ﬁ CORE Metadata, citation and similar papers at core.ac.uk

Provided by lllinois Digital Environment for Access to Learning and Scholarship Repository

(© 2019 Yu Meng


https://core.ac.uk/display/227472417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WEAKLY-SUPERVISED TEXT CLASSIFICATION

BY

YU MENG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Adviser:

Professor Jiawei Han



ABSTRACT

Deep neural networks are gaining increasing popularity for the classic text classification
task, due to their strong expressive power and less requirement for feature engineering.
Despite such attractiveness, neural text classification models suffer from the lack of training
data in many real-world applications. Although many semi-supervised and weakly-supervised
text classification models exist, they cannot be easily applied to deep neural models and
meanwhile support limited supervision types. In this work, we propose a weakly-supervised
framework that addresses the lack of training data in neural text classification. Our framework
consists of two modules: (1) a pseudo-document generator that leverages seed information to
generate pseudo-labeled documents for model pre-training, and (2) a self-training module
that bootstraps on real unlabeled data for model refinement. Our framework has the
flexibility to handle different types of weak supervision and can be easily integrated into
existing deep neural models for text classification. Based on this framework, we propose
two methods, WeSTClass and WeSHClass, for flat text classification and hierarchical text
classification, respectively. We have performed extensive experiments on real-world datasets
from different domains. The results demonstrate that our proposed framework achieves
inspiring performance without requiring excessive training data and outperforms baselines

significantly.

i



To my parents, for their love and support.

iii



ACKNOWLEDGMENTS

I would like to first thank my adviser Professor Jiawei Han of the Department of Com-
puter Science at University of Illinois at Urbana-Champaign. Professor Han’s continuous
encouragement, inspiring guidance, and perspective advising have always steered me in the
right direction towards good research topics and quality research outputs that constitute this
thesis work. I would also like to thank all Data Mining Group members, especially Jiaming
Shen and Chao Zhang, for the inspiring discussions that greatly polished this thesis work.

This research work is sponsored in part by U.S. Army Research Lab. under Cooperative
Agreement No. W911NF-09-2-0053 (NSCTA), DARPA under Agreement No. W911NF-17-
C-0099, National Science Foundation IIS 16-18481, IIS 17-04532, and 1IS-17-41317, DTRA
HDTRA11810026, and grant 1U54GM114838 awarded by NIGMS through funds provided by
the trans-NIH Big Data to Knowledge (BD2K) initiative (www.bd2k.nih.gov).

v



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . e . 1
CHAPTER 2 WEAKLY-SUPERVISED FLAT TEXT CLASSIFICATION . .. .. 3
2.1 Overview . . . . . .. e 3
2.2 Related Work . . . . . . . s 4
2.3 Preliminaries . . . . . . . . .. 6
2.4 Pseudo Document Generation . . . . . . . . . . . ... 7
2.5 Neural Models with Self-Training . . . . . .. ... .. .. ... ... .... 9
2.6 Experiments . . . . . ... 13
2.7 SUMMATY . . . . v v st e 24
CHAPTER 3 WEAKLY-SUPERVISED HIERARCHICAL TEXT CLASSIFICATION 25
3.1 Overview . . . . ... 25
3.2 Related Work . . . . . . . 27
3.3 Problem Formulation . . . . . . . . . ... 28
3.4 Pseudo Document Generation . . . . . . . . . . . ... ... 28
3.5 The Hierarchical Classification Model . . . . . . . . . .. .. ... ... ... 31
3.6 Experiments . . . . . . ... 34
3.7 Summary ... ... 40
CHAPTER 4 CONCLUSION AND FUTURE WORK . .. ... ... ....... 42
REFERENCES . . . . . 43



CHAPTER 1: INTRODUCTION

Text classification plays a fundamental role in a wide variety of applications, ranging from
sentiment analysis [37] to document categorization [42| and query intent classification [39].
Recently, deep neural models—including convolutional neural networks (CNNs) [16, 44, 15, 45]
and recurrent neural networks (RNNs) [33, 32, 42]—have demonstrated superiority for text
classification. The attractiveness of these neural models for text classification is mainly
two-fold. First, they can largely reduce feature engineering efforts by automatically learning
distributed representations that capture text semantics. Second, they enjoy strong expressive
power to better learn from the data and yield better classification performance.

Despite the attractiveness and increasing popularity of neural models for text classification,
the lack of training data is still a key bottleneck that prohibits them from being adopted
in many practical scenarios. Indeed, training a deep neural model for text classification
can easily consume million-scale labeled documents. Collecting such training data requires
domain experts to read through millions of documents and carefully label them with domain
knowledge, which is often too expensive to realize.

To address the label scarcity bottleneck, we study the problem of learning neural models
for text classification under weak supervision. In many scenarios, while users cannot afford
to label many documents for training neural models, they can provide a small amount of
seed information for the classification task. Such seed information may arrive in various
forms: either a set of representative keywords for each class, or a few (less than a dozen)
labeled documents, or even only the surface names of the classes. Such a problem is called
weakly-supervised text classification.

There have been many studies related to weakly-supervised text classification. However,
training neural models for text classification under weak supervision remains an open research
problem. Several semi-supervised neural models have been proposed [25, 41|, but they still
require hundreds or even thousands of labeled training examples, which are not available
in the weakly supervised setting [27]. Along another line, there are existing methods
that perform weakly-supervised text classification, including latent variable models [18]
and embedding-based methods [38, 19]. These models have the following limitations: (1)
supervision inflexibility: they can only handle one type of seed information, either a collection
of labeled documents or a set of class-related keywords, which restricts their applicabilities;
(2) seed sensitivity: the “seed supervision” from users completely controls the model training
process, making the learned model very sensitive to the initial seed information; (3) limited

extensibility: these methods are specific to either latent variable models or embedding methods,



and cannot be readily applied to learn deep neural models based on CNN or RNN.

In this thesis, we will introduce a neural approach for weakly-supervised text classification.
Our framework can utilize various neural models as classifier and meanwhile support different
types of weak supervisions (both word-level and document-level). We will introduce how to
apply our framework to flat classification tasks in Chapter 2 and to hierarchical classification
tasks in Chapter 3. Finally, we will conclude the thesis by summarizing the methods and

proposing potential future work in Chapter 4.



CHAPTER 2: WEAKLY-SUPERVISED FLAT TEXT CLASSIFICATION

In this chapter, we present a method that addresses flat text classification under weak
supervision. Then in the next chapter, we will extend our method to support hierarchical

text classification.

2.1 OVERVIEW

_______ = e

Pseudo-document
Pre-training step Self-training step

Generator

Politics
Deep Neural Models Deep Neural Models

Documents with label

Figure 2.1: WeSTClass consists of two key modules: (1) a pseudo-document generator that
leverages seed information to generate pseudo-labeled documents for model pre-training, and
(2) a self-training module that bootstraps on real unlabeled data for model refinement.

In this chapter, we present a new method, named WeSTClass [22], for Weakly-Supervised
Text Classification. As shown in Figure 2.1, WeSTClass contains two modules to address
the above challenges. The first module is a pseudo-document generator, which leverages
seed information to generate pseudo documents as synthesized training data. By assuming
word and document representations reside in the same semantic space, we generate pseudo
documents for each class by modeling the semantics of each class as a high-dimensional
spherical distribution [10], and further sampling keywords to form pseudo documents. The
pseudo document generator can not only expand user-given seed information for better
generalization, but also handle different types of seed information (e.g., label surface names,
class-related keywords, or a few labeled documents) flexibly.

The second key module of our method is a self-training module that fits real unlabeled
documents for model refinement. First, the self-training module uses pseudo documents to
pre-train either CNN-based or RNN-based models to produce an initial model, which serves
as a starting point in the subsequent model refining process. Then, it applies a self-training
procedure, which iteratively makes predictions on real unlabeled documents and leverages

high-confidence predictions to refine the neural model.



Below is an overview of this chapter:

1. We design the WeSTClass method for addressing the label scarcity bottleneck of
neural text classification. To the best of our knowledge, WeST Class is the first weakly-
supervised text classification method that can be applied to most existing neural models

and meanwhile handle different types of seed information.

2. We present a novel pseudo document generator by modeling the class semantic as a
spherical distribution. The generator is able to generate pseudo documents that are
highly correlated to each class, and meanwhile effectively expands user-provided seed

information for better generalization.

3. We present a self-training algorithm for training deep neural models by leveraging
pseudo documents. The self-training algorithm can iteratively bootstrap the unlabeled
data to obtain high-quality deep neural models, and is generic enough to be integrated
into either CNN-based or RNN-based models.

4. We conduct a thorough evaluation of our method on three real-world datasets from
different domains. The experiment results show that our method can achieve inspiring
text classification performance even without excessive training data and outperforms

various baselines.

2.2 RELATED WORK

In this section, we review existing studies for weakly-supervised text classification, which
can be categorized into two classes: (1) latent variable models; and (2) embedding-based

models.

2.2.1 Latent Variable Models

Existing latent variable models for weakly-supervised text classification mainly extend
topic models by incorporating user-provided seed information. Specifically, semi-supervised
PLSA [21] extends the classic PLSA model by incorporating a conjugate prior based on
expert review segments (topic keywords or phrases) to force extracted topics to be aligned
with provided review segments. [12| encodes prior knowledge and indirect supervision in
constraints on posteriors of latent variable probabilistic models. Descriptive LDA [8] uses

an LDA model as the describing device to infer Dirichlet priors from given category labels



and descriptions. The Dirichlet priors guides LDA to induce the category-aware topics.
Seed-guided topic model [18] takes a small set of seed words that are relevant to the semantic
meaning of the category, and then predicts the category labels of the documents through two
kinds of topic influence: category-topics and general-topics. The labels of the documents
are inferred based on posterior category-topic assignment. Our method differs from these
latent variable models in that it is a weakly-supervised neural model. As such, it enjoys two
advantages over these latent variable models: (1) it has more flexibility to handle different
types of seed information which can be a collection of labeled documents or a set of seed
keywords related to each class; (2) it does not need to impose assumptions on document-topic
or topic-keyword distributions, but instead directly uses massive data to learn distributed

representations to capture text semantics.

2.2.2  Embedding-based Models

Embedding-based weakly supervised models use seed information to derive vectorized
representations for documents and label names for the text classification task. Dataless
classification [7, 34] takes category names and projects each word and document into the
same semantic space of Wikipedia concepts. Each category is represented with words in
the category label. The document classification is performed based on the vector similarity
between a document and a category using explicit semantic analysis [11|. Unsupervised
neural categorization [19] takes category names as input and applies a cascade embedding
approach: First the seeded category names and other significant phrases (concepts) are
embedded into vectors for capturing concept semantics. Then the concepts are embedded into
a hidden category space to make the category information explicit. Predictive text embedding
[38] is a semi-supervised algorithm that utilizes both labeled and unlabeled documents to
learn text embedding specifically for a task. Labeled data and different levels of word
co-occurrence information are first represented as a large-scale heterogeneous text network
and then embedded into a low dimensional space that preserves the semantic similarity of
words and documents. Classification is performed by using one-vs-rest logistic regression
model as classifier and the learned embedding as input. Compared with our method, these
embedding-based weakly supervised methods cannot be directly applied to deep neural
models (CNN, RNN) for the text classification task. Furthermore, while they allow the seed
information to directly control the model training process, we introduce a pseudo document
generation paradigm which is generalized from the seed information. Hence, our model is

less prone to seed information overfitting and enjoys better generalization ability.



2.3 PRELIMINARIES

In this section, we formulate the problem of weakly-supervised text classification, and give

an overview of our proposed method.

2.3.1 Problem Formulation

Given a text collection D = {Dy,..., D, } and m target classes C = {C},...,C},}, text
classification aims to assign a class label C; € C to each document D; € D. To characterize
each class, traditional supervised text classification methods rely on large amounts of labeled
documents. In this chapter, we focus on the text classification under weakly-supervised
setting where the supervision signal comes from one of the following sources: (1) label surface
names: L = {L;}|7,, where L; is the surface name for class Cj, (2) class-related keywords:
S = {9;}[jL,, where Sj = {wj1,...,w;} represents a set of k keywords in class Cj, and (3)
labeled documents: D" = {DF}|7-,, where D} = {Dj1,...,D;;} denotes a set of [ (I < n)
labeled documents in class C;. In many scenarios, the above weak supervision signals can be

easily obtained from users. Finally, we define our problem as follows:

Definition 2.1 (Problem Formulation) Given a text collection D = {D;, ..., D,}, target
classes C = {C4, ..., Cy}, and weak supervision from either L, S or DL, the weakly-supervised

text classification task aims to assign a label C; € C to each D; € D.

2.3.2 Method Overview

Our proposed weakly-supervised text classification method contains two key modules. The
first one is a pseudo-document generator that unifies seed information and outputs pseudo
documents for model training. We assume words and documents share a joint semantic space
which provides flexibility for handling different types of seed information. Then, we model
each class as a high-dimensional spherical distribution from which keywords are sampled
to form pseudo documents as training data. The second key module of our method is a
self-training module that can be easily integrated into existing deep neural models, either
CNN-based or RNN-based. It first uses the generated pseudo documents to pre-train neural
models, which allows the model to start with a good initialization. Then, a self-training
procedure is applied to iteratively refine the neural model using unlabeled real documents
based on the model’s high-confidence predictions. We show the entire process of our method

in Figure 2.1.



2.4 PSEUDO DOCUMENT GENERATION

In this section, we describe the details of the pseudo-document generator, which leverages
seed information to generate a bunch of pseudo documents that are correlated to each class.
Below, we first introduce how to model class distributions in a joint semantic space with

words and documents, and then describe the pseudo document generation process.

2.4.1 Modeling Class Distribution

To effectively leverage user-provided seed information and capture the semantic correlations
between words, documents and classes, we assume words and documents share a joint semantic
space, based on which we learn a generative model for each class to generate pseudo documents.

Specifically, we first use the Skip-Gram model [24] to learn p-dimensional vector represen-
tations of all the words in the corpus. Furthermore, since directional similarities between
vectors are more effective in capturing semantic correlations [35, 2, 17|, we normalize all the
p-dimensional word embeddings so that they reside on a unit sphere in RP, which is the joint
semantic space. We call it “joint” because we assume pseudo document vectors reside on the
same unit sphere as well, which we will explain in Section 2.4.2. We retrieve a set of keywords
in the semantic space that are correlated to each class based on the seed information. We

describe how to handle different types of seed information as follows:

e Label surface names: When only label surface names £ are given as seed information,
for each class j we use the embedding of its surface name L; to retrieve top-t nearest
words in the semantic space. We set ¢ to be the largest number that does not results in

shared words across different classes.

e Class-related keywords: When users provide a list of related keywords S; for each
class 7, we use the embeddings of these seed keywords to find top-t keywords in the

semantic space, by measuring the average similarity to the seed keywords.

e Labeled documents: When users provide a small number of documents D]L that are
correlated with class j, we first extract ¢ representative keywords in D]L using tf-idf

weighting, and then consider them as class-related keywords.

After obtaining a set of keywords that are correlated with each class, we model the semantic
of each class as a von Mises Fisher (vMF) distribution [2, 13|, which models word embeddings

on a unit sphere in R? and has been shown effective for various tasks |3, 43]. Specifically, we



define the probability distribution of a class as:

kpuTx

f(@; s k) = cp(r)e™ %,
where k > 0, ||p|| = 1, p > 2 and the normalization constant ¢,(k) is given by

Kp/2—1

2m )P 2 Ly a1 (k)

CP(’KO = (

where I,.(+) represents the modified Bessel function of the first kind at order r. We justify our
choice of the vMF distribution as follows: the vMF distribution has two parameters—the
mean direction g and the concentration parameter x. The distribution of keywords on
the unit sphere for a specific class concentrates around the mean direction wu, and is more
concentrated if x is large. Intuitively, the mean direction p acts as a semantic focus on
the unit sphere, and produces relevant semantic embeddings around it, where concentration
degree is controlled by the parameter x.

Now that we have leveraged the seed information to obtain a set of keywords for each class
on the unit sphere, we can use these correlated keywords to fit a vMF distribution f(x; p, k).

Specifically, let X be a set of vectors for the keywords on the unit sphere, i.e.,
X ={x; € R? | x; drawn from f(x;pu, k), 1 <i <t}

then we use the maximum likelihood estimates [2| for finding the parameters 1 and & of the
vMF distribution:
> it T
i
122 il

o=

and R .
]p/Z(“) _ 1 Zi:l x|
Ipja—1(F) t

Obtaining an analytic solution for & is infeasible because the formula involves an implicit

equation which is a ratio of Bessel functions. We thus use a numerical procedure based on

Newton’s method [2] to derive an approximation of &.

2.4.2 Generating Pseudo Documents

To generate a pseudo document D] (we use D instead of D; to denote it is a pseudo
document) of class j, we propose a generative mixture model based on class j’s distribution

f(zx; pj, k). The mixture model repeatedly generates a number of terms to form a pseudo



document; when generating each term, the model chooses from a background distribution
with probability @ (0 < @ < 1) and from the class-specific distribution with probability 1 — a.

The class-specific distribution is defined based on class j’s distribution f(x; p;, ;). Par-
ticularly, we first sample a document vector d; from f(x;p;, x;), then build a keyword
vocabulary V. for d; that contains the top-y words with most similar word embedding with
d;. These v words in V,, are highly semantically relevant with the topic of pseudo document
Dy and will appear frequently in D}. Each term of a pseudo document is generated according

to the following probability distribution:

app(w) w ¢ Vg,
p('LU ‘ dz) = exp(d] v.) (21>
app(w) + (1 — a)z ooy W€ Vi,
w dl 1 w

where v, is the word embedding for w and pg(w) is the background distribution for the
entire corpus.

Note that we generate document vectors from f(x; p;, x;) instead of fixing them to be
pj. The reason is that some class (e.g., Sports) may cover a wide range of topics (e.g.,
athlete activities, sport competitions, etc.), but using p; as the pseudo document vector
will only attract words that are semantically similar to the centroid direction of a class.
Sampling pseudo document vectors from the distribution, however, allows the generated
pseudo documents to be more semantically diversified and thus cover more information about
the class. Consequently, models trained on such more diversified pseudo documents are
expected to have better generalization ability.

Algorithm 2.1 shows the whole process of generating a collection of 3 pseudo documents
per class. For each class j, given the learned class distributions and the average length of
pseudo documents dI', we draw a document vector d; from class j’s distribution f(x; pj, 5;).
After that, we generate dl words sequentially based on d; and add the generated document
into the pseudo document collection Dj of class j. After the above process repeats 3 times,

we finally obtain D} which contains 3 pseudo documents for class j.

2.5 NEURAL MODELS WITH SELF-TRAINING

In this section, we present the self-training module that trains deep neural models with
the generated pseudo documents. The self-training module first uses the pseudo documents

to pre-train a deep neural network, and then iteratively refines the trained model on the

IThe length of each pseudo document can be either manually set or equal to the average document length
in the real document collection.



Algorithm 2.1: Pseudo Documents Generation.

1 Input: Class distributions { f(x; p;, 5;) }[7L,; average document length dl; number of
pseudo documents [ to generate for each class.
2 Qutput: A set of m x B pseudo documents D*.

Initialize D* < ()
for class index j from 1 to m do
Initialize D «+ 0
for pseudo document index i from 1 to 5 do
Sample document vector d; from f(x; p;, k)
D} < empty string
for word index k from 1 to dl do
Sample word w;;, ~ p(w | d;) based on Eq. (2.1)
D} = D} @ w;y // concatenate w; y after D}
end for
D*.append(Dy)
end for
D* < D*UD;
end for
Return D*

real unlabeled documents in a bootstrapping fashion. In the following, we first present the
pre-training and the self-training steps in Section 2.5.1 and 2.5.2, and then demonstrate how
the framework can be instantiated with CNN and RNN models in Section 2.5.3.

2.5.1 Neural Model Pre-training

As we have obtained pseudo documents for each class, we use them to pre-train a neural
network M?. A naive way of creating the label for a pseudo document D} is to directly
use the associated class label that D} is generated from, i.e. using one-hot encoding where
the generating class takes value 1 and all other classes are set to 0. However, this naive
strategy often causes the neural model to overfit to the pseudo documents and have limited
performance when classifying real documents, due to the fact that the generated pseudo
documents do not contain word ordering information. To tackle this problem, we create
pseudo labels for pseudo documents. In Equation (2.1), we design pseudo documents to be
generated from a mixture of background and class-specific word distributions, controlled by a

balancing parameter o. Such a process naturally leads to our design of the following procedure

2When the supervision source is labeled documents, these seed documents will be used to augment the
pseudo document set during the pre-training step.

10



for pseudo label creation: we evenly split the fraction of the background distribution into all

m classes, and set the pseudo label I; for pseudo document D; as

(1 — )+ a/m D} is generated from class j

a/m otherwise

After creating the pseudo labels, we pre-train a neural model M by generating S pseudo
documents for each class, and minimizing the KL divergence loss from the neural network

outputs Y to the pseudo labels L, namely
[
loss = KL(L||Y) = lii log -
(L[]Y) Z zj: ilog -

We will detail how we instantiate the neural model M shortly in Section 2.5.3.

2.5.2 Neural Model Self-training

While the pre-training step produces an initial neural model M, the performance of the M
is not the best one can hope for. The major reason is that the pre-trained model M only
uses the set of pseudo documents but fails to take advantage of the information encoded in
the real unlabeled documents. The self-training step is designed to tackle the above issues.
Self-training [26, 30| is a common strategy used in classic semi-supervised learning scenarios.
The rationale behind self-training is to first train the model with labeled data, and then
bootstrap the learning model with its current highly-confident predictions.

After the pre-training step, we use the pre-trained model to classify all unlabeled documents
in the corpus and then apply a self-training strategy to improve the current predictions.
During self-training, we iteratively compute pseudo labels based on current predictions and
refine model parameters by training the neural network with pseudo labels. Given the current

outputs Y, the pseudo labels are computed using the same self-training formula as in [40]:

Lo ualli
Y Z]’/ y?j’/fj’

where f; = ). y;; is the soft frequency for class j.

Self-training is performed by iteratively computing pseudo labels and minimizing the KL
divergence loss from the current predictions Y to the pseudo labels L. This process terminates
when less than §% of the documents in the corpus have class assignment changes.

Although both pre-training and self-training create pseudo labels and use them to train

11



neural models, it is worth mentioning the difference between them: in pre-training, pseudo
labels are paired with generated pseudo documents to distinguish them from given labeled
documents (if provided) and prevent the neural models from overfitting to pseudo documents;

in self-training, pseudo labels are paired with every unlabeled real documents from corpus

and reflect current high confidence predictions.

2.5.3 Instantiating with CNNs and RNNs

As mentioned earlier, our method for text classification is generic enough to be applied to
most existing deep neural models. In this section, we instantiate the framework with two
mainstream deep neural network models: convolution neural networks (CNN) and recurrent
neural networks (RNN), by focusing on how they are used to learn document representations

and perform classification.

CNN-Based Models

CNNs have been explored for text classification [16]. When instantiating our framework
with CNN, the input to a CNN is a document of length dl represented by a concatenation of
word vectors, i.e.,

d=x, DT - D T,

where x; € RP is the p dimensional word vector of the ith word in the document. We use
T;.i+; to represent the concatenation of word vectors x;, ©;y1, ..., ®;;. For window size of
h, a feature ¢; is generated from a window of words @;.;,_1 by the following convolution
operation

ci = f(w- Tiin1 +0),
where b € R is a bias term, w € R is the filter operating on h words. For each possible

size-h window of words, a feature map is generated as

Cc= [01,027 S ,Ccu—hﬂ]-

Then a max-over-time pooling operation is performed on ¢ to output the maximum value
¢ = max(c) as the feature corresponding to this particular filter. If we use multiple filters, we
will obtain multiple features that are passed through a fully connected softmax layer whose

output is the probability distribution over labels.

12



RNN-Based Models

Besides CNNs, we also discuss how to instantiate our framework with RNNs. We choose
the Hierarchical Attention Network (HAN) [42] as an exemplar RNN-based model. HAN
consists of sequence encoders and attention layers for both words and sentences. In our
context, the input document is represented by a sequence of sentences s;,7 € [1, L] and
each sentence is represented by a sequence of words wy,t € [1,T]. At time ¢, the GRU [1]

computes the new state as
hy=(1-2)®h i +2z0h,,
where the update gate vector
zi =W,y +U,hi—1 +b,),
the candidate state vector
h; = tanh(Wya, + 1, © (Uphy_1) + by),

the reset gate vector

r = O'(Wrmt + Urht—l + br)7

and x; is the sequence vector (word embedding or sentence vector) at time t. After encoding
words and sentences, we also impose the attention layers to extract important words and
sentences with the attention mechanism, and derive their weighted average as document

representations.

2.6 EXPERIMENTS

In this section, we evaluate the empirical performance of our method for weakly supervised

text classification.

2.6.1 Datasets

We use three corpora from different domains to evaluate the performance of our proposed
method: (1) The New York Times (NYT): We crawl 13,081 news articles using the New
York Times API3. This corpus covers 5 major news topics; (2) AG’s News (AG): We use

3http://developer.nytimes.com/

13



the same AG’s News dataset from [45] and take its training set portion (120,000 documents
evenly distributed into 4 classes) as the corpus for evaluation; (3) Yelp Review (Yelp):
We use the Yelp reviews polarity dataset from [45] and take its testing set portion (38,000

documents evenly distributed into 2 classes) as the corpus for evaluation.

2.6.2 Baselines

We compare WeSTClass with a wide range of baseline models, described as follows.

e IR with tf-idf: this method accepts either label surface name or class-related
keywords as supervision. We treat the label name or keyword set for each class as a
query, and score the relevance of document to this class using the tf-idf model. The

class with highest relevance score is assigned to the document.

e Topic Model: this method accepts either label surface name or class-related
keywords as supervision. We first train the LDA model [4] on the entire corpus. Given
a document, we compute the likelihood of observing label surface names or the average
likelihood of observing class-related keywords. The class with maximum likelihood will

be assigned to the document.

e Dataless |7, 34]: this method * accepts only label surface name as supervision. It
leverages Wikipedia and uses Explicit Semantic Analysis [11] to derive vector represen-
tations of both labels and documents. The final document class is assigned based on

the vector similarity between labels and documents.

e UNEC [19]: this method takes label surface name as its weak supervision. It
categorizes documents by learning the semantics and category attribution of concepts

inside the corpus. We use the authors’ original implementation of this model.

e PTE [38]: this method ° uses labeled documents as supervision. It first utilizes
both labeled and unlabeled data to learn text embedding and then applies logistic

regression model as classifier for text classification.

e CNN [16]: the original CNN model is a supervised text classification model and we
extend it to incorporate all three types of supervision sources. If labeled documents
are given, we directly train CNN model on the given labeled documents and then apply

it on all unlabeled documents. If label surface names or class-related keywords

‘https://cogcomp.org/page/software_view/Descartes
Shttps://github.com/mnqu/PTE

14



are given, we first use the above “IR with tf-idf” or “Topic Modeling” method (depending
on which one works better) to label all unlabeled documents. Then, we select /3 labeled
documents per class to pre-train CNN. Finally, we apply the same self-training module

as described in Section 2.5 to obtain the final classifier.

e HAN [42]: similar to the above CNN model, we extend the original HAN model ¢ to

incorporate all three types of supervision sources.

e NoST-(CNN/HAN): this is a variant of WeST Class without the self-training module,
i.e., after pre-training CNN or HAN with pseudo documents, we directly apply it to

classify unlabeled documents.

e WeSTClass-(CNN/HAN): this is the full version of our proposed framework, with

both pseudo-document generator and self-training module enabled.

2.6.3 Experiment Settings

We first describe our parameter settings as follows. For all datasets, we use the Skip-Gram
model [24] to train 100-dimensional word embeddings on the corresponding corpus. We set
the background word distribution weight o = 0.2, the number of pseudo documents per class
for pre-training 5 = 500, the size of class-specific vocabulary v = 50 and the self-training
stopping criterion § = 0.1.

We apply our proposed framework on two types of state-of-the-art text classification neural
models: (1) CNN model, whose filter window sizes are 2,3, 4,5 with 20 feature maps each.
(2) HAN model, which uses a forward GRU with 100 dimension output for both word and
sentence encoding. Both the pre-training and the self-training steps are performed using
SGD with batch size 256.

The seed information we use as weak supervision for different datasets are described as
follows: (1) When the supervision source is label surface name, we directly use the label
surface names of all classes; (2) When the supervision source is class-related keywords,
we manually choose 3 keywords which do not include the class label name for each class. The
selected keywords are shown in Tables 2.1, and we evaluate how our model is sensitive to
such seed keyword selection in Section 2.6.6; (3) When the supervision source is labeled
documents, we randomly sample ¢ documents of each class from the corpus (¢ = 10 for
The New York Times and AG’s News; ¢ = 20 for Yelp Review) and use them as the

Shttps://github.com/richliao/textClassifier

15



given labeled documents. To alleviate the randomness, we repeat the document selection

process 10 times and show the performances with average and standard deviation values.

Table 2.1: Seed keywords on NYT, AG, and Yelp.

Dataset Class Keyword List
Politics {democracy, religion, liberal}
Arts {music, movie, dance}
NYT Business  {investment, economy, industry}
Science {scientists, biological, computing}
Sports {hockey, tennis, basketball}
Politics {government, military, war}
AC Sports {basketball, football, athletes}
Business {stocks, markets, industries}
Technology  {computer, telescope, software}
AC Good {terrific, great, awesome}
Bad {horrible, disappointing, subpar}

2.6.4 Experiment Results

In this subsection, we report our experimental results and our findings.

Overall Text Classification Performance

In the first set of experiments, we compare the classification performance of our method
against all the baseline methods on the three datasets. Both macro-F1 and micro-F1 metrics
are used to quantify the performance of different methods.

As shown in Table 2.2, our proposed framework achieves the overall best performances
among all the baselines on three datasets with different weak supervision sources. Specifically,
in almost every case, WeSTClass-CNN yields the best performance among all methods;
WeSTClass-HAN performs slightly worse than WeST Class-CNN but still outperforms other

baselines. We discuss the effectiveness of WeSTClass from the following aspects:

1. When labeled documents are given as the supervision source, the standard deviation

values of WeSTClass-CINN and WeSTClass-HAN are smaller than those of CNN
and HAN, respectively. This shows that WeSTClass can effectively reduce the seed
sensitivity and improve the robustness of CNN and HAN models.

16



(L£0°0) 92270 9180 L0 (200°0) T#8°0 €280 €280 (L000) T16°0 2160 9T6'0  NND-SSe[D 1S
(0¥0°0) 62L°0 LELO 1.0 (820°0) 28L°0 7z80 9180 (610°0) 8060 6580 1060  NVH-SseDLSeM
(020°0) S2L0 06270 1290 (1£0°0) €92°0 9920 €6e’0  (£10°0) 80670 08L°0 L9L°0 NND-LSON
(990°0) 869°0 z0s’0 07L0  (L£0°0) VL0 9¢L°0 6190 (120°0) 906°0 9.9°0 8820 NVH-LSON
(290°0) 2990 9%9°0 ves 0 ($20°0) 69L°0 1LL°0 6¢L°0  (S80°0) 86L0 029°0 9¥Z°0 NND
(270°0) 069°0 €790 0gs0  (620°0) €€L°0 619°0 0050 (820°0) 6¥8°0 g65°0 162°0 NVH
(620° 8 7290 (1€0° e 960 (020°0) 906°0 ALd
- €090 - 899°0 - 018°0 DANN
- 0050 - 669°0 - 010 ssofee(
- 0050 0050 - GeL’0 ¥8S°0 - €290 999°0 [opogy 21dof,
- 2890 8750 - €ee0 2620 - 97€0 0FZ'0  JPIJY UHm ]
SOOAd SAYOMAAM STAIVT SO0d SAUYOMAAM STAIVT SO0d SAYOMAAM STAIV'T
moaraay dex SMaN] SOV SOUILT, IOX MIN OYT, SPOYJ9IA
(L£0°0) GLLO 9180 geL’ 0 (L00°0) 6€8°0 128°0 2280 (0T0°0) 9€8°0 L€8°0 088°0  NND-Se|DLSM
(0%0°0) 62270 9¢L°0 69L°0  (820°0) Z8L0 028°0 918'0  (820°0) 2€8°0 0%9°0 ¥GL0  NVH-SSe|DLSM
(8¢0°0) L1270 0vL0 6¢9°0  (2€0°0) 65L0 65L°0 ves 0 (€10°0) €€8°0 z0L0 10L°0 NND-LSON
(060°0) 289°0 8€€°0 1620 (8€0°0) S¥L°0 L2L0 0650  (5£0°0) €28°0 e1z0 gIGg0 NVH-LSON
(960°0) ¥£9°0 €€9°0 eze0  (920°0) 9940 0LL°0 8.0 (650°0) T0L0O z€9°0 8€€°0 NND
(9%0°0) 989°0 1€9°0 61¢0  (620°0) TEL0 129°0 8670 (650°0) 0FL0 7650 ’F€°0 NVH
(2¥0°0) 859°0 (620°0) 2¥S°0 (¥20°0) ¥£8°0 ALd
- 2090 - 659°0 - 0690 DANN
- - LEE0 - - 889°0 - - Y810 ssafeye(]
- €eeo €eeo - €2L°0 9670 - €620 10€°0 [epoy otdof,
- 8€9°0 €ea0 - 8GZ°0 L8T°0 - 60<°0 6T€°0  JPIJI UM Y[
SOOd SAYOMAHM STAIVT SO0d SAYOMAAM STAIVT SO0d SAYOMAAM STAIV'T
ma1Ay dex SMAN] SOV SOWIL], JIOX MOIN OYT, SPOYI9IA

‘A[A1)00dsor ‘syuomnoop
pofeqe] pur ‘SPIOMADY POJR[DI-SSR[D ‘OmRU 90RJINS [o(R] ST HoIsIAIdns poods Jo odA) o) sueowt §OO PU® ‘SAMOMAHAM
‘STHIV'TT 'S1esejep 921} UO SPOYIaW [[e I0] (|[qe) IoMO[) S8I00s TJ-0II[\ pue (9[qe) Ioddn) se100s T J-0I0RIN :g'g °[RL

17



2. When the supervision source is label surface name or class-related keywords, we
can see that WeSTClass-CINN and WeSTClasss-HAN outperform CNN and HAN,
respectively. This demonstrates that pre-training with generated pseudo documents
results in a better neural model initialization compared to pre-training with documents
that are labeled using either IR with tf-idf or Topic Modeling.

3. WeSTClass-CNN and WeSTClass-s-HAN always outperform NoST-CNN and NoST-
HAN, respectively. Note that the only difference between WeST Class-CININ /WeST Class-
HAN and NoST-CNN/NoST-HAN is that the latter two do not include the self-
training module. The performance gaps between them thus clearly demonstrate the

effectiveness of our self-training module.

Effect of self-training module

In this set of experiments, we conduct more experiments to study the effect of self-training
module in WeSTClass, by investigating the performance of difference models as the number
of iterations increases. The results are shown in Figure 2.2. We can see that the self-training
module can effectively improve the model performance after the pre-training step. Also, we
find that the self-training module generally has the least effect when supervision comes from
labeled documents. One possible explanation is that when labeled documents are given, we
will use both pseudo documents and provided labeled documents to pre-train the neural
models. Such mixture training can often lead to better model initialization, compared to
using pseudo documents only. As a result, there is less room for self-training module to make

huge improvements.

18



—— Labels —— Keywords Docs

0.90 1

0.85 1

0.80 1

F1 scores

0.75 1

0.70
0 200 400 600 800 1000
Iterations

(a) WeSTClass-CNN — New York Times

F1 scores

0 200 400 600 800 1000 1200
Iterations

(¢) WeSTClass-CNN — AG’s News

0 200 400 600 800 1000 1200 1400
Iterations

(e) WeSTClass-CNN — Yelp Review

---- Micro-F1 —— Macro-F1

_____
-
-

.
o
)

\
\

S o o9
S N 00 ©
A
AY \

F1 scores
\
\
\
\

o2
ISCIINN
A

\

<
)
I\

0 100 200 300 400 500 600
Iterations

(b) WeSTClass-HAN — New York Times

0.82
0.80 1
0.78 1

0 500 1000 1500 2000 2500 3000
Iterations

(d) WeSTClass-HAN — AG’s News

0.8 o

F1 scores

0 200 400 600 800 1000 1200 1400
Iterations

(f) WeSTClass-HAN — Yelp Review

Figure 2.2: Effect of self-training modules on three datasets.



Effect of the number of labeled documents

When weak supervision signal comes from labeled documents, the setting is similar to
semi-supervised learning except that the amount of labeled documents is very limited. In
this set of experiments, we vary the number of labeled documents per class and compare the
performances of five methods on the AG’s News dataset: CNN, HAN, PTE, WeST Class-
CNN and WeSTClasssHAN. Again, we run each method 10 times with different sets of
labeled documents, and report the average performances with standard deviation (represented
as error bars) in Figure 2.3. We can see that when the amount of labeled documents is
relatively large, the performances of the five methods are comparable. However, when
fewer labeled documents are provided, PTE, CNN and HAN not only exhibit obvious
performance drop, but also become very sensitive to the seed documents. Nevertheless,
WeST Class-based models, especially WeST Class-CNN, yield stable performance with varying
amount of labeled documents. This phenomenon shows that our method can more effectively

take advantage of the limited amount of seed information to achieve better performance.

0.851 4t PE——

0.801 | |
8
5 0.751
b

- 0.70

T —e— CNN

o

5 0.65 HAN

= 0.60 1 —— PTE

—e— WeSTClass-CNN

0.55 WeSTClass-HAN
0.50

10 20 30 10 50
Number of labeled documents per class

Figure 2.3: The performances of different methods on AG’s News dataset when the number
of labeled documents varies.

2.6.5 Parameter Study

In this section, we study the effects of different hyperparameter settings on the performance
of WeSTClass with CNN and HAN models, including (1) background word distribution weight
a, (2) number of generated pseudo documents [ for pre-training and (3) keyword vocabulary
size 7y used in equation (2.1) where v = |V;,|. When studying the effect of one parameter, the
other parameters are set to their default values as described in Section 2.6.3 . We conduct

all the parameter studies on the AG’s News dataset.

20



Background Word Distribution Weight

The background word distribution weight « is used in both the language model for
pseudo documents generation and pseudo-labels computation. When a becomes smaller,
the generated pseudo documents contain more topic-related words and fewer background
words, and the pseudo-labels become similar to one-hot encodings. We vary « from 0 to
1 with interval equal to 0.1. The effect of « is shown in Figure 2.4. Overall, different «
values result in comparable performance, except when « is close to 1, pseudo documents
and pseudo-labels become uninformative: pseudo documents are generated directly from
background word distribution without any topic-related information, and pseudo-labels are
uniform distributions. We notice that when a = 1, labeled documents as supervision
source results in much better performance than label surface name and class-related
keywords. This is because pre-training with labeled documents is performed using both
pseudo documents and labeled documents, and the provided labeled documents are still
informative. When « is close to 0, the performance is slightly worse than other settings,
because pseudo documents only contain topic-related keywords and pseudo-labels are one-hot
encodings, which can easily lead to model overfitting to pseudo documents and behaving

worse on real documents classification.

08 = 0.8 /¢‘\7‘§’=:
0.7 1
8 0.7,
§ 0] § 0.6 1
i T 0.51
© 0.5 S04+
2 —— Labels 2 —e— Labels
= 0.4+ = 0.3
: —— Keywords ’ —— Keywords
0.3 Docs 0.21 Docs
0.0 0.1 02 03 04 05 0.6 0.7 0.8 0.9 L0 0'10‘0 01 02 03 04 05 0.6 0.7 0.8 09 10
Background weight Background weight
(a) WeSTClass-CNN (b) WeSTClass-HAN

Figure 2.4: Effect of background word distribution weight a.

Number of pseudo documents for pre-training

The effect of pseudo documents amount f is shown in Figure 2.5. We have the following
findings from Figure 2.5: On the one hand, if the amount of generated pseudo documents is
too small, the information carried in pseudo documents will be insufficient to pre-train a good

model. On the other hand, generating too many pseudo documents will make the pre-training

21



process unnecessarily long. Generating 500 to 1000 pseudo documents of each class for

pre-training will strike a good balance between pre-training time and model performance.

0.90

0.85 1

e

o

S
"

e
=
<

Micro-F1 scores
~
ot

I

=)

St
f

]l ——

Labels
—— Keywords

Docs

01 .
10 500

1000 2000
Number of pseudo-documents per class

(a) WeSTClass-CNN

0.90

0.85 1

—

e
o
S

e
=
=

Micro-F1 scores
~
ot

]l ——

—— Keywords

Labels

Docs

10 500 1000 2000
Number of pseudo-documents per class

(b) WeSTClass-HAN

Figure 2.5: Effect of pseudo documents amount per class § for pre-training.

Size of Keyword Vocabulary

Recall the pseudo document generation process in Section 2.4.2, after sampling a document
vector d;, we will first construct a keyword vocabulary V,, that contains the top-y words
with most similar word embedding with d;. The size of the keyword vocabulary + controls
the number of unique words that appear frequently in the generated pseudo documents. If v
is too small, only a few topical keywords will appear frequently in pseudo documents, which
will reduce the generalization ability of the pre-trained model. As shown in Figure 2.6, v can

be safely set within a relatively wide range from 50 to 500 in practice.

0.90

Micro-F1 scores
S o o o o
()] ~J ~J [0e) (o)
t [e=] ot o ot

0.60

]l ——

Labels
—— Keywords
Docs

10 100 200 500

Size of keyword vocabulary

(a) WeSTClass-CNN

0.90

e @

(03} [og

[en) (@
f

o
=~
<]

Micro-F1 scores
o
~
ot

o
=
St

0.60

| &

|/

]l ——

—— Keywords

o —

Labels

Docs

10100 200 500
Size of keyword vocabulary

(b) WeSTClass-HAN

Figure 2.6: Effect of keyword vocabulary size ~.



2.6.6 Case Study

In this subsection, we perform a set of case studies to further understand the properties of

our proposed method.

Table 2.3: Keyword Lists at Top Percentages of Average Tf-idf.

Class 1% 5% 10%
Politics  {government, president, minister} {mediators, criminals, socialist} {suspending, minor, lawsuits}
Sports {game, season, team} {judges, folks, champagne} {challenging, youngsters, stretches}
Business {profit, company, sales} {refunds, organizations, trader} {winemaker, skilling, manufactured}
Technology {internet, web, microsoft} {biologists, virtually, programme}  {demos, microscopic, journals}

Choice of Seed Keywords

In the first set of case studies, we are interested in how sensitive our model is to the selection
of seed keywords. In Section 2.6.3, we manually select class-related keywords, which could
be subjective. Here we explore the sensitivity of WeSTClasss-CNN and WeSTClass-sHAN
to different sets of seed keywords. For each class j of AG’s News dataset, we first collect
all documents belonging to class j, and then compute the tf-idf weighting of each word in
each document of class j. We sort each word’s average tf-idf weighting in these documents
from high to low. Finally we form the seed keyword lists by finding words that rank at top
1% (most relevant), 5% and 10% based on the average tf-idf value. The keywords of each
class at these percentages are shown in Table 2.3; the performances of WeSTClass-CNIN
and WeSTClasssHAN are shown in Figure 2.7. At top 5% and 10% of the average tf-idf
weighting, although some keywords are already slightly irrelevant to their corresponding
class semantic, WeSTClass-CNN and WeSTClass-HAN still perform reasonably well, which

shows the robustness of our proposed framework to different sets of seed keywords.

1.0
I WeSTClass-CNN
0.8 [ WeSTClass-HAN
8
8 0.6
i
oy
'g 0.4
=
0.2

1.0 5.0 10.0
TF-IDF Top Percentage (%)

Figure 2.7: Performances on AG’s News dataset under different sets of seed keywords.

23



Self-training Corrects Misclassification

In the second set of case studies, we are interested in how the self-training module behaves
to improve the performance of our model. Figure 2.8 shows WeSTClass-CNN’s prediction
with label surface name as supervision source on a sample document from AG’s News
dataset: The national competition requlator has elected not to oppose Telstra’s 3G radio
access network sharing arrangement with rival telco Hutchison. We notice that this document
is initially misclassified after the pre-training procedure, but it is then corrected by the
subsequent self-training step. This example shows that neural models have the ability of

self-correcting by learning from its high-confidence predictions with appropriate pre-training

initialization.
2 08 —— Politics
E . — Spo‘rts
o —
2 0.6- Business
s Technology
B 0.4
o
L
o 0.2
1%
o
O
0.0

200 400 600 800 1000
Iterations

o L

Figure 2.8: Class prediction probability during self-training procedure for a sample document.

2.7 SUMMARY

In this chapter, we have proposed a weakly-supervised text classification method built
upon neural classifiers. With (1) a pseudo document generator for generating pseudo training
data and (2) a self-training module that bootstraps on real unlabled data for model refining,
our method effectively addresses the key bottleneck for existing neural text classifiers—the
lack of labeled training data. Our method is not only flexible in incorporating difference
sources of weak supervision (class label surface names, class-related keywords, and labeled
documents), but also generic enough to support different neural models (CNN and RNN). Our
experimental results have shown that our method outperforms baseline methods significantly,
and it is quite robust to different settings of hyperparameters and different types of user-
provided seed information. An interesting finding based on the experiments in Section 2.6 is
that different types of weak supervision are all highly helpful for the good performances of
neural models. In the future, it is interesting to study how to integrate different types of

seed information to further boost the performance of our method.

24



CHAPTER 3: WEAKLY-SUPERVISED HIERARCHICAL TEXT
CLASSIFICATION

When the categories of a target corpus exhibit hierarchical structures, it is highly desirable
to organize text documents into the class taxonomy instead of performing flat classification.
In this chapter, we introduce how to extend our previous weakly-supervised text classification

approach to hierarchical settings, for enabling multi-granular document classification.

3.1 OVERVIEW

Hierarchical text classification aims at classifying text documents into classes that are
organized into a hierarchy. Traditional flat text classifiers (e.g., SVM, logistic regression)
have been tailored in various ways for hierarchical text classification. Early attempts [6]
disregard the relationships among classes and treat hierarchical classification tasks as flat
ones. Later approaches |9, 20, 5] train a set of local classifiers and make predictions in
a top-down manner, or design global hierarchical loss functions that regularize with the
hierarchy. Most existing efforts for hierarchical text classification rely on traditional text
classifiers. Recently, deep neural networks have demonstrated superior performance for flat
text classification. Compared with traditional classifiers, deep neural networks [16, 42| largely
reduce feature engineering efforts by learning distributed representations that capture text
semantics. Meanwhile, they provide stronger expressive power over traditional classifiers,
thereby yielding better performance when large amounts of training data are available.

Motivated by the enjoyable properties of deep neural networks, we explore using deep
neural networks for hierarchical text classification. Despite the success of deep neural models
in flat text classification and their advantages over traditional classifiers, applying them to
hierarchical text classification is nontrivial because of two major challenges. The first challenge
is that the training data deficiency prohibits neural models from being adopted. Neural models
are data hungry and require humans to provide tons of carefully-labeled documents for good
performance. In many practical scenarios, however, hand-labeling excessive documents often
requires domain expertise and can be too expensive to realize. The second challenge is to
determine the most appropriate level for each document in the class hierarchy. In hierarchical
text classification, documents do not necessarily belong to leaf nodes and may be better
assigned to intermediate nodes. However, there are no simple ways for existing deep neural
networks to automatically determine the best granularity for a given document.

We present a neural approach named WeSHClass [23|, for Weakly-Supervised Hierarchical

Text Classification and address the above two challenges. Our approach is built upon

25



deep neural networks, yet it requires only a small amount of weak supervision instead of
excessive training data. Such weak supervision can be either a few (e.g., less than a dozen)
labeled documents or class-correlated keywords, which can be easily provided by users. To
leverage such weak supervision for effective classification, our approach employs a novel
pretrain-and-refine paradigm. Specifically, in the pre-training step, we leverage user-provided
seeds to learn a spherical distribution for each class, and then generate pseudo documents
from a language model guided by the spherical distribution. In the refinement step, we
iteratively bootstrap the global model on real unlabeled documents, which self-learns from
its own high-confident predictions.

WeSHClass automatically determines the most appropriate level during the classification
process by explicitly modeling the class hierarchy. Specifically, we pre-train a local classifier
at each node in the class hierarchy, and aggregate the classifiers into a global one using
self-training. The global classifier is used to make final predictions in a top-down recursive
manner. During recursive predictions, we introduce a novel blocking mechanism, which
examines the distribution of a document over internal nodes and avoids mandatorily pushing
general documents down to leaf nodes.

Below is an overview of this chapter:

1. We design a method for hierarchical text classification using neural models under weak
supervision. WeSHClass does not require large amounts of training documents but just
easy-to-provide word-level or document-level weak supervision. In addition, it can be

applied to different classification types (e.g., topics, sentiments).

2. We present a pseudo document generation module that generates high-quality training
documents only based on weak supervision sources. The generated documents serve as
pseudo training data which alleviate the training data bottleneck together with the

subsequent self-training step.

3. We present a hierarchical neural model structure that mirrors the class taxonomy and
its corresponding training method, which involves local classifier pre-training and global
classifier self-training. The entire process is tailored for hierarchical text classification,
which automatically determines the most appropriate level of each document with a

novel blocking mechanism.

4. We conduct a thorough evaluation on three real-world datasets from different domains
to demonstrate the effectiveness of WeSHClass. We also perform several case studies to

understand the properties of different components in WeSHClass.

26



3.2 RELATED WORK

3.2.1 Weakly-Supervised Text Classification

There exist some previous studies that use either word-based supervision or limited amount
of labeled documents as weak supervision sources for the text classification task. WeSTClass
[22] leverages both types of supervision sources. It applies a similar procedure of pre-training
the network with pseudo documents followed by self-training on unlabeled data. Descriptive
LDA [8] applies an LDA model to infer Dirichlet priors from given keywords as category
descriptions. The Dirichlet priors guide LDA to induce the category-aware topics from
unlabeled documents for classification. [12| propose to encode prior knowledge and indirect
supervision in constraints on posteriors of latent variable probabilistic models. Predictive
text embedding [38] utilizes both labeled and unlabeled documents to learn text embedding
specifically for a task. Labeled data and word co-occurrence information are first represented
as a large-scale heterogeneous text network and then embedded into a low dimensional space.
The learned embedding are fed to logistic regression classifiers for classification. None of the

above methods are specifically designed for hierarchical classification.

3.2.2 Hierarchical Text Classification

There have been efforts on using SVM for hierarchical classification. [9, 20| propose to use
local SVMs that are trained to distinguish the children classes of the same parent node so
that the hierarchical classification task is decomposed into several flat classification tasks. [5]
define hierarchical loss function and apply cost-sensitive learning to generalize SVM learning
for hierarchical classification. A graph-CNN based deep learning model is proposed in 28|
to convert text to graph-of-words, on which the graph convolution operations are applied
for feature extraction. FastXML [29] is designed for extremely large label space. It learns
a hierarchy of training instances and optimizes a ranking-based objective at each node of
the hierarchy. The above methods rely heavily on the quantity and quality of training data
for good performance, while WeSHClass does not require much training data but only weak
supervision from users.

Hierarchical dataless classification [34] uses class-related keywords as class descriptions, and
projects classes and documents into the same semantic space by retrieving Wikipedia concepts.
Classification can be performed in both top-down and bottom-up manners, by measuring the
vector similarity between documents and classes. Although hierarchical dataless classification

does not rely on massive training data as well, its performance is highly influenced by the

27



text similarity between the distant supervision source (Wikipedia) and the given unlabeled

corpus.

3.3 PROBLEM FORMULATION

We study hierarchical text classification that involves tree-structured class categories.
Specifically, each category can belong to at most one parent category and can have arbitrary
number of children categories. Following the definition in [31]|, we consider non-mandatory
leaf prediction, wherein documents can be assigned to both internal and leaf categories in
the hierarchy.

Traditional supervised text classification methods rely on large amounts of labeled docu-
ments for each class. In this chapter, we focus on text classification under weak supervision.
Given a class taxonomy represented as a tree T, we ask the user to provide weak supervision
sources (e.g., a few class-related keywords or documents) only for each leaf class in 7. Then
we propagate the weak supervision sources upwards in 7 from leaves to root, so that the
weak supervision sources of each internal class are an aggregation of weak supervision sources
of all its descendant leaf classes. Specifically, given M leaf node classes, the supervision for

each class comes from one of the following:

1. Word-level supervision: S = {S;}|}L,, where Sj = {wj1, ..., w;:} represents a set of k

keywords correlated with class C};

2. Document-level supervision: D" = {D}}|}L,, where D} = {Dj,,...,D;;} denotes a

small set of | (I < corpus size) labeled documents in class C}.

Now we are ready to formulate the hierarchical text classification problem. Given a text
collection D = {Dy,..., Dy}, a class category tree T, and weak supervisions of either S or
DL for each leaf class in 7T, the weakly-supervised hierarchical text classification task aims to
assign the most likely label C; € T to each D; € D, where C; could be either an internal or

a leaf class.

3.4 PSEUDO DOCUMENT GENERATION

To break the bottleneck of lacking abundant labeled data for model training, we leverage
user-given weak supervision to generate pseudo documents, which serve as pseudo training
data for model pre-training. In this section, we first introduce how to leverage weak supervision
sources to model class distributions in a spherical space, and then explain how to generate

class-specific pseudo documents based on class distributions and a language model.

28



3.4.1 Modeling Class Distribution

We model each class as a high-dimensional spherical probability distribution which has been
shown effective for various tasks [43]. We first train Skip-Gram model mikolov2013distributed
to learn d-dimensional vector representations for each word in the corpus. Since directional
similarities between vectors are more effective in capturing semantic correlations |2, 17|, we
normalize all the d-dimensional word embeddings so that they reside on a unit sphere in R%.
For each class C; € T, we model the semantics of class C; as a mixture of von Mises Fisher
(movMF) distributions |2, 13] in R%:

flx|O)= Zahfh(m | o, k) = Zahcd(ﬁh)enhufm’
h=1 h=1

where © = {aq, ..., qm, b1, o, K1y - Em ), YR € {1,...,m}, K > 0, ||pn|| = 1, and
the normalization constant cq4(ky) is given by

d/2—1
Ky

27T)d/2_[d/2,1 (I{h) ’

Cd(lih) = (

where [,.(-) represents the modified Bessel function of the first kind at order . We choose

the number of components in movMF for leaf and internal classes differently:

e For cach leaf class C}, we set the number of vMF component m = 1, and the resulting
movMF distribution is equivalent to a single vMF distribution, whose two parameters,
the mean direction g and the concentration parameter k, act as semantic focus and

concentration for Cj.

e For each internal class C;, we set the number of vMF component m to be the number
of its children classes. Recall that we only ask the user to provide weak supervision
sources at the leaf classes, and the weak supervision source of C; are aggregated from
its children classes. The semantics of a parent class can thus be seen as a mixture of

the semantics of its children classes.

We first retrieve a set of keywords for each class given the weak supervision sources, then fit
movMF distributions using the embedding vectors of the retrieved keywords. Specifically, the
set of keywords are retrieved as follows: (1) When users provide related keywords S; for each
class j, we use the average embedding of these seed keywords to find top-n closest keywords
in the embedding space; (2) When users provide documents D that are correlated with class

J, we extract n representative keywords from D]-L using tf-idf weighting. The parameter n

29



above is set to be the largest number that does not result in shared words across different
classes. Compared to directly using weak supervision signals, retrieving relevant keywords
for modeling class distributions has a smoothing effect which makes our model less sensitive
to the weak supervision sources.

Let X be the set of embeddings of the n retrieved keywords on the unit sphere, i.e.,
X = {x; € RY| a; drawn from f(x | ©),1 <i < n},

we use the Expectation Maximization (EM) framework [2] to estimate the parameters © of
the movMF distributions:

e E-step:
(t) B ()
Do g fur (@i | s Ky )
where Z = {21, ..., z,} is the set of hidden random variables that indicate the particular

vMF distribution from which the points are sampled;

o M-step:

n

1
al™ = =3 " pley = | 2, 0),

n
i=1

”’;(LHI) = ZP(% =h| i, @(t))wz‘,
i=1

(t+1)
u(t+1)_ ry
h - t+1),,’
[
t+1 1
Lip(si™Y) ]

Ly (60Y) T p(z = h | 2:,00)

where we use the approximation procedure based on Newton’s method [2] to derive
an approximation of n}f“’ because the implicit equation makes obtaining an analytic

solution infeasible.

3.4.2 Language Model Based Document Generation

After obtaining the distributions for each class, we use an LSTM-based language model
[36] to generate meaningful pseudo documents. Specifically, we first train an LSTM language

model on the entire corpus. To generate a pseudo document of class C;, we sample an

30



embedding vector from the movMF distribution of C; and use the closest word in embedding
space as the beginning word of the sequence. Then we feed the current sequence to the
LSTM language model to generate the next word and attach it to the current sequence
recursively !. Since the beginning word of the pseudo document comes directly from the
class distribution, the generated document is ensured to be correlated to C;. By virtue of
the mixture distribution modeling, the semantics of every children class (if any) of C; gets a
chance to be included in the pseudo documents, so that the resulting trained neural model

will have better generalization ability.

3.5 THE HIERARCHICAL CLASSIFICATION MODEL

In this section, we introduce the hierarchical neural model and its training method under

weakly-supervised setting.

3.5.1 Local Classifier Pre-Training

We construct a neural classifier M, (M, could be any text classifier such as CNNs or
RNNs) for each class C, € T if C, has two or more children classes. Intuitively, the
classifier M), aims to classify the documents assigned to C, into its children classes for more
fine-grained predictions. For each document D;, the output of M, can be interpreted as
p(D; € C. | D; € C,), the conditional probability of D; belonging to each children class C, of
C,, given D; is assigned to C,,.

The local classifiers perform local text classification at internal nodes in the hierarchy, and
serve as building blocks that can be later ensembled into a global hierarchical classifier. We
generate [ pseudo documents per class and use them to pre-train local classifiers with the
goal of providing each local classifier with a good initialization for the subsequent self-training
step. To prevent the local classifiers from overfitting to pseudo documents and performing
badly on classifying real documents, we use pseudo labels instead of one-hot encodings in
pre-training. Specifically, we use a hyperparameter o that accounts for the “noises” in pseudo
documents, and set the pseudo label I} for pseudo document D} (we use D} instead of D; to

denote a pseudo document) as

. (1 — )+ a/m D} is generated from class j (3.1)
N a/m otherwise

'In case of long pseudo documents, we repeatedly generate several sequences and concatenate them to
form the entire document.

31



where m is the total number of children classes at the corresponding local classifier. After
creating pseudo labels, we pre-train each local classifier M, of class C, using the pseudo
documents for each children class of C),, by minimizing the KL divergence loss from outputs
Y of M, to the pseudo labels £*, namely

loss = KL(L*||Y) = ZZ[ log

3.5.2  Global Classifier Self-Training

At each level k in the class taxonomy, we need the network to output a probability
distribution over all classes. Therefore, we construct a global classifier G by ensembling
all local classifiers from root to level k. The ensemble method is shown in Figure 3.1. The
multiplication operation conducted between parent classifier output and children classifier

output can be explained by the conditional probability formula:

p(Dz € CC) = p(D, € Cc N Dz & Cp)
=p(D; € C. | D; € Cp)p(D; € Cp),

where D; is a document; C, is one of the children classes of C},. This formula can be recursively
applied so that the final prediction is the multiplication of all local classifiers’ outputs on the
path from root to the destination node.

Greedy top-down classification approaches will propagate misclassifications at higher levels
to lower levels, which can never be corrected. However, the way we construct the global
classifier assigns documents soft probability at each level, and the final class prediction is made
by jointly considering all classifiers’ outputs from root to the current level via multiplication,
which gives lower-level classifiers chances to correct misclassifications made at higher levels.

At each level k of the class taxonomy, we first ensemble all local classifiers from root
to level k to form the global classifier Gi, and then use G}’s prediction on all unlabeled
real documents to refine itself iteratively. Specifically, for each unlabeled document D;, Gy
outputs a probability distribution y;; of D; belonging to each class j at level k, and we set

pseudo labels to be [40]:
e _ yiil I
RS0

where f; = . y;; is the soft frequency for class j.

(3.2)

The pseudo labels reflect high-confident predictions, and we use them to guide the fine-

32



Level 0 (Root)
Local Classifier

p(D; € Politics) = 0.05 p(D; € Sports) = 0.95
Level 1 (Politics) Level 1 (Sports)
Local Classifier Local Classifier
\ L0
0.34 \ 0.66 01,704l 08 .
””/ 3 /, \“\\\\
'\/ Level 2 Level 2 Level 2 Level 2 Level 2 ,:
\\ [ (Military) } [(Gun Control)} [(Hockey)} [ (Tennis) } [(Basketball)} )
4 y
p(D; € Military|D; € Politics) = 0.34 p(D; € Basketball|D; € Sports) = 0.8
p(D; € Military) = 0.05 x 0.34 = 0.017 p(D; € Basketball) = 0.95 x 0.8 = 0.76

Figure 3.1: Ensemble of local classifiers.

tuning of Gy, by iteratively (1) computing pseudo labels £** based on G}’s current predictions
Y and (2) minimizing the KL divergence loss from ) to £**. This process terminates when
less than 0% of the documents in the corpus have class assignment changes. Since G}, is
the ensemble of local classifiers, they are fine-tuned simultaneously via back-propagation
during self-training. We will demonstrate the advantages of using global classifier over greedy

approaches in the experiments.

3.5.3 Blocking Mechanism

In hierarchical classification, some documents should be classified into internal classes
because they are more related to general topics rather than any of the more specific topics,
which should be blocked at the corresponding local classifier from getting further passed to
children classes.

When a document D; is classified into an internal class C;, we use the output g of Cj’s
local classifier to determine whether or not D; should be blocked at the current class: if
q is close to a one-hot vector, it strongly indicates that D, should be classified into the

corresponding child; if g is close to a uniform distribution, it implies that D; is equally

33



relevant or irrelevant to all the children of C; and thus more likely a general document.
Therefore, we use normalized entropy as the measure for blocking. Specifically, we will block

D; from being further passed down to C}’s children if

(] l 1 ] .
1Ogm2q 0gqi > 7 (3.3)
where m > 2 is the number of children of C}j; 0 <y <1 is a threshold value. When v =1,

no documents will be blocked and all documents are assigned into leaf classes.

3.5.4 Inference

The hierarchical classification model can be directly applied to classify unseen samples
after training. When classifying an unseen document, the model will directly output the
probability distribution of that document belonging to each class at each level in the class
hierarchy. The same blocking mechanism can be applied to determine the appropriate level

that the document should belong to.

3.5.5 Algorithm Summary

Algorithm 3.1 puts the above pieces together and summarizes the overall model training
process for hierarchical text classification. As shown, the overall training is proceeded
in a top-down manner, from root to the final internal level. At each level, we generate
pseudo documents and pseudo labels to pre-train each local classifier. Then we self-train the
ensembled global classifier using its own predictions in an iterative manner. Finally we apply
blocking mechanism to block general documents, and pass the remaining documents to the

next level.

3.6 EXPERIMENTS

3.6.1 Experiment Settings

Datasets and Evaluation Metrics

We use three corpora from three different domains to evaluate the performance of our

proposed method:

34



Algorithm 3.1: Overall Network Training.

1 Input: A text collection D = {D;}|Y,; a class category tree T; weak supervisions W
of either S or D for each leaf class in 7.
2 Output: Class assignment C = {(D;, C;)}X,, where C; € T is the most specific class
label for D;.
Initialize C < ()
for k < 0 to max_level — 1 do
N <« all nodes at level k of T
for node € N do
D* < Pseudo document generation
L* < Equation (3.1)
pre-train node.classi fier with D*, L*
end for
(). + ensemble all classifiers from level 0 to &
while not converged do
L+ Equation (3.2)
self-train Gy with D, £L**
end while
Dp < documents blocked based on Equation (3.3)
Cp < Dp’s current class assignments
C+Cu (DB, C B)
D+ D—Dp
end for
C' <+ D’s current class assignments
C«+Cu(D,C)
Return C

e The New York Times (NYT): We crawl 13,081 news articles using the New York

Times API 2. This news corpus covers 5 super-categories and 25 sub-categories.

e arXiv: We crawl paper abstracts from arXiv website® and keep all abstracts that
belong to only one category. Then we include all sub-categories with more than 1,000
documents out of 3 largest super-categories and end up with 230, 105 abstracts from 53

sub-categories.

e Yelp Review: We use the Yelp Review Full dataset [45] and take its testing portion
as our dataset. The dataset contains 50,000 documents evenly distributed into 5
sub-categories, corresponding to user ratings from 1 star to 5 stars. We consider 1 and

2 stars as “negative”, 3 stars as “neutral”, 4 and 5 stars as “positive”, so we end up with

Zhttp://developer.nytimes.com/
3https://arxiv.org/

35



3 super-categories.

Table 3.1 provides the statistics of the three datasets. We use Micro-F1 and Macro-F1

scores as metrics for classification performances.

Table 3.1: Dataset Statistics.

# classes
Corpus (level 1 + level 2) # docs  Avg. doc length
NYT 5+ 25 13,081 778
arXiv 3+53 230,105 129
Yelp Review 345 50, 000 157

Baselines

We compare our proposed method with a wide range of baseline models, described as

below:

4 can only take word-

e Hier-Dataless [34]: Dataless hierarchical text classification
level supervision sources. It embeds both class labels and documents in a semantic
space using Explicit Semantic Analysis [11] on Wikipedia articles, and assigns the
nearest label to each document in the semantic space. We try both the top-down
approach and bottom-up approach, with and without the bootstrapping procedure,

and finally report the best performance.

e Hier-SVM |9, 20]: Hierarchical SVM can only take document-level supervision
sources. It decomposes the training tasks according to the class taxonomy, where each

local SVM is trained to distinguish sibling categories that share the same parent node.

e CNN [16]: The CNN text classification model ® can only take document-level

supervision sources.

e WeSTClass [22]: Weakly-supervised neural text classification can take both word-
level and document-level supervision sources. It first generates bag-of-words pseudo

documents for neural model pre-training, then bootstraps the model on unlabeled data.

e No-global: This is a variant of WeSHClass without the global classifier, i.e., each

document is pushed down with local classifiers in a greedy manner.

‘https://github.com/CogComp/cogcomp-nlp/tree/master/dataless-classifier
Shttps://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras

36



e No-vMF': This is a variant of WeSHClass without using movMF distribution to model
class semantics, i.e., we randomly select one word from the keyword set of each class as

the beginning word when generating pseudo documents.

e No-selftrain: This is a variant of WeSHClass without self-training module, i.e., after
pre-training each local classifier, we directly ensemble them as a global classifier at each

level to classify unlabeled documents.

Parameter Settings

For all datasets, we use Skip-Gram model [24] to train 100-dimensional word embeddings
for both movMF distributions modeling and classifier input embeddings. We set the pseudo
label parameter o = 0.2, the number of pseudo documents per class for pre-training = 500,
and the self-training stopping criterion 6 = 0.1. We set the blocking threshold v = 0.9 for
NYT dataset where general documents exist and v = 1 for the other two.

Although our proposed method can use any neural model as local classifiers, we empirically
find that CNN model always results in better performances than RNN models, such as LSTM
[14] and Hierarchical Attention Networks [42]. Therefore, we report the performance of our
method by using CNN model with one convolutional layer as local classifiers. Specifically,
the filter window sizes are 2, 3, 4,5 with 20 feature maps each. Both the pre-training and the
self-training steps are performed using SGD with batch size 256.

Weak Supervision Settings

The seed information we use as weak supervision for different datasets are described as
follows: (1) When the supervision source is class-related keywords, we select 3 keywords
for each leaf class; (2) When the supervision source is labeled documents, we randomly
sample ¢ documents of each leaf class from the corpus (¢ = 3 for NYT and arXiv; ¢ = 10
for Yelp Review) and use them as given labeled documents. To alleviate the randomness,
we repeat the document selection process 10 times and show the performances with average
and standard deviation values.

We list the keyword supervisions of some sample classes for NYT dataset as follows:
Immigration (immigrants, immigration, citizenship); Dance (ballet, dancers, dancer);

Environment (climate, wildlife, fish).

37



3.6.2 Quantitative Comparision

We show the overall text classification results in Table 3.2. WeSHClass achieves the
overall best performance among all the baselines on the three datasets. Notably, when the
supervision source is class-related keywords, WeSHClass outperforms Hier-Dataless and
WeST Class, which shows that WeSHClass can better leverage word-level supervision sources
in hierarchical text classification. When the supervision source is labeled documents,
WeSHClass has not only higher average performance, but also better stability than the
supervised baselines. This demonstrates that when training documents are extremely limited,
WeSHClass can better leverage the insufficient supervision for good performances and is less
sensitive to seed documents.

Comparing WeSHClass with several ablations, No-global, No-vMF and No-self-train,
we observe the effectiveness of the following components: (1) ensemble of local classifiers,
(2) modeling class semantics as movMF distributions, and (3) self-training. The results

demonstrate that all these components contribute to the performance of WeSHClass.

3.6.3 Component-Wise Evaluation

In this subsection, we conduct a series of breakdown experiments on NYT dataset using
class-related keywords as weak supervision to further investigate different components in

our proposed method. We obtain similar results on the other two datasets.

Pseudo Documents Generation

The quality of the generated pseudo documents is critical to our model, since high-quality
pseudo documents provide a good model initialization. Therefore, we are interested in which
pseudo document generation method gives our model best initialization for the subsequent
self-training step. We compare our document generation strategy (movMF + LSTM language

model) with the following two methods:

e Bag-of-words [22]: The pseudo documents are generated from a mixture of background

unigram distribution and class-related keywords distribution.

e Bag-of-words + reordering: We first generate bag-of-words pseudo documents as in the
previous method, and then use the globally trained LSTM language model to reorder
the pseudo documents by greedily putting the word with the highest probability at the

end of the current sequence. The beginning word is randomly chosen.

38



We showcase some generated pseudo document snippets of class “politics” for NYT dataset
using different methods in Table 3.3. Bag-of-words method generates pseudo documents
without word order information; bag-of-words method with reordering generates text of high
quality at the beginning, but poor near the end, which is probably because the “proper”
words have been used at the beginning, but the remaining words are crowded at the end
implausibly; our method generates text of high quality.

To compare the generalization ability of the pre-trained models with different pseudo
documents, we show their subsequent self-training process (at level 1) in Figure 3.2(a). We
notice that our strategy not only makes self-training converge faster, but also has better final

performance.

Global Classifier and Self-training

We proceed to study why using self-trained global classifier on the ensemble of local
classifiers is better than greedy approach. We show the self-training procedure of the global
classifier at the final level in Figure 3.2(b), where we demonstrate the classification accuracy
at level 1 (super-categories), level 2 (sub-categories) and of all classes. Since at the final
level, all local classifiers are ensembled to construct the global classifier, self-training of the
global classifier is the joint training of all local classifiers. The result shows that the ensemble
of local classifiers for joint training is beneficial for improving the accuracy at all levels.
If a greedy approach is used, however, higher-level classifiers will not be updated during

lower-level classification, and misclassification at higher levels cannot be corrected.

Blocking During Self-training

We demonstrate the dynamics of the blocking mechanism during self-training. Figure
3.2(c) shows the average normalized entropy of the corresponding local classifier output
for each document in NYT dataset, and Figure 3.2(d) shows the total number of blocked
documents during the self-training procedure at the final level. Recall that we enhance
high-confident predictions to refine our model during self-training. Therefore, the average
normalized entropy decreases during self-training, implying there is less uncertainty in the
outputs of our model. Correspondingly, fewer documents will be blocked, resulting in more

available documents for self-training.

39



0.90 1 —— Macro-F1 0.9 4 —— Macro-F1
0.85 4 ;7 === Micro-F1 ’__-——- Micro-F1
) 0 084 {___mem=""
% 0.80 R % -
D075 1 T @ 0.7
— —
- 0.70 1 /r"~_______— BOW L 0.6 level 1
I ——— BOW-reorder ' e level 2
0.651 [ LSTM -~ all
051 7
0 200 400 600 800 0 500 1000 1500 2000 2500 3000 3500
[terations Iterations
(a) Pseudo documents generation (b) Global classifier self-training
& 0.80 4000
S 0.75 4]
(O
2 S 3500
U 0.70 ©
o] -5 3000 -
9 0.651 9
] U = -
g 0.60 3 2500
0
§ 0.55 - H(S 2000
. 0.501 1500 -
b S
Z %97 1000
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
[terations [terations
(C) Average normalized entropy (d) Number of blocked documents

Figure 3.2: Component-wise evaluation on NYT dataset.

3.7 SUMMARY

In this chapter, we propose a weakly-supervised hierarchical text classification method
WeSHClass. Our designed hierarchical network structure and training method can effectively
leverage (1) different types of weak supervision sources to generate high-quality pseudo docu-
ments for better model generalization ability, and (2) class taxonomy for better performances
than flat methods and greedy approaches. WeSHClass outperforms various supervised and
weakly-supervised baselines in three datasets from different domains, which demonstrates
the practical value of WeSHClass in real-world applications. In the future, it is interesting to
study what kinds of weak supervision are most effective for the hierarchical text classification

task and how to combine multiple sources together to achieve even better performance.

40



- uorq 1 £q suerd Surnpoid
‘sooeds A810u0 Jo juoorad ()g ST
JO O1Zd ® URY[} 9IOUWI UMOIS OARY
sorfddns [10 U0 soseoIOUI }93PN(

-+ s10hkedxe) s108pnq
$193pnq s3e3pnq sjespng sumueuy
surpuny - - - JueWL)IIUS suorsuad
SUTLLISAO S90URMO][® JO assedwul o)

“** POpR[q 9} POYIjUepI ‘Iomo)
-sT1O [eIopa) e Surjueserdor renbo
-00 JR[ IOJRIJSTUTIIPR AJLINDOS 103
-phq SIOqUIOWT MoI) Joqurajdos oty

* - SUIQLIOSOP SHUSUIUOD
Sunjew oy 1w jey) Surdes ‘eAqI]
‘1Zey3UD( Ul $9J8IS PajIun 9y} 0}
popest Uoaq PRl oYM SIURISIUIWI

O SYURISTUIWI SHURISTIIWIT SJURIS
-IUIWIT SOTUI[D sIoyewme] - A[nJ
-Me] S9qLI} PUR SojeIopou ‘UOol)
-ez1[e89] SUOUI[D pue saljLIofewr

Tt 8B Pojor0d AIoA 108 om SIY)
SUIPLI BXI0A JO UOIHUYOP TSR]
pue Ieze[ ® Ul oIom S)URISIUIMI
Ul jueSe o) Youne[ 0} pall} JsIyg

*° 0} SO[ILI 1) WY
poIogo jeyy porrad yooluoouw & jo
JeULIO} (9)-(0¢ S, uaptsaxd o) Aq
POYOO[IDAO UWDYJO ST SHYSLI UOTLIOR

* ' SUOIIOQR UOIYROYIJUAPI
UOI}I0(R UOIHIOqR UOILIOqR ** * )
Jo Surgold oY) jo Surzieso[ o)
yeyy pres sjstuerd SURIOIUID oY)

T OIIMOWI] ‘OFURIPDXO [RID
-PoJ OY) Ul SHYSLI S10139( US[JOOUIS
SUIA[OAUT SpInsme[ Jo osn pojurod
oaRy sIeq uonIoqe dno sy

1

[pour agenguer N IST + JNAOW]|

SULIOPIOAI + SpIom-Jo-Seg

splom-jo-geg

|4 o0

josejep TAN 10}  sonrod, ssepo jo sjoddius jusmumnoop opnosd pejersuss ojdureg :¢ ¢ o[qry,

(P10°0) OT¥#'0 (T20'0) S2€°0 T9F'0 €TF 0 (6000) G850 (010°0) 6420 T690 TSH0 (TTO'0) 280 (ST00) TES0 PLSO TEI90 SSBDHSSM
(220°0) 28€°0 (0£0°0) 8FE'0  SOF0 2920 (0T0°0) €850 (£10°0) ¥€C'0 €90 S6£°0 (6£0°0) 69L°0 (9€0°0) T6%°0 L8L'0 0GG0 UIRIJOS-ON
(€T0°0) L07°0 (620°0) 2LE0 LGP0 O1F'0 (210°0) $9¢°0 (S10°0) 6620 €990  90F'0 (2€0°0) G280 (T€0°0) L3S0  298°0 8290  AINAON
(910°0) €07°0 (220°0) 69€°0  ¥Tv0 T16€°0 (L10°0) 1860 (020°0) ¥92°0 €290 T¥F'0 (00T°0) 89L°0 (S90°0) 0250  €FS'0  8T9°0  [8qo[8-ON
(£€0°0) 88¢°0 (LT0°0) SFE0 6880 SPe'0 (6000) LFG0 (910°0) ¥92°0 2F90 ¢IF'0 (9€0°0) 82,0 (L20°0) 64F°0 TLL'0 98¢0 SSRIDILSM
(820°0) 2,0 (820°0) 90€°0 - - (g20°0) 9570 (¥10°0) 210 - - (2600) 6280 (L20°0) €910 NND
(e11 e 01€°0 (280°0) 0220 - - (9000 8 eFr°0 (100 8 6700 - - (g100 8 697°0 (910" e Ty o - INAS-1TH
- Z1€0  ¥8T0 Y650 ¥LEO T18°0  €6G°0 ssoreye -1ty
OIDIIN OIDRI\ OIOI[\| OIORIN OIDIIN OIdRIN OIOIJ\  OIDRIN OIDIN OIDRIN OIDIJ\ OIdRIN
oYele SAYOMAHM sooa SAUOM AT sood SAYOM AT
moraey dx ATY TR LAN SPOYIRIN

‘suorsiazodns yeom Jo sodA) omj) Iopun ‘sjosejep 9911} U0 SPOYIdU [[€ I0] S9100S T J-OIN Pue I J-0I0RN :Z'¢ 9[qel

41



CHAPTER 4: CONCLUSION AND FUTURE WORK

In this thesis, we study the problem of text classification with minimal human supervisions
to save human efforts from extensive hand-labeling when training neural models for text
classification. Our framework generates pseudo training documents based on weak supervisions
for pre-training the neural networks and performs self-training by bootstrapping on unlabeled
data to refine the classifier. WeSTClass and WeSHClass do not require excessive labeled
documents as training data but only weak supervisions such as surface label names, relevant
keywords or very few labeled documents, yet they achieve inspiring classification performance
on various benchmarks.

In the future, it will be interesting to study (1) how to combine different types of weak
supervisions for even better classification performances; (2) how to simultaneously train the
pseudo document generation module and the classification module for end-to-end weakly-
supervised text classification; (3) how to incorporate another type of weak supervision—

potentially noisy-labeled documents—to refine the neural classification model.

42



REFERENCES

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. CoRR, abs/1409.0473, 2014.

[2] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra. Clustering on the unit hypersphere
using von mises-fisher distributions. Journal of Machine Learning Research, 2005.

[3] K. Batmanghelich, A. Saeedi, K. Narasimhan, and S. Gershman. Nonparametric spherical
topic modeling with word embeddings. In ACL, 2016.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 3(1):993-1022, 2003.

[5] L. Cai and T. Hofmann. Hierarchical document categorization with support vector
machines. In CIKM, 2004.

[6] M. Ceci and D. Malerba. Classifying web documents in a hierarchy of categories: a
comprehensive study. Journal of Intelligent Information Systems, 28:37-78, 2006.

[7] M. Chang, L. Ratinov, D. Roth, and V. Srikumar. Importance of semantic representation:
Dataless classification. In AAAI pages 830-835, 2008.

[8] X. Chen, Y. Xia, P. Jin, and J. A. Carroll. Dataless text classification with descriptive
LDA. In AAAI pages 2224-2231, 2015.

[9] S. T. Dumais and H. Chen. Hierarchical classification of web content. In SIGIR, 2000.

[10] R. Fisher. Dispersion on a sphere. Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences, 1953.

[11] E. Gabrilovich and S. Markovitch. Computing semantic relatedness using wikipedia-based
explicit semantic analysis. In IJCAI 2007.

[12] K. Ganchev, J. Gillenwater, B. Taskar, et al. Posterior regularization for structured
latent variable models. Journal of Machine Learning Research, 11(Jul):2001-2049, 2010.

[13] S. Gopal and Y. Yang. Von mises-fisher clustering models. In ICML, 2014.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9:1735-1780, 1997.

[15] R. Johnson and T. Zhang. Effective use of word order for text categorization with
convolutional neural networks. In HLT-NAACL, 2015.

[16] Y. Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.

[17] O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with lessons
learned from word embeddings. TACL, 2015.

43



[18] C. Li, J. Xing, A. Sun, and Z. Ma. Effective document labeling with very few seed words:
A topic model approach. In CIKM, 2016.

[19] K. Li, H. Zha, Y. Su, and X. Yan. Unsupervised neural categorization for scientific
publications. In SDM, 2018.

[20] T.-Y. Liu, Y. Yang, H. Wan, H.-J. Zeng, Z. Chen, and W.-Y. Ma. Support vector
machines classification with a very large-scale taxonomy. SIGKDD FExplorations, 7:36-43,
2005.

[21] Y. Lu and C. Zhai. Opinion integration through semi-supervised topic modeling. In
WWW, pages 121-130, 2008.

[22] Y. Meng, J. Shen, C. Zhang, and J. Han. Weakly-supervised neural text classification.
In CIKM, 2018.

[23] Y. Meng, J. Shen, C. Zhang, and J. Han. Weakly-supervised hierarchical text classifica-
tion. In AAAI 2019.

[24] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed represen-
tations of words and phrases and their compositionality. In NIPS, pages 3111-3119,
2013.

[25] T. Miyato, A. M. Dai, and I. Goodfellow. Adversarial training methods for semi-
supervised text classification. 2016.

[26] K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training. In
CIKM, 2000.

[27] A. Oliver, A. Odena, C. Raffel, E. D. Cubuk, and I. J. Goodfellow. Realistic evaluation
of semi-supervised learning algorithms. 2018.

[28] H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song, and Q. Yang. Large-scale
hierarchical text classification with recursively regularized deep graph-cnn. In WIWW,
2018.

[29] Y. Prabhu and M. Varma. Fastxml: a fast, accurate and stable tree-classifier for extreme
multi-label learning. In KDD, 2014.

[30] C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-training of object
detection models. In WACV/MOTION, 2005.

[31] C. N. Silla and A. A. Freitas. A survey of hierarchical classification across different
application domains. Data Mining and Knowledge Discovery, 22:31-72, 2010.

[32] R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and C. D. Manning. Dynamic pooling
and unfolding recursive autoencoders for paraphrase detection. In NIPS, 2011.

[33] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning. Semi-supervised
recursive autoencoders for predicting sentiment distributions. In EMNLP, 2011.

44



[34] Y. Song and D. Roth. On dataless hierarchical text classification. In AAAI pages
1579-1585, 2014.

[35] S. Sra. Directional statistics in machine learning: a brief review. arXiv preprint
arXiw:1605.00316, 2016.

[36] M. Sundermeyer, R. Schliiter, and H. Ney. Lstm neural networks for language modeling.
In INTERSPEECH, 2012.

[37] D. Tang, B. Qin, and T. Liu. Document modeling with gated recurrent neural network
for sentiment classification. In EMNLP, 2015.

[38] J. Tang, M. Qu, and Q. Mei. Pte: Predictive text embedding through large-scale
heterogeneous text networks. In KDD, pages 1165-1174, 2015.

[39] G. Tsur, Y. Pinter, I. Szpektor, and D. Carmel. Identifying web queries with question
intent. In WWW, 2016.

[40] J. Xie, R. B. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering
analysis. In ICML, 2016.

[41] W. Xu, H. Sun, C. Deng, and Y. Tan. Variational autoencoder for semi-supervised text
classification. In AAAIL 2017.

[42] Z. Yang, D. Yang, C. Dyer, X. He, A. J. Smola, and E. H. Hovy. Hierarchical attention
networks for document classification. In HLT-NAACL, pages 1480-1489, 2016.

[43] C. Zhang, L. Liu, D. Lei, Q. Yuan, H. Zhuang, T. Hanratty, and J. Han. Triovecevent:
Embedding-based online local event detection in geo-tagged tweet streams. In KDD,
pages 595-604, 2017.

[44] X. Zhang and Y. LeCun. Text understanding from scratch. CoRR, abs/1502.01710,
2015.

[45] X. Zhang, J. J. Zhao, and Y. LeCun. Character-level convolutional networks for text
classification. In NIPS, 2015.

45



