response time of τi,k in one of two ways; A restart may occur

after the arrival of the job but before it has started, delaying its start time Si,k. Alternatively,

the system can be restarted after the job has started. We use Opt,si to denote the worst-case

overhead of a restart that occurs before the start time of a job in task sets with preemption

thresholds. And, Opt,fi is used to represent the worst-case overhead of a restart that occurs

after the start time of a job in task sets with preemption thresholds.

In Figure 5.5, we consider a task set with the same parameters as in Figure 5.1 where in

addition τ2 and τ3 have a preemption threshold equal to λ2 = 1 and λ3 = 2, respectively.

This assignment is effective to prevent a long preemption chain, and the jobs do not miss

their deadline when the restart occurs at t = 7 − ε. Notice that, the task set is still not

RBR-Feasible since if the restart occurs at t = 9 − ε, some job will miss the deadline, as

shown in Figure 5.6.

Theorem 5.5. For a task set with preemption thresholds under fixed priority, the worst-case

overhead of a restart that occurs after the start of the job τi,k is Opt,fi = Cr +WCWE(i)

where

WCWE(i) = Ci + max{WCWC(j) | τj ∈ hp(λi)} (5.16)

58

Figure 5.6: Example of system with 3 tasks τ1 = (1, 3); τ2 = (2, 8); τ3 = (4, 22), where τ2 and τ3

have a preemption threshold of λ2 = 1 and λ3 = 2, respectively. Restart occurs at t = 9− ε
(Cr = 0). The task set is not schedulable.

Here, WCWC(1) = C1.

Proof. After a job τi,k starts, its priority is raised to λi. In this case, the restart will create

the worst-case overhead if it occurs at the end of longest preemption chain that includes τi

and any subset of the tasks with πh > λi. Equation 5.16 uses a recursive relation to calculate

the length of longest preemption chain consisting of τi and all the tasks with πh > λi.

Theorem 5.6. For a task set with preemption thresholds under fixed priority, a restart

occurring before the start time of a job τi,k, can cause the worst-case overhead of

Opt,si = Cr + max{WCWE(j) | τj ∈ hp(πi)} (5.17)

where WCWE(j) can be computed from Equation 5.16.

Proof. Start time of a task can be delayed by a restart impacting any of the tasks with

priority higher than πi. Equation 5.17 recursively finds the longest possible preemption

chain consisting of any subset of tasks with πh > πi.

Due to the assumption of one fault per hyper-period, each job may be impacted by at

most one of Opt,fi or Opt,si , but not both at the same time. Hence, we compute the finish

time of the task once assuming that the restart occurs before the start time i.e., Opt,fi = 0,

and another time assuming it occurs after the start time i.e., Opt,si = 0. Finish time in these

59

two cases is referred respectively by F s
i,k (restart before the start time) and F f

i,k (restart after

the start time).

We expand the response time analysis of tasks with preemption thresholds from [3],

considering the overhead of restarting. In the following, Si,k and Fi,k represent the worst

case start time and finish time of job τi,k. And, the arrival time of τi,k is (k − 1)Ti. The

worst-case response time of task τi is given by:

Ri = max
k∈[1,Ki]

{
max{F s

i,k, F
f
i,k} − (k − 1)Ti

}
(5.18)

Here, Ki can be obtained from Equation 5.4 by using max(Opt,fi ,Opt,si) instead of Onpi . A

task τi can be blocked only by lower priority tasks that cannot be preempted by it, that is:

Bi = max
j
{Cj | πj < πi ≤ λj} (5.19)

To compute finish time, Si,k is computed iteratively using the following equation [3]:

S
(q)
i,k = Bi + (k − 1)Ci +

∑
j∈hp(πi)

(
1 +

⌊
S

(q−1)
i,k

Tj

⌋)
Cj +Opt,si (5.20)

Once the job starts executing, only the tasks with higher priority than λi can preempt it.

Hence, the Fi,k can be derived from the following:

F
(q)
i,k = Si,k + Ci+ ∑

j∈hp(λi)

(⌈
F

(q−1)
i,k

Tj

⌉
−
(

1 +

⌊
Si,k
Tj

⌋))
Cj +Opt,fi (5.21)

Task set T is considered RBR-Feasible if ∀τi ∈ T , Ri ≤ Ti.

RBR-Feasibility of a task set depends on the choice of λis for the tasks. In this paper, we

use a genetic algorithm to find a set of preemption thresholds to achieve RBR-Feasibility of

the task-set. Although this algorithm can be further improved to find the optimal threshold

assignments, the proposed genetic algorithm achieves acceptable performance, as we show

in Section 5.5.

60

(a) Fully preemptive (b) Fully non-preemptive

(c) Non-preemptive ending intervals. (d) Preemption thresholds.

Figure 5.7: Minimum Period: 10, Maximum Period: 1000

5.5 EVALUATION

In this section, we compare and evaluate the four fault-tolerant scheduling strategies

discussed in this paper. In order to evaluate the practical feasibility of our approach,

we have also performed a preliminary proof-of-concept implementation on commercial

hardware (i.MX7D platform) for an actual 3 degree-of-freedom helicopter. We tested logical

faults, application faults and system-level faults and demonstrated that the physical system

remained within the admissible region. Due to space constraints, we omit the description

and evaluation of our implementation and refer to [81] for additional details.

61

(a) Fully preemptive (b) Fully non-preemptive

(c) Non-preemptive ending intervals. (d) Preemption thresholds.

Figure 5.8: Minimum Period: 900, Maximum Period: 1000

5.5.1 Evaluating Performance of Scheduling Schemes

In this section, we evaluate the performance of four fault-tolerant scheduling schemes that

are discussed in this paper. For each data point in the experiments, 500 task sets with the

specified utilization and number of tasks are generated. Then, RBR-feasibility of the task

sets are evaluated under four discussed schemes; fully preemptive, fully non-preemptive, non-

preemptive ending intervals, and preemption thresholds. In order to evaluate performance

of the scheduling schemes, all the tasks in the analysis are assumed to be part of the critical

workload. Priorities of the tasks are assigned according to the periods, so a task with shorter

period has a higher priority.

The experiments are performed with two sets of parameters for the periods of the task

sets. In the first set of experiments (Figure 5.7), task sets are generated with periods in the

range of 10 to 1000 time units. In the second set (Figure 5.8), tasks have a period in the

62

range of 900 to 1000 time units. As a result, tasks in the first experiment have more diverse

set of periods than the second one.

As shown in Figure 5.7(a) and 5.8(a), all the task sets with utilization less than 50% are

RBR-feasible under preemptive scheduling. This observation is consistent with the results

of [28] which considers preemptive task sets under rate monotonic scheduling with a recovery

strategy similar to ours (re-executing all the unfinished tasks), and shows that all the task

sets with utilization under 50% are schedulable.

Moreover, a comparison between Figure 5.7(a) and 5.8(a) reveals that fully preemptive

setting performs better when tasks in the task set have diverse rates. To understand this

effect, we must notice that the longest preemption chain for a task in preemptive setting,

consists of the execution time of all the tasks with a higher priority. Therefore, under this

scheduling strategy, tasks with low priority are the bottleneck for RBR-feasibility analysis.

When the diversity of the periods is increased, lower priority tasks, on average, have much

longer periods. As a result, they have a larger slack to tolerate the overhead of restarts

compared to the lower priority tasks in task sets with less diverse periods. Hence, more task

sets are RBR-feasible when a larger range of periods is considered.

On the contrary, when tasks have more diverse periods, non-preemptive setting performs

worse (Figure 5.7(b) and 5.8(b)). This is because, with diverse periods, tasks with shorter

periods (and higher priorities) experience longer blocking times due to low priority tasks

with long execution times.

As the figures show, scheduling with preemption thresholds and non-preemptive intervals

in both experiments yield better performance than preemptive and non-preemptive schemes.

This effect is expected because the flexibility of these schemes allows them to decrease

the overhead of restarts by increasing the non-preemptive regions, or by increasing the

preemption thresholds while maintaining the feasibility of the task sets. Tasks under these

disciplines exhibit less blocking and lower restart overhead.

Preemption thresholds and non-preemptive endings in general demonstrate comparable

performance. However, in task sets with very small number of tasks (2-10 task), scheduling

using non-preemptive ending intervals performs slightly better than preemption thresholds.

This is due to the fact that, with small number of tasks, the granularity of the latter approach

is limited because few choices can be made on the tasks’ preemption thresholds. Whereas,

the length of non-preemptive intervals can be selected with a finer granularity and is not

impacted by the number of tasks.

63

5.6 SUMMARY AND DISCUSSION

In this chapter, we constructed and analyzed the required safety conditions under which all

the critical tasks will meet their deadlines if the system restarts and the interrupted tasks re-

execute. We analyzed the performance of these strategies for various task sets and proposed

two techniques to improve their schedulability. We also implemented a proof-of-concept

prototype and tested it against faults in the application-layer and RTOS.

The schedulability-based design differs from the controller-based fault-tolerant approach

in two key areas. First, this approach focuses on the schedulability of the controller tasks

and does not require any modification to the controller design (as long as it is constructed

following the Simplex methodology). Whereas, in the controller-based design discussed in

Chapter 4, the complexity of constructing the base controller increases at an exponential

rate with regards to the number of dimensions of the system dynamics. Schedulability-

based design, therefore, can be applied to certain high-dimensional physical plants where

computing a base controller is computationally infeasible due to the high number of

dimensions.

On the other hand, this approach is limited for CPS with longer restart times (relative

to the execution frequency of the control tasks). The schedulability analyses of this chapter

demonstrate that if the restart time of the system is larger than the minimum of all the

periods of all the critical tasks, the task set is not schedulable. As the restart time of the

platform increases, the feasibility of the task set decreases. The proposed solution in its

current form, despite being useful for many platforms, may not suit platforms with a long

restart time.

Another point worth mentioning is that the current restart time of many platforms is not

optimal, mainly because reducing the reboot time of the platform has not been investigated.

One future direction of research is creating a multi-stage booting solution for multi-core

platforms to mitigate this problem. Our possible idea is to boot one core with the bare

minimum requirements to execute the SC in the quickest possible time. The SC can keep

the system safe, while the real-time or general purpose OS boots on the other cores. Once

the boot process is complete, the control switches to the controllers running on the OS.

64

CHAPTER 6: SINGLE NODE CPS SECURITY

Some of the recent attacks on cyber-physical systems (CPS) are focused on causing

physical damage to the plants. Such intruders make their way into the system using

cyber exploits but then initiate actions that can destabilize and even damage the

underlying (physical) systems. Examples of such attacks on medical pacemakers [82], or

vehicular controllers [83] exist in literature. Any damage to such physical systems can be

catastrophic – to the systems, the environment or even humans. The drive towards remote

monitoring/control (often via the Internet) only exacerbates the safety-related security

problems in such devices.

When it comes to security, many techniques focus on preventing the software platform

from being compromised or detecting the malicious behavior as soon as possible and taking

recovery actions. Unfortunately, there are always unforeseen vulnerabilities that enable

intruders to bypass the security mechanisms and gain administrative access to the controllers.

Once an attacker gains such access, all bets are off with regards to the safety of the physical

subsystem. For instance, the control program can be prevented from running, either entirely

or even in a timely manner, sensor readings can be blocked or tampered with, and false

values forwarded to the control program and similarly actuation commands going out to the

plants can be intercepted/tampered with, system state data can be manipulated, etc. These

actions, either individually or in conjunction with each other, can result in significant damage

to the plant(s). At the very least, they will significantly hamper the operation of the system

and prevent it from making progress towards its intended task.

In this chapter, I develop analytical methods that can formally guarantee the baseline safety

of the physical plant even when the controller unit’s software has been entirely compromised.

The main idea of our work in this chapter is to carry out consecutive evaluations of physical

safety conditions, inside secure execution intervals, separated in time such that an attacker

with full control will not have enough time to destabilize or crash the physical plant in

between two consecutive intervals. We refer to these intervals as ”Secure Execution Intervals,

SEI”. In this chapter, the time between consecutive SEIs is dynamically calculated in real

time, based on the mathematical model of the physical plant and its current state. The key

to providing such formal guarantees is to make sure that each SEI takes places before an

attacker can cause any physical damage.

To further clarify the approach, consider a simplified drone example. The base-line safety

for a drone is to not crash into the ground. Using a mathematical model of the drone, we

demonstrate, in Section 6.2.2, how to calculate the shortest time that an adversary with full

65

control over all the actuators would need to take the drone into zero altitudes (an unsafe

state) from its current state (i.e., current velocity and height). The key is, once inside the

SEI, to schedule the starting point of the upcoming SEI before the shortest possible time

to reach the ground. During the SEI, depending on whether the drone was compromised

or not, it will be either stabilized and recovered or, it will be allowed to resume its normal

operation. With this design in place, despite a potentially compromised control software,

the drone will remain above the ground (safe).

Providing formal safety guarantees, even for the simple example above is non-trivial and

challenging. For instance, an approach is needed to compute the shortest time to reach the

ground at run-time. Each SEI must be scheduled to take place at a state that not only

is safe (before hitting the ground), but also such that the controller can still stabilize the

drone from that velocity and altitude, considering the limits of drone motors. Mechanisms

are needed to prevent attackers from interfering with the SEIs in any way possible. In this

chapter, we address all the challenges required to provide safety.

One of the primary technical necessities for the proposed design is a trusted execution

environment where the integrity of the executed code can be maintained. In this chapter,

we utilize two different approaches to achieve this goal; (i) restart-based implementation

that makes use of full system restarts and software reloads (ii) TEE-based implementation

that utilizes Trusted Execution Environment (TEE) such as ARM TrustZone [5] or Intel’s

Trusted Execution Technology (TXT) [6] that are available in some hardware platforms.

Under the restart-based implementation, the control platform is restarted in each cycle

and the uncompromised image of the controller software is reloaded from read-only storage.

Restarting the platform enables us to (i) eliminate all the possible transformations carried

out by the adversary during the previous execution cycle1 and also (ii) provides a window

for trusted computation in an untrusted environment that we use to compute the next SEI

triggering time (Section 6.2.1). This design utilizes an external HW timer to trigger the

restart at the scheduled times. This simple design prevents the adversary from interfering

with the scheduled restarting event.

Another alternative approach (introduced in this chapter) is to enable the SEIs to use

TEE features that are available in HW platforms. In particular, we use ARM TrustZone [5]

and LTZVisor [84] – a hypervisor based on TrustZone (Section 6.3.1). The TEE-assisted

implementation does not require the platform to be restarted in every SEI cycle. Thus,

1It is possible that the adversary launches a new instance of the attack after a restart. Yet, the plant
is protected against each attack instance and malicious states are not carried across restarts. As a result,
the proposed approach is able to prevent the attacker from damaging the system every time and guarantees
safety of the entire system.

66

there is no restarting overhead and, additionally, the controller state is not lost with every

SEI cycle. This design can significantly improve the applicability of our method to physical

plants with faster dynamics. As we have shown in the evaluation section, the maneuverability

region of the 3DOF plant is increased by 234 percent when the controller is implemented by

the TEE-based method.

For some CPS applications, one of the above implementation options might be a more

suitable choice than the other one. If the physical plant has high-speed dynamics –

relative to the restart time of the platform – or if prior state of the controller is necessary

to carry out the mission – e.g., authentication with ground control – the TEE-based

option the reasonable choice. On the other hand, restart-based implementation is feasible

for low-cost micro-controllers whereas platforms equipped with TEE are generally more

expensive. Furthermore, many of the CPS applications have physical plants with slow

physical dynamics (compared to the restart time of their embedded platform) and the restart-

based implementation will perform just as good as the TEE-based implementation (as shown

in Section 6.4.4). For such cases, the restart-based implementation is a better choice and

the TEE-assisted implementation might only unnecessarily increase the cost and complexity

of the system.

In summary, the contributions of this chapter are:

1. We introduce a design method for embedded control platforms with formal guarantees

on the base-line safety of the physical subsystem when the software is under attack.

2. We propose a restart-based design implementation that enables trusted computation

in an untrusted environment using platform restarts and common-off-the-shelf (COTS)

components, without requiring chip customizations or specific hardware features.

3. We propose an alternative design implementation using TEE features that eliminates

the restarting overhead and enables the core safety-guarantees to be provided on more

challenging physical plants.

4. We have implemented and tested our approach against attacks through a prototype

implementation for a realistic physical plant and a hardware-in-the-loop simulation.

We compare both design implementation options and illustrate their use cases.

6.1 APPLICATIONS, THREATS AND ADVERSARIES

This chapter focuses on end-point devices that control and drive a safety-critical physical

plant i.e., the plant has safety conditions that need to be respected at all times. Components

67

such as sensing nodes that do not directly control a physical plant are not in the scope of this

work. Safety requirements of the plant are defined as an admissible region in a connected

subset of the state space. If the physical plant reaches the states outside of the admissible

region, it could damage itself as well as the surrounding environment. Thus, to preserve the

physical safety, the plant must only operate within the admissible region.

6.1.1 Adversary and Threat Model

Embedded controllers of CPS face threats in various forms depending on the system and

the goals of the attacker. The particular attacks that we aim to thwart in this work are those

that target damaging the physical plant. In this chapter, we assume attackers require an

external interface such as the network, the serial port or the debugging interface to intrude

into the platform. We assume that the attackers do not have physical access to the platform.

Once a system is breached, we assume the attacker has full control (root access) over the

software (non-secure world), actuators, and peripherals.

The following assumptions are made about the platform and the adversary’s capabilities:

i) Integrity of original software image: We assume that the original images of the

system software i.e., real-time operating system (RTOS), control applications, and

other components are not malicious. These components, however, may contain security

vulnerabilities that could be exploited to initiate attacks.

ii) Read-only storage for the original software image: We assume that the original trusted

image of the system software is stored on a read-only memory unit (e.g., E2PROM).

This content is not modifiable at runtime by anyone including adversary. Updating

this image requires physical access and is completed off-line when the system is not

operating2.

iii) Trusted Execution Environment (TEE): Hardware-assisted TEEs such as TrustZone

partition the platform into a secure world and a non-secure world. Resources (i.e.,

code and data) in the secure world are isolated from the non-secure world and are only

accessible by the software running in the secure world. A compromise in the non-secure

world may not affect the execution and data in the secure world. In this chapter, we

assume that the software in the secure world is trusted from the beginning and may

2This is common for many safety-critical IoT systems such as medical devices and some components in
automotive systems – to prevent from runtime malfunctioning due to unwanted firmware corruption at the
time of update and well as to prevent the adversary from tampering with the system’s image remotely)

68

Sa
fe

 F
lig

ht

Zo
ne

RoT Interface
programmable?

Time

Figure 6.1: An example sequence of events for the restart-based implementation of the SEI.
White: mission controller is in charge and platform is not compromised. Yellow: system is
undergoing a restart. Green: SEI is active, SC and find safety window are running in parallel.
Orange: adversary is in charge. Blue: RoT accepts new restart time. Gray: RoT does not accept
new restart time. Red arrow: RoT triggers a restart. Blue arrow: SEI ends, the next restart time
is scheduled in RoT, and the mission controller starts.

not be compromised (in our design, the secure world only interacts with sensors and

actuators and does not have an exposed interface that can be a point of exploitation).

iv) Immediately after a reboot, as long as the external interfaces of the device (i.e., network,

debugging interface) remain disabled3, software running on the platform is assumed to

be uncorrupted.

v) Integrity of Root of Trust (RoT): RoT – which is only necessary for the restart-based

implementation – is an isolated hardware timer responsible for issuing the restart signal

at designated times. As shown in Section 6.2.1, it is designed to be programmable only

once in each execution cycle and only during an interval that we call the SEI.

Additionally, we assume that the system is not susceptible to external sensor spoofing

or jamming attacks (e.g., broadcasting incorrect GPS signals, electromagnetic interference

on sensors etc.). An attacker may, however, spoof the sensor readings within the OS or

applications. Our approach does not protect from data leak related attacks such as those

which aim to steal secrets, monitor the activities, or violate the privacy. Our design does

not protect from network attacks such as man-in-the-middle or denial-of-service attacks that

restrict the network access. An attacker may enter the system via any external interface

(e.g., a telemetry channel, a network interface) and use known vulnerabilities such as buffer

overflow or code injection to manipulate the system. However, as we show, the physical

plant remains safe during such attacks.

69

6.2 METHODOLOGY

To explain our approach, let us assume that it is possible to create secure execution

intervals (SEI) during which we can trust that the system is going to execute uncompromised

software and adversary cannot interfere with this execution in any way. Under such

assumption, we will show that it is possible to guarantee that a physical plant will remain

within its admissible states as long as the following conditions remain true: (i) the timing

between these intervals are separated such that, due to the physical inertia, the plant will

not reach an inadmissible state until the beginning of the consequent SEI. (ii) The state of

the plant at the beginning of the following SEI will be such that the SC can still stabilize the

system. Under these conditions, the plant will be safe in between two SEIs (due to condition

1). If an adversary pushes the system close to the boundaries of inadmissible states, during

the following SEI, we can switch to SC, and it can stabilize the plant (condition 2).

In the rest of this section, we present an analytical framework that shows how

appropriately timed separations between the consequent SEIs guarantee the physical safety.

Additionally, we show how these time values can be calculated in run-time. Finally,

we discuss two different mechanisms – restart-based implementation and TEE-assisted

implementation – to enable a trusted computation environment – SEI – during which the

time intervals between SEI will be computed, without any adversarial interference.

6.2.1 Restart-based Secure Execution Intervals (SEI)

One essential element of the approach introduced in this chapter is the run-time

computation of the time separation between consecutive executions of the safety-critical

tasks – the tasks that evaluate the safety conditions (next section) and stabilize the plant if

necessary. The ultimate safety guarantees of our approach depend on the integrity of these

computations. To achieve safety, therefore, it is essential to have a means to completely

protect these tasks from any adversarial interference – adversary should not be able to stop

or delay the execution or, corrupt the results of the computations. In this work, we use

the term Secure Execution Interval (SEI) to refer to execution intervals during which the

integrity of the code is preserved.

One way to create SEIs in an untrusted environment is to rely on the full platform restarts

and the software reloads. The procedure is as follows. For each SEI, the platform needs to

restart entirely and then immediately load the clean software image from the read-only

3This is achieved by not initiating a socket connection, not reading/writing from/to any of the ports and
not performing any of the hand shaking steps.

70

storage. Additionally, after the restart, all the external interfaces of the platform – those

that might be an exploitation point for external adversaries – will remain disabled. As soon

the platform boots, it can execute the safety-related tasks trustworthily and produce correct

results. Once the execution of the critical tasks is finished, the time to trigger the following

restart – the next SEI – is scheduled. Finally, the SEI ends, the external interfaces are

activated, and the mission controller and other necessary components are launched.

An additional mechanism is necessary to schedule a restart and trigger it such that the

adversary cannot prevent it. We designate a separate HW module, called root-of-trust (RoT)

to do this. RoT is essentially an external timer that can send a restart signal to the HW

restart pin of the controller board at the scheduled time. It has an interface that allows

the main controller to set the time of the next restart signal. We refer to this interface by

set SEI trigger time. The only difference of RoT with a regular timer is that it allows

the processor to call the set SEI trigger time interface only once after each restart and

ignores any additional calls to this interface until the timer expires. Once the RoT timer is

configured, adversaries cannot disable it until it has expired and the platform is restarted.

Figure 6.1 illustrates the sequence of events in the system.

6.2.2 Finding the Safety Window in Run-Time

During the SEI, platform executes two tasks in parallel: (i) find safety window task

which calculates the time window in which the plant will remain safe due to its physical

inertia and uses this result to set the triggering time of the next SEI. And, (ii) SC that

keeps the plant stable while find safety window is computing. Figure 6.1 presents an

example sequence of the system events. If no malicious activity had taken place during the

previous execution cycle (first cycle of Figure 6.1), the next SEI triggering time is computed

and scheduled quickly, and the mission controller resumes. However, if an attacker had been

able to compromise the platform within the previous cycle and managed to push the plant

close to the inadmissible states (second cycle of Figure 6.1), the SC will need some time to

stabilize the plant – push it further into the recoverable region – and SEI will be longer.

The fundamental idea here is how should find safety window calculate the triggering

time of the next SEI such that up to the beginning of the next SEI, the physical plant would

not be able to reach an unsafe state and at the beginning of next SEI, the state would still

be recoverable by the SC. The rest of this subsection answers this question.

Before we proceed, it is useful to define some notations. We use the notation of

Reach=T (x,C) to denote the set of states that are reachable by the physical plant from

an initial set of states x after exactly T units of time have elapsed under the controller C.

71

Reach≤T (x,C) can be defined as
⋃T
t=0 Reach=t(x,C) i.e., union of all the states reachable

within all times t up to T time units. Also, we use SC to refer to the safety controller and

UC to refer to an untrusted controller, i.e., one that might have been compromised by an

adversary. We use notation ∆(x1, x2) to represent the shortest time required for the physical

plant to reach state x2, starting from x1.

Definition 6.1. True Recoverable states are all the states from which the given SC can

eventually stabilize the plant. Formally, T = {x | ∃α > 0 : Reach≤α(x, SC) ⊆
S & Reach=α(x, SC) ⊆ R}. The set of true recoverable states is represented with T .

Definition 6.2. Tα denotes the set of states from which the given SC can stabilize

the plant within at most α time. Formally, we have Tα = {x | Reach≤α(x, SC) ⊆
S & Reach=α(x, SC) ⊆ R}. From definition it follows that ∀α : Tα ⊆ T .

Let us call Ts, the switching time, and use it for referring to the time between the triggering

time of the SEI until SEI is active and ready to execute tasks. For the restart-based SEI

implementation, Ts is equal to the length of one restart cycle of the embedded platform4.

Furthermore, let us use γ to represent the shortest time that is possible to take a physical

system from its current state x(t) ∈ T to a state outside of T . We can write

γ(x) = min {∆(x, x′) | for all x′ 6∈ T } (6.1)

It follows that

If x(t) ∈ T then x(t+ τ) ∈ T where τ < γ(x(t)). (6.2)

From Equation 6.2 we can conclude

Reach≤γ(x(t))−ε(x(t), UC) ⊆ S

Reach=γ(x(t))−ε(x(t), UC) ⊆ T
where ε→ 0 (6.3)

Equation 6.3 indicates that if it was possible to calculate γ(x(t)) in an SEI, we could have

scheduled the consecutive SEI to be triggered at time t + γ − Ts − ε. This process would

have ensured that by the time the following SEI had started, the state of the plant was truly

recoverable and admissible.

The value of γ(x) depends on the dynamics of the plant and the limits of the actuators.

Unfortunately, it is not usually possible to compute a closed-form representation for γ(x).

Because computing a closed-form representation for the T of the given SC is not a trivial

4Ts is the length of the interval from the triggering point of restart until the reboot is completed, filters
are initialized and control application is ready to control the plant.

72

problem. Actuator limits is another factor that needs to be taken into account in the

calculation of T . Therefore, in many cases, finding γ would require performing extensive

simulations or solving numerical or differential equations.

An alternative approach is to check the conditions of Equation 6.3 for a specific value of

time, λ:

Reach≤λ(x(t), UC) ⊆ S & Reach=λ(x(t), UC) ⊆ Tα (6.4)

Fortunately, having a tool to compute the reachable set of states in run-time allows us

to evaluate all the components of Equation (6.4). Real-time reachability can compute

the reachable set of states up to the λ time with an untrusted controller UC to check

the first part of the equation (6.4). To evaluate the second part, we use the calculated

reachable set at time λ as the starting set of states to perform another reachability

computation for α time under SC and check Reach≤α(Reach=λ(x(t), UC), SC) ⊆ S and

Reach=α(Reach=λ(x(t), UC), SC) ⊆ R. These two conditions are equivalent to the second

part of the equation above.

The λ that is calculated for the state x(t) is a safety window of the physical system in

state x(t), that is the interval of time, starting from time t, that the plant will remain safe

and recoverable, even if the adversary controls it. Hence, we can conclude that the time

t + λ − Ts, is a point where the platform can be safely restarted – i.e., the next SEI can

be triggered. Algorithm 6.1, performs a binary search and tries to find the largest safety

window of the plant from a given x(t) within a bounded computation time, Tsearch. Given

a large Tsearch, Algorithm 6.1 would calculate the the maximum safety window of the plant

for that state. In run-time, however, Tsearch has to be limited and therefore choosing the

initial candidate λcandidate is crucial. It is also possible to use an adaptive λinit by dividing

the state space into subregions and assigning a λinit to each region. At runtime, choose the

λinit associated with the state and initialize the Algorithm 6.1.

Note that the real actions of the adversary are unknown ahead of the time. As a result, in

the conditions of Equation (6.4), the reachability of the plant under all possible control values

need to be calculated. Consequently, the computed reachable set under UC (Reach(x, UC))

is the largest set of states that might be reached from the given initial state, within the

specified time. The real-time reachability tool in [30] allows this sort of computation due

to the usage of a box representation for control inputs. Control inputs are set to the full

range available to the actuators. As a result, the computed set the states that might be

achieved under all of the actuator values. Notice that this procedure does not impact the

time required for reachability computation.

73

Algorithm 6.1: Finding physical safety window from state x. Here, Teq-6.4 refers to the time required to

evaluate the conditions of Equation 6.4. We can compute the exact value of Teq-6.4 because the reachability

computation time is capped (one of the important features of [30]) and, in total, there are 4 Reach operations

to be performed.

find safety window(x, λinit)
1: startTime := currentTime()
2: λcandidate := λinit
3: RangeStart := Ts; RangeEnd := λcandidate
4: while currentTime() - startTime <Tsearch − Teq-6.4 do
5: if conditions of Equation (6.4) are true for λcandidate then
6: λsafe := λcandidate
7: RangeStart := λsafe; RangeEnd := 2λsafe
8: else
9: RangeEnd := λcandidate

10: end if
11: λcandidate := (RangeStart + RangeEnd)/2
12: end while

13: return -1

When an intelligent adversary compromises the system, it can quickly push the plant

towards the inadmissible states and very close to the boundary of the unsafe region. When

operating close to the inadmissible states, there is a very narrow margin for misbehavior.

If the adversary takes over again, they can violate the physical safety. Therefore, when

SEI starts and the plant is in states very close to the boundary of the unsafe region, safety

controller would need to execute for longer than usual until the plant is sufficiently pushed

into the safe area. Deciding on how long the SC needs to run automatically happens based

on the result of find safety window as presented in Algorithm 6.2. If the plant’s state is

too close to the boundary of the unrecoverable region, the safety window of the plant will be

very short, and find safety window will most likely return -1. In Algorithm 6.2, this will

force the while loop and consequently the SC to continue running for another cycle. This

cycle will continue until SC has sufficiently distanced the plant from the unsafe region. At

this point, find safety window will be able to compute a safety window and the SEI will

end.

It’s worth noting that what real-time reachability yields is a superset of the actual

reachable set of states. Therefore, the calculated λ ensures that the system always remains

within the safe region.

74

Algorithm 6.2: One operation cycle with restart-based SEI

1: Start Safety Controller. /* SEI begins */
2: λsafe = λinit /*Initializing the safety window*/
3: repeat
4: start time := systemTime()
5: x := obtain the most recent state of the system from Sensors
6: λsafe :=find safety window(x, λsafe)
7: elapsed time := systemTime() - start time

8: until λsafe 6= −1 and λsafe > Ts + elapsed time

9: Send λsafe − elapsed time− Ts to RoT. /* Set the next restart time. */
10: Activate external interfaces. /* SEI ends. */
11: Terminate SC and launch the mission controller.
12: When RoT sends the restart signal to hardware restart pin:
13: Restart the platform
14: Repeats the procedure from beginning (from Line 1)

6.3 TEE-ASSISTED DESIGN IMPLEMENTATION

The restart-based approach to enable SEIs requires a restart in each operation cycle and

imposes two main types of overheads on the system: (i) restart-time and (ii) memory erasure

due to the restarts. Implementing this approach on some CPSs can be challenging especially

if the platform restart time is not negligible compared to the speed of the dynamics of the

plant. Another issue with this design implementation arises from the fact that the system

restarts erase the platform memory. For some applications, such frequent memory erasures

can be problematic. For instance, to establish a remote connection, the controller might

need to perform handshaking steps and store the state in the memory. If the system is

frequently restarted, the controller may not be able to establish a reliable communication.

To mitigate some of these issues, we propose an alternative implementation where we use

ARM TrustZone technology [5] and in particular LTZVisor [84] – which is a lightweight

TrustZone assisted hypervisor with real-time features for embedded systems5. Here, instead

of relying on the platform restarts to create SEIs, we exploit the isolated execution

environments that are attainable through TrustZone.

In the rest of this section, we present some background on TrustZone and LTZVisor, and

then we discuss the implementation of the approach.

5In this work, we have used TrustZone and LTZVisor. Nevertheless, other available Trusted Execution
Environment (TEE) technologies such as Intel’s Trusted Execution Technology (TXT) [6] can be employed
to achieve the same goal.

75

6.3.1 Background on TrustZone and LTZVisor

TrustZone [5] hardware architecture can be seen as a dual-virtual system, partitioning all

system’s physical resources into two isolated execution environments. A new 33rd processor

bit, the Non-Secure (NS) bit, indicates in which world the processor is currently executing,

and is propagated over the memory and peripherals buses. An additional processor mode,

the monitor mode, is added to store the processor state during the world switch. TrustZone

security is extended to the memory infrastructure through the TrustZone Address Space

Controller (TZASC) that can partition the DRAM into different memory regions. Secure

world applications can access non-secure world memory, but the reverse is not possible.

Additional enhancements in TrustZone provide the same level of isolation in cache and

system devices.

LTZVisor [84] is a lightweight hypervisor that allows the consolidation of two virtual

machines (VMs), running each of them in an independent virtual world (secure and non-

secure). It exploits TrustZone features in the platforms to provide memory segmentation,

cache-level isolation, and device partitioning between the two VMs. LTZVisor dedicates

timers to each VM that enables each one to have a distinctive notion of system time.

Additionally, it provides an API for communication between the two VMs.

LTZVisor manages the secure and non-secure world interrupts in a way that meets

the requirements of the hard real-time systems. All the implemented interrupts can be

individually defined as secure and non-secure. If the secure VM is executing, all the secure

interrupts are redirected to it without hypervisor interference. If a non-secure interrupt

arises during secure VM execution, it will be queued and processed as soon as non-secure

side becomes active. On the other hand, if the non-secure VM is executing and a secure

interrupt arises, it will be immediately handled in the secure world. This design prevents a

denial-of-service attack on the secure-side applications.

LTZVisor implements a scheduling policy that guarantees that the non-secure guest OS

is only scheduled during the idle periods of the secure guest OS, and the secure guest OS

can preempt the execution of the non-secure one. This scheduling policy resolves one of

the well-known real-time scheduling problems in virtual environments known as hierarchical

scheduling and makes LTZVisor an excellent choice to meet real-time requirements of the

tasks in the secure VM. Besides, creators of LTZVisor show that the overhead of switching

from secure VM to non-secure VM and vice versa is small and deterministic [84]. Thus,

secure VM is ideal for running a real-time operating system (RTOS) whereas, non-secure

VM can run general purpose operating systems like Linux.

76

6.3.2 TEE-enabled SEIs

In this design, to protect the SC and find safety window tasks, they execute in the secure

VM, and everything else runs in the non-secure VM. The SC and find safety window are

executed, and before they finish, they schedule their next execution time i.e., the next SEI.

Mission controller and any other component start running as soon as all the tasks in the

secure VM have yielded. LTZVisor guarantees that the non-secure VM cannot interfere with

the execution of the tasks in the secure VM.

Each task inside the secure VM, once executed, can choose to yield and set the future

time when its status will change to ready again. In LTZVisor, the secure VM has a higher

priority than the non-secure VM. Consequently, the non-secure VM tasks will execute only

when there are no secure tasks that are ready to execute. Similarly, as soon as one of the

secure VM tasks becomes ready, LTZVisor pauses the non-secure VM, stores the necessary

registers and executes the secure task. The scheduling policy in each VM determines the

priorities and execution details for the tasks of that VM.

The operation cycle of the system during the SEI is very much the same as described

in Algorithm 6.2 except instead of setting the RoT and the restarting step, secure tasks

schedule their next wake up time using the secure platform timer or the OS of the secure

VM. SC and find safety window tasks execute in parallel. As soon as find safety window

finds a valid safety window, both tasks set their next wake up time and yield the execution.

At this point, LTZVisor resumes the execution of the non-secure VM until it is time for the

SC and find safety window to wake up.

Note that, due to the isolation provided by TrustZone, non-secure VM cannot interfere

with the execution of secure tasks when they are ready to execute. This protection eliminates

the need for the RoT timer which was a necessary component to implement the restart-based

SEI.

6.3.3 Optional Recovery Restart

The safety guarantees that the TEE-based implementation provides are precisely the

same guarantees as restart-based SEI implementation. Nevertheless, there is a significant

difference. When the system is being restarted in every cycle, if it gets compromised, the

malicious components will only last until the following restart, and then the software will be

restored. When using TrustZone, if the non-secure world gets compromised, it will remain

compromised. Although the adversary cannot violate the safety of the plant, it can seriously

prevent the system from making any progress.

77

There are two possible mechanisms to mitigate this problem. One arrangement is to

introduce rare, randomized restarts into the system6. Another mitigation is to monitor the

platform, during the SEI, for potential intrusions and malicious activities and restart the

platform after the malicious behavior is detected7. Note that with the optional recovery

restarts described in this section, a well-behaving system that is not under attack will rarely

restart. The platform will be restarted only after it is deemed malicious or when the random

function requires it to do so. Whereas, with the restart-based implementation of SEIs, the

platform has to be restarted before every SEI.

Deciding whether the platform needs to restart or not takes place at the beginning of the

SEI – either based on a randomized policy or a detection mechanism. If it is decided to

restart, the steps to perform the recovery are presented in Algorithm 6.3. One crucial point

in restarting the system is the fact that the platform restart must take place only when the

plant is in a state where it will sustain the safety throughout the restart and will end up

in a recoverable state – according to Defintion 3.2 – after the restart has completed. This

requirement is satisfied if the conditions of Equation 6.4 are met.

Under these steps, SC continues to push the plant towards the center of the safe region. In

parallel, the find safety window function is executed in a loop and checks if the plant at its

current state meets the conditions of safe restarting in Equation 6.4 for the length of platform

restart time. Once the find safety window confirms the safety conditions for the current

plant state, the recovery restart is initiated. In other words, the system is restarted when the

plant has enough distance from the boundaries of the recoverable states and unrecoverable

states.

Algorithm 6.3: Steps to perform a recovery restart.

1: SC starts and is periodically invoked in parallel to the next steps.
2: λRecovery = Trestart + Teq-6.4 + ε
3: repeat
4: x := obtain the most recent state of the system from Sensors
5: until conditions of Equation (6.4) are true for λRecovery

6: (optional) Store sensor reading in the non-volatile storage
7: Restart the system
8: /*Following steps are executed after the restart*/

9: (optional) Load the pre-restart sensor data from storage into the memory

6The rationale behind randomized system restarts – also known in the literature as software rejuvenation
– is that there are no perfect intrusion detection mechanisms. Also, there will always exist malicious activities
that will remain undetected. In another work [34], we have analyzed the impact of restart-based recovery
on the availability of a system under attack.

7In this work, we do not propose any particular intrusion detection algorithm. There is a variety of such
techniques that the system architects can choose from.

78

6.3.4 Carrying Sensor State Between Restarts

Some control applications might need the prior-to-restart sensor readings for improved

performance or higher quality output. For instance, low-pass filters use the past sensor

readings to remove noise from the sensors. TEE-assisted implementation can accommodate

this requirement. In this design, restarts are always initiated within the secure VM and, the

secure VM is always the first to execute after the restart. Immediately prior to the restart,

the secure VM can store any data on the non-volatile storage, and load it back into the

memory after the restart. Note that the non-secure VM is not able to interfere with this

process at all.

It is worth mentioning that the above procedure can be used to carry any values, including

the variables or states in the non-secure VM, and make them available after the restart.

However, we strongly advise avoiding a design where the CPS relies on the prior-to-restart

state of the non-secure VM to carry out its essential mission mainly because the platform

is restarted only when the non-secure VM is deemed compromised. At this point, all the

states in the non-secure VM must be assumed corrupted. Passing the corrupted values across

restarts can propagate the adversarial effect across the restarts and defeat the purpose of

recovery restarts.

6.4 EVALUATION AND FEASIBILITY STUDY

In this section, we evaluate the protections provided by our approach and measure the

feasibility of implementing it on real-world CPSs. We choose two physical plants for this

study: a 3-degree of freedom helicopter [85] and a warehouse temperature management

system [86]. For both plants, the controller is implemented using both restart-based and

TEE-assisted approaches on a ZedBoard [87] embedded system.

6.4.1 Test-Bed Description

Warehouse Temperature Management System:

This system consists of a warehouse room with a direct conditioner (heater and cooler) to

the room and another conditioner in the floor [86]. The safety goal for this plant is to keep

the room temperature, TR, within the range of [20◦C, 30◦C]. Following equations describe

the heat transfer between the heater and the floor, the floor and the room, and the room

and outside space. The model assumes constant mass and volume of air and heat transfer

79

only through conduction.

ṪF = −
UF/RAF/R
mFCpF

(TF − TR) +
uH/F
mFCpF

ṪR = −
UR/OAR/O
mRCpR

(TR − TO) +
UF/RAF/R
mRCpR

(TF − TR) +
uH/R
mRCpR

Here, TF , TR, and TO are the temperature of the floor, room and outside. mF and mR are

the mass of floor and the air in the room. uH/F is the heat transferred from the floor heater

to the floor and uH/R is the heat transferred from the room heater to the room both of which

are controlled by the controller. CpF and CpR are the specific heat capacity of floor (in this

case concrete) and air. UF/R and UR/O represent the overall heat transfer coefficient between

the floor and room, and room and outside.

For this experiment, the walls are assumed to consist of three layers; the inner and outer

walls are made of oak and isolated with rock wool in the middle. The floor is assumed to

be quadratic and consists of wood and concrete. The parameters used are as following8:

UR/O = 539.61 J/hm2K, UF/R = 49920 J/hm2K, mR = 69.96 kg, mF = 6000 kg, floor area

AF/R = 25 m2, wall and ceiling area AR/O = 48 m2, thickness of rock wool, oak and concrete

in the wall and floor respectively 0.25 m, 0.15 m and 0.1 m. Maximum heat generation

capacity of the room and floor conditioner is respectively 800 J/s and 115 J/s. And, the

maximum cooling capacity of the room and the floor cooler is −800 J/s and −115 J/s.

3-Degree of Freedom Helicopter:

3DOF helicopter (displayed in figure 6.2) is a simplified helicopter model, ideally suited

to test intermediate to advanced control concepts and theories relevant to real-world

applications of flight dynamics and control in tandem rotor helicopters, or any device with

similar dynamics [85]. It is equipped with two motors that can generate force in the upward

and downward direction, according to the given actuation voltage. It also has three sensors to

measure elevation, pitch, and travel angle as shown in Figure 6.2. We use the linear model of

this system obtained from the manufacturer manual [85] for constructing the safety controller

and calculating the reachable set in run-time. Due to the lack of space, the details of the

model are included in our technical report [88].

For the 3DOF helicopter, the safety region is defined in such a way that the helicopter fans

do not hit the surface underneath, as shown in Figure 6.2. The linear inequalities describing

8For the details of calculation of UF/R and UR/O and the values of the parameters refer to Chapter 2 and
3 of [86].

80

Travel

Elevation

Pitch

Main
Controller

RoT

Restart
Pin

Voltage
Shifter

Figure 6.2: 3DOF helicopter and the ZedBoard controller.

the safety region are −ε+ |ρ|/3 ≤ 0.3, ε ≤ 0.4, and |ρ| ≤ π/4. Here, variables ε, ρ, and λ are

the elevation, pitch, and travel angles of the helicopter. Limitations on the motor voltages

of the helicopter are |vl| ≤ 4V and |vr| ≤ 4V where vl and vr are the voltage for controlling

left and right motors.

6.4.2 Restart-Based Implementation of SEI

In this section, we discuss the implementation of the controllers of the 3DOF platform and

the temperature management system using the restart-based SEI approach (Section 6.2).

In our technical report [88], more details are provided about the hardware and software

implementation of the controller. Due to the limited access to a real warehouse, the controller

interacts with a simulated model of the physical plant running on a PC (Hardware-in-the-

loop simulation).

RoT Module:

The RoT module is implemented using a low-cost MSP430G2452 micro-controller on

a MSP-EXP430G2 LaunchPad board [89]. To enable restarting, pin P2.0 of the micro-

controller is connected to the restart input of the main controller. Internal Timer A of the

micro-controller is used for implementing the restart timer. It is a 16-bit timer configured

to run at a clock rate of 1 MHz (i.e., 1µs per timer count) using the internal, digitally

controlled, oscillator. A counter inside the interrupt handler of Timer A is used to extend

the timer with an adjustment factor, in order to enable the restart timer to count up to the

81

required range based on the application’s needs.

The I2C interface is adopted for the main controller to set the restart time on the RoT

module. After each restart, during the SEI, the RoT acts as an I2C slave waiting for the

value of the restart time. As soon as the main controller sends the restart time, RoT disables

the I2C interface and activates the internal timer. Upon expiration of the timer, an active

signal is set on the restart pin to trigger the restart event and the I2C interface is activated

again for accepting the next restart time.

Main Controller:

The controller is implemented on a Zedboard [87] which is a development board for

Xilinx’s Zynq-7000 series all programmable SoC. It contains an XC7Z020 SoC, 512 MB

DDR3 memory, and an onboard 256 MB QSPI Flash. The XC7Z020 SoC consists of a

processing system (PS) with dual ARM Cortex-A9 cores and 7-series programmable logic

(PL). The processing system runs at 667MHz. In our experiments, only one of the ARM

cores is used, and the idle cores are not activated. The I2C and UART interfaces are used for

connecting to the RoT module and the actuators of the plant. Specifically, two multiplexed

I/Os, MIO14 and MIO15, are configured as SCL and SDA for I2C respectively. We use

UART1 (MIO48 and MIO49 for UART TX and RX) as the main UART interface.

The reset pin of Zedboard is connected to RoT module’s reset output pin via a BSS138

chip, an N-channel voltage shifter. It is because the output pin on RoT module operates at

3.3 volts while the reset pin on Zedboard accepts 1.8 volts. The entire system (both PS and

PL) on Zedboard is restarted when the reset pin is pulled to the low state. The boot process

starts when the reset pin is released (returning to the high state). A boot-loader is first

loaded from the onboard QSPI Flash. The image for PL is then loaded by the boot-loader

to program the PL which is necessary for PS to operate correctly. Once PL is ready, the

image for PS is loaded, and the operating system will take over the control of the system.

The platform runs FreeRTOS [73], a preemptive real-time operating system. Immediately

after the reboot, safety controller and find safety window tasks are created and

executed. safety controller is a periodic task with the period of 20 ms (50 Hz) and

the execution time of 100 µs and has the highest priority in the system. Safety controller

itself is designed using the method described in Section 3.1. Each invocation of this

tasks obtains the values of sensors and sends the control commands to the actuators.

find safety window executes a loop and only breaks out when a valid safety window is

calculated. It executes at all times except when it is preempted by safety controller.

When find safety window computes a valid safety window, it sends the value minus the

82

elapsed time (Algorithm 6.2) to the RoT module via the I2C interface, sets a global variable

in the system, and terminates. Based on this global variable, safety controller task

terminates, and the mission controller task is launched. find safety window is implemented

based on the Pseudo-code described in Algorithm 6.1. Execution time of each cycle of the

loop in this function is capped at 50 ms (i.e., Tsearch := 50 ms). In find safety window,

to calculate the reachability of the plant from a given state, we used the implementation of

our real-time reachability tool [30]. All the code for the implementation can be found in the

GitHub repository [88].

3DOF Helicopter Controller: ZedBoard platform interfaces with the 3DOF helicopter

through a PCIe-based Q8 data acquisition unit[75] and an intermediate Linux-based

machine. The PC communicates with the Zedboard through the UART interface. Mission

controller is a PID controller whose goal is to navigate the 3DOF to follow a sequence of set

points. Control task has a period of 20 ms (50 Hz), and at every control cycle, the control

task receives the sensor readings (elevation, pitch, and travel angles) from PC and sends the

next set of voltage control commands for the motors. The PC uses a custom Linux driver to

communicate with the 3DOF sensors and motors. In our implementation, the restart time

of the ZedBoard with FreeRTOS is upper-bounded at 390ms.

Warehouse Temperature Controller: Due to the lack of access to the real warehouse,

we used a hardware-in-the-loop approach to perform the experiments related to this plant.

Here, the PC simulates the temperature based on the heat transfer model Described in

Section (6.4.1). The mission controller is a PID that adjusts the environment temperature

according to the time of the day. The controller is implemented on the ZedBoard with the

same components and configurations as the 3DOF controller – RoT, serial port connection,

I2C interface, 50Hz frequency, and the same restart time. Control commands are sent to

the PC, applied to the simulated plant model and the state is reported back to the platform.

6.4.3 TrustZone-Assisted SEI implementation

Our prototype implementation uses LTZVisor on the ZedBoard which provides two

isolated execution environments, secure VM and non-secure VM. LTZVisor can only use

one of the ZedBoard cores, and the other cores are not activated. Similar to the previous

section, ZedBoard is connected to the physical plant sensors and actuators through UART

interface. The configuration of the UART pins and PL are the same as the previous section.

safety controller and find safety window are compiled as one bare metal application

and executed in the secure VM9. The functionality of these components is identical to

9LTZVisor also provides support for FreeRTOS on the secure VM and Linux on the non-secure VM.

83

what was described in the previous section. Using the platform timer, we ensure that the

safety controller function is called and executed every 20 ms while, find safety window

is being executed for the rest of the time. Once the state of the plant reaches a state where

a safety window is available, find safety window returns the results, the application yields

the processor and sets the next invocation point to the current time plus computed safety

window minus the computation time – Section 6.3.2. At this point, LTZVisor restores the

execution of the mission controller application in the non-secure VM until the secure VM

application is invoked again. We use the YIELD function, provided by the LTZVisor on the

secure VM, which suspends the execution of the application and invokes it after the specified

interval of time.

In our prototype, recovery restarts are initiated based on a randomized scheme. We use a

pseudo-random number generator function that returns a value between 0 and 1. if the values

are less than 1/1000, we restart the platform – the probability of 0.1 percent. Otherwise,

the execution proceeds to the normal SEI. The mechanism to trigger the restarts is through

system-level watchdog timer. This is an internal 24-bit counter that on timeout outputs a

system reset to the Processing System (all the cores and system registers) and Program

Logic (the FPGA fabric in the ZedBoard). To trigger a restart, the timer is enabled and set

to expire on the shortest time allowed by the resolution. The timer expires immediately and

restarts the platform.

6.4.4 Safety Window of the Physical Plants

At the end of each SEI, the triggering point of the next SEI needs to be computed and

scheduled. Two main factors determine the distance between consecutive SEIs; (i) how stable

the dynamics of the plant is and (ii) the proximity of the current state of the plant to the

boundaries of the inadmissible states. In figures 6.3 and 6.4, the absolute maximum safety

window of the physical plant is plotted from various states for the plants under consideration.

These values are computed using Algorithm 6.1 except for clarification, the lower end of the

search in this algorithm, RangeStart, is set to 0. In these plots, the red region represents

the inadmissible states, and the plant must never reach those states. If the plant is in a state

that is marked green, it is still undamaged. However, at some future time, it will reach an

inadmissible state, and the safety controller may not be able to prevent it from coming to

harm. The reason is that actuators have a limited physical range. In the green states, even

actuators operating with the maximum capacity, may not be able to cancel the momentum

However, at the time of this writing, the code enabling these features is not publicly released yet. That is
why these components are implemented as bare-metal applications.

84

and prevent the plant from reaching unsafe states. The gray and yellow highlighted regions

are the operational region of the plant – states where the safety window of the plant is larger

than zero and mission controller can execute. In the gray area, the darkness of the color

is the indicator of the length of the safety window in that state. Darker points indicate a

larger value for the safety window.

Outside Temp (ºC)
-20 0 20 40 60

R
o

o
m

 T
e

m
p

(º
C

)

-6

-4

-2

0

2

4

6

(a) Projection into TF = 25oC

Outside Temp (ºC)
-20 0 20 40 60

R
o

o
m

 T
e

m
p

(º
C

)

-6

-4

-2

0

2

4

6

(b) Projection into TF = 29oC

Figure 6.3: Safety window values for the warehouse temperature. Largest value of the safety
window – the darkest region – is 6235s.

Figures 6.3(a) and 6.3(a), plot the calculated safety windows for the warehouse

temperature management system. For this system, when the outside temperature is too

high or too low, the attacker requires less time to take the temperature beyond or below the

safety range. Note that if an adversary take over the platform at TF = 25oC, TR = 40oC, and

TO = 26oC – top part of Figures 6.3(a) – and runs the heaters at their maximum capacity,

plant will remain safe for 6235s. Intuitively, due to high conductivity between the floor and

the room as well the high heat capacity of the floor, the rate of heat transfer from room

to the floor is larger than the transfer rate from the heater to the room. Due to the same

reason, when the floor temperature is TF = 29oC, the safety window of the plant is almost

zero near the boundary of the TR = 40oC – top part of Figure 6.3(a).

In Figure 6.4, the safety window for the 3DOF helicopter are plotted – projection into

the 2D plane. The darkest point, have the largest safety window which is 1.23s. As seen

85

0 (Radian)
-0.4 -0.2 0 0.2 0.4

;
 (R

ad
ia

n)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8 Admissible

Restartable both versions

Restartable only with TZ

Inadmissible

(a) Projection of the state space into the
plane ε̇ = 0, ρ̇ = 0, λ = 0, and λ̇ =
0.3Radian/s

0 (Radian)
-0.4 -0.2 0 0.2 0.4

;
 (R

ad
ia

n)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Projection of the state space into the
plane ε̇ = −0.3Radian/s, ρ̇ = 0, λ = 0, and
λ̇ = 0.3Radian/s

Figure 6.4: Safety window values for the 3DOF helicopter. Largest value of the safety window –
the darkest point – is 1.23s.

in this figure, safety window is largest in the center where it is farthest away from the

boundaries of the unsafe states. In Figure 6.4(b), the angular velocity of 3DOF elevation is

ε̇ = −0.3Radian/s which means that the helicopter is heading towards the bottom surface

at a rate of 0.3 Radian per second. As seen in the figure, with this downward velocity, the

plant cannot be stabilized from the lower elevation levels (i.e., the green region). It can

also be seen that in the states with elevation less than 0.1 Radians, the safety window is

shorter in Figure 6.4(b) compared to Figure 6.4(a). Intuitively, for the adversary, crashing

the 3DOF helicopter is easier when the plant is already heading downward.

As we mentioned earlier, the temperature management system has higher inertia and

slower dynamics than the 3DOF helicopter. The above figures reflect this effect, very clearly.

As the computed safety windows for the former plant are orders of magnitudes larger than

the latter – 6235 s is the largest safety window for warehouse temperature versus 1.23 s for

the 3DOF helicopter. In this system, the rate of the change of the temperature even when

the heater/coolers run at their maximum capacity is slow, and adversary needs more time

to force the state into unsafe states.

Now, we will discuss the difference between the gray and yellow regions. The mission

86

controller can operate in the yellow states only with the TEE-assisted implementation of

the SEIs and not with the restart-based implementation of the SEIs. This is due to the

following reason. In run-time, computed safety windows are used to set the triggering point

of the next platform SEI. However, the next SEI can be scheduled only if the safety window

is larger than the switching time of the platform, Ts, as presented in Algorithm 6.2. With

the restart-based implementation of the SEIs, the switching time is equal to the restart

time of the platform (390 ms for RTOS on the ZedBoard) whereas, with the TEE-assisted

implementation, switching time is the timing overhead of the context switching from secure

VM to non-secure VMs and vice versa (less than 12 µs for ZedBoard at 667 MHz as presented

in [84]). States marked with the yellow color are those that the computed safety window

is shorter than the platform restart time. At these states, with the restart-based SEI, the

mission controller cannot be activated.

As a result of using TrustZone-assisted implementation, we measured a 234 percent

increase in the size of the operational region of the 3DOF plant – the yellow vs. the gray

area – across the 6-dimensional state space. However, note that this measurement is very

specific to this particular platform and this specific plant. The expected improvement highly

depends on the platform restart time and the speed of the plant dynamics. Not every CPS

can be expected to gain significant benefits from adopting TrustZone for implementing the

SEIs. For instance, if the restart time of the platform were shorter, the size of the gray

area in Figure 6.4 would have been larger, and the overall improvement of the operable

states – as a result of using TrustZone – would have been smaller. Comparison between the

size of the yellow region for the 3DOF vs. the temperature management system is another

clear implication of this point. The platform restart time compared to the length of the

safety windows of the warehouse plant is almost negligible. That is why implementing the

SEIs using TrustZone does not yield any noticeable improvements and the yellow region in

Figure 6.3 is non-visible.

6.4.5 Impact on Controller Availability

Every CPS has a mission that is the primary goal of the system to accomplish. The main

component that drives the system towards this goal is the mission controller. Therefore,

every process that interrupts the execution of the mission controller results in the slow

progress of the CPS mission. Thus, one of the consequences of our design is that the

SEIs and the platform restarts stop the execution of the mission controller and reduce its

availability. In this section, we measure the impact of each one of the two implementations

of our design, on the average availability of the mission controller.

87

The exact “availability” of the mission controller is the ratio of time that the mission

controller is executing (all the times that the system is not in the SEI and is not going

through a restart) to the total time of the operation. In every restart cycle, availability is

defined as δmc/(δmc+TSEI+Ts). Here, δmc is the duration of mission controller execution, TSEI

is the length of SEI, and Ts is the switching time. With the restart-based implementation of

the SEIs, Ts is equal to the restart time of the platform, whereas, for the TrustZone-assisted

SEI implementation, Ts is the upper bound of the time required for switching from non-

secure VM to secure VM and vice versa. The exact availability of the mission controller is

specific to the particular trajectory that the plant takes. To get a better sense of this metric,

for each implementation, we compute the average availability of the mission controller across

all the states where the safety window is longer than the switching time, Ts, which is 390

ms for restart-based SEI and 12 µs for the TrustZone-assisted SEI implementation.

For the 3DOF system, with the restart-based implementation, the calculated average

availability of the mission controller is %51.2. As seen in the Figure 6.4, safety windows

of the 3DOF plant are in the range of 0 s to 1.23 s. The platform has a restart time of

390 ms which is significant relative to the values of safety windows and it notably reduces

the availability of the mission controller. On the other hand, with the TrustZone-assisted

SEIs, the average availability of the mission controller is %85.1. When TrustZone is utilized,

Ts is negligible – 12µs which explains the %35 improvement in the availability. It can be

seen that despite the negligible switching switching overhead, the mission controller does

not reach %100 availability. This is because of the time required to evaluate the safety

conditions and execute find safety window in the loop inside Algorithm 6.2. In the states

near the unsafe/safe state boundary, the platform might need to execute the loop cycle

more than once – longer SEI allows the safety controller to create enough distance from the

unrecoverable states.

For the temperature management system, the average availability of the mission controller

is %99.9 with both restart-based and TrustZone-assisted implementations of the SEIs. Due

to the slow dynamics of this plant, safety windows are much longer than the Ts and TSEI

under both implementations – as illustrated in Figure 6.3. Hence, the mission controller is

almost always available. Due to the same reason, reduced switching time that is achieved

when the controller is implemented using TrustZone instead of the restarts does not notably

improve the average availability of the mission controller.

The above results show that the impact of our approach on the temperature management

system is negligible under both implementation schemes. In fact, the restart-based

implementation is the most suitable choice for this plant and many other high-inertia plants.

On the other hand, integrating our design into the controller of the 3DOf helicopter comes

88

with a considerable impact on the availability of the helicopter controller. Even though

the TrustZone considerably reduces the overhead and improves the availability, but still the

control performance will noticeably suffer. Note that, the helicopter system is among the

most unstable systems and therefore, one of the most challenging ones to provide guaranteed

protection. As a result, the calculated results for the helicopter system can be considered as

an approximate upper bound on the impact of our approach on the controller availability.

In the next section, we demonstrate that, despite the reduced availability, the helicopter and

warehouse temperature remain safe and the plants make progress. Reduced availability of

the controller is the cost to pay to achieve guaranteed safety and can be measured ahead of

time by designers to evaluate the trade-offs.

6.4.6 Attacks on the Embedded System

To evaluate the effectiveness of our proposed design, we perform three attacks on the

controllers of the 3DOF helicopter (with the actual plant) and one attack on the hardware-

in-the-loop implementation of the temperature management system. All the attacks are

performed on both versions of the controller implementation. In these experiments, our

focus is on the actions of the attacker after the breach into the system has taken place.

Hence, the breaching mechanism and exploitation of the vulnerabilities are not a concern of

these experiments. An attacker may use any number of exploits to get into the controller

device.

In the first experiment, the mission controller of the temperature management system was

attacked in the following way. The outside temperature was set to 45◦ C, and initial room

temperature was set to 25◦ C. Immediately after the SEI was finished, the malicious controller

forced both of heaters to increase the temperature with their maximum capacity. Under

the restart-based SEI, we observed that the platform was restarted before the temperature

reached 30◦ C and after the restart, SC was able to lower the temperature. Similar behavior

was observed with the TrustZone-assisted implementation. A switch to the secure VM was

triggered before the temperature reached an unrecoverable value, the SC was able to lower

the temperature.

Second attack experiment was performed on the 3DOF helicopter. Here, the attacker,

once activated, killed/disabled the mission controller. Under the restart-based SEIs, in every

operation cycle, the restart action reloads the software and revives the mission controller.

Therefore, the attack was activated at a random time after the end of the SEI in each cycle.

Under the TrustZone-assisted SEI implementation, once the mission controller is killed, it

89

0.3
0.1
-0.1
-0.3
-0.5

Figure 6.5: 3DOF Helicopter trace under restart-based implementation during two cycles when
the system is under worst-case attack (where attacker is active immediately after the SEI). Green:
SEI, red: mission controller (in this case attacker), white: system reboot.

will only be recovered when a randomized recovery restart is performed10. We used a random

value to activate the attack at a random operation cycle – with a probability of 1 percent.

After the recovery restart, mission controller was revived and controlled the plant until the

next attack was triggered. During these experiments, we observed that the 3DOF helicopter

did not hit the surface i.e., it always remained within the admissible set of states.

In the third experiment, the attacker corrupts the sensor readings and feeds the corrupted

values in the mission controller logic. To evaluate the safety under an extreme case, the attack

is activated immediately after the end of SEI. In both implementations of the controller, the

attack is active during all the non-SEI and non-restart times of the system. Similar to the

first attack experiment, it was observed that the 3DOF helicopter remained safe throughout

the attack.

In the last attack experiment, we investigate the effectiveness of our design against an

attacker that is active immediately after the SEI, replaces the original controller with a

10Note that in our prototype implementation, we did not implement a detection mechanism. However, one
could deploy the logic to monitor the mission controller and restart the platform as soon as the controller is
disabled.

90

malicious process that turns off the motors/fans of the helicopter, and forces the plant to hit

the surface. During the operation of the malicious controller, the elevation of the helicopter

was reduced. However, in every cycle, before a crash, the safety controller will take over,

push the helicopter and increase the elevation. Throughout this experiment, we observed

that the plant tolerated the adversarial behavior and did not hit the surface.

A trace of the states of 3DOF helicopter during two consequent restart cycles, with the

restart-based implementation of SEIs, is plotted in Figure 6.5. This trace is recorded from the

sensor readings of the real physical plant when the plant is under the last attack experiment.

The figure depicts elevation, pitch, actuator control inputs (voltages of the motor), and the

safety factor. The safety factor is obtained from the safety conditions for the 3DOF as

described in Section 6.4.1. From the figure, it can be seen the controller spends most of the

time in SEI (green region) and reboot (white region) state. This is because this extreme-case

attack is activated immediately after each SEI and destabilizes the helicopter. By the time

that the reboot completes (end of the white region), the system is close to unsafe states.

Hence, SEI becomes longer so that the SC can stabilize the helicopter. Under this very

extreme attack model, the system did not make any progress towards its designated path,

yet it remained safe which is the primary goal in this situation.

6.5 SUMMARY AND DISCUSSION

In this chapter, we presented an attack-tolerant design for embedded control devices that

protects the safety of physical plants in the presence of adversaries. Due to physical inertia,

pushing a physical plant from a given (potentially safe) state to an unsafe state – even with

complete adversarial control – is not instantaneous and often takes finite (even considerable)

time. We leveraged this property to calculate a safe operational window and combined it

with the effectiveness of system-wide restarts (or Trusted Execution Environments such as

TrustZone) to protect the safety of the physical system. We evaluated our approach on

realistic systems and demonstrate its feasibility.

Some limitations need to be considered before deploying this design for a physical plant or

platform. The restart-based implementation is most suitable for CPSs where the platform

restart time is much smaller than the speed of the plant dynamics. Many embedded systems

have reboot times that range from tens of milliseconds [90] to tens of seconds which can be

considered insignificant for many applications such as temperature/humidity management

in storage/transportation industries, process control in chemical plants, pressure control

in water distribution systems and oxygen level management in patient bodies. The main

advantage of the restart-based implementation of SEIs is that it can be deployed on

91

the cheapest, off-the-shelf micro-controllers that are still widely used in many industrial

applications. Also, the deployed application must be designed to operate within the system’s

safety boundaries. Otherwise the operation of the system is trivially unsafe and the safety

controller is unusable.

On the other hand, using the restart-based design on the physical plants with high-

speed dynamics will require very frequent restarts and will significantly reduce the control

performance and the progress of the system. Frequent reboots may also pose implementation

challenges. For instance, the control device may need time to re-establish a connection over

the Internet or to authenticate with the ground control. Such actions might not be possible

if the device has to restart frequently. These types of applications will significantly benefit

from the TrustZone-assisted implementation that eliminates the overhead associated with

restarting. As a future direction, we are exploring a multicore implementation of TrustZone-

assisted design where the SEI runs in parallel to the mission controller and has minimal

impact on the mission controller’s performance.

While a restart clears an instance of an attack it does not mean that the adversary

is eliminated. It is possible that the adversary attempts to compromise and damage the

system after each restart. However, even attack states cannot be carried across multiple

attack instances due to the restarts. Each attack instance is contained by the proposed

approach since the system restarts before it reaches the unsafe region. As a result, safety of

the entire system is guaranteed.

One question that may arise is why not implement all the controllers using TrustZone?

Platforms equipped with TrustZone or other TEEs are more expensive. Many control

applications are deployed on very low-cost micro-controllers where only restart-based

approach is feasible. Furthermore, many high-inertia physical plants will not gain any

notable benefit if they are implemented via TrustZone – as shown for temperature

management system in the evaluation section. In those cases, the TrustZone-based

implementation only unnecessarily complicates the design and implementation of the CPS.

Both of these techniques are in line with our goal, as mentioned in the Introduction Chapter,

to provide a low-cost and quick to iterate framework that is safe-by-design.

It should be noted that restart-based SEI design is only suitable for stateless controllers

(e.g., mission controller) where the control command is generated based on the current state

of the plant and environment. Such a design is useful for some applications but cannot be

utilized with stateful controllers. In fact, this was one of the main incentives to extend

our approach with the TEE-based SEI. One question that comes into mind is about the

compatibility of a stateful controller with TEE-based SEI implementation and recovery

restarts. Note that with TEE-based SEI approach, the system is restarted only when it

92

is detected to be compromised. Under the assumptions of our threat model, an adversary

can maliciously modify all the state on the memory and disk (except read-only storage). In

other words, even before the restart, the actual state of the system is already lost and the

stateful mission controller cannot continue to operate. Restarting the system at this point

only loses the untrustworthy and hence unusable state.

Another important point to mention is that, under both restart-based and TEE-based

implementations of SEI, the safety controller has to be a stateless controller so that it can

safely stabilize the plant without the knowledge of its past states. This is the main reason

that even with the TEE-based SEI design approach, only mission-controller, which is not

critical for the safety, can be stateful. In this case, due to the loss of states after the

compromise, system will inevitably suffer a performance loss, but the safety will not be

violated. This can be another limiting factor on the type of systems or the kind of safety

constraints imposed on it that needs to be considered when using our approach.

93

CHAPTER 7: SAFETY IN DISTRIBUTED CPS

In the previous chapters, we looked into the problem of maintaining the safety of single

node CPS under faults and adversarial attempts. We defined a single node CPS as a system

that consists of a controller actuating a physical plant and attempting to guide the plant’s

state into a desired state. The safety premise was implied as a set of restrictions on the

physical state of the plant with regards to the environment.

In this chapter, we investigate the safety of distributed CPSs. The safety premise of each

node is defined with regards to the environment as well as the state of other nodes in the

system. Distributed CPSs combine network communications along with interactions with

the physical world. In particular, we consider a CPS scenario consisting of several embedded

computing components each interacting and sensing the physical world and communicating

with a central coordinator over an unreliable channel, such as wireless or the Internet. A

distributed CPS is considered globally safe if and only if all the nodes are safe. These low-

level controllers attempt to accomplish some task in a coordinated fashion. Since the physical

world is being manipulated, it is essential that the supervisory control logic is carefully

designed and satisfies strict safety requirements. For example, autonomous vehicles may

use wireless to communicate their positions and alter their future routes but vehicles should

never collide despite the potential for an unbounded number of message drops. This system is

difficult to reason about because both (1) the communication layer can experience unbounded

message delays and drops and (2) the dynamics of the physical world are represented by

interacting relationships in a continuous space.

An example of a distributed CPS is autonomous coordinated vehicle motion. A set of

vehicles is moving through a shared physical space, and the user would like to be able to

make run-time changes to the routes of the vehicles while guaranteeing that vehicles will

not collide. Since messages may be lost over wireless, any new route information may arrive

at some vehicles but not at others. Acknowledgments will not solve this problem since

they may also sometimes be lost. As in distributed systems with lossy communication, it

is impossible to achieve consensus in this system [91]. Despite this inherent limitation, I

propose an approach that can ensure the safety invariant that collisions are avoided. If

the communication channel eventually delivers packets, we can also provide the notion of

progress that gives the vehicles the ability to safely modify their routes at run-time.

In the context of a distributed CPS, a designer is typically interested in two properties:

safety and progress. A proof of safety will guarantee that the system will never enter an

undesirable state. We formally specify safety as a predicate on the variables of the agents of

94

��������	�
��	��	���	����
����
������	�

�	�������
�	��	����

���������	
�����������

���������
�	��������	

����	��

���	�� ������	��

�	�������
�	��	����

���	�� ������	��

�	�������
�	��	����

���	�� ������	��

Figure 7.1: A Runtime Command Monitor ensures safety for the distributed cyber-physical
system.

the distributed CPS which is true at all times (a safety invariant). The notion of progress

that we consider is that, roughly speaking, all the agents will receive and follow a desired

goal command in finite time. The ultimate guarantee that we provide is that the system

will remain safe at all times (even if the network fails), while being able to meet the progress

property as long as the communication network is functioning.

The scope of the work presented in this chapter will be the verification of the high-level

control logic of the distributed CPS and not the verification of the individual controllers.

We will therefore assume that the implementation of the individual low-level controllers

is correct and bug-free. For example, upon receiving a command message, a low-level

controller will follow that command as intended. Ensuring this is also non-trivial, but it

is likely a more tractable problem for formal design approaches since each low-level system

contains less variables than the composed system. Additionally, techniques such as the

Simplex architecture [2, 92] may be used to guarantee certain behavior properties for low-

level controllers, even if the complete controller is not directly verifiable. For guaranteeing

progress, we further require that low-level controllers are locally exponentially stable.

An overview of the type of distributed CPS we consider is shown in Figure 7.1. Notice

that our system uses a communication network where every controller can communicate

with every other controller. The key enabler of our safety result is the realization that,

if the network is assumed to be unreliable, individual low-level controllers need be able to

maintain global safety even in that case that packets do not arrive. Safety here means that a

given predicate on the state space will evaluate to true over all time. We propose a Runtime

95

Command Monitor interposed between the supervisory control logic and the network (as

shown in the figure). If the supervisory control logic attempts to send control commands

which, for any amount of message delay, can lead to a system state that violates the safety

predicate, the Runtime Command Monitor will reject commands that could lead to unsafe

states. We show that this design results in a fail-safe system.

The main technical challenge that is to determine the exact behavior for the Runtime

Command Monitor for a particular distributed CPS system. In the defined approach, the

runtime command monitor’s decision depends upon a possible expensive online reachability

computation. However, in order to make the technique more practical, we provide a theory

for reachability reduction transformations that can simplify the reachability operation and

allow us to perform state and input enumeration offline. The offline results can then quickly

be applied at runtime to guide the behavior of the Runtime Command Monitor.

Since the network is unreliable, control commands that are sent from the supervisory

logic may never arrive at a low-level controller. In order to be able to update the system

behavior based on run-time information (progress), therefore, a stronger requirement must

be imposed upon the network. As long as messages eventually arrive, we also provide a

means to guarantee system progress while maintaining safety. To do this, we must ensure

that commands that are sent out maintain the safety invariant both in the case where the

command arrives and the new control strategy is used, and in the case where the command

is indefinitely delayed. This notion of safe potential divergence is captured as compatible

actions. We show that system progress properties can be guaranteed by constructing finite

chains of compatible actions that end at the final desired system state.

The main contributions are as follows:

• We prove that run-time properties provide necessary and sufficient conditions for safety

in a distributed CPS system. By encoding these checks into a Runtime Command

Monitor, a fail-safe system can be developed (Section 7.1).

• The proposed run-time properties require computing the reachability of the system

online that can be an expensive operation. Through a combination of reachability

reduction transformations and input and state enumeration, we perform this operation

offline (Section 7.3).

• We provide sufficient conditions for providing progress guarantees. This requires

constructing a chain of compatible actions, as well as a network which eventually

delivers packets that are sent. (Section 7.2)

• We apply the approach to a simulated system of vehicles moving in a shared

96

environment, where the runtime command monitor prevents vehicle collisions. (Section

7.4)

7.1 PROVIDING SAFETY

In this section, we use hybrid input/output automata to formalize the notion of a

distributed networked control system with arbitrary delays and packetloss. We then prove

a general theorem which is both a necessary and sufficient condition for the safety of

such systems. We then apply the theorem by stating the run-time checks in order to

maintain system invariants, which will be encoded into the Runtime Command Monitor

in the proposed architecture.

7.1.1 Hybrid I/O Automata

Hybrid input/output automata are general models for systems consisting of discrete

and continuous states, where the discrete states are governed by transition rules, and the

continuous states evolve according to differential equations. There is also input and output

in these systems, which allows easy composition of different components into a larger system.

Rather than explaining the full semantics for hybrid I/O automata, we provide a brief

overview of only the most important aspects here, and refer an interested reader to a more

comprehensive review [93, 94].

A n-dimensional hybrid I/O automaton consists of four parts: variables, transitions,

trajectories, and actions. Variables are the discrete or continuous entities of an automaton,

for example velocity or mode. A state of an automaton is a specific valuation of the

variables. The state space of an automaton is X = L × X , where L is the set of possible

discrete states (also called locations), and X ∈ Rn is the set of possible continuous states.

Transitions provide the behavior of the discrete variables in the system. These have an

enabling precondition (a predicate on the continuous states) and an effect (a mapping on

the continuous states). The state after the effect is applied is called the post state of

the transition. Preconditions specify when transitions can occur, but generally automata

are not forced to take a transition, which can create nondeterminism. Trajectories give

the behavior of the continuous variables in the system as time passes, typically using

differential equations, and systems can also have nondeterministic dynamics described by

nondeterministic differential equations. The conditions under which time cannot advance are

given as stop conditions, which can be used to force an enabled transition to occur. Finally,

actions indicate the interaction points for external communication with other automata.

97

An action will always have a corresponding transition in the automaton. An action can

occur when both automata that have the action satisfy the corresponding transitions’

preconditions.

Time passes for a hybrid automata when a trajectory is acting upon the continuous

variables. During the execution, there can be discrete jumps in state caused by the

transitions. For two hybrid I/O automata with compatible actions, say A and B, we denote

their composition using A||B.

7.1.2 System Definition

We model our supervisory control system as a network of communicating hybrid I/O

automata. In this network, there is an automaton describing the behavior of each of the N

agents in the system, A1, A2, . . . , AN , and an automaton which models the communication

channel. This model is slightly more general than the one discussed earlier with an explicit

supervisory controller. Here, we could arbitrary choose one of the agents to be the supervisor.

In this section, we are concerned with verifying that a predicate is a safety invariant for a

system. That is, we are provided with a safety predicate on the states of the agent automata.

The predicate is an invariant if it evaluates to true for all reachable states of the system from

a given initial state (an unsafe state cannot be reached). A system is a composition of the

agent hybrid I/O automata and the communication automaton.

For our unreliable network, we consider a communication automaton with weak guarantees

about message delivery, named Cweak, which can delay each message arbitrarily long, or drop

it. Such an automaton matches the communication properties of many networked or wireless

communication systems. The automaton description for Cweak is given in Figure 7.2. Here,

there are two possible send transitions, either of which can be applied when a message is

sent out. The first one assigns a real-valued arrival time greater than the current time.

The second one silently drops the packet. We also will consider two other communication

scenarios, Cdrop and Cstrong. In Cdrop, the first send transition of Cweak is omitted so all

messages get dropped. In Cstrong, the second send transition is omitted, so that all messages

can only be arbitrarily delayed, but never dropped. A communication automaton would

be composed with each of the agent automata by connecting the receive transition with

destination i to Agent Ai. All the agents would invoke the same send transition.

98

automaton CommWeak(M : Type)
type Packet = tuple o f message : M, de lay : Real , des t : Nat

variables
internal bag : Set [Packet] := [] ,

now : Real := 0
actions

send (m: M, dest : Nat) ,
r e c e i v e (m: M, dest : Nat)

transitions
send (m, dest) // not in CommDrop

ef fect
bag := i n s e r t ([m, now+rand () , des t]

send (m, dest) // not in CommStrong
ef fect

/∗ dropped ∗/
r e c e i v e (m, dest)

precondition
conta in s (bag , [m, 0 , des t])

ef fect
remove (bag , [m, 0 , des t])

trajectories
stop when
∃p : Packet p ∈ bag ∧ (now = p . dead l ine)

evolve
d(now) = 1

Figure 7.2: The Cweak communication automaton assigns messages arbitrary delays and can
drop messages. Here, rand() returns a nonnegative real number.

7.1.3 Safety Theorem

In order to prove a predicate P is an invariant for a system given a definition for each

agent automaton and the communication automaton, a standard approach is to check that

the invariant is satisfied for every transition and every trajectory. During this process, the

invariant may need to be strengthened in order for the proof to follow.

The standard approach for proving invariants, however, can be difficult to apply. Since

reasoning is done ahead of time, the analysis must be applicable to all states which can be

encountered for each rule.

Here, we present an alternative approach for creating invariant-satisfying systems. Here,

we will use a combination of static reasoning done ahead of time along with run-time checks.

With this approach, we can sometimes guarantee an invariant in an easier manner than by

using the normal, static-only approach. Rather than reasoning over sets of possible values,

we instead move part of the checking to run-time, and can therefore use a specific value in

a specific message. In order to do this, however, we need to prove a theorem which provides

an equivalent condition for verifying invariants.

99

Time

m
1

received
m

4

received
m

3

received

Condition
(1)

Condition (2)
applied to m

1

0

Condition (2)
applied to m

4

Condition (2)
applied to m

3

Figure 7.3: For every trace, at each time instant, either no message has been received in the
system, or there is a most-recently received message.

A system is described by a composition of the automaton for each of the agents (AN =

A1||A2|| . . . ||AN) and the automaton for the communication channel. A property P is the

predicate we are trying to show is an invariant, and is a predicate on the states of the agents,

P : AN →{true, false}.

Theorem 7.1. A predicate P is an invariant for a system S = AN ||Cweak if and only if (1)

P is an invariant for the system S ′ = AN ||Cdrop, and (2) from any post state of a receive

transition in S, P is preserved by the system ANpost||Cdrop, where ANpost is the composed agent

automata AN starting in the post state of the receive transition.

Proof. First we show the direction that if conditions (1) and (2) hold, the invariant is satisfied

by the original system.

The proof of this statement is based on the observation that at every point in time, either

no messages have been received, or there is a most-recently received message by one of the

agents. As shown in Figure 7.3, for every possible trace there will be some amount of time

where no messages have been received by any of the agents in the system, followed by a

intervals of time where there is a most-recently received message.

Our proof proceeds by contradiction. Assume ti is the first time at which P is evaluated

to false in S. If ti occurs before the first message is received, this means that P would also

evaluate to false in S ′ at time ti, since up to this point the behavior of S and S ′ is identical.

This violates condition (1).

Therefore ti occurs at or after a message has been received and processed. Let tm be the

time of the most-recently processed message before time ti (the time at which the receive

transition was invoked in Cweak). We apply condition (2) of the theorem at time tm and

100

take ANpost as the composed agent automata in the post state of the receive transition

in S. Since in S, P evaluates to false before any further messages are received after tm,

this would mean it also evaluates to false for the system with agent automata ANpost and a

communication automaton which does not receive any messages. This is exactly the case

checked by condition (2).

Next we show the other direction, that if a predicate P is an invariant for S, conditions

(1) and (2) will hold. Again, we proceed by contradiction.

Assume condition (1) does not hold but P is an invariant of S. The behaviors of Cdrop

can be exactly simulated by Cweak, which means that P cannot be an invariant for S.

Next, assume the second case that condition (2) does not hold but P is an invariant for

S. In the context of the false case of condition (2), let time tm be the time at which the

receive transition is invoked. Now consider a communication automaton which produces

an identical behavior as S until tm and then no longer receives messages. This behavior can

also be exactly simulated by Cweak (by taking the dropping send transition for messages

which would originally have an arrival time after tm), which means that P cannot be an

invariant for S.

Since both cases yield contradictions, if an invariant is satisfied in the original system,

conditions (1) and (2) must also hold.

The two conditions of the theorem are therefore both necessary and sufficient for proving

an invariant is satisfied for a system with unreliable communication over all time.

7.1.4 Application of Theorem to Runtime Command Monitor

From a static-time analysis perspective, the theorem does not gain us very much since

condition (2) needs to be evaluated every time any message can be received, which is difficult

to reason about. However, at run-time, condition (2) may be easier to verify. This is the

approach advocated, to check condition (1) at system design time and condition (2) at

run-time, which by the theorem will guarantee that P is an invariant of the system.

One challenge of this approach is that the necessary run-time analysis needs to be

automated in software, which is done in our architecture in the Runtime Command Monitor.

Since there may be nondeterminism from the dynamics of the agents, and since in general this

may involve an infinite-time reachability computation, this may be easy or hard depending

on the specific system.

In terms of applicability, one main concern that we will evaluate further in our case study

in Section 7.4 is the run-time overhead of the approach, which is application-specific. If we

consider a typical case of time-invariant systems where low-level controllers are stable from

101

a control-theoretic sense, and the commands are new set points, then the potential area the

agent may enter given some unknown delay consists of the states it will encounter while

transitioning from the old set point to the new one, projected over all future time (since

delay is unknown). To check condition (2), this transition area would be computed and

checked with the future states the other agents may enter against the safety predicate.

Another consideration is to specify the action to take if the analysis for the specific message

indicates condition (2) is not satisfied at run-time. The system cannot be allowed to take

action based on the message, since it may lead to a state which violates the invariant. In

our proposed design, these messages are filtered (never sent out) by the Runtime Command

Monitor. This preserves condition (2) for the system (since no messages will be sent out

unless (2) is satisfied) which guarantees that P will continue to be an invariant for the

system. Of course dropping messages can adversely affect system progress, but it will only

be done to maintain safety (if the predicate captures a notion of safety). In Section 7.2,

we present sufficient conditions to guarantee progress which require, among other things,

a stronger communication automaton, where messages can be delayed arbitrarily but not

dropped.

Since the Runtime Command Monitor drops messages at send time, it needs to reason

about possible system states when the packet will be received (since condition (2) deals

with the system state upon message reception, not sending). This also may be challenging

because, for unrestricted systems, it involves reasoning about which messages may be sent

out in the future before the arrival time of the message, and possible message reordering.

For example, in Figure 7.3, message m4 arrives before message m3. The run-time analysis

at the send time of message m3 needs to take this possible reordering into account. Also,

in an unrestricted system, these messages can be sent from and arrive at different agents

(for example m3 may be from Agent 1 to Agent 2, while m4 is from Agent 3 to Agent 4).

For specific systems, however, this analysis may be simpler. For example, systems which

maintain sequence numbers in messages and only take actions on the most-recent messages

received, do not have to consider reordering. Systems like the supervisory control system we

are considering have a single entity which sends command messages, and therefore we do not

need to reason about command messages exchanged between other agents. As matches our

intuition, having guaranteed orders of packet delivery produces systems that are easier to

predict and prove correct, whether using the standard static-time approach or our run-time

technique. Condition (2) of the theorem demonstrates this, while, at the same time, tells us

what would need to be checked for the more general case.

102

7.2 GUARANTEEING PROGRESS

We will now describe a manner in which we can guarantee a time-insensitive notion of safe

system progress. We assume a more specific CPS model here where each agent is running a

stable closed-loop controller.

First, we discuss the distributed control system architecture that we consider more

specifically in Section 7.2.1. Section 7.2.2 defines the notion of compatible actions in the

context of the distributed control system and proposes methods of checking compatibility. In

Section 7.2.3, we then show scheme of coordinated control that guarantees safety according

to our earlier result from Section 7.1. Finally, Section 7.2.4 proves progress of the system

under a stronger assumption of the communication layer.

7.2.1 Controller Architecture

As before, we consider a distributed control system consisting of a collection of N agents

with a central coordinator. We assume that each agent receives commands only from the

central coordinator. Each Agent Ai has a local controller and a current set point. The current

set point of Agent Ai can be changed through communication with the central coordinator.

In this section we will assume the current set point to be is a single goal position of Ai.

That is, the local controller of Agent Ai drives the agent’s continuous variables to move

towards the current set point. When agent Ai reaches an ε-ball around the set point (for

some fixed ε), agent Ai will report its arrival to the central coordinator by sending a progress

update message. The central coordinator will then, upon receiving arrival messages from all

the agents, send each agent its next set point. Each agent, thus, receives a sequence of set

points. The kth set point in this sequence for agent Ai is written as Si[k]. An execution of

Agent Ai can be viewed as a hybrid sequence ηi = waiti[0] y receive[1] y τi[1] y send y
waiti[1] y receive[2] y τi[2] y send y waiti[2] . . . , where (i) each τi[k] is a trajectory

moving towards set point Si[k], (ii) send is discrete action where the Agent sending the

progress update message, (iii) waiti[k] is a trajectory when waiting for next set point, where

agent Ai stays within the ε-ball of Si[k], and (iv) receive[k] is a discrete action invoked by

the central coordinator’s send action, during which the set point of agent Ai is changed from

Si[k−1] to Si[k]. In each trajectory τi[k], the initial state and the final state of the trajectory

are within ε-balls of successive set points of Ai. A global set point is defined as a collection

of the local set points for each of the N agents, and is denoted as SN .

In this section we are concerned with progress, but the progress must be made cognizant of

safety. As in Section 7.1, safety is defined in terms of a predicate PS. The progress property

103

is defined using a global set point SNfinal. The formal notion of progress we prove is that each

agent will, in finite time, reach within an ε-ball around its set point in SNfinal, while always

having PS evaluate to true.

7.2.2 Compatibility and Stability

Section 7.1 showed that in order to ensure safety, the central coordinator needs to reason

about future states of Ai, and will therefore issue set points according to the states Ai can

reach. Reasoning about future states of Ai can be done using reachability analysis. We

denote Reachi[k] as the set of reachable states of Ai under trajectory τi[k]. The reachable

set of the global system (the composed behavior of all the agents) is denoted as ReachN .

For safety of the system, we need to verify that ReachN satisfies the safety predicate PS.

Recall that a trajectory τi[k] of Ai depends on two set points, Si[k− 1] and Si[k], of Ai. For

a specific set point Si[k], we check whether PS remains true over the composed ReachN [k]

by computing the reachable set of states for each of the other agents. This property of safety

for a new global set point captures the notion of compatible actions.

Definition. SN [k] and SN [k+ 1] are said to be pairwise compatible actions if the global

state xN ∈ ReachN [k] always satisfies PS when every Ai moves along a trajectory defined

by Si[k] and Si[k + 1].

The notion of compatible actions can also be generalized to n-way compatible actions.

That is, given n collections of set points, we can say they are n-way compatible if the global

state always satisfies PS when every agent moves along a trajectory defined by any pair of

the set points. Due to the extra requirements, however, it is generally easier to construct

chains of pairwise compatible actions. For this work, we use pairwise compatibility, and

perhaps investigate applications of n-way compatible action chains in future research.

7.2.3 Safety Guaranteed Run-Time Checking

We assume low-level controllers which are locally exponentially stable, and start from a

safe global set point.

Definitions. A controller is said to be locally exponentially stable with respect to a set

point, if there exists a neighborhood of the set point such that any trajectories starting from

any state in a neighborhood of the set point, converges towards to the set point. In addition,

the distance between the trajectory and the set point decays exponentially over time. The

neighborhood is also called the region of attraction, which defines the maximum region

from where the set point will be reached. Even though the distance between a trajectory

104

𝑠𝑒𝑛𝑑

𝑆𝑖[𝑘]

𝐿𝑖[𝑘]

𝑆𝑖[𝑘 + 1]

𝐿𝑖[𝑘 + 1]

𝑆𝑖[𝑘 − 1]

𝜏𝑖[𝑘] 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑠𝑒𝑛𝑑

𝑟𝑒𝑐𝑒𝑖𝑣𝑒

𝑤𝑎𝑖𝑡𝑖[𝑘]

𝜏𝑖[𝑘 + 1]

𝑤𝑎𝑖𝑡𝑖[𝑘 + 1]

Figure 7.4: An execution trace (orange) in which agent Ai received set points Si[k − 1], Si[k],
and Si[k + 1] in sequence. Initially, the agent is near set point Si[k − 1]. Since it is inside the
Lyapunov region of attraction when set point Si[k] is used (indicted by Li[k]), control can be
switched to use the new set point, Si[k]. An epsilon ball around this set point (the dotted blue
line) will be reached in finite time, because the controller is exponentially stable. When all agents
have arrived at their new set point, the central coordinator sends new set points and the process
repeats for the next one, Si[k + 1], with a region of attraction indicated by Li[k + 1].

and a set point is exponentially decaying, the set point may never be reached exactly in a

finite amount of time. However, any ε-ball around the set point will be guaranteed to be

reached in finite time. We call the state of the system where each agent is within an ε-ball

of its corresponding setpoint is called an ε-stable state.

An initial safe global set point is, formally, an ε-stable state where the union of each of

the agent’s ε-balls contains no unsafe states.

The behavior of the supervisory control logic is:

(1) Until receiving progress report updates from all the agents, indicating that each agent

is within an ε-ball of the current set point SN [k], the central coordinator will not send any

new set points. This means progress is not made until an ε-stable state is reached.

(2) Once an ε-stable state is reached and progress updates are received from each agent,

the server issues a new collection of set points SN [k + 1] following conditions below, and

sends them to the corresponding agents.

(2a) The global set point SN [k + 1] should be compatible with the global set point SN [k].

That is, the all reachable states of the system do not violate the predicate PS.

(2b) For each agent, the ε-ball of its set point in Si[k] should be contained by the region

of attraction of its set point in Si[k + 1], which guarantees that the next set point will be

reached by the low-level controller.

105

This situation is illustrated for one agent in Figure 7.4. In the figure, Li[n], n ∈ N
represents the Lyapunov region of attraction for a controller with set point Si[n].

Lemma 7.1. Safety predicate PS is an invariant of the system which uses the above-described

supervisory control logic.

Proof. Recall the safety theorem from Section 7.1, which requires checking two conditions

to show a predicate is an invariant.

Condition (1) holds because if all packets get dropped at the beginning, the set points

never change. Since the initial state is assumed ε-stable and the union of the ε-balls is safe,

and PS remains true.

Condition (2) requires that PS remains true in the system ANpost||Cdrop, where ANpost is the

system after receiving any packet. Suppose that after a packet gets delivered, all follow-up

packets get dropped. This causes the server will stop sending new set points since not all

reports will be received for the next step (part 1 of the supervisory control logic described

above). This is also true in the case that some packets were dropped earlier before the

packet being considered. In this case, the system can only be conservative in that it might

not advance to the next global set point (which is safe). Since the central coordinator will

not send out any new set points, the agents will remain using the current set point for all

future time. Agent i’s states will therefore remain in the pair-wise compatible reach set, and

by pair-wise compatibility, PS will remain true.

Since both parts of the antecedent of theorem are satisfied, we can conclude the consequent,

that PS is an invariant of the system.

7.2.4 Progress Guarantee

We will now discuss a sufficient condition to guarantee system progress. Formally, we

want the system reach a target global set point SNfinal in some finite amount of time.

To guarantee progress, we require three requirements. First, messages in the network can

only get delayed arbitrarily long, but cannot be dropped. For this assumption we will use

automaton Cstrong, as described in Section 7.1.2. In practice, this such a communication

model is achievable, for example, by having a low-level network layer which keeps resending

packets until an acknowledgment is received, assuming the connection will eventually get

reestablished. Second, there is a finite chain of pairwise compatible actions (which we

call a compatible action chain) from the current state to the target global set point SNfinal.
Third, the local controllers for each agent are exponentially stable for each set point in the

compatible action chain.

106

Theorem 7.2. The system AN ||Cstrong will, in finite time, get to a state where each of the

agents AN is within an ε-ball of their corresponding set point in the target SNfinal.

Proof. Recall that agent Ai’s execution is a hybrid trace ηi = waiti[0] y receive[1] y
τi[1] y send y waiti[1] y receive[2] y τi[2] y send y waiti[2] First, τi[k] is a

trajectory starting from an ε-ball of Si[k − 1] to an ε-ball of the Si[k]. Since we assumed

the local controller is exponentially stable, the distance between the continuous state of Ai

and the set point is exponentially decaying. Thus, any ε-ball of the set point will be reached

in a finite time. The exact amount of time can be computed from the constant value of

the exponential in the stability property of the controller. Second, a send action through

Cstrong takes finite delivery time to invoke a receive action of the coordinator. Since this is

true for all agents, the coordinator will receive all the reports of progress in a finite time.

At this point the next set point will be sent back to Ai. This sending also takes a finite

time since it is done by Cstrong. Due to this, the waiti[k] trajectory where Ai is waiting for

a new set point has a finite duration. Finally, since by the second requirement the chain of

pair-wise compatible actions is finite, the target SNfinal is reachable through finitely many of

these steps. By this reasoning, we conclude that the execution of ηi will reach SNfinal in a

finite amount of time.

A system designer may want a stronger guarantee of progress that the final set point will

be reached by all agents after some exact amount of time (rather than just finite). In order

to prove these stronger progress properties, we can adapt the same proof as above, while

imposing limits on each of the steps which were previously only required to take finite time.

If the network guarantees packet delivery with a worst-case transmission time, and we know

the exponential constants of our locally exponentially stable controllers, we can compute the

maximum amount of time it can take for the system to go from one known set point Si[k−1]

to the next known set point Si[k]. We can compute the maximum amount of time for the

system to complete the entire compatible action chain by summing up the maximums for

each pair of compatible actions. In this way, the maximum amount of time that can elapse

before reaching the final set point can also be calculated.

A last note about compatible action chains is that their construction is application-specific

and may be nontrivial, or even impossible (some systems cannot safely make progress under

our communication assumptions). This is because the safety predicate PS depends on

the application, and different safety predicates may required different schemes to create

compatible action chains. For our progress guarantee, we assume that there is some means

to construct a compatible action.

107

7.3 ELIMINATING RUNTIME REACHABILITY

Reachability is a potentially expensive operation which may be too slow to perform at

runtime. In this section, we provide methods which move key aspects of the reachability

computation to analysis time. Specifically, we rely on two strategies for doing this: finding

reachability reduction transformations, and input and state enumeration.

7.3.1 Reachability Reduction Transformations

In our proposed framework, we propose running many reachability computations offline,

prior to the execution of the system, and then applying their results at runtime. The

number of these computations, however, may be excessive such that even offline analysis is

intractable. In order to alleviate this problem somewhat, we examine the system dynamics

and attempt to extract redundancies in the computation which allow us to reduce the amount

of computation that is necessary. We first introduce an example vehicle system to guide the

intuition of our approach. Later, in the case study in Section 7.4, we will consider several

vehicles with the dynamics shown below, and combine the approach in this section with the

theory developed in the previous sections.

Consider an example system consisting of a single vehicle moving in 2-D space. The

vehicle has 1 location and 4 continuous variables which are (i) the x-coordinate, (ii) the

y-coordinate, (iii) the traveling speed v, and (iv) the heading angle θ. The vehicle inputs

are (i) an acceleration/deceleration rate a, and (ii) a turning curvature ρ. The motion of

the vehicle (the trajectories of the automaton) behaves according to the following set of

differential equations:
ẋ = v · cos θ

ẏ = v · sin θ
v̇ = a

θ̇ = v · ρ

(7.1)

Additionally, as with a real system, we bound the acceleration/deceleration rate, the allowed

turning curvature, and the velocity. That is, a vehicle can not stop right away, turn in place,

or accelerate indefinitely. In order to analyze the future possible states, we compute over-

approximations of reachability.

With this system, it is intuitive that any trajectory starting from a point (x, y) is identical

to the trajectory starting from the origin (0, 0) shifting by a vector of (x, y). Some rotational

invariant property can also be observed in this model: a trajectory with initial heading θ is

identical to the trajectory with initial heading 0 rotated by a angle of θ. These observations

108

intuitively mean that, by transforming a reach set from one specific configuration, we can

derive reach sets from a number of other configurations. In this way, the space of offline

reach set computations can be largely reduced.

We now formalize and generalize the above intuition. Recall that for a specific location,

the continuous state space is written as X . We denote the continuous reach set in the loca-

tion under analysis as a mapping Reach : X × R≥0 → 2X . For any state x ∈ X and time

t ∈ R≥0, the function Reach(x, t) maps to a subset of the state space that is reachable in the

given location from state x within time t1. We define a reachability reduction transformation

as follows.

Definition 7.1. Let F,G be two functions defined on the continuous state space of a location

of an n-dimensional hybrid automaton F,G : X → X . The pair (F,G) is called a reachability

reduction transformation if for every state x ∈ X for any time t ∈ R≥0, the following holds:

Reach(F (x), t) = G(Reach(x, t)).

With a reachability reduction transformation (F,G), we can compute the reach set from

state F (x) by simply applying function G to the reach set from x, which is typically faster

than computing another reach set. This approach becomes more powerful if we can find

a parameterized set of such reachability reduction transformations {(Fi, Gi)}i∈Rm for some

m ≤ n the number of dimensions of the automaton. We will give an example of such set of

reachability reduction transformations for the above vehicle dynamics.

Example 7.1. For the vehicle dynamics presented in Equation (7.1), for each vector

i ∈ R3 = (xi, yi, θi), the following pair (Fi, Gi) is a reachability reduction transformation.

Fi

x

y

v

θ

 =

x+ xi

y + yi

v

θ + θi

 , Gi

x

y

v

θ

 =

(x+ xi) · cos θi − (y + yi) · sin θi
(x+ xi) · sin θi + (y + yi) · cos θi

v

θ + θi

 .

Proof. For state s = (0, 0, v, 0), for any time t, the reach set Reach(s, t) from s can be

1For a set of states x′ ⊆ X, Reach(x′, t) denotes the range of function Reach on the set x′.

109

computed by integrating Equation (7.1):

x(t) =
∫ t

0
v cos θdt,

y(t) =
∫ t

0
v sin θdt,

v(t) = v +
∫ t

0
adt,

θ(t) =
∫ t

0
vρdt.

(7.2)

Let F (s) = (x0, y0, v, θ0) be an arbitrary start state, we take i = (x0, y0, θ0). The reach set

Reach(Fi(s), t) then has the form:

Fix(t) = x0 +
∫ t

0
v cos(θ + θ0)dt,

Fiy(t) = y0 +
∫ t

0
v sin(θ + θ0)dt,

Fiv(t) = v +
∫ t

0
adt,

Fiθ(t) = θi +
∫ t

0
vρdt.

(7.3)

We can apply triangular identities

cos(θ + θ0) = cos θ cos θ0 − sin θ sin θ0, and sin(θ + θ0) = sin θ cos θ0 + cos θ sin θ0

to Equation (7.3). By comparing the above derived equation and Equation (7.2), we can

conclude that Reach(F (s), t) = G(Reach(s, t)).

�

Notice that, through this analysis, we did not get any closed-form solution of the reach set

(Equation (7.2) is in integral form). To make use of the reachability reduction transforma-

tion, therefore, we still need a method to compute the reach set from a state s = (0, 0, v, 0).

7.3.2 Input and State Enumeration

In the safety theorem provided in Section 7.1, reachability needs to be computed from a

specific state. We want to move this computation to analysis time, however, we do not know

what this state will be at runtime. One way to resolve this is problem to perform several

reachability computations ahead of time, each from a subset of the possible states the system

may be in, and then select the appropriate result at runtime (state enumeration).

Formally, if D ⊆ X are the possible states we may encounter at runtime, we precompute

the reach set from each set of a finite covering of states we may encounterd1, d2, . . . , dm,

where d1∪d2∪ . . .∪dm ⊇ D. There is an inherent trade off with this approach, since having

110

a larger m will result in a more precise reachability result (at runtime we’re in a single state),

at the cost of having to do more computation work ahead of time.

A second problem, is that the input for the automaton is also unknown ahead of time.

This is potentially more problematic, since the inputs are functions of time, and it may be

difficult to enumerate all possibilities. Notice, however, that in the context of the Runtime

Command Monitor’s check, the reachability computed will be the system composed with

Cdrop, that is, the communication system which drops all packets. It is more reasonable that

the actions to be performed after communication stops are limited, and therefore we may

also be able to enumerate the possible inputs (input enumeration).

Formally, if the set of possible input functions is I, as before, we precompute the reach

set from each set of a finite covering of inputs we may encounter i1, i2, . . . , im′ , where

i1 ∪ i2 ∪ . . . ∪ im′ ⊇ I.

The end result is that we enumerate over the possible states and inputs we may encounter

at runtime, and then, at runtime, select the corresponding result set. This enumeration may

be quite large. However, by applying reachability reduction transformations, and adjusting

the parameters m and m′, we can tune the computation time needed against the pessimism

experienced due to using a larger-than-necessary start state set and input bounds.

7.4 VEHICLES IN A SHARED ENVIRONMENT

In order to demonstrate the effectiveness of reachability reduction transformations and

input and state enumeration in the context of a distributed CPS, we now discuss a case

study using the approach.

In the considered system, several independent vehicles are moving on a 2-D plane, trying to

reach a destination while avoiding collisions. The simulated vehicles are mobile nodes that

can accelerate forward and backwards and turn similar to cars. This means they cannot

rotate in-place and instead there is a minimum turning radius. Since the acceleration and

deceleration is limited in a range, a sudden change of speed is not possible. The vehicles use

the dynamics described previously in Section 7.3. Additionally each vehicle has a radius r,

and a collision occurs if the centers of any two vehicles is less than twice the vehicle radius.

Similar to a real car, each vehicle moves based on two inputs variables, an acceleration

and a turning curvature input, which we refer to as a command. Each vehicle communicates

with supervisory control logic called the central coordinator. Vehicle commands are initially

generated by each of the agents, sent to the central coordinator which can either accept or

reject the message, and then the decision is sent back to the originating agent. If no new

111

commands are accepted one second after a command is applied, the vehicle stops turning

and slows to a stop.

If the network works properly, and all the input commands are compatible with global

safety (collision avoidance), then the control strategy is equal to one where there is some

time delay due to the round trip time of the network. However, at any point in time the

central coordinator may reject a command, in which case the vehicle would eventually slow

to a stop.

In Section 7.1.3, when proving the system will remain safe, the reasoning consisted of

command messages coming from the central coordinator being sent through an unreliable

network. In the system here, however, the command messages are being sent to the central

coordinator, which initially appears to be a different type of system. This sending of the

command requests to the central coordinator can be considered as happening before the

reasoning done in the theorems. After all, the way in which command messages are generated

in Section 7.1.3 is not discussed. In this case they are generated from requests from the

vehicles. After generating the command messages, the central coordinator will then send

the response to the agent (accept or reject) which is ultimately what the agents will act upon

(their behavior does not change based solely on the requests). In this way, the distributed

CPS architecture is similar to that discussed in the previous sections and the proofs can be

applied.

7.4.1 Design-Time Computation

There are N agents (vehicles) in our system, each with the vehicle dynamics as described

previously in Section 7.3. We refer to the continuous components of the agent i state using

Ai.x, Ai.y, Ai.v, Ai.θ. Global safety in our system is that the vehicles are collision free.

Formally, the safety predicate P is that the distance between every pair of vehicles Ai, Aj,

where i 6= j, must be more than twice the vehicle radius; that is P = ∀i,j|i 6=j(Ai.x−Aj.x)2 +

(Ai.y − Aj.y)2 > (2r)2.

The central coordinator maintains a reachable set of states for each vehicle under the

current command strategy. Since the initial state of the vehicles is stationary and collision

free, the first condition of the theorem in Section 7.1 which requires P to be an invariant for

the system S ′ = AN ||Cdrop, is satisfied.

When a command request is received, the central coordinator must check the second

condition which involves computing the reachability of ANpost||Cdrop. This computation uses

the reach set for the two-command combination of the current command being applied,

and the command being requested. These two-command combination reach sets are

112

Parameter Value

[vmin, vmax] [-2, 5]
[amin, amax] (if v ≥ 0) [-5, 2]
[amin, amax] (if v < 0) [-2, 5]

[ρmin, ρmax] [-0.2, 0.2]
[vstep,astep, ρstep] [0.5, 0.5, 0.05]

Table 7.1: The design-time computation of reachability using state and input enumeration to
produce reachability results which can be used at runtime.

computed offline using input and state enumeration, and then online reachability reduction

transformations are applied in order to support any arbitrary combinations of two commands.

As described in Section 7.3.2, the central coordinator will enumerate the state space for

each vehicle and possible inputs. For a single command packet, the vehicle behavior is to

apply a given acceleration value for one second, and then slow to a stop. While this command

is being applied (prior to slowing down), a new command can be computed by the controller

and sent to the central coordinator for approval. In this way, control is possible, while safety

is still guaranteed if either communication fails or if the new command is not compatible

with what the other agents are doing.

As explained in Section 7.3.1, we apply reachability reduction transformations to x, y, and

θ so that the enumeration only needs iterate through values of the state variable v for each

command of the two-command combination reach set. In terms of input enumeration, in

each command request packet, the values of a and ρ are constant and bounded, so we

can enumerate those values as well. We therefore precomputed the reachability for all

combinations of the current command values v, a, and ρ, and the desired command values a′,

and ρ′, using the parameters given in Table 7.1. These parameters offer a trade off between

computation time and accuracy, where using smaller step sizes will yield tighter reach sets,

at the cost of longer enumeration. In our case, we adjusted the parameters to be as small as

possible while maintaining a tractable computation time (more details in Section 7.4.3). For

each combination, a file was produced containing the reach set for that set of parameters,

which could be loaded at runtime by the central coordinator as needed.

Each file contained the reach set for a range of values that we were enumerating, each of

size [vstep,astep, ρstep]. To actually compute reachability of a hybrid automaton, a number of

different tools exist [95, 96, 97]. We used a modified version of the HyCreate tool [98] to

compute the reachability for this system, due to (1) familiarity with the tool, (2) the tool

allowing us define ranges for the input values, (3) having the capability to use nonlinear

dynamics in each mode which is needed since the derivatives of x and y contain sine and

113

cosine. Notice that reachable set of states for each command could be reduced by decreasing

vstep, astep, and ρstep, at the cost of having to do a larger number of computations to cover

the state and input space.

7.4.2 Runtime Evaluation

In order to demonstrate effectiveness of proposed approach, we created a Matlab

simulation of the system where each vehicle has an initial position and destination. The

vehicles each had a controller that generated commands towards getting them to the

destination. The overall goal was to prevent collisions between the vehicles while still allowing

motion within the shared space.

We performed a set of experiments using the simulator in order to validate the approach

and evaluate its scalability. We now describe each of the experiments, their results, and then

provide a short analysis about the scalability of the method.

Experiments

For all the experiments, the initial position and final destination of the vehicles was

assigned randomly in a 20x20 meter area. For measuring each data point, the simulator

was run a hundred times and all target variables were measured at each execution.

The first experiment measured the time required to perform the safety check for a single

command request from a vehicle. These values were measured varying the number of vehicles

(Figure 7.5).

Figure 7.5: The single safety check time is independent of the number of vehicles.

114

Figure 7.6: The average response time increases linearly in relation to the number of agents in
the system.

The measured time for a single safety check execution on the central coordinator is

independent from number of vehicles. This is because we did the reachabilty computation

offline, and the online check only requires loading the computation from disk and checking for

compatibility with existing commands being followed in the system. Although the number

of existing commands increases as we have more agents, the check time is dominated by the

reachable set load time from disk.

The second experiment measured the average response time for a vehicle’s safety check

request. Response time is defined as the interval of time between the moment that a

command is sent to central coordinator for a safety check until the safety check result

(permission granted or not granted) is received by the vehicle. Measurements for this

experiment are shown in Figure 7.6.

As the number of vehicles increases, the number of simultaneous requests being processed

also increases linearly. As a result, some of the requests get queued in the central coordinator,

which is implemented as a single thread in our implementation. This could be slightly

parallelized by loading reachability results in separate threads, and then using a mutex to

handle updates to the global state once the reach set has been loaded. Nonetheless, due to

the contention for shared global state, a worst-case linear performance is expected for this

step, although through parallelization we could significantly reduce the constant.

Additionally, the measurements here represent a particularly poor case for the number

of vehicles considered. This is because clocks are synchronized in the simulation, and all

vehicles have the same command-send frequency. Therefore, all the commands from all the

vehicles arrive at once. In practice, we would expect the request times to be not so precisely

115

synchronized and therefore likely to be spread out more, resulting in a lower experienced

delay. The safety result from Section 7.1 is still applicable to this system when messages

have varying delays.

In the third experiment, the effect of packet loss in the communication channel was

measured against the operation time of the system. We measured the time interval for three

vehicles to go the distance between their starting and ending points. Here, the start and end

points were fixed for all the experiments. Cases during which vehicles stopped to prevent

a collision were discarded from the results (the system could continue to progress after

vehicles initially stopped by changing the desired command to one that was compatible with

the actions of other vehicles, although for measurements we did not devise such a system).

Measured times are presented in Figure 7.7.

Figure 7.7: As packet loss increases, the vehicles need more time to reach their destination.

In general, increasing packet loss would lead to unnecessary vehicle stops due to the

network, rather than to avoid conflicts. These unnecessary stops mean that, as we increase

packetloss, the performance of the distributed CPS decreases. However, safety is always

guaranteed. This is the trend observed in the figure.

The final experiment validated the safety aspects of the proposed approach and

implementation. Here, we created scenarios where a collision would occur if there was

no central coordinator. The scenarios we tested are shown in Figures 7.8, 7.9 and 7.10.

In all of tested cases, collisions are prevented by the central coordinator when the vehicles

get too close.

However, notice that safety in this implementation comes at the cost of stopping the

vehicles when necessary. In an alternative implementation of the proposed approach, if

the central coordinator rejected a command, nodes might have sufficient time to send an

116

Figure 7.8: Two vehicles Figure 7.9: Three vehicles

Figure 7.10: Four vehicles

alternate command before having to slow to a stop. Alternatively, we could apply the

compatible action chain idea from Section 7.2 if a progress guarantee was needed.

Implementation Scalability

The measurements in the first experiment (average time for a single safety check) are a

good indicator of implementation scalability. The control interval of the vehicles, as defined

before, is the interval of time during which the vehicle must be granted permission to apply

its proposed command, otherwise it will go into the stopping mode as it does not have

any safe command to execute next. If the number of vehicles increases such that the total

processing time is more than the control interval, some vehicles’ response times will go above

control interval. Those vehicles would be forced to stop even though their commands could

have been safe to execute. In other words, due to lack of enough processing capacity on

central coordinator some vehicles would be forced to stop unnecessarily.

As a result of this analysis, we suggest that the number of vehicles (agents) should be

smaller than Tc
RTT+Ts

, where, Tc is the control interval, RTT is the network round trip time

117

and Ts is the time required to perform a safety check for a single command of a vehicle.

7.4.3 Resource Requirements

The applicability of the method is dependent on the online and offline resources which are

necessary to implement the approach.

In terms of offline resources, reachability reduction transformations are applied to the

system, and then the input and state enumeration process proceeds to generate reachable

sets of states for every configuration. The reachability reduction transformation process is

done once manually based on the system dynamics, and serves to reduce the size of the

enumeration. The enumeration itself depends on the number of coverings of the sets of

states needed, as described in Section 7.3.2.

For the parameters in our case study (Table 7.1), the computation required 175616

individual reachability computations to be done, which took three days using a single

system with an Intel i7-2670QM CPU (2.20GHz) with four cores and 12 GB RAM. The

final combined size of the files, was 4.96 GB. This computation is an embarrassingly parallel

workload (each of the 175616 computations are independent) and we made use of all four

cores on the system. It could likely be run on a parallel computing cluster if further

reductions in offline computation time were desired.

In terms of online resources, the resource requirements consists of storage size and access

speed. On disk, 4.96 GB would be required to store the reachable sets of states. For an

embedded system, this could be problematic, but note that these files only need to be located

on the central coordinator, not the individual agents. For this reason, we believe the storage

requirement is acceptable.

The other key measurement is the access speed to load the reachability result. Each of

the 175616 reachability files was in the tens of KB and only a single file needs to be read

per check. Based on the experiments performed (Figure 7.5), this load and check time is

approximately 40ms, which is acceptable for the time scales we are considering (recall that

the vehicles needs to receive a response within a second before beginning to stop).

Other measures of scalability include considering a larger number of vehicles, larger area,

or more complicated systems.

Reachability reduction transformations also allow us to compute the reachable sets of

states for a single agent, and soundly compose them at runtime (since the agent automata

are independent). They also allows us to translate and rotate the resultant reach sets into

place as needed. This means that no additional offline computation would be necessary in

order to consider more agents or a larger area. The online translation and rotation of the

118

reach set takes constant time.

For more complicated systems with additional state variables, the scalability will depend

upon the scalability of the underlying tool used compute reachability. Some state-of-the-

art hybrid automata reachability tools, for example Flow* [96], have been used for systems

with up to ten variables with non-linear dynamics. With linear dynamics, SpaceEx [97]

has analysed systems including a 28 variable helicopter system, and even systems with

up to 200 variables (filter benchmarks). The specifics, of course, depend on the system

under consideration and the length of time needed to be analysed. This length of time, in

turn, depends on the behavior of the low-level controller. For systems with complex safety

actions in the absence of commands, for example, airplanes which cannot stop in place,

the reachability tool would need to be able to detect a fixpoint in its computation in order

to ensure it has output the entire set of reachable states, which adds complication to the

underlying reachability algorithms.

7.5 SUMMARY AND DISCUSSION

In this chapter, we have described an approach to increase the resilience of a cyber-physical

system from errors in the high-level control logic. Our approach of monitoring run-time

commands in order to maintain a safety invariant is general and powerful but comes at

the cost of performing part of the checking at run time. Since this may be impractical

to do online, we then went on to show, through a combination of reachability reduction

transformations and input and state enumeration, how to perform this operation offline. A

case study was created to evaluate the effect of this operation and measurements showed

the technique both performed as expected (vehicles did not collide), and scalability could be

achieved with this type of framework.

As future work, we intend to investigate more flexible approaches for proving safe progress

guarantees. For example, the use of n-way compatible action chains (Section 7.2.2) could

be investigated to allow agents to take multiple steps in a compatible action chain before

needing to hear back from the central coordinator. Also, issues dealing with agent failure

and recovery have not been considered here but would likely need to be investigated for

practical use. Additionally, we could consider more complicated notions of safety rather

than just invariants, such as temporal logic properties defined using LTL or CTL. Finally,

we would like to relax the architectural requirement of a central coordinator and, instead,

allow distributed agents to send commands to one another as needed while still maintaining

safety and a notion of progress.

119

CHAPTER 8: FAIL-SAFE DESIGN PATTERNS

In this work thus far, we have discussed a few design patterns that each provide resiliency

against various types of fault that may occur in different layers of a CPS. Every design has its

limitations on what sorts of guarantees and protections it can provide. There are additional

faults that our designs, in their current form, will not be effective against them. In this

short chapter, we aim to list some of these categories and briefly review some mitigation

strategies. These strategies do not necessarily provide the same level of safety and progress

guarantees that we have discussed so far in this work. Instead, they should be viewed as

last resort techniques that might limit the damage and possibly aid in recovery of CPS.

When using our restart-based fault-tolerant design (chapters 4 and 5), it is possible that

a fault in the complex controller itself or malfunction in other applications could trigger

system restarts. In theory, under the guarantees provided by our design, the physical plant

will remain safe even under such repeated restarts. However, continued operation under such

conditions will put the physical components through constant stress and eventually lead to

failure due to overuse.

One possible way to reduce this effect is to limit the number of restarts that can happen

within an interval of time and take actions to ensure that restarts rates do not increase

beyond the threshold. For instance, a malfunctioning software component such as an

application may be the cause of the restarts. One strategy to contain such situations is

to disable various non-critical software modules either one-by-one or all at once. While not

guaranteed, this might enable the system to continue normal operation. One can employ

more sophisticated disabling policies. For instance, system modules could be disabled one-

by-one to isolate the root cause. It is even possible to construct a dependency tree between

applications and modules and disable/terminate them starting from the leaves of the tree

towards the root of the tree trying to limit the impact of disablement on the overall system

functionality. This procedure can be even further extended by disabling unnecessary kernel

modules and services. If the root cause lies among the components that are necessary for

the safety controller to function, the only solution would be to restart the platform whenever

the problem occurs.

A system that has implemented the restart-based secure architecture (Chapter 6) can be

subject to repeated attacks by an adversary. As we mentioned earlier, restarting the system

only recovers the plant from that instance of the attack and it does not fix the vulnerability

that allowed the exploit to happen in the first place. In theory, the plant remains safe

under repeated attacks; however, in reality, such attacks will cause extreme wear and tear

120

on the physical plant and will eventually lead to failure. One possible mitigation is to limit

the number of times that the secure platform can re-establish network connectivity. After

the limit has passed, the secure architecture will completely isolate the system from the

external network and operate using the safety controller – this is a fail-safe mode. After

a certain amount of time passes, depending on the actual system requirements, network

connectivity can be established again. Another approach is to increase the difficulty of

performing repeated attacks by diversifying the software after each restart. For instance,

one could compile multiple versions of the system software image where, on each version,

modules are loaded into different static addresses. After every restart, one image will be

picked randomly and loaded into the memory. This would stop the adversary from using the

same parameters of the previous attack in the case of attacks that rely on static addresses

e.g., buffer overflow attacks. Additionally, diversifying other parameters of the system (such

as the assignment of port numbers) after each restart can further increase the complexity of

launching attacks on the system.

Another category of faults that our designs did not cover is that of physical faults. A

physical fault refers to a situation in which the behavior of the physical components, and

consequently the plant dynamics, significantly deviates from the original model that was

used to design the controller. In a passive fault-tolerant control system, deviations of the

plant parameters from their true values or deviations of the actuators from their expected

position may be effectively compensated by a fixed robust feedback controller. However, if

these deviations become excessively large and exceed the robustness bound, actions need to

be taken. Our restart-based techniques rely heavily on the physical dynamics of the system

in the process of constructing the restart-tolerant controller. If the physical plant is not

compatible with the model, the base controller may not be able to stabilize the plant and

the safety guarantees will not stand any longer.

There is a series of work based on robust fault-tolerant control that provide high levels

of performance and robustness in the presence of physical failures. Examples of such work

include input-to state stable control [99], disturbance-observer control [100] and internal

model-based control [101]. There is also work that relies on L1 adaptive control theory

to accommodate the deviations of the physical system. Wang et al. [102] propose a new

simplex based architecture that can adapt to the physical failures and will guarantee safety

under such failures. The authors suggest a monitoring system to detect physical failures

and examine the scale of the uncertainty in the system caused by them. They use adaptive

control theory to design a high-assurance (safety) controller that can stabilize the plant in

spite of the deviations.

Faults in sensors and actuators is another category that I did not address in my designs.

121

All techniques discussed in prior chapters assume that the sensors operate correctly, i.e., they

measure the target property within a reasonable noise level on their specifications. Without

access to the physical properties of the plant, in our designs, the decision module and safety

controller cannot maintain the safety. There is a large body of work on sensor and actuator

faults in the CPS. A recent study [103] proposed a complete error detection, fault diagnosis

and system recovery architecture for a coaxial octorotor. Some researchers have developed

an analytical redundancy-based approach to detecting and isolating sensor, actuator and

component (i.e., plant) faults in dynamical systems [104, 105]. Detecting simultaneous

actuator and sensor faults is a difficult problem. Hajiyev et al. [106] proposed a method

based on two types of Kalman filters: a conventional linear Kalman filter that estimates the

states of the plant and a two-stage Kalman filter that estimates the loss of effectiveness and

faults in actuators. Redundancy of sensors and actuators plays a crucial role in the fault-

tolerance level of these systems. Once a faulty sensor is detected, it is ignored if the system

can continue operating without it (for instance if other sensors measure the same property

directly or indirectly) or the measured physical property is estimated using the readings of

other available sensors. Much of the work in this area also provides a tolerance bond on the

maximum number of simultaneous failures that can be tolerated by a system.

Radiation-induced transient faults are another category that was not in the scope of this

work. This type of fault is usually caused by an environmental factor such as radiation or

electromagnetic field. One way to mitigate this type of fault is to take advantage of hardware

redundancy. In such cases, multiple processing units, preferably of different types, run the

same computational workload in parallel. Redundancy significantly reduces the probability

of being affected by transient faults. Any of the units impacted by a transient fault will

be detected due to the mismatch and the correct output can be fed into the next critical

layer [107, 108]. Another conceptually similar approach is to use the idea of software logical

redundancy where each task is executed multiple times on the same hardware platform. This

requires the additional execution load to be taken into account beforehand and make sure

that all replicas of the task finish before their deadline. For the proposed designs presented in

this work, we can utilize logical redundancy for critical components such as decision module

or safety controller to mitigate the effect of transient faults. Many of the studies in this area

also calculate a bound on the maximum number of transient faults that can be tolerated

within a time window by their specific design [109].

Handling each fault category poses new challenges and to mitigate them requires extra

software or hardware components that eventually translate into higher costs. System

designers need to carefully analyze the expected operational environment, the necessary

level of fault-resiliency and their budget and design the system accordingly.

122

CHAPTER 9: CONCLUDING REMARKS

In the modern complex systems, faults are a norm rather than an abnormality and safety-

critical systems need to be designed with faults in mind. In this dissertation, I presented

multiple low-cost techniques to make use of full system restarts and create safe-by-construct

designs that guarantee the safety of CPS.

There exist many problems that can be further studied to improve our designs. Restart

time of the platform is a bottleneck in many of our approaches. One future direction of

research is creating a multi-stage booting solution for multi-core platforms to mitigate this

problem. Our possible idea is to boot one core with the bare minimum requirements to

execute the SC in the quickest possible time. The SC can keep the system safe, while the

real-time or general purpose OS boots on the other cores. Once the boot process is complete,

the control switches to the controllers running on the OS.

Another challenge is the loss of state in case of full system restarts. TEE based solutions

that we provided in Chapter 6, significantly mitigate this problem but do not eliminate it.

Even with TEE, the restarted system lacks a reliable method to resume its mission in a

meaningful way. One could look into means of protecting the state in the presence of an

attacker or enabling the capability to detect if the data is corrupted or not.

Another problem that can be further investigated is how to enable concurrent execution of

SEIs and normal-world applications in platforms with TEE capabilities. This will allow the

normal world tasks to execute with the interruption of SEI, and consequently, the impact of

adding security features to the platform will be negligible. The primary challenge would be

to use only commercial-off-the-shelf platforms without additional hardware customizations

123

REFERENCES

[1] S. M. Sulaman, A. Orucevic-Alagic, M. Borg, K. Wnuk, M. Höst, and J. L. de la
Vara, “Development of safety-critical software systems using open source software–a
systematic map,” in 2014 40th EUROMICRO Conference on Software Engineering
and Advanced Applications. IEEE, 2014, pp. 17–24.

[2] L. Sha, “Using simplicity to control complexity,” IEEE Software, vol. 18, no. 4, pp.
20–28, Jul 2001.

[3] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemption threshold,”
in Real-Time Computing Systems and Applications, 1999. RTCSA’99. Sixth Interna-
tional Conference on. IEEE, 1999.

[4] S. Baruah, “The limited-preemption uniprocessor scheduling of sporadic task systems,”
in 17th Euromicro Conference on Real-Time Systems (ECRTS’05), July 2005, pp. 137–
144.

[5] P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves, “Implementing embedded
security on dual-virtual-cpu systems,” IEEE Design Test of Computers, vol. 24, no. 6,
pp. 582–591, Nov 2007.

[6] Intel Corp, “Intel trusted execution technology,” https://www.
intel.com/content/dam/www/public/us/en/documents/white-papers/
trusted-execution-technology-security-paper.pdf, 2018, accessed: July 2018.

[7] G. Candea, J. Cutler, and A. Fox, “Improving availability with recursive microreboots:
A soft-state system case study,” Perform. Eval., vol. 56, no. 1-4, pp. 213–248, Mar.
2004. [Online]. Available: http://dx.doi.org/10.1016/j.peva.2003.07.007

[8] G. Candea and A. Fox, “Recursive restartability: Turning the reboot sledgehammer
into a scalpel,” in Hot Topics in Operating Systems, 2001. Proceedings of the Eighth
Workshop on. IEEE, 2001, pp. 125–130.

[9] G. Candea and A. Fox, “Crash-only software,” in HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems, 2003, pp. 67–72.

[10] G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox, “Jagr: An autonomous self-
recovering application server,” in Autonomic Computing Workshop. 2003. Proceedings
of the. IEEE, 2003, pp. 168–177.

[11] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot- a
technique for cheap recovery,” in Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04, 2004, pp.
31–44.

124

[12] K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for software rejuvena-
tion,” Dependable and Secure Computing, IEEE Transactions on, vol. 2, no. 2, pp.
124–137, 2005.

[13] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, “Analysis of software rejuvenation
using markov regenerative stochastic petri net,” in Software Reliability Engineering,
1995. Proceedings., Sixth International Symposium on. IEEE, 1995, pp. 180–187.

[14] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuvenation: Analysis,
module and applications,” in Fault-Tolerant Computing, 1995. FTCS-25. Digest of
Papers., Twenty-Fifth International Symposium on. IEEE, 1995, pp. 381–390.

[15] F. Abdi, R. Mancuso, S. Bak, O. Dantsker, and M. Caccamo, “Reset-based recovery
for real-time cyber-physical systems with temporal safety constraints,” in IEEE 21st
Conference on Emerging Technologies Factory Automation (ETFA 2016), 2016.

[16] L. Sha, “Dependable system upgrade,” in Real-Time Systems Symposium, 1998.
Proceedings., The 19th IEEE. IEEE, 1998, pp. 440–448.

[17] L. Sha, R. Rajkumar, and M. Gagliardi, “Evolving dependable real-time systems,” in
Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE, vol. 1. IEEE,
1996, pp. 335–346.

[18] D. Seto and L. Sha, “An engineering method for safety region development,” 1999.

[19] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. Kumar, “The simplex
reference model: Limiting fault-propagation due to unreliable components in cyber-
physical system architectures,” in Real-Time Systems Symposium, 2007. RTSS 2007.
28th IEEE International. IEEE, 2007, pp. 400–412.

[20] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha, “The
system-level simplex architecture for improved real-time embedded system safety,” in
Real-Time and Embedded Technology and Applications Symposium, 2009. RTAS 2009.
15th IEEE. IEEE, 2009, pp. 99–107.

[21] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3a: Secure system
simplex architecture for enhanced security and robustness of cyber-physical systems,”
in Proceedings of the 2nd ACM international conference on High confidence networked
systems. ACM, 2013, pp. 65–74.

[22] P. Vivekanandan, G. Garcia, H. Yun, and S. Keshmiri, “A simplex architecture for
intelligent and safe unmanned aerial vehicles,” in 2016 IEEE 22nd International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA). IEEE, Aug 2016, pp. 69–75.

[23] F. Liberato, R. Melhem, and D. Mosse, “Tolerance to multiple transient faults for
aperiodic tasks in hard real-time systems,” IEEE Transactions on Computers, vol. 49,
no. 9, pp. 906–914, Sep 2000.

125

[24] S. Punnekkat, A. Burns, and R. Davis, “Analysis of checkpointing for real-time
systems,” Real-Time Systems, vol. 20, no. 1, pp. 83–102, 2001.

[25] G. Lima and A. Burns, Scheduling Fixed-Priority Hard Real-Time Tasks in the
Presence of Faults. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 154–173.

[26] R. M. Pathan and J. Jonsson, “Exact fault-tolerant feasibility analysis of fixed-priority
real-time tasks,” in 2010 IEEE 16th International Conference on Embedded and Real-
Time Computing Systems and Applications, Aug 2010, pp. 265–274.

[27] C.-C. Han, K. G. Shin, and J. Wu, “A fault-tolerant scheduling algorithm for real-
time periodic tasks with possible software faults,” IEEE Transactions on Computers,
vol. 52, no. 3, pp. 362–372, March 2003.

[28] M. Pandya and M. Malek, “Minimum achievable utilization for fault-tolerant
processing of periodic tasks,” IEEE Transactions on Computers, vol. 47, no. 10, pp.
1102–1112, Oct 1998.

[29] M. A. Haque, H. Aydin, and D. Zhu, “Real-time scheduling under fault bursts with
multiple recovery strategy,” in 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), April 2014.

[30] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha, “Real-time reachability for verified
simplex design,” in Real-Time Systems Symposium (RTSS), 2014 IEEE. IEEE, 2014,
pp. 138–148.

[31] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo, “Sandboxing
controllers for cyber-physical systems,” in Proceedings of the 2011 IEEE/ACM
Second International Conference on Cyber-Physical Systems, ser. ICCPS ’11.
Washington, DC, USA: IEEE Computer Society, 2011. [Online]. Available:
http://dx.doi.org/10.1109/ICCPS.2011.25 pp. 3–12.

[32] F. Abdi, R. Tabish, M. Rungger, M. Zamani, and M. Caccamo, “Application
and system-level software fault tolerance through full system restarts,” in
Proceedings of the 8th International Conference on Cyber-Physical Systems,
ser. ICCPS ’17. New York, NY, USA: ACM, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3055004.3055012 pp. 197–206.

[33] M.-K. Yoon, B. Liu, N. Hovakimyan, and L. Sha, “Virtualdrone: virtual sensing,
actuation, and communication for attack-resilient unmanned aerial systems,” in
Proceedings of the 8th International Conference on Cyber-Physical Systems. ACM,
2017, pp. 143–154.

[34] F. Abdi, M. Hasan, S. Mohan, D. Agarwal, and M. Caccamo, “ReSecure: A restart-
based security protocol for tightly actuated hard real-time systems,” in IEEE CERTS,
2016, pp. 47–54.

126

[35] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “Securecore: A multicore-based
intrusion detection architecture for real-time embedded systems,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2013 IEEE 19th. IEEE,
2013, pp. 21–32.

[36] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards trusted cloud computing.”
HotCloud, vol. 9, no. 9, p. 3, 2009.

[37] R. Perez, R. Sailer, L. van Doorn et al., “vtpm: virtualizing the trusted platform
module,” in Proc. 15th Conf. on USENIX Security Symposium, 2006, pp. 305–320.

[38] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger, J. L. Griffin, and
L. Van Doorn, “Building a mac-based security architecture for the xen open-source
hypervisor,” in null. IEEE, 2005, pp. 276–285.

[39] P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves, “Implementing embedded
security on dual-virtual-cpu systems,” IEEE Design & Test of Computers, vol. 24,
no. 6, 2007.

[40] J. Winter, “Trusted computing building blocks for embedded linux-based arm
trustzone platforms,” in Proceedings of the 3rd ACM workshop on Scalable trusted
computing. ACM, 2008, pp. 21–30.

[41] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing kernel code integrity on
the trustzone architecture,” arXiv preprint arXiv:1410.7747, 2014.

[42] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen,
“Hypervision across worlds: Real-time kernel protection from the arm trustzone
secure world,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2014, pp. 90–102.

[43] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,”
ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–461, Nov. 2002. [Online].
Available: http://doi.acm.org/10.1145/571637.571640

[44] P. E. Veŕıssimo, N. F. Neves, and M. P. Correia, “Intrusion-tolerant architectures:
Concepts and design,” in Architecting Dependable Systems. Springer Berlin
Heidelberg, 2003, pp. 3–36.

[45] P. Veŕıssimo, “Future directions in distributed computing,” A. Schiper, A. A.
Shvartsman, H. Weatherspoon, and B. Y. Zhao, Eds. Berlin, Heidelberg: Springer-
Verlag, 2003, ch. Uncertainty and Predictability: Can They Be Reconciled?, pp.
108–113. [Online]. Available: http://dl.acm.org/citation.cfm?id=1809315.1809338

[46] P. Sousa, N. F. Neves, and P. Veŕıssimo, “Proactive resilience through
architectural hybridization,” in Proceedings of the 2006 ACM Symposium on Applied
Computing, ser. SAC ’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1141277.1141435 pp. 686–690.

127

[47] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo, “Highly available
intrusion-tolerant services with proactive-reactive recovery,” IEEE Transactions on
Parallel and Distributed Systems, vol. 21, no. 4, pp. 452–465, April 2010.

[48] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt, “Wirelesshart:
Applying wireless technology in real-time industrial process control,” in RTAS ’08:
Proceedings of the 2008 IEEE Real-Time and Embedded Technology and Applications
Symposium. Washington, DC, USA: IEEE Computer Society, 2008, pp. 377–386.

[49] Honeywell, “Onewireless network - isa100.11a-compliant wireless mesh network,”
https://www.honeywellprocess.com/en-US/explore/products/wireless/OneWireless-
Network/pages/default.aspx, 2012.

[50] J. Yao, X. Liu, G. Zhu, and L. Sha, “Netsimplex: Controller fault tolerance architecture
in networked control systems,” Industrial Informatics, IEEE Transactions on, vol. PP,
no. 99, p. 1, 2012.

[51] C. Kim, M. Sun, S. Mohan, H. Yun, L. Sha, and T. F. Abdelzaher, “A framework
for the safe interoperability of medical devices in the presence of network failures,”
in Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical
Systems, ser. ICCPS ’10. New York, NY, USA: ACM, 2010, pp. 149–158.

[52] L. Bu, Q. Wang, X. Chen, L. Wang, T. Zhang, J. Zhao, and X. Li, “Toward online
hybrid systems model checking of cyber-physical systems’ time-bounded short-run
behavior,” SIGBED Rev., vol. 8, no. 2, pp. 7–10, June 2011.

[53] S. Bak, T. Johnson, M. Caccamo, and L. Sha, “Real-time reachability for verified
simplex design,” in Real-Time Systems Symposium (RTSS), 2014 IEEE 35th, 2014.

[54] J. N. Tsitsiklis, “On the stability of asynchronous iterative processes,” Mathematical
systems theory, vol. 20, no. 1, pp. 137–153, Dec 1987. [Online]. Available:
https://doi.org/10.1007/BF01692062

[55] K. M. Chandy, S. Mitra, and C. Pilotto, “Convergence verification: From shared
memory to partially synchronous systems,” in Formal Modeling and Analysis of Timed
Systems, F. Cassez and C. Jard, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 218–232.

[56] A. K. Agogino and K. Tumer, “A multiagent approach to managing air traffic flow,”
Autonomous Agents and Multi-Agent Systems, vol. 24, no. 1, pp. 1–25, Jan 2012.
[Online]. Available: https://doi.org/10.1007/s10458-010-9142-5

[57] D. Seto and L. Sha, “A case study on analytical analysis of the inverted pendulum
real-time control system,” DTIC Document, Tech. Rep., 1999.

[58] D. Seto, E. Ferreira, and T. F. Marz, “Case study: Development of a baseline controller
for automatic landing of an f-16 aircraft using linear matrix inequalities (lmis),” DTIC
Document, Tech. Rep., 2000.

128

[59] E. D. Sontag, Mathematical control theory: deterministic finite dimensional systems.
Springer Science & Business Media, 2013, vol. 6.

[60] “PCA9685: 16-channel, 12-bit PWM Fm+ I2C-bus LED controller,” https://goo.gl/
FMnOQT, 2016, accessed: Oct. 2016.

[61] G. Reißig, A. Weber, and M. Rungger, “Feedback refinement relations for the synthesis
of symbolic controllers,” IEEE TAC, vol. 62, 2017.

[62] M. Althoff and B. H. Krogh, “Reachability analysis of nonlinear differential-algebraic
systems,” IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 371–383, Feb
2014.

[63] E. Asarin, T. Dang, and A. Girard, “Reachability analysis of nonlinear systems
using conservative approximation,” in International Workshop on Hybrid Systems:
Computation and Control. Springer, 2003, pp. 20–35.

[64] P. Tabuada, Verification and control of hybrid systems: a symbolic approach. Springer
Science & Business Media, 2009.

[65] C. Baier and J. P. Katoen, Principles of model checking. MIT press, 2008.

[66] G. Reissig, “Computing abstractions of nonlinear systems,” IEEE Transactions on
Automatic Control, vol. 56, no. 11, pp. 2583–2598, Nov 2011.

[67] M. Rungger and M. Zamani, “Scots: A tool for the synthesis of symbolic controllers,”
in Proceedings of the 19th International Conference on Hybrid Systems: Computation
and Control. ACM, 2016, pp. 99–104.

[68] M. Zamani, I. Tkachev, and A. Abate, “Towards scalable synthesis of stochastic control
systems,” Discrete Event Dynamic Systems, vol. 27, no. 2, pp. 341–369, 2017.

[69] M. Zamani and M. Arcak, “Compositional abstraction for networks of control systems:
A dissipativity approach,” IEEE Transactions on Control of Network Systems, vol. PP,
no. 99, pp. 1–1, 2017.

[70] F. Blanchini and S. Miani, Set-theoretic methods in control. Springer, 2008, pp.
156–163.

[71] M. Rungger and P. Tabuada, “Computing robust controlled invariant sets of linear
systems,” CoRR, vol. abs/, 2016. [Online]. Available: http://arxiv.org/abs/1601.00416

[72] Q. Inc., “3 dof helicopter.”

[73] “FreeRTOS ,” http://www.freertos.org, 2016, accessed: Sep. 2016.

[74] https://github.com/abditag2/reset-based-recovery, 2017.

[75] Quanser Inc., “Q8 data acquisition board,” http://www.quanser.com/products/q8,
2016, accessed: September 2016.

129

[76] A. Inc., “Arm trustzone,” https://www.arm.com/products/security-on-arm/
trustzone, 2016, accessed: September 2016.

[77] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-
real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61, 1973.

[78] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area network (can)
schedulability analysis: Refuted, revisited and revised,” Real-Time Systems, vol. 35,
no. 3, pp. 239–272, 2007.

[79] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh, “Worst-case response time analysis
of real-time tasks under fixed-priority scheduling with deferred preemption revisited,”
in 19th Euromicro Conference on Real-Time Systems (ECRTS’07), July 2007, pp.
269–279.

[80] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive scheduling for real-
time systems. a survey,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1,
pp. 3–15, Feb 2013.

[81] F. Abdi, R. Mancuso, R. Tabish, and M. Caccamo, “Achieving
system-level fault-tolerance with controlled resets,” University of Illinois
at Urbana-Champaign, Tech. Rep., April 2017. [Online]. Available:
http://rtsl-edge.cs.illinois.edu/reset-based/reset sched.pdf

[82] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend, W. Morgan,
K. Fu, T. Kohno, and W. H. Maisel, “Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power defenses,” in 2008 IEEE
Symposium on Security and Privacy (sp 2008), May 2008, pp. 129–142.

[83] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham et al., “Experimental security analysis of a
modern automobile,” in IEEE Symposium on Security and Privacy. IEEE, 2010, pp.
447–462.

[84] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “LTZVisor: TrustZone
is the Key,” in 29th Euromicro Conference on Real-Time Systems (ECRTS 2017),
ser. Leibniz International Proceedings in Informatics (LIPIcs), M. Bertogna, Ed.,
vol. 76. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2017. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2017/7153 pp.
4:1–4:22.

[85] Quanser Inc., “3-DOF helicopter reference manual,” document Number 644, Revision
2.1.

[86] S. H. Trapnes, “Optimal temperature control of rooms for minimum energy cost,” M.S.
thesis, Institutt for kjemisk prosessteknologi, Norway, 2013.

130

[87] AVNET, “Zedboard hardware user’s guide,” http://zedboard.org/sites/default/files/
documentations/ZedBoard HW UG v2 2.pdf, accessed: Apr. 2017.

[88] https://github.com/emsoft2017restart/restart-based-framework-demo, 2017.

[89] Texas Instruments, “Msp-exp430g2 launchpad development kit,” http://www.ti.com/
lit/ug/slau318g/slau318g.pdf, 2016, accessed: April 2017.

[90] Make Linux, “Super fast boot of embedded linux,” http://www.makelinux.com/emb/
fastboot/omap, 2017, accessed: June 2017.

[91] J. Turek and D. Shasha, “The many faces of consensus in distributed systems,”
Computer, vol. 25, no. 6, pp. 8–17, June 1992.

[92] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha, “The
system-level simplex architecture for improved real-time embedded system safety,” in
RTAS ’09: Proceedings of the 2009 15th IEEE Real-Time and Embedded Technology
and Applications Symposium, 2009.

[93] S. Mitra, “A verification framework for hybrid systems,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2007.

[94] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The Theory of Timed I/O
Automata (Synthesis Lectures in Computer Science). Morgan & Claypool Publishers,
2006.

[95] G. Frehse, “Phaver: Algorithmic verification of hybrid systems past hytech.” Springer,
2005, pp. 258–273.

[96] X. Chen, E. Abraham, and S. Sankaranarayanan, “Taylor model flowpipe construction
for non-linear hybrid systems,” in Real-Time Systems Symposium (RTSS), 2012 IEEE
33rd, 2012, pp. 183–192.

[97] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable verification of hybrid systems,”
in Proc. 23rd International Conference on Computer Aided Verification (CAV), ser.
LNCS, S. Q. Ganesh Gopalakrishnan, Ed. Springer, 2011.

[98] S. Bak and M. Caccamo, “Computing reachability for nonlinear systems with
hycreate,” in Demo and Poster Session, ACM/IEEE 16th International Conference
on Hybrid Systems, 2013.

[99] E. D. Sontag and Y. Wang, “On characterizations of the input-to-state stability
property,” Systems and Control Journal, vol. 24, no. 5, pp. 351–359, 1995.

[100] H. Shim and N. H. Jo, “An almost necessary and sufficient condition
for robust stability of closed-loop systems with disturbance observer,”
Automatica, vol. 45, no. 1, pp. 296 – 299, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0005109808003749

131

[101] L. Harnefors and H. . Nee, “Model-based current control of ac machines using the
internal model control method,” IEEE Transactions on Industry Applications, vol. 34,
no. 1, pp. 133–141, Jan 1998.

[102] X. Wang, N. Hovakimyan, and L. Sha, “L1simplex: fault-tolerant control of cyber-
physical systems,” in Proceedings of the ACM/IEEE 4th International Conference on
Cyber-Physical Systems. ACM, 2013, pp. 41–50.

[103] M. Saied, B. Lussier, I. Fantoni, H. Shraim, and C. Francis, “Fault diagnosis and
fault-tolerant control of an octorotor uav using motors speeds measurements,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 5263–5268, 2017.

[104] E. C. Larson, B. E. Parker, and B. R. Clark, “Model-based sensor and actuator fault
detection and isolation,” in Proceedings of the 2002 American Control Conference
(IEEE Cat. No. CH37301), vol. 5. IEEE, 2002, pp. 4215–4219.

[105] J. Lee and J. Lyou, “Fault diagnosis and fault tolerant control of linear stochastic
systems with unknown inputs.” Systems Science, vol. 27, no. 3, pp. 59–76, 2001.

[106] C. M. Hajiyevt and F. Caliskan, “Integrated sensor/actuator fdi and reconfigurable
control for fault-tolerant flight control system design,” The Aeronautical Journal, vol.
105, no. 1051, pp. 525–533, 2001.

[107] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz, “The real-time operating system
of mars,” ACM SIGOPS Operating Systems Review, vol. 23, no. 3, pp. 141–157, 1989.

[108] G. K. Saha, “Approaches to software based fault tolerance–a review,” Computer
Science, vol. 13, no. 3, p. 39, 2005.

[109] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. Connors, “Plr: A software
approach to transient fault tolerance for multicore architectures,” IEEE Transactions
on Dependable and Secure Computing, vol. 6, no. 2, pp. 135–148, 2009.

132

