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Abstract

The study of vehicles traveling at hypersonic speeds is extremely complex and involves many

different non-equilibrium physical phenomena occurring on many different time-scales. As a result,

work focused on modeling this type of flowfield has been hindered by inaccurate physical and

chemical models. For example, the conventional approach to model chemical non-equilibrium, still

widely used today, was developed nearly 40 years ago and relies heavily on calibration with heritage

experimental data. However, advances in both computational chemistry and computational power

have enabled the construction of extremely detailed models for the chemical non-equilibrium effects

based on ab initio quantum chemistry data, called the state-to-state (StS) approach. Although the

StS approach affords unprecedented accuracy for predictions of thermochemical non-equilibrium, it

cannot be applied to study molecule-molecule interactions due to the massive computational cost.

Unfortunately, due to the enormous cost of both computing data for and applying the StS approach,

this method can only be used in highly simplified test cases. This motivates the development of

reduced order models for chemical non-equilibrium which can capture the essential physics at a

massively reduced cost. The objective of this work is twofold: first to present a model reduction

framework for application to chemical non-equilibrium based on fundamental physics principles; and

second, to use this framework to study thermochemical non-equilibrium in a variety of conditions

for a gas composed of nitrogen atoms and molecules. In order to construct the reduced order

model directly from ab initio quantum chemistry data, kinetic data is calculated directly for the

model using the quasi-classical trajectory (QCT) method. This bypasses the need to compute StS

kinetic data for 1015 reactions resulting from the interaction between two nitrogen molecules, an

impossible task. The model reduction framework, called the multi-group maximum-entropy quasi-

classical trajectory (MGME-QCT) method, provides a crucial link between the ab initio quantum

chemistry data and multi-dimensional computational fluid dynamics (CFD).
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The MGME-QCT method is used to construct a reduced order model for a mixture of nitrogen

atoms and molecules using an ab initio potential energy surface (PES) to describe the interaction

between particles. In the MGME model, energy states are lumped together into groups containing

states with similar properties, and the distribution of states within each of these groups is recon-

structed by leveraging the maximum entropy principle. Two types of reduced order models are

constructed: one based on conventional wisdom which relies on the assumption of strict separation

of rotational and vibrational energy, and one which relies on the assumption of strong rovibrational

coupling. In a study of the isothermal relaxation of nitrogen molecules, it is found using these two

approaches that the underlying assumptions made in conventional chemical non-equilibrium mod-

els (i.e., that vibrational and rotational modes are decoupled) result in incorrect predictions about

the dissociation process. In contrast, the groups constructed assuming rovibrational equilibrium

better capture the dynamics of the dissociation process. This finding is confirmed through compar-

ison with a detailed molecular dynamics approach. Finally, the applicability of the MGME-QCT

method to CFD is demonstrated through application to a handful of simple test cases including a

standing shock wave, and the flow through a nozzle. These test cases demonstrate the flexibility of

this approach in modeling a variety of flow regimes (e.g., both compressing and expanding flows).
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Maitreyee Sharma, Simone Venturi, and all others who have passed through the lab for their

constant support and constructive feedback. I am particularly grateful to Dr. Alessandro Munafò
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Ĥ Hamiltonian operator

hP Planck’s constant

xvi



~ Reduced Planck’s constant

h Enthalpy density

I Set of internal energy levels

i Energy level index

J Rotational quantum number

J Angular momentum vector

j Energy level index

K Group reaction rate coefficient or energy transfer coefficient

k Energy level index

kB Boltzmann’s constant

l Energy level index

m Mass, moment, or energy level index

Ns Set containing all species and their internal levels

n Number density

P Center of mass momentum vector

P Differential probability of transition or center of mass momentum component

p Momentum vector

p Group index or momentum component

Q Center of mass position vector

Q Collision operator, partition function, or center of mass position component

q Group index

r Group index or internuclear distance

R Nuclear coordinates

r Electron coordinates

R Distance between centers of mass

S Set of species

S Entropy

s Group index

T Temperature or kinetic energy

xvii



T̂ Kinetic energy operator

t Time or group index

V Relative velocity vector

V̂ Potential energy operator

v Hydrodynamic velocity vector

v Entropy source term

v Vibrational quantum number

W Transition probability density

w Group average velocity vector

x Position vector

x Position component

Z Atomic number

α Group coefficient

β Statistical weight or group coefficient

γ Group coefficient vector

δ Group coefficient or Kronecker-Delta function

ε Polar angle

ε0 Permittivity of free space

η Orientation of rotational momentum

θ Azimuthal angle

κ State-to-state reaction rate coefficient

µ Reduced mass

ρ Density

σ Cross-section

τ Time scale

φ Electronic wavefunction or polar angle

χ Nuclear wavefunction or symmetry factor

ψ Collisional invariant vector

ψ Wavefunction

xviii



Ω̇ Energy source term

ω Scattering direction unit vector

ω̇ Mass source term

xix



Chapter 1

Introduction

1.1 Motivation

Motivated by both national defense and space exploration, hypersonic aerothermodynamics has

been the subject of study for decades. Examples of the types of vehicles traveling in this flow

regime are shown in Fig. 1.1. One obvious application of hypersonic flight is during atmospheric

entry (Fig. 1.1b), but improvements in propulsion systems have motivated studies and the develop-

ment of advanced aircraft designed to travel at hypersonic speeds within the atmosphere (Fig. 1.1a).

During hypersonic flight a multitude of physical phenomena, including chemistry, radiation, tur-

bulence, and ablation, occur simultaneously. As a result, the study of hypersonic flows requires

integration among many fields including chemistry, kinetic theory, high-performance computing,

electromagnetism, and material science, to name a few. Due to the exorbitant cost of hypersonic

flight testing, we must rely heavily on computational fluid dynamics (CFD) for vehicle design. How-

ever, the complex multi-physics nature of these flowfields necessitates accurate models for all these

fundamental physics. Differences in both the spatial and temporal scales for different processes

make accurately simulating hypersonic flows a formidable task.

One key feature of hypersonic flows is the presence of strong shock waves. Because the velocity

of the flow is so large, the temperature across the shock wave can jump by tens of thousand

of Kelvin. The kinetic energy of the flow is instantaneously converted to thermal energy of the

constituent molecules of the gas. However, the internal modes (i.e., electronic, vibrational, and

rotational) cannot instantaneously adjust to this transfer of energy and are thus referred to as frozen

across the shock wave [1,2]. Therefore, immediately behind the shock wave the gas is in a state of

internal energy non-equilibrium. Moreover, if there is sufficient energy available, chemical reactions

including exchange, dissociation, and eventually ionization can occur. Because the shock wave is
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(a) DARPA Hypersonic Test Vehicle (Credit: DARPA). (b) CFD simulation of a free flying model in
a ballistic range (Credit: Joseph Brock, NASA
Ames Research Center)

Figure 1.1: Examples of applications of hypersonic flows.

a discontinuity in the flow characterized by an instantaneous change in the flow properties, the

finite nature of these chemical processes is important. Chemical processes can have an impact on

both the heat flux (convective and radiative) experienced by the vehicle as well as the aerodynamic

performance. The rapid compression of gas is not the only source of non-equilibrium in hypersonic

flows. In regions where the gas expands, such as around the shoulder of an atmospheric entry

vehicle, these non-equilibrium effects play a major role. Due to rapid expansion, it is possible

that the time required for the flow to reach equilibrium exceeds the time scale of the flowfield.

This causes the flow to freeze, and the composition of the gas remains unchanged throughout the

flowfield despite changes in the thermodynamic state. In this situation, the composition of the

gas must be determined using finite rate chemistry, and the relevant reactions include exothermic

processes such as recombination. All these chemical processes couple with a multitude of other

physical phenomena occurring, such as those specified in Fig. 1.2, creating an extremely complex

multi-physics flowfield. Moreover, models for the other physical effects (e.g., ablation and radiation)

rely on accurate predictions of the state of gas as this can have significant impacts on phenomena

such as material response and radiation.
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Figure 1.2: Annotated schematic of a vehicle entering the atmosphere with the various physical
phenomena noted (Credit: NASA).

1.2 Literature review

Efforts to accurately simulate non-equilibrium chemistry for application to CFD range from com-

putationally inexpensive, purely empirical models developed by calibrating experimental data to

model form parameters to highly accurate quantum chemistry studies which are computationally

intractable for application to multi-dimensional CFD simulations.

1.2.1 Multi-temperature models

The multi-temperature (MT) model was first proposed by Appleton and Bray [3] to model ionized

gases using a heavy particle temperature and electron temperature and a form for the energy ex-

change terms derived from kinetic theory. Lee [4] extended this approach further in 1984, applying

it to account also for vibrational non-equilibrium. Park simplified this approach in the 1980’s,

applying it generally to the internal energy modes of heavy particles (i.e., rotational, vibrational,

and electronic modes) [2, 5–8]. In the MT model, the conservation equations comprise the conser-

vation of species mass, total momentum, total energy, and additional equations for conservation

of energy modes (e.g., conservation of vibrational, electron, and electronic energy as in the Park

two-temperature model). A detailed description of the conservation equations for the two- and

three-temperature models can be found in Ref. [9]. The additional conservation equations required
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for the MT approach require energy coupling terms which describe the rate at which energy is

transferred among various modes and depend on the collisional processes.

Several models exist for describing energy transfer among various modes. In particular there

has been significant work in describing the exchange between translational and vibrational (VT)

energy [10, 11], exchanges of energy among vibrational modes (VV) [12, 13], and the coupling

between vibrational energy and the dissociation process [2, 14]. The reason for this is twofold:

first, the relatively large energy spacing between vibrational states means it is significantly slower

to relax or equilibrate with faster modes such as rotational and translational; second, the rate of

dissociation is believed to have a strong dependence on the vibrational energy. Moreover, VV terms

are of particular interest because different molecules can have significantly different vibrational

energy spacing. This can lead to non-equilibrium among vibrational modes of different molecules

(i.e., multiple vibrational temperatures are required to describe the non-equilibrium distribution

of a mixture). Because low lying vibrational states in particular have relatively constant energy

spacing, resonant transitions are possible both among molecules of the same species as well as

different species. These resonant transitions can enhance vibrational relaxation within as well

as among species [15]. Therefore, in the MT framework it is not uncommon to use a different

vibrational temperature for each individual species to account for this difference in relaxation

times.

The Landau-Teller model, first published in 1936, is widely used to describe the VT energy

transfer terms, making use of relaxation times derived from theory or calibrated from experi-

ments [2, 16, 17]. One of the primary limitations with this approach is the assumption of mono-

quantum transitions in the derivation; however, Park [18] demonstrated that particularly in the

shock-layer, there is sufficient energy available in the flow that multi-quantum transitions are sig-

nificant [19]. In addition to the source terms related to the exchange of energy among vibrational

modes, the energy equations in the MT model require terms to describe energy lost or gained due

to chemical reactions. In particular there are several models for the energy lost from the vibra-

tional mode due to dissociation reactions. The first attempt to quantify the energy loss from the

vibrational mode due to dissociation, called the coupled vibration-dissociation (CVD) model, was

accomplished by Hammerling et al [20]. This model is a preferential dissociation model, which
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assumes that the energy lost from the vibrational mode due to dissociation is significantly higher

than the average vibrational energy. There has been significant work to improve upon this type

of preferential dissociation model, using both empirical methods as well as theoretical approaches.

Losev provides a fairly extensive list of the existing chemistry coupling models for dissociation [21].

Broadly, these models can be lumped into one of three groups: empirical, semi-empirical, and

theoretical. In the first category, empirical models, is the widely used Park model which uses a

geometric average of the vibrational and translational temperatures to calculate rate coefficients

which are calibrated against experimental data [2, 22]. Semi-empirical models generally couple a

non-equilibrium factor with a dissociation rate. This factor accounts for the non-equilibrium dis-

tribution which exists during the dissociation process and is a function of the translational and

vibrational temperatures [14, 20, 23–29]. Finally, the theoretical models avoid the use of empirical

factors by building a model purely on a theoretical basis [11,27,30–32].

In contrast, there has been comparatively little work focused on rotational non-equilibrium.

This is because it is generally assumed that the rotational mode instantly reaches equilibrium with

the translational mode due to the relatively small energy spacing among rotational states. There

were a handful of experimental studies of the non-equilibrium rotational distribution completed

in the 1960’s [33, 34]. In order to model the rotational relaxation process, both the exponential

band gap [35, 36] and power law [37] models were developed. Recently however, Panesi et al. [38]

found that particularly at high temperatures, the rotational mode does not reach equilibrium with

the translational mode throughout the dissociation process. Moreover, the rotational relaxation

time approaches the same time scale as the vibrational relaxation time for high temperature cases.

Therefore, an accurate model which accounts simultaneously for rotational and vibrational non-

equilibrium is necessary for strong non-equilibrium conditions.

1.2.2 State-to-state models

The State-to-State (StS) approach to modeling chemical non-equilibrium aims to overcome the lim-

itations of the MT model by directly tracking the individual state populations. The composition of

each energy state is solved for directly by considering the depleting and replenishing processes for

that state [19]. This can be done to varying levels of accuracy ranging from electronic StS (least
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accurate) to ro-vibronic StS (most accurate). Electronic StS models consider only the electronic

states of atoms or molecules and have been used to study both atomic and molecular species in

several applications [39–44]. The vibrational StS model considers separately the vibrational states

of molecules in a mixture. This method can be considered in two forms: one in which the rotational

mode is assumed to be in equilibrium with the translational mode, and one in which the molecules

are assumed to be rotationless [45–57]. Finally, the rovibrational StS model considers each indi-

vidual rovibrational state independently. Because even a simple diatomic molecule can have on

the order of hundreds of thousands of rovibrational states, this approach rapidly becomes compu-

tationally intractable. However, it can and has been used for simple relaxation and dissociation

studies to help understand the physics of the non-equilibrium dissociation process [38,58,59].

The accuracy of the simulations depends on the accuracy of the underlying kinetic data. In the

realm of vibrational StS models, up until quite recently most of the data was based on empirical

models, such as the ladder climbing model [60, 61], or semi-classical models such as the Forced

Harmonic Oscillator (FHO) [62–69] or the Schwartz-Slawsky-Herzfeld (SSH) model [15, 26, 70]. In

addition, Procaccia and Levine developed a theory for calculating vibrational StS rates based on

surprisal analysis [71–73]. However, due to advances in computational chemistry, recent work has

focused on making use of ab initio quantum chemistry data to both construct kinetic data necessary

for StS models as well as inform new models.

1.2.3 Ab initio chemistry models

Advances in computational power have enabled a multitude of work recently aimed at calculating

directly from the Schrödinger equation the potential energy surfaces (PESs) for systems relevant

to air chemistry. The PES describes the potential energy felt among a system of nuclei. This can

be calculated directly from the Schrödinger equation or can be inferred from experimental data.

There has been significant work recently to characterize the PESs for several systems of interest

to high-temperature air chemistry. These include the N2-N system [74–76], N2-N2 system [77–79],

O2-O system [80], O2-O2 system [81,82], N2-O system [83], and N2-O2 system [84].

The PES can be used to calculate the kinetic data for a system by using a scattering method to

determine transition probabilities. Using the ab initio PES allows for the construction of a high-
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fidelity StS kinetic mechanism for certain simple systems (e.g., three-body interactions such as

N2-N). Several scattering methods exist for this approach, ranging from classical approaches, such

as the quasi- and semi-classical trajectory approaches to fully quantum mechanical approaches [85].

The quasi-classical trajectory (QCT) method, which will be used in this work, assumes that the

motion of the nuclei can be assumed to occur classically; however, the initial and final states for

trajectory calculations are mapped from discrete quantum states [86–88]. In this approach, many

collisions between particles are simulated by integrating Hamilton’s equations of motion for the

nuclei, using the PES calculated from the Schrödinger equation. After many collisions have been

calculated, the probability that a given transition occurred can be calculated. This probability is

related to the transition cross-section or reaction rate coefficient, which can be used in a Direct

Simulation Monte Carlo (DSMC) or CFD calculation.

This approach of coupling the ab initio PES with QCT calculations to determine kinetic data

has been used to study several systems including rovibrational studies of the N2-N system [38,59],

O2-O system [51,52], and the O2-N system [54] as well as vibrational StS studies of the N2-Ar [45],

N2-N2 [46–49,89], N2-N [46,48,49,89–93], O2-O2 [50,55], O2-O [50–52,56,57,94,95], and O2-N [57]

systems. However, while the use of ab initio PESs is increasing, several of these works rely on the

use of semi-empirical models to infer reaction rate coefficients. Moreover, it remains prohibitively

expensive to construct a full rovibrational StS model for anything more complicated than atom-

diatom systems. Therefore despite the level of detail afforded by quantum chemistry calculations,

we still require a reduced order model to make use of the quantum chemistry data. Despite a

multitude of recent work to make use of the quantum chemistry data to construct CFD models,

there is no clear and rigorous path towards a physics based reduced-order model for non-equilibrium

chemistry.

1.2.4 Reduced order chemistry models

There has been significant work in recent years to use quantum chemistry data to inform flow

chemistry models for application to CFD. Making use of the PESs calculated by Paukku et al. [77,

78], Bender et al. [79] conducted a detailed study on the two-temperature dynamics of dissociation

of nitrogen molecules. This work was extended by Chaudhry et al. [96] to consider both nitrogen

7



and oxygen dissociation with the aim of computing model parameters for a MT approach using ab

initio data. Using a similar approach, Voelkel et al. [97] computed three-temperature dissociation

rate coefficients for the N2-N2 system using the PES of Paukku et al. [77,78]. While this approach of

re-computing multi-temperature rates from ab initio PES data is appealing because the underlying

framework which has been used for decades can be preserved, this approach maintains the same

underlying assumption as the MT models. Therefore, it is only valid in near equilibrium conditions.

Singh and Schwartzentruber [98] presented a model for describing rotational and vibrational non-

equilibrium using surprisal analysis based on results from the Direct Molecular Simulation (DMS)

method [99–101]. In this approach, the non-equilibrium distribution of energy states is accounted

for using a simple functional form based on surprisal analysis, and couples the non-equilibrium

distribution with the dissociation process. Kulakhmetov et al. [102] attempted to construct and

reduce a full vibrational StS model using the maximum entropy principle detailed in Levine and

Bernstein [103]. However, this approach used the maximum entropy principle to infer reaction rate

coefficients, rather than inform a model form.

One such approach to reduced order modeling is the multi-group maximum entropy (MGME)

model. In this approach, energy states are lumped together according to some metric (e.g., internal

energy, vibrational state, etc.), and the states within a group are assumed to equilibrate instanta-

neously with each other. This approach was initially developed to account for the non-equilibrium

electronic distribution of atomic species [41, 104, 105]. It was generalized by Liu et al. [106] and

used to study the rovibrational states of molecular nitrogen. There has been a multitude of work in

studying the N2-N system using the MGME model because it has known StS kinetic data and can

be used for validation [106–115]. This approach is similar to that proposed by Haug et al. [72, 73]

which lumps energy states together, assuming groups of states reach equilibrium with each other;

however, Haug et al. only considers the population of each group, assuming the internal distribu-

tion of the states is in equilibrium with the translational mode. The MGME model is derived by

assuming that the entropy within each group is maximized. Then, depending on the order of re-

construction used, macroscopic governing equations are derived. These can include conservation of

group mass and group energy equations. The advantage of this approach is that because the form

of the distribution of states is derived by maximizing the entropy, the solution will tend towards an
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equilibrium Maxwell-Boltzmann distribution given sufficient time. Moreover, the MGME model

framework is general and other simplified models, such as the MT approach, can be derived using

the MGME framework. However, one of the main drawbacks with the MGME model is that it relies

on the knowledge of microscopic StS kinetic data. Unfortunately, ab initio kinetic data is available

for very few systems due to the computational cost associated with constructing a complete StS

kinetic database. For example, to compute StS data for the N2-N2 system would generate on the

order of one quadrillion reaction rate coefficients (O(1015)). This is an impossible amount of data

to both compute and use. Therefore, we need a way to link the MGME model with the scattering

calculations performed using the ab initio PESs.

1.3 Scope of this thesis

In this thesis, a framework for coupling the MGME model with scattering calculations using the

QCT method along with an ab initio PES is presented. This approach uses the MGME model

to express the distribution of states within a group, and using this distribution, samples initial

states for QCT calculations [116–119]. Therefore, the grouped kinetic data for the MGME model

can directly be computed. This bypasses the computationally expensive step of constructing a

rovibrational StS kinetic model. One of the key advantages to this approach is that the principle of

micro-reversibility is used to construct the model. As a result, the model is not only self-consistent,

but it can capture both dissociating and recombining flows without the need to simulate trajectories

in both directions (i.e., no need to simulate recombining trajectories). Next the kinetic data can

be used in CFD calculations to account for the non-equilibrium chemistry.

First, in Chapter 2, a detailed derivation of the full MGME model is presented starting from

kinetic theory. This is illuminating because it very clearly shows what assumptions are made in

not only the MGME model, but also in the whole range of MT models. The maximum entropy

distribution is found to be a linear combination of the collisional invariants. Using this distribution

along with the Maxwell transfer equations (moments of the Boltzmann equation), the macroscopic

flow governing equations are derived. The grouping model differs from the conventional MT model

by introducing additional mass and energy equations for the individual groups.

Next, in Chapter 3 the link is drawn between the kinetic theory derivation and the QCT
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method, yielding the MGME-QCT model. This is done by examining the collision integrals present

in both the conservation of group mass and group energy equations and re-casting them in terms

of variables sampled in the QCT method. In addition, at this point we introduce the concept

of micro-reversibility and use it to derive expressions for reverse rates (i.e., de-excitation and

recombination).

In Chapter 4, a detailed study of the non-equilibrium excitation and dissociation process in

a zero-dimensional isothermal reactor is presented. Two models are compared: a conventional

vibrational StS approach (cast in the MGME-QCT framework), and a simple energy based grouping

technique. The computational cost in both constructing and running the two models is similar,

but the results show significant differences due to the underlying assumptions in each approach.

Chapter 5 presents a demonstration of the full MGME-QCT model, using the micro-reversibility

relation to calculate recombination rates from dissociating trajectories. This approach is validated

using the N2-N system.

Chapter 6 presents a comparison of the MGME-QCT model shown in Chapter 4 with the

highly accurate DMS method. This comparison highlights the shortcomings of the conventional

vibrational StS model, demonstrating that this approach cannot capture accurately the physics of

non-equilibrium dissociation.

Chapter 7 demonstrates the applicability of the MGME-QCT model to CFD using a variety

of test cases. These include the quasi-one-dimensional flow through a nozzle, and the flow behind

a standing shock wave. This demonstrates that the MGME-QCT model is flexible enough for

application to a variety of flow conditions.

Finally, in Chapter 8 a summary of the significant findings is presented as well as future work.

1.4 Outcomes of this work

The following publications resulted from this research:

1. R. L. Macdonald, R. L. Jaffe, D. W. Schwenke, M. Panesi. “Construction of a coarse-grain

quasi-classical trajectory method. I: Theory and application to N2-N2 system.” The Journal

of Chemical Physics, Vol. 148, No. 5, 2018, pp. 054309. Editor’s Pick.
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2. R. L. Macdonald, M. Grover, T. E. Schwartzentruber, M. Panesi. “Construction of a

coarse-grain quasi-classical trajectory method. II: Comparison against the direct molecular

simulation method.” The Journal of Chemical Physics, Vol. 148, No. 5, 2018, pp. 054310.

3. F. Esposito, R. L. Macdonald, I. D. Boyd, K. Neitzel, D. A. Andrienko, “Heavy-particle

elementary processes in hypersonic flows,” in Hypersonic Meteoroid Entry Physics, edited by

G. Colonna, M. Capitelli, and A. Laricchuita, IOP Series in Plasma Physics, chap. 16, IOP

Publishing, 2019.
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Sciences Meeting, AIAA Paper 2016-0505, San Diego, CA, 2016.

2. R. L. Macdonald, A. Munafò, M. Panesi. “Rovibrational grouping for N2(X1Σ+
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2018 AIAA Aerospace Sciences Meeting, AIAA Paper 2018-1230, Kissimmee, FL, 2018.
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Chapter 2

From Particle to Continuum Fluid
Modeling

In this chapter, the MGME method will be presented and used to derive macroscopic flow governing

equations from kinetic theory. The derivation starts with the Boltzmann equation, which describes

the statistical behavior of a gas in non-equilibrium conditions [120]. Through this approach we

can directly obtain the flow governing equations for the MGME model in terms of macroscopic

quantities of interest. Previous work on the MGME method started from the master equation to

derive the governing equations. However, this approach is not general and it is more rigorous and

insightful to start from the Boltzmann equation. While starting from the master equation enables

the derivation of conservation equations for the MGME model in the absence of flow, starting from

the Boltzmann equation allows us to derive a set of conservation equations considering both flow

and chemistry. With this approach we will introduce additional collisional invariants to facilitate

model closure. In addition, we will use the form of the collision integrals in the Boltzmann equation

to link the governing equations with the scattering calculations used to obtain kinetic data for the

grouping model. The kinetic theory approach to deriving the MGME governing equations follows

the framework presented by Giovangigli [121]. This chapter is organized as follows. Section 2.1

will present the Boltzmann equation and velocity distribution function. Section 2.2 will present

the collisional processes considered in this work and the respective forms of the collision integrals.

Section 2.3 will present the Maxwell transfer equation used to construct the governing equations.

Section 2.4 will derive the MGME method for grouping energy states from the definition of kinetic

entropy. Section 2.5 will present the final set of governing equations for the MGME method.

Finally, Section 2.6 will present the mass and energy source terms for the MGME method, followed

by a summary in Section 2.7.
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2.1 Boltzmann equation

Consider a particle of species A in internal state i, at some time t: the position of this particle can

be described by vector x, while the velocity can be described by vector cA in the absolute reference

frame. If instead we consider all the particles of species A in state i, at time t, the expected number

of particles located between (x,x + dx) in physical space and (cA, cA + dcA) in velocity space is

given by fAi(x, cA, t). Therefore, the velocity distribution function, fAi , can be defined:

fAi(x, cA, t) dcA dx = the expected number of particles of species A in state i located in volume

element dx about x whose velocities lie within dcA about cA at time t

In the absence of external forces (e.g. gravity, or magnetic field), the change in the distribution as

a function of time can be described by the Boltzmann equation:

∂fAi

∂t
+ cA · ∇xfAi = QAi = Qel

Ai
+Qin

Ai
+Qre

Ai
(2.1)

where ∇x denotes the spatial gradient, and QAi denotes the collision operator which can be split

to account for the contribution of various types of collisions: elastic (Qel
Ai

), non-reactive inelastic

(Qin
Ai

), and reactive (Qre
Ai

). The left hand side of the equation accounts for the streaming influence

on the velocity distribution function, and the right hand side accounts for the influence of the

collisions on the velocity distribution function.

2.2 Collisional processes

Before detailing the collisional processes in this work, some sets need to be defined. First, the

set S denotes the ensemble of chemical components considered. The species will be denoted by

(A,B,C,D,E) and energy levels will be specified by the indices (i, j, k, l,m). The set IA denotes

all the states of species A. The elastic processes comprise collisions in which no reaction occurs and

only translational energy varies. The form of the elastic reaction is given by:

Ai(cA) + Bj(cB)� Ai(c
′
A) + Bj(c

′
B), A,B ∈ S, i ∈ IA, j ∈ IB
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where the primed variables indicate the post-collision velocities. Non-reactive inelastic processes

comprise collisions in which internal energy changes, but the post collision species are the same as

the pre-collision species. This type of reaction can be written as:

Ai(cA) + Bj(cB)� Ak(c
′
A) + Bl(c

′
B), A ∈ S, i ∈ IA, (Bj ,Ak,Bl) ∈ Cin

Ai

where the set CAi is defined as Cin
Ai

= {(Bj ,Ak,Bl) |B ∈ S, (i 6= k ∨ j 6= l)∧ (i 6= k ∧ j 6= l), k ∈

IA, j, l ∈ IB}. Finally, we consider two types of reactive collisions: two body exchange collisions,

and dissociation-recombination collisions. Two body exchange collisions can be written as:

Ai(cA) + Bj(cB)� Ck(c
′
C) + Dl(c

′
D), A ∈ S, i ∈ IA, (Bj ,Ck,Dl) ∈ Cexc

Ai

where the set Cexc
Ai

is defined as Cexc
Ai

= {(Bj ,Ck,Dl)|(A 6= C∧B 6= D)∧(A 6= C∨B 6= D), B,C,D ∈

S, j ∈ IB, k ∈ IC, l ∈ ID}. Dissociation-recombination reactions are restricted to three body

reactions in this work, and are written as:

Ai(cA) + Bj(cB)� Ck(c
′
C) + Dl(c

′
D) + Bm(c′B), A ∈ S, i ∈ IA, (Bj ,Ck,Dl,Bk) ∈ Cdis

Ai

where the set Cdis
Ai

denotes the set of species and energy levels participating in the dissociation-

recombination reaction. It is very difficult to define this set in the same way as the previous sets,

but the key feature is that the species C and D together make species A.

2.2.1 Collision integrals

Elastic collision integral

The elastic collision integral accounts for effects of elastic collisions and can be written as:

Qel
Ai

=
∑
B∈S
j∈IB

QAiBj , A ∈ S, i ∈ IA (2.2)
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where QAiBj = QAiBj (x, cA, t) is the partial elastic collision operator. The partial collision operator

can be written as a function of the pre- and post-collision velocity distribution functions:

QAiBj =

∫∫∫
R3×R3×R3

(
f ′Ai

f ′Bj
− fAifBj

)
W

A′iB
′
j

AiBj
dcB dc′A dc′B (2.3)

whereW
A′iB

′
j

AiBj
(units of ((m3/s) (m/s)−3 (m/s)−3) denotes the probability density that this transition

will occur (i.e., the probability that a specific transition will occur in an infinitesimal velocity

element (cA, cA + dcA) and (cB, cB + dcB) per unit time per unit volume). At this point it is

useful to transform variables from the absolute reference frame to a center-of-mass reference frame.

The relative and center-of-mass velocities are denoted respectively by g and G. Full details of this

transformation can be found in Appendix A. The relative and center-of-mass velocities are written:

g = cA − cB, G =
mAcA +mBcB

mA +mB
(2.4)

where mA and mB denote the masses of species A and B respectively. Using this transformation

provides a relationship between the differential absolute velocities and the differential center-of-

mass velocities:

dcA dcB = dg dG = g2 dg dω dG, dc′A dc′B = dg′ dG′ = g′2 dg′ dω′ dG′ (2.5)

where g = |g|, and ω denotes the initial solid angle through which the particles pass or the pre-

scattered direction of the particles. The transition probability density is related to the transition

differential cross-section, σ = σ(g,ω′), through the following relationship:

σAiBj (g,ω
′)g dω′ = W

A′iB
′
j

AiBj
dc′A dc′B = W

A′iB
′
j

AiBj
g′2 dg′ dω′ dG′ (2.6)

The differential cross-section has units of area per solid angle. To relate the differential cross-

sections for forward and inverse processes, we invoke Fermi’s golden rule which states that: W
A′iB

′
j

AiBj
=

W
AiBj

A′iB
′
j

[121, 122]. Using this along with the conservation of momentum, and energy relationships
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for a collision reveals that the forward and inverse collision differential cross-sections are the same:

σAiBj (g,ω
′) = σAiBj (g

′,ω) (2.7)

The partial elastic collision operator can be partially transformed to center-of-mass variables as

well to yield a differential cross-section formulation:

QAiBj =

∫∫
L 2×R3

(
f ′Ai

f ′Bj
− fAifBj

)
gσAiBj (g,ω

′) dcB dω′ (2.8)

where L 2 denotes the integration over the solid angle.

Inelastic Collision Integral

The inelastic collision integral accounts for the effects of inelastic collisions. The inelastic collision

operator can be written as a function of the partial inelastic collision operators:

Qin
Ai

=
∑

(Bj ,Ak,Bl)

∈CinAi

QAkBl
AiBj

, A ∈ S, i ∈ IA (2.9)

where the partial collision operator reads:

QAkBl
AiBj

=

∫∫∫
R3×R3×R3

(
βAk

βBl

βAiβBj

f ′Ak
f ′Bl
− fAifBj

)
WAkBl

AiBj
dcB dc′A dc′B (2.10)

where βAi = h3
P/(aAim

3
A), hP denotes Planck’s constant, and aAi denotes the degeneracy (statistical

weight) of state i of species A. Again, we will transform to center-of-mass coordinates and make use

of the conservation of momentum, and energy relations for the collision. Details of this procedure

can be found in Appendix A. Following this procedure, the relationship between forward and

inverse collision differential cross-sections finally reads:

σAiBl
AkBl

(g′,ω) = σAkBl
AiBj

(g,ω′)

(
aAiaBj

aAk
aBl

)(
1−

2∆EAkBl
AiBj

g2µAB

)−1

(2.11)
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where ∆EAkBl
AiBj

= (EAk
+EBl

)− (EAi +EBj ), EAi denotes the internal energy of state i of species

A, and µAB = mAmB/ (mA +mB) denotes the reduced mass of the system of particles A and B.

Likewise, the partial collision operator can be partially transformed to center-of-mass coordinates

to read:

QAkBl
AiBj

=

∫∫
L 2×R3

(
aAiaBj

aAk
aBl

f ′Ak
f ′Bl
− fAifBj

)
gσAkBl

AiBj
dcB dω′ (2.12)

Reactive collision integral

In this work, the reactive collision integral is broken down into two parts: one for exchange processes

and one for dissociation/recombination processes.

Exchange Collision Integral The collision operator for exchange reactions can be written as

the sum of the partial collision operators:

Qexc
Ai

=
∑

(Bj ,Ck,Dl)
∈CexcAi

QCkDl
AiBj

, A ∈ S, i ∈ IA (2.13)

The partial collision operator can be written:

QCkDl
AiBj

=

∫∫∫
R3×R3×R3

(
βCk

βDl

βAiβBj

f ′Ck
f ′Dl
− fAifBj

)
WCkDl

AiBj
dcB dc′C dc′D (2.14)

Using the same transformation as for the elastic and non-reactive inelastic collisions (details can

be found in Appendix A), the relationship between the forward and inverse collision differential

cross-sections can be written:

σ
AiBj

CkDl
(g′,ω) = σCkDl

AiBj
(g,ω′)

(
βCk

βDl

βAiβBj

)(
µCD

µAB

)(
µAB

µCD
−

2∆ECkDl
AiBj

µCDg2

)−1

(2.15)

Likewise, the partial collision operator is transformed partially to center-of-mass coordinates to

yield:

QCkDl
AiBj

=

∫∫
L 2×R3

(
βCk

βDl

βAiβBj

f ′Ck
f ′Dl
− fAifBj

)
gσCkDl

AiBj
dcB dω′ (2.16)
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Dissociation Collision Integral The collision operator for the two to three body dissociation

reactions can be written as the sum of the partial collision operators:

Qdis
Ai

=
∑

(Bj ,Ck,Dl,Bm)

∈CdisAi

QCkDlBm

AiBj
, A ∈ S, i ∈ IA (2.17)

The partial collision operator can be written:

QCkDlBm

AiBj
=

∫∫∫∫
R3×R3

×R3×R3

(
βCk

βDl
βBm

βAiβBj

f ′Ck
f ′Dl

f ′Bm
− fAifBj

)
WCkDlBm

AiBj
dcB dc′C dc′D dc′B (2.18)

Again, the cross section is related to the transition probability through the following definition:

WCkDlBm

AiBj
dc′C dc′D dc′B = gσCkDlBm

AiBj
(g,ω′) dω′ (2.19)

The micro-reversibility relation reads:

βCk
βDl

βBmW
CkDlBm

AiBj
= βAiβBjW

AiBj

CkDlBm
(2.20)

Thus, the partial collision operator can be written as a function of the differential collision cross-

section:

QCkDlBm

AiBj
=

∫∫
R3×L 2

(
βCk

βDl
βBm

βAiβBj

f ′Ck
f ′Dl

f ′Bm
− fAifBj

)
gσCkDlBm

AiBj
dcB dω′ (2.21)

2.3 Maxwell transfer equation

Because the Boltzmann equation provides a particle description of the gas, in order to derive macro-

scopic conservation equations we must take moments of the Boltzmann equation. The moments of

the Boltzmann equation yield the Maxwell transfer equations which describe the change in some

averaged molecular property (e.g. density) due to bulk motion and collisions [120]. For a given

molecular property, ϕAi = ϕAi(cA), the molecular average property, ϕ̄Ai = ϕ̄Ai(x, t), and the gas

19



molecular average property, ϕ̄ = ϕ̄(x, t), can be defined as:

ϕ̄ =
∑
A∈S
i∈IA

ϕ̄Ai , ϕ̄Ai =

∫
R3

fAiϕAi dcA, A ∈ S, i ∈ IA (2.22)

Using these definitions, the Maxwell transfer equations can be derived from the Boltzmann equa-

tion, Eq. (2.1), by multiplying each side by ϕAi and integrating over velocity space:

∫
R3

ϕAi

∂fAi

∂t
dcA +

∫
R3

ϕAicA · ∇xfAi dcA =

∫
R3

ϕAi

(
Qel

Ai
+Qin

Ai
+Qre

Ai

)
dcA (2.23)

It is useful at this point to define several macroscopic properties, or moments of the velocity

distribution function. These will be used to facilitate simplifying the Maxwell transfer equations.

First, the number density of particles in state i of species A is defined as:

nAi =

∫
R3

fAi dcA, A ∈ S, i ∈ IA (2.24)

Next, we define the state density, ρAi , and gas density, ρ, as:

ρ =
∑
A∈S
i∈IA

ρAi , ρAi =

∫
R3

mAfAi dcA, A ∈ S, i ∈ IA (2.25)

Now, we define the hydrodynamic velocity, v as:

ρv =
∑
A∈S
i∈IA

mA

∫
R3

cAfAi dcA =
∑
A∈S
i∈IA

mAc̄A (2.26)

The peculiar velocity, denoted by CA and describing the thermal motion of the particles in the

absence of mean flow, can be defined for each species from the hydrodynamic velocity and the

molecular velocity such that CA = cA − v. Finally, we define the diffusion velocity, vdAi
as:

vdAi
=
mA

ρAi

∫
R3

CAfAi dcA, A ∈ S, i ∈ IA (2.27)
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Therefore, we obtain the following relationship, which will be used later in this chapter:

∑
A∈S
i∈IA

ρAiv
d
Ai

=
∑
A∈S
i∈IA

mAC̄A = 0 (2.28)

Using these definitions, the Maxwell transfer equations [120] can be written in terms of the hydro-

dynamic and peculiar velocities:

∂ϕ̄Ai

∂t
+∇x · (ϕ̄Aiv) +∇x ·

∫
R3

CAfAiϕAi dCA =

∫
R3

ϕAi

(
Qel

Ai
+Qin

Ai
+Qre

Ai

)
dCA (2.29)

For the gas mixture, the Maxwell transfer equation can be written:

∂ϕ̄

∂t
+∇x · (ϕ̄v) +∇x ·

∑
A∈S
i∈IA

∫
R3

CAfAiϕAi dCA =
∑
A∈S
i∈IA

∫
R3

ϕAi

(
Qel

Ai
+Qin

Ai
+Qre

Ai

)
dCA (2.30)

In the Maxwell transfer equations, the left hand side comprises three terms. The first term simply

denotes the change in some macroscopic quantity due to the effects of all the other terms in the

equation. The second describes the convective flux at the hydrodynamic velocity. The third term

is attributed to the diffusive or transport flux. The right hand side accounts for the impact of

collisions detailed in Sec. 2.2 on the quantity of interest.

2.4 Multi-group maximum entropy model

Before proceeding to derive the flow governing equations, the MGME model will be described. The

MGME can be broken down into two steps:

1. Local representation and reconstruction: the states are lumped together into groups,

and within each group the distribution is retrieved through maximization of the entropy.

2. Macroscopic governing equations: the macroscopic governing equations for the groups

are derived using collisional invariants in the Maxwell transfer equations.

The first step, local representation and reconstruction can be subdivided into two parts. First,

the energy states are broken into groups. This can be done with respect to internal energy (quan-
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Figure 2.1: Schematic of the grouping of internal energy and velocity states; different colors
indicate different groups.

tized) or translational energy (assumed to be continuous). This is illustrated in Fig. 2.1, which

shows that the internal and translational energy space has been divided into groups. For illustra-

tion purposes, the figure only shows one dimension of the translational velocity. However, if we

consider translational energy as well as internal energy grouping, the bin space is four dimensional:

three directions of velocity, and one internal energy coordinate. Within each group, the velocity

distribution function and internal energy distribution function are reconstructed by maximizing

the entropy.

The maximum entropy form used in this work relies on the separation of time scales for various

processes. That is to say that the characteristic time of the energy transfer processes among groups

is significantly slower than that of the energy transfer processes within a group. This separation

of time scales allows for the definition of additional collisional invariants required to close the

system and retrieve the correct multi-temperature reconstruction of internal energy states. In the

following sections, this distribution will be rigorously derived. However, we can anticipate that it
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will resemble a multi-temperature distribution split by internal and translational energy:

fAi =f tra
Ai
f int

Ai
(2.31)

f tra
Ai

=

(
mA

2πkBT

)3/2

exp

(
− mA

2kBT
CA ·CA

)
(2.32)

f int
Ai

=nAp

aAi exp

(
− EAi

kBT
int
Ap

)
∑
i∈Ip

aAi exp

(
− EAi

kBT
int
Ap

) (2.33)

where f tra
Ai

denotes the translational contribution to the velocity distribution function, f int
Ai

denotes

the internal energy contribution, kB denotes the Boltzmann constant, T is the kinetic temperature,

T int
Ap

denotes the internal temperature of particles in group p of species A, nAp denotes the number

density of particles in group p of species A, and the set Ip denotes the set of states within group p.

The second step, constructing macroscopic governing equations, is realized by using collisional

invariants in the Maxwell transfer equations to derive conservation equations for the groups. What

we seek is a set of Euler-like equations for the grouping model. However, to account for the separate

equilibrium states of the different groups, we will find separate conservation of mass and energy

equations for each group, in addition to the conservation of momentum and total energy for the

mixture. Finally, the collisional terms can be re-cast to resemble what is evaluated in the QCT

method, providing the final link between the flow governing equations and the microscopic chemical

processes.

2.4.1 Local representation and reconstruction

The group reconstruction relies on maximizing the entropy of each group to retrieve the distribution

of states within the group. In this work, we will restrict this framework to two models: the multi-

group maximum entropy thermal (MGMET) model and the multi-group maximum entropy linear

(MGMEL) model. The MGMET model is a particular simplification of the MGMEL model. To

derive the MGMEL model, we first present a brief discussion about the separation of time scales,

which will be used together with the definition of kinetic entropy to derive the Boltzmann H-

Theorem and find the form of the distribution function which ensures that the entropy production
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in each group is zero. Next, we represent the distribution as a linear combination of collisional

invariants. Finally, using constraints based on these collisional invariants we find a relationship

between these constraints and macroscopic variables which will be determined from the conservation

equations derived in the next section.

Separation of time scales

To derive the Boltzmann H-Theorem for the groups, we need to consider the different time scales of

the various processes occurring [123]. We also introduce the notion of groups at this point; in this

work we will restrict ourselves to internal energy groups, integrating over the entire velocity space

and assuming that all groups have the same velocity distribution. This is a good approximation

because elastic collisions, which force the translational energy into equilibrium, occur significantly

faster than the chemical reactions which we are interested in studying. Therefore, we can divide

the inelastic processes into two categories: ones in which the groups do not change (intra-group),

and ones in which the groups change (inter-group). With this, we can introduce the assumption

that certain processes prevail, forcing the groups into local equilibrium. Let us define the following

time scales:

τreact time scale of chemical reactions (e.g., dissociation, recombination, etc.)

τpq time scale of processes among groups (inter-group)

τpp, large∆E time scale of processes within a group with “large” energy jumps (intra-group)

τpp, small∆E time scale of processes within a group with “small” energy jumps (intra-group)

If we rank these time scales, we find that:

τreact ' τpq � τpp, large∆E � τpp, small∆E (2.34)

That is to say that the time scale of the reactive collisions are on the same order as those among

groups. The processes among groups are much slower than those within a group. However, we can

split the processes within a group into two categories: one characterized by large jumps in energy,

and one characterized by small jumps in energy. Therefore, we assume that the mechanism which

forces the states within a group into equilibrium (i.e., maximization of entropy) is these intra-group
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processes characterized by small energy jumps. Accordingly, we will use the collision operator for

these processes to derive the distribution of states within the groups. It should be noted that this

implies that the groups should be constructed such that there are minimal “fast” processes among

groups. We will see the implications associated with the grouping scheme in Chapters 4 and 6.

Proof of positivity of entropy production

To find the form of the velocity distribution function which maximizes the entropy, we consider

the conservation of kinetic entropy equation. The kinetic entropy of a group per unit volume, Skin
Ap

,

can be defined [121]:

Skin
Ap

= −kB

∑
i∈Ip

∫
R3

fAi (ln (βAifAi)− 1) dcA (2.35)

To obtain the kinetic entropy conservation equation, we multiply the Boltzmann equation by

ln (βAifAi), integrate over velocity space, and sum over states within group p. Details of this

procedure can be found in Appendix B. After some algebra, we can write the conservation of

entropy expression as:

∂Skin
Ap

∂t
+ kB

∑
i∈Ip

∫
R3

[cA · ∇x (fAi (ln (βAifAi))− 1)] dcA = vkin
Ap

(2.36)

where the entropy source term, vkin
Ap

, is defined as the sum of the elastic, inelastic scattering, and

reactive entropy source terms, (vEAp
, vSAp

, vCAp
) respectively:

vkin
Ap

=vEAp
+ vSAp

+ vCAp
, (2.37)

vEAp
=− kB

∑
i∈Ip

∫
R3

Qel
Ai

ln (βAifAi) dcA, (2.38)

vSAp
=− kB

∑
i∈Ip

∫
R3

Qin
Ai

ln (βAifAi) dcA, (2.39)

vCAp
=− kB

∑
i∈Ip

∫
R3

Qre
Ai

ln (βAifAi) dcA (2.40)

The right hand side depends on the collision integrals defined in Sec. 2.2.1. Using these expressions

for the collision integrals we can write the entropy source term. However, recalling the separation
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of time scales, we can see that the intra-group inelastic scattering terms are significantly faster than

both inter-group inelastic scattering terms as well as reactive scattering terms. Therefore, we can

separate the entropy source terms according to these time scales, and consider the “fast” process

entropy source terms and the “slow” entropy source terms separately. We can therefore write the

“fast” (intra-group inelastic scattering) entropy source term:

vSAp
= −kB

∑
B∈S

∑
q∈B

∑
(i,k)∈Ip

∑
(j,l)∈Iq

∫∫∫∫
R3×R3

×R3×R3

(
βAk

βBl

βAiβBj

f ′Ak
f ′Bl
− fAifBj

)

×WA′kB′l
AiBj

ln (βAifAi) dcA dcB dc′A dc′B (2.41)

After some algebra making use of properties of the inverse collision (details can be found in Ap-

pendix B), we can finally write the following expression for the inelastic scattering entropy source

term:

vSAp
= −1

4
kB

∑
B∈S

∑
q∈B

∑
(i,k)∈Ip

∑
(j,l)∈Iq

∫∫∫∫
R3×R3

×R3×R3

ln

(
βAiβBj

βAk
βBl

fAifBj

f ′Ak
f ′Bl

)(
βAk

βBl

βAiβBj

f ′Ak
f ′Bl
− fAifBj

)

×WA′kB′l
AiBj

dcA dcB dc′A dc′B (2.42)

Now let’s analyze the sign of the integral. Define x and y as:

x =
βAk

βBl

βAiβBj

f ′Ak
f ′Bl

, y = fAifBj (2.43)

We know that x and y are always positive. Looking at the value of the integrand in terms of x and

y we have I = (lnx− ln y) (x− y). Therefore:

If x > y : I > 0

If x < y : I > 0

If x = y : I = 0
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Therefore, the fast entropy source term satisfies: vSAp
≥ 0. This condition is the outcome of the

Boltzmann H-Theorem, and tells us that the system of particles will tend towards some condition

given by the relation vSAp
= 0. This is the maximum entropy condition. Therefore, we find that

the entropy is maximized when the following relationship holds:

ln
(
βAk

f ′Ak

)
+ ln

(
βBl

f ′Bl

)
= ln (βAifAi) + ln

(
βBjfBj

)
(2.44)

This relation in conjunction with mechanics allows us to write the distribution as a linear com-

bination of the collisional invariants for the intra-group inelastic processes characterized by small

energy jumps. Furthermore, Kennard [124] showed that this linear combination is the only form

of log (βAifAi) which satisfies this relation. The same process can be used to demonstrate that not

only is the entropy strictly increasing or zero due to the fast processes, but also due to the slow

processes (inter-group inelastic scattering and reactive). However, the procedure is the same as for

the fast processes and for brevity will not be presented here.

Collisional invariants

We find based on the analysis of time scales that we can define four collisional invariants. The

first three collisional invariants are fairly obvious and comprise the quantities conserved in any

collision: mass, momentum, and total energy. The final collisional invariant arises because of

the separation of time scales discussed earlier. Because we derive our group distribution from

the fast process collision term, we take our collisional invariants to correspond to those processes.

Therefore, because we assumed the processes characterized by small internal energy changes to be

the fastest, the final collisional invariant corresponds to the internal energy. This assumption is

directly related to the assumption that resonant vibrational transitions occur the fastest in a two-

temperature model: this allows for the definition of the vibrational energy as a collisional invariant,

eventually introducing a separate vibrational energy conservation equation. However, in this case

it is more general, and not restricted solely to resonant vibrational transitions. Therefore, for

the MGMEL model, we can express the log (βAifAi) as the linear combination of these collisional
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invariants:

ln (βAifAi) = αApmA + γAp · (mAcA) + δAp

(
1

2
mAcA · cA + EAi

)
+ βApEAi (2.45)

To solve for the coefficients (αAp ,γAp , δAp , βAp), we apply constraints. These constraints correspond

to the collisional invariants and comprise the group mass, group momentum, group total energy,

and group internal energy:

nAp =
∑
i∈Ip

∫
R3

fAi dcA (2.46)

ρApwAp =
∑
i∈Ip

∫
R3

mAfAicA dcA (2.47)

nApE
tra
Ap

=
∑
i∈Ip

∫
R3

1

2
mA

(
cA +

1

δAp

γAp

)
·
(

cA +
1

δAp

γAp

)
fAi dcA (2.48)

nApE
int
Ap

=
∑
i∈Ip

∫
R3

EAifAi dcA (2.49)

These constraints correspond to a grouping scheme in which only internal energy is grouped.

Because we assume all groups have the same velocity distribution, we find that the parame-

ters corresponding to the momentum and total energy of the group are the same for all groups:

wAp = w and Etra
Ap

= Etra. Before applying these constraints, it is useful to define the quantity

C′A = cA + 1
δAp

γAp . Using this, the linear combination of collisional invariants can be written

as:

ln (βAifAi) = αApmA −
mA

2δAp

γAp · γAp + δAp

(
1

2
mAC′A ·C′A + EAi

)
+ βApEAi (2.50)

First, we apply the constraint on the group number density to find an expression for αAp :

mAαAp = ln
(
nAp

)
+
mA

2δAp

γAp ·γAp+ln

(
−

h2
PδAp

2πmA

)3/2

−ln

∑
i∈Ip

aAi exp
[(
βAp + δAp

)
EAi

] (2.51)

28



Applying the conservation of momentum constraint, we find the following relationship:

γAp = −δApw (2.52)

The total translational energy of a group is found to be:

nApE
tra = −

3nAp

2δAp

(2.53)

From classical thermodynamics, we know that the average translational energy of a given particle

will be equivalent to 3
2kBT where T is the translational or kinetic temperature. The symbol Etra

gives the average translational energy of a single particle in the mixture. Therefore:

δAp = − 1

kBT
(2.54)

Let us re-visit the definition of C′A = cA + γAp/δAp : this can be re-written as C′A = cA−w. Now,

if we recall the definition of w:

ρw =
∑
A∈S

∑
p∈A

ρApw =
∑
A∈S

∑
p∈A

∑
i∈Ip

∫
R3

mAcAfAi dcA = ρv (2.55)

Therefore, the quantity C′A = CA is identically the peculiar velocity defined earlier, and w, the

average velocity for the groups, is identically the hydrodynamic velocity v.

To obtain an expression for βAp , we use the definition of kinetic entropy. First, evaluating the

internal energy of a group, we find that the average energy of a particle in group p is:

Eint
Ap

=

∑
i∈Ip

aAiEAi exp
[(
βAp − 1

kBT

)
EAi

]
∑
i∈Ip

aAi exp
[(
βAp − 1

kBT

)
EAi

] (2.56)

We can define a new variable, β′Ap
= βAp − 1

kBT
. Using the internal energy of the group, the new

variable β′Ap
, and the definition of kinetic entropy for a group p, the kinetic entropy of the group
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can be written:

Skin
Ap

= −kBnAp

{
ln
(
nAp

)
+ ln

(
h2

P

2πmAkBT

)3/2

− 5

2

− ln

∑
i∈Ip

aAi exp
(
β′Ap

EAi

)+ β′Ap
Eint

Ap

}
(2.57)

Now recall the relationship from classical thermodynamics which relates the entropy to the tem-

perature. However, we define it as the group internal temperature, because we have evaluated the

entropy only for a group: ∂
(
Skin

Ap
/nAp

)
∂Eint

Ap


n,V

=
1

T int
Ap

(2.58)

Realizing that β′Ap
= β′Ap

(Eint
Ap

), and using the chain rule, we find that:

∂
(
Skin

Ap
/nAp

)
∂Eint

Ap


V,N

= −kBβ
′
Ap

=
1

T int
Ap

(2.59)

Therefore, we arrive at the final expression for the distribution of states within a group:

fAi = nAp

(
mA

2πkBT

)3/2

exp

(
− mA

2kBT
CA ·CA

) aAi exp

(
− EAi

kBT
int
Ap

)
∑
i∈Ip

aAi exp

(
− EAi

kBT
int
Ap

) (2.60)

As expected, this expression is simply a two-temperature Boltzmann distribution within each group.

We have imposed separation of translational and internal energy relaxation by imposing separate

time-scales for these two processes. We can separate the translational and internal contributions
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to the velocity distribution function and write it as the product of these two terms:

fAi =f tra
Ai
f int

Ai
(2.61)

f tra
Ai

=

(
mA

2πkBT

)3/2

exp

(
− mA

2kBT
CA ·CA

)
(2.62)

f int
Ai

=nAp

aAi exp

(
− EAi

kBT
int
Ap

)
∑
i∈Ip

aAi exp

(
− EAi

kBT
int
Ap

) (2.63)

However, as stated earlier, in this work we are only concerned with internal energy non-

equilibrium. Therefore, at this point we will complete the integration over velocity space to deter-

mine the distribution of internal energy states within each group.

F iAp

(
T int

Ap

)
=

1

nAp

∫
R3

fAi dcA (2.64)

After this integration, we finally arrive at an expression for the distribution of states for the MGMEL

model:

F iAp

(
T int

Ap

)
=
nAi

nAp

=
1

Q
(0)
Ap

(
T int

Ap

)aAi exp

(
− EAi

kBT int
Ap

)
(2.65)

where F iAp
(T int

Ap
) denotes the distribution of energy states in group p for species A containing states

i, and Q
(0)
Ap

(T int
Ap

) denotes the zeroth order moment of the partition function for group p. The mth

moment of the partition function for group p can be written:

Q
(m)
Ap

(
T int

Ap

)
=
∑
i∈Ip

aAi (EAi)
m exp

(
− EAi

kBT int
Ap

)
(2.66)

In the MGMET model, the temperature within each bin, T int
Ap

, is assumed to be equal to the local

translational temperature, T . This also eliminates the assumption that the internal energy is a

collisional invariant, requiring only the first three collisional invariants (mass, momentum, and total

energy). In this approach only the group number densities, nAp , must be evaluated, while in the

MGMEL model, the group unknowns include both the group number densities as well as the group

internal temperatures (nAp , T int
Ap

). The next step to constructing the reduced order model is to use
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the Maxwell transfer equations, Eqs. (2.29) and (2.30), to obtain macroscopic governing equations.

2.4.2 Macroscopic governing equations

In order to derive the continuum flow equations from the Maxwell transfer equations, Eqs. (2.29)

and (2.30), the collisional invariants, denoted as ψAi , are defined. These collisional invariants

comprise the same quantities used to derive the velocity distribution function for the grouping

model: 

ψkAi
= (mA)i∈Ip, p∈A, A∈S , k ∈ S,

ψNs+ν
Ai

= (mAcA)i∈Ip, p∈A, A∈S , ν = 1, 2, 3,

ψNs+4
Ai

=
(

1
2mAcA · cA + EAi

)
i∈Ip, p∈A, A∈S ,

ψNs+4+l
Ai

= (EAi)i∈Ip, p∈A, A∈S , l ∈ S

(2.67)

where Ns denotes the total number of species and energy levels. The advantage of defining these

properties is that they satisfy the relation that for the “fast” processes, the collision operator for

these quantities is identically zero. Therefore, when you sum over the entire mixture, the collision

integrals disappear for these quantities. Using the vector of collisional invariants the continuum

flow equations can be derived. For the first Ns and last Ns collisional invariants (mass and internal

energy), the equations are derived by summing over energy levels within the group p. For the

middle two collisional invariants (momentum and total energy) these are summed over the entire

mixture. Therefore, for the MGMEL model we will retrieve conservation of mass and internal

energy equations for the groups, a conservation of momentum equation, and a conservation of total

energy equation.

Conservation of group mass

First, we use the first Ns collision invariants, mA, and sum over the energy levels contained in

group p in the Maxwell transfer equations to retrieve:

∑
i∈Ip

∫
R3

mA
∂fAi

∂t
dcA +

∑
i∈Ip

∇x ·
∫
R3

mAfAicA dcA =
∑
i∈Ip

∫
R3

mA

(
Qel

Ai
+Qin

Ai
+Qre

Ai

)
dcA (2.68)
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Next, we combine this expression and the definition of the group partial density, given by:

ρAp =
∑
i∈Ip

mA

∫
R3

fAi dcA =
∑
i∈Ip

mAnAi =
∑
i∈Ip

ρAi (2.69)

After some algebra, using the fact that elastic collisions do not affect the group population, and

realizing that the diffusion velocity is zero when the velocity distribution is Maxwellian, the group

conservation of mass equation reads:

∂ρAp

∂t
+∇x ·

(
ρApv

)
=
∑
i∈Ip

∫
R3

mA

(
Qin

Ai
+Qre

Ai

)
dcA (2.70)

The collision terms were described previously in Sec. 2.2.1.

Conservation of momentum

The conservation of momentum equations are retrieved by using the collision invariants mAcA, and

applying this to the mixture Maxwell Transfer equation, Eq. (2.30):

∂ρv

∂t
+∇x · (ρv ⊗ v) +∇x ·

∑
A∈S
i∈IA

∫
R3

mAfAiCA ⊗ cA dcA

=
∑
A∈S
i∈IA

∫
R3

mAcA

(
Qel

Ai
+Qin

Ai
+Qre

Ai

)
dcA (2.71)

Evaluating the flux integral with the velocity distribution function derived earlier yields:

∇x ·
∑
A∈S

∑
i∈IA

∫
R3

mAfAiCA ⊗ cA dcA = ∇x · (pI) (2.72)

where p denotes the gas pressure given by p =
∑

A∈S
∑

p∈A

(
nApkBT

)
, and I denotes the second

order identity tensor. Using this definition, the general conservation of momentum equation can

be written:

∂ρv

∂t
+∇x · (ρv ⊗ v + pI) = 0 (2.73)
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Conservation of total energy

The total energy is used to retrieve the conservation of energy equation from the mixture Maxwell

Transfer equation, Eq. (2.30). First, the gas molecular average property, ρe is defined as:

ρe =
∑
A∈S
i∈IA

∫
R3

fAi

(
1

2
mAcA · cA + EAi

)
dcA

=
∑
A∈S
i∈IA

∫
R3

fAi

(
1

2
mACA ·CA +

1

2
mAv · v + EAi

)
dcA (2.74)

= ρetra + ρekin + ρeint (2.75)

where the translational, kinetic, and internal energy densities are defined as:

ρetra =
∑
A∈S
i∈IA

∫
R3

1

2
mAfAiCA ·CA dcA, ρekin =

1

2
ρv · v, ρeint =

∑
A∈S
i∈IA

nAiEAi (2.76)

Using this definition, the conservation of total energy equation can be written:

∂ρe

∂t
+∇x · (ρev) +∇x ·

∑
A∈S
i∈IA

∫
R3

CAfAi

(
1

2
mAcA · cA + EAi

)
dcA

=
∑
A∈S
i∈IA

∫
R3

(
1

2
mAcA · cA + EAi

)(
Qel

Ai
+Qin

Ai
+Qre

Ai

)
dcA (2.77)

We can re-write the flux term as:

∇x ·
∑
A∈S
i∈IA

∫
R3

CAfAi

(
1

2
mACA ·CA + EAi

)
dcA = ∇x · (pv) (2.78)

Using the definition of the total enthalpy per unit volume, ρh = ρe + p, the final conservation of

energy equation reads:

∂ρe

∂t
+∇x · (ρhv) = 0 (2.79)
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Conservation of group internal energy

Finally, to close the system of equations for the MGMEL model, the internal energy is applied to

the Maxwell transfer equation. First using the definition of group energy density specified earlier

and using Eq. (2.29) and summing over all states i in group p, we obtain:

∂
(
nApE

int
Ap

)
∂t

+∇x ·
(
nApE

int
Ap

v
)

+∇x ·
∑
i∈Ip

∫
R3

CAfAiEAi dcA

=
∑
i∈Ip

∫
R3

EAi

(
Qel

Ai
+Qin

Ai
+Qre

Ai

)
dcA (2.80)

Using the velocity distribution function defined earlier and the property of the elastic collision

integral, the group conservation of energy equation reduces to:

∂
(
nApE

int
Ap

)
∂t

+∇x ·
(
nApE

int
Ap

v
)

=
∑
i∈Ip

∫
R3

EAi

(
Qin

Ai
+Qre

Ai

)
dcA (2.81)

2.5 Hydrodynamic governing equations

The final set of governing equations for the MGMEL model comprises the group conservation of

mass equations, conservation of momentum, conservation of total energy, and conservation of group

energy equations. This amounts to (2Ngroup + 4) equations, where Ngroup is the number of groups

considered. The set of conservation equations reads:

∂ρAp

∂t
+∇x ·

(
ρApv

)
=ω̇Ap (2.82)

∂ρv

∂t
+∇x · (ρv ⊗ v + pI) =0 (2.83)

∂ρe

∂t
+∇x · (ρhv) =0 (2.84)

∂
(
nApE

int
Ap

)
∂t

+∇x ·
(
nApE

int
Ap

v
)

=Ω̇Ap (2.85)

where the collisional terms are written simply as ω̇Ap and Ω̇Ap for the mass and internal energy

source terms respectively.
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2.6 Collision source terms

In this section the collision terms in the group conservation of mass and energy equations will be

analyzed.

2.6.1 Mass source terms

The collision terms (right hand side) of the conservation of group mass equations account for the

effect of inelastic and reactive collisions. Let us denote the production terms due to collisions in

the conservation of mass equation as ω̇Ap :

ω̇Ap = ω̇in
Ap

+ ω̇re
Ap

=
∑
i∈Ip

∫
R3

mAQ
in
Ai

dcA +
∑
i∈Ip

∫
R3

mAQ
re
Ai

dcA (2.86)

The first term, which accounts for the effect of inelastic collisions can be expanded in terms of the

partial collision operators:

ω̇in
Ap

=
∑
i∈Ip

∑
(Bj ,Ak,Bl)

∈CinAi

∫∫∫
L 2×R3×R3

mA

(
βAk

βBl

βAiβBj

f ′Ak
f ′Bl
− fAifBj

)
gσAkBl

AiBj
dω′ dcB dcA (2.87)

In anticipation of the form which this integral will take, we will re-write this term as a depleting

and replenishing term in terms of the group number densities. Further details on this procedure

will be presented in the next chapter.

ω̇in
Ap

=
∑
B∈S

∑
q∈B

∑
r∈A

∑
s∈B

(
− 0Kpq,rsnApnBq + 0K̄pq,rsnArnBs

)
(2.88)

From this form, we can define the reaction rate coefficients, 0Kpq,rs and 0K̄pq,rs in terms of the

collision integrals:

0Kpq,rs =
1

nApnBq

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

mA

∫∫∫
L 2×R3×R3

fAifBjgσ
AkBl
AiBj

dω′ dcB dcA (2.89)

0K̄pq,rs =
1

nArnBs

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

mA

∫∫∫
L 2×R3×R3

βAk
βBl

βAiβBj

f ′Ak
f ′Bl

gσAkBl
AiBj

dω′ dcB dcA (2.90)
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We will revisit these integrals in the next chapter and discuss how they are evaluated using the

QCT method.

The reactive scattering term comprises two components corresponding to the exchange reactions

and the combined dissociation-excitation reactions:

ω̇re
Ap

= ω̇exc
Ap

+ ω̇dis
Ap

(2.91)

First we will discuss the exchange term. This term reads:

ω̇exc
Ap

=
∑
i∈Ip

∫
R3

mAQ
exc
Ai

dcA (2.92)

=
∑
i∈Ip

∑
(Bj ,Ck,Dl)
∈CexcAi

mA

∫∫∫
L 2×R3×R3

(
βCk

βDl

βAiβBj

f ′Ck
f ′Dl
− fAifBj

)
gσCkDl

AiBj
dω′ dcB dcA (2.93)

Similarly, we can re-write this term in terms of the reaction rate coefficients, 0KApBq ,CrDs and

0K̄ApBq ,CrDs :

ω̇exc
Ap

=
∑

(B,C,D)
∈S

∑
q∈B

∑
r∈C

∑
s∈D

(
− 0KApBq ,CrDsnApnBq + 0K̄ApBq ,CrDsnCrnDs

)
(2.94)

where

0KApBq ,CrDs =
1

nApnBq

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

mA

∫∫∫
L 2×R3×R3

fAifBjgσ
CkDl
AiBj

dω′ dcB dcA (2.95)

0K̄ApBq ,CrDs =
1

nCrnDs

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

mA

∫∫∫
L 2×R3×R3

βCk
βDl

βAiβBj

f ′Ck
f ′Dl

gσCkDl
AiBj

dω′ dcB dcA (2.96)
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Finally, for the excitation-dissociation reaction, the mass source term reads:

ω̇dis
Ap

=
∑
i∈Ip

∫
R3

mAQ
dis
Ai

dcA (2.97)

=
∑
i∈Ip

∑
(Bj ,Ck,Dl,Bm)

∈CdisAi

mA

∫∫∫
L 2×R3×R3

(
βCk

βDl
βBm

βAiβBj

f ′Ck
f ′Dl

f ′Bm
− fAifBj

)
gσCkDlBm

AiBj
dω′ dcB dcA

(2.98)

Again, this can be re-written in terms of reaction rate coefficients 0KApBq ,CrDsBt and 0K̄ApBq ,CrDsBt :

ω̇dis
Ap

=
∑

(B,C,D)
∈S

∑
q∈B

∑
r∈C

∑
s∈D

∑
t∈B

(
− 0CApBq ,CrDsBtnApnBq + 0C̄ApBq ,CrDsBtnCrnDsnBt

)
(2.99)

such that the group excitation-dissociation and excitation-recombination rates can be expressed:

0CApBq ,CrDsBt =
1

nApnBq

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

∑
m∈It

mA

∫∫∫
L 2×R3×R3

fAifBjgσ
CkDlBm

AiBj
dω′ dcB dcA (2.100)

0C̄ApBq ,CrDsBt =
1

nCrnDsnBt

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

∑
m∈It

mA∫∫∫
L 2×R3×R3

βCk
βDl

βBm

βAiβBj

f ′Ck
f ′Dl

f ′Bm
gσCkDlBm

AiBj
dω′ dcB dcA (2.101)

2.6.2 Energy source terms

In a similar fashion, we can express the energy source terms as the product of a coefficient and

group number densities or energies. For brevity the details will be skipped as the procedure is the

same as that for the mass source terms. Only the final expressions will be presented.

The inelastic scattering source term for the energy equation reads:

Ω̇in
Ap

=
∑
B∈S

∑
q∈B

∑
r∈A

∑
s∈B

(
− 1Kpq,rsnApnBq + 1K̄pq,rsnArnBs

)
(2.102)
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where the energy transfer coefficients, 1Kpq,rs and 1K̄pq,rs can be written:

1Kpq,rs =
1

nApnBq

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

EAi

∫∫∫
L 2×R3×R3

fAifBjgσ
AkBl
AiBj

dω′ dcB dcA (2.103)

1K̄pq,rs =
1

nArnBs

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

EAi

∫∫∫
L 2×R3×R3

βAk
βBl

βAiβBj

f ′Ak
f ′Bl

gσAkBl
AiBj

dω′ dcB dcA (2.104)

The exchange energy source term reads:

Ω̇exc
Ap

=
∑

(B,C,D)
∈S

∑
q∈B

∑
r∈C

∑
s∈D

(
− 1KApBq ,CrDsnApnBq + 1K̄ApBq ,CrDsnCrnDs

)
(2.105)

where 1KApBq ,CrDs and 1K̄ApBq ,CrDs denote the energy transfer coefficients, defined:

1KApBq ,CrDs =
1

nApnBq

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

EAi

∫∫∫
L 2×R3×R3

fAifBjgσ
CkDl
AiBj

dω′ dcB dcA (2.106)

1K̄ApBq ,CrDs =
1

nCrnDs

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

EAi

∫∫∫
L 2×R3×R3

βCk
βDl

βAiβBj

f ′Ck
f ′Dl

gσCkDl
AiBj

dω′ dcB dcA (2.107)

Finally, the energy source term for the excitation-dissociation reaction reads:

Ω̇dis
Ap

=
∑

(B,C,D)
∈S

∑
q∈B

∑
r∈C

∑
s∈D

∑
t∈B

(
− 1CApBq ,CrDsBtnApnBq + 1C̄ApBq ,CrDsBtnCrnDsnBt

)
(2.108)

where 1CApBq ,CrDsBt and 1C̄ApBq ,CrDsBt denote the energy transfer coefficients defined as:

1CApBq ,CrDsBt =
1

nApnBq

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

∑
m∈It

EAi

∫∫∫
L 2×R3×R3

fAifBjgσ
CkDlBm

AiBj
dω′ dcB dcA (2.109)

1C̄ApBq ,CrDsBt =
1

nCrnDsnBt

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

∑
m∈It

EAi∫∫∫
L 2×R3×R3

βCk
βDl

βBm

βAiβBj

f ′Ck
f ′Dl

f ′Bm
gσCkDlBm

AiBj
dω′ dcB dcA (2.110)

In the next chapter, the procedure for evaluating the reaction rate coefficients and energy transfer

coefficients will be presented.
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2.7 Summary

In this chapter we present the MGME framework and use this approach in conjunction with the

Boltzmann equation to construct macroscopic governing equations. The MGME method subdivides

the energy space into groups containing energy levels which are linked by “fast” processes. Then, we

make use of the Boltzmann H-Theorem as well as the condition that the entropy production within

a group is identically zero to derive the distribution of energy levels within a group. The distribution

of energy states relies on the definition of collisional invariants. The collisional invariants used in

this work are defined by analyzing the time-scale of the various processes. We assume that processes

within a group are much faster than those among groups, and the energy jumps which thermalize the

distribution within a group are so small that the internal energy can be taken as the final collisional

invariant to close the system. Finally, we arrive at a two temperature distribution of levels within

a group. The corresponding governing equations for this approach comprise conservation of group

mass, conservation of momentum, conservation of total energy, and conservation of group energy.

In the next chapter, we will provide the link between the chemical source terms (collision integrals)

and the QCT method for calculating kinetic data for the MGME model.
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Chapter 3

Collision Theory

In this chapter we provide a link between collision terms in the governing equations derived in

the previous chapter and the QCT method for determining rate coefficients. The QCT method

is used to estimate the reaction rate coefficient or cross-section by simulating many collisions

between particles to determine the probability that a given reaction occurred. This probability

is related to the rate coefficient by averaging over the collision energy according to a Maxwellian

velocity distribution. The dynamics of the collision are assumed to occur classically; however the

particles are initialized by mapping discrete quantum states (vibrational and rotational quantum

states) to continuum variables (position and momenta). The outcome of each collision is analyzed

to determine the final “state” of the products of the reaction (e.g., excited state, dissociated

constituent atoms, etc.). After many collisions are simulated, the probability is calculated along

with an estimated statistical error. This chapter is organized as follows: Section 3.1 presents the

quantum description of the interaction between particles. Section 3.2 describes the QCT method

used to compute rate coefficients or cross-sections. Section 3.3 provides the link between the QCT

method with the MGME method described in Chapter 2. Finally, we summarize in Section 3.4.

3.1 Quantum description of molecule interactions

The interaction between particles can be described by means of the Schrödinger wave equation:

Ĥψ(R, r) = Eψ(R, r) (3.1)

where ψ(R, r) denotes the wave-function as a function of nuclear, R, and electron, r, coordinates,

E denotes the total system energy, and Ĥ denotes the Hamiltonian operator which comprises the

nuclear kinetic energy (T̂n(R)), electronic kinetic energy (T̂e(r)), nuclear repulsive potential energy
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(V̂nn(R)), electron repulsive potential energy (V̂ee(r)), and the nuclear-electron attractive potential

energy (V̂en(R, r)):

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂en (3.2)

Let H denote the set of nuclei, and E denote the set containing all electrons. The potential and

kinetic operators read:

T̂n =−
∑
I∈H

~2

2mI
∇2

RI
(3.3)

T̂e =−
∑
I∈E

~2

2mI
∇2

rI
(3.4)

V̂nn =
e2

4πε0

∑
I∈H

∑
J∈H
J>I

ZIZJ
|RI −RJ |

(3.5)

V̂ee =
e2

4πε0

∑
I∈E

∑
J∈E
J>I

1

|rI − rJ |
(3.6)

V̂en =− e2

4πε0

∑
I∈H

∑
J∈E

ZI
|RI − rJ |

(3.7)

where ~ = hP/(2π) denotes the reduced Planck constant, mI denotes the mass of species I either

nucleus or electron, e denotes the magnitude of the elementary charge of an electron or proton, ε0

denotes the permittivity of free space, and ZI denotes the atomic number of species I.

Because the wave-function is a function of all nuclear and electronic coordinates, the dimension-

ality rapidly makes this equation computationally intractable. As a result, solving the Schrödinger

equation for the wave-function even for simple systems is impossible (e.g., N2-N interactions). Re-

alizing this, we must make some assumptions to render the Schrödinger equation computationally

tractable. First, we assume that relativistic effects are negligible. Second, we assume that both

the nuclei and electrons can be treated as point masses. Finally, we invoke the Born-Oppenheimer

approximation, which posits that the motion of the nuclei is much slower than that of the electrons.

This enables us to separate the Schrödinger equation into two parts: one describing the motion of

the nuclei (χ(R)) and one describing the motion of the electrons with fixed nuclei (φ(r; R)), such

that the total wave-function is the product of these two, ψ(R, r) = χ(R)φ(r; R). Therefore, we
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can write the electronic and nuclear parts of the Schrödinger equation separately:

[
T̂e(r) + V̂ee(r) + V̂en(r; R)

]
φ(r; R) = Ee(R)φ(r; R) (3.8)[

T̂n(R) + V̂nn(R) + Ee(R)
]
χ(R) = Eχ(R) (3.9)

When written in this form, we can see that the Ee(R) term describes the electronic potential energy

as a function of nuclear distances. The summation of Ee(R) + V̂nn(R) describes the PES for the

system. The PES describes the potential energy of the collection of nuclei in a cloud of electrons

as a function of the nuclei positions. The spatial gradient of the PES provides the forces among

nuclei and is used in dynamics calculations for the nuclei such as the QCT method. Therefore, it

is necessary to calculate the PES at many geometric arrangements of the constituent atoms, and

fit the PES to a differential function. In general (for non-linear geometries), the PES (technically

a hypersurface) can be described by 3N − 6 coordinates, where N is the number of nuclei (e.g.,

3 coordinates for N2-N, and 6 coordinates for N2-N2). There has been significant work recently

to calculate the PES for several systems relevant to air chemistry (in particular for application to

chemistry in hypersonic flows) [74–84].

In this work, we apply the MGME-QCT method to the nitrogen systems, (N2-N, and N2-N2).

We consider nitrogen atoms and molecules in the ground electronic states, N(4Su) and N2(X1Σ+
g )

respectively. For both systems the PES used in this work is that developed at the NASA Ames

Research Center by the computational chemistry group [75, 76, 125]. For the nitrogen molecules,

there are 9390 rovibrational states, with vibrational quantum numbers v, and rotational quantum

numbers J . The maximum vibrational state is v = 60 and the maximum rotational state is

J = 273. The rovibrational states were determined using quantum mechanics calculations using

the Wentzel-Kramers-Brillouin (WKB) approximation [126] with a modified N2(X1Σ+
g ) potential

based on the work of Le Roy et al. [88,127]. The absolute index for the rovibrational state, i, used

in the previous chapter is determined by sorting the energy levels according to increasing energy

such that i = i(v, J). Of the 9390 levels, most have energy below the dissociation energy of 9.75 eV,

referred to as the bound states. The remaining levels have energy above the dissociation energy,

but below the J-dependent centrifugal barrier, referred to as quasi-bound states, because they have
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a finite lifetime for spontaneous dissociation by tunneling.

N2(X1Σ+
g )-N(4Su) PES. Early work on the development of a PES for the N2-N system was

based on the empirical London-Eyring-Polanyi-Sato (LEPS) potential [128]. Following this, the first

ab initio PES for the N2-N system was developed by Wang et al. [74], and improved by Chaban et

al. [76]. There has also been work on the low lying excited electronic states and allotropes of the

N2-N system [129–131]. However, in this work we will focus on the ground electronic state.

The PES used in this work for the N2(X1Σ+
g ) − N(4Su) system is described in Refs. [74, 76].

It was constructed using 1344 geometry points calculated using the fifth order accurate triple

energies functional. Further details on the calculation and fitting of the PES can be found in

Refs. [38, 74, 76, 126]. The resulting PES for the N2(X1Σ+
g ) − N(4Su) system is a function of

three parameters, corresponding to the three degrees of freedom understanding the PES does not

depend on the absolute location or angular momentum of the system of particles. This PES has

previously been used to construct a database of rovibrational StS rate coefficients and study the

non-equilibrium dissociation and energy transfer processes in a mixture of nitrogen atoms and

molecules [38,75].

N2(X1Σ+
g )-N2(X1Σ+

g ) PES. A review of previous work on the development of a PES for high

energy collisions between nitrogen molecules reveals that there are two ab initio PESs available for

this system: one developed by Jaffe et al. [76,125], and one developed by Paukku et al. [77,78]. A

comparison of these two PESs is presented in Ref. [132], demonstrating that the thermal dissociation

reaction rate coefficients obtained from both are similar.

In this work we use the PES developed by Jaffe et al. [76, 125]. For these calculations, the

nuclear positions were divided into regions where both N2(X1Σ+
g ) molecules had bond lengths

near equilibrium, and where one or both N2(X1Σ+
g ) molecules had a bond length far from equi-

librium. In the first group, where both molecules have bond lengths near equilibrium, electronic

structure calculations were performed using the closed-shell coupled-cluster-single-double method

(CCSD(T)) to parametrize the wave-function [133, 134]. For this region, calculations were per-

formed for 3821 nuclear geometries. In the second region, where one or both bond lengths are far

from equilibrium, calculations were performed for 325 nuclear geometries using the multi-reference
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averaged-coupled-pair-function method [135]. Following the electronic structure calculations, we

must find an accurate analytical representation of the energy and forces on the grid of geometries

where the electronic structure calculations were performed. This representation results in a six-

dimensional hypersurface, depending on the six-degrees of freedom for this system of four particles.

This fitting represents the PES, and was performed based on the form developed by Schwenke [126].

Further details on the calculation of the PES can be found in Refs. [75, 76,125].

3.2 Quasi-classical trajectory method

The QCT method can be used to simulate the dynamics of the nuclei under interatomic forces

determined by the PES. In this approach, instead of solving for the quantum description of the

nuclei, as specified in Eq. (3.9), we assume that the nuclear motion can be approximated using

classical mechanics. The QCT method relies on several assumptions. First, we assume that the

masses of the nuclei are significantly large that any wave-effects of the nuclei can be neglected.

Second, the results are more accurate when they are highly averaged such that the spread covered

by a representative wave packet will be sufficiently small. Third, the total energy of the reactants

should be sufficiently low relative to the energy barrier so that tunneling effects can be neglected.

Fourth, when calculating StS reaction probabilities, the QCT method will not yield correct proba-

bilities for processes that are classically forbidden unless a correction is applied in post-processing.

Finally, the QCT method cannot predict resonance features or other interference phenomena.

The QCT method first initializes the particles to quantum states (e.g., discrete rovibrational

states), mapping the quantum states to initial positions and momenta. Then, the trajectory is

obtained by solving Hamilton’s equations of motion for the nuclei. Finally, after the trajectory has

exceeded a certain number of time steps or distances between nuclei, the position and momenta of

the nuclei are mapped back to quantum states. At the end of the trajectory, because the motion

of the nuclei was estimated to occur classically, the quantum numbers (i.e., v and J) are now real

numbers, and must be truncated to integer values. At this point, if desired, selection rules on the

allowed transitions can be applied.

In the following subsections the steps in the QCT procedure will be presented. In this work,

we are using a modified version of the Vectorized Variable timestep Trajectory Code (VVTC) for
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the QCT calculations written by D. W. Schwenke [126].

First, let us consider the integral which the QCT method is used to compute. The integral

definition of the StS rate coefficient can be written as a function of the probability of that reaction

occurring for a given impact parameter b, PAkBl
AiBj

(different from the probability density, WAkBl
AiBj

,

defined in Chapter 2). The impact parameter describes an offset between the projectile and target

as shown in Fig. 3.1. The resulting integral which is determined in the QCT method is:

κij,kl =
1

χ

(
µAB

2πkBT

)3/2 ∫
L 2

∞∫
b=0

∞∫
g=0

exp

[
− µAB

2kBT
g2

]
2πbg3PAkBl

AiBj
dω dbdg (3.10)

where χ is introduced here as a symmetry factor. When the colliding particles, A and B, are the

same, the symmetry factor is 2, otherwise it is 1. This ensures that collisions are not double counted;

there is further discussion of this in Vincenti and Kruger [16]. Equation (3.10) forms the basis for

the QCT method, and represents the ensemble averaged probability of a given reaction. The idea

behind the QCT method is to compute this integral using a Monte Carlo sampling approach, by

simulating many collisions between particles to calculate the probability that a given outcome was

achieved. To accomplish this, we need a model for the dynamics of the collisions. The QCT method

is so called because it assumes that the collision (i.e., the motion of the nuclei) occurs classically

but initializes the trajectory variables in a specific quantum state. An overview of the steps for the

QCT method will be presented in the following sections. Further details on this approach can be

found in in Refs. [86–88].

Figure 3.1: Diagram of impact parameter (Credit: Wikipedia).
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3.2.1 Governing equations

The QCT method makes use of Hamilton’s equations of motion for the dynamics of the nuclei. In

this work, we are primarily concerned with solving for the kinetic data of two diatomic molecules

colliding. Therefore, the equations in this section and the subsequent sections will focus on the

QCT method applied to four-atom systems. However, the generalization to an arbitrary number

of atoms is straightforward. First, the Hamiltonian for the system in a space-fixed Cartesian

coordinate system can be written in terms of the twelve position coordinates x ≡ {xi; i = 1, . . . , 12}

and twelve momenta p ≡ {pi; i = 1, . . . , 12} for nuclei denoted A, B, C, and D respectively:

H(x,px) = T (px) + V (x) (3.11)

Where

T (px) =

3∑
i=1

(
1

2mA
p2
xi +

1

2mB
p2
xi+3

+
1

2mC
p2
xi+6

+
1

2mD
p2
xi+9

)
(3.12)

In this coordinate system, Hamilton’s equations of motion read:

ẋi ≡
∂xi
∂t

=
∂H

∂pxi
=

∂T

∂pxi
, (i = 1, . . . , 12) (3.13)

ṗxi ≡
∂pxi
∂t

= −∂H
∂xi

= −∂V
∂xi

, (i = 1, . . . , 12) (3.14)

However, it is advantageous to do a transformation of coordinates to the center of mass reference

frame. This allows for the elimination of three of the position and momenta, meaning we reduce the

number of partial differential equations to solve from 24 to 18. While it is possible to also invoke

conservation of total energy and angular momentum to further reduce the number of variables,

it is not advantageous because the resulting equations are significantly more complicated. We

denote the new vector of the positions as Q ≡ {Qi; i = 1, . . . , 9} and the vector of momenta as

P ≡ {Pi; i = 1, . . . , 9}. Further details on this procedure can be found in Refs. [88, 126].

3.2.2 Initialization of trajectories

As discussed earlier, the quantization of energy states in the QCT method occurs in the initialization

of the position and momentum variables. In order to fully specify the system, there are a total
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of 18 parameters to initialize, corresponding to the 9 position and 9 momenta components. The

position these correspond to the vector between the two diatoms (i.e., a vector pointing from the

center of mass of one molecule to the center of mass of the other), and the vector connecting the

nuclei of each diatom (i.e., a vector pointing from one nuclei to the other corresponding to the

molecule). The parameters which determine the initial system comprise:

b the impact parameter

ε the polar angle between the centers-of-mass of A and B

R the distance between the centers-of-mass of A and B

Vrel the relative velocity vector between the centers-of-mass of A and B

θ1, θ2 the azimuthal orientation angle of the A and B internuclear axes respectively

φ1, φ2 the polar orientation angle of the A and B internuclear axes respectively

η1, η2 the orientation of the rotational momentum perpendicular to the internuclear

axes of molecules A and B respectively

|J1|, |J2| the magnitude of the rotational momentum of molecules A and B respectively

r1, r2 the internuclear distance between the nuclei of molecules A and B respectively

ṙ1, ṙ2 the relative velocities between the nuclei of molecules A and B respectively

The position and velocity between the center-of-mass of the two molecules, described by (b, ε,

R, Vrel), can be simplified without loss of generality by placing the centers-of-mass of the colliding

partners in the same plane, and aligning the relative velocity vector along an axis. Therefore,

the relative speed, given by g, can be sampled from a Maxwellian distribution. The particles

are initialized sufficiently far away from each other such that they feel no forces due to the other

body. Finally, shifting to this polar coordinate system in the center-of-mass frame is advantageous

because above a certain impact parameter, denoted by bmax, interactions are extremely unlikely to

occur. The impact parameter is sampled using a stratified sampling method below the maximum

impact parameter. The 12 coordinates that specify the internal positions of each molecule must be

related to the initial rovibrational states. Therefore, the variables (η1, |J1|, r1, ṙ1) can be related

to the vibrational and rotational quantum numbers, (v1, J1), and the vibrational phase, ξ1, for
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molecule 1, and likewise for molecule 2. All these parameter are sampled from the appropriate

distribution (e.g., the group distribution for the states within a group) using a random number

generator. Further details on the stratified sampling approach can be found in many references

such as Truhlar and Muckerman. [86] Further details on the sampling of all other parameters can

be found in Refs. [87, 88,126].

3.2.3 Calculation of final states

After the collision is completed, determined either by exceeding a time condition or distance between

nuclei, the outcome of the collision is analyzed. This is first accomplished by sorting the bond

lengths among the four nuclei. If two of the nuclei are within a certain threshold of bond length,

the momenta and position of these nuclei are mapped back to quantum states. However, because the

collision was calculated under the assumption of classical motion, the states are not quantized and

the quantum numbers are real values. If the molecule after collision is found to have internal angular

momentum J̃′r, we can calculate the rotational quantum number from this using the definition of

angular momentum:

J̃ ′ = −1

2
+

(
J̃′r · J̃′r
~2

)1/2

(3.15)

The final vibrational quantum number, ṽ is assigned from the action integral:

Jv =

(
ṽ′ +

1

2

)
hP = 2

r+∫
r−

{
2µ

[
Ev,J − VNN −

~2(J̃ ′ + 1/2)2

2µr2

]}1/2

dr (3.16)

where µ is the reduced mass of the molecule being analyzed, Jv is the vibrational action, Ev,J is the

total energy of the molecule, V NN is the diatomic potential energy for the molecule, and r is the

internuclear distance, which is integrated for one period. With both a vibrational and rotational

quantum number calculated, (ṽ′, J̃ ′), we now need to round these to the nearest integer value.

At this point we also take the opportunity to ensure that quantum selection rules are obeyed.

Therefore, if the final molecule is made up the same nuclei as before the collision (i.e., it was

an excitation reaction, not exchange), the rotational quantum number is rounded to the nearest

integer of the same parity as the initial quantum number.

If the internuclear distance for one pair of atoms exceeds some threshold value, the molecule
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is considered dissociated. If all the atoms exceed this distance among each other, both molecules

have dissociated.

3.2.4 Calculation of cross-section

When considering the expression for the rate coefficient, Eq. (3.10), the QCT calculates the proba-

bility PAkBl
AiBj

. The outcome of a single collision is a Boolean function, as each trajectory has either

resulted in this specific transition or has not. Therefore this probability is simply the number

of times the desired outcome was achieved, NAkBl
AiBj

divided by the total number of trajectories

originating from the given initial state, NAiBj . The final integral we are evaluating can then be

written:

κij,kl =

(
µAB

2πkBT

)3/2
∞∫

b=0

∞∫
g=0

π∫
θ1=0

2π∫
φ1=0

ρ1+∫
r1=ρ1−

2π∫
η1=0

π∫
θ2=0

2π∫
φ2=0

ρ2+∫
r2=ρ2−

2π∫
η2=0

× exp

[
− µAB

2kBT
g2

]
2πbg3P̃AkBl

AiBj
(g, b, θ1, θ2, φ1, φ2, r1, r2, η1, η2)

× dbdg

[
1

2
sin θ1

]
dθ1

[
1

2π

]
dφ1 [G1(r1; v1, J1)] dr1

[
1

2π

]
dη1

×
[

1

2
sin θ2

]
dθ2

[
1

2π

]
dφ2 [G2(r2; v2, J2)] dr2

[
1

2π

]
dη2 (3.17)

where the functions G1(r1; v1, J1) and G2(r2; v2, J2) depend on the diatomic potential. All the

parameters in this integral are sampled from the appropriate distribution as described earlier.

The statistical error on the probability is easy to estimate because it is simply a function of

the number of times our desired outcome was achieved and the number of samples. One standard

deviation is therefore:

∆PAkBl
AiBj

=

NAkBl
AiBj

−
(
NAkBl

AiBj

)2

NAiBj


1/2

(3.18)

We will use this quantity to calculate the statistical error in our calculated rates.
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3.2.5 Connection between QCT and kinetic theory

Recall the definition of the mass source term for inelastic scattering collisions derived in Chapter 2

as a function of the differential cross-section:

1

mA
ω̇Ai =

∑
(Bj ,Ak,Bl)
∈CAi

∫∫∫
L 2×R3×R3

(
βAk

βBl

βAiβBj

f ′Ak
f ′Bl
− fAifBj

)
gσAkBl

AiBj
dω′ dcB dcA (3.19)

In this case we are assuming nothing about the internal state distribution of the states i and j,

only considering the translational distribution function for the species. If we wish to re-write this

expression in terms of elementary rate coefficients, κij,kl and κkl,ij such that:

1

mA
ω̇Ai =

∑
(Bj ,Ak,Bl)
∈CAi

(
−κij,klnAinBj + κkl,ijnAk

nBl

)
(3.20)

we can define this rate coefficient, κij,kl as the rate of removal of state i due to this specific chemical

process. Later we will re-visit this integral to understand how to do this for our groups described

earlier and how to obtain the reverse rate (κkl,ij) in a consistent manner. However, we can write this

elementary rate coefficient in the integral form by plugging in the Maxwellian velocity distribution

for fAi and fBj , transforming to center of mass coordinates, and integrating out the center of mass

velocity contribution:

κij,kl =
1

χ

(
µAB

2πkBT

)3/2 ∫
L 2

∫
L 2

∞∫
g=0

exp

[
− µAB

2kBT
g2

]
g3σAkBl

AiBj
dω′ dω dg (3.21)

We can relate this differential cross-section to the probability that a given reaction occurred, PAkBl
AiBj

,

(not probability density, WAkBl
AiBj

as used in the previous chapter) through the impact parameter,

b. The relationship between the scattered solid angle and the impact parameter exists because for

a given final solid angle, dω′, the trajectory must have originated in some impact parameter ring

corresponding to 2πbdb. Therefore, we can relate the differential cross section to this probability:

σAkBl
AiBj

dω′ = 2πbPAkBl
AiBj

db (3.22)
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Finally, using this relationship in the definition of the microscopic rate coefficient, we arrive at the

same integral the QCT method is used to solve:

κij,kl =
1

χ

(
µAB

2πkBT

)3/2 ∫
L 2

∞∫
b=0

∞∫
g=0

exp

[
− µAB

2kBT
g2

]
2πbg3PAkBl

AiBj
dω dbdg (3.23)

In the next section we will demonstrate how to link the MGME model with the QCT method by

sampling initial states from the appropriate group distribution.

3.3 Multi-group maximum entropy quasi-classical trajectory

method

In this section, we present the link between the MGME and QCT methods by using the distribution

function derived in Chapter 2. This comprises expressing the collision integrals (the right hand side)

of the conservation of group mass and group energy equations in terms of the parameters sampled

in QCT. First we analyze the mass source terms. The production terms in the conservation of

mass equations can be split into an inelastic part and a reactive part. If we recall in the previous

chapter, we split the mass source terms into a rate coefficient and the product of the reactants or

products for the replenishing and depleting terms respectively. The rate coefficients for inelastic

processes read:

0Kpq,rs =
1

nApnBq

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

mA

∫∫∫
L 2×R3×R3

fAifBjgσ
AkBl
AiBj

dω′ dcB dcA (3.24)

0K̄pq,rs =
1

nArnBs

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

mA

∫∫∫
L 2×R3×R3

βAk
βBl

βAiβBj

f ′Ak
f ′Bl

gσAkBl
AiBj

dω′ dcB dcA (3.25)

Making use of the distribution function derived earlier, we can transform to center of mass coordi-

nates, include the symmetry factor (χ = 1 + δApBq , where δApBq is the Kronecker-Delta function),

and integrate out the center of mass velocity to yield the following expression for the forward rate
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coefficient:

0Kpq,rs =
1

nApnBq

1

χ

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

mAf
int
Ai
f int

Bj

(
µAB

2πkBT

)3/2

×
∫∫∫

L 2×R3×R3

exp

(
− µAB

2kBT
g2

)
gσAkBl

AiBj
g2 dg dω′ dω (3.26)

Making use of the relationship between the cross-section and the transition probability computed

through QCT calculations, we arrive at an expression which resembles the integral which the QCT

method calculates:

0Kpq,rs =
∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

aAi exp

(
− EAi

kBT
int
Ap

)
Q

(0)
Ap

(T int
Ap

)


aBj exp

(
−

EBj

kBT
int
Bq

)
Q

(0)
Bq

(T int
Bq

)


×mA

1

χ

(
µAB

2πkBT

)3/2
∞∫

g=0

∞∫
b=0

∫
L 2

exp

(
− µAB

2kBT
g2

)
g32πbPAkBl

AiBj
dbdg dω (3.27)

The advantage of expressing the rate coefficient like this is that the form is nearly identical to the

quantity which the QCT method computes. The primary difference is now we are sampling initial

rovibrational states from group distributions at independent temperatures. We can carry out the

same procedure for the reverse rate. However, we would like to express the reverse rate coefficient

in terms of a grouped forward rate to aid in constructing a self-consistent model as well as to

help down the line when we want to write recombination rates without simulating recombination

trajectories. To do this, we use the conservation of momentum and energy expressions for the

collisions along with the principle of micro-reversibility. After some algebra, we can write the
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reverse rate coefficient as:

0K̄pq,rs =Q
(0)
Ap

(T )Q
(0)
Bq

(T )
∑
i∈Ip

∑
j∈Iq

∑
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)
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− EBl
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)
Q

(0)
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(T int
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)


×

aAi exp
(
−EAi

kBT

)
Q

(0)
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(T )
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(
−
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kBT
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Q
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×
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∫
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exp

(
−µABg

2

2kBT
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g32πbPAkBl

AiBj
dbdg dω′ (3.28)

The advantage of writing the reverse rate coefficient this way is not immediately obvious until

we realize that the initial states are now sampled from a thermal distribution at the translational

temperature and from this we can obtain the reverse rate coefficient by weighting the contribution

to the rate by a factor related to the final state and three temperatures, T , T int
Ar

, and T int
Bs

. Therefore,

we can obtain both forward and reverse rate coefficients through trajectories in only one direction.

The expressions for the exchange reactions are very similar and are included in Appendix C.

Taking the same approach for the combined excitation-dissociation and combined excitation-

recombination reactions, we can re-cast them in a form which we will solve using the QCT method.

The dissociation and recombination rate coefficients read:

0CApBq ,CrDsBt =
1

nApnBq

∑
i∈Ip

∑
(Bj ,Ck,Dl,Bm)

∈CdisAi

mA
1

χ

∫∫∫
L 2×R3×R3

fAifBjgσ
CkDlBm

AiBj
dω′ dcB dcA (3.29)

0C̄ApBq ,CrDsBt =
1

nCrnDsnBt

∑
i∈Ip

∑
(Bj ,Ck,Dl,Bm)

∈CdisAi

mA
1

χ

×
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L 2×R3×R3
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βDl

βBm

βAiβBj

f ′Ck
f ′Dl

f ′Bm
gσCkDlBm

AiBj
dω′ dcB dcA (3.30)

First, if we plug in the distribution for the groups derived in the previous chapter for the dissociation

rate coefficient, complete the change of variables, and integrate out the center-of-mass velocity, we
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arrive at the following expression for the dissociation rate coefficient:
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Using the same procedure as for the excitation reaction, we can write the recombination rate

coefficient in terms of the probability of dissociation:
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Moreover, if we assume that we are not interested in the internal structure of the constituent

particles C and D (as would be the case if they are both atoms and we do not consider electronic

excitation), and consider them to be in thermal equilibrium with the translational mode, this
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expression simplifies to:
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The advantage to this form of the rate coefficient is that the initial states for QCT calculations

can be sampled from a thermal distribution where the group internal temperatures are identically

the translational temperature. The exponential factors for the final states can be applied in the

post-processing of the trajectories by tracking these factors. This framework can be used for the

energy transfer coefficients as well. Further details on the expressions for all these processes can

be found in Appendix C. In addition, Appendix D includes the expressions used to calculate the

statistical error on the rate coefficients and energy transfer coefficients.

Finally, if the group internal temperatures are taken to be equal to the translational tempera-

ture, the detailed balance relationships for the MGMET model can be derived:
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These expressions demonstrate that when the translational and group temperatures are the same,

the detailed balance condition holds at a group level, and reverse rate coefficients can easily be

obtained from forward rate coefficients. This can be used in the MGMET model, bypassing the

need to compute the reverse rate coefficients through sampling. However, this procedure is essential

to close the MGMEL model.

3.4 Summary

In this chapter we present the general procedure for computing kinetic data for the MGME model

described in Chapter 2. First, the quantum description of the dynamics of a collision is shown, and

the definition of the PES is presented. The PES used in this work for both the N2(X1Σ+
g )−N(4Su)

and N2(X1Σ+
g ) − N2(X1Σ+

g ) systems are those of Jaffe et al. [75, 76]. Next, the QCT procedure

is presented, which is used to compute rate coefficients or cross-sections by computing transition

probabilities through sampling. Finally, this procedure is coupled with the MGME model by first

linking the calculation of forward rate coefficients with the QCT method. Finally, by invoking the

principle of micro-reversibility, we can derive expressions for reverse rate coefficients in terms of

forward rate coefficients along with weighting terms. This allows for the construction of the full

MGMEL model without the need to compute recombination trajectories.
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Chapter 4

Heat Bath Study of Energy Transfer
and Dissociation in Nitrogen
(MGMET-QCT)

In this chapter, the results of the MGMET model will be presented. This corresponds to a model

which assumes that each group is in thermal equilibrium with the translational mode. Using

this approach, we compare two grouping schemes for nitrogen molecules for studying the physics

of excitation and dissociation in a zero-dimensional heat bath. The heat bath simulation is a

simplification of the full set of conservation equation described in Chapter 2 in which we shift to the

Lagrangian frame, assuming that there is no bulk velocity, and that the temperature and density

of the box remain constant. Therefore, the necessary conservation equations comprise only the

conservation of group mass equations, and we only consider the temporal variation in composition

due to chemical reactions. The first grouping scheme is a conventional approach in which groups

contain all rotational states of a given vibrational state. This is identical to a vibrational StS

approach in which the rotational mode is assumed to instantly thermalize with the translational

mode. This yields 61 groups, corresponding to the 61 vibrational levels of the N2 molecule. The

second approach is a simple energy based binning approach in which energy states near in energy

are lumped together. We use 60 bins for this approach, to yield a similar computational cost

to the vibrational binning model. Comparing these two grouping strategies, it will be shown

that the grouping scheme has a large impact on the results, and an adequate grouping strategy

requires a fundamental understanding of the underlying physics. In this chapter, we compare the

energy transfer and dissociation behavior of an isothermal and isochoric reactor. The molecules

are initially cold, and the temperature of the box is instantaneously raised to force the system into

strong non-equilibrium. In Section 4.1 the simulation set up is presented, including the simplified

governing equations. Section 4.2 presents an analysis of the non-equilibrium distributions during

the energy transfer and dissociation processes. Section 4.3 presents an analysis of the dissociation

process. Section 4.4 presents an analysis of the energy transfer process. Section 4.5 presents a
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comparison of macroscopic observables (e.g., global dissociation rate, vibrational relaxation time)

with existing experimental and computational data. Section 4.6 presents a discussion of the results,

and Section 4.7 presents a summary. This chapter is reproduced from Ref. [116], with the permission

of AIP Publishing.

4.1 Simulation set-up

In this section, we present the details of the zero-dimensional study. This includes the methods for

energy level grouping, the simplified governing equations, and the initial conditions for the study.

4.1.1 Energy level grouping

Uniform width energy based grouping

In the uniform width energy based grouping strategy, the energy levels of the N2 molecule are first

split into bound and quasi-bound (or pre-dissociated) states. Then, given a number of bound and

quasi-bound groups, denoted by NB and NQB respectively, the energy width of the bins can be

determined by:

∆EB =
2EN

NB
, ∆EQB =

E?N2
− 2EN

NQB
(4.1)

Where ∆EB and ∆EQB denote the energy width of the bound and quasi-bound bins respectively,

EN represents the formation energy of atomic nitrogen, and E?N2
represents the energy of the rovi-

brational state of N2 with the largest energy. A schematic of the energy based grouping strategy

is shown in Fig. 4.1a, considering only three energy bins. In this schematic, the different colors de-

note different vibrational states, which in the energy based grouping strategy are lumped together.

In this chapter, the energy based grouping method will be applied to the N2(X1Σ+
g ) − N2(X1Σ+

g )

system using 60 bins (40 of bound states, and 20 of quasi-bound or pre-dissociated states). The

resulting bin widths are ∆EB = 0.24 eV and ∆EQB =0.26 eV.

Vibrational based grouping

Vibrational based grouping instead considers the vibrational quantum numbers when constructing

the groups. In this approach, all the rotational states which share a vibrational quantum number
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Figure 4.1: Schematic of binning strategies.

are grouped together. A schematic of this grouping strategy is shown in Fig. 4.1b for three example

vibrational states, where the red states belong to v = 0, the blue states belong to v = 1, and the

green states belong to v = 2. The resulting bins contain states which span the entire energy

spectrum (e.g., the v = 0 bin will contain states with all possible rotational quantum numbers and

thus a wide range of energies).

4.1.2 Governing equations

The governing equations for the zero-dimensional study comprise the conservation of mass equa-

tions for the groups, as well as a conservation of mass equation for the atoms. In this chapter,

only N2(X1Σ+
g ) − N2(X1Σ+

g ) reactions are considered; these comprise excitation or de-excitation,

combined excitation-dissociation or combined excitation-recombination, and double dissociation or

four body recombination. In this chapter, we also include the four-body dissociation-recombination

reactions and use the detailed balance relation at a group level. The reaction rate coefficients are

only evaluated at thermal equilibrium with the translational mode. From here on, we will denote

the number density of the group p of N2 as np because it is the only species we consider groups for.

Likewise, the formation energy of group p and state i and the degeneracy of state i for N2(X1Σ+
g )

will be written as Ep, Ei, and ai respectively. The internal partition functions will be written
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as Q
(0)
p (T ) for group p. Furthermore, in the reaction rate coefficients we will drop the species

identifiers, writing only indices for the groups. Moreover, because exchange type reactions and

excitation reactions for the N2(X1Σ+
g )−N2(X1Σ+

g ) system are indistinguishable, we will sum these

two processes and write a single excitation reaction rate coefficient for these two. That is to say

that the following expressions will be used for the rates:

0CApBq ,CrDsBt = 0Cpq,r,
0C̄ApBq ,CrDsBt = 0C̄pq,r

Finally, we denote the set of groups for the N2 molecule as I. Therefore, the conservation equations

for this system read:

dnp
dt

=
∑
q∈I

∑
r∈I

∑
s∈I

(
− 0Kpq,rsnpnq + 0K̄pq,rsnrns

)
+
∑
q∈I

∑
r∈I

(
− 0Cpq,rnpnq + 0C̄pq,rnrn

2
N

)
+
∑
q∈I

(
− 0Cpqnpnq + 0C̄pqn

4
N

)
, p ∈ I, (4.2)

dnN
dt

=2
∑
q∈I

∑
r∈I

(
0Cpq,rnpnq − 0C̄pq,rnrn

2
N

)
+ 4

∑
q∈I

(
0Cpqnpnq − 0C̄pqn

4
N

)
(4.3)

We make use of the Konig solver along with the Max-Entropy library for thermodynamics written

by Alessandro Munafò to solve the conservation equations for this system.

For the MGMET-QCT model, trajectory calculations were carried out by starting in every

possible pair of groups, and sampling the translational energy at four temperatures: 10 000 K,

13 000 K, 20 000 K, and 25 000 K. The maximum impact parameter was taken to be 7.41Å based

on previous work by Valentini et al [100], and 160 000 trajectories were simulated per pair of initial

groups. Details on the convergence of the rates can be found in Appendix E. The reaction rate

coefficients for the excitation processes are taken from exothermic trajectories which were found to

have significantly smaller statistical error.
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4.1.3 Reactor conditions

An isochoric reactor model is used to study the non-equilibrium dissociation process of nitrogen

modeled using the MGMET-QCT method. In all the simulations the gas is initially composed of

cold nitrogen molecules, populated according to a Boltzmann distribution at TI = 300 K with a

density of 1.2 kg/m3 corresponding to a pressure of 1 atm. Under these assumptions, the initial

population of the groups is given by:

np
nN2

=
Q̃

(0)
p (T ) exp

(
− Ep

kBTI

)
∑
p∈I

Q̃
(0)
p (T ) exp

(
− Ep

kBTI

) (4.4)

where nN2 denotes the total number density of nitrogen molecules given by nN2 =
∑

p∈I np, ∆Epi is

the energy of state i relative to the formation energy of group p such that Ei = Ep+∆Epi , TI is the

initial internal temperature, and Q̃p(T ) is the partition function of a group relative to the group

formation energy: Q̃
(0)
p (T ) =

∑
i∈Ip ai exp (−∆Epi /(kBT )). At the beginning of the simulation, the

translational temperature of the reactor is instantaneously raised and held constant, driving the gas

out of equilibrium. Four different translational temperatures are considered: 10 000 K, 13 000 K,

20 000 K, and 25 000 K.

4.2 Analysis of non-equilibrium population distribution

4.2.1 Uniform width energy based grouping

At the beginning of the simulation, only the low-lying energy groups are significantly populated,

given the initial values of TI . With time, the random motion of molecules brings about collisions,

thus enabling the transfer of kinetic energy into internal energy. Figure 4.2a shows the distribution

of energy groups at various times in the 10 000 K reactor simulation. Early in the relaxation process,

t = 10−10 s, the distribution is still significantly colder than the final equilibrium distribution,

indicating that the gas is still in the midst of the relaxation process. This phase is completed at

about t = 10−9 s. Between t = 10−8 s and t = 10−7 s, the distribution is frozen, indicating that the

gas has reached the quasi-steady-state (QSS) distribution, during which time the distribution of

states is unchanged due to a balance between excitation and dissociation processes. After t = 10−7
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Figure 4.2: Bin distribution for isochoric reactor simulation at T = 10 000 K with 60 energy
groups.

s, the high energy groups are replenished through recombination, and the gas approaches the final

equilibrium distribution after t ≈ 10−5 s. Figure 4.2b shows the time evolution of the population

for a subset of the groups. In this figure, the different phases of the thermochemical relaxation can

be clearly observed along with the plateau in the population densities which represent the QSS

state of the gas.

4.2.2 Vibrational based grouping

Figure 4.3a shows the distribution of vibrational groups at various times in the 10 000 K reactor

simulation. Because of the difference in grouping strategies, the distribution looks very different

from the energy binned results. Early in the relaxation process, t < 10−9 s, the low energy

vibrational states (Ev < 1.5 eV) appear nearly frozen at a colder temperature than the higher

energy states. This bi-modal distribution persists until the QSS state is reached at t = 10−7 s. The

QSS state is clearly observable in Fig. 4.3b, which shows a narrow plateau in the population of

the high vibrational energy level populations around this time. As observed for the other grouping

strategy, the distribution shows significant deviation from equilibrium. It is important to note that

the initial energy transfer process predicted by the vibrational based grouping model is significantly

slower than the one predicted by the energy based grouping method.
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Figure 4.3: Bin distribution for isochoric reactor simulation at T = 10 000 K with 61 vibrational
specific groups.

To better illustrate the differences between the two grouping strategies on the microscopic level,

the reconstructed distributions are shown in Fig. 4.4 at two different times in the 10 000 K reactor.

Figure 4.4a shows the distribution during the relaxation process, at t = 1.173 × 10−10 s. At this

instant, the total internal energy contained in the molecules is the same; however, due to different

assumptions in the grouping strategy, the rovibrational distributions are very different. Since the

energy based grouping assumes equilibrium over a small range of energies (i.e., each energy bin

is only 0.25 eV in width), the distribution is mostly continuous across the energy spectrum, with

each bin approximating only a reduced number of levels in a narrow energy range. In contrast, the

vibrational binning strategy assumes equilibrium at 10 000 K among all rotational states within a

given vibrational state. This results in the strand like structure observed in Fig. 4.4a.

Figure 4.4b shows the reconstructed distribution of states during the dissociation process for

both grouping strategies. In both groupings, the distribution of low energy states is very similar,

and approaches equilibrium. However, nearing the dissociation energy (9.75 eV), the distribution

predicted by the energy binning strategy deviates from the Boltzmann distribution. The population

predicted by the vibrational grouping model is more complicated. The high-lying vibrational levels

contain a reduced number of rotational levels, and therefore will capture the depopulation of the

high-lying rovibrational states. On the contrary the low-lying vibrational levels contain a large
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Figure 4.4: Reconstructed distribution of states from energy and vibrational binning models at
10 000 K.

number of rotational levels characterized by large rotational quantum number. These levels are

forced to be in equilibrium with the low-lying rovibrational states by the averaging procedure, thus

creating an artificial overpopulation in the tail of the distribution.

The two models provide a very different representation of rovibrational relaxation. The vibra-

tional grouping appears adequate for the description of the low-lying vibrational level, characterized

by a small rotational quantum number, where the mode separation is clearly significant. On the

contrary, the energy binning strategy seems more adequate for the description of the relaxation of

the high-lying states characterized by low vibrational quantum numbers and high rotational energy

content.

4.3 Dissociation

The mole fraction of atomic nitrogen predicted by both grouping strategies at various temperatures

is shown in Fig. 4.5. At 25 000 K, the two grouping strategies predict similar dissociation rates, even

if the onset of dissociation occurs significantly earlier with the vibrational specific model. As the

temperature decreases, the two grouping strategies diverge. At 10 000 K, the energy based groups

predict faster dissociation, with a shorter incubation period. The discrepancy between the two

grouping models is due to the treatment of the rotational energy mode. In the vibrational grouping
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Figure 4.5: N mole fraction as a function of time using energy-based grouping (solid lines) and
vibrational-based grouping (symbols) at various temperatures.

model, the rotational levels are assumed to be populated according to a Boltzmann distribution at

the translational temperature. This assumption hinders dissociation at low temperature, because

it artificially imposes equilibrium between low and high energy states (e.g., (v, J) = (0, 0) and

(v, J) = (0, 270)), which is clearly incorrect. On the contrary, the energy based grouping is able

to capture the non-equilibrium between high and low-lying rotational levels, since they belong to

different groups.

The importance of the high energy states for predicting dissociation is highlighted in Fig. 4.6.

This shows the fraction of molecules which dissociate from a given group when the molecules are

in the QSS condition, given by:

Pdiss(Ep) =

∑
q∈I

∑
r∈I

0Kpq,rnp∑
p∈I

∑
q∈I

∑
r∈I

0Kpq,rnp
(4.5)

where p and q are the groups of the dissociating and exciting molecules respectively, and Pdiss(Ep)

is the probability that a molecule in group p dissociates. Figure 4.6a presents the results obtained

with the energy based grouping model. The distribution clearly shows that molecules climb nearly

to the dissociation energy before dissociating. This effect is more pronounced at low temperatures,

where there is less energy available in the translational mode to facilitate dissociation from the

lower energy groups. Thus, the importance of the quasi-bound states increases with decreasing
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(a) 60 energy groups. (b) 61 vibrational groups.

Figure 4.6: Fraction of molecules dissociating during the QSS region from each group.

temperature. Table 4.1 gives the percent of dissociation occurring from quasi-bound states as

predicted by the model. At low temperatures, nearly 50% of the dissociation occurs from quasi-

bound states, highlighting their importance for the prediction of the dissociation process. This

conclusion is similar to that reached by Bender et al. [79] for the N2(X1Σ+
g ) − N2(X1Σ+

g ) system

who observed up to 58% of dissociation events come from trajectories with at least one quasi-bound

molecule, as well as Panesi et al. for the N2(X1Σ+
g )−N(4Su) system [38].

Table 4.1: Percent of dissociation from quasi-bound states in energy based grouping model.

Temperature Dissociation from QB ∆ediss
vib /∆e

diss
tot ∆ediss

rot /∆e
diss
tot

10 000 K 46.9 % 60.1 % 39.9 %

13 000 K 45.0 % 59.0 % 41.0 %

20 000 K 40.8 % 57.2 % 42.8 %

25 000 K 38.6 % 56.4 % 43.6 %

The vibrational grouping method, shown in Fig. 4.6b, predicts very different behavior. At

10 000 K, the molecules generally climb to higher vibrational states (between 7 − 8 eV) before

dissociating, as predicted by the ladder climbing model. However, at 25 000 K, the molecules are

much more likely to dissociate from low energy vibrational states (between 1−4 eV). This behavior

can be explained as follows: at high temperatures, the low vibrational states are rotationally

excited (given the assumption of rotational equilibrium), and the high lying rotational states are
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(a) 60 energy groups. (b) 61 vibrational groups.

Figure 4.7: Fraction of rotational and vibrational energy lost in dissociation events by the
molecules during QSS region from each group at 10 000 K.

therefore significantly populated, thus significantly contributing to dissociation. In other words,

the dissociation energy of a molecule decreases as J increases. However at low temperatures, the

Boltzmann weighting favors the lower lying rotational energy levels, characterized by significantly

lower dissociation probability, thus hindering dissociation from the high-lying rotational states of

a given group.

To gain more insight on the relative contribution of rotational and vibrational energy to disso-

ciation, Fig. 4.7 shows the fraction of energy lost by the two modes during dissociation at 10 000 K,

normalized by the total internal energy lost, given by:

∆ediss
rot,p

∆ediss
tot

=

[ ∑
i∈Ip

niE
rot
i

]
Pdiss(Ep)

∑
p∈I

[ ∑
i∈Ip

ni
(
Eroti + Evibi

)
Pdiss(Ep)

] , ∆ediss
vib,p

∆ediss
tot

= 1−
∆ediss

rot,p

∆ediss
tot

(4.6)

where ∆ediss
rot,p and ∆ediss

vib,p denote respectively the energy lost in dissociation from the rotational and

vibrational modes of group p, ∆ediss
tot denotes the total energy lost during dissociation, and Eroti and

Evibi denote respectively the rotational and vibrational energy of state i. It is interesting to observe

that the energy based bins predict a similar contribution between rotation and vibration, with the

latter contributing slightly more. The percentage of energy lost from each mode in the energy
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(b) 61 vibrational groups.

Figure 4.8: Quasi-steady-state group distribution for various temperatures; symbols indicate the
QSS distribution and lines indicate the equilibrium distribution at the QSS temperature.

based grouping model is also summarized in Table 4.1, highlighting that at high temperature the

energy loss from each mode becomes comparable. In contrast, the vibrational grouping provides a

completely different picture: the contribution of rotation does not exceed 10% of the total internal

energy lost. In other words, as a result of the assumptions made, the importance of rotation on

the kinetics is downplayed at low temperatures in the vibrational-based averaging. The work of

Bender et al. [79] obtained similar results to what is observed in the vibrational grouping method,

which finds that the rotational energy contribution to dissociation is significantly smaller than

the vibrational contribution. However, this may be an artifact of the assumptions made in the

model (e.g. rotation and vibrational modes are decoupled, thermal equilibrium of translational

and rotational modes).

The group distribution during QSS for the energy and vibrational based bins is shown in

Fig. 4.8 for various temperatures. In both cases, significant departures from the QSS temperature

Boltzmann distributions are observed. The low energy groups appear to be close to equilibrium,

whereas the distribution of the high energy tail appears significantly depopulated. The behavior of

the distribution is consistent with the dissociation probability functions discussed above. The high

energy molecules, more likely to dissociate, are responsible for the departures of the distribution

from equilibrium.

Figure 4.9 shows the local dissociation rate profiles during the relaxation. These have been
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Figure 4.9: N2-N2 local dissociation rate computed from energy-based groups (solid lines) and
vibrational-based groups (symbols).

calculated from the production rate of atomic nitrogen as follows:

Kd =

(
1

2

)(
1

nN2nN2

)
dnN
dt

(4.7)

The rate profiles are monotonically increasing in the early stage of the relaxation for both models,

until the onset of the QSS distribution, responsible for the formation of a plateau in the profiles.

A comparison of the nitrogen concentration profiles and the dissociation rates shows that, across

a range of conditions analyzed, the entire dissociation process proceeds under QSS conditions for

the N2-N2 processes. This was not the case for the N2-N system, where a significant part of the

dissociation occurred in non-QSS conditions [38]. The comparison of the rate profiles obtained

with the two different grouping strategies shows that the QSS dissociation rate predicted at low

temperatures by the vibrational grouping is approximately half that predicted by the energy based

grouping. Moreover, the onset of the QSS region is significantly delayed for the vibrational grouping

model. This indicates that not only is the dissociation process different between the two groupings,

but also the energy transfer process has significant differences. As the temperature increases, the

vibrational grouping QSS dissociation rate overshoots the rate predicted by the energy groups.

This is due to the over-population of high energy rovibrational states in the vibrational grouping

model discussed earlier.
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Figure 4.10: Internal energy of N2 molecules as a function of time from energy (solid lines) and
vibrational (symbols) grouping.

4.4 Energy transfer

The internal energy of the molecules, shown in Fig. 4.10, can be computed as:

Eint =

∑
i∈I

niEi∑
i∈I

ni
(4.8)

The energy based grouping starts with very low internal energy, and excites quickly to the QSS

state, by 10−8 s at all temperatures. At the low temperatures, the total internal energy of the

molecules is the same as the thermal internal energy, indicating that the QSS distribution is not

much different from the thermal Boltzmann distribution. This is not surprising since most of

the energy is contained in the low energy states, whose population is close to equilibrium at low

temperatures, and the high energy states do not significantly contribute to the internal energy

content. At higher temperatures, the QSS state has significantly lower internal energy from the

final equilibrium value, indicating the presence of stronger non-equilibrium effects.

The vibrational specific bins exhibit very different behavior throughout the relaxation process.

Despite the initial excess of internal energy, due to the assumption of equilibrium among rotation

and translation, the vibrational grouping model predicts significantly slower relaxation across the

range of temperatures, if compared with the energy based model.

Further insights on the energy transfer processes can be obtained by computing the second order
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Figure 4.11: Second order moment at various times at 10 000 K.

moment of the transition rates for both models. To this aim, the master equation is expressed as a

diffusion or Fokker-Planck type equation [2,11], for which the dynamics of relaxation is controlled

by the diffusion coefficients, expressed as a function of the second order moment of the transition

rates. The expression of the second order moment for the group p is:

M(p) =
1

2

∑
r∈I

(p− r)2 ·K(p, r) (4.9)

where K(p, r) is the effective rate of energy relaxation from group p to group r:

K(p, r) =
∑
s∈I

∑
q∈I
Fq 0Kpq,rs (4.10)

where Fq =
nq

nN2
denotes the fraction of particles in group q.

Figure 4.11a shows the second order moment for the energy based bins formulation at 10 000 K.

Initially, the moment exhibits a monotonically increasing behavior with the bin energy. At later

times, however, the efficiency of the first few groups increases creating a shallow bottleneck be-

tween 1 and 2 eV. At high energies the dependence of the moment on the group energy is nearly

exponential and appears to be unchanged during the relaxation.

Figure 4.11b shows the second order moment for the vibrational bins at 10 000 K. In general,

the moments are several orders of magnitude smaller across the entire energy spectrum. In partic-
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ular below 4 eV the coefficients are extremely small. This explains the formation of the bimodal

distribution shown in Fig. 4.3a and in general the slow vibrational relaxation observed in Fig. 4.10.

It is important to stress that, contrary to what is observed by other researchers, the vibrational

relaxation does not exhibit a bottleneck [136]. This is due to the effect of rotation, that provides

additional channels to vibrational processes, hence enhancing the relaxation.

(a) 60 energy bins
N2(6) + N2(10)
 N2(r) + N2(s)

(b) 61 vibrational bins
N2(4) + N2(11)
 N2(v′) + N2(w′)

(c) 60 energy bins
N2(6) + N2(26)
 N2(r) + N2(s)

(d) 61 vibrational bins
N2(4) + N2(30)
 N2(v′) + N2(w′)

Figure 4.12: Excitation contours from a pair of fixed groups with energy and vibrational bins at
10 000 K.

Figure 4.12 shows the excitation rates contour plots, as a function of the energies of the products,

for given pairs of initial groups. The analysis was repeated for the energy and vibrational grouping

models. To facilitate the comparison between the models, we selected reactant groups with similar
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energy. In both cases, the energy of the second reactant was increased to analyze the behavior of

the rates for the lower and the upper part of the distribution.

The contours for the energy based grouping, shown in Figs. 4.12a and 4.12c, exhibit a maximum

corresponding to the “elastic” processes in which neither of the groups change. The magnitude

of the rates decays exponentially for increasing energies of the products. The behavior is nearly

isotropic, indicating that both reactants have equal probability of being excited. It is interesting

to note that all the possible energy transfer reactions follow this behavior, and it is possible to fit

the rates with a unique exponential function with three parameters (A, σ, γ), based on the work of

Barker et al. [137]:

0Kpq,rs = A exp

[
−

∣∣∣∣∣
√

(Ep − Er)2 + (Eq − Es)2

σ

∣∣∣∣∣
γ]

(4.11)

In Figs. 4.12b and 4.12d, the reaction rate coefficients for the vibrational energy groups exhibit

a different behavior. At low energies, the VT energy transfer processes are very inefficient compared

with the high energy states. This is consistent with the results shown in Fig. 4.11b. In contrast,

due to the anharmonicity of the vibrational states, multi-quantum jumps are very probable for the

high lying vibrational energy levels (Fig. 4.12d). This justifies the establishment of a multimodal

distribution in the early part of the relaxation. Moreover, at low energies, VV transfer appears

very efficient, thus favoring the thermalization of the distribution.

4.5 Comparison against experimental data

Previous sections focused on the analysis of the dynamics of dissociation and energy transfer ob-

tained with the two different grouping strategies. In order to assess the validity of each model, the

results obtained are now compared against the available experimental data. Two different observ-

ables are used: phenomenological dissociation rate coefficient, and an energy transfer relaxation

time.

The thermal and QSS dissociation rate coefficients predicted by both the grouping models are

compared against experimental data in Fig. 4.13. The numerical values of the rate coefficients as a

function of temperature can be found in Table 4.2. The thermal dissociation rate coefficient, shown
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in Fig. 4.13a, is computed by assuming an equilibrium distribution between all the groups:

Kd =
∑
p≥q

∑
q∈I

∑
r∈I

0Kpq,r

(
Q

(0)
p (T )

Q
(0)
N2

(T )

)(
Q

(0)
q (T )

Q
(0)
N2

(T )

)
+ 2

∑
p≥q

∑
q∈I

0Kpq

(
Q

(0)
p (T )

Q
(0)
N2

(T )

)(
Q

(0)
q (T )

Q
(0)
N2

(T )

)
(4.12)

Although in excellent agreement with the work of Jaffe et al. [138], and Bender et al. [79], both

predictions grossly overestimate the experimental rates from Appleton et al. [139] and Kewley and

Hornung [140]. This is not surprising, since the population of the high-lying energy levels for both

models was found to strongly deviate from equilibrium.

The QSS dissociation rates obtained from the plateau in Fig. 4.9 are shown in Fig. 4.13b for

both models and are more consistent with the experimental data. In particular, the energy based

groups show excellent agreement with the Appleton [139] data across the range of experimental

conditions. The vibrational specific grouping predicts a lower rate coefficient at low temperatures

(e.g, 10 000 K), and the slope of the rate does not agree with the experimental fit. At higher

temperatures, both grouping strategies predict similar rate coefficients. The Kewley and Hor-

nung data [140] predict a significantly different temperature dependence, inconsistent with what

was predicted by the MGMET-QCT method, demonstrated by the different slope in the data in

Fig. 4.13. It is the author’s opinion, based on preliminary analysis, that the discrepancy in the

Kewley and Hornung data compared with the MGMET-QCT method is due to the non-equilibrium

model adopted by the experimentalists to interpret the experimental data (not shown). Additional

experimental data, not included in the figure, have been used in the comparison. Hanson and

Baganoff [141] predict the same temperature dependence as Kewley and Hornung, but their rates

are significantly higher than all other experimental results. Park [5] reinterpreted the experimental

data of Appleton, by including non-equilibrium effects in the post-processing. As a result, the Park

dissociation rate coefficient appears larger than the original value given by Appleton; however, the

temperature dependence is similar.

The vibrational relaxation time, τV T was computed using the e-folding method (the time re-

quired for the mode to reach 63.2% of its steady state energy) from the vibrational bins. The vi-

brational relaxation time is shown in Fig. 4.14, compared with the Millikan-White correlation, [17]

and high-temperature correlations developed by Park [7] and Boyd and Josyula [142]. At low
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Figure 4.13: N2-N2 dissociation rate coefficients compared with previous experimental work from
Appleton et al., [139] and Kewley and Hornung. [140]

Table 4.2: Dissociation rate coefficients in cm3/s.

Thermal equilibrium QSS

Temperature Energy bins Vibrational bins Energy bins Vibrational bins

10 000 K 8.6844× 10−14 8.6693× 10−14 3.5509× 10−14 2.0462× 10−14

13 000 K 1.0397× 10−12 1.0376× 10−12 3.4085× 10−13 2.2250× 10−13

20 000 K 1.7563× 10−11 1.7552× 10−11 3.9152× 10−12 3.7318× 10−12

25 000 K 4.7894× 10−11 4.7800× 10−11 9.3343× 10−12 1.1089× 10−11

temperatures, the vibrational relaxation matches well with the Millikan-White correlation. The

high-temperature corrections to Millikan-White match well at high temperatures with the vibra-

tional binning data.
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Figure 4.14: Vibrational relaxation time computed with Millikan-White [17], high temperature
corrections [7, 142], and experimental data from Appleton and Steinberg. [143]

4.6 Discussion

The results have clearly shown how the choice of grouping strategy has a profound impact on

the characteristics of the thermochemical relaxation. The two grouping strategies adopted in

this chapter are based on two fundamentally different assumptions: the vibrational grouping is

constructed on the assumption of rigid separation between the rotational and vibrational energy

modes, while the energy based grouping, by lumping the levels independently of their vibrational

and rotational characteristics, assumes exactly the opposite. Each of the governing assumptions

has its merits: the separation of modes was clearly demonstrated experimentally and theoretically

for the low lying energy levels. This justifies the use of a vibrational based grouping strategy. On

the contrary the high energy states exhibit much stronger rovibrational coupling, which implies

that energy based binning provides a more accurate description of their behavior.

Dissociation. The energy based grouping model predicts that molecules must climb to high

energy rovibrational levels before dissociating, and that a significant amount of energy lost in

dissociation comes from rotationally excited molecules. By dissecting the energy ladder into narrow

rovibrational energy groups, the contribution of vibrational and rotational energy to dissociation

can be separated without introducing significant artificial bias. The energy grouping model predicts
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nearly equal contribution of rotational and vibrational energy to dissociation. This is not the case

for the vibrational grouping method, which strongly underpredicts the role of rotation. Moreover,

the narrow width of the energy bins (0.25 eV) limits the negative influence of the assumption of

thermal equilibrium between translation and the group internal temperature.

In contrast, the vibrational binning strategy assumes equilibrium among rotational states across

a wide range of energy, especially for the low vibrational energy groups (e.g., v = 0 spans nearly 15

eV). As a result of the averaging process the importance of dissociation from the high energy states

is overwhelmed by the improbability of the low energy states dissociating. The weakness of the

vibrational grouping strategy originates from the fact that low and high energy states are governed

by different kinetics. To accurately predict the non-equilibrium distribution of rovibrational states,

those states with similar rates should be grouped together (or averaged together) [115].

Energy transfer. The energy transfer process predicted by the energy level grouping was very

fast across the range of temperatures. Because states with very different quantum configurations

are lumped together in this approach, the mode separation known to exist for low energy states

during relaxation, is not captured. This problem is not present in the vibrational based grouping

because the differences in the dynamics of slow and fast processes (i.e., vibrational and rotational

relaxation respectively) are correctly captured. Since internal energy relaxation and dissociation

do not overlap in the thermochemical relaxation process at this condition, errors in the modeling

of the relaxation are unlikely to affect the dynamics of dissociation.

4.7 Summary

In this chapter, we present the MGMET model for diatom-diatom interactions applied to the

N2(X1Σ+
g ) − N2(X1Σ+

g ) system. The energy states are lumped together into groups containing

states with similar properties, and the distribution of states within each of these groups is pre-

scribed by a Boltzmann distribution at the local translational temperature. The required grouped

kinetic properties are obtained directly by the MGMET-QCT method. Two grouping strategies are

considered: energy-based grouping, in which states of similar internal energy are lumped together,

and vibrational grouping, in which states with the same vibrational quantum number are grouped
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together. A zero-dimensional chemical reactor simulation, in which the molecules are instanta-

neously heated, forcing the system into strong non-equilibrium, is used to study the differences

between the two grouping strategies. The comparison of the numerical results against available

experimental data demonstrates that the energy-based grouping is more suitable to capture dissoci-

ation, while the energy transfer process is better described with a vibrational grouping scheme. The

dissociation process is found to be strongly dependent on the behavior of the high energy states,

which contribute up to 50% of the dissociating molecules. Furthermore, up to 40% of the energy

required to dissociate the molecules comes from the rotational mode, underscoring the importance

of accounting for this mode when constructing non-equilibrium kinetic models. In contrast, the

relaxation process is governed primarily by low energy states, which exhibit significantly slower

transitions in the vibrational binning model due to the prevalence of mode separation in these

states.
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Chapter 5

Validation of MGMEL-QCT Model
using N2-N System

In this chapter, results of the MGMEL-QCT model are presented. In this approach, the group

internal temperatures are allowed to vary, and we must make use of detailed balance relationships

derived for the group which depend on the energy of the states in the groups as well as the tem-

perature in the group. In order to test whether this approach accurately reproduces the expected

grouped kinetic properties (such as those computed by grouping microscopic StS kinetic data), a

kinetic model was constructed using this approach for the N2(X1Σ+
g )−N(4Su) system. The results

are compared with the grouped StS kinetic data for validation. This chapter is organized as follows:

in Section 5.1 the set-up for the MGMEL-QCT model is presented for the N2(X1Σ+
g )−N(4Su) sys-

tem. In Section 5.2 the kinetic data computed using the MGMEL-QCT method is presented and

compared with that obtained using the StS approach. Section 5.3 makes use of the kinetic data ob-

tained using the MGMEL-QCT method in a zero-dimensional heat bath study. Finally, Section 5.4

summarizes the chapter. This chapter is reproduced from Ref. [118], with the permission of AIP

Publishing.

5.1 Simulation set-up

The StS data used to validate the MGMEL-QCT method is based on the NASA Ames PES for

the N2(X1Σ+
g ) − N(4Su) system, using only exothermic trajectories (these are characterized by

lower statistical error). The kinetic data for the 9390 rovibrational levels of N2(X1Σ+
g ) comprises

approximately 13 million excitation reaction rate coefficients. Further details on the StS kinetic

data can be found in Ref. [38]. Because we only consider N2 in the MGMEL-QCT model, we can

write reaction rate coefficients and energy transfer coefficients in terms of only group indices: mKp,r,

mK̄r,p,
mCp, and mC̄p for excitation, de-excitation, dissociation, and recombination respectively.
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Finally, because the MGMEL-QCT model only requires kinetic data in one direction by relating

forward and reverse reactions through detailed balance, the MGMEL-QCT for excitation can be

constructed using either only exothermic or only endothermic trajectory data.

The results will make use of a simple energy based grouping scheme using either 60 or 6 groups,

which are denoted by MGMEL-QCT(60) and MGMEL-QCT(6) respectively. The trajectory data

was calculated for the MGMEL-QCT(60) model using 192,000 trajectories from each initial group

(p) at translational temperature T = 10 000 K and group internal temperatures of T int
p = (2000 K,

5000 K, 10 000 K). The kinetic data for the MGMEL-QCT(6) model was retrieved by re-grouping

the kinetic data for the MGMEL-QCT(60) model with the appropriate weighting. It is important

to note that as a result of this re-grouping procedure the statistical error associated with the kinetic

data for the MGMEL-QCT(6) model will be significantly lower: we are effectively using a stratified

sampling method with ten times as many samples as the MGMEL-QCT(60) model. Details on this

can be found in Appendix F.

As in the previous chapter, because we are only interested in studying a zero-dimensional

isochoric and isothermal reactor, the conservation equations can be simplified down to comprise

the group conservation of mass and energy equations:

dnp
dt

=
∑
r∈I

(
− 0Kp,rnpnN + 0K̄p,rnrnN

)
+
(
− 0CpnpnN + 0C̄pn

3
N

)
, p ∈ N2, (5.1)

dnN
dt

=2
∑
p∈I

(
0CpnpnN − 0C̄pn

3
N

)
, (5.2)

dep
dt

=
∑
r∈I

(
− 1Kp,rnpnN + 1K̄p,rnrnN

)
+
(
− 1CpnpnN + 1C̄pn

3
N

)
, p ∈ N2 (5.3)

Note that the atoms do not require a conservation of energy equation because they have no internal

structure and do not have an internal temperature.

5.2 Grouped kinetic data

Figure 5.1 shows the forward energy transfer coefficients for the excitation reaction for the MGMEL-

QCT(60) and MGMEL-QCT(6) models from a fixed initial group (p = 15 for MGMEL-QCT(60)

and p = 2 for MGMEL-QCT(6)). For both the MGMEL-QCT(6) and MGMEL-QCT(60) models,
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the rate has been shown for molecules with similar initial energy. For the MGMEL-QCT(60) model

(Fig. 5.1a) the rates computed from exothermic trajectories are in excellent agreement with the

rates computed from the StS data. Moreover, the statistical error associated with the exothermic

rate data is generally very low (the mean error for all energy transfer coefficients computed using

exothermic trajectory data is 8.8%). In contrast, the rate data computed using endothermic trajec-

tories matches well for data in which the energy change is less than approximately 3 eV. However,

the higher energy jumps exhibit large errors (the mean error for all energy transfer coefficients

computed using endothermic trajectory data is 31.7%). The errors associated with the sampling

are greatly reduced when the number of groups is reduced, though this may be a combination of

both the reduced number of groups and the increased number of trajectories per group (now ef-

fectively 1,920,000 per group, using a stratified sampling scheme). In the MGMEL-QCT(6) model

(Fig. 5.1b), although there is not endothermic MGMEL-QCT data available for the 2 → 6 tran-

sition, the statistical error with all other rates is significantly lower than the MGMEL-QCT(60)

model. In this case the mean statistical error associated with the forward energy transfer coefficients

is 1.5% and 14.1% for the exothermic and endothermic MGMEL-QCT models respectively.
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(a) MGMEL-QCT(60), N2(p = 15)+N
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Final group energy, Er [eV]

0 2 4 6 8 10 12

1
K

p;
r
[c
m

3
s!

1
]

10!16

10!15

10!14

10!13

10!12

10!11

10!10

10!9
Grouped StS
MGMEL-QCT (exo)
MGMEL-QCT (endo)

(b) MGMEL-QCT(6), N2(p = 2) + N
 N2(r) + N.

Figure 5.1: Grouped energy transfer coefficients for excitation reaction (1Kp,r) at T = 10 000 K
and Tint

p = 5000 K; error bars denote one standard deviation.

Figure 5.2 shows the dissociation and recombination energy transfer rates for the MGMEL-

QCT(60) model. Similar to what was observed for the excitation reaction, the energy transfer

coefficients for high energy jumps (e.g., dissociation from groups below around 4 eV) exhibit high
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statistical error. Despite this fact, Fig. 5.2b highlights the key advantage to this framework: reac-

tion rate coefficients and energy transfer coefficients for the recombination process can be computed.

Because the recombination rates are obtained from dissociating trajectories through detailed bal-

ance, there are two key advantages: first, this ensures that detailed balance is obeyed, ensuring

that the system will reach equilibrium given enough time; second, recombination rates and energy

transfer coefficients can be obtained from dissociating trajectories, eliminating the need to run

recombination trajectories (an impossible task due to the number of pathways for recombination).

Because the recombination energy transfer coefficients are obtained from dissociation trajectories,

the error of the recombination rates mirrors that observed for the dissociation rates.
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Figure 5.2: Grouped energy transfer coefficients for dissociation reaction for MGMEL-QCT(60)
from group p, N2(p) + N
 3N at T = 10 000 K and Tint

p = 5000 K; error bars denote one standard
deviation.

Figure 5.3 shows the variation of the excitation forward energy transfer coefficient for the

MGMEL-QCT(6) model from group 2 to group 3 with the group internal and translational tem-

peratures. This was computed by grouping the StS data to enable calculation at many internal

temperatures. The variation of the rate with translational temperature is quite strong, as expected.

However, the internal temperature also has a significant impact on the rates, particularly at high

translational temperatures. The inset shows the variation of the coefficient due to internal temper-

ature at T = 10 000 K from the MGMEL-QCT models and the grouped StS as well as the variation

at T = 20 000 K from the grouped StS data. This demonstrates the importance of calculating
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Figure 5.3: Excitation energy transfer coefficients for MGMEL-QCT(6) from group 2 to group 3 at
varying translational and group internal temperature. Inset: variation of energy transfer coefficient
on bin internal temperature at 10 000 K for grouped StS (solid line), exothermic MGMEL-QCT
(circles), and endothermic MGMEL-QCT (triangles) and at 20 000 K for grouped StS (broken line).

kinetic data at various internal and translational temperatures, as the impact of both parameters

on the kinetic data is significant.

5.3 Zero-dimensional heat bath

In order to assess the accuracy of the three approaches to computing the kinetic data on the

resulting non-equilibrium distribution, a simple test case of a zero-dimensional isothermal and

isochoric reactor was simulated. Initially, the gas is at 2000 K with a density of ρ = 0.0164 kg/m3

and mole fractions of N2 and N of XN2 = 0.95 and XN = 0.05 respectively. The gas is then

instantaneously heated to 10 000 K, and equations (5.1), (5.2), and (5.3) are solved for the transient

state of the gas using the MGMEL-QCT(6) model. This is done using the grouped StS rates, the

exothermic MGMEL-QCT model, and the endothermic MGMEL-QCT model. Figure 5.4 shows

the resulting composition (mole fraction of atomic nitrogen) and internal energy of molecules as a

function of time during the excitation and dissociation processes. Initially the internal energy of the

molecules is low, corresponding to an internal temperature of 2000 K. After some incubation time,
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Figure 5.4: Global properties for MGMEL-QCT(6) heat bath at T = 10 000 K.

the molecules begin to excite, with the internal energy reaching a maximum. Then, the dissociation

process takes over, and the energy of contained in the molecules drops as they dissociate, and the

mole fraction of atomic nitrogen increases. Finally, the system reaches a final equilibrium state in

which most of the molecular nitrogen has dissociated. In the global properties, all three approaches

agree well, with the composition and molecular internal energy matching perfectly among the three

models. Moreover, this demonstrates the fact that the system will reach a final equilibrium state due

to the application of detailed balance to derive reverse reaction rate and energy transfer coefficients.

However, the primary advantage of the MGMEL-QCT model is that it allows for the non-

equilibrium state distribution to be retrieved from the global bin properties. Figure 5.5 shows one

example of a non-equilibrium distribution early in the energy transfer process. The first two groups

are frozen at the initial internal temperature, and both the endothermic and exothermic MGMEL-

QCT models capture this behavior. For the higher groups, particularly groups 4-6, the endothermic

MGMEL-QCT model fails to capture the distribution predicted by the grouped StS data. This is

due to the high error associated with the kinetic data for the endothermic MGMEL-QCT model.

However, the excellent agreement between the exothermic MGMEL-QCT model and the grouped

StS data demonstrate the applicability of the MGMEL-QCT model constructed using exothermic

trajectory data in a self consistent manner. Moreover, despite calculations at only three internal

temperatures, by fitting the internal temperature dependence to a second order polynomial in log
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Figure 5.5: Distribution of states at t = 7.94× 10−14 s for MGMEL-QCT(6) model.

space, detailed balance is satisfied, and the system is driven to equilibrium, as it should. Details

on how the internal temperature dependence was fitted can be found in Appendix G.

5.4 Summary

In this chapter, we present the MGMEL-QCT framework and apply it to the N2(X1Σ+
g )−N(4Su)

system for validation. Because the N2(X1Σ+
g ) − N(4Su) system has known StS kinetics, it can be

used as a benchmark on which to compare the model constructed directly from QCT. This com-

parison demonstrates the applicability of the MGMEL-QCT method and shows that the approach

of applying detailed balance at a microscopic level reproduces the expected grouped kinetic data as

predicted by applying the analytical grouping expressions to the rovibrational StS kinetic data. It

is shown that the model constructed using endothermic trajectories for excitation processes is less

accurate due to the poor statistical sampling. However, the model constructed using exothermic

trajectories was in excellent agreement with the grouped StS rates.
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Chapter 6

Validation of MGMET-QCT Method
with DMS Method

In the following sections, a comparison between the MGMET-QCT model (the same as presented

in Chapter 4) and the DMS method will be presented [117]. The DMS method was developed

at the University of Minnesota and is a technique for directly determining the transient non-

equilibrium behavior of a gas. It is similar to the DSMC method for modeling flows, but instead

of relying on pre-computed data for kinetics, trajectory calculations are performed within the

simulation [99–101, 144–147]. The only input to the DMS method is the PES; therefore, the

DMS method can be used as a benchmark solution on which to evaluate other models. We will

compare the results of the MGMET-QCT model from Chapter 4 with the DMS method in a

similar zero-dimensional heat bath study. In Section 6.1 we present the simulation set-up and a

brief description of the DMS method. In Section 6.2, a comparison between the microscopic and

macroscopic properties during dissociation is made. In Section 6.3, a similar comparison is made

for the energy transfer process. Finally, in Section 6.4, a discussion of the primary findings of this

comparison is presented, and in Section 6.5 a summary of the chapter is presented. This chapter

is reproduced from Ref. [117], with the permission of AIP Publishing.

6.1 Simulation set-up

To facilitate a meaningful comparison, both methods (DMS and MGMET-QCT) used the same

NASA Ames PES and only considered collisions between two molecules, excluding atom-molecule

(N2(X1Σ+
g )− N(4Su)) interactions. Initially, the gas is composed of only molecules with a density

of 1.28 kg/m3, an internal temperature of 2000 K, and a corresponding pressure of 760.137 kPa.

The temperature is then instantaneously heated to 10 000 K or 25 000 K, and the non-equilibrium

energy transfer and dissociation processes are studied. The same two grouping strategies as those
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presented in Chapter 4 are used (60 energy based groups and 61 vibrational groups), and the

governing equations and kinetic data used are the same.

6.1.1 Direct molecular simulation method

Details on the DMS method can be found in Refs. [99–101]. Like the DSMC method, a fraction

of the actual gas particles are simulated, with each particle representing a larger population of

nearly identical physical particles. The ratio of the actual particles to the number of simulated

particles is called the particle weight, Wp. The simulation uses a time step on the order of the

mean collision time (τc) and cell volumes on the order of the mean collision path (λc). In this

study, the particle weight is set to 1, and the time step is set to one one-hundredth of the mean

collision time (∆tDMS = τc/100). For the T = 10 000 K simulation, 6×104 molecules are used at

t = 0, and for T = 25 000 K, 106 molecules are used at t = 0. Because the simulation is performed

in zero-dimensions, the volume is set such that the density in the box is 1.28 kg/m3.

6.2 Dissociation

Figure 6.1 shows the mole fraction of atomic nitrogen as a function of time at 10 000 K. The DMS

prediction is well matched by the MGMET-QCT energy based grouping model. The vibrational

specific MGMET-QCT model predicts significantly slower dissociation which stems from the in-

accurate treatment of high energy states in this model: the vibrational grouping enforces mode

separation across the entire energy spectrum. However, this effect is expected to breakdown for the

high energy states, due to the rovibrational coupling of high energy states. Moreover, because all

rotational states within a vibrational group are in equilibrium at a common rotational temperature

(Trot = T ), the quasi-bound states are lumped with bound states, despite the distinct differences

in the kinetics that characterize the dissociation process from these internal states (e.g., the state

(v, J) = (0, 0) is very unlikely to dissociate, while (v, J) = (0, 273) is extremely likely to dissoci-

ate). The discrepancy between the vibrational based grouping and the DMS data highlights the

importance of considering the rotational state for predicting dissociation. This effect is amplified

at 10 000 K because molecules are more likely to climb to quasi-bound states before dissociating at

lower temperatures [116]. In addition, because the DMS method cannot simulate recombination
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reactions, it can reach the QSS distribution, but not the equilibrium composition. The energy

based MGMET-QCT method is included without recombination reactions. Until 10−6 seconds,

the effect of recombination is negligible; however, after this the MGMET-QCT results demonstrate

the effect of recombination in forcing the system to equilibrium.
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Figure 6.1: Mole fraction of atomic nitrogen as a function of time at 10 000 K.

The distribution function predicted by both methods can be compared both during the energy

transfer and dissociation process. It was found that at the conditions studied, the dissociation

process occurs when the distribution is in QSS, meaning that the relative distribution of states

(or groups) is not changing in time. The resulting QSS distribution predicted by the energy

based MGMET-QCT method is shown in Fig. 6.2a at 10 000 K. The DMS data is grouped using

the same grouping strategy for comparison with the energy binning strategy, and averaged over

several time-steps. The QSS distribution of groups predicted by the energy based MGMET-QCT

method is in excellent agreement with that predicted by the DMS method. At the dissociation

energy, 9.75 eV, the distribution of groups turns down, indicating that the quasi-bound states are

significantly depleted in QSS. At 10 000 K using the energy based MGMET-QCT method, only

0.006% of the molecules are in the quasi-bound states (blue squares in Fig. 6.2a), while at 25 000 K

the quasi-bound states are over 100 times more populated, with 0.7% of the molecules in quasi-

bound states (blue squares in Fig. 6.3b). Figure 6.2b shows the vibrational distribution predicted

by the MGMET-QCT method. Despite the differences in the dissociation rate observed by the mole
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fraction of atomic nitrogen (Fig. 5.4a), the vibrational energy distribution deviates only slightly

from the DMS data. This suggests that the overall dissociation rate is quite sensitive to the energy

state populations, and that the rotational energy distribution (not shown explicitly in Fig. 6.2)

may play a role.
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Figure 6.2: QSS distributions from MGMET-QCT method at 10 000 K.

In order to compare the two grouping strategies directly, the state specific distribution was

reconstructed with the vibrational based MGMET-QCT method, and regrouped according to the

energy bins. This maps the vibrational based MGMET-QCT data to the energy based MGMET-

QCT data for comparison, and is shown in Fig. 6.3 at both temperatures. In both cases, the

quasi-bound groups are over-populated in the vibrational binned MGMET-QCT method compared

to the DMS data. This stems from the assumption of equilibrium of all rotational states within a

vibrational state made in this model. Despite the agreement between the vibrational distributions,

capturing the rovibrational distribution is necessary for an accurate prediction of the dissociation

process.

The QSS dissociation rate predicted from the MGMET-QCT and DMS methods is shown in

Fig. 6.4 at various temperatures. At 10 000 K, the QSS dissociation rate predicted by the vibrational

specific MGMET-QCT model is significantly slower than that predicted by both the energy based

MGMET-QCT and DMS methods. This is due to the improper lumping of quasi-bound states

with bound states in this approach, which hinders dissociation, particularly at lower temperatures.

Across the entire range of temperatures, the energy binned MGMET-QCT method is in excellent
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(a) T = 10 000 K.
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Figure 6.3: QSS distributions from energy binned MGMET-QCT and vibrational bins regrouped
as energy binned MGMET-QCT.

Table 6.1: Arrhenius fit coefficients for QSS dissociation rates from MGMET-QCT and DMS
methods.

A [cm3/s] η EA [K]

MGMET-QCT (vibrational bins) 2.41× 10−7 −0.54 1.132× 105

MGMET-QCT (energy bins) 7.09× 10−4 −1.35 1.132× 105

DMS 1.25× 10−4 −1.17 1.132× 105

agreement with the DMS data. In contrast, at 25 000 K the vibrational specific model overshoots

the dissociation rate predicted by the DMS data. Due to the excellent agreement across the entire

range of temperatures, the energy bins can accurately capture the dissociation process in QSS

regardless of temperature. Table 6.1 give the coefficients for the modified Arrhenius fits to the data

computed by the MGMET-QCT and DMS methods. The modified Arrhenius form is given by:

Kd
QSS = AT η exp

(
−EA
T

)
(6.1)

where A, η, and EA are the coefficients given in Table 6.1, and the units of Kd
QSS are cm3/s.

In order to understand the relative importance of energy states for dissociation, the distribution

of dissociating molecules in QSS was computed. For the DMS method, this is computed by counting

the molecules which dissociate at each time step and taking an average over several time-steps in

the QSS region to obtain the distribution of molecules dissociating from various energies. For the
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Figure 6.4: QSS dissociation rate [138].

MGMET-QCT model, this was done by weighting the dissociation rate from each group with the

distribution of groups in QSS (Eq. (4.5)). This comparison is shown in Fig. 6.5 for the energy

based MGMET-QCT and in Fig. 6.6 for the vibrational based MGMET-QCT. In the energy based

MGMET-QCT method, the trend matches with the DMS results, showing that molecules climb to

high energy states before dissociating, with the highest probability of dissociation occurring at the

dissociation energy. However, the actual peak and width of the distribution is not well matched. In

Fig. 6.6, the vibrational MGMET-QCT method distribution of dissociating molecules matches well

at 10 000 K despite the overall dissociation rate being significantly slower than that predicted by

the DMS method. At higher temperatures, the vibrational distribution of dissociating molecules

deviates significantly from the DMS results, with significant dissociation occurring from the low

vibrational states predicted by the MGMET-QCT method. The high proportion of dissociation

from low vibrational states in the MGMET-QCT method is most likely caused by the increased

weight of the high rotational states at the higher temperature. Therefore, the states which are

highly probable to dissociate now hold higher weight from the Boltzmann factor, contributing to

increased total dissociation rate from the low vibrational states.

To quantify the contribution to dissociation from each mode, the fraction of energy lost from

each group in the energy binned approach from the rotational and vibrational modes (calculated

using Eq. (4.6)) is shown in Fig. 6.7 at T = 10 000 K. The qualitative agreement between the
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Figure 6.5: Distribution of dissociating molecules in DMS versus energy based MGMET-QCT
during QSS.
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Figure 6.6: Distribution of dissociating molecules in DMS versus vibrational based MGMET-QCT
during QSS.

MGMET-QCT and DMS results is good, with both approaches losing a significant amount of

energy from the rotational mode. The DMS results predict that 34% of the energy for dissociation

comes from the rotational mode, while MGMET-QCT predicts 40%. The DMS results show a

distinct bump in the rotational energy contribution at the dissociation energy. This occurs because

quasi-bound states are primarily low-v/high-J states with a significant amount of rotational energy.

Therefore, the contribution of the rotational energy to dissociation from the quasi-bound states

overshoots the vibrational contribution for high energy states.

93



(a) Energy based MGMET-QCT. (b) DMS.

Figure 6.7: Fraction of rotational and vibrational energy lost by the molecules during the QSS
region from each group at T = 10 000 K.

6.3 Energy transfer

The energy transfer process serves to excite the internal states of the molecule until they have

enough energy for dissociation to take over. Therefore, understanding the time scale in which

energy transfer occurs is necessary to accurately predict the onset of dissociation. Moreover, the

N2(X1Σ+
g )−N2(X1Σ+

g ) energy transfer process is very important for air chemistry because in many

situations of interest there are initially very few atoms present. The internal energy, as calculated by

Eq. (4.8), at both temperatures predicted by the DMS method, energy based, and vibrational based

MGMET-QCT models is shown in Fig. 6.8. At 10 000 K, the internal energy relaxation predicted

by the energy based MGMET-QCT model is significantly faster than both the DMS method and

vibrational specific MGMET-QCT model. The vibrational specific MGMET-QCT method starts

with higher internal energy because the rotational mode is already excited; however, the energy of

the molecules does not increase until 10−9 seconds, indicating that the molecules are not gaining

significant energy from the translational mode until that point. When the vibrational excitation

starts, corresponding to the second increase in internal energy in the DMS method, the vibrational

MGMET-QCT method matches well with the DMS data. Similarly, at 25 000 K, the internal energy

relaxation predicted by the energy based MGMET-QCT model is significantly faster than the DMS

method. Again, the vibrational MGMET-QCT model starts with higher internal energy. At the

higher temperature, the distinction between rotational and vibrational excitation is not present,
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indicating that the two excitation processes are more closely coupled at this temperature. In both

cases, the internal energy at the final time, corresponding to the QSS energy, differs by less than

5% due to differences in the rotational and vibrational energy in the QSS region.
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Figure 6.8: Total internal energy predicted from DMS versus energy and vibrational based
MGMET-QCT.

In addition to the total internal energy, the rotational and vibrational temperatures predicted

from the DMS and vibrational based MGMET-QCT model were computed. For the vibrational

MGMET-QCT model, the rotational temperature is assumed to be frozen at the translational

temperature. The temperatures for both cases are shown in Fig. 6.9. The vibrational specific

MGMET-QCT model matches very well with the vibrational temperature predicted by the DMS

method. However, this is helped by the assumption of equilibrium between the rotational and

translational temperatures. If this assumption were relaxed, the vibrational relaxation time pre-

dicted by the vibrational specific model would most likely become slower because the rotational

mode would need to become excited first. Moreover, the assumption of equilibrium between rota-

tion and translation is seen to breakdown particularly at higher temperatures, where the rotational

temperature predicted by the DMS method only reaches 21 200 K.

Figure 6.10a shows the energy based MGMET-QCT group distribution during the relaxation

process at 25 000 K. The group distribution is significantly different from the DMS data as it ap-

pears to be relaxing faster than the DMS data, as observed in the internal energy shown in Fig. 6.8b.

In particular, the low energy groups which contain most of the internal energy show significantly
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Figure 6.9: Rotational and vibrational temperatures predicted from DMS versus vibrational based
MGMET-QCT.

different behavior between the DMS and energy based binning data. A similar comparison for

the vibrational binned data is shown in Fig. 6.10b, showing the vibrational distribution during

the relaxation process at 25 000 K. In this case, the low energy vibrational states are in excellent

agreement between the MGMET-QCT method and the DMS method. Although the agreement for

the higher energy levels is not as good, the trend predicted by the two methods is similar, showing

a bimodal distribution. Moreover, statistical noise is present in the high energy states from the

DMS method. The agreement between the DMS method and the vibrational based MGMET-QCT

method in predicting energy transfer is a result of the mode separation known to be present for

low energy states. For low energy states (v = 0, . . . , 3), which generally dictate the internal energy

of the molecules, the separation of rotational and vibrational energy prevails, resulting in a strand

structure in these states.

The vibrational relaxation time predicted by both the DMS method and vibrational specific

MGMET-QCT model is shown in Fig. 6.11. At low temperatures, as seen in Fig. 6.9a, the vi-

brational relaxation time is well matched between the DMS method and the vibrational specific

MGMET-QCT model. At higher temperature, the vibrational relaxation time predicted by the

vibrational specific MGMET-QCT model is approximately 50% slower than the DMS method.
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Figure 6.10: Transient distributions from MGMET-QCT and DMS methods at 25 000 K.
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Figure 6.11: Vibrational relaxation parameter computed from DMS and MGMET-QCT methods
compared with previous models. [7, 17,142]

6.4 Discussion

This chapter presents an analysis of two grouping strategies used in the MGMET-QCT model

compared to the DMS method for analyzing energy transfer and dissociation in an isothermal

isochoric reactor. At the conditions studied, the energy transfer and dissociation processes are

decoupled, with the gas relaxing to the QSS distribution and then dissociating from this state.

Accurately describing these two different processes requires very different considerations. For the
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energy transfer process, the low energy states are very important, as most of the internal energy is

contained in approximately the first 2 eV. However, for dissociation the high energy states (Ei & 6

eV) are crucial because they are most likely to dissociate and contribute significantly to the global

dissociation rate.

6.4.1 Energy transfer

The vibrational specific MGMET-QCT model predicted the energy transfer process across the

range of temperatures. This is because it captures well the vibrational strand structure caused

by mode separation previously observed when studying the N2(X1Σ+
g )−N(4Su) system [115]. For

low energy states, the states which share vibrational quantum numbers tend to equilibrium with

each other; however, these strands are slower to equilibrate with each other. Initially, the energy

transfer proceeds through a series of VT exchange reactions, which are significantly more efficient

for vibrationally excited states. Therefore, the population of the high vibrational states is pumped

up, creating a bi-modal distribution observed by Sharma et al. [136]. It was observed in Chapter 4

that initially the rate of excitation from the first few vibrational states is very slow, resulting in

a significantly slower relaxation process than that predicted by the energy based MGMET-QCT

method [116]. In contrast, the energy based MGMET-QCT model excitation reactions neglect all

this information and excitation proceeds through a series of small energy jumps which occur very

quickly. This is due to the lumping of different vibrational states together: the vibrational strand

structure is lost, and all the states are assumed to equilibrate to some average temperature.

6.4.2 Dissociation

In contrast, the dissociation process in QSS is well captured across the range of temperatures by

the energy based MGMET-QCT model. The dissociation process depends heavily on the accurate

prediction of the high energy (including quasi-bound) states because molecules tend to climb to

high energy states before dissociating. Therefore, grouping the high energy states considering

only the energy (not the quantum configuration) results in accurate predictions of the dissociation

process. In contrast, the vibrational specific MGMET-QCT model lumps states together across

a large range of energies. As a result the high energy states are assumed to be in equilibrium
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with low energy states. Because the dissociation behavior from the low and high energy states is

very different, this averaging results in significant under-estimation of the dissociation from the

low-v/high-J states. At high temperatures, because of the increased weight from these states,

the exponential Boltzmann factor seems to take over, artificially enhancing the dissociation rate

from the low-v states. Therefore, the vibrational grouped MGMET-QCT model cannot accurately

account for dissociation as the energy grouped MGMET-QCT model can.

6.5 Summary

This chapter presents a detailed comparison between the two grouping strategies described in

Chapter 4 and the DMS method. Using the MGMET-QCT method we simulate a zero-dimensional

isothermal and isochoric heat bath. The comparison confirms the findings from Chapter 4 about

the behavior of the distribution during the energy transfer and dissociation processes. It is seen

that the vibrational MGMET-QCT method captures the vibrational relaxation process, but fails

to accurately reproduce the dissociation process. In contrast, the energy based MGMET-QCT

method accurately predicts the dissociation process, but predicts significantly faster excitation.
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Chapter 7

Application to Computational Fluid
Dynamics

In this chapter, the MGMET-QCT model is applied to several example CFD test cases. The

objective is to demonstrate the applicability of the model in a variety of flow regimes, including both

dissociating and recombining regimes. This is accomplished using a simple energy based binning

approach. Future work will focus on using a spectral binning approach developed by Sahai et

al. [115] to model more complex flows and study the flow physics. The focus of this chapter is to

provide a proof-of-concept of the MGMET-QCT model in a variety of flow scenarios. Results for

two different flowfields will be presented: the flow behind a standing normal shock wave, and the

flow through a quasi-one-dimensional nozzle. This chapter is organized as follows: in Section 7.1 a

standing normal shock wave test case is presented. In Section 7.2 the quasi-one-dimensional flow

through a nozzle is presented. Finally, Section 7.3 summarizes the chapter.

7.1 Standing normal shock

The first test case presented is the flow behind a standing normal shock. The behavior of this flow

is similar to the flow along the stagnation line in front a vehicle. This is a good test cast to evaluate

the MGMET model because it has significant non-equilibrium and can be used to test the model

in dissociating conditions.

7.1.1 Governing equations

The governing equations for a standing normal shock can be derived from the full set of governing

equations from Chapter 2 by assuming the flow is one-dimensional and steady. For a mixture of

nitrogen atoms and molecules, in which the molecules are modeled using the MGMET approach,
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the governing equations read:

∂

∂x
(ρNu) =ω̇N (7.1)

∂

∂x

(
ρN2p

u
)

=ω̇N2p
, p ∈ N2 (7.2)

∂

∂x

(
ρu2 + p

)
=0 (7.3)

∂

∂x
(ρhu) =0 (7.4)

The mass source terms, ω̇N and ω̇N2p
are the same as those specified in Chapter 2. Given freestream

conditions, the post-shock values are computed using the Rankine-Hugoniot jump conditions, as-

suming the composition of the flow remains frozen across the shock. The MGMET model assumes

that the bin internal temperature equilibrates instantaneously with the translational mode. As

a result, when the translational temperature jumps across the shock, this in turn “excites” the

groups. Therefore, the post-shock conditions need to be adjusted by accounting for conservation of

energy. This results in a lower post-shock temperature than for example a rovibrational StS sim-

ulation. The freestream conditions are initialized to a pressure of 13.33 Pa, internal temperature

of 300 K, and velocity of 10 km/s. The gas composition is initialized to 2.8% N(4Su) and 97.2%

N2(X1Σ+
g ). A uniform width energy binning strategy is used here, comprised of 10 bound bins and

5 quasi-bound bins. Therefore, the kinetic data is re-grouped from Chapter 4 using the procedure

detailed in Appendix F.

7.1.2 Macroscopic properties

The macroscopic properties (temperature, composition, and local dissociation rate) are compared

in this section. Three cases are considered: one with only N3 reactions, one with only N4 reactions,

and one with N3 and N4 reactions. Figure 7.1a shows the internal and translational temperatures,

and Fig. 7.1b shows the mole fraction of atomic nitrogen for these three cases. The internal

temperature is calculated by first unpacking the bin distributions and then solving for the internal

temperature which contains the same internal energy as the non-equilibrium distribution. In all

cases, the translational temperature starts at around 45 000 K, calculated from the jump conditions,

while the internal temperature is frozen. It is important to note that the internal temperature
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immediately behind the shock wave is no longer 300 K because the bin internal temperature is also

heated to the translational temperature due to the assumption of thermal equilibrium between

the translational mode and bin internal temperatures. Therefore, this energy is removed from

the translational mode across the shock, lowering the post-shock temperature, and raising the

N2(X1Σ+
g ) internal temperature. Behind the shock wave, when only N3 reactions are considered,

the relaxation occurs much slower, with the internal temperature reaching its peak 3 mm behind

the shock wave, compared with reaching the peak 1 mm behind the shock when N4 reactions are

considered. This is due to the small amount of atomic nitrogen available initially for reaction.

However, when N3 reactions are considered, the rate of dissociation is significantly faster.

x [m]

0 0.002 0.004 0.006 0.008 0.01

T
em

p
er

at
u
re

[K
]

0

10 000

20 000

30 000

40 000

50 000
N3 - T
N3 - Tint

N4 - T
N4 - Tint

N3/N4 - T
N3/N4 - Tint

(a) Internal and translational temperatures.

x [m]

0 0.002 0.004 0.006 0.008 0.01

X
N

0

0.2

0.4

0.6

0.8

1

N3
N4
N3 + N4

(b) Mole fraction of atomic nitrogen.

Figure 7.1: Macroscopic properties behind standing normal shock wave considered N3, N4, and
N3 + N4 reactions.

To understand the non-equilibrium dissociation process, the local dissociation rates for the N3

and N4 systems are calculated as:

KN3
D =

∑
p∈N2

0Kp
np
nN2

(7.5)

KN4
D =

∑
p∈N2

∑
q∈N2

∑
r∈N2

0Kpq,r
np
nN2

nq
nN2

(7.6)

These can be computed at each location behind the shock wave to determine the rate at which

dissociation is occurring at each location behind the shock. It is also useful in the case in which
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both processes are considered to calculate the relative contribution to dissociation from N3 and N4

processes,
ω̇D
N3

ω̇D and
ω̇D
N4

ω̇D respectively. These are computed from the source terms:

ω̇DN3 =
∑
p∈N2

0KpnpnN (7.7)

ω̇DN4 =
∑
p∈N2

∑
q∈N2

∑
r∈N2

0Kpq,rnpnq (7.8)

ω̇D =ω̇DN3 + ω̇DN4 (7.9)

Figure 7.2a shows the composition and local dissociation rate for the N3 and N4 only test cases.

From this, it is clear that throughout the non-equilibrium region (when the translational temper-

ature and internal temperature are different), the dissociation rate due to N3 reactions is much

higher. Further downstream it drops below the N4 dissociation rate, but this is most likely due

to the decrease in temperature downstream. In Fig. 7.2b, the contribution to the source term for

nitrogen atoms due to dissociation is plotted along with the composition as a function of distance

behind the shock wave for the combined N3/N4 case. Initially, the N4 dissociation reactions con-

tribute to about 80% of the mass source term. However, this rapidly drops off, and dissociation by

atomic nitrogen prevails, contributing to most of the dissociation.

(a) Separate N3 and N4 local dissociation rates and
compositions.
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Figure 7.2: Macroscopic properties behind standing normal shock wave considered N3, N4, and
N3 + N4 reactions.
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7.1.3 Microscopic properties

The advantage of using the MGME method is that it allows for the modeling of non-Boltzmann

effects in the distribution. This provides information about the microscopic distribution of states.

Therefore, the distribution of groups is plotted in Fig. 7.3 at various locations behind the shock

wave. In order to understand the degree of non-equilibrium, the two-temperature equilibrium

distribution corresponding to the translational and internal temperatures is also shown in lines. For

the N3 only reactions, initially the distribution shows overpopulation in the tail of the distribution,

corresponding to the excitation process, which is enhanced when considering N3 reactions due to

the rapid exchange pathways available. This overpopulation of the tail persists until around 3

mm behind the shock wave, when the dissociation process takes over and depletes the tail. In the

N4 only simulation, the onset of dissociation occurs almost immediately, and all the distributions

included show distinct depletion of the tail as the dissociation occurs mainly from those groups, as

observed in Chapters 4 and 6. Finally, when both systems are considered for reaction, the evolution

of states is similar to that observed in N4. However, because all processes are considered and the

N3 dissociation process occurs faster, the distribution reaches equilibrium much faster.
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(a) x = 0.001 m. (b) x = 0.002 m.

(c) x = 0.003 m. (d) x = 0.004 m.

Figure 7.3: Local distribution at various locations past the shock wave; symbols indicate the actual
distribution, and lines indicate the distribution corresponding to the calculated translational and
internal temperatures.

7.2 Quasi one-dimensional nozzle

7.2.1 Governing equations

The governing equations for a quasi-one-dimensional nozzle can be derived from the full set of

governing equations from Chapter 2 by assuming the area change is given by the function A = A(x).

For a mixture of nitrogen atoms and molecules, in which the molecules are modeled using the
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MGMET approach, the governing equations read:

∂

∂t
(ρNA) +

∂

∂x
(ρNuA) =ω̇NA (7.10)

∂

∂t

(
ρN2p

A
)

+
∂

∂x

(
ρN2p

uA
)

=ω̇N2p
A, p ∈ N2 (7.11)

∂

∂t
(ρuA) +

∂

∂x

[(
ρu2 + p

)
A
]

=
p

A

∂A

∂x
(7.12)

∂

∂t
(ρeA) +

∂

∂x
(ρhuA) =0 (7.13)

As in the previous section, the mass source terms are the same as those specified in Chapter 2.

The inlet conditions for the nozzle are specified, and the flow time integrated to reach steady state.

Results reported in this section are taken from the steady-state nozzle solution. Further details

on the temporal and spatial integration of these equations can be found in Ref. [148]. The inlet

conditions are taken to be at a pressure of 101 325 Pa and a temperature of 10 000 K. The inlet

composition is set to 99.3% nitrogen atoms and 0.7% nitrogen molecules. The same 15 energy

based grouping strategy as described in the previous section is used.

In this section, two nozzle geometries are analyzed: the Electric Arc Shock Tube (EAST) nozzle

at NASA Ames Research Center, and the F4 nozzle from the Hot Shot wind tunnel at ONERA in

France. These were selected based on the work of Munafò [148]. The area profile of each nozzle is

shown in Fig. 7.4, along with the location of points at which the distribution will be extracted in

later sections.
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Figure 7.4: Nozzle geometries.

7.2.2 Electric arc shock tube nozzle

The mole fraction of molecular nitrogen and temperatures are throughout the EAST nozzle are

shown in Fig. 7.5. Throughout the nozzle, the nitrogen atoms recombine to form molecules, and the

temperature drops. In contrast to what was observed in the shock flows, there is nearly no difference

between the N3 only and the combined N3 and N4 simulation. This is most likely due to the low

concentration of nitrogen molecules present initially. Moreover, while there is some recombination,

the overall concentration of nitrogen molecules never exceeds 1%. The temperatures also appear

to remain in equilibrium with each other throughout the nozzle.

The group distribution throughout the nozzle is shown in Fig. 7.6. At the inlet the molecules are

populated according to a Boltzmann distribution at 10 000 K. However, as the molecules recombine,

the population of the mid-range energy states is pumped up. Just as dissociation occurs from the

tail of the distribution, the molecules recombine into high energy states and then relax to low

energy states. Moreover, while the internal temperature appeared to be in equilibrium with the

translational temperature throughout the nozzle, the distribution of groups shows that there are

non-equilibrium effects which result in overpopulation of the high-energy states.
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Figure 7.5: Macroscopic properties throughout the EAST nozzle.

(a) x = −2.5× 10−2 m (inlet). (b) x = 0 m (throat).

(c) x = 2.5× 10−2 m. (d) x = 5× 10−2 m (outlet).

Figure 7.6: Distribution of groups within the EAST nozzle.
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7.2.3 F4 Nozzle

A similar analysis is shown for the F4 nozzle. While the EAST nozzle is fairly smooth, and the

minimum temperature is approximately 2000 K, the F4 nozzle is much more aggressive. The tem-

perature in the nozzle, shown in Fig. 7.7b, reaches approximately 20 K. At these low temperatures

the rates are purely extrapolated and unlikely to be accurate. Therefore, this case is only included

for demonstration of the properties throughout the nozzle. The composition and temperature be-

havior are similar to what was observed for the EAST nozzle, with the inclusion of N4 reactions

having little influence on the results and the temperatures remaining approximately in equilibrium

throughout the nozzle.
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Figure 7.7: Macroscopic properties throughout the F4 nozzle.

The distribution of groups for the F4 nozzle, shown in Fig. 7.8, have similar behavior to what

was observed in the EAST nozzle. Again, the molecules tend to recombine into high-energy groups,

and relax down to lower energy states. This pumps up the population of the high-energy states.

The non-equilibrium is stronger in the F4 nozzle than the EAST nozzle due to the rapid expansion.
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(a) x = −0.5 m (inlet). (b) x = 0 m (throat).

(c) x = 0.03 m. (d) x = 0.06 m.

Figure 7.8: Distribution of groups within the F4 nozzle.

7.3 Summary

This chapter presents the application of the MGMET-QCT method to two sample CFD calcula-

tions. The first, a standing normal shock wave, demonstrates the applicability of this approach to

compressing or dissociating flowfields. Differences are observed in the simulations including and

excluding the N2(X1Σ+
g ) − N(4Su) and N2(X1Σ+

g ) − N2(X1Σ+
g ) reactions. In particular, including

the N2(X1Σ+
g )−N2(X1Σ+

g ) reactions pushes the onset of excitation and dissociation earlier, while

including the N2(X1Σ+
g )−N(4Su) processes increases the rate of dissociation. Next, the MGMET-

QCT model is applied to the flow through a quasi-one-dimensional nozzle. Although the degree of

non-equilibrium is significantly less in this flowfield, the simulations demonstrate the ability of the

MGMET-QCT method to capture the non-equilibrium distribution in a recombining flowfield.
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Chapter 8

Summary and Future Work

8.1 Conclusions

The objective of this work is to provide a link between the ab initio PESs becoming available

for species relevant to hypersonic air chemistry and the field of CFD. This is done by means of

a reduced order model constructed using the maximum entropy principle. The MGME model

is realized by lumping energy states assumed to equilibrate rapidly with each other into groups.

Using a moment method, the grouped states are used to construct flow governing equations directly

from the Boltzmann equation. Finally, using the distribution of states within the groups, QCT

calculations are carried out to directly obtain kinetic data for the reduced-order model. The

coupling of the MGME model with the QCT method is necessary to facilitate the application of

the MGME model to systems with unknown StS kinetic data (e.g., diatom-diatom systems such

as N2-N2, O2-O2, and N2-O2). The advantage to the MGME model is that it can predict both

macroscopic and microscopic properties with similar accuracy when compared with a full StS or

DMS approach. However, the computational cost associated with the MGME model is drastically

reduced when compared with a full StS or DMS approach. For the comparison presented in

Chapter 6 the DMS simulation at 10 000 K took approximately 4 weeks 200 cores to run. The

MGMET-QCT method required similar computational resources to construct the kinetic database.

However, to run the zero-dimensional simulation took approximately 3 minutes to run on 1 core.

Moreover, once the kinetic database is complete, it can be applied to a wide range of conditions.

Finally, Sahai et al. [115] demonstrated that using as few as 15 bins predicted both microscopic

and macroscopic properties of a full rovibrational StS model, which comprises nearly 10,000 states.

The study was conducted using a zero-dimensional isothermal reactor simulation, an unrealistically

harsh condition of non-equilibrium.
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The MGMET model, in which the internal temperature of the bin is assumed to be in equi-

librium with the translational mode, is used to study the non-equilibrium energy transfer and

dissociation processes in a zero-dimensional isothermal heat bath. This is done using two grouping

strategies: a conventional vibrational grouping strategy and an energy based grouping strategy.

A comparison between macroscopic phenomenological properties revealed that the energy based

grouping better captured the dissociation process, while the vibrational based grouping better pre-

dicted the energy transfer process. This finding was confirmed through comparison with the DMS

method.

The MGMEL model accounts for variation in bin internal temperature in order to reduce the

number of groups required. This is accomplished by invoking detailed balance at a microscopic level,

and deriving group energy transfer rates from only trajectories in one direction (i.e., exothermic

or endothermic). This approach is demonstrated using the N2-N system and compared with the

grouped known StS kinetic data for the system. Using this framework, the number of groups

required to capture both non-equilibrium dissociating and recombining processes can be reduced,

while maintaining acceptable error.

Finally, the MGME thermal model is applied to several simple CFD simulations for demon-

stration. The test cases comprise the one-dimensional flow behind a normal shock wave, and the

quasi-one-dimensional flow through a nozzle. This range of test cases is meant to demonstrate the

flexibility of the MGME method as it can be applied in both dissociating and recombining regimes.

Through the detailed analysis of the MGMET model presented in Chapters 4 and 6, several

important features of the non-equilibrium energy transfer and dissociation process were discovered.

The comparison of the energy transfer relaxation rates, predicted by the vibrational grouping

method, against available experimental data validates the classical picture of relaxation based on

the rigid separation among the rotational and vibrational energy modes. It was found that the

relaxation data provided by the Millikan and White correlation are in good agreement with the the-

oretical predictions provided by the vibrational grouping method for temperatures below 10 000 K.

On the contrary, any attempt to ignore the mode separation by grouping rovibrational levels char-

acterized by different vibrational quantum number leads to an overestimation of the relaxation rate.

This finding was confirmed through comparison with DMS, where the internal energy excitation
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predicted by the energy based grouping was significantly faster than that predicted by both DMS

and vibrational bins. Moreover, while the MGMET vibrational binning approach can capture the

vibrational excitation process, it cannot account for the rotational non-equilibrium which occurs

at high temperatures.

In contrast, the dissociation process is controlled by the tail of the rovibrational distribution.

For the high-lying states, the strong rovibrational coupling is well captured by the energy-based

grouping. Molecules have to climb the rovibrational energy ladder before dissociating, thus ac-

quiring significant vibrational and rotational energy. In all the cases analyzed, rotational energy

accounts for more than 40% of the total energy required to dissociate the N2 molecules. While

vibrational bias is introduced in the conventional non-equilibrium models, no models include bias

to account for the effect of rotational excitation of the molecules. When compared with the DMS

method, it was found that while energy bins slightly over-predict the importance of rotational

energy in dissociation (at 10 000 K, 40% predicted by MGMET energy bins compared with 35%

predicted by the DMS method), vibrational bins vastly underpredict the importance of rotation

in the dissociation process. At 10 000 K, vibrational bins predict a mere 10% of the energy lost

in dissociation comes from the rotational mode. This is most likely due to the damping out of

the highly excited rotational energy states when the group average rate is computed. Finally, it is

important to note that during the dissociation process, the distribution of the N2 molecules is in

QSS. This is very different from what is observed in the N2-N case, where a significant part of the

dissociation takes place in non-QSS conditions.

8.2 Future work

This work represents a paradigm shift in the approach to the modeling of non-equilibrium flows:

a multitude of previous work has built upon the same framework or governing equations. In this

work, we start from the Boltzmann equation to construct governing equations, affording us a clear

understanding of the assumptions and regime of validity. However, there is still work required to

not only complete the MGME model, but also extend this approach to other species and systems

of interest to chemistry in hypersonic flows.

One future avenue for research comprises using the Chapman-Enskog method to derive a full
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set of Navier-Stokes equations for the MGME model. This will introduce the transport coefficients,

such as thermal conductivity and viscosity, in terms of the microscopic properties (i.e., velocity and

internal energy states). This requires the definition of collisional invariants which are for the first

time provided in Chapter 2. In addition, extending the MGME-QCT model to the other chemical

systems relevant to air chemistry with ab initio PES data is necessary to construct a complete

non-equilibrium chemistry model for air.

One limitation which currently exists in the MGME-QCT framework is the fact that the group-

ing needs to be prescribed a priori. However, it has been shown that the grouping strategy has a

profound impact on the results. Therefore, it would be advantageous to couple the determination

of the groups with the QCT calculations. This would allow the optimal grouping strategy to be

determined on the fly while computing kinetic data. Moreover, it may elucidate the most important

physical processes for the establishment of equilibrium for various systems.

Finally, while this work focused on addressing the problem of internal energy non-equilibrium,

the grouping approach can also be applied to translational non-equilibrium. The foundation for

the extension of MGME model to translational non-equilibrium was presented by Jayaraman et

al. [149], making use of a simple Bhatnagar-Gross-Krook (BGK) collision operator. However,

future work will focus on providing a unified theory for both translational and internal energy

non-equilibrium. This would help extend the realm of applicability of continuum approaches into

the transitional regime.
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Appendix A

Transformation to Center of Mass
Reference Frame

A.1 Elastic collision integral

The relationship between the relative and center-of-mass velocities is given by the following rela-

tionships:

g = cA − cB, g′ = c′A − c′B (A.1)

G =
mAcA +mBcB

mA +mB
, G′ =

mAc′A +mBc′B
mA +mB

(A.2)

The conservation of momentum and energy relations in the center of mass reference frame yield

the following relations:

G = G′, g2 = g′2 (A.3)

Therefore, we find that the following relationship for the differentials hold:

dG = dG′, g dg = g′ dg′ (A.4)

These relations are used in the derivation of the relationship between the cross-sections for forward

and reverse processes.
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A.2 Inelastic collision integral

For the inelastic collision integral, again the center-of-mass coordinates can be specified as:

g = cA − cB, g′ = c′A − c′B (A.5)

G =
mAcA +mBcB

mA +mB
, G′ =

mAc′A +mBc′B
mA +mB

(A.6)

The conservation of momentum and energy relations in the center of mass reference frame yield

the following relations:

G = G′ (A.7)

µAB

2
g2 + EAi + EBj =

µAB

2
g′2 + EAk

+ EBl
(A.8)

Therefore, the following differential relations hold:

d G = d G′ (A.9)

µABg dg = µABg
′ dg′ (A.10)

Using this transformation along with the definition of the cross-section, the micro-reversibility

condition reads:

βAk
βBl

σAkBl
AiBj

(g,ω′)g3 dω′ dg dω dG = βAiβBjσ
AiBj

AkBl
(g′,ω)g′3 dω dg′ dω′ dG′ (A.11)

This is re-arranged to yield expression 2.11.

A.3 Exchange collision integral

For the exchange collision integral, again the center-of-mass coordinates can be specified as:

g = cA − cB, g′ = c′C − c′D (A.12)

G =
mAcA +mBcB

mA +mB
, G′ =

mCc′C +mDc′D
mC +mD

(A.13)
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The conservation of mass, momentum, and energy relations in the center of mass reference frame

yield the following relations:

mA +mB = mC +mD (A.14)

G = G′ (A.15)

µAB

2
g2 + EAi + EBj =

µCD

2
g′2 + ECk

+ EDl
(A.16)

Therefore, the following differential relations hold:

d G = d G′ (A.17)

µABg dg = µCDg
′ dg′ (A.18)

Using this transformation along with the definition of the cross-section, the micro-reversibility

condition reads:

βCk
βDl

σCkDl
AiBj

(g,ω′)g3 dω′ dg dω dG = βAiβBjσ
AiBj

CkDl
(g′,ω)g′3 dω dg′ dω′ dG′ (A.19)

This is re-arranged to yield expression 2.15.
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Appendix B

Boltzmann H-Theorem

B.1 Kinetic entropy conservation equation

To derive the kinetic entropy conservation equation, the Boltzmann equation is multiplied by

ln (βAifAi) and integrated over all velocity space. The first term can be re-arranged to yield:

∑
A∈S

∑
i∈IA

∫
R3

ln (βAifAi)
∂fAi

∂t
dcA =

∑
A∈S

∑
i∈IA

∫
R3

[
∂

∂t
(fAi ln (βAifAi))− fAi

∂

∂t
(ln (βAifAi))

]
dcA

=
∑
A∈S

∑
i∈IA

∫
R3

[
∂

∂t
(fAi ln (βAifAi))−

∂fAi

∂t

]
dcA

=
∂

∂t

∑
A∈S

∑
i∈IA

∫
R3

fAi(ln (βAifAi)− 1) dcA

 =
∂Skin

∂t
(B.1)

The second term can be re-written:

∑
A∈S

∑
i∈IA

∫
R3

ln (βAifAi)cA · ∇xfAi dcA

=
∑
A∈S

∑
i∈IA

∫
R3

[cA · ∇x (fAi ln (βAifAi))− fAicA · ∇x (ln (βAifAi))] dcA

=
∑
A∈S

∑
i∈IA

∫
R3

[cA · ∇x (fAi ln (βAifAi))− cA · ∇x (fAi)] dcA

=
∑
A∈S

∑
i∈IA

∫
R3

[cA · ∇x (fAi (ln (βAifAi))− 1)] dcA (B.2)

Using these two expressions along with the definition of the entropy source term given in Chapter 2,

the kinetic entropy conservation equation is given in Eq. (2.36).
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B.2 Proof of positivity of entropy production

The “fast” (intra-group inelastic scattering) entropy source term reads:

vSAp
= −kB

∑
B∈S

∑
q∈B

∑
(i,k)∈Ip

∑
(j,l)∈Iq

∫∫∫∫
R3×R3

×R3×R3

(
βAk

βBl

βAiβBj

f ′Ak
f ′Bl
− fAifBj

)

×WA′kB′l
AiBj

ln (βAifAi) dcA dcB dc′A dc′B (B.3)

Because the velocities cAi and cBj are both integrated over the entire velocity space, swapping

these velocities will not change the resulting integral:

∑
B∈S

∑
q∈B

∑
(i,k)∈Ip

∑
(j,l)∈Iq

∫∫∫∫
R3×R3

×R3×R3

(
βAk

βBl

βAiβBj

f ′Ak
f ′Bl
− fAifBj

)
W

A′kB′l
AiBj

ln (βAifAi) dcA dcB dc′A dc′B

=
∑
B∈S

∑
q∈B

∑
(i,k)∈Ip

∑
(j,l)∈Iq

∫∫∫∫
R3×R3

×R3×R3

(
βAk

βBl

βAiβBj

f ′Ak
f ′Bl
− fAifBj

)
W

A′kB′l
AiBj

ln
(
βBjfBj

)
dcA dcB dc′A dc′B

(B.4)

Therefore we can re-write the scattering entropy source term as the average of these two terms:

vSAp
= −1

2
kB

∑
B∈S

∑
q∈B

∑
(i,k)∈Ip

∑
(j,l)∈Iq

∫∫∫∫
R3×R3

×R3×R3

(
ln (βAifAi) + ln

(
βBjfBj

))(βAk
βBl

βAiβBj

f ′Ak
f ′Bl
− fAifBj

)

×WA′kB′l
AiBj

dcA dcB dc′A dc′B (B.5)

Now we must recall the characteristic of the inverse collision. The idea of the inverse collision is

that if the collision is run in reverse, we must retrieve exactly the initial conditions we started with

(e.g., velocity magnitudes and directions). This gives the following relations between the “forward”
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and “reverse” collisional processes:

∑
B∈S

∑
q∈B

∑
(i,k)∈Ip

∑
(j,l)∈Iq

∫∫∫∫
R3×R3

×R3×R3

fAifBjW
A′kB′l
AiBj

ln (βAifAi) dcA dcB dc′A dc′B

=
∑
B∈S

∑
q∈B

∑
(i,k)∈Ip

∑
(j,l)∈Iq

∫∫∫∫
R3×R3

×R3×R3

(
βAk

βBl

βAiβBj

)
f ′Ak

f ′Bl
W

A′kB′l
AiBj

ln
(
βAk

f ′Ak

)
dcA dcB dc′A dc′B (B.6)

∑
B∈S

∑
q∈B

∑
(i,k)∈Ip

∑
(j,l)∈Iq

∫∫∫∫
R3×R3

×R3×R3

fAifBjW
A′kB′l
AiBj

ln
(
βAk

f ′Ak

)
dcA dcB dc′A dc′B

=
∑
B∈S

∑
q∈B

∑
(i,k)∈Ip

∑
(j,l)∈Iq

∫∫∫∫
R3×R3

×R3×R3

(
βAk

βBl

βAiβBj

)
f ′Ak

f ′Bl
W

A′kB′l
AiBj

ln (βAifAi) dcA dcB dc′A dc′B (B.7)

Using this in Eq. (B.4), we can finally write the following expression for the in-elastic scattering

entropy source term:

vSAp
= −1

4
kB

∑
B∈S

∑
q∈B

∑
(i,k)∈Ip

∑
(j,l)∈Iq

∫∫∫∫
R3×R3

×R3×R3

(
ln (βAifAi) + ln

(
βBjfBj

)
− ln

(
βAk

f ′Ak

)
− ln

(
βBl

f ′Bl

))

×
(
βAk

βBl

βAiβBj

f ′Ak
f ′Bl
− fAifBj

)
W

A′kB′l
AiBj

dcA dcB dc′A dc′B

(B.8)

This can also be written as Eq. (2.42), which is shown in Chapter 2 to be either zero or positive.
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Appendix C

MGME-QCT Expressions for QCT
Sampling

This appendix provides all the expressions for the MGMEL-QCT and MGMET-QCT models for

sampling in QCT.

C.1 MGMEL-QCT model

C.1.1 Inelastic processes

0Kpq,rs =
∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

aAi exp

(
− EAi

kBT
int
Ap

)
Q

(0)
Ap

(T int
Ap

)


aBj exp

(
−

EBj

kBT
int
Bq

)
Q

(0)
Bq

(T int
Bq

)


×mA

1

χ

(
µAB

2πkBT

)3/2
∞∫

g=0

∞∫
b=0

∫
L 2

exp

(
− µAB

2kBT
g2

)
g32πbPAkBl

AiBj
dbdg dω (C.1)

0K̄pq,rs =Q
(0)
Ap

(T )Q
(0)
Bq

(T )
∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

mA
1

χ

(
µAB

2πkBT

)3/2

×

exp

(
− EAk

kBT
int
Ar

+
EAk
kBT

)
Q

(0)
Ar

(T int
Ar

)


exp

(
− EBl

kBT
int
Bs

+
EBl
kBT

)
Q

(0)
Bs

(T int
Bs

)


×

aAi exp
(
−EAi

kBT

)
Q

(0)
Ap

(T )


aBj exp

(
−
EBj

kBT

)
Q

(0)
Bq

(T )


×
∞∫

g=0

∞∫
b=0

∫
L 2

exp

(
−µABg

2

2kBT

)
g32πbPAkBl

AiBj
dbdg dω′ (C.2)
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C.1.2 Exchange processes

0KApBq ,CrDs =
∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

aAi exp

(
− EAi

kBT
int
Ap

)
Q

(0)
Ap

(T int
Ap

)


aBj exp

(
−

EBj

kBT
int
Bq

)
Q

(0)
Bq

(T int
Bq

)


×mA

1

χ

(
µAB

2πkBT

)3/2
∞∫

g=0

∞∫
b=0

∫
L 2

exp

(
− µAB

2kBT
g2

)
g32πbPCkDl

AiBj
dbdg dω (C.3)

0K̄ApBq ,CrDs =Q
(0)
Ap

(T )Q
(0)
Bq

(T )
∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

mA
1

χ

(
µAB

µCD

)3/2( µAB

2πkBT

)3/2

×

exp

(
− ECk

kBT
int
Cr

+
ECk
kBT

)
Q

(0)
Cr

(T int
Cr

)


exp

(
− EDl

kBT
int
Ds

+
EDl
kBT

)
Q

(0)
Ds

(T int
Ds

)


×

aAi exp
(
−EAi

kBT

)
Q

(0)
Ap

(T )


aBj exp

(
−
EBj

kBT

)
Q

(0)
Bq

(T )


×
∞∫

g=0

∞∫
b=0

∫
L 2

exp

(
−µABg

2

2kBT

)
g32πbPAkBl

AiBj
dbdg dω′ (C.4)

C.1.3 Dissociation-recombination processes

0CApBq ,CrDsBt =
∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

∑
m∈It

aAi exp

(
− EAi

kBT
int
Ap

)
Q

(0)
Ap

(T int
Ap

)


aBj exp

(
−

EBj

kBT
int
Bq

)
Q

(0)
Bq

(T int
Bq

)


×mA

1

χ

(
µAB

2πkBT

)3/2 ∫
L 2

∞∫
b=0

∞∫
g=0

exp

(
− µAB

2kBT
g2

)
g32πPCkDlBm

AiBj
dbdg dω (C.5)
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0C̄ApBq ,CrDsBt =
Q

(0)
Ap

(T )Q
(0)
Bq

(T )

Q
(0)
Cr

(T int
Cr

)Q
(0)
Ds

(T int
Ds

)Q
(0)
Bl

(T int
Bl

)

(
µAB

2πkBT

)3/2( h2
P

2πµCDkBT

)3/2

×
∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

∑
m∈It

exp

(
− ECk

kBT int
Cr

+
ECk

kBT

)
exp

(
− EDl

kBT int
Ds

+
EDl

kBT

)

× exp

(
− EBm

kBT int
Bt

+
EBm

kBT

)aAi exp
(
−EAi

kBT

)
Q

(0)
Ap

(T )


aBj exp

(
−
EBj

kBT

)
Q

(0)
Bq

(T )


× 1

χ

∞∫
g=0

∞∫
b=0

∫
L 2

exp

(
− µAB

2kBT
g2

)
g32πbPCkDlBm

AiBj
dbdg dω (C.6)

C.2 MGMET-QCT model

C.2.1 Inelastic processes

0Kpq,rs =
∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

aAi exp
(
−EAi

kBT

)
Q

(0)
Ap

(T )


aBj exp

(
−
EBj

kBT

)
Q

(0)
Bq

(T )


×mA

1

χ

(
µAB

2πkBT

)3/2
∞∫

g=0

∞∫
b=0

∫
L 2

exp

(
− µAB

2kBT
g2

)
g32πbPAkBl

AiBj
dbdg dω (C.7)

0K̄pq,rs =
Q

(0)
Ap

(T )

Q
(0)
Ar

(T )

Q
(0)
Bq

(T )

Q
(0)
Bs

(T )

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

mA
1

χ

(
µAB

2πkBT

)3/2

×

aAi exp
(
−EAi

kBT

)
Q

(0)
Ap

(T )


aBj exp

(
−
EBj

kBT

)
Q

(0)
Bq

(T )


×
∞∫

g=0

∞∫
b=0

∫
L 2

exp

(
−µABg

2

2kBT

)
g32πbPAkBl

AiBj
dbdg dω′ (C.8)
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C.2.2 Exchange processes

0KApBq ,CrDs =
∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

aAi exp
(
−EAi

kBT

)
Q

(0)
Ap

(T )


aBj exp

(
−
EBj

kBT

)
Q

(0)
Bq

(T )


×mA

1

χ

(
µAB

2πkBT

)3/2
∞∫

g=0

∞∫
b=0

∫
L 2

exp

(
− µAB

2kBT
g2

)
g32πbPCkDl

AiBj
dbdg dω (C.9)

0K̄ApBq ,CrDs =
Q

(0)
Ap

(T )Q
(0)
Bq

(T )

Q
(0)
Cr

(T )Q
(0)
Ds

(T )

∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

mA
1

χ

(
µAB

µCD

)3/2( µAB

2πkBT

)3/2

×

aAi exp
(
−EAi

kBT

)
Q

(0)
Ap

(T )


aBj exp

(
−
EBj

kBT

)
Q

(0)
Bq

(T )


×
∞∫

g=0

∞∫
b=0

∫
L 2

exp

(
−µABg

2

2kBT

)
g32πbPAkBl

AiBj
dbdg dω′ (C.10)

C.2.3 Dissociation-recombination processes

0CApBq ,CrDsBt =
∑
i∈Ip

∑
j∈Iq

∑
k∈Ir

∑
l∈Is

∑
m∈It

aAi exp
(
−EAi

kBT

)
Q

(0)
Ap

(T )


aBj exp

(
−
EBj

kBT

)
Q

(0)
Bq

(T )


×mA

1

χ

(
µAB

2πkBT

)3/2 ∫
L 2

∞∫
b=0

∞∫
g=0

exp

(
− µAB

2kBT
g2

)
g32πPCkDlBm

AiBj
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Appendix D

Calculation of Statistical Error for
Reaction Rate Coefficients and
Energy Transfer Coefficients

The variance due to sampling can be retrieved through the relationship:

var(x) = 〈x2〉 − 〈x〉2 (D.1)

where x is the quantity of interest and 〈x〉 denotes the mean value of x. Extending this to the QCT

samples for both reaction rate coefficients and energy transfer coefficients allows us to write the

variance associated with the reaction rate coefficients and energy transfer coefficients for inelastic

processes as:

var (mKpq,rs) =〈v〉πb2max
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1
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(D.3)

where 〈v〉 denotes the mean velocity factor which accounts for the integration over impact velocity

and solid angle from a thermal distribution, bmax denotes the maximum impact parameter, and

Npq denotes the number of trajectories which start with molecule A in group p and molecule B

in group q. The summations in these expressions are over the number of trajectories which result

in a given outcome. That is, Npq,rs denotes the number of trajectories which start with molecule

A in group p and molecule B in group q and end with molecule A in group r and molecule B

in group s. These variances can be directly computed when the rate data is calculated from

the individual trajectories. The variance associated with the reaction rate coefficients and energy

125



transfer coefficients for exchange processes can be written as:
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where NApBq denotes the number of trajectories which start with molecule A in group p and

molecule B in group q. The summations in these expressions are over the number of trajectories

which result in a given outcome. That is, NApBq ,CrDs denotes the number of trajectories which

start with molecule A in group p and molecule B in group q and end with molecule C in group r

and molecule D in group s. The variance associated with the reaction rate coefficients and energy

transfer coefficients for combined dissociation-excitation processes can be written as:
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where NApBq denotes the number of trajectories which start with molecule A in group p and

molecule B in group q. The summations in these expressions are over the number of trajectories

which result in a given outcome. That is, NApBq ,CrDsBt denotes the number of trajectories which
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start with molecule A in group p and molecule B in group q and end with species C in group r,

species D in group s, and species B in group t.
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Appendix E

Convergence of Kinetic Data for
MGMET-QCT Model

A comparison of results obtained using the MGMET-QCT model presented in Chapter 4 using

uniform bins at 10 000 K and varying the number of trajectories used to compute kinetic data

is shown in Figs. E.1 and E.2. Because the convergence of the QCT data generally improves

with increasing temperature as we have more reacting trajectories, a similar analysis was done

at higher temperatures but is not shown because the 10 000 K case was the worst case scenario.

The macroscopic observables (composition and internal energy) are extremely close using varying

numbers of total trajectories. However, looking at the percent difference between the highest

number of trajectories (283.2 million) and a reduced set of trajectories demonstrates some small

differences at early times in the simulation. These errors are very low, and occur in the very early

stages of excitation and dissociation, before significant chemical reactions have occurred.

(a) Composition. (b) Error in composition.

Figure E.1: Convergence of kinetic data for energy binned MGMET-QCT model at 10 000 K (see
Chapter 4).

A similar comparison for the vibrational bins at 10 000 K is shown in Figs. E.3 and E.4. Again,
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(a) Internal energy. (b) Error in internal energy.

Figure E.2: Convergence of kinetic data for energy binned MGMET-QCT model at 10 000 K (see
Chapter 4).

the macroscopic observables (composition and internal energy) are extremely close using varying

numbers of total trajectories, with errors arising in the very early stages of dissociation but decaying

once significant dissociation has occurred.

(a) Composition. (b) Error in composition.

Figure E.3: Convergence of kinetic data for vibrational binned MGMET-QCT model at 10 000 K
(see Chapter 4).
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(a) Internal energy. (b) Error in internal energy.

Figure E.4: Convergence of kinetic data for vibrational binned MGMET-QCT model at 10 000 K
(see Chapter 4).
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Appendix F

Calculating Kinetic Data for a
Reduced Number of Groups

In order to bypass the cost of calculating kinetic data for each new grouping, using a mapping

between the two groupings, we can construct the kinetic data for more coarse groupings.

F.1 Inelastic processes

Suppose now instead of calculating kinetic data for groups (p, q, r, s), we want it for groups

(t, u, v, w), where groups (p, r) and (t, v) belong to molecule A and groups (q, s) and (u,w) belong

to molecule B. Let the sets (It, Iu, Iv, Iw) denote the groups (i.e., p, q, r, s) which are contained

in groups (t, u, v, w). Therefore, we can express the reaction rate coefficients (m = 0) and energy

transfer coefficients (m = 1) for the coarse groups (t, u, v, w) in terms of those for the finer groups

(p, q, r, s):
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Q
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F.2 Exchange processes

For exchange processes, again we consider a “fine” grouping made up of groups (p, q, r, s) for

molecules (A, B, C, D) respectively. The “coarse” grouping is made up of groups (t, u, v, w) again

for molecules (A, B, C, D) respectively. Let the sets (It, Iu, Iv, Iw) denote the groups (i.e., p, q, r, s)

which are contained in groups (t, u, v, w). Therefore, we can express the reaction rate coefficients

(m = 0) and energy transfer coefficients (m = 1) for the coarse groups (t, u, v, w) in terms of those
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for the finer groups (p, q, r, s):
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F.3 Dissociation-excitation processes

For combined dissociation-excitation processes, again we consider a “fine” grouping made up of

groups (p, q, r, s, t) for species (A, B, C, D, B) respectively. The “coarse” grouping is made up

group (u, v, w, x, y) again for species (A, B, C, D, B) respectively. Let the sets (Iu, Iv, Iw, Ix, Iy)

denote the groups (i.e., p, q, r, s, t) which are contained in groups (u, v, w, x, y). Therefore, we can

express the reaction rate coefficients (m = 0) and energy transfer coefficients (m = 1) for the coarse

groups (u, v, w, x, y) in terms of those for the finer groups (p, q, r, s, t):
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This procedure eliminates the need to compute kinetic data for “coarser” groupings, as long as the

“coarse” groups contain entire groups from a “finer” grouping. This can be done for either the

MGME-QCT thermal or linear model (i.e., for reaction rate coefficients only, or for both reaction

rate coefficients and energy transfer coefficients).
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Appendix G

Internal Temperature Fitting

For the reaction rate coefficients and energy transfer coefficients for the N2(X1Σ+
g )−N(4Su) system

in the MGMEL model, the internal temperature dependence of the natural log of the reaction

rate coefficients and energy transfer coefficients has been fitted using a second order polynomial in

inverse temperature:

ln(mKpq,rs) =
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)2 +
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)
(G.1)

ln(mK̄pq,rs) =

(
bm1(
T pS
)2 +

bm2
T pS

+ bm3

)
(G.2)
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where (am1 , a
m
2 , a

m
3 ), (bm1 , b

m
2 , b

m
3 ), (cm1 , c

m
2 , c

m
3 ), and (dm1 , d

m
2 , d

m
3 ) denote the fitting coefficients.
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[111] Munafò, A. and Magin, T. E., “Modeling of stagnation-line nonequilibrium flows by means
of quantum based collisional models,” Physics of Fluids, Vol. 26, No. 9, 2014, pp. 097102.

141
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