
c© 2019 Shubhra Kanti Karmaker Santu

INFLUENCE MINING FROM UNSTRUCTURED BIG DATA

BY

SHUBHRA KANTI KARMAKER SANTU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor ChengXiang Zhai, Chair
Professor Jiawei Han
Associate Professor Hari Sundaram
Dr. Hao Ma, Facebook

ABSTRACT

A crucial component of any intelligent system is to understand and predict the behavior
of its users. A correct model of user’s behavior enables the system to perform effectively to
better serve the user’s need. While much work has been done on user behavior modeling
based on historical activity data, little attention has been paid to how external factors
influence the user behavior, which is clearly important for improving an intelligent system.
The influence of external factors on user behavior is mostly reflected in two different ways:
1) through significant growth of users’ thirst about information related to external factors
(e.g., the user may conduct many searches related to a popular event or related to some
community of interest), and 2) through user-generated content that are directly/indirectly
related to the external factors (e.g. the user may tweet about a particular event). To capture
these two aspects of user behavior, I introduce Influence Models for both Information Thirst
and Content Generation, sequentially, in this thesis. To the best of my knowledge, Influence
models for Information Thirst and Content Generation have not been studied before.
The thesis starts with the introduction of a new data mining problem, i.e., how to mine

the influence of real world events on users’ information thirst, which is important both for
social science research and for designing better search engines for users. I solve this mining
problem by proposing computational measures that quantify the influence of an event on a
query to identify triggered queries and then, proposing a novel extension of Hawkes process
to model the evolutionary trend of the influence of an event on search queries. Evaluation
results using news articles and search log data show that the proposed approach is effective
for identification of queries triggered by events reported in news articles and characterization
of the influence trend over time.
This influence model assumes that each event poses its influence independently. This

assumption is unrealistic as there are many correlated events in the real world which in-
fluence each other and thus, would influence the user search behavior jointly rather than
independently. To relax this assumption, in the next part of my thesis, I propose a Joint
Influence Model based on the Multivariate Hawkes Process which captures the interdepen-
dence among multiple events in terms of their influence. Experimental study shows that the
Joint Influence Model achieves higher accuracy than the independent model.
The second way to observe external influence on user behavior is to analyze user-generated

content that is directly/indirectly related to those external factors, which I discuss in the
last part of the thesis. For example, user-generated content is often significantly influenced

ii

by the community to which the user belongs to. While some work has been done on mining
such influence from structured information networks, little attention has been paid on how to
mine community-influence from user generated unstructured data. To study such influence,
I introduce the problem of mining community-influence from user-generated unstructured
contents, particularly in the context of text content generation. Although text generation
has recently become a popular research topic after the surge of deep learning techniques,
existing methods do not consider community-influence factor into the generation process
and thus, the processes do not evolve over time. This clearly limits their application on
text stream data as most text stream data often evolve over time showing distinct patterns
corresponding to the shifting interests of the target community. To address this limitation, I
propose an Influenced Text Generation (ITG) Process that can capture this evolution of text
generation process corresponding to evolving community-influence over time. ITG is based
on deep learning architecture and uses LSTM cells within the hidden layers of a recurrent
neural network. Experimental results with six independent text stream data comprised of
conference paper titles show that the proposed ITG method is really effective in capturing
the influences of different research communities on paper titles generated by the researchers.

iii

Dedicated to my loving wife Shompa Ghosh.

iv

ACKNOWLEDGMENTS

I sincerely thank Professor ChengXiang Zhai for his continual support throughout my
Ph.D. journey. I deeply appreciate the trust he kept on my work and enthusiasm and highly
admire the excellent balance he maintained between his professionalism and friendliness. I
would like to thank my doctoral thesis committee members: Professor Jiawei Han, Pro-
fessor Hari Sundaram and Dr. Hao Ma for their valuable feedback to improve my thesis
dissertation. I also thank all my mentors from my internship experience who contributed
significantly to many of the research projects I have worked on so far. I explicitly want to
mention the name of Dr. Parikshit Sondhi from @WalmartLabs, Professor Yi Chang and
Dr. Liangda Li from @Yahoo Research and Dr. Bin Bi from @Microsoft Research, who
were really helpful and supportive with all their experiences. Finally, I want to thank UIUC
CS department for granting me an admission into the Ph.D. program and allowing me to
experience such an exciting journey.
In an orthogonal direction, I express my thankful gratitudes to my loving wife who made

an immense sacrifice during the strenuous journey of Ph.D. I thank my parents who did their
best to make sure I can start this memorable academic journey in my life. I am also grateful
to my professors at BUET who have significantly contributed in building a solid foundation
of computer science within me during my undergrads. Finally, I thank all my friends who
kept me socially energized and optimistic during the entire journey.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Power of Big Text Data . 2
1.2 Challenges with Big Text Data . 4
1.3 Influence Mining from Text Data . 6
1.4 Thesis Outline . 9

CHAPTER 2 INFLUENCE MODEL FOR INFORMATION THIRST 10
2.1 Mining the Influence of Popular Trending Events on User Search Behavior . 10
2.2 Related Work . 13
2.3 Problem Formulation . 14
2.4 Methods for Influence Discovery and Characterization 16
2.5 Experimental Design . 24
2.6 Results . 27
2.7 Conclusion and Future Work . 33

CHAPTER 3 JOINT INFLUENCE MODEL FOR INFORMATION THIRST . . . 34
3.1 Overview and Motivation . 34
3.2 Related Work . 37
3.3 Problem Formulation . 39
3.4 Joint Influence Model . 39
3.5 Experimental Design . 47
3.6 Results . 52
3.7 Limitations and Discussion . 58
3.8 Conclusion . 60

CHAPTER 4 INFLUENCE MODELS FOR USER GENERATED CONTENTS . . 61
4.1 Overview and Motivation . 61
4.2 ITG - Influenced Text Generation . 64
4.3 Experimental Design . 72
4.4 Results . 76
4.5 Related Works . 81
4.6 Conclusion . 83

CHAPTER 5 POTENTIAL IMPACT AND CONCLUSION 84
5.1 Addressing New Fundamental Research Questions 84
5.2 Novel Data Mining Tools . 84
5.3 Avenue for New Applications . 85
5.4 Computational Lens Towards Social Science 86
5.5 Final Words . 86

REFERENCES . 89

vi

CHAPTER 1: INTRODUCTION

The twenty-first century has seen the biggest explosion with respect to the generation of
data. The enormous scale of the web as well as increasing number of business applications
has produced all different types of data including user-generated content, activity logs, time
series variables, social network graphs, etc. This upsurge in the volume of generated data
has resulted in the inception of a new era called Big Data. The huge volume of Big Data
has opened many interesting as well as open research challenges including infrastructure
for Big Data, Big Data Management, Big Data Search and Mining, Security and Privacy
in Big Data, different applications of Big Data, etc. Fortunately, the twenty-first century
has also provided us with immense computational power as well as intelligent algorithms to
utilize this Big Data to design more intelligent and robust systems that were not feasible
before. Indeed, the combination of proliferation of big data and the significant growth of
computational power has enabled us to perform various interesting analyses as well as design
more intelligent applications which were beyond our scope before the era of Big Data.
The huge scale of Big Data comes with the fact that most of the data are unstructured

and it is almost impossible for a human to comprehend the underlying patterns associated
with it. However, to build an intelligent system, it is very important to discover these
underlying patterns hidden inside Big Data and convert them into useful knowledge. It is
also recommended that the discovered knowledge be as general as possible to be applicable in
a wide range of application scenarios [1]. Once such useful knowledge is extracted, computers
can then simulate intelligent behavior by searching for similar patterns it has already seen
and making decisions based on these patterns. This is the core philosophy of Machine
Learning which has become an eminently popular research area in the last decade. Machine
Learning is a field of computer science that gives computers the ability to learn without being
explicitly programmed. Specifically, Machine Learning explores the study and construction
of algorithms that can learn from and make predictions on data. As the scale of generated
data kept growing and Big Data eventually became a reality; an existing interdisciplinary
field called Data Mining, which applies machine learning algorithms on large amounts of
data, has become even more popular.
Nowadays, Data Mining is applied in many business applications that have a large amount

of data generated from the system to analyze different patterns associated with it. Data
mining is the computing process of discovering patterns in large data sets involving methods
at the intersection of machine learning, statistics, and database systems. The overall goal
of the data mining process is to extract information from a data set and transform it into

1

interpretable knowledge for further use.
Data mining technology has been further empowered by the availability of Big Data. The

primary objective of Big Data applications is to help an organization make more informed
decisions by analyzing large volumes of data. The power of big data enables a lot of impor-
tant application areas including intelligent healthcare systems, Automated Quality Control
in Manufacturing, Recommender Systems, E-commerce search platforms [2] and Product
Review Analysis [3], User Behavior Modeling, Cyber Security and Intelligence [4], Crime
Prediction and Prevention, Acceleration of Scientific Discovery, Time series analysis [5],
Stock Market prediction [6] and so on. These intelligent systems help in improving our
quality of life and thus contribute to building a better society.
A crucial component of any intelligent system is to understand and predict the behavior

of its users. A correct model of user’s behavior enables the system to perform effectively to
better serve the user’s need. Data mining is a widely adopted methodology to model the
behavior of users by analyzing large amount of interaction data between the system and the
users. While much work has been done on user behavior modeling based on historical activity
data, little attention has been paid to how external factors influence the user behavior, which
is clearly important for improving an intelligent system. The influence of external factors
on user behavior is mostly reflected in two different ways: 1) through significant growth
of users’ thirst about information related to external factors (e.g., the user may conduct
many searches related to a popular event), and 2) through user-generated content that are
directly/indirectly related to the external factors (e.g. the user may tweet about a particular
event). To capture these two aspects of user behavior, I introduce Influence Models for both
Information Thirst as well as for Content Generation, sequentially, in this thesis.

1.1 POWER OF BIG TEXT DATA

This section talks about the power of big text data in greater detail. Figure 1.1 shows the
loop of how Big Text Data can empower intelligent systems and improve the quality of our
life. The loop starts with the real world where a lot of events take place everyday. To observe
the different events going on around the world, humans have developed many automatic
sensors/devices to monitor these events as well as to report abnormalities associated with
many real world applications. For example, in stock market, a large number of transactions
happen everyday and automatic bots can monitor these transactions and also report back
the stock prices on a daily/hourly basis. Another example is the closed-circuit television, also
known as video surveillance, which captures day-to-day happenings at a particular place and
generates data in the video format. Other examples are thermometer/humidity meters which

2

report the temperature / humidity at a particular instant of time. All these are examples of
physical sensors which observe the real world and generate data in some structured format
upon which data mining models can be trained to learn interesting patterns and then perform
predictive analysis on unseen data. Such predictive capability of Big Data makes Intelligent
systems extremely useful.

Figure 1.1: The Power of Predictive Modeling

Apart from the physical sensors mentioned above, humans themselves are another type of
important sensors who observe the real world and report data in the text format. Indeed,
after the proliferation of social media, blogs and forums, people talk about many different
topics and events in social media and express various opinions through them. The primary
format of the data generated by humans is natural language text. These user-generated
contents, mostly in the format of text, are equally important as physical sensor data because
they often reflect sentiment of the general mass, rapid spread of some diseases, occurrence
of natural calamities, etc. For example, people often tweet about US presidential campaigns
supporting different candidates which gives an indication about the relative popularity of
different candidates. Thus, to build any intelligent system, it is crucial to leverage these text
data generated by humans besides the data automatically reported by physical sensors. This
means that both text data and non-text data can be used to extract features and one can
then train a machine learning model to identify patterns from the features to discover new
knowledge which otherwise is difficult to observe from raw data. Such new knowledge can

3

greatly help in the decision making process tied to some particular business applications.
This in turn, results in building more intelligent systems which improve our quality of life
and thus, changes the real world significantly. This new real world then generates new types
of events/phenomena which the physical sensors as well as we humans observe and report
to create new data, which again enable new applications and change the real world further.
This iterative improvement thus continues which keeps improving our quality of life.
The central focus of this thesis is to study how intelligent systems can model user behavior

by mining big corpora of text data. More specifically, this thesis presents how to model user
behavior in the context of external influencing factors like popular events, shift in community
interest etc. As mentioned previously, influence of external factors on user behavior is mostly
reflected in two different ways: 1) how external factors trigger user’s thirst for information
related to them and 2) how external factors impact the user generated contents. To capture
these two aspects of user behavior, I introduce Influence Models for Information Thirst as
well as for Content Generation, respectively. While search query logs have been extensively
studied to understand user search behavior and provide better search experience [7, 8, 9],
existing work mostly focused on the inference of users’ search intent based on their own
search habit and search history. In contrast, this thesis tries to model how user behavior
on a search engine is influenced by external factors such as trending events. On the content
generation side, there has been a surge of research interest in the use of neural network
(NN) models for automatic content generation in recent years [10, 11, 12, 13]. However, all
these existing methods from the literature are static content generation processes with no
notion of time and thus, cannot model the community-influence associated with dynamically
evolving content stream data. In this thesis, I propose a more dynamic content generation
process that can capture this community-influence associated with the generation of stream
content data.

1.2 CHALLENGES WITH BIG TEXT DATA

Text Data is an important type of data which is generated in massive quantities primarily
in Social Networks, Online Blogs/Forums, Online News Portals, User Search Logs, etc.
While structured data like information networks, connectivity graphs, etc., have been vastly
studied in the literature for user behavior modeling in the context of influence analysis, there
has been less attention towards exploiting unstructured text data for the same. However,
text data often contains interesting signals that has the potential to infer influence posed by
external factors on user behavior. In spite of that, the lack of study in this domain may be
attributed to the unique challenges associated with the nature of text data itself. Below, I

4

highlight some of the challenges associated with Text Data in general.

• Lack of Structure: The main difference between Text data and other data in
general is the lack of structure. For example, numeric datasets often contain row-
column format, network data often contains specific graph format etc. However, Text
data consists of natural human language which has no predefined structure. Thus, they
are not directly usable as features in a predictive model and require some non-trivial
transformations to impose some structure on them.

• Noise: Text data often contains a lot of noise which are irrelevant with respect
to the information we seek for some particular goal task. Think about the location
tagging problem, where given a sentence, the primary goal is to tag the sentence with
the location it is talking about. Now, when we see the following sentence: “I went to
Chicago last week and it was cold like heck.”; the only word relevant to the tagging
problem is “Chicago”, while the rest are irrelevant to the given task. Filtering these
noisy words is an important challenge that needs to be solved in order to use text data
for knowledge mining.

• Subjectivity: Another challenge associated with text data is the subjectivity in
human interpretation. For example, think about online customer reviews for some
particular product like the iPhone. Some customers may think the sound quality of
the phone is great, while others may feel it is substandard. Some may argue that a
smaller screen is better while some may prefer larger screens. Thus, the sentiment
associated with human-reported text data has a significant Subjectivity factor which
is not observed in numerical data collected from physical sensors.

• Ambiguity: Ambiguity is a type of uncertainty of meaning in which several interpre-
tations are plausible. The lexical ambiguity of a word or phrase pertains to its having
more than one meaning in the language to which the word belongs. For instance, the
word “bank” has several distinct lexical definitions, including “financial institution"
and “edge of a river”. Context may play a role in resolving ambiguity. For example,
the same piece of information may be ambiguous in one context and unambiguous in
another. Thus, using context to resolve ambiguity is another challenge associated with
text data.

• Humor: Human language often contains humors which is often very hard to model
computationally. For example, think about the following sentence from a customer
review about a mobile phone handset: “This phone can break down bricks!”. Here

5

the reviewer is actually making the point that the phone is very sturdy by posting a
sarcastic comment. Brick is only used in the metaphorical sense here and has nothing
to do with the actual phone. Understanding such subtlety associated with humorous
language is another hard challenge for utilizing text data in predictive modeling.

Due to these challenges and open problems, Natural Language Understanding and Text
Mining are still active research area growing significantly. As influence modeling requires
processing large volume of user-generated text data, it also needs to address these challenges,
especially, Ambiguity and Noise, associated with user generated text.

1.3 INFLUENCE MINING FROM TEXT DATA

The influences of external factors on user behavior are mostly reflected in two different
ways: 1) Through significant growth of users’ thirst about information (note the new term
“information thirst”) related to the external factors (e.g., the user may conduct a lot of search
related to a popular event or related to some community of interest), and 2) Through user-
generated contents that are directly/indirectly related to the external factors (e.g. the user
may tweet about a particular event) [Figure 1.2]. This section provides brief introduction
to Influence Models for both Information Thirst and Content Generation. Before presenting
the overviews of these models, it is worthwhile to put some more clarification on the term
“information thirst”.

Information Thirst: This is not a standard term used in the information retrieval
literature. A more common related term is “information need”. However, I argue to introduce
this new term “Information Thirst” for our work on influence mining due to the following
reasons.
There are two particular extreme cases of information seeking behavior: 1) When the

users knows exactly what he/she is looking for (e.g., somebody searching for “iPhone X” on
google.com) vs 2) When the user is not seeking any particular information, rather browsing
casually over the internet to find any interesting information (e.g., recommender systems
recommend different products / news on the web browser homepage and the user clicks on
some of them). However, I imagine a case which is in between these two extremes where the
users are first exposed to a particular event / news which draws their attention and then
they start looking for information related to that event / news actively. More specifically, the
user may not be actively searching for information about this particular event / news before,
thus, this was not really an “information need”, however, after being aware about the event,

6

they start seeking for more information. This is like the event has triggered thirst inside
the user’s mind for more information and then, the user actually seeks for it. I introduce
the “information thirst” to define this scenario where information seeking occurs only after
being exposed to some events / news which triggered such behavior of the users.

Figure 1.2: Overview of Influence Modeling

1.3.1 Influence Models for Information Thirst

The thesis starts with the introduction of a new data mining problem, i.e., how to mine the
influence of real world events on users’ information thirst, which is important both for social
science research and for designing better search engines for users. I solve this mining problem
by proposing computational measures that quantify the influence of an event on a query to
identify triggered queries and then, proposing a novel extension of Hawkes process to model
the evolutionary trend of the influence of an event on search queries. Evaluation results
using news articles and search log data show that the proposed approach is effective both for
identification of queries triggered by events reported in news articles and characterization of
the influence trend over time.
However, this problem formulation is based on the strong assumption that each event

poses its influence independently. This assumption is unrealistic as there are many cor-
related events in the real world which influence each other and thus, would pose a joint
influence on the user search behavior rather than posing influence independently. To relax

7

this assumption, in the next chapter of my thesis, I propose a Joint Influence Model based on
the Multivariate Hawkes Process which captures the interdependence among multiple events
in terms of their influence. Experimental results demonstrate that the proposed method not
only effectively captures the temporal dynamics of joint influences by multiple events, but
also when applied to various application tasks, achieves superior performance most of the
time over different baseline methods that do not consider this mutual-influence among mul-
tiple events. This signifies that the mutual influence which exists among multiple correlated
events is an important factor which should be considered when designing such influence
models.

1.3.2 Influence Models for Content Generation

The second way to observe external influence on user behavior is to analyze user-generated
contents that are directly/indirectly related to such external factors, which I discuss in Chap-
ter 4. For example, user-generated content is often significantly influenced by the community
to which the user belongs. While some work has been done on mining such influence from
structured information networks [14, 15, 16, 17], little attention has been paid on how to
mine community-influence from user-generated unstructured data. To study such influence,
I introduce the problem of mining community-influence from user generated unstructured
contents, particularly in the context of text content generation. Although text generation
has recently became a popular research topic after the surge of deep learning techniques,
existing methods do not consider community-influence factor into the generation process
and thus, the processes do not evolve over time [10, 11, 12, 13]. This clearly limits their
application on text stream data as most text stream data often evolve over time showing
distinct patterns corresponding to the shifting interests of the target community. Thus,
it is compelling to propose an Influenced Text Generation (ITG) Process that can capture
this evolution of text generation process corresponding to evolving community-influence over
time. To be more specific, I propose a deep-learning-based Influenced Text Generation Pro-
cess to address this challenge. Experimental results with six independent text stream data
comprised of conference paper titles show that the proposed ITG method is really effective
in capturing the influences of different research communities on paper titles generated by
the researchers.

8

1.4 THESIS OUTLINE

The rest of the thesis is organized as follows: Chapter 2 introduces our first influence
model for Information Thirst. Chapter 3 extends the model in Chapter 2 by relaxing the
assumption of influence independence made in the later. Chapter 4 presents influence models
for user-generated contents. Chapter 5 discusses the potential impact of the thesis and future
directions for influence mining research; it also draws the conclusion by summarizing the
contributions made in the thesis.

9

CHAPTER 2: INFLUENCE MODEL FOR INFORMATION THIRST

In this chapter, I focus on modeling user’s Information Thirst in the context of external
influencing factors which impact user’s information seeking behavior significantly. The text
data I consider in this case are textual descriptions of external influencing factors as well
as user’s search activity log consisting of specific queries, timestamp of each query and
the URL clicked by the user after posing the query. To make the problem formulation more
concrete, I choose a particular instance of Influence Modeling task where the goal is to model
the influence of popular trending events on user search behavior by analyzing user’s search
query log. Search logs often contain informative signals to infer these influences indirectly
by exploiting the correlation between event information and user activity information.
In summary, this chapter presents the study of how to model the influence of external

events on user queries by framing it as a novel data mining problem. Specifically, given a
text description of an event, I mine the search log data to predict queries that are triggered
by it and further characterize the temporal trend of influence created by the same event on
user queries. I solve this mining problem by proposing computational measures that quantify
the influence of an event on a query to identify triggered queries and then, proposing a novel
extension of Hawkes process to model the evolutionary trend of the influence of an event
on search queries. Evaluation results using news articles and search log data show that the
proposed approach is effective for prediction of queries triggered by events reported in news
articles and characterization of the influence trend over time.

2.1 MINING THE INFLUENCE OF POPULAR TRENDING EVENTS ON USER
SEARCH BEHAVIOR

While much work has been done on improving a search engine, little attention has been
paid to how external factors influence the user search behavior, which is clearly important for
improving a search engine. One important type of external factor is the trending events that
“significantly" attract the general mass. Consider the following example. The Hollywood
movie “Captain America : Civil war" was released on May 6, 2016 and NYTimes published
a review article [18] about the movie on the same day. To analyze how users search for
this trending event, I collected two months (April and May, 2016) query log data from a
well-known commercial search engine (https://search.yahoo.com/) and retrieved the top 500
unique queries relevant to the published NYTimes article using the BM25 [19], a state-of-the-
art retrieval function. For these top 500 relevant queries, I plot their frequency distributions

10

within the two months (April and May, 2016) in Figure 2.1. Here, the vertical red line
indicates the release time of the movie (as well as the publication time of the NYTimes
article about it). The x-axis represents “time in days" where the movie release time is set
to be zero; the preceding and following days were set accordingly. The y-axis represents
the corresponding frequency of the top 500 unique queries retrieved using BM25. From
Figure 2.1, two things are evident. First, the user search activity suddenly increases near
the time when the event occurred and second, the activity exponentially goes down as we
move away from the origin. This confirms the fact that the “release" of the movie triggered
a lot of user queries asking for relevant information, thus influenced user search behavior
“significantly".

Figure 2.1: User search activity related to the release (May 6, 2016) of the Movie “Captain
America Civil war".

How can we computationally model and analyze the influence of such trending events on
user search behavior? What kind of queries are triggered by what kind of events? What
kind of events tend to be most influential? How long does the influence last? Can we
predict whether a user’s query was triggered by a particular event? Besides being interesting
social science research questions, these questions are also interesting from the perspective of
improving the utility of a search engine. For example, if we can detect when a user’s query is
triggered by a particular event, it would help improve query auto-completion (by leveraging
the terms occurring in news articles about the triggering event), improve the search results

11

(by recommending relevant topics to the event), improve future query volume prediction, and
detect influential events (which can then be recommended to users that might be searching
for related topics).
To the best of my knowledge, the questions mentioned above have not been addressed in

the existing work. In this chapter, I conduct the first study of the problem of modeling the
influence of trending events on users’ search behavior from the perspective of data mining.
Specifically, I frame the problem as a novel data mining problem where, given a text de-
scription of an event, I mine the search log data to identify queries that are triggered by it
and further characterize the temporal trend of influence created by the same event on user
queries. From data mining perspective, such a joint mining problem is novel and presents
interesting challenges. First, “Influence" is an abstract concept and thus, it is not straight-
forward how to measure influence. Second, how can we fully characterize the influence of an
event on search queries? Finally, how should we formally define this data mining problem?
To tackle these challenges, I focus on studying how an event might have triggered queries

from users. This restrictive perspective allows us to quantitatively measure “influence" based
on the number of queries triggered by the event. To determine whether a query is triggered
by an event, I propose to make the decision based on both textual similarity and temporal
proximity between the clicked web documents by users filing the query and the text descrip-
tion of the event. To capture how the influence of an event on user queries evolve over time,
I propose a formal model based on the Hawkes process to characterize the trend of influence.
I evaluate the proposed influence modeling methods using two sets of data-sets: 1) NY-

times articles: I collected the most read articles from NYtimes during two months span of
April and May, 2016 using the NYtimes developers API to use them as trending events and
2) Query-log data: I also collected two months contemporary query log data from a widely
used popular search engine (https://search. yahoo.com).
Evaluation results using these data sets show that the proposed approach is effective for

identification of queries triggered by events reported in news articles and characterization
of the influence trend over time. I further show that the proposed extended Hawkes model
is useful in many ways, including improving the accuracy of predicting whether a newly
entered query by a user was triggered by an event (which further enables a search engine to
optimize its response to the query accordingly) and answering many interesting questions
related to understanding the influence of events on queries.
In Summary, I make the following contributions in this chapter: (1) I conduct the first

study of modeling the influence of trending events on search queries and frame the problem
as a new data mining problem. (2) I propose a computational method for measuring the
influence of an event on a query and discovering triggered queries by an event. (3) I propose

12

a novel extension of Hawkes process to model the influence trend of an event on user queries
over time. (4) I propose a way to quantitatively evaluate an influence model using the task
of predicting whether a newly entered query by a user has been triggered by some event,
and show that both the method for measuring influence and the extended Hawkes process
are useful for this prediction task, and they can be used immediately in a search engine
to potentially customize the response of the search engine to a user’s event-triggered query
based on the event.

2.2 RELATED WORK

Search query logs have been extensively studied to understand user search behavior and
provide better search experience [7, 8, 9]. Existing work mostly focused on the inference of
users’ search intent based on their own search habit and search history. On the other hand,
this chapter tries to model how user behavior on a search engine is influenced by external
factors such as trending events.
Temporal Information Retrieval and Event Detection are two areas closely related to

our work. While Event Detection has been studied vastly in the literature (see [20] for a
recent survey), research interest on Temporal Information Retrieval has grown recently [21].
However, I want to emphasize that, neither of these is the intended goal of this study
and our primary motivation is somewhat orthogonal. To be more specific, our work does
not intend to study how time-sensitive information needs can be addressed [22, 23] or how
users’ information need change over time [24] or how to detect some events from social
networks/news media [20]. Rather, given that some event has already been reported, I go
one step further to investigate how the event may impact/influence the search behavior of
the users.
The notion of event-based retrieval was introduced by Strötgen and Gertz [25] by return-

ing events instead of documents. Zhang et al. [26] addressed the detection of recurrent event
queries. Ghoreishi and Sun [27] introduced a binary classifier for detecting queries related
to popular events. Kanhabua [28] extended the work [27] by enabling the classifier to detect
less popular queries beside popular ones. However, all these approaches are supervised clas-
sification methods and largely depend on the quality of training labels provided by humans,
whereas our approach is completely unsupervised.
Kairam et. al. [29] investigated the online information dynamics surrounding trending

events, by performing joint analysis of large-scale search and social media activity. Matsub-
ara et. al. [30] presented a new model for mining large scale co-evolving online activities.
Pekhimenko et al. [31] designed a system named “PocketTrend" that automatically detects

13

trending topics in real time, identified the search content associated to the topics, and then
intelligently pushed this content to users’ local machine in a timely manner. However, none
of these studies provide answer to the question: how to model the temporal trend of influence
created by an event on user queries, which is one of the primary motivations of our work.
Another important topic related to this chapter is point process, which has been used to

model social networks [32] and natural events [33]. People find self-exciting point processes
naturally suitable to model continuous-time events where the occurrence of one event can
affect the likelihood of subsequent events in the future. One important self-exciting process
is Hawkes process, which was first used to analyze earthquakes [33], and then widely applied
to many different areas, such as market modeling [34], crime modeling [35], conflict [36], viral
videos on the Web [37] etc. In this work, I extend the original Hawkes process to propose
a new model that can capture the dynamics of influence by trending events on user search
behavior.

2.3 PROBLEM FORMULATION

I solve the problem of modeling the influence of an event on search queries by framing it as
a novel data mining problem where I would jointly mine two different types of data, i.e., text
data describing many events and search log data that contains user queries and clickthrough
records. Before presenting the exact problem formulation, some further clarification on the
notion is event with respect to our work is provided below:

2.3.1 The notion of Event

In data mining literature, an event is represented by a tuple which consists of several
entities like person, location, time, type of events etc [38]. Thus, the traditional notion of
event is a structured complex entity which consists of several simple entities. An excellent
overview of event representation and modeling has been provided by Xie et.al. in [39]. The
authors here presented a general characterization of multimedia events, motivated by the
maxim of five “W”s and one “H” for reporting real-world events in journalism: when, where,
who, what, why, and how. For example, the authors represent the real-world event: 2007
NBA finals, Game 4 through the following six facets.

1. who: the Cleveland Cavaliers and the San Antonio Spurs;

2. when: June 14th, 2007;

14

3. where: the Quicken Loans Arena, Cleveland, Ohio, U.S.;

4. what: the Cavaliers play the Spurs in Game 4;

5. how: the Spurs win the NBA Finals 4-0 with a 83-82 victory in this game;

6. why: the Spurs exhibited teamwork and played good defense

Some major challenges which need to be addressed when using the “5W1H” representation
are Multilevel Granularity, Event Polysemy and Implicit Semantics (see section 2 in [39]).
On the other hand, there is no single standard method to extract these six facets (5 “W”
and 1 “H”) and they often require manually labeled training data as well as assistance from
rich knowledge base. In general, this is a hard problem associated with the conversion
of any type of unstructured data into a structured format. As the primary focus of this
thesis is to develop general techniques that can be applied to any text data describing
events, I bypass the intricacies of extracting structured facets for representing an event by
simply considering the textual description as the representation of the event itself. The
benefit of this simple representation is that we do not have to assume the availability of
training data or a knowledge base. I, however, assume that each event is a mixture of
facets which is expressed in the form of natural language text along with other non-relevant
information. The non-relevant information can be filtered out through measuring textual
similarity between user queries and the event-text by using traditional Information Retrieval
techniques. Thus, we can view each event as a mixture-model which combines multiple facets
and the details of these facets controls the granularity of the event description. An example
of such representation is a news article which reports on a particular event. For the purpose
of evaluation, I restrict the representation of events within their textual description in some
news articles. It should be noted that, the assumption of one article describing one event
may not be entirely accurate because one article can contain multiple events based on the
granularity under consideration, which is often user dependent and varies a lot.
More specifically, I assume that each event, E, is represented as a tuple <WE,tE>, where,

WE is some natural text description of that event (e.g., some news article about that event)
and tE is the publication timestamp of WE. A query is represented as a tuple with three
attributes, i.e., <Wq,tq,Uq>. Here, Wq is the set of keywords that query q contains, tq is the
timestamp of the query submission and Uq is the URL that the user clicked after posing the
query.

15

2.3.2 The Computational Problem

The inputs to the influence mining algorithm are a set of events as well as the contem-
porary search query log . The desired output for the influence mining task includes the
following three elements:

1. Influential Events (or “Trending Events”): An influential event is any event E
that attracts the interest of the general mass significantly and has triggered queries from
many users. We want to discover a set of most influential events from the data sets.
2. Triggered Queries: A triggered query (denoted by q) by event E is a query entered

by a user due to knowing information about event E. In other words, had the user not heard
about E, he/she would not have entered query q. For each influential event E, we want to
discover all the triggered queries by the event.
3. Trend Model (or just Influence Model): An influence trend model for event E is

a parameterized process that can model the temporal trend of influence by event E on user
search queries. The parameter values of the model should be interpretable for characterizing
how the intensity of the influence evolves over time.

The rationale of requiring the model to be parameterized with interpretable parameters
is so that we can use the parameter values to obtain a concise quantitative summary of the
dynamics of the influence from an event, which is essential for enabling many interesting
applications of influence analysis (e.g., answering questions such as “how quickly does the
influence intensity grow over time?” and “how quickly the influence disappears?”)
Our problem formulation would enable many interesting applications, particularly for

understanding what kind of events tend to have more significant influence on user queries,
what kind of queries were triggered by a particular event, and how the influence evolves
over time. Such analysis can be potentially configured to compare different kinds of events,
similar events reported in different time periods or by different sources, and to compare
different user groups to understand how different groups of users may have been influenced
by the same event in different ways.

2.4 METHODS FOR INFLUENCE DISCOVERY AND CHARACTERIZATION

To solve the proposed influence mining problem, we need to complete three subtasks:
1) Discovery of events that have significantly influenced user queries, which I will refer to
as influential events. 2) Discovery of queries influenced by any influential event, which we

16

will refer to as event-triggered queries, or simply triggered queries. 3) Characterization of
the temporal trend of the influence of an influential event on user queries over time. All
these tasks are new tasks that are challenging due to the lack of labeled data for supervised
learning. They have not been studied in the previous work, thus we do not have natural
baseline methods to start with either. Below I present our proposed unsupervised method
for solving all the three problems.
A careful analysis of these tasks suggests that subtask one and subtask two both rely on

solving the basic problem of determining whether one event has influenced a query. Once we
can do that, we would be able to quantify the influence of an event by counting how many
queries are influenced by the event, and also easily obtain which queries are influenced by
which event.
To solve subtask three, I propose to model the frequency of triggered queries over time with

a temporal process model based on the Hawkes process, which assumes that the frequency
of triggered queries at time t is a function of a base frequency λ0 capturing the general
popularity of this kind of queries, how quickly the influence decreases over time (captured
by a parameter β), and the homogeneity of user search behavior over time (captured by a
parameter α). The advantage of such a model is that by fitting the model to our observed
frequency of triggered queries, we can obtain these meaningful parameters that are directly
useful for characterizing the trend of influence.

2.4.1 Discovery of influential events and triggered queries

Our basic problem is the following: Given a query and an event, how can we know whether
the event has influenced the query? Due to the complexity of the notion of influence, a
completely rigorous definition of influence is nearly impossible. To make the problem more
tractable, I propose three reasonable heuristics to guide us in designing a computational
measure of influence. Specifically, given an event E =< WE, tE > and a particular query
submission q =< Wq, tq, Uq >, we can reasonably make the following three assumptions
about influence, which would help us design a function to computationally measure the
influence of E on q. Here, I denote the content of the clicked-URL, i.e., content(Uq) simply
by WU .

Assumption 2.1 (Query-Textual-Similarity). The higher the textual-similarity between WE

and Wq, the higher the chances that q is triggered/influenced by E. This assumption allows
us to prune cases where the query is completely irrelevant to the event.

17

Assumption 2.2 (Temporal-Similarity). The higher the temporal-similarity between tq and
tE, the higher the chances that q is triggered/influenced by E. This assumption allows us to
distinguish queries triggered by similar events in the past from those triggered by a current
event.

The Temporal-Similarity is important because Query-Textual Similarity alone is insuffi-
cient. For example, consider two trending events “US election 2012" and “US election 2016".
Now, if a user poses a query “US election", it is hard to tell which event actually triggered
the query submission. However, if we know the timestamp of the query submission, we
can better predict the triggering event. For example, if the query was posed in the year
2016, then with high probability, it was triggered by the event “US election 2016" as it was
trending at that moment. On the other hand, if it was posed in the year 2012, probably the
triggering event was “US election 2012". Thus, besides textual similarity, temporal similarity
also plays an important role in predicting the influence.
Another useful piece of information that helps to verify whether some event E indeed

influenced the submission of query q is the content of the URL which the user clicked after
posing the query. If the content of the clicked-URL, i.e., Uq, is highly similar to the text
description of event E, that means the user was actually looking for news about the same
event. This, in turn, means that query q was influenced/triggered by event E. This gives us
our third heuristic:

Assumption 2.3 (ClickedURL-Textual-Similarity). The higher the textual-similarity be-
tween WE and WU (WU is the text of the clicked documents by users who entered query q),
the higher the chances that E triggered/influenced q.

Intuitively, we would like to design a measure that combines all the three heuristics so
that a query-event pair would be scored high if (1) the query text is similar to the event
text description, (2) the clicked documents are similar to the event text description, and (3)
the time stamp of the query and that of the event are close. One way to combine them
is to design a similarity/distance function for each of these three dimensions and combine
the three functions into one single scoring function. Specifically, I use the following scoring
function to measure the influence:

F (E, q) = TxtSim(WE,Wq) · TmpSim(tE, tq) · TxtSim(WE,WU) (2.1)

I discuss these components in more detail below:

18

TxtSim(WE,Wq): Similarity between query-document pair has been studied in the
literature for a long time. One popular function from the literature is the “Okapi BM25"
ranking function [19]. However, I could not use “Okapi BM25" directly for the major limi-
tations discussed below.
First, each “event-text" (description of the event) usually contains a title and a body. The

title often contains more important words pertaining to the event, while the body contains
verbose details. It is thus necessary to put more emphasis on matching the title keywords
first and then match the body details. The original “BM25" similarity function unfortunately
does not provide such customizations. “BM25F" [40], an extension of BM25, handles this
relative term weighting scenario, although “BM25F" is also not directly applicable to our
problem setting for the following reason: To be able to compare the influence across different
trending events, it is necessary that the “BM25F" score computed for different pairs of “event-
text" and “query-text" be comparable. However, this is not the case because there is a large
variance in the length of both “event-text" and “query-text". One might argue that, “BM25F"
provides “Document Length Normalization" and “Relative Term Weighting", which should
resolve the problem. But ones careful attention would reveal that “BM25F" is designed for
a setting where the information need, i.e., the query is constant and only the document is
varied to compute the similarity. But, in our case, both the document and query are variable
and thus, we need both “document length normalization" and some kind of “query length
normalization".
To address the two issues mentioned above, I use the following modified version of BM25

as the TxtSim function to fit our problem setting. Let, WE =< WE1 ,WE2 ,,WEn > be
the “event-text" and Wq =< Wq1 ,Wq2 ,,Wqn > be the “query-text".

TxtSim(WE,Wq) =

|WE |∑
i=1

ω(WEi
).IDF (WEi

).TF (WEi
,Wq).(k1 + 1)

TF (WEi
,Wq) + k1.(1− b+ b. |Wq |

avgql
)

subject to
|WE |∑
i=1

ω(WEi
) = 1 (2.2)

Note that, equation 3.1 is similar to the original “BM25" with the exception of the new
term ω(WEi

) and the constraint that the weights must sum to 1. ω(WEi
) is essentially

the weight of each n-gram in the “event-text" which reflects the importance of that partic-
ular n-gram with respect to the “event-text". ω(WEi

) allows the TxtSim(WE,Wq) to be
comparable across different WE and Wq as we enforce the constraint

∑|WE |
i=1 ω(WEi

) = 1.
Furthermore, one can easily set ω(WEi

) in such a way so that title n-grams get more weight

19

than body n-grams as well as bigrams get more weight over unigrams and vice-versa. The
specific weights I used for our experiments are mentioned in section 3.6. The IDF (inverse
document frequency) and TF (term frequency) bear the usual meaning as in the original
BM25 function.

TxtSim(WE,WU): TxtSim(WE,WU) is basically the similarity between a pair of
documents, in contrast with TxtSim(WE,Wq), which is the similarity between a query and
document pair. TxtSim(WE,WU) is almost similar to TxtSim(WE,Wq) with the exception
that TxtSim(WE,Wq) contains only one ω (for WE), while TxtSim(WE,WU) contains two,
i.e., ω1 and ω2, where ω1 and ω2 are weight distributions for the event-text (WE) and clicked-
url-content (WU) respectively.

TxtSim(WE,WU) =

|WE |∑
i=1

ω1(WEi
) · ω2(WEi

) · IDF (WEi
)

· TF (WEi
,WU)

subject to,

|WE |∑
i=1

ω1(WEi
) = 1 ,

|WU |∑
i=1

ω2(WUi
) = 1 , ω2(WEi

) = 0 if Ei /∈ WU (2.3)

The essence of equation 2.3 is that matching an n-gram which has high weights for both
WE and WU contributes more to the similarity between WE and WU , whereas, n-grams hav-
ing low weights for one/both of the articles contribute less to the similarity.

TmpSim(tE, tq): The TmpSim function is expected to behave in the following way: if
two events are far distant in time, their temporal similarity should be low; whereas, if they
are close in time, the temporal similarity should be high. I also assume that the temporal
similarity decreases exponentially as the distance in time increases. Below is an example of
a function with such desired properties, where δ is the decaying parameter:

TmpSim(tE, tq) = e−δ.|tE−tq | (2.4)

20

2.4.2 Influence Trend Modeling

Once we can measure the influence an event E has over different user queries, the next task
is to model the trend of such influence over time. Such modeling would allow us to study the
characteristics of influence in a systematic way and enable many interesting applications like
predicting future volume of queries, optimizing search recommendations etc. To accomplish
this, I propose function Trend(E, t), which takes as input an event E and timestamp t and
returns the popularity/trendiness of event E at timestamp t. There are many ways one can
define how to measure the popularity/trendiness of an event. For example, the number of
tweets related to the event, number of views for news articles relating to the event, click
counts for the event webpage, number of social media posts sharing the event etc. In this
work, I define popularity/trendiness of an event by the users tendency to pose queries that
are relevant to the event. I choose this definition because we are specifically interested in
modeling the influence of trending events on user search behavior.
Defining the Trend(E, t) is not trivial. First, I introduce a set of assumptions that will

help us formalize the notion of “trendiness".

Assumption 2.4 (Influence Growth). Each query submitted to search engine τ that is
relevant to event E increases the chance of subsequent submission(s) of relevant queries
to τ , thus, grows the trendiness/influence of event E.

Assumption 2.4 simply says that each relevant query submission from one user indicates an
increase in the tendency of other users to pose similar relevant queries. In other words, the
trendiness of an event is directly/indirectly influenced by the previous query submissions
relevant to the same event, which in turn, reflects the tendency to receive new queries
relevant to the event. To see the rationale of Assumption 2.4, consider a scenario when a
user is exposed to an event that he/she feels interested about, the user may use multiple
queries to find out more about the event and then share the event details on some social
media platform or talk to some friends about the event. These friends, being interested in
the event after hearing about it, may do further search. Thus, the influence of the event
propagates from one user to another and reflects in their search activity. As another example
scenario, say some popular news portal publishes a featured article about some event. Many
people would then read that article to know about the event/incident and start searching
for more details about it. In this case, new incoming queries searching about a particular
event gives useful indication about further submission of similar relevant queries. Thus, a
significant number of relevant queries actually indicate the growth of the trendiness/influence
of the event.
Given that the “trendiness" of an event, E, at moment t is dependent on all the relevant

21

(w.r.t. E) queries posed before timestamp t, the next obvious question is: to what extent
each of the previous queries contribute to the current “trendiness"? To answer this, I make
two further assumptions as mentioned below.

Assumption 2.5 (Query Relevance). The contribution of a query q (submitted at time tq)
to the “trendiness" of an event E at moment t, where t > tq, is proportional to the textual
similarity between the “event-text", WE and the “query-text", Wq, i.e., TxtSim(WE,Wq).

Assumption 2.6 (Query Timestamp). The contribution of a query q (submitted at time tq)
to the “trendiness" of an event E at moment t, where t > tq, exponentially decays as the
difference between t and tq increases.

Assumption 2.5 and 2.6 are very reasonable. Assumption 2.5 basically says that, highly
relevant queries grow the trendiness of an event, thus, indicates the growth in the volume
of future relevant queries; at the same time, Assumption 2.6 says that the contribution of a
past query to the current “trendiness" of the event decays exponentially with time.

A parametric model for influence

Incorporating these two assumptions, I introduce Equation 2.5 presented below to compute
the “trendiness" of an event E at time t.

Trend(E, t) = λ0 +
n∑
i=1

α · TxtSim(WE,Wi) · e−β(t−ti) (2.5)

Equation 2.5 contains three parameters, i.e., λ0, α and β. λ0 is a constant which reflects the
base trendiness that is assumed to be always present. α is a scaling factor to control the
contribution of TxtSim(WE,Wi) on the current “trendiness" and β is the scaling factor to
control the exponential decay in time. W1, W2,, Wn represents all the queries relevant
to event E that were posed before timestamp t.
Equation 2.5 is not entirely new; it is similar to the self-exciting point processes [41] e.g.

Hawkes Process [42]. However, the point processes models the recurring events of the same
type, whereas our task is to model influences of one type of event (e.g. Trending articles)
on other type of events (e.g. user search behavior). Thus, I include the textual-similarity
between the past queries and event-text, i.e., TxtSim(WE,Wi), into the basic Hawkes process
to fit our problem scenario.
Figure 2.2 shows a hypothetical simulation of how equation 2.5 works. Without loss of

generality, I assume that TxtSim(WE,Wi) = 1.0 for any choice of WE and Wi. However,
this choice does not affect our attempt to present the spirit of equation 2.5. The x-axis in
Figure 2.2 represents time and the y-axis represents the corresponding “trendiness" of some

22

Figure 2.2: Simulating the trend of some hypothetical event.

hypothetical event E. The “Blue" dots represent each query submission that is relevant
to E. These “Blue" dots were generated by simulating the Hawkes Process (see [43] for
details). For this particular simulation, λ0, α and β were set to 0.5, 2.5 and 3.0 respectively.
This means, there is always a base trendiness of λ0 equal to 0.5. The “trendiness" goes
up as people start querying about the event E (note the first blue dot), which, increases
the chance of generating further queries. Thus, the volume of queries influenced by E and
“trendiness" of E grows mutually by enhancing each other. For example, at the vicinity of
time zone t = 6, a lot of queries were posed which resulted in further query submissions and
the “trendiness" rises up significantly. The “trendiness" goes down exponentially with time
if no further queries are posed. This is signified by the exponential decay near time zone
t = 8. Note that, the current estimate of “trendiness" is directly correlated to the expected
volume of relevant queries in near future. The higher the current “trendiness" is, the more
the probability of observing high volume of relevant queries in future. However, the estimate
of “trendiness" is incrementally updated as we move forward in time and observe (do not
observe) new user queries.

23

Estimation of the parameters

Let the set of parameters be Λ = {λ0, α, β}. I adopt maximum likelihood estimation
technique to find the optimal parameter values for equation 2.5. First, I show how to
compute the log-likelihood for a single event E and then I extend it to multiple events case.
Considering the query submission sequence q1,q2,, qn (all related to event E) as a
simple point process, the likelihood for a single trending event can be written as follows
(see [43] for background):

logL =

∫ tqn

0

(1− Trend(E, t))dt+
n∑
i=1

log(Trend(E, tqi)) (2.6)

After some simple mathematical operations, equation 2.6 boils down to the following form:

logL = −
(
α

β

)
· TxtSim(WE,Wqi) ·

{
1− e−β·(tqn−tqi)

}
+ tqn − λ0 · tqn +

n∑
i=1

log(Trend(E, tqi)) (2.7)

Given the close form of the log likelihood function (equation 2.7), the optimization problem
to find the optimal parameter set Λ∗ is written as follows:

Λ∗ = arg max
Λ

L({q1, .., qn}|E,Λ) (2.8)

For multiple events E1, E2,Em, the optimization problem is extended in the following
way:

Λ∗ = arg max
Λ

m∑
j=1

L({qj1, .., qjn}|Ej,Λ) (2.9)

One can use any non-linear optimization method to solve this maximization problem.
Nelder-Mead Simplex Method [44] is one such popular optimization technique. Another
useful approach is the Sequential Least SQuares Programming (SLSQP) [45].

2.5 EXPERIMENTAL DESIGN

Data Sets: I collected two sets of data sets: one for trending events and one for user
query history. I call these two data sets Trending-Event dataset and Query-Log dataset
respectively. The following two paragraphs provide details about these two data-sets:

24

Category # of Avg. Title Avg. Body
articles Length Length

Movies 25 18.88 458.08
Sports 15 19.53 508.4
US 18 20.38 487.77

World 11 18.18 438.81
Total 69 19.30 473.69

Table 2.1: Description of Trending-Event data set

Trending-Event data-set: An obvious choice for a text data set describing events is news
articles (though other data such as social media might also be applicable). The NYTimes
Developers Network (thanks to them) provides a very useful api called “The Most Popular
API" [46], which automatically provides the url’s of the most e-mailed, most shared and
most viewed articles from NYTimes.com during the last month from the date of the issue of
the query. I chose to use this API because of two major benefits: 1) it automatically removes
duplicate articles, thus I don’t need to deal with cases where multiple articles are related
to the same event. 2) it only provides the most popular articles from NYTimes, thus the
quality/accuracy of the events represented by these articles is very high. Using this API, I
collected the most e-mailed, most shared and most viewed articles from the two months span:
April and May, 2016. Each article consists of a tuple <title-text, body-text, timestamp>.
Among different categories of news, I used only four categories for our experiments: US
(National Affairs), Movies, Sports and World (International Affairs). Table 2.1 shows some
details about the data-set.

Query-Log data-set: To analyze the user queries contemporary to the articles in Trending-
Event data-set, I use the two-months (April and May, 2016) user query log data from the
widely used search engine at https://search.yahoo.com. Each query submission q is repre-
sented as a tuple <query-text, timestamp, clickedURL>. The two-months query log data
contains 105, 925, 732 query submissions in total. To keep the computation feasible, for each
article E in the Trending-Event data-set, I retrieved top 500 unique (in terms of text) queries
that has at least a similarity score of 1.5 (with respect to E) according the textual similarity
function in equation 3.1 and discarded the rest. This filtering step is reasonable because
if the textual similarity is very low (less than 1.5), I assume that the influence prediction
problem becomes trivial, i.e., there is no influence of E on the query. Thus, textual similarity
itself is sufficient in this case to decide whether there is an influence or not. However, more
challenging cases are when the query shares a high degree of textual similarity to the event

25

Category Total % Pos. % Neg. Avg.
query instance instance txt-sim

Movies 193,282 16.24 83.75 2.49
Sports 616,449 0.84 99.15 2.48
US 204,926 33.72 66.27 1.99

World 22,197 7.68 92.3 1.96
Total 1,036,854 10.35 89.64 2.38

Table 2.2: Description of Query-Log data set

E, but still is not influenced by the event. In this chapter, I focus on these type of queries
with significant textual similarity to the event and assume that the other queries are not in-
fluenced by any event in our data set. The summary of this data-set is presented in Table 2.2.

Predictive modeling for quantitative evaluation: Quantitative evaluation of the min-
ing results pose challenges because there is a lack of gold standard for what events are
influential and the ground truth for the true influence trend of an event. I overcome this
difficulty by proposing a way to perform indirect quantitative evaluation based on the task
of predicting whether a user’s newly input query is triggered by an event. The prediction
setup is intended to simulate a real application scenario when a search engine receives a
query from a user. In such a scenario, it would be beneficial for the search engine to “know”
whether this query was triggered by a particular event since if it was, then the search engine
would be able to leverage this knowledge to optimize the search results to be presented to
the user (e.g., recommending content related to this event).
With such a setup, I can use the component techniques in our proposed mining approach,

including text similarity functions, temporal similarity function, and the extended Hawkes
model, to construct a prediction model to attempt to predict whether a “new” query in a
separate held-out search log data set is influenced by any event based solely on the query
without using any clickthrough information. The clickthrough information, however, is only
used to create the gold standard labels for the evaluation purposes, i.e., whether such a query
is indeed triggered by an event (I used equation 2.1 from section 2.4.1 along with threshold
0.01). One can argue that a better way to create the gold standard labels is to involve human
judgments. However, for our data-set, this means the human annotators would have to go
through 1, 318, 359 <event, query, url-content> triplets, which is practically infeasible. So,
I had to opt for some automated techniques for annotating the gold standard labels.
To evaluate the quality of the gold standard labels created by our automatic approach,

I randomly sampled 200 positive and 200 negative examples labeled by the automatic pro-

26

cess. Then, I asked three volunteers to independently go through these 400 <event, query,
url-content> triplets and manually label each of them with 1 if, after reading the event
description and contents of “url-content", the annotator thinks the query was indeed influ-
enced by the event or 0, otherwise. I computed Cohen’s kappa coefficient [47] to measure the
inter-rater-agreement which was found to be reasonably high, i.e., 0.835. Thus, I conclude
that the gold labels created by our automatic approach is reliable.
The labeled data-set created in the way previously described is highly imbalanced as most

of the queries are not influenced with respect to some particular event E. To make the data-
sets balanced, I randomly under-sampled from the pool of the negative samples to match the
size of the positive examples for reporting the results in section 3.6. Concretely, I can use
the following equation (eqn. 2.10) to compute the influence relation between event E and
query q without using the clickthrough information and then pick a reasonable threshold to
separate the influenced queries from the rest. I did threshold analysis which showed that
the prediction model remains very stable for wide range of threshold value, i.e., [0.8, 5] and I
chose 1.0 for our experiments (the details are omitted due to lack of space). I call this model
the “IP" (Influence Prediction) model.

F (E, q) = TxtSim(WE,Wq) · TmpSim(tE, tq) · Trend(E, tq)) (2.10)

Performance Metric: To evaluate the performance of the proposed predictive model, i.e.,
IP , I use the four popular measures available in the literature: precision, recall, specificity
and F-measure (see [48] for details). I also present results for the recently introduced K-
measure [49] to show that “IP" model achieves better performance in terms of this new
measure too.

2.6 RESULTS

In this section, I report my experimental findings including both qualitative and quanti-
tative evaluation results. I first start with some implementation details, then describe the
qualitative and quantitative evaluation sequentially.

2.6.1 Implementation Detail

For the weight distribution ω in equation 3.1, I followed the weighting scheme presented
in Table 2.3. This significance of Table 2.3 is that it puts more weight on the title-text
matching (0.7) in comparison to the body-text matching. Similarly, it puts more weight on

27

Bigram Unigram Sum
Title 0.49 0.21 0.70
Body 0.21 0.09 0.30
Sum 0.70 0.30 1.00

Table 2.3: Weight allocation for Title vs Body and Unigram vs Bigram in equation 3.1.

bigram-matching (0.7) in comparison to unigram-matching (0.3). An immediate consequence
is that, bigram-matching in the title-text gets the highest reward (0.49), whereas, unigram-
matching in the body-text gets the least reward (0.09). In other words, the weights for all
bi-grams in the title of the event-text summed up to 0.49 and the weight of each individual
bi-gram is proportional to its term frequency in the title-text. Similarly, the weights for all
unigrams in the body of the event-text summed up to 0.09 and the weight of each individual
unigram is proportional to its term frequency in the body-text. The same weighting scheme
was used for ω1(WEi

) and ω2(WEi
) in equation 2.3.

The “trendiness" parameters, i.e, Λ = {λ0, α, β} are learnt automatically using equa-
tion 3.13 (see table 2.6 for the exact values). Parameter δ (equation 2.4) was heuristically
set to 0.8. This heuristic value is not an issue because for all the variants of the “IP" model
(mentioned in table 2.7), I use the same δ value, thus, the optimal value is irrelevant for
comparative analysis.

2.6.2 Qualitative evaluation

I show some sample data mining results to analyze their quality. First, I show the top four
most influential events for each category in our data set as measured by the overall/total
number of triggered queries in Table 2.4. They are all intuitively influential events. For
example, the top one for category “Movies" is the release of “Caption America : Civil War",
while the top one for category “World" is the “Panama Papers leaked".
Second, I show a sample of triggered queries with highest frequency for the event “curt

schilling fired from espn" and event “panama papers leaked" in Table 2.5. We see that these
queries are indeed well associated with these events.
Finally, I examine the optimal parameters learned by fitting the modified Hawkes model

in Table 2.6.

Interpreting Model Parameters: I focus on interpreting the optimal values of the
modeling parameters, Λ = {λ0, α, β}, which are automatically learnt by the estimation

28

Movies Sports US World
1 “captain America:

Civil War" released
san antonio spur
vs oklahoma city
thunder basketball

harriet tubman
ousts andrew
jackson

panama papers
leaked

2 alden ehrenreich
Cast “hail caesar"

Rise of leicester city
in premiere league

donald trump com-
ments on transgen-
ders toilet use

sadiq khan elected in
london

3 gosling and Crow
star “nice guys"

curt schilling fired
from espn

donald trumps run-
ning mate

philippine presiden-
tial election

4 ken loach wins
Palme dor

western conference
finals

indiana primary
elections

brazil president im-
peachment

Table 2.4: Top influential events for different categories.

curt schilling fired from espn panama papers leaked
1 curt schilling espn panama paper leak
2 espn curt schilling suspension celebrity involved in panama offshore

account
3 curt schilling facebook post panama paper politicians
4 curt schilling comment panama paper American
5 curt schilling blog panama paper law firm

Table 2.5: Popular queries triggered by influential events.

Category λ0 α β
Movies 0.0420 0.9082 2.6539
Sports 0.0146 0.4810 1.0208
US 0.0656 1.0892 2.3727
World 0.0117 0.1464 0.3292

Table 2.6: Trendiness parameter for different types of events.

29

technique introduced in section 3.4.2. Table 2.6 shows these values. Indeed, these values have
intuitive interpretation that matches our real-life expectation. For example, λ0 essentially
reflects the general interest in posing queries related to some trending event. Table 2.6
shows that people usually have the most interest (λ0 = 0.0656) in the US category, i.e.,
events related to the national affairs. While the international affairs, i.e., “World" category
generally draws the least attention (λ0 = 0.0117). Next, α models the degree of homogeneity
in user search behavior. So, high value of α means high degree of similarity in the intra-
community search pattern. For example, in case of the category “US" (α = 1.0892) and
“Movies" (α = 0.9082), I found the homogeneity to be significantly higher than for the
category “Sports" (α = 0.4810) or “World" (α = 0.1464), indicating the search behavior is
more diverse and discrete for the “Sports" and “World" category. Finally, β models the decay
in user interest with time; thus, high value of β indicates a quick drop of interest among the
general mass. As expected, β obtained for the “Movies" category (β = 2.6539) was found to
be the highest, as people usually talks a lot about movies when they get released and the
topic disappears quickly in few days. However, to our surprise, I also obtained high value
of β for the “US" category (β = 2.3727). One plausible explanation for this fact may be
that there are too many national news to follow and people switch their interest from time
to time following different national news. On the other hand, value of β for the “Sports"
(β = 1.0208) and “World" (β = 0.3292) category was found to be smaller, indicating the
general interest is somewhat more prevailing in these cases. All these results show some
qualitative analysis about how effective our proposed mining model is.

Capturing Trend: To verify how well our proposed extended Hawkes model can capture
the trend of influence by some event on user queries, I generated the simulated “trendiness"
plot (Figure 2.3) for the event “Captain America : Civil War" (The real data is plotted in
Figure 2.1). To generate Figure 2.3, I used the learnt optimal parameters from table 2.6, i.e.,
{λ0, α, β} = {0.0420, 0.9082, 2.6539}. I also assumed that at a certain moment t, we know all
the past queries that were influenced by the event along with their textual similarity to the
event-text. Then, I used equation 2.5 to compute Trend(E, t) at different t and plotted that
in Figure 2.3. Cross examination of Figure 2.3 and 2.1 reveals that, the extended Hawkes
model can, in fact, capture the real trend quite reasonably.
Our qualitative analysis thus shows that overall the proposed approach is able to generate

meaningful and interesting knowledge that can help better understand the influence of news
events on user queries.

30

Figure 2.3: Simulation of Trendiness for the event: release of “Captain America : Civil War"
Movie

Method TxtSim TmpSim Trend
txt Yes No No

txt-time Yes Yes No
txt-trnd Yes No Yes

txt-time-trnd Yes Yes Yes

Table 2.7: Summary of different versions of the “IP" model.

2.6.3 Quantitative evaluation with predictive modeling

I now turn to quantitative evaluation of the proposed approach using the predictive mod-
eling task for predicting whether a user’s newly input query has been influenced by an
event. To better understand the role of each three basic components of the “IP" model (see
equation 2.10), I create four different versions of our model by throwing out one or more
components at a time and using the rest of the components to predict the influence of events
on user queries. Table 2.7 shows these different versions of IP model along with the com-
ponents it contains. For example, the “txt" method only contains the “TxtSim" component,
while “txt-trend" contains both “TxtSim" and “Trend" components, but does not incorporate
the “TmpSim" component. From now onwards, I refer to all the methods compared in this

31

Category Method F-measure K-measure Precision Recall-f Recall-K Specificity
txt 0.6667 0.2366 0.5282 0.9035 0.5684 0.6682
txt-time 0.7089 0.2717 0.5505 0.9952 0.8656 0.4061

Movies txt-trnd 0.8084 0.5526 0.6978 0.9606 0.9068 0.6457
txt-time-trnd 0.8087 0.5532 0.6987 0.9598 0.9045 0.6488
txt 0.6667 0.1482 0.5000 1.0000 0.7626 0.3855
txt-time 0.6783 0.2584 0.5132 1.0000 0.5634 0.6950

Sports txt-trnd 0.8239 0.5990 0.7345 0.9382 0.9382 0.6609
txt-time-trnd 0.8239 0.5992 0.7348 0.9378 0.9378 0.6615
txt 0.6710 0.0372 0.5063 0.9945 0.0952 0.9420
txt-time 0.7441 0.5234 0.6444 0.8804 0.6806 0.8428

US txt-trnd 0.8120 0.5758 0.7291 0.9161 0.9161 0.6597
txt-time-trnd 0.8155 0.5878 0.7380 0.9112 0.9112 0.6766
txt 0.6680 0.0205 0.5018 0.9988 0.0393 0.9812
txt-time 0.6759 0.4560 0.5111 0.9977 0.5252 0.9308

World txt-trnd 0.8198 0.6020 0.7489 0.9056 0.9056 0.6964
txt-time-trnd 0.8193 0.6014 0.7493 0.9039 0.9039 0.6975

Table 2.8: Prediction Results for different IP models

chapter by the terminology introduced in table 2.7 to report the experimental results. All
results reported in this section used equation 3.1 as the “TxtSim" component. I also exper-
imented with other text-similarity functions, e.g., TF-IDF cosine similarity; however, the
results turned out to be significantly poor (more than 10% relative difference in F-measure)
as compared to using equation 3.1 [the details are omitted due to lack of space].
Table 2.8 shows the summary of the performance obtained by the four different versions

of “IP" model on the Trending event and Query-Log Dataset. For each method and event-
category, the table reports the F-measure (with corresponding Precision and Recall, i.e.,
Recall-f) and and K-measure (with corresponding Specificity and Recall, i.e., Recall-K).
Each result reported in Table 2.8 is the average of 25 runs using five-iterated-five-fold cross
validation, each time with a random initialization of the parameter set {λ0, α, β}. It is
evident that for all the categories of events, the “txt-time-trnd" method performs the best
in terms of both F-measure and K-measure. For example, in case of the category “Movies",
the “txt-time-trnd" method obtains a F-measure and K-measure value of 0.8087 and 0.5532

respectively, while the only textual similarity based method, i.e., “txt" achieves a F-measure
and K-measure value of 0.6667 and 0.2366 respectively.
Close observation of Table 2.8 reveals that, only textual similarity is not sufficient for

the influence prediction task as demonstrated by the relative poor performance of the “txt"
method. Adding the “TmpSim" component, i.e., “txt-time" improves the prediction accu-
racy, although not to a significant degree. However, adding the “Trend" component to the

32

“TxtSim" component results in a significant jump in the prediction accuracy (“txt-trnd"
method) which verifies that the “Trend" component is very important to detect the influ-
ence of events on user query submissions. For example, for the “US" category, “txt" obtains
a F-measure value of 0.6710 and “txt-time" obtains 0.7441, whereas, “txt-trnd" obtains a
F-measure value of 0.8120. Finally, combining all the three components, i.e., “txt-time-trnd"
achieves slightly better performance (F-measure 0.8155) than “txt-trnd" (F-measure 0.8120)
signifying the fact that, once I have incorporated the “Trend" component, there is little room
for “TmpSim" to further improve the prediction performance. This verifies our assumption
that, “Trend" is an essential component for this kind of influence prediction task.
Overall, these quantitative evaluation results show that the basic component techniques

I proposed for modeling influence, i.e., text similarity, temporal similarity, and extended
Hawkes model, are all useful for the prediction task, suggesting that they indeed capture
useful signals for modeling the influence relation of events on user queries. It is especially
interesting to note that the modified Hawkes model provides a “trendiness” score that is
shown to be beneficial for the prediction task, suggesting that the model has indeed captured
the trend of influence well.

2.7 CONCLUSION AND FUTURE WORK

In this chapter, I conducted the first study of how trending events influence search queries,
where I frame the problem as a novel data mining problem of joint mining of trending
event news data and search log data. I proposed a computational method to quantitatively
measure the influence of an event on a query and to discover queries triggered by the event.
Specifically, I proposed a novel extension of Hawkes process to model the evolutionary trend
of the influence of an event on search queries. Evaluation results show that our proposed
approach effectively identifies queries triggered by events and characterizes the influence
trend of different types of events.
Although I mainly applied the proposed model to the problem where we predict if a query

was triggered by an event, our model can be applied to many other problems. For example,
it can help query auto-completion by leveraging terms related to the triggering event, and
it can also improve search results by boosting documents that are relevant to the event. In
addition, analysis on different characteristics of the events can enable us accurately detect
more influential events. All of these interesting directions are left as future work.

33

CHAPTER 3: JOINT INFLUENCE MODEL FOR INFORMATION THIRST

Previous chapter has shown that popular trending events are important external factors
which pose significant influence on user search behavior and also provided a way to compu-
tationally model this influence. However, the problem formulation in the previous chapter
was based on the strong assumption that each event poses its influence independently. This
assumption is unrealistic as there are many correlated events in the real world which influ-
ence each other and thus, would pose a joint influence on the user search behavior rather
than posing influence independently. In this chapter, I study this novel problem of Modeling
the Joint Influences posed by multiple correlated events on user’s information seeking be-
havior. I propose a Joint Influence Model based on the Multivariate Hawkes Process which
captures the inter-dependency among multiple events in terms of their influence upon user
search behavior. I evaluate the proposed Joint Influence Model using two months query-log
data from https://search.yahoo.com/. Experimental results show that the model can indeed
capture the temporal dynamics of the joint influence over time and also achieves superior
performance over different baseline methods when applied to various interesting application
tasks as well as real-word application scenarios, e.g., query auto-completion.

3.1 OVERVIEW AND MOTIVATION

Search Engine optimization has been a vastly studied research area in the past decade. One
key component of search engine optimization is analyzing the user search behavior in order
to better understand their information need. User search behavior has been studied from
multiple perspectives, e.g., user’s own browsing history, click log analysis etc. Recently,
how various external factors influence the user search behavior has attracted increasing
attention [50]. One important type of external factor is the external events that “significantly”
attract the general mass. They trigger user’s thirst for information related to the event and
thus, pose influence on how the users search to fulfill their information need. How to model
the influence of such external events on user search behavior is the high level research question
I study in this chapter.
The problem of modeling the influence of popular trending events on user search behavior is

not entirely new, specifically, this problem was introduced by Karmaker et.al. [50]. However,
the problem definition provided in [50] was based on the strong assumption that the influence
posed by each event is independent of the other events, which clearly limits the applicability
of such solution to cases where there are multiple correlated events and these events pose a

34

Figure 3.1: A toy example with three events e1, e2, e3. The circles, squares and dices represent
queries generated by the influence of event e1, e2 and e3 respectively.

joint influence on individual user’s search pattern. To clearly motivate the problem, let us
start with the example in Figure 3.1, where I show three popular events from the month of
April, 2016. The first event (denoted by e1) is Donald Trump’s win in the Indiana Primaries.
The blue line below the event description represents the time dimension and the “yellow”
dots represent queries related to/triggered by the event e1. For example, the query “Trump
Indiana result" is clearly seeking information about Trump’s election results for Indiana
Primaries. Note that, the same query can be posed by multiple users at different instants of
time. Here, e1 is an influential event that has triggered a lot of user queries related to that
event. I call these triggered queries as Influenced queries. Similarly, event e2, i.e., “Panama
Papers Leaked” and event e3, i.e., “Hillary Clinton mocks Donald Trump over not releasing

35

tax returns” also trigger numerous queries from users asking for relevant information about
the respective event. A deeper thought would also reveal that some of these events may
be correlated and they may have a joint-influence on the generation of some queries. For
example, people searching for “Hillary Clintons mocking about Donald Trump" might also
be interested in information about Trump’s Indiana Primary Results and vice-versa. Thus,
mutual influence exist among events that jointly affect user search behavior and this joint
influence also evolves over time causing corresponding change in the user search pattern. In
this chapter, I model this evolution of joint influence posed by multiple external events on
the search behavior of users.
As mentioned in the previous paragraph, the major limitation of the previous work by

Karmaker et.al. [50] is the assumption that influence posed by one event is independent
of the other events. In this chapter, I relax this assumption by providing a new problem
formulation, i.e., modeling the joint influence posed by multiple events on user search be-
havior. Specifically, I introduce a new data mining problem, where, given a search query log
and a set of (correlated) events, the task is to mine both these datasets to infer the joint
influence posed by the provided set of (correlated) events on triggering queries from users.
This specifically means, beside measuring the influence of the primary event that triggered
the query (lets call it Direct Influence), the task also requires to measure the influence of
secondary (correlated) events for the same (lets call it Indirect Influence). This is a new
problem because besides computing the degree of influence posed by each event, we also need
to come up with a way to compute how their influences are temporally correlated to each
other. The joint influence mining task naturally raises many associated interesting research
questions, including, how to come up with a numerical formula for measuring influence that
is comparable across multiple events (note that, the influence scores computed by Karmaker
et.al. [50] are not directly comparable across multiple events), how influence of multiple
events jointly evolve over time and how they correlate in the temporal dimension etc. (see
section 3.3 and section 3.5.2 for a detailed list of questions).
To solve the joint influence modeling task, I propose a novel mining algorithm based on

Multivariate Hawkes Process [51], which is a mutually exciting point process suitable for
modeling the frequencies of random events. The joint influence modeling approach proposed
by us has several benefits over the independent influence model proposed in [50]; first, it
relaxes the assumption that each event poses an influence that is independent of the other
events and thus can model real word scenarios better; second, it can capture the temporal
correlation of influences posed by two correlated events providing a way to categorize direct
influence versus indirect influence and thus can leverage this correlation to better model
the evolution of joint influence over time; third, it provides a formal way to measure the

36

influence of multiple events in a comparable numerical scale. Another beneficial feature of
the proposed method, as demonstrated by the experimental results (section 3.6), is that the
proposed joint influence model is fairly general and is widely applicable on various interesting
prediction tasks and search intent related applications (e.g., query suggestion, query auto-
completion) and obtains superior results in comparison to multiple baseline methods. The
core contributions of this chapter are listed below:

1. I introduce the novel problem of modeling the (temporal) dependency across multiple
events in terms of the influences posed by them on user search behavior. To the best of our
knowledge, this problem has not been studied before.

2. I propose a Joint Influence Model based on Multivariate Hawkes Process which captures
the joint-influence posed by multiple events on user search behavior as well as models how
this joint influence evolves over time.

3. I present efficient numerical techniques to compute the likelihood of any query log data
w.r.t. the proposed Joint Influence Model ; which provides us with a way to estimate the
optimal parameters of the model by maximizing the likelihood.

4. I evaluate the proposed Joint Influence Model using two months query-log data from
https://search.yahoo.com/. Experimental results show that the model can indeed capture
the temporal dynamics of the joint influences over time and can be applied to solve various
interesting prediction problems as well as real-word application scenarios, e.g., query auto-
completion.

3.2 RELATED WORK

Search query logs have been extensively studied to understand user search behavior and
provide better search experience [7, 8, 9]. Existing work mostly focused on the inference of
users’ search intent based on their own search habit and search history. On the other hand,
our chapter tries to model how user behavior on a search engine is influenced by external
factors such as trending events.
Temporal Information Retrieval [21, 22, 23, 24] and Event Detection [20, 52, 53, 54, 55]

are two areas closely related to our work. While Event Detection has been studied vastly
in the literature (see [20] for a recent survey), research interest on Temporal Information
Retrieval has grown recently [21]. However, I emphasize that, neither of these is the intended
goal of this study and our primary motivation is somewhat orthogonal, i.e., given that some
(possibly multiple) events have already been reported, I go one step further to investigate

37

how these events may jointly impact/influence the search behavior of the users. To be more
specific, our work does not intend to study how time-sensitive information needs can be
addressed [22, 23] or how users’ information need change over time [24] or how to detect
some events from social networks/news media [20]. Rather,
The notion of event-based retrieval was introduced by Strötgen and Gertz [25] by return-

ing events instead of documents. Zhang et al. [26] addressed the detection of recurrent event
queries. Ghoreishi and Sun [27] introduced a binary classifier for detecting queries related
to popular events. Kanhabua [28] extended the work [27] by enabling the classifier to detect
less popular queries beside popular ones. However, all these approaches are supervised clas-
sification methods and largely depend on the quality of training labels provided by humans,
whereas our approach is unsupervised.
Kairam et. al. [29] investigated the online information dynamics surrounding trending

events, by performing joint analysis of large-scale search and social media activity. Matsub-
ara et. al. [30] presented a new model for mining large scale co-evolving online activities.
Pekhimenko et al. [31] designed a system named “PocketTrend" that automatically detects
trending topics in real time, identified the search content associated to the topics, and then
intelligently pushed this content to users’ local machine in a timely manner. However, none
of these studies provide answer to the question: how to model the evolution of joint influence
posed by multiple events on user search behavior, which is one of the primary motivations
of our work. The closest match to this chapter is the work by Karmaker et.al. [50] where
they first introduce the problem of modeling the influence of popular trending events on user
search behavior. However, as mentioned in section 3.1, their problem definition was based
on the unrealistic assumption that only one event can influence the triggering of a particular
query and the influences posed by multiple events are independent of each other. In this
chapter, our primary focus is to relax these assumptions and propose a more realistic model
to capture the joint influence of multiple events.
Another important topic related to this chapter is point process, which has been used to

model social networks [32] and natural events [33]. People find self-exciting point processes
naturally suitable to model continuous-time events where the occurrence of one event can
affect the likelihood of subsequent events in the future. One important self-exciting process
is Hawkes process, which was first used to analyze earthquakes [33], and then widely applied
to many different areas, such as market modeling [34], crime modeling [35], conflict [36], viral
videos on the Web [37] etc. In this work, I propose a novel Joint Influence Model based on
multivariate Hawkes process [51] that can capture the dynamics of simultaneous influence
by multiple events on user search behavior.

38

3.3 PROBLEM FORMULATION

Let, E = {e1, e2, ..., ek} be the set of all events for which we want to analyze their influence
on the user search behavior, where k is the total number of events under consideration and
each event ej is represented in terms of natural text (for details on the representation of an
event, refer to the work by Karmaker et.al. [50]). Also assume that, each ej is associated with
a set of queries that were generated from influence (“to some extent”) by the same event. Let
this set be denoted by Qj = {qj1, qj2,}. Each qji consists of a tuple <wji, tji, xji>, where,
wji is the query-text, tji is the timestamp of receiving the query and xji is a textual-similarity
score between event-text ej and query-text wji. The higher the similarity between ej and
wji, the higher the xji score is. For details on how we can get the query set Qj associated
with each event ej and how to compute xji for an event-query pair, please see [50]. I omit
the details here due to lack of space.
Given the input data mentioned above, our goal is to model the temporal dynamics of the

joint influence posed by different events in E on user search behavior. Specifically, I seek
answers to the following questions which were never investigated before: 1) Is there a way
to computationally model the dependency among different events in terms of the influences
posed by them on user search behavior? 2) How these (correlated) influences of multiple
events jointly evolve over time? 3) Given that we have seen a query which is triggered by
some event ej, how does that change the future influence of some event other than ej? 4)
Can we use the correlation among multiple events to distinguish between Direct Influence
and Indirect Influence (defined in Section 3.1)? I also ask the same questions raised by
Karmaker et.al. [50], e.g., 5) How the textual similarity between an influential event and
an influenced query affects the influence trend of that event? 6) How long the influence of
different events last? To provide answers to these questions, I formally introduce a novel
Joint Influence Model based on Multivariate Hawkes Process, in the following section.

3.4 JOINT INFLUENCE MODEL

I model the joint influence of multiple events on user search behavior through a generative
multivariate point process where each point corresponds to the submission of a new query
influenced by some event ej ∈ E. To be more specific, I propose a new generative model
based on Multivariate Hawkes Process (a specific mutually exciting point process) to describe
the generation of the influenced queries. This way of modeling query generation is beneficial
because this would also allow us to quantify the influence of different events on this generation
process at any instant of time. Multivariate Hawkes process is naturally suitable to our

39

problem scenario because it can model the frequencies of occurrences of multiple events in
the continuous time domain. For a detailed background on Multivariate Hawkes Process
and for further justification on why it is helpful, please refer to [51].
Let, Q = Q1 ∪ Q2 ∪ ∪ Qk, be the set of all query submissions which were influenced

by some event ej ∈ E. Additionally, let Qj be the set of all queries that were triggered by
the direct influence of event ej. One naive way to collect Qj corresponding to event ej is
to retrieve queries from the search log that are textually similar to event-text. For further
details on how to retrieve a good quality Qj for event ej, please refer to [50]. For modeling
the joint influence, I consider the union set, i.e., Q, where each query qi ∈ Q corresponds
to one point in the multivariate point process and is represented by the tuple <ti,di,xi>.
Here, ti is the timestamp of receiving the the query and thus, always ti > 0; di is the event
which influenced the generation of qi and thus, di can be any event ej, i.e., di ∈ E; xi is the
textual-similarity score between event-text, text(di) and query-text, text(qi).
Given this setup, the core technical challenge in designing the Joint Influence Model boils

down to the problem of how we can formally define the multi-event influenced query gener-
ation process; in other words, how to fully characterize the multivariate point process? This
is not trivial due to the abstractness in the concept of influence. I address this challenge by
introducing the notion of Influence Function, which I will discuss in detail in the following
section1:

3.4.1 The Influence Function

I characterize the multivariate point process by defining a set of continuous functions λj
for j = {1, 2,, k}, I call them Influence Functions, which represent the influence of each
event ej ∈ E on the generation of the queries in Q at any instant of time. Designing a suit-
able λ function is the main challenge towards building a reasonable Joint Influence Model.
However, defining influence is more of a philosophical question rather than a mathematical
one. With this constraint in mind, I adopt to define influence through different components
that the final influence function should accommodate and eventually, combine all these com-
ponents into a single influence function. I first start with various components of the influence
function λj.

Base Influence: I assume that there is always a non-negative influence posed by each
event ej ∈ E on the generation of the queries in Qj. Thus, each event ej is associated with

1All the codes and evaluation scripts for experimentation can be found at the following link:
(https://bitbucket.org/karmake2/influencemodeling/src/master/)

40

a constant ηj which governs the rate at which we expect to observe new queries influenced
by event ej. This gives our first set of parameters for the influence function, i.e., ηj ≥ 0

for j = {1, 2,, k}. In contrast, the independent influence model proposed by Karmaker
et.al. [50] (let’s call it IIM), has only one parameter η for all events.

Decay Functions: The decay functions characterize how the influence of each event dimin-
ishes over time. Thus, each event ej is associated with a decay function wj which decides
how fast the influence of the same event decays with time. Without loss of generality, I use
Exponential Decay functions for our Joint Influence Model. While other forms of the decay
function are certainly possible, the investigation of the choosing the right decay function is
orthogonal to the goal of this research. Mathematically, Exponential Decay Functions are
represented as the following:

wj(t) = αj exp(−αjt)

The corresponding cumulative decay function is the following (we will need this later):

w̄j(t) = 1− exp(−αjt)

In contrast, IIM [50] has one decay parameter w for all events.

Impact Functions: Whenever the search engine receives a query triggered by some event
ej, I assume that this newly received query increases the influence of all events (not only ej),
which in turn, increases the probability of receiving further queries influenced by different
events. The more we receive new (influenced) queries, the higher the influence of different
events become; yielding a higher probability of receiving more influenced queries in the
future. Thus, the influence of different events as well as frequency of influenced queries we
receive mutually grow together, which is similar to the idea of mutually exciting multivariate
point processes [42]. Note that, for some event (mostly uncorrelated events), the increment
of its influence can be zero which is also expected.
Given that we have received a new query qi (<ti,di,xi>) triggered by event di, the amount

by which the influences of different events increase depends on the textual-similarity score,
i.e. xi, between the event-text and the query-text. This is intuitive because, highly relevant
queries are expected to have more impact on the change of influence than less relevant queries.
To capture this, I introduce a set of Impact Functions which govern how the influence of all
events change depending on the textual-similarity score between the newly received query
and its triggering event. Let us denote these Impact Functions by the notation gdi(xi). The

41

interpretation of gdi(xi) is as follows: assuming that the newly received query qi was triggered
by event di and the textual similarity between text(di) and text(qi) is xi, the influences of
all the events are then increased in proportion to gdi(xi).
Note that, reception of query qi increases the influences of all events by the same amount,

i.e., by gdi(xi): which is not desirable. To address this issue, I have a whole new set of
parameters, namely “Mutual-Influence Co-efficients" which I will discuss shortly after this.
However, the purpose of “Impact Functions” is solely to define how the influence of an event
changes based on the textual-similarity score between the newly received query qi and its
triggering event di.
Impact functions take the textual similarity score xi as an input parameter. The exact

form of Impact Function we choose would thus depend on the distribution of xi, let us call
it Intent-Match Distribution. Below I discuss the Intent-Match Distribution briefly, choose
a reasonable function for it and then choose the corresponding suitable Impact Function
.
Intent-Match Distribution: Intent-Match Distribution is essentially the distribution of
the textual-similarity score between the triggering event and the influenced query. For
textual-similarity score, I choose the following modified version of the BM25 introduced in
the work [50] (The details of this function and rationale behind choosing it can be found
in the paper [50]). Let, WE =< WE1 ,WE2 , ...,WEn > be the “event-text” and Wq =<

Wq1 ,Wq2 , ...,Wqn > be the “query-text”. Then,

xi(WE,Wq) =

|WE |∑
i=1

ω(WEi
).IDF (WEi

).TF (WEi
,Wq).(k1 + 1)

TF (WEi
,Wq) + k1.(1− b+ b. |Wq |

avgql
)

subject to
|WE |∑
i=1

ω(WEi
) = 1 (3.1)

Note that, the textual-similarity score xi is independent of the past history of received
queries and solely depends on the similarity between the “event-text" and the “query-text".
Further, xi ≥ 0.
To specify the Intent-Match Distribution, I hypothesize that a power law probability dis-

tribution is the most suitable for our case because of the following reasoning: among the set
of all queries that are influenced by some event ej, very few queries would exactly match
with the details in the event-text, while a lot of queries intent would match the details only
partially or marginally (these are general exploratory queries). The higher the intent-match,
the rarer the frequency becomes; in fact, the frequency decreases exponentially with the in-

42

crease in textual-similarity. Our empirical evaluation also supports this hypothesis (details
in section 3.6.1).
Based on the argument presented above and without loss of generality, I select “Pareto

distribution" as our Intent-Match Distribution, which is a popular power law probability
distribution. “Pareto distribution" is defined on the half line [0,∞) and has two parameters
µ > 0 and ρ > 0. Each event ej is associated with a Intent-Match Distribution fj (“Pareto
distribution” in this case).

fj(x) =
ρjµ

ρj
j

(x+ µj)ρj+1
(3.2)

Under the restriction that ρj > 2, a suitable impact function is the following with param-
eters ρj ≥ 0, µj ≥ 0, φj ≥ 0, ψj ≥ 0 (Please see [51] for details and rationale) :

gj(x) =
(ρj − 1)(ρj − 2)

φj(ρj − 1)(ρj − 2) + ψjµj(ρj − 2)
(φj + ψjx) (3.3)

Thus, each event ej is associated with a Intent-Match Distribution fj as well as an impact
function gj. In contrast, the IIM [50] has only one impact function g(x) for all events, which
was defined as g(x) = x; whereas, gdi(xi) is a generalization of that with more flexibility to
capture the impact.

Mutual-Influence Co-efficients: While the impact function captures the relationship
between the textual-similarity of an “influenced query-triggering event pair” and the corre-
sponding change in the influence of an event, it fails to distinguish the different impacts the
same query might pose for different events. For example, the submission of query “Trump
Indiana Results” should directly indicate an increasing influence of the event “Donald Trump
wins Indiana primaries” (This is the Direct Influence); however, the same query might have
little/no indication about the increasing influence of the event “Messi scores a hat-trick
against real Madrid” (lets call it No Influence). At the same time, query “Trump Indiana
Results” might have an indirect indication about the increasing influence of the correlated
event “Hillary Clinton results for Iowa Primaries” (This is the Indirect Influence). Modeling
these inter-dependencies among multiple events in terms of the influence posed by them is
one of the central key questions I investigate in this chapter. Our proposed Joint Influ-
ence Model addresses this question by introducing a new set of Co-efficients, I call them
Mutual-Influence Co-efficients, which is a unique component of our proposed model.
To capture the three types of influences, i.e., Direct Influence, Indirect Influence, No

Influence as mentioned above; I introduce a k × k matrix of coefficients which I call the

43

Mutual-Influence Co-efficients.

MIC =

ν11 ν12 ν13 . . . ν1k

ν21 ν22 ν23 . . . ν2k

.

νk1 νk2 νk3 . . . νkk

The diagonal elements of the matrix represent Direct Influence, while non-diagonal ele-

ments represent Indirect Influence. I also impose the constraint, νji ≥ 0 for i, j = {1,, k}.
A zero value for any element in the MIC matrix represents No Influence, while higher
non-zero values indicate Significant Influence. Thus, the MIC matrix contains valuable
information about the inter-dependencies among multiple external events in terms of their
influence on user search behavior.

Influence Function and Query Generation Process: So far, I have discussed all the
components we needed to define our influence function. Below I present the actual definition
of the influence function by combining all these components:

λj(t) = ηj +
k∑
j=1

νji

∫
(−∞,t)×R

wj(t− s)gj(x)ej(ds× dx) (3.4)

Now, I define the mutually-exciting query generation process:

Definition 3.1 (Mutually-Exciting Query Generation Process). Let us assume that, we
observe queries in the form of triples <ti,di,xi> for 1 ≤ i ≤ n, where ti ∈ [T∗, T

∗] and
ti > ti−1, di ∈ {1, 2,, k} and xi ∈ R+. For the i-th query, it occurs at timestamp ti,
the triggering event is di and the corresponding textual-similarity is xi. At any instant of
time t, each event ej for j = {1, 2,, k} has an influence λj defined by equation 3.4. This
constitutes our Generative Multivariate Hawkes Process.

For a Multivariate Hawkes Process to be well defined, we need the following two conditions
to be satisfied:

1. The maximum of the Eigen Values of theMIC matrix is defined as the spectral radius
of MIC, i.e,
Spr(MIC) = max(eigenV alues(MIC)). Multivariate Hawkes Process requires the
following condition to satisfy:

Spr(MIC) < 1

44

2. The decay functions must satisfy the following constraints:∫ ∞
0

twj(t)dt <∞

Finally, for computational feasibility, I present the numerical version of the continuous
influence function in equation 3.4 below. Let us assume that we have observed queries at
points {ti}, for 1 ≤ i ≤ n. Then, for any timestamp ti, the influence of event j, λj(ti) is
defined as:

λ̂j(ti) = ηj +
i−1∑
m=1

νj,dmw(ti − tm)gdm(xm) (3.5)

3.4.2 Estimation of the Optimal Parameters

This section presents the estimation techniques for the optimal parameter values of the in-
fluence function. For this purpose, I define the likelihood function for any observed sequence
of queries with respect to the proposed mutually exciting multivariate point process. I find
the optimal parameters by maximizing the likelihood of the observed query data. Specifi-
cally, the log-likelihood function corresponding to the Mutually-Exciting Query Generation
Process (see Definition 3.1) looks like the following:

logL =
d∑
j=1

∫
[T∗,T ∗]×R

log λj(t)ej(dt× dx) +
k∑
j=1

∫
[T∗,T ∗]×R

log fj(x)ej(dt× dx)−
k∑
j=1

Λj(T
∗)

(3.6)

Here, T ∗ is the upper bound of the observation period and Λ̂j(T
∗) is called the compensator

function and is defined as follows:

Λj(t) = ηj(t− T∗) +
k∑

m=1

νjm

∫
(−∞,t)×R

[ŵj(t− u)− ŵj(T∗ − u)]gm(x)em(du× dx) (3.7)

Numerical Computation: For computational feasibility, I now present the way to numer-
ically compute the log-likelihood function defined in Eqn (3.6). Specifically, the numerical
version of the log-likelihood function takes the following form:

45

log L̂ =
n∑
i=1

log λ̂di(ti) +
n∑
i=1

log fdi(xi)−
k∑
j=1

Λ̂j(T
∗) (3.8)

While computation of fdi(xi) is straight-forward from equation 3.2, computation of λ̂di(ti)
and Λ̂j(T

∗) are more involved. Below I present the exact formulas to compute λ̂j(ti) and
Λ̂j(T

∗) omitting the derivation details due to lack of space. I assume exponential decay
function, i.e., wj = αj exp(−αjt), for the exact computational formula, while other forms of
decay functions are certainly possible.

λ̂j(ti) = ηj + [λj(ti−1)−ηj] exp[−αj(ti− ti−1)] +νj,di−1
gdi−1

(xi−1)αj exp[−αj(ti− ti−1)] (3.9)

Λ̂j(T
∗) = ηj(T

∗ − T∗) +
n∑
i=1

νj,diw̄j(t
∗ − ti)gdi(xi) (3.10)

By plugging in equation 3.2, 3.9 and 3.10, we obtain the complete numerical version of
the log-likelihood function as follows:

log L̂=
n∑
i=1

log
{
ηj+[λj(ti−1−ηj)] exp[−αj(ti−ti−1)]+νj,di−1

gdi−1
(xi−1)αj exp[−αj(ti−ti−1)]

}
+

n∑
i=1

log

(
ρdiµ

ρdi
di

(x+ µdi)
ρdi+1

)
−

k∑
j=1

{
ηj(T

∗ − T∗) +
n∑
i=1

νj,diw̄j(t
∗ − ti)gdi(xi)

}
(3.11)

Here, gdi(xi) is defined by as:

gdi(x) =
(ρdi − 1)(ρdi − 2)

φj(ρdi − 1)(ρdi − 2) + ψdiµdi(ρdi − 2)
(φdi + ψdix)

Given the log-likelihood function in equation 3.11, the set of parameters associated with
it is the following:

Θ = {ηj, αj, νji, ρj, µj, φj, ψj} , where (1 ≤ i, j ≤ k) (3.12)

Incorporating L2 regularization, the optimization problem to find the optimal parameter
set Θ∗ is written as follows:

46

Θ∗ = arg max
Θ

(
log L̂(Θ)− ||Θ||

)
(3.13)

Here, ||Θ|| is the L-2 norm of the parameter vector Θ. One can use any non-linear
optimization method to solve this maximization problem. Nelder-Mead Simplex Method [44]
is one such popular optimization technique. Another useful approach is the Sequential Least
SQuares Programming (SLSQP) [45].

3.5 EXPERIMENTAL DESIGN

3.5.1 Data-set

Due to the absence of any readily available joint event-query dataset, I decided to cre-
ate one from two sets of available data-sets: one for popular events and one for user query
history. I call these two data sets Event dataset and Query-Log dataset respectively. The
following two paragraphs provide details about these two data-sets.

Event data-set: An obvious choice for a text data set describing events is news articles
(though other data such as social media might also be applicable). The NYTimes Devel-
opers Network (thanks to them) provides a very useful api called “The Most Popular API"
[46], which automatically provides the url’s of the most e-mailed, most shared and most
viewed articles from NYTimes.com during the last month from the date of the issue of the
query. I chose to use this API because of two major benefits: 1) it automatically removes
duplicate articles, thus we don’t need to deal with cases where multiple articles are related
to the same event. 2) it only provides the most popular articles from NYTimes, thus the
quality/accuracy of the events represented by these articles is very high. Using this API,
I collected the most e-mailed, most shared and most viewed articles for the month: April,
2016. Each article consists of a tuple <title-text, body-text, timestamp>. Among different
categories of news, I used four categories for our experiments: US (National Affairs), Movies,
Sports and World (International Affairs).

Query-Log data-set: To analyze the user queries contemporary to the articles in Event
data-set, I use the two-months (April and May, 2016) user query log data from the widely
used search engine at https://search.yahoo.com/. Each query submission q is represented
as a tuple <query-text, timestamp>. The two-months query log data contains 105, 925, 732

query submissions in total.

47

Section Total Avg. Avg. Total Avg.
of Title Body # of Textual
events Length Length queries Sim.

Movies 25 18.88 458.08 193,282 2.49
Sports 15 19.53 508.4 616,449 2.48
US 18 20.38 487.77 204,926 1.99

World 11 18.18 438.81 22,197 1.96

Table 3.1: Description of Event-Query Joint Dataset

Query-Event Joint data-set: To create the Query-Event Joint data-set, for each article
ej in the Event data-set, I retrieved top relevant queries that have at least a similarity score
of 1.25 (with respect to ej) according the textual similarity function in equation 3.1 and
discarded the rest. This filtering step is reasonable because if the textual similarity is very
low (less than 1.25), I assume that there is no influence of ej on the query. This process
provides us with a set of influenced queries triggered by each event from the Event data-set.
The summary of this data-set is presented in Table 3.1.

3.5.2 Qualitative Evaluation of the Model

It is not possible to do a direct quantitative evaluation of the influence model due to
the lack of ground truth information. Thus, to evaluate the quality of the proposed Joint
Influence Model, I do a formal investigation of the optimal parameters learnt through the
optimization process as described in section 3.4.2. Below, I present the specific research
questions I ask to evaluate the model quality and provide the roadmap of how we can an-
swer each question.

Research Questions:

1. Is the “Query Generation Process” well-defined ?
The “Query Generation Process” is well defined only if the Spectral Radius of the Mutual-
Influence Coefficient Matrix is less than 1, i.e, Spr(MIC) < 1. [see section 3.4.1 for more
details]

2. How to compare influences posed by different events?
We can answer this question by computing average influence posed by each event and then
compare them. The average influence vector where each element is the average influence

48

of the corresponding event can be obtained using the following formula: (1k −MIC)−1η,
where, 1k is a k × k identity matrix.

3. How to compare Direct Vs Indirect influence ?
The diagonal elements of matrix MIC represent the Direct Influence, whereas, the non-
diagonal elements present Indirect Influence. We can do direct numeric comparison here.

4. How to measure the influence longevity of an event?
The α parameter defines how fast the influence of any event decays over time. Higher
values of α denotes a faster decay.

5. Is “Pareto Dist." suitable for “Intent Match Dist."?
To answer this question, I look at the empirical distribution of “Intent Match" score between
event-text and query text and verify whether “Pareto Distribution" is a good match for it.

6. How well the Model fit the original data?
This question can be answered by jointly plotting the simulated influence of an event and
the actual frequency of queries generated by that event over the same period of time and
see if the trend of the simulated influence is similar to the trend of the actual frequency of
generated queries.

3.5.3 Applications and Quantitative Evaluation

In this section, I demonstrate the wide applicability of the proposed “Joint Influence
Model” by demonstrating how the model could be used to solve various interesting predic-
tion problems as well as real-world problems associated with search engine systems. Another
benefit of these experiments is to conduct indirect quantitative evaluation of the Joint In-
fluence Model as direct evaluation is impossible due to the lack of ground truth data for
influence which is an abstract concept. The primary purpose of these experiments is to see
if modeling the influence inter-dependencies among multiple events actually help us achieve
better performance in real life application scenarios. To achieve these goals, I present a set
of prediction tasks / application scenarios and provide a roadmap on how we can adopt the
“Joint Influence Model’ to solve these tasks.

Application Tasks:

1. Predict the most influential event in the future:
I assume the influence of an event in the current hour is proportional to the frequency of

49

queries generated by it in the next hour. Thus, the event with the highest influence score
in the current hour is predicted to be the event that generates highest number queries in
the next hour. I then compare this predicted most influential event with the actual most
influential event (computed from the original query log) and based on that, we can report
the accuracy of the prediction for a separate held-out testing set.

2. Rank multiple events based on their future influences:
This prediction problem is similar to previous prediction problem, except that, now we
want to predict the ranking of events in terms of their future influence instead of just pre-
dicting the future top influential event. Again, I use the current hour influence scores to
predict the next hour’s generated query frequencies and rank the events accordingly. To
evaluate the quality of the ranking, I compare the predicted ranking against the actual
ranking obtained from the query log and compute two different popular ranking evaluation
metrics: i.e, NDCG [56] and Rank Biased Overlap (RBO) [57].

3. Predict the most frequent query in the future:
This prediction problem is the same as the prediction problem in (1) except that now we
want to predict the most frequent query in the future instead of the most influential event.
For this prediction task, I use a slightly modified version of the original “Joint Influence
Model” where apart from computing the evolving influence at the event level, I also com-
pute the evolving influence at the query level. The basic idea is to break each event-level
influence into smaller units where each unit would correspond to the query level. I omit
the full details of process due to lack of space.

4. Rank queries based on their future frequencies:
This prediction problem is similar to the prediction problem in (2) except that now we
want to rank queries instead of events. Again I report NDCG [56] and Rank Biased Over-
lap(RBO) [57] to evaluate the quality of the predicted ranking.

5. Solve a real world application problem, e.g., query auto completion task:
Finally, I select Query Auto Completion as a goal task and use our proposed “Joint Influence
Model” to solve it. Specifically, for a new query from the testing set, I look at the first word
and try to predict the exact query based on the latest available influence scores of all the
queries starting with the first word. Based on these influence scores, I rank the potential

50

Acronym Method
NF Naive Frequency
AR Auto Regression [59]
ARD Auto Regression with difference [59]
VAR Vector Auto Regression [60]
IIM Independent Influence Model [50]
JIM Joint Influence Model

JIM-G Joint Influence Model-Generalized

Table 3.2: Methods Compared for Quantitative Evaluation

queries and then, compute the reciprocal rank of the actual query in the predicted ranked
list. I repeat the whole process for all the queries in a separate held-out testing set and
report the mean reciprocal rank (MRR) [58], which is the most popular evaluation metric
used in measuring the performance of query auto completion tasks.

Baseline Methods: For all the quantitative evaluation tasks, I compare the proposed Joint
Influence Model against the obvious baseline method, i.e., Independent Influence Model (I
call it “IIM") introduced in [50]. If the Joint Influence Model(JIM) performs better than
IIM, we can conclude that capturing inter-dependencies is indeed useful and can help us
achieve superior performance in real life applications. Additionally, as all these quantitative
evaluation tasks are some kind of forecasting problems, I also use some popular time series
prediction methods as the baselines including Autoregressive Models (AR), Vector Auto
Regression (VAR) etc. Note that, our primary focus is not the quantitative evaluation,
rather demonstrating the usefulness of capturing influence inter-dependencies among differ-
ent events. Thus, experimenting with many different forecasting methods is an orthogonal
direction with respect to our focus which I do not explore in this work. I also include the
simplest baseline method Naive Frequency (NF), where the current hour’s frequency is used
to predict the next hour’s frequency. Table 3.2 lists down all the methods I experimented
and also provides with an acronym for each method for notational convenience. JIM is the
“Joint Influence Model" proposed in this chapter, whereas, “JIM-G" is a minor variation of
“JIM" with the constraint that events share the same α, i.e., the decay parameter.

51

parameter η α ρ µ φ ψ
Movies 0.1961 0.8697 4.9706 3.0197 0.4542 0.1644
Sports 0.317 1.1999 6.2745 4.2272 1.1608 0.5304
US 0.2328 1.0999 6.3056 1.777 0.6962 0.508

World 0.074 0.677 3.9747 1.5226 0.2465 0.1685

Table 3.3: Parameters learnt for different categories of events

Movies (0.9319) Sports (0.9649) US (0.9192) World (0.9213)

Table 3.4: Spectral Radius of MIC Mat. for different categories

3.6 RESULTS

3.6.1 Qualitative Evaluation of the Model

First, I do a qualitative investigation of the optimal parameters learnt through the opti-
mization process as described in section 3.4.2. Table 3.3 presents these learnt parameters.
While the individual numbers in Table 3.3 are not very meaningful, the comparison across
different categories of events is quite interesting. For example, η for “Sports" category
(0.3170) is generally much higher than that for “World" category (0.0740), suggesting that
the general interest in “Sports" events is much higher than “World" events among the com-
mon mass. Another interesting parameter is α, which indicates the longevity of influence for
different categories of events. According to Table 3.3, “World" events (α = 0.6770) usually
have a longer lasting influence compared to “Sports" events (α = 1.1999). Next, I move onto
providing answers to the specific research questions asked in section 3.5.2, sequentially one
at a time.

Is the “Query Generation Process” well defined?
Table 3.4 shows the spectral radius of Mutual-Influence Co-efficient Matrix obtained for
different categories of events. It is evident that, all the numbers are less than 1. Thus, I
conclude that, the “Query generation process” is indeed well defined.

How to compare influences posed by different events?
Table 3.5 reports the top 2 influential events from each category along with their average
influence score computed by the formula presented in section 3.5.2. For example, the movie

52

Sections
Events Movies Sports

1 Movie: “Captain America: Civil
War” (11.5514)

Horse-Racing: Kentucky Derby
(13.5346)

2 Movie: “X-men: Apocalypse”
(2.0532)

Basketball: Stephen Curry
(6.6432)

Sections
US World

1 Donald trump Vs Hillary Clinton
(14.0117)

Panama Papers Released (0.8179)

2 Las Vegas Squatters Housing Col-
lapse (9.6340)

Philippine Presidential Race (
0.5821)

Table 3.5: Top two most influential events from four different Categories

Influence Movies Sports US World
Direct 0.5285 0.6495 0.6342 0.5798
Indirect 0.0255 0.0165 0.0201 0.0166

Table 3.6: Direct Influence Vs Indirect Influence

“Captain America: Civil War" was found to be the most influential event in the “Movies"
Category with an average influence score of 11.5514, while “Donald trump Vs Hillary Clin-
ton" was found to be the most influential event (average score 14.0117) in the “US" category.
Manual inspection reveals that all these reported influential events are indeed popular events
which match with our intuition.

How to compare Direct Vs Indirect influence ?
Table 3.6 reports the average of the diagonal elements (Direct Influence) as well as the non-
diagonal elements (Indirect Influence) of the MIC matrix for each category of events. It is
evident that the influence posed by the triggering event, i.e., Direct Influence is significantly
larger than that of a non-triggering event, i.e., Indirect Influence which also concur with our
expectation. For example, Direct Influence (0.6342) of events in the “US" category is much
higher than the Indirect Influence (0.0201) in the same category. In fact, this observation
holds for any category.

How to measure the influence longevity of an event?

53

Direct inspection of α values from Table 3.3 can provide answer to this question. For exam-
ple, Table 3.3 suggests that “Sports" events generally have short term influence (α = 1.1999

), while “World" events have comparatively long lasting influence (α = 0.6770).

Is “Pareto Dist." suitable for “Intent Match Dist."?
To answer this question, I show the plot for the empirical distribution of “Intent Match"
score between event-text and query-text for the events of “Sports" category in Figure 3.2.
This figure demonstrates that as the “Intent Match" score goes high, the number of queries
with corresponding score becomes exponentially smaller, suggesting that, indeed “Pareto
Distribution" is a reasonable candidate for the “Intent Match Distribution".

Figure 3.2: Intent Match Distribution for category “Sports”

How well the Model fits the original data?
I plot the simulated influence of the event “release of movie Captain America: Civil War"
from the “Movies" category along with the actual frequency of queries generated by that
event during the same span of time (hour 1500 to hour 1700) in Figure 3.3. It is clearly
evident that the simulated influence can indeed capture the trend of the actual frequency
of generated queries and thus, I conclude that the model can indeed capture the influence
trend with a decent accuracy.

54

Figure 3.3: Demonstration of the goodness of fit for the event “release of movie Captain
America: Civil War"

3.6.2 Applications and Quantitative Evaluation

This section presents the quantitative evaluation results for the five different application
tasks presented in section 3.5.3, namely, Predict the most influential event in the future
[Table 3.7], Rank multiple events based on their future influences [Table 3.8], Predict the
most frequent query in the future [Table 3.9], Rank queries based on their future frequen-
cies [Table 3.10], Solve a real world application problem, e.g., query auto completion task
[Table 3.11]. General inspection of Table[3.7-3.11] reveals that, “JIM-G" is found to be the
most robust method for all these different application tasks by obtaining the highest num-
ber for performance metrics most of the time. For example, for the task “Predict the most
influential event in the future" [Table 3.7], “JIM-G" is found to achieve the highest accuracy
for all four categories of events. For the “Query auto completion task", the mean reciprocal
rank for “JIM-G" is found to be the highest for all categories except the category “World",
for which “IIM" obtains a slightly better number.
In case of event level predictions (Table 3.7 and 3.8), JIM turns out to be the second

best performing method. This suggests that the Joint Influence Model indeed captures
useful information which results in its superior performance over other baseline methods.
The superiority of “JIM-G" over “JIM" may be explained by the fact that, while “JIM" has
more parameters for α (i.e., one α for each single event) than “JIM-G" (i.e., single α for all

55

Metric Methods Movies Sports US World
NF 0.6638 0.6647 0.9302 0.5073
AR 0.7256 0.6818 0.8959 0.3934
ARD 0.7445 0.4249 0.9388 0.0609

Accuracy VAR 0.7399 0.4997 0.5105 0.1237
IIM 0.7193 0.6162 0.9376 0.56712

JIM 0.75202 0.69382 0.94912 0.5307
JIM-G 0.75311 0.69671 0.95421 0.59051

Table 3.7: Predicting the most influential event in future

Metric Methods Movies Sports US World
NF 0.9074 0.9105 0.9792 0.7798
AR 0.9370 0.9168 0.9460 0.6951
ARD 0.8604 0.7458 0.9529 0.4358

NDCG VAR 0.8831 0.7914 0.8950 0.5175
IIM 0.9348 0.8975 0.9831 0.83932

JIM 0.94852 0.92782 0.98702 0.8275
JIM-G 0.95081 0.93221 0.98791 0.85171

NF 0.6596 0.6800 0.8573 0.5140
AR 0.7052 0.6821 0.7695 0.3967
ARD 0.5320 0.4122 0.7267 0.0942

RBO VAR 0.5752 0.4808 0.6331 0.1647
IIM 0.6961 0.6479 0.8597 0.59922

JIM 0.71942 0.69802 0.86722 0.5623
JIM-G 0.72521 0.70691 0.87051 0.60871

Table 3.8: Predicting future influences of multiple events (Wilcoxon’s signed rank test at
level 0.05)

events), “JIM" might be suffering from over-fitting the training data while “JIM-G" would
learn a more general model suitable across multiple events. This over-fitting problem seems
more prominent for query level predictions (Table 3.9 and 3.10), especially for category
“World" where the number of queries in the dataset is comparatively very small (Table 3.1).
Here, “JIM" cannot even achieve the second best performance. I believe this is due to the
sparsity of query level data. Interestingly, the simple baseline “NF", achieves quite good
result at the query level prediction problems, while “VAR" suffers severely from overfitting.
However, “JIM-G" still performs the best for most of the cases in query level predictions.
In summary, Table[3.7-3.11] suggest that the Joint Influence Model is quite robust and

useful in many different applications with superior performance over a number of reasonable
baseline methods.

56

Metric Methods Movies Sports US World
NF 0.3281 0.48942 0.57172 0.3879
AR 0.38791 0.4794 0.5400 0.4504
ARD 0.2424 0.1965 0.4410 0.0443

Accuracy VAR 0.0023 0.0007 0.0029 0.0001
IIM 0.3413 0.3660 0.5408 0.47101

JIM 0.3642 0.4688 0.5563 0.3035
JIM-G 0.38202 0.51341 0.58431 0.45442

Table 3.9: Predicting the most frequent query in future

Metric Method Movies Sports US World
NF 0.5914 0.6693 0.8060 0.4465
AR 0.67132 0.74402 0.7789 0.5200
ARD 0.2642 0.2977 0.4717 0.0827

NDCG VAR 0.0087 0.0052 0.0136 0.0015
IIM 0.6355 0.6976 0.81212 0.65551

JIM 0.6484 0.7204 0.8022 0.4809
JIM-G 0.68701 0.76501 0.84301 0.60622

NF 0.4349 0.5707 0.6491 0.3665
AR 0.49472 0.59082 0.6102 0.4130
ARD 0.1803 0.2191 0.3237 0.0538

RBO VAR 0.0042 0.0019 0.0045 0.0001
IIM 0.4562 0.5174 0.65092 0.46761

JIM 0.4782 0.5724 0.6436 0.3048
JIM-G 0.50591 0.61721 0.67641 0.43322

Table 3.10: Predicting future frequencies for multiple queries. (Wilcoxon’s signed rank test
at level 0.05)

Metric Methods Movies Sports US World
NF 0.6427 0.8427 0.8489 0.6899
AR 0.7382 0.9129 0.8339 0.7471
ARD 0.2842 0.4077 0.5238 0.2754

MRR VAR 0.1911 0.1722 0.1186 0.3696
IIM 0.7839 0.9171 0.8896 0.92621

JIM 0.80822 0.95092 0.89032 0.8999
JIM-G 0.82261 0.95561 0.89881 0.91932

Table 3.11: Query Auto-Completion Results: MRR reported. (Wilcoxon’s signed rank test
at level 0.05)

57

3.7 LIMITATIONS AND DISCUSSION

While JIM provides us with a new tool for influence mining, it still has its own limitations.
Below are some limitations of JIM I plan to investigate in the future:

3.7.1 Notion of Influence is still debatable

It is noteworthy that Influence is an abstract concept and it is nearly impossible to settle
for a computation definition of influence. I defined influence in the context of search behavior
modeling where influence is a triggering factor that results in generation of queries from the
user’s end. Thus, events that trigger a lot of queries from users are considered influential.
While this definition is reasonable, many other alternative definitions are also possible. For
example, influence can be defined in terms of number of tweets it triggers or by amount
of revenues generated by advertisements related to the event etc. Although, our findings
in this thesis are restricted to our particular notion of influence, the overall framework
of modeling joint influence is completely general and independent of the design choice of
a particular influence definition. What I presented in the thesis is just one of the many
possible instantiations of the general influence mining problem, however, customization for
another specific scenario can be easily achieved by following the framework.

3.7.2 Ignorance of location bias

Currently, JIM do not consider the query location while inferring influence. Thus, any
regional bias associated with queries posed by users are not captured by JIM. It would be an
interesting future direction to see how such location bias would affect the results obtained
by this study.

3.7.3 Lack of Robustness for Unseen / Sparse Queries

Another fundamental limitation of JIM is that it cannot model query generation for unseen
/ sparse queries. As JIM is highly dependent on exact matching of recent past queries; thus,
any unseen / sparse query, even though it is related to a popular event, cannot be modeled
correctly by JIM because it does not incorporate semantic similarity yet. Thus, incorporating
semantic similarity within JIM can be a very promising future direction.

58

3.7.4 Direct Quantitative Evaluation is not Feasible

Direct Quantitative Evaluation would require golden truth for influence. One way to col-
lect golden truth is to interview real people about influence of different events on them and
then combine survey results to compute the golden labels. However, this process will also
involve various subjective biases including gender, race, nationality etc and thus, it appears
to be very hard to normalize the survey results. Thus, it is still not feasible to do direct
quantitative evaluation of influence. We have to come up with alternative ways to conduct
indirect evaluation. However, different ways of indirect evaluations will have different intrin-
sic biases too associated with them which have not been systematically investigated in this
thesis.

3.7.5 Absolute parameter values are not Interpretable

The multivariate Hawkes process used in JIM consists of multiple parameters which are
estimated by maximizing the likelihood of query log data. However, their optimal values
are not directly interpretable. But, these numbers are directly comparable across different
categories of events. In fact, the comparison across different categories of events is quite
interesting. For example, η for “Sports" category (0.3170) is generally much higher than
that for “World" category (0.0740), suggesting that the general interest in “Sports" events is
much higher than “World" events among the common mass. Another interesting parameter
is α, which indicates the longevity of influence for different categories of events. According
to Table 3.3, “World" events (α = 0.6770) usually have a longer lasting influence compared
to “Sports" events (α = 1.1999).

3.7.6 Evaluation using popular events only

I have conducted our evaluation only on popular events, assuming popular events are the
potential influential events. However, not including unpopular events makes the evaluation
potentially biased. Also, evaluation was done using only Yahoo search query log and NY
times popular articles, which made the results further biased. Thus, the reported results
may be useful as a measure of “relative influence” rather than “absolute influence”, for which,
we do not have ground truth information.

59

3.8 CONCLUSION

The assumption that each popular event poses influence upon user search behavior inde-
pendently is unrealistic as many real world events are closely related to each other. The
primary contribution of this chapter is to relax this unrealistic assumption made in the pre-
vious work by proposing a Joint Influence Model based on multivariate Hawkes Process that
captures the inter-dependency of multiple events in terms of the influence posed by them
upon user search behavior. Experimental results demonstrate that the proposed method
not only effectively captures the temporal dynamics of joint influences by multiple events,
but also when applied to various application tasks, achieves superior performance most of
the time over different baseline methods that do not consider this mutual-influence among
multiple events. This signifies that the mutual influence which exists among multiple corre-
lated events is an important factor which should be considered while designing such influence
models.

60

CHAPTER 4: INFLUENCE MODELS FOR USER GENERATED
CONTENTS

In this chapter, I shift the focus of User Behavior Modeling from Information Thirst to-
wards User Content Generation. In a similar way to Information Thirst, user generated
contents are often significantly influenced by many external factors. One such external fac-
tor is the influence of general interest of the community to which the user belongs to. To
elaborate, users mostly generate contents which are targeted towards a particular commu-
nity of their interest. Thus, the generated contents are often aligned/customized for that
community which takes into account its general interest as well as any change in specific
interests/rules-regulations within the community. To build any intelligent system, It is there-
fore, very important to model the influence of community-behavior on the contents generated
by its users.
While some work has been done on mining such influence from structured information

networks [14, 15, 16, 17], little attention has been paid on how to mine community-influence
from user generated unstructured data. In this chapter, I introduce and study the problem of
modeling community-influence on user generated unstructured contents, particularly in the
context of text content generation. Although text generation has recently became a popular
research topic after the surge of deep learning techniques, existing methods do not consider
community-influence factor into the generation process and thus, the process does not evolve
over time. This clearly limits their application on text stream data as most text stream data
often evolve over time showing distinct patterns corresponding to the shifting interests of the
target community. Thus, it is compelling to propose an Influenced Text Generation (ITG)
Process that can capture this evolution of text generation process corresponding to evolving
community-influence over time. In this chapter, I propose a deep learning architecture based
Influenced Text Generation Process to address this challenge. Experimental results with six
different text stream data comprised of conference paper titles show that the proposed ITG
method is really effective in capturing the influences posed by different research communities
on paper titles generated by the researchers.

4.1 OVERVIEW AND MOTIVATION

A crucial component of any intelligent system is to understand and predict the behavior of
its users. A correct model of the user behavior enables the system to perform effectively to
better serve the users need. User’s behavior is often significantly influenced by the community
to which they belong to. Community-Influence on user behavior is mostly reflected in two

61

different ways: 1) Through significant growth of users’ thirst about information related to
the community and 2) Through the user generated contents that are directly/indirectly
related to the community. While some work have been done on modeling user’s information
thirst that are influenced by their community of interest [50, 61] , little attention has been
paid to how related communities influence their users in terms of generating contents. In
this chapter, I introduce and study the problem of modeling community-influence on user
generated unstructured contents, particularly in the context of text content generation.
Automated text generation has become a popular research topic recently after the upsurge

of deep learning techniques [10, 11, 12, 13]. Recurrent neural networks, specially, Long-
Short-Term-Memory (LSTM) has shown to be promising to solve various text generation
tasks [62]. However, one common limitation with the existing text generation techniques is
that most of them are static generation processes, i.e., they assume that the generated text
data has no notion of time. Existing methods also do not consider community-influence factor
into the generation process and thus, the process does not evolve over time. This clearly
limits their application on text stream data as most text stream data often evolve over time
showing distinct patterns corresponding to the shifting interests of the target community.
For example, think about the titles of research papers published by a popular conference
(e.g. KDD) over many years. The paper titles that appeared in KDD 2001 are significantly
different from the titles that appeared in KDD 2015. This is due to the evolution of research
interests that took place during these years within the research community. The same is
true with user generated contents across different social media, e.g., Twitter, where many
users share and talk about different popular stories related to their community of interest
as time passes by. Existing text generation techniques are unable to take such evolving
community-influence into account and thus, cannot capture these evolution of patterns in
text stream data. This evolving nature of the text stream data thus demands for a more
dynamic text generation process.
In this chapter, I propose a novel Influenced Text Generation (ITG) process built upon

recurrent neural network based deep learning architecture that incorporates community-
influence to model the generation of dynamically evolving text stream data. The difference
between normal text data and text stream data is that every piece of generated text in the
text stream data is associated with a timestamp. Thus, one input to the ITG process is
the timestamp for which we want to generate text. I also assume that the distributions
of words corresponding to text data from two different timestamps are somewhat different
which explain the evolution of topics in the stream data. This assumption is reasonable,
because most text stream data do not evolve dramatically over night, rather their topical shift
happens quite gradually. Think about some particular research community like SIGKDD.

62

The topic distribution in papers published in a particular year is not dramatically different
from previous two years, rather they are somewhat correlated.
Modeling the generation of text stream data is a hard problem due to the following three

challenges that need to be addressed simultaneously: 1) The model should learn to gener-
ate syntactically correctly sentences, 2) The model should generate semantically coherent
sentences and 3) More importantly, the model should generate sentences which are time-
sensitive and aligned with the evolution of the text stream and reflect the dynamics of
community-influence on the generated text data. To demonstrate the three challenges more
clearly, let us think about the task of generating a KDD-2016 like paper title. First, the sen-
tence must be syntactically correct: “Privacy preserving Class Ratio Estimation" is a good
example of syntactically correct sentence, while “Preserving Ratio Class Estimation Privacy"
is not. Second, the sentence should be semantically coherent: “Hidden Markov Models for
sequence Modeling" is a good example of semantically coherent sentence, however, “Hidden
Markov Models for Polygon cutting" may not be so semantically coherent because Polygon
cutting is neither related to Hidden Markov Models nor Data mining in general. Finally,
the model needs to generate sentences relevant to the input timestamp: for example, while
“Solving regression problems with rule-based ensemble classifiers" is both syntactically cor-
rect and semantically coherent, regression problems and rule-based classifiers are somewhat
old research topics mostly popular during the 90’s. A more relevant title to KDD-2016 would
be “Deep Visual-Semantic Hashing for Cross-Modal Retrieval" as deep learning gained much
popularity among the mining community recently.
To address the three challenges mentioned above, our proposed ITG process is comprised

of three basic components that interact with each other to model the generation of text
stream data. The first component is the Sequence Generator which ensures that ITG gen-
erates syntactically correct sentences. The second component is the Topic Generator which
captures the trends of different topics of interest within the community. Finally, the third
component is the Influence Generator which ensures that ITG can compute the community-
influence corresponding to the input timestamp and incorporate it into the generation process
to ensure that the generated text is consistent with that particular timestamp. ITG process
combines these three essential components into a single unified model and learns all their
optimal parameter values by mining a training corpus of the target text stream data.
From the perspective of text generation, the proposed ITG method has three major ad-

vantages over the existing static text generation methods available in the literature. They
are briefly mentioned below:

• Time sensitive Text Generation: ITG understands the notion of time and can

63

generate text which is relevant to a particular timestamp.

• Capturing Community-Influence: ITG can capture the evolution of interests hap-
pening inside the target community and adapt the text generation process accordingly.

• Chronological Summary Generation of Past Text Stream: ITG provides us with
a way to generate a chronological summary of the past text stream, i.e., it can summarize
how sentences from a particular text stream evolved over time in the past.

I conducted comprehensive experiments with six different sets of publication stream datasets
to demonstrate the power of ITG. These datasets contain titles of the papers published in
different machine learning theory and applied machine learning conferences over 20 years,
which were collected from the Open Academic Graph. For quantitative evaluation, I com-
pared ITG against multiple baseline methods for Chronological Summary Generation task.
Experimental results show that ITG achieves superior performance over the other baseline
methods by a clear margin in almost all cases. This confirms that ITG process is fairly
general and can effectively capture the evolution of community-influence while generating
text. I also found that incorporating influences from external correlated communities can
further enhance ITG’s performance. In summary, I make the following contributions in this
chapter:

1. I study the problem of modeling community-influence on user generated text contents.
To the best of our knowledge, this problem has not been studied before.

2. I propose a Influenced Text Generation (ITG) process built upon recurrent neural net-
work based architecture which can capture evolving community-influence to explain the
generation of text stream data.

3. I demonstrate how ITG can be applied to an interesting text mining application, i.e.,
Chronological Summary Generation of Past Text Stream. Through comprehensive exper-
iments with six different text stream datasets, I show that ITG achieves superior perfor-
mance over multiple baseline methods for this task. I also show that incorporating influences
from external correlated communities can further enhance the performance of ITG.

4.2 ITG - INFLUENCED TEXT GENERATION

In this section, I present the details about how Influenced Text Generation (ITG) Process
models the generation of text stream data. I assume that each piece of generated text

64

in the stream is associated with a discrete timestamp, where, the definition of timestamp
varies across different types of data. For example, for conference paper titles, a reasonable
discrete timestamp is the year in which the paper is published, whereas, for a news headline,
a more reasonable discrete timestamp is the actual date when the news was broadcast. I
also assume that the text data across different timestamps are generated by sampling words
from different distributions, i.e., each timestamp is associated with a unique distribution of
n-grams, which is essentially the key to capture the evolution of community-influence on
text generation. ITG explains this evolution over a time period through the variance in
the word distributions across different timestamps. In other words, community-influence is
reflected through the generated text that evolves over time which I aim to explain by the
ITG process.
Below, I first discuss briefly the three major components that are the building blocks of

ITG and then present how ITG combines them into a single unified model.

4.2.1 Sequence Generator

Sequence Generator is the central component of ITG which generates the next word xt in
the sentence given t− 1 previous words. Thus, Sequence Generator is essentially a language
model which provides a probability distribution over a sequence of words that can be used
to predict the next word in the sequence. Any sequence modeling framework, e.g., Hidden
Markov Models, Recurrent Neural Networks etc. can work as a sequence generator. For
ITG, I chose recurrent neural network with LSTM cells as the Sequence Generator due
to its recent promising results obtained for language modeling tasks [11, 63]. Given the
previous t words, i.e., x1:t, the recurrent neural network based language models compute the
conditional probability for the next word yt = i for i ∈ V , the vocabulary set, by computing
a hidden state ht and passing it through a Softmax function:

P (yt = i|x1:t) ≡ P (yt = i|ht) (4.1)

P (yt|ht) ∝ exp(WΩht +BΩ) (4.2)

ht = Ω(ht−1, xt) (4.3)

Here, Ω can be a standard RNN cell or more complicated cell like LSTM, GRU etc. Output
at timestamp t, i.e., yt is fed as input for timestamp t + 1, thus, xt+1 = yt. Note that, the
small t notation means the timestamp associated with the word positions. It has nothing
to do with the evolution of text stream data over a time period, for which, I use the big T
notation (see section 4.2.2).

65

4.2.2 Topic Generator

The next component of ITG is the Topic Generator. The primary purpose of this com-
ponent is to analyze different topics across the text stream data and compute the evolution
of topic distributions within the community over time. It takes all past text stream data as
input and applies a probabilistic topic model to infer n (a user defined parameter) different
topics, each represented with a unique distribution over the entire vocabulary. For ITG, I
chose LDA as the Topic Generator since it has been the most popular topic modeling tech-
nique for more than a decade. Once n topics are identified, the Topic Generator computes
the distribution of n topics over different timestamps observed in the training data. For this
notion of timestamp that corresponds to the physical generation time of text, I use the big T
notation which is completely different from the small t notation in the Sequence Generator. I
distinguish big T notation by naming it global timestamp as opposite to the local timestamp
t. For each global timestamp T , the Topic Generator computes a topic distribution θT .
The Topic Generator also provides a sub-component, i.e., History Extractor, which, given

a particular global timestamp T as input, retrieves the topic distributions of previous r (a
user defined parameter) timestamps computed by LDA. I mathematically denote the output
of History Extractor by θT−r:T−1, where, θi:j denotes topic distributions from timestamp i

to j augmented into a single vector. This means the cardinality of vector θT−r:T−1 is r × n.

4.2.3 Influence Generator

The main function of the Influence Generator is to compute the community-influence
during the text generation process. Given a particular global timestamp T , I represent
community-influence through a real valued vector (γT) of dimension K (another user de-
fined parameter), which is essentially the output of Influence Generator. The input to the
Influence Generator is the r × n dimensional vector of topic distributions from previous r
timestamp, i.e., θT−r:T−1 (assuming T as the current global timestamp). Thus, Influence
Generator essentially maps a r × n dimensional topic vector to a K dimensional influence
vector. Here, I assume that the influence vector γT corresponding to current timestamp T ,
can be approximated from the historical topic distribution θT−r:T−1. This assumption is rea-
sonable, because most text stream data do not evolve dramatically over night, rather their
topical shift happens quite gradually. Think about some particular research community like
SIGKDD. The topic distribution in papers published in a particular year is not dramatically
different from previous two years, rather they are somewhat correlated.
ITG maps topic-distribution-history vector (described in the previous paragraph) to an

66

influence vector through a feed-forward neural network. Although any function that can
perform this mapping can resemble as Influence Generator, I chose a feed-forward neural
network for ITG due to its capability of approximating a wide family of functions. Without
loss of generality, I used ReLU activation units in the hidden layers. Once the influence vector
(γT) is computed, it is then injected as a bias into the Sequence Generator when generating
the next word (xt) in the sequence (More details in section 4.2.4). Influence Generator is
the component which enables ITG to generate text tied to a particular global timestamp.
Thus, Influence Generator is a pivotal component in ITG which makes influence-aware text
generation possible.
Mathematically, let θT denote the topic distribution for the generated text at timestamp T ,

then the function of Influence Generator is expressed as follows (‖ means the concatenation
operation):

θT−r:T−1 = θT−r‖θT−r+1‖....‖θT−1 (4.4)

γT = Γ(θT−r:T−1) = W Γ
2 ·
[
ReLU(W Γ

1 · θT−r:T−1 +BΓ
1)
]

+BΓ
2 (4.5)

4.2.4 ITG as a Unified Model

Now that I have presented the three building blocks of ITG, this section presents how
these different components interact with each other and work as a unified model to explain
the evolution of text stream data corresponding to the fluctuation of community-influence.
ITG process can be thought of as generating text corresponding to a particular timestamp
T . Thus, the whole process starts with a timestamp T as input and the start-of-sentence
marker (let’s call it #) as the sequence generated so far. The next task is to generate one
word at a time iteratively until the end-of-sentence marker is generated (let’s call it *). The
exact process of generating the next word yt in the sequence is demonstrated in Figure 4.1.
The first step of the generation process is to infer n different topics from the historical

text stream and compute the topic distribution for each unique timestamp observed in the
training data. Next, given a particular global timestamp T as input, the History Extractor
Module extracts the historical topic distributions corresponding to previous r global times-
tamps and concatenates them to generate a vector representation of the history, i.e., θT−r:T−1

of dimension r × n (please see the previous subsection for details). θT−r:T−1 is then passed
through Influence Generator Γ which outputs the K dimensional influence vector γT . For a
particular global timestamp T , γT is fixed and can be re-used for any text generation task
tied to the global timestamp T . The bottom middle section (Green Color) of Figure 4.1

67

Figure 4.1: Influenced Text Generation (ITG): Compact Form

shows the feed-forward neural network architecture of Influence Generator.
The next trick in ITG is to concatenate the influence vector (γT) to the vector representa-

tion of each word in the sequence generated so far. An alternative to concatenating is adding
the two vectors. However, as the cardinality of influence vector is not high, I opted for the
concatenating option as that would prevent the loss of information resulting from adding
two vectors. This means, for each word in {x1, x2, ..., xt}, γT is concatenated to each of their
vector representations to get the augmented representation {xC1 , xC2 , ..., xCt }, i.e., while gen-
erating the next word xt+1 = yt in the sequence, all the previous words in the sequence share
the same community-influence represented by vector γT . This augmented representation
essentially allows ITG to capture the dynamic nature of text stream data as the influence
vector injects evolving community-influence into the generation process. Finally, the aug-
mented representations {xC1 , xC2 , ..., xCt } are fed into the recurrent neural network model to
compute a hidden state ht . The final output vector Y is computed by applying a linear
transformation on ht. Note that, vector Y is a real-valued vector. I apply a Softmax func-

68

tion on Y to convert it into a valid probability distribution, sampling from which, the next
word in the sequence is generated. The mathematical formulas behind the entire generation
process is summarized below:

Y = WΩ · ht +BΩ, (4.6)

ht = Ω(ht−1, x
C
t), (4.7)

xCt = xt‖γT . (4.8)

Thus, Y can be written as follows:

Y = WΩ · Ω(ht−1, xt‖γT) +BΩ. (4.9)

Here, γT is obtained as follows:

γT = W Γ
2 ·
[
ReLU(W Γ

1 · θT−r:T−1 +BΓ
1)
]

+BΓ
2 . (4.10)

Here, θT−r:T−1 is the concatenation of topic distribution vector from previous r timestamps.
Finally, I apply a Softmax function on the output vector Y to convert it into a valid

probability distribution P (yt|ht), as follows:

P (yt = i|ht) =
exp(Yi)∑|V |
j=1 exp(Yj)

. (4.11)

The next word yt = xt+1 in the sequence is generated by sampling from this conditional
distribution. The ITG repeats this whole process multiple times to generate new words in
the sentence until a end-of-sentence marker is generated.
I graphically demonstrate how ITG generates sentences by iteratively generating one word

at a time in Figure 4.2, which also shows the unrolled architecture of ITG. Before generating
text, ITG infers n topics from the historical stream data and computes topic distribution for
each timestamp which are stored in the History Extractor Module. The actual generation
process starts with a timestamp T as input and the start-of-sentence marker (#) as the
first generated word, i.e., x1 = #. Given input T , the History Extractor Module generates
the concatenated topic distribution vector θT−r:T−1, which in turn, is fed as an input to
the Influence Generator, Γ. Γ generates the influence vector γT , which is augmented with
the vector representation of x1 as a bias, to form xC1 . Then, xC1 is passed through Sequence
Generator which generates a hidden state h1 as well as outputs the next word in the sequence,
i.e., y1. For generating the next word, y1 becomes x2 and goes through the same steps as

69

Figure 4.2: ITG: Unrolled Architecture

before and generates hidden state h2 as well as outputs y2. This iterative process continues
until yt = ∗, the end-of-sentence marker. At this moment, the current sentence generation is
complete and the next sentence can be generated by again starting with the start-of-sentence
marker (#) as the first word in the sequence. Finally, the whole process is summarized in
Algorithm 4.1 which describes the generation of a single sentence by ITG for a particular
global timestamp T .

4.2.5 Estimation of ITG model parameters

In this section, I present the estimation techniques for the optimal values of ITG model
parameters. Close observation through Equation 4.6-4.10 reveals that ITG contains the
following set of parameters:

W =
{
WΩ, BΩ,W Γ

1 , B
Γ
1 ,W

Γ
2 , B

Γ
2

}
(4.12)

I find the optimal values for the parameter setW by maximizing the log-likelihood of the
training text stream data. The optimization problem thus can be written as follows:

70

Algorithm 4.1: Influenced Text Generation (ITG) Process
Process ITG (T,Θ,Γ,Ω, r, n,K,E);
Input : T : discrete global timestamp

Θ: Topic Generator (n: number of topics)
Γ: Influence Generator (K: cardinality of influence vector)
Ω: Sequence Generator (E: cardinality of word vector)
r: History Window

Output: Generated sentence X corresponding to T
x← {start of sentence marker}
θT−r:T−1 ← Θ(θT−r)‖Θ(θT−r+1)‖...‖Θ(θT−1), Topic History
γT ← Γ(θT−r:T−1), Generate Influence Vector for timestamp T
t = 1
repeat

for i← 1 to t do
xCi ← xi‖γT , where, ‖ is concatenation operation

end
compute ht ← Ω(xC1:t−1) by applying Ω recursively
Draw word yt ∼ P (yt|ht), where P (yt|ht) ∝ exp(WΩht +BΩ)
x← x ∪ {yt}

until end of sentence marker is generated ;
return x

W∗ = argmax
W

logL(x1x2...xn|W) (4.13)

As maximizing the log-likelihood is the same as minimizing the negative of the log-
likelihood function and as we know the exact word which comes next in the sequence during
the training process, our optimization problem boils down to minimizing the softmax cross
entropy with logits between the conditional distribution P (yt|ht) and the actual word that
appears next in the training data. Softmax Cross Entropy with logits essentially measures
the probability error in discrete classification tasks in which the classes are mutually exclu-
sive. Thus,

71

W∗ = argmin
W

{− logL(x1x2...xn|W)} (4.14)

= argmin
W

−
N∑
j=1

|V |∑
i=1

I(xj, i) · logP (yt = i|ht(W))

 (4.15)

Here, N is the total number of words in the training data. I(x, y) is an indicator function
that returns 1 if x = y and 0 otherwise.
I use back-propagation to learn the weights of the network connection edges of ITG.

Specifically, I use Adaptive Moment Estimation which is a popular stochastic gradient de-
scent technique and commonly known as Adam Optimizer to compute the gradient for
minimizing our objective function in Equation 4.15. Adam Optimizer is an update to the
RMSProp [64], which is another popular optimizer. In Adam Optimizer, running averages
of both the gradients and the second moments of the gradients are used. For more details,
refer to [65].

4.3 EXPERIMENTAL DESIGN

In this section, I describe our experimental setup including datasets used for experiments,
baseline algorithms for comparison and the evaluation roadmap to measure the performance
of ITG.

4.3.1 Dataset

I experimented with six different sets of publication title stream data to evaluate the perfor-
mance of ITG. These datasets were collected from the Open Academic Graph1[66, 67]. Here,
I focused on studying how the paper titles published by different machine learning related
conferences evolved over time. As community, I considered both the core machine learning
community, e.g., NIPS, ICML as well as research communities that applies a fair share of
machine learning, e.g, KDD, SIGIR. Specifically, I considered all the titles of papers pub-
lished during the year span 1996-2015 by the following six conference venues: NIPS, CVPR,
ICML, KDD, SIGIR and WWW. For these datasets, the discrete timestamp corresponds to
a year, i.e., all papers published in the same year share the same discrete timestamp. Each
row in these datasets consists of a tuple <timestamp,paper title> and altogether they con-

1https://www.openacademic.ai/oag/

72

Conf. # of Titles Title/Year Total Words Words/Title
KDD 5,499 274.95 49,980 9.08
NIPS 6,229 311.45 49,792 7.99
SIGIR 3,994 199.7 34,892 8.73
ICML 4,106 205.3 34,159 8.32
WWW 5,701 285.05 50,253 8.82
CVPR 10,121 506.05 90,890 8.98

Table 4.1: Dataset Summary

tain 35, 650 paper titles in total. Again, each paper title can contribute multiple instances
for predicting the next word which resulted in 309, 966 total instances. More details about
the publication dataset is presented in Table 4.1.

4.3.2 Evaluation Roadmap

It is not possible to do a direct quantitative evaluation of the community-influence on text
generation due to the lack of ground truth information. Thus, to evaluate the performance
of the proposed ITG process, I rely on two different strategies: 1) Conduct qualitative evalu-
ation and 2) Conduct indirect quantitative evaluation by applying ITG on some application
task. The primary purpose of indirect quantitative evaluation is to see whether capturing
the evolution of community-influence actually helps us achieve better performance in some
text generation application task. However, the goal task must involve the notion of evolving
text stream data over time. For this reason, I consider Chronological Summary Generation
as our goal task. The benefit of this task is that it provides a way to conduct indirect
quantitative evaluation of ITG, as direct evaluation is impossible due to the lack of ground
truth data for community-influence which is an abstract concept.
I first partition each publication dataset into 20 different timestamps where each partition

corresponds to a year of publication and consists of the papers published in that particular
year. Note that, this timestamp corresponds to the big T notation from the model description
in section 4.2. This allows us to view the publication title datasets as text stream data.
While training of ITG is straightforward, testing of ITG is challenging due to the following

two reasons: first, there is no standard testing metric to evaluate Chronological Summary
Generation task and second, each timestamp T is associated with multiple independent
publication titles; thus, after ITG generates a piece of title, it is unclear what is the golden
publication title in the testing set against which the generated text should be compared.

73

Algorithm 4.2: Time aware BLEU score computation

Time aware BLEU (T,G,R);
Input : T : discrete timestamp

G: Generated Text set
R: Reference Text set

Output: Time sensitive BLEU
score← 0
|G|← number of sentences in G
for each sentence g in G do

for each sentence r in R do
compute BLEU(g, r)

end
r∗ = argmax

r
BLEU(g, r)

score← score+BLEU(g, r∗)
R← R− {r∗}

end
return score

|G|

Due to the difficulties associated with evaluating the performance of ITG, I propose a
new way to evaluate the Chronological Summary Generation task. Two popular evaluation
metrics from the literature for text summarization are BLEU [68] and ROUGE [69] where
a score is generated by comparing the automatically generated text against some reference
text generated by humans. However, both BLEU and ROUGE do not consider the notion of
time, thus we need a time-sensitive customization of both BLEU and ROUGE. The simplest
way to do this is to compare a ITG generated text for timestamp T against the partition
corresponding to the same timestamp T . This means, when ITG is asked to generate a
text relevant to timestamp T , the ground truth text data against which the generated text
is compared must also correspond to the timestamp T . To tackle the second challenge of
matching against multiple independent publication titles, I adopt a simple greedy approach
where the ITG generated text is matched against each ground truth sentence in the partition
corresponding to the timestamp T and paired with the most similar one in terms of BLEU
or ROUGE score. The matched ground truth sentence is then removed from the partition so
that the next generated sentence cannot match with the previously matched sentence again.
This ensures that ITG is generating diverse set of sentences rather than just memorizing
one single sentence from each timestamp T . This way, we can use ITG to generate multiple

74

Acronym Details Nature
Bigram Bigram Language Model static
LSTM Long short-term memory static

RILSTM LSTM with Random Influence dynamic
IILSTM LSTM with Independent Influence dynamic

ITG Influenced Text Generation dynamic
ITG-EI Externally Influenced Text Generation dynamic
ITG-CI Combined Influenced Text Generation dynamic

Table 4.2: Methods for Quantitative Comparison. The details of ITG-EI and ITG-CI are
provided in section 4.4.1

sentences for a particular timestamp T and then average the scores of all generated sentences
to get an evaluation score corresponding to timestamp T . This whole computation process is
presented in Algorithm 4.2, where I demonstrate the case for time-sensitive BLEU score. The
case for ROUGE is exactly similar. Finally, these average scores across different timestamps
can be further averaged to provide a unified Chronological Summarization score2.

4.3.3 Baseline Methods

As the notions of influenced text generation and chronological summary generation of
text stream data are new, there is no existing baseline I could readily use. Therefore, I
had to resort to existing static text generation processes as our baseline methods to com-
pare against. Two such baselines are simple bigram language models and Long-Short Term
Memory (LSTM) [70, 71]. For a fair comparison, I also created two artificial baselines where
text generation can evolve over time. The first one is called RHLSTM which is identical to
ITG except the fact that the influence vector of RHLSTM is generated randomly as opposed
to generating it by the Influence Generator of ITG. The second baseline is called IILSTM
where I do not inject the influence vector as a bias into the vector representation of words,
rather, the Influence Generator directly computes a probability distribution for sampling the
next word and this probability is multiplied with the probability computed independently
by LSTM. Table 4.2 contains the summary of these baseline algorithms along with ITG.

2All the codes and evaluation scripts for experimentation can be found at the following link:
(https://bitbucket.org/karmake2/itg/src/master/)

75

4.4 RESULTS

This section presents both quantitative and qualitative evaluation results for ITG. For
quantitative evaluation, I compare the performances of ITG against multiple baseline meth-
ods for the Chronological Summary Generation task (section 4.4.1). For qualitative evalua-
tion, I demonstrate how ITG captures the evolution of community-influence while generating
text corresponding to a particular time-stamp (section 4.4.2). For all the results reported in
this section, ITG used the following parameter settings: r was set to 3, for both Sequence
Generator and Influence Generator, the number of hidden units was empirically set to 256,
K (dimension of influence vector) was set to 15, batch size was set to 2000 instances and
the learning rate was set to 0.01. For the Topic Generator, n (number of topics) was set to
15 and LDA was run using α = 0.1 and β = 0.05. Although from application perspective, it
is important to know the impact of each parameter and their optimal values, it is computa-
tionally intractable to do a comprehensive study of all different variations of the parameters
and the main goal of this chapter is somewhat orthogonal to that, which focuses on building
a new model for capturing community-influence, if there is any at all.

4.4.1 Quantitative Evaluation

Figure 4.3 provides the summary of results for the Chronological Summary Generation
task. Close examination of Figure 4.3 reveals that ITG outperforms all other baselines by
a clear margin for all six datasets. For example, BLEU-4 score obtained by ITG on KDD
Dataset is 0.57, while LSTM obtained only a score of 0.22. ROUGE-L score obtained by
ITG is 0.63, while it is 0.31 for LSTM. This clearly indicates that ITG can indeed capture
the temporal evolution of KDD paper titles over time and given a input timestamp T , can
generate text relevant to T . Also note that, RILSTM performs significantly worse compared
to LSTM for most datasets which implies that the influence vector plays the key role in
helping ITG capture the evolution of the text stream. It is also noteworthy that IILSTM
is the second best performing method which confirms that injecting influence vector as a
bias into the word representation works better than using influence vector independently to
compute a probability distribution and then multiply it with LSTM probabilities.
To get more insight into the performance of ITG, I plot the timestamp-wise performance

of all compared methods for KDD Dataset (BLEU 4) and WWW Dataset (ROUGE L) in
Figure 4.4 [other similar plots omitted due to lack of space]. A general inspection of Figure 4.4
also demonstrates the superiority of ITG for Chronological Summary Generation task, where,
for any performance metric, ITG obtains the best score across different timestamps for most

76

of the cases.

External Influence:

So far, I have only considered the influence of the community for which the text genera-
tion is targeted towards. However, I argue that, other related communities also pose indirect
influence on the text generated within the target community. For example, a shift in the
interest of theoretical machine learning conferences like ICML often influence the research
directions pursued by the more applied conferences like KDD or WWW. To test this hypoth-
esis, I conducted a series of experiments where instead of using the influence of the target
community (e.g., KDD, WWW), I computed the influence vector from the historical topic
distribution of a core machine learning community (e.g. ICML, NIPS). I call this approach
ITG-EI where EI means external influence. I conducted another set of experiments where
I computed the influence vectors from both the target community and a related external
community and injected both influence vectors into the ITG process. I call this approach
ITG-CI where CI stands for combined influence. Two sample results from these experiments
are shown in Figure 4.5. Experiments results suggest that, although ITG-EI is not always
better than ITG itself, however, ITG-CI outperforms basic ITG as ITG-CI combines both
internal and external influence.

4.4.2 Qualitative Evaluation

In this section, I present qualitative results to show the great potentials of ITG. As men-
tioned in section 4.1, ITG should be able to generate syntactically correct, semantically
coherent and time-sensitive evolving text. To demonstrate that ITG can generate sentences
aligned with the evolution of the text stream corresponding to evolving community-influence,
I first ran LDA on paper titles from KDD, ICML and SIGIR over the year range 2000-2015.
Number of topics was set to 15. Table 4.3 shows six example topics along with top 5 keywords
for each topic. For two topics, I also show how their distributions evolved over time within
ICML community in Figure 4.6. For example, Figure 4.6a (4.6b) shows how the proportion
of topic Optimization (SVM) within the paper titles published by ICML evolved over the
year range [2000-2015]. We can clearly see from Figure 4.6 that, Optimization became more
and more popular over the years in ICML (from ∼ 10% to ∼ 25%), while research on Sup-
port Vector Machine Theory matured during this time signified by the decay in proportion
from ∼ 20% to ∼ 7%.
Next, I did the same analysis for KDD and SIGIR in Figure 4.7 with respect to two

77

(a) KDD (b) NIPS

(c) SIGIR (d) ICML

(e) WWW (f) CVPR
Figure 4.3: Comparison of ITG against baseline text generation techniques for Chronological
Summarization task

78

(a) KDD: BLEU 4 (b) WWW: ROUGE L

Figure 4.4: Year-Wise Performance distribution of ITG against different baseline text gen-
eration techniques

Topic Top Keywords
Optimization matrix, gradient, sparse, convex, stochastic

Search Relevance information, retrieval, search, index, document
Rule Mining rule, discovery, association, pattern, mine

Social Networks social, network, recommender, community, topic
SVM Classifiers supervised, learning, support, vector, machine

Behavior Modeling log, behavior, personalization, click, feedback

Table 4.3: Samples Topics Extracted from KDD, SIGIR and ICML paper titles for year
range [1995-2015] Using LDA

79

(a) KDD Influenced by ICML (b) WWW Influenced by ICML

Figure 4.5: Results of adding external influence while generating text for Chronological
Summarization task

different topics for both KDD and SIGIR. For KDD, I considered topics Social Networks
[Figure 4.7a, 4.7b] and Rule Mining [Figure 4.7c, 4.7d] and for SIGIR, I considered topics
Search and Relevance [Figure 4.7e, 4.7f] and User Behavior Modeling [Figure 4.7g, 4.7h].
However, beside plotting the original topic-distribution trend from the real conference pro-
ceedings (Figures with α marker and red color), I also plot the simulated topic-distribution
trend computed from the text generated by ITG (Figures with β marker and green color).
Close observation of Figure 4.7 confirms that ITG can indeed generate sentences aligned
with the evolution of the text stream corresponding to evolving community-influence. For
example, Figure 4.7g shows that research interest towards user behavior modeling grew sig-
nificantly within SIGIR community in the past ten years, which is also nicely reflected in
the text generated by ITG [Figure 4.7h]. On the other hand, research on association rule
mining almost matured after 2008 within the KDD community [Figure 4.7c], which has also
been captured effectively by ITG which is apparent from the decaying trend of Figure 4.7d.
Finally, Table 4.4 presents some sample paper titles generated by ITG for different time

ranges targeted towards KDD community. Given a year as input, ITG was invoked to
generate a title for that particular year. A closer look into Table 4.4 reveals that ITG can
indeed generate syntactically correct, semantically coherent and time-sensitive evolving text.
It is also worth mentioning that, ITG did not store any paper to year mapping information.
Table 4.4 also nicely captures the interest shift within KDD community over the years. For
example, paper titles generated for year 2000-2002 includes topics like rule mining and tree
based classifications, while paper titles generated for year 2012-2015 includes topics like deep
learning and active learning, which is really interesting.

80

(a) ICML: Topic Optimization (b) ICML: Topic SVM

Figure 4.6: Topic Distribution in ICML paper titles over the year range: 2000-2015. Only 2
topics shown for lack of space.

4.5 RELATED WORKS

There has been a surge of research interest in the use of neural network (NN) models for
automatic text generation in recent years [10, 11, 12, 13]. The first NN-based text generator
was proposed by Kukich [72], although generation was done only at the phrase level. Recent
advances in recurrent neural network-based language models (RNN-LM) have demonstrated
the value of distributed representations and its power to model arbitrarily long dependen-
cies [73, 74]. Sutskever et al. [75] introduced a simple variant of the RNN that can generate
meaningful sentences by learning from a character-level corpus. Mao et.al. have demon-
strated how Recurrent Neural Networks, specially, Long-Short-Term-Memory (LSTM) is
effective in solving various text generation tasks [62]. TopicRNN proposed by Dieng [10]
integrated the merits of RNNs and latent topic models to capture long-range semantic de-
pendency. Recently, Generative Adversarial Nets (GANs) that use a discriminative model
to guide the training of the generative model has shown promising results in automated text
generation [76, 77, 78, 79]. However, all these existing methods from the literature are static
text generation processes with no notion of time and thus, can not model the community-
influence associated with dynamically evolving text stream data. Whereas, our aim was to
develop a more dynamic text generation process that can capture this community-influence
associated with the generation of stream text data.
Evolution of text stream data has primarily been studied from the perspective of topic

modeling techniques [80, 81, 82], whereas our work is focused on the generation of exact
sentences. Influence-Based Community Detection is another related area to our work (see [83]
for a comprehensive survey), however, our goal is completely different as I primarily study

81

(a) KDDα: Social Network (b) KDDβ : Social Network

(c) KDDα: Rule Mining (d) KDDβ : Rule Mining

(e) SIGIRα: Search & Relevance (f) SIGIRβ : Search & Relevance

(g) SIGIRα: Behavior Modeling (h) SIGIRβ : Behavior Modeling

Figure 4.7: Topic distribution trend analysis to demonstrate how ITG captures community-
influence while generating text. Captions of each subfigure is written in the following form:
xα|β : y, where, x denotes the conference name, y denotes the topic being analyzed and α
means the original topic distributions from real conference proceedings and β means topic
distributions in text generated by ITG.

82

year # Sample Generated Title
2000 1 discovering in hierarchical rules using lexical knowledge
- 2 data mining criteria for tree based regression and classification

2002 3 mining frequent class sets in spatial databases
2007 - 1 a framework for community identification in dynamic social net-

works
2009 2 learning preferences of new users in recommender systems

3 data mining for intrusion detection from outliers
2012 - 1 deep model based transfer and multi task learning for biological

image analysis
2015 2 a bayesian framework for estimating properties of information net-

work
3 active learning for sparse bayesian classification

Table 4.4: Sample titles generated by ITG for conference KDD across different year ranges

Influence-Based Text Generation.

4.6 CONCLUSION

In this chapter, I introduced and studied the challenging problem of modeling community-
influence on the generation of dynamically evolving text stream data. I proposed an influ-
enced text generation (ITG) process built upon a recurrent neural network based architecture
which consists of three major components: 1) Sequence Generator for generating syntacti-
cally correct sentences 2) Topic Generator for generating historical topic distributions within
the target and other related communities and finally 3) Influence Generator for capturing
evolving community-influence on the text generation process. I quantitatively evaluated ITG
on chronological summarization task through comprehensive experiments with six publica-
tion stream datasets. I demonstrated that ITG outperforms multiple baseline methods by
a significant margin on the goal task and also presented a handful number of qualitative
results to verify that ITG can indeed generate syntactically correct, semantically coherent
and time-sensitive evolving text. Although I described ITG specifically in the context of text
generation, however, the model is quite general and can be applied to any sequence data
which evolves over time. An important future direction is to apply ITG on different types
of sequence data to verify the generality of the model.

83

CHAPTER 5: POTENTIAL IMPACT AND CONCLUSION

The thesis opens up a new direction in analyzing multiple data sets to capture the influence
of external factors for user behavior modeling. A brief discussion of such impact is presented
below.

5.1 ADDRESSING NEW FUNDAMENTAL RESEARCH QUESTIONS

This thesis introduces multiple new research questions and takes the initial step towards
addressing these questions. One of the primary contributions of this thesis is to compu-
tationally model the concept of external influence in the context of unstructured big data.
This is a hard problem due to the lack of structure associated with natural text data. An-
other essential contribution of this thesis is to study alternative ways of evaluating a mining
algorithm in the case where no ground truth information is available. More specifically, this
thesis presents different ways to conduct indirect quantitative evaluation in the case when
direct evaluation is not possible due to unavailability of ground truth information. For ex-
ample, there is no ground truth information available for event-influence on search behavior
or community-influence on user generated contents. Another fundamental contribution of
the thesis is to model the trend of influence both in the context of information thirst and
user content generation. Modeling such trend is very important and useful for many busi-
ness applications. These new research contributions would further enable the design of more
intelligent systems which can guide users to mine interesting patterns and make informed
decisions.

5.2 NOVEL DATA MINING TOOLS

The most interesting contribution of this thesis is the introduction of two novel data min-
ing tools, JIM and ITG, which would enhance user behavior models significantly. Using
JIM, one can now answer the following questions and get insights about influence on user
search behavior which were not possible before.

JIM as a new data mining tool:

1. What kind of queries are triggered by what kind of events?

2. What kind of events tend to be most influential?

84

3. How long does the influence last?

4. How to predict whether a user’s query was triggered by a particular event?

5. Is there a way to computationally model the dependency among different events in
terms of the influences posed by them on user search behavior?

6. How do these (correlated) influences of multiple events jointly evolve over time?

7. How to measure the degree of Direct Influence and Indirect Influence?

ITG as a new data mining tool:

1. How do different communities influence the contents generated by their users? For
example, what is the impact of the NIPS research community on the research of the
KDD research community?

2. Which community has a stable influence on its users vs. which does not?

3. Which communities are more influential regarding the contents generated by their
users?

4. Which communities have external influence on other communities?

5.3 AVENUE FOR NEW APPLICATIONS

This thesis has enabled multiple new applications as well as enhanced several existing
applications. Below, I present some of the example applications.

New Application enabled by JIM:

1. JIM has been shown very effective in predicting future influential events, future query
volume, etc.

2. JIM can also enhance query auto-completion by incorporating the influence information
within the auto-completion algorithm.

3. JIM can help design better recommender systems for users for which no/little histori-
cal activity data is available. JIM can achieve this by recommending influential events
to the users. JIM can also enhance general recommender systems by injecting the

85

influence information as a prior knowledge.

New Application enabled by ITG:

1. ITG understands the notion of time and can generate text which is relevant to a
particular timestamp.

2. ITG provides us with a way to generate a chronological summary of the past text
stream, i.e., it can summarize how sentences from a particular text stream evolved
over time in the past.

3. Although I described ITG specifically in the context of text generation, the model is
quite general and can be applied to any sequence data which evolves over time.

5.4 COMPUTATIONAL LENS TOWARDS SOCIAL SCIENCE

As humans, we are the central part of the society and understanding human behavior
is very important for any business application. Both JIM and ITG have provided us with
new computational lens to analyze interesting social science questions, which can provide
useful insights to business applications. Companies will be able to design better products if
they can better understand how their users are influenced by external factors and how these
external factors can be exploited for meeting the user’s need.

5.5 FINAL WORDS

Understanding the influence of external factors on the behavior of users is an important
research challenge which has not received significant attention so far in the literature. This
thesis presents the first study of modeling external influence on user’s information seeking
and content generation behavior, which are two prominent ways to observe user interaction
behavior.
The thesis started with demonstrating the value of big text data for mining the external

influence on user interaction behavior (Chapter 1). Next, I developed a new model for mining
the influence of popular trending events on user search behavior (Chapter 2). This chapter
introduces multiple new research questions and takes the initial step towards addressing
these questions. One of the primary contributions of this Chapter 2 is to computationally
model the concept of external influence in the context of modeling search behavior. This

86

is a hard problem due to the lack of structure associated with natural text data. I solved
this mining problem by proposing computational measures that quantify the influence of an
event on a query to identify triggered queries and then proposing a novel extension of Hawkes
process to model the evolutionary trend of the influence of an event on search queries.
One particular limitation of this method was the assumption that each event poses its

influence on the user search behavior independently which is unrealistic as many real word
events are correlated and would pose a joint influence on user search behavior. To relax this
assumption, I proposed a joint influence model (JIM) based on Multivariate Hawkes Process
which can model the inter-dependencies among different events in terms of their influence
(Chapter 3). Experimental results verified that the joint influence model can effectively
capture the trend of the influence. Thus, JIM provides us with a new data mining tools that
can be used to answer multiple interesting questions like “What kind of events tend to be
most influential?”, “How long does the influence last?” etc. JIM also enables multiple new
applications including predicting future influential events, enhancing query auto-completion
task and building better recommender systems.
The last part of this thesis focuses on modeling the influence of external factors on user-

generated contents (Chapter 4). I particularly focused on how evolving community-interest
influence the content generation process by its users. I proposed a new deep-learning archi-
tecture called ITG which computes an influence embedding that is injected as a bias in the
text generation process. Experimental results indicate that the influence embedding indeed
captures evolving community-interest in a meaningful way which enables time-aware text
generation possible. ITG also provides us with a new data mining tools that can be used
to answer multiple interesting questions like “How do different communities influence the
contents generated by their users?”, “Which community has a stable influence on its users
vs which does not?” etc. From the applications perspective, ITG understands the notion of
time and can generate text which is relevant to a particular timestamp. ITG also provides
us with a way to generate a chronological summary of the past text stream, i.e., it can
summarize how sentences from a particular text stream evolved over time in the past.
The thesis opens up a new direction in analyzing multiple data sets to capture the influ-

ence of external factors for user behavior modeling. What has been done is only a small
step toward the (final) goal of developing a system which can perceive and analyze complex
environments with many different factors and thus serve more intelligently as a digital assis-
tant than it can today. There are still many open challenges in this area which need to be
addressed before this research direction can mature. However, as a first step towards mining
influence from unstructured data, this thesis can provide a roadmap for following research
in this direction. One particular future direction is to incorporate the influence models into

87

the SOFSAT framework proposed in [84]. Another interesting direction is to study influence
models for predicting e-commerce behavior of the users. I hope this thesis will encourage
my fellow researchers to work more in this area and thus, contribute towards building more
comprehensive intelligent systems in the future.

88

REFERENCES

[1] S. K. K. Santu, M. M. Rahman, M. M. Islam, and K. Murase, “Towards better general-
ization in pittsburgh learning classifier systems,” in Evolutionary Computation (CEC),
2014 IEEE Congress on. IEEE, 2014, pp. 1666–1673.

[2] S. K. Karmaker Santu, P. Sondhi, and C. Zhai, “On application of learning to rank for
e-commerce search,” in Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 2017, pp. 475–484.

[3] S. K. Karmaker Santu, P. Sondhi, and C. Zhai, “Generative feature language models
for mining implicit features from customer reviews,” in Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management. ACM, 2016,
pp. 929–938.

[4] S. K. Karmaker Santu, V. Bindschadler, C. Zhai, and C. A. Gunter, “Nrf: A naive
re-identification framework,” in Proceedings of the 2018 Workshop on Privacy in the
Electronic Society. ACM, 2018, pp. 121–132.

[5] M. M. Rahman, S. K. K. Santu, M. M. Islam, and K. Murase, “Forecasting time series?a
layered ensemble architecture,” in Neural Networks (IJCNN), 2014 International Joint
Conference on. IEEE, 2014, pp. 210–217.

[6] Y. Wang, D. Seyler, S. K. K. Santu, and C. Zhai, “A study of feature construction
for text-based forecasting of time series variables,” in Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management. ACM, 2017, pp. 2347–2350.

[7] J. Jiang, D. He, and J. Allan, “Searching, browsing, and clicking in a search session:
changes in user behavior by task and over time,” in ACM SIGIR, 2014.

[8] L. Li, H. Deng, A. Dong, Y. Chang, and H. Zha, “Identifying and labeling search tasks
via query-based hawkes processes,” in ACM SIGKDD, 2014.

[9] R. W. White, W. Chu, A. Hassan, X. He, Y. Song, and H. Wang, “Enhancing person-
alized search by mining and modeling task behavior,” in WWW, 2013.

[10] A. B. Dieng, C. Wang, J. Gao, and J. Paisley, “Topicrnn: A recurrent neural network
with long-range semantic dependency,” arXiv preprint arXiv:1611.01702, 2016.

[11] R. Kiros, R. Salakhutdinov, and R. Zemel, “Multimodal neural language models,” in
Proceedings of the 31st International Conference on Machine Learning (ICML-14),
2014, pp. 595–603.

[12] C. Kiddon, L. Zettlemoyer, and Y. Choi, “Globally coherent text generation with neu-
ral checklist models,” in Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, 2016, pp. 329–339.

89

[13] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level training with recur-
rent neural networks,” arXiv preprint arXiv:1511.06732, 2015.

[14] L. Shi, H. Tong, J. Tang, and C. Lin, “Vegas: Visual influence graph summarization on
citation networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 27,
no. 12, pp. 3417–3431, 2015.

[15] F. D. Malliaros, M.-E. G. Rossi, and M. Vazirgiannis, “Locating influential nodes in
complex networks,” Scientific reports, vol. 6, p. 19307, 2016.

[16] G. Lawyer, “Understanding the influence of all nodes in a network,” Scientific reports,
vol. 5, p. 8665, 2015.

[17] D. J. Robinaugh, A. J. Millner, and R. J. McNally, “Identifying highly influential nodes
in the complicated grief network.” Journal of Abnormal Psychology, vol. 125, no. 6, p.
747, 2016.

[18] “Review: In ’captain america: Civil war’, super-bro against super-bro,” http://www.
nytimes.com/2016/05/06/movies/captain-america-civil-war-review-chris-evans.html?
_r=0, accessed: 2016-07-30.

[19] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford et al., “Okapi
at trec-3,” NIST SPECIAL PUBLICATION SP, vol. 109, p. 109, 1995.

[20] F. Atefeh and W. Khreich, “A survey of techniques for event detection in twitter,”
Computational Intelligence, vol. 31, no. 1, pp. 132–164, 2015.

[21] R. Campos, G. Dias, A. M. Jorge, and A. Jatowt, “Survey of temporal information
retrieval and related applications,” ACM Computing Surveys (CSUR), vol. 47, no. 2,
p. 15, 2015.

[22] W. Dakka, L. Gravano, and P. Ipeirotis, “Answering general time-sensitive queries,”
IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 2, pp. 220–235,
2012.

[23] K. Berberich, S. Bedathur, O. Alonso, and G. Weikum, “A language modeling approach
for temporal information needs,” in European Conference on Information Retrieval.
Springer, 2010, pp. 13–25.

[24] A. Kulkarni, J. Teevan, K. M. Svore, and S. T. Dumais, “Understanding temporal query
dynamics,” in Proceedings of the fourth ACM international conference on Web search
and data mining. ACM, 2011, pp. 167–176.

[25] J. Strötgen and M. Gertz, “Event-centric search and exploration in document collec-
tions,” in Proceedings of the 12th ACM/IEEE-CS joint conference on Digital Libraries.
ACM, 2012, pp. 223–232.

90

[26] R. Zhang, Y. Konda, A. Dong, P. Kolari, Y. Chang, and Z. Zheng, “Learning recurrent
event queries for web search,” in Proceedings of the EMNLP 2010. Association for
Computational Linguistics, 2010, pp. 1129–1139.

[27] S. N. Ghoreishi and A. Sun, “Predicting event-relatedness of popular queries,” in Pro-
ceedings of the 22nd ACM international conference on Information & Knowledge Man-
agement. ACM, 2013, pp. 1193–1196.

[28] N. Kanhabua, T. Ngoc Nguyen, and W. Nejdl, “Learning to detect event-related queries
for web search,” in Proceedings of the 24th International Conference on World Wide
Web. ACM, 2015, pp. 1339–1344.

[29] S. Kairam, M. Morris, J. Teevan, D. Liebling, and S. Dumais, “Towards supporting
search over trending events with social media,” in International AAAI Conference on
Web and Social Media, 2013.

[30] Y. Matsubara, Y. Sakurai, and C. Faloutsos, “The web as a jungle: Non-linear dynam-
ical systems for co-evolving online activities,” in Proceedings of the 24th International
Conference on World Wide Web. ACM, 2015, pp. 721–731.

[31] G. Pekhimenko, D. Lymberopoulos, O. Riva, K. Strauss, and D. Burger, “Pockettrend:
Timely identification and delivery of trending search content to mobile users,” inWWW.
ACM, 2015, pp. 842–852.

[32] C. Blundell, K. A. Heller, and J. M. Beck, “Modelling reciprocating relationships with
hawkes processes,” NIPS, 2012.

[33] J. Zhuang, Y. Ogata, and D. V. Jones, “Stochastic declustering of space-time earthquake
occurrences,” Journal of the American Statistical Association., vol. 97, no. 458, pp. 369–
380, 2002.

[34] E. Errais, K. Giesecke, and L. R. Goldberg, “Affine point processes and portfolio credit
risk,” SIAM J. Fin. Math., vol. 1, no. 1, pp. 642–665, Sep 2010.

[35] A. Stomakhin, M. B. Short, and A. L. Bertozzi, “Reconstruction of missing data in
social networks based on temporal patterns of interactions,” Inverse Problems., vol. 27,
no. 11, Nov 2011.

[36] A. Z.-Mangion, M. Dewarc, V. Kadirkamanathand, and G. Sanguinetti, “Point process
modelling of the afghan war diary,” PNAS, vol. 109, no. 31, pp. 12 414–12 419, July
2012.

[37] R. Crane and D. Sornette, “Robust dynamic classes revealed by measuring the response
function of a social system,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 105, no. 41, pp. 15 649–15 653, 2008.

[38] J. Weng and B.-S. Lee, “Event detection in twitter,” in Fifth international AAAI con-
ference on weblogs and social media, 2011.

91

[39] L. Xie, H. Sundaram, and M. Campbell, “Event mining in multimedia streams,” Pro-
ceedings of the IEEE, vol. 96, no. 4, pp. 623–647, 2008.

[40] H. Zaragoza, N. Craswell, M. J. Taylor, S. Saria, and S. E. Robertson, “Microsoft
cambridge at trec 13: Web and hard tracks.” in TREC, vol. 4, 2004, pp. 1–1.

[41] D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes: volume
II: general theory and structure. Springer Science & Business Media, 2007.

[42] A. G. Hawkes, “Spectra of some self-exciting and mutually exciting point processes,”
Biometrika, vol. 58, no. 1, pp. 83–90, 1971.

[43] T. Ozaki, “Maximum likelihood estimation of hawkes’ self-exciting point processes,”
Annals of the Institute of Statistical Mathematics, vol. 31, no. 1, pp. 145–155, 1979.

[44] R. Glaudell, R. T. Garcia, and J. B. Garcia, “Nelder-mead simplex method,” Computer
Journal, vol. 7, pp. 308–313, 1965.

[45] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta numerica, vol. 4,
pp. 1–51, 1995.

[46] “The most popular api: Nytimes developers network,” https://developer.nytimes.com/
most_popular_api_v2.json\#/README, 2016, accessed: 2016-07-30.

[47] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and Psychological
Measurement, vol. 20, no. 1, pp. 37–46, 1960.

[48] C. Goutte and E. Gaussier, “A probabilistic interpretation of precision, recall and f-
score, with implication for evaluation,” in ECIR. Springer, 2005, pp. 345–359.

[49] F. Sebastiani, “An axiomatically derived measure for the evaluation of classification
algorithms,” in SIGIR ICTIR, 2015. ACM, 2015, pp. 11–20.

[50] S. K. Karmaker Santu, L. Li, D. H. Park, Y. Chang, and C. Zhai, “Modeling the
influence of popular trending events on user search behavior,” in Proceedings of the 26th
International Conference on World Wide Web Companion. International World Wide
Web Conferences Steering Committee, 2017, pp. 535–544.

[51] T. J. Liniger, “Multivariate hawkes processes,” Ph.D. dissertation, SWISS FEDERAL
INSTITUTE OF TECHNOLOGY ZURICH, 2009.

[52] D. Zhou, L. Chen, and Y. He, “An unsupervised framework of exploring events on
twitter: Filtering, extraction and categorization.” in AAAI, 2015, pp. 2468–2475.

[53] M. Walther and M. Kaisser, “Geo-spatial event detection in the twitter stream.” in
ECIR. Springer, 2013, pp. 356–367.

[54] X. Dong, D. Mavroeidis, F. Calabrese, and P. Frossard, “Multiscale event detection in
social media,” Data Mining and Knowledge Discovery, vol. 29, no. 5, pp. 1374–1405,
2015.

92

[55] H. Abdelhaq, C. Sengstock, and M. Gertz, “Eventweet: Online localized event detection
from twitter,” Proceedings of the VLDB Endowment, vol. 6, no. 12, pp. 1326–1329, 2013.

[56] Y. Wang, L. Wang, Y. Li, D. He, W. Chen, and T.-Y. Liu, “A theoretical analysis
of ndcg ranking measures,” in Proceedings of the 26th Annual Conference on Learning
Theory (COLT 2013), 2013.

[57] W. Webber, A. Moffat, and J. Zobel, “A similarity measure for indefinite rankings,”
ACM Transactions on Information Systems (TOIS), vol. 28, no. 4, p. 20, 2010.

[58] E. M. Voorhees et al., “The trec-8 question answering track report.” in Trec, vol. 99,
1999, pp. 77–82.

[59] C. Chatfield, The analysis of time series: an introduction. CRC press, 2016.

[60] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

[61] S. K. Karmaker Santu, L. Li, Y. Chang, and C. Zhai, “Jim: Joint influence modeling for
collective search behavior,” in Proceedings of the 27th ACM International Conference
on Information and Knowledge Management. ACM, 2018, pp. 637–646.

[62] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep captioning with
multimodal recurrent neural networks (m-rnn),” arXiv preprint arXiv:1412.6632, 2014.

[63] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware neural language
models.” in AAAI, 2016, pp. 2741–2749.

[64] G. Hinton, N. Srivastava, and K. Swersky, “Rmsprop: Divide the gradient by a running
average of its recent magnitude,” Neural networks for machine learning, Coursera lecture
6e, 2012.

[65] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[66] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: extraction and
mining of academic social networks,” in Proceedings of the 14th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM, 2008, pp. 990–998.

[67] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-j. P. Hsu, and K. Wang, “An overview
of microsoft academic service (mas) and applications,” in Proceedings of the 24th inter-
national conference on world wide web. ACM, 2015, pp. 243–246.

[68] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evalu-
ation of machine translation,” in Proceedings of the 40th annual meeting on association
for computational linguistics. Association for Computational Linguistics, 2002, pp.
311–318.

93

[69] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Text summa-
rization branches out: Proceedings of the ACL-04 workshop, vol. 8. Barcelona, Spain,
2004.

[70] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[71] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction
with lstm,” 1999.

[72] K. Kukich, Where do Phrases Come from: Some Preliminary Experiments in Connec-
tionist Phrase Generation. Dordrecht: Springer Netherlands, 1987, pp. 405–421.

[73] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur, “Recurrent neural
network based language model,” in INTERSPEECH 2010, 11th Annual Conference of
the International Speech Communication Association, Makuhari, Chiba, Japan, Septem-
ber 26-30, 2010, 2010, pp. 1045–1048.

[74] T. Mikolov, S. Kombrink, L. Burget, J. Cernocký, and S. Khudanpur, “Extensions of
recurrent neural network language model,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011, May 22-27,
2011, Prague Congress Center, Prague, Czech Republic, 2011, pp. 5528–5531.

[75] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with recurrent neural
networks,” in Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, 2011, pp. 1017–1024.

[76] S. Rajeswar, S. Subramanian, F. Dutil, C. J. Pal, and A. C. Courville, “Adversarial
generation of natural language,” CoRR, vol. abs/1705.10929, 2017.

[77] K. Lin, D. Li, X. He, Z. Zhang, and M. Sun, “Adversarial ranking for language genera-
tion,” CoRR, vol. abs/1705.11001, 2017.

[78] T. Che, Y. Li, R. Zhang, R. D. Hjelm, W. Li, Y. Song, and Y. Bengio,
“Maximum-likelihood augmented discrete generative adversarial networks,” CoRR, vol.
abs/1702.07983, 2017.

[79] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin, “Adversarial
feature matching for text generation,” arXiv preprint arXiv:1706.03850, 2017.

[80] X. Wang, C. Zhai, and D. Roth, “Understanding evolution of research themes: a prob-
abilistic generative model for citations,” in Proceedings of the 19th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining. ACM, 2013, pp.
1115–1123.

[81] Z. Lu, N. Mamoulis, and D. W. Cheung, “A collective topic model for milestone paper
discovery,” in Proceedings of the 37th international ACM SIGIR conference on Research
& development in information retrieval. ACM, 2014, pp. 1019–1022.

94

[82] R. C. Barranco, A. P. Boedihardjo, and M. S. Hossain, “Analyzing evolving stories in
news articles,” arXiv preprint arXiv:1703.08593, 2017.

[83] N. Barbieri, F. Bonchi, and G. Manco, “Efficient methods for influence-based network-
oblivious community detection,” ACM Transactions on Intelligent Systems and Tech-
nology (TIST), vol. 8, no. 2, p. 32, 2017.

[84] S. K. K. Santu, C. Geigle, D. Ferguson, W. Cope, M. Kalantzis, D. Searsmith, and
C. Zhai, “Sofsat: Towards a set-like operator based framework for semantic analysis of
text.”

95

