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ABSTRACT

As the dimension of features in integrated circuits (IC) keeps shrinking to

fulfill Moore’s law, the manufacturing process has no choice but confronting

the limit of physics at the expense of design flexibility. On the other hand,

IC designs inevitably becomes more complex to meet the increasing demand

of computational power. To close this gap, design for manufacturing (DFM)

becomes the key to enable an easy and low-cost IC fabrication. Therefore,

efficient electronic design automation (EDA) algorithms must be developed

for DFM to address the design constraints and help the designers to better

facilitate the manufacture process. As the core of manufacturing ICs, conven-

tional lithography systems (193i) reach their limit for the 22 nm technology

node and beyond. Consequently, several advanced lithography techniques are

proposed, such as multiple patterning lithography (MPL), extreme ultra-violet

lithography (EUV), electron beam (E-beam), and block copolymer directed self-

assembly (DSA); however, DFM algorithms are essential for them to achieve

better printability of a design. In this dissertation, we focus on analyzing the

compatibility of designs and various advanced lithography techniques, and

develop efficient algorithms to enable the manufacturing.

We first explore E-Beam, one of the promising candidates for IC fabrication

beyond the 10 nm technology node. To address its low throughput issue, the

character projection technique has been proposed, and its stencil planning

can be optimized with an awareness of overlapping characters. 2D stencil

planning is proved NP-Hard. With the assumption of standard cells, the 2D

problem can be partitioned into 1D row ordering subproblems; however, it

is also considered hard, and no efficient optimal solution has been provided

so far. We propose a polynomial time optimal algorithm to solve the 1D row

ordering problem, which serves as the major subroutine for the entire stencil

planning problem. Technical proofs and experimental results verify that our

algorithm is efficient and indeed optimal.
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As the most popular and practical lithography technique, MPL utilizes

multiple exposures to print a single layout and thus allows placement of

features within the minimum distance. Therefore, a feasible decomposition

of the layout is a must to adopt MPL, and it is usually formulated as a

graph k-coloring problem, which is computationally difficult for k > 2. We

study the k-colorability of rectangular and diagonal grid graphs as induced

subgraphs of a rectangular or diagonal grid respectively, since it has direct

applications in printing contact/via layouts. It remains an open question on

how hard it is to color grid graphs due to their regularity and sparsity. In this

dissertation, we conduct a complete analysis of the k-coloring problems on

rectangular and diagonal grid graphs, and particularly the NP-completeness

of 3-coloring on a diagonal grid graph is proved. In practice, we propose

an exact 3-coloring algorithm for those graphs and conduct experiments to

verify its performance and effectiveness. Besides, we also develop an efficient

algorithm for model based MPL, because it is more expensive but accurate

than the rule based decomposition.

As one of the alternative lithography techniques, block copolymer di-

rected self-assembly (DSA) is studied. It has emerged as a low-cost, high-

throughput option in the pursuit of alternatives to traditional optical lithog-

raphy. However, issues of defectivity have hampered DSA’s viability for

large-scale patterning. Recent studies have shown the copolymer fill level to

be a crucial factor in defectivity, as template overfill can result in malformed

DSA structures and poor LCDU after etching. For this reason, the use of

sub-DSA resolution assist features (SDRAFs) as a method of evening out

template density has been demonstrated. In this dissertation, we propose an

algorithm to place SDRAFs in random logic contact/via layouts. By adopt-

ing this SDRAF placement scheme, we can significantly improve the density

unevenness and the resources used are also optimized. We also apply our

knowledge in coloring grid graphs to the problem of group-and-coloring in

DSA-MPL hybrid lithography. We derive a solution to group-3-coloring and

prove the NP-completeness of grouping-2-coloring.
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CHAPTER 1

A POLYNOMIAL TIME OPTIMAL
ALGORITHM FOR STENCIL ROW

PLANNING IN E-BEAM LITHOGRAPHY

1.1 Introduction

Integrated circuit (IC) fabrication continues according to Moore’s law in

achieving denser devices. Below the 28 nm technology node, conventional

193 nm immersion (193i) lithography with single exposure has reached its

printability limit, which triggers some advanced lithography techniques such

as double patterning lithography (DPL) [1] and triple patterning lithography

(TPL) [2]. However, multiple patterning lithography (MPL) introduces new

challenges such as decomposability, stitches and overlay, and the manufac-

turing cost increases exponentially with the number of masks. As a result,

other promising candidates are also being explored for the next-generation

lithography, including extreme ultraviolet lithography (EUVL) [3], directed

self-assembly (DSA) [4] and electron beam lithography (EBL). Each of the

advanced lithography techniques has its own advantages over others, but

also faces great challenges due to different process limitations. EBL, for in-

stance, is able to print extremely complicated and dense features, but faces

one major challenge of low throughput.

The most intuitive version of EBL is electron beam direct write (EBDW),

which shoots the desired patterns pixel by pixel, and thus has very low

throughput. One essential improvement of EBL is the variable shaped beam

(VSB) [5, 6], which can print an arbitrarily sized rectangle with one single

shot. However, since current layout designs contain billions of rectangles, the

throughput of VSB is still incapable of meeting the requirement. To further

improve the throughput of EBL, Character Projection (CP) (later multi-

column cell (MCC)) has been proposed [7, 8], which is capable of printing

an entire character (e.g. a standard cell) with one shot.

There are two major challenges in CP. First, how to design the set of pro-
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jection characters; second, how to plan the stencil to pack as many characters

as possible. The former problem is investigated by [8, 9]. For the latter prob-

lem, placement optimization should be performed based on the fact that the

characters can overlap at the blank margins located at the character bound-

aries, as illustrated in Fig. 1.1. The blank margin is used to reserve some

space for the scattered electrons after they pass through the aperture [7].

By sharing the blank area in Figs. 1.1(b) and (c), the characters occupy less

stencil area than those in Fig. 1.1(a). Obviously, different placements of the

characters result in different area occupation as illustrated by Figs. 1.1(b)

and (c), because the shared blank margins in total are different among dif-

ferent placement solutions. For a given set of characters, it is a challenging

problem to find their optimal placement, such that they occupy the smallest

stencil area and leave more room to insert additional characters or features.

(a) Stencil planning without 
blank margin sharing.

(b) Stencil planning with 
blank margin sharing.

D

AB

C ED

A B

C ED

A B

C E

(c) Saving more space by 
character reordering.

Figure 1.1: Comparison of stencil area occupation without and with blank
margin sharing.

In the stencil planning problem, it is reasonable to assume that the char-

acters are selected from standard cells or vertical slices of cells, which have

the same heights. In addition, those standard cell characters also share very

similar top and bottom blank margins, because a standard cell usually has

power tracks on the top and bottom, and the distance that scattered elec-

trons can travel outside the character is highly dependent on the pattern

near its boundaries. With such assumptions, we do not need to consider

the vertical placement constraints, and in consequence, the original charac-

ter placement problem can be reduced as a row ordering problem, which has

been proposed as the 1D overlapping aware stencil planning (OSP) problem

in previous works. Several attempts have been made to solve this problem.

However, Yuan et al. [10] formulated it as an NP-hard problem, and pre-

vious works [11, 10, 12] provided heuristic approaches and made a number

of assumptions to guarantee their solution’s quality and performance, for
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instance, the difference between left and right blank margins is very small.

Besides, Chu [13] use different assumptions of the process, i.e., the projection

region belongs to a set of shapes and the character can locate anywhere in the

projection region. All those assumptions are related to the EBL process and

not only need to be proved by realistic litho-experimental results, but also

make the problem much simpler. In this chapter, we neatly solve the general

row ordering problem without any additional assumption by a polynomial

time optimal algorithm and we prove its optimality rigorously. Consequently

our algorithm can be adopted in various process conditions and used as the

key subroutine for character selection and distribution in higher-level EBL

stencil planning.

The rest of the chapter is organized as follows. Section 1.2 formulates the

overall optimization problem. Then the polynomial time optimal algorithm

is provided in Section 1.3. In Section 1.4, we prove the optimality of our

algorithm and analyze its complexity. Experimental results are reported in

Section 1.5, and finally, Section 1.6 concludes the chapter.

1.2 Problem Formulation

In this chapter, we target solving the 1D row ordering problem for stencil

planning in EBL. Given a set of n characters C = {c1, c2, ..., cn}, where

each character ci has left blank margin li and right blank margin ri as

shown in Fig. 1.2 (a), we can generate a set of blank margin pairs asso-

ciated with C, denoted by Cp = {(l1, r1), (l2, r2), ..., (ln, rn)}. By reorder-

ing Cp, a sequence of pairs can be obtained, which is denoted by Sp =

{(ls1 , rs1), (ls2 , rs2), ..., (lsn , rsn)}. We define its cost by the total length of

blank margins occupied by all characters after blank margin sharing, as de-

scribed in Eq. 1.1:

CostSp = ls1 + Σn−1
i=1max(rsi , lsi+1

) + rsn (1.1)

For example in Fig. 1.2(b), if we place the three characters in the order of

{ci, ck, cj}, the sequence cost would be li +max(ri, lk) +max(rk, lj) + lj. On

the other hand, if we reorder them to be {cj, ci, ck}, the sequence cost can

be reduced accordingly. Based on that, we define the row ordering problem.
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cjckci

ci

li ri
li ri

lj

rj

lk

rk

(a) (b)

cj

lj rj

ci
li

ri

ck
lk

rk

Figure 1.2: Area saving by blank margin overlapping.

Row Ordering Problem (ROP): Given a set of blank margin pairs Cp,

find its optimal order Sp, such that the sequence cost CostSp is minimal.

1.3 Algorithm

In this section, we will illustrate and discuss our algorithm step by step. In

Section 1.4, we will prove the optimality and the time efficiency.

First, we will give a lower bound of the Cost for all the possible solutions.

Next, we will discuss the feasibility issue of the lower bound solution and

some notation will be defined. Finally, we will solve the feasibility issue by

presenting an minimum spanning tree-based algorithm.

1.3.1 From Order to Matching

We create a complete bipartite graph G, namely KN,N by making all left

blank margins ri as indices in one set and all right margins li as indices in

the other set, and connect all possible li and ri as shown in Fig. 1.3(a). The

edge (rx, ly) has the weight ei = max(rx, ly), and means that the original

pairs (lx, rx) and (ly, ry) can be connected in the order of (lx, rx)(ly, ry). For

an order of the pairs, there is a corresponding matching between the left and

right blank margins li and ri in the bipartite graph. As shown in Fig. 1.3(b),

for an order Sp = {(l1, r1), (l2, r2), ..., (ln, rn)}, we connect the adjacent rx

with lx+1, and the edges not in the matching are not shown. For instance,

for two pairs (l1, r1) and (l2, r2) which are ordered as (l1, r1), (l2, r2), we create
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an edge to connect r1 and l2. In this way, we have a matching as shown in

Fig. 1.3(b), in which all numbers are connected by an edge except for l1 and

rn. We call the matching with one edge less than the perfect matching as

almost-perfect matching. If we add a dummy edge of l1 and rn, then we

have a perfect matching of the graph. As a result, the optimization problem

becomes the following.

Weighted Almost-Perfect Matching Problem (WAMP): Find an

almost-perfect matching in G by deleting one of the matching edges from a

perfect matching in G, such that a set of edges Es of the matching is able

to define an order of the given pairs with the lowest Cost, where Cost =

ΣN−1
i=1 ei∀ei ∈ Es.
Also, we use Cost∗ to represent the cost of a perfect matching, and Cost is

the cost of almost-perfect matching. Note that, though an order has a corre-

sponding matching, conversely an almost-perfect matching is not always able

to define an order of the pairs. One counterexample is shown in Fig. 1.4(b)

and will be illustrated in Section 1.3.2. The problem as well as the general

WAMP will be addressed in the following sections.
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Figure 1.3: Perfect and almost-perfect matching between two arrays.
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1.3.2 Lower Bound by Sorting and Naive Matching

Intuitively matching two numbers with a big difference is not desirable be-

cause it means a waste of potential to save more area. This leads us to first

sort the numbers. We sort the left blank margins li and right blank mar-

gins ri independently in the descending order of their value, as illustrated

in Fig. 1.4. For future convenience, we denote the sorted array of left com-

ponents li as L and the sorted array of right components as R, as shown in

Fig. 1.4(b). In order to match up numbers with the smallest differences, we

adopt a naive matching strategy by connecting the rix and lix with the same

index x in the sorted array. Specifically, if any pair of entries rx and ly have

the same array index after sorting, we connect them with an edge as illus-

trated in Fig. 1.4(b), meaning that the original pairs (lx, rx) and (ly, ry) are

arranged in the order of (lx, rx)(ly, ry). Once all left and right components

are connected, we have a perfect matching for all the numbers, namely an

assignment for their neighbors.
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Figure 1.4: Sorting two arrays.

However, as mentioned before, perfectly matching R and L by the same

index probably will not result in a valid ordered sequence of pairs, but one

6



or multiple cycles. For instance, if after sorting we have R and L as shown

in Fig. 1.5(a), we will end up with one cycle of pairs corresponding to the

perfect matching. On the other hand, if R and L are ordered as shown in

Fig. 1.5(b), we will have three cycles.

So Cost∗ of perfect matching can also represent the cost of cycles, and

Cost can represent the cost of almost-perfect matching or a sequence. On

the other hand, by the naive matching strategy, we claim that this perfect

matching with the same index will give us a lower bound of the Cost∗, which

is Cost∗IDEAL. If the solution set of perfect matching is Ω, then we have the

following lemma.

Lemma 1. Cost∗IDEAL ≤ Cost∗ω for all ω ∈ Ω

The proof will be given in Section 1.4. Then we discuss the cases of one

and multiple cycles.

Figure 1.5: Examples of one and multiple cycles.

One cycle

In the case of only one cycle, we can simply cut a cycle into a sequence.

In other words, we need to delete one of the edges in G in order to get an
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almost-perfect matching from a perfect matching. Here, we use Cost∗ to

represent the cost of a cycle or a perfect matching, and Cost is the cost of

almost-perfect matching. Say we have a cycle β that needs to be cut into a

sequence B; its cost is defines as:

Cost∗β = max(lβ1 , rβN ) + ΣN−1
i=1 max(rβi , lβi+1

)

= CostB − φ , where φ ∈ L
⋃

R
(1.2)

To obtain the almost-perfect matching with the smallest cost increment φ

from perfect matching, we pick the edge of the smallest number in the

set of L
⋃
R to delete, because deleting one edge means breaking one of

the N maximization braces in Eq. 1.2, and the smaller term in the brace

would be φ. So φ has to be the smallest number in L
⋃
R. This gets the

almost-perfect matching and a valid sequence without losing any optimal-

ity. Since the smallest number is always in the bottom of the array R and

L, we just need to delete the last edge in the perfect matching. In the

example of Fig. 1.5(a), we cut the edge (r6, l8) and have the sequence as

(l8, r8)(l4, r4)(l2, r2)(l1, r1)(l5, r5)(l3, r3)(l7, r7)(l6, r6).

So by this method, we can always get the best almost-perfect matching

with the smallest Cost based on a perfect matching. Then minimizing Cost

is the same as minimizing Cost∗. Additionally, in this case, there is only

one cycle and it has the smallest Cost∗ already. As a result, we have the

smallest Cost after deleting the last edge and obtain a valid order of pairs.

Thus WAMP is solved in the case of one cycle.

Multiple cycles

Clearly we cannot have a valid order of the pairs if we have multiple cycles.

Solving it is the key part of our algorithm. The idea is to merge all cycles into

one and then adopt the method in the case of one cycle to obtain a sequence.

The difficulty is how to guarantee the optimality, which means having the

smallest Cost∗ after merging. The algorithm dealing with this issue will be

discussed in detail in the following sections.

To sum up, sorting and bipartite matching of numbers with the same

indexes can give us an ideal case of ordering which has the smallest possible

Cost, and can output an optimal solution if only one cycle is produced;
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otherwise, the solution might not be valid.

1.3.3 Multiple Cycles Analysis

If we have multiple cycles after naive matching, the remaining problem would

be how to get a feasible solution and guarantee the optimality at the same

time. In this section, we will defines several notations used to address this

issue in the Section 1.3.4. In order to make it clear, we use the example

shown in Fig. 1.5(b) to illustrate them.

Figure 1.6: Different types of edge-switch.

Region

In the ideal case, we can divide the sorted array R and L into several regions

such that one region represents one cycle. As shown in Fig. 1.5(b), region I

represents Cycle I and similarly for regions II, III, and they are distinguished

by different colors. Note that it is not necessarily true that one region is

formed by consecutive matched pairs. It can consist of multiple intervals of

consecutive matched pairs, i.e. region III.
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Table 1.1: ∆Cost

∆Cost
Edge-switch

Type 1 Type 2

Relation Type 1,2
min(riu , liv) −min(riu , liv)
−max(rix , liy) +max(rix , liy)

Type 3 0 0

Boundary

We use B to represent the boundary between two adjacent regions in the

arrays. As shown in Fig. 1.5(b), BI,II
i denotes the ith boundary between

regions I and II.

Relation

We define relation to be the value ordering of the four numbers involved in

any two matching edges. As shown in Figs. 1.6(a) and (b), the numbers

involved are riu , rix , liv , liy , and we have that riu > rix and liv > liy . Without

loss of generality, we can assume that riu > liv , because other cases with

riu < liv are just symmetrical, and we do not need to discuss them again.

Then there are three cases of their relation:

Type 1: riu > liv > rix > liy .

Type 2: riu > liv > liy > rix .

Type 3: riu > rix > liv > liy .

Edge-switch and ∆Cost

Edge-switch basically means the exchange between two ending points of any

two matching edges. It helps us merge cycles. For example in Fig. 1.7(a),

there are three cycles in the ideal case. If we do two edge-switches at the

boundary between (r2, l1), (r3, l4) and the boundary (r4, l3), (r5, l6), then

three cycles get merged as shown in Fig. 1.7(b). Obviously, any two matching

edges can be switched, and if they are from two different regions then two

cycles get merged. ∆Cost is the increment of Cost∗ of the matching during

an edge-switch. To make it clear, we can put edge-switch into two categories

to discuss following.

Type 1: Edge-switch from non-crossing to crossing. As shown in Fig. 1.6,
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from (a) to (b), it is a type 1 edge-switch, since two matching edges are

not crossing each other in (a) but they are crossing in (b). We discuss its

∆Cost in three different types of relation between the numbers involved in

this edge-switch.

1. Type 1 Relation:

In Fig. 1.6(a), Cost∗ = riu + rix before the edge-switch. In Fig. 1.6(b),

Cost∗ = riu + liv after the edge-switch. Thus, ∆Cost = liv − rix > 0.

2. Type 2 Relation:

In Fig. 1.6(a), Cost∗ = riu + liy before the edge-switch. In Fig. 1.6(b),

Cost∗ = riu + liv after the edge-switch. Thus, ∆Cost = liv − liy > 0.

3. Type 3 Relation:

In Fig. 1.6(a), Cost∗ = riu + rix before the edge-switch. In Fig. 1.6(b),

Cost∗ = riu + rix after the edge-switch. Thus, ∆Cost = 0.

Consequently, for type 1 edge-switch, ∆CostType1 ≥ 0.

Type 2: Edge-switch from crossing to non-crossing. As shown in Fig. 1.6,

from (b) to (a), it is type 2, and we also discuss its ∆Cost in three cases.

1. Type 1 Relation:

In Fig. 1.6(b), Cost∗ = riu + liv before the edge-switch. In Fig. 1.6(a),

Cost∗ = riu + rix after the edge-switch. Thus, ∆Cost = rix − liv < 0.

2. Type 2 Relation:

In Fig. 1.6(b), Cost∗ = riu + liv before the edge-switch. In Fig. 1.6(a),

Cost∗ = riu + liy after the edge-switch. Thus, ∆Cost = liy − liv < 0.

3. Type 3 Relation:

In Fig. 1.6(b), Cost∗ = riu + rix before the edge-switch. In Fig. 1.6(a),

Cost∗ = riu + rix after the edge-switch. Thus, ∆Cost = 0.

Consequently, for type 2 edge-switch, ∆CostType2 ≤ 0.

From the case study above, we can find that the value of ∆Cost can be

determined in Table 1.1. So, if the two numbers on one side are both larger

than the two on the other side, namely type 3 relation, the ∆Cost of the

edge-switch is always zero. Otherwise, the absolute value of ∆Cost is the
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Figure 1.7: Edge-switch-on-boundary and edge-switch-not-on-boundary.

difference between the smaller one of the top two numbers and the larger one

of the bottom two numbers. The sign of ∆Cost is determined by the type of

the edge-switch.

Edge-switch-on-boundary

We define edge-switch-on-boundary literally as an edge-switch which takes

place right on the boundary such that all four numbers involved are located

right on the boundary. As shown in Fig. 1.7(b), there are two edge-switch-

on-boundaries. For other cases of edge-switch, they are edge-switch-not-on-

boundary, i.e. the only edge-switch as shown in Fig. 1.7(c).

1.3.4 Cycle Merging

In this section, we solve the remaining part of the problem, which is how to

address the case of multiple cycles after the naive matching. The problem is

defined as a Cycle Merging Problem (CMP): Merge all cycles (regions

in the sorted array R and L) after naive matching into one cycle by finite

steps of edge-switches such that total ∆Cost is minimized.
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We adopt a minimum spanning tree (MST) based algorithm to merge all

cycles and further generate a valid order of pairs. Since the naive matching

gives the lower bound of Cost∗, we need to minimize the Cost∗ increments

of the edge-switches during the merging. Thus, we start from the ideal case,

and eventually get a valid solution by adopting appropriate steps of edge-

switches.

Benefitting from the sorted array, we can merge cycles by merging regions

in R and L. For any two regions, we can pick any edge from each region and

switch them in order to merge the regions. But in our algorithm, we just

consider the edge-switch-on-boundaries, such as the case shown in Fig. 1.7(b),

because of Lemma 2.

Lemma 2. For any not edge-switch-on-boundary, the ∆Cost is equal to

or larger than the summation of all ∆Cost belonging to all edge-switch-on-

boundaries in between.

The proof is given in the Section 1.4. Additionally, all edge-switch-on-

boundaries in between can merge all regions in that area instead of just two

regions. For instance as shown in Figs. 1.7(b) and (c), if you choose (r1, l2)

and (r6, l5) to switch like (c), it would be better to switch (r2, l1) and (r3, l4)

as well as (r4, l3) and (r5, l6), because they have the smaller ∆Cost by Lemma

2 and not only merge two regions but all the three regions from (a). So we

only need to consider the edge-switch-on-boundary as our potential selection

for edge-switch.

With all possible edge-switch-on-boundaries and their ∆Cost, we can con-

struct a graph H by assigning a vertex for each region and connect two

vertices if the regions that they represents have a common boundary. Addi-

tionally, the distance of each edge in H is the ∆Cost of the edge-switch on

the corresponding boundary. For example in Fig. 1.5(b), we can construct

a graph as shown in Fig. 1.8(a), where ∆CostI,IIi means the ∆Cost of the

edge-switch on the BI,II
i .

Consequently, merging all regions into one region with the smallest total

∆Cost becomes finding the MST in this graph, because the MST connects

all vertices and thus all regions are merged into one if we actually switch the

edge picked by the MST.
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Figure 1.8: Find the optimal solution by performing the MST algorithm.

Minimum spanning tree

We use the same example in Fig. 1.5(b) to explain our algorithm. If we have

all pairs as (l1, r1) = (15, 3), (l2, r2) = (10, 1), (l3, r3) = (8, 9), (l4, r4) = (5, 6),

(l5, r5) = (7, 16), (l6, r6) = (12, 11), (l7, r7) = (14, 4), (l8, r8) = (2, 17), then

from top to bottom:

∆CostII,III1 = (r8 + r5)− (r8 + r5) = 0,

∆CostI,II1 = (r5 + l7)− (r5 + l6) = 2,

∆CostI,III1 = (r6 + l6)− (l6 + l2) = 1,

∆CostII,III2 = (l3 + l5)− (l3 + l5) = 0,

∆CostII,III3 = (l5 + l4)− (l5 + l4) = 0.

Then we use Kruskal’s algorithm [14] to find the MST shown in Fig. 1.8(b).

In this example, the MST contains BII,III
2 and BI,III

1 .

Edge-switch after MST

Next, we need to perform the edge-switches picked by the MST algorithm.

We switch the edge on BII,III
2 and BI,III

1 and thus obtain a valid solution of

only one cycle, as shown in Fig. 1.9(b). Finally, we have the final Cost∗ALG
as

Cost∗ALG = Cost∗IDEAL + Σ∆Cost(e),∀e ∈ MST (1.3)

There is one circumstance that we need to discuss a little more. As shown

in Fig. 1.10(a), after finding the MST, if we want to do edge-switches on

both BI,II
1 and BII,III

1 , then as shown in Fig. 1.10(b), after we switch edges on

BI,II
1 , the problem is that we no longer have the edge-switch-on-boundaries on
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Figure 1.9: Merge cycles based on MST.
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Figure 1.10: Edge-switch examples.

BII,III
1 available. However, we can do the edge-switch between edge (ri3 , li3)

and either edge (ri1 , li2) or edge (ri2 , li1).

The solution is that we always easily select the edge containing the smaller

value of ri2 and li2 to switch with (ri3 , li3). Without loss of generality, if ri2 >

li2 , we select the edge (ri1 , li2) and do the switch as shown in Fig. 1.10(d).

After this step, we claim that we have the same total ∆Cost = ∆CostI,II1 +
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∆CostII,III1 as what we desire. The reason is as follows.

In Fig. 1.10, we already have ∆CostI,II1 toward the total ∆Cost from (a) to

(b). So, in order to merge cycle II and cycle III, we just need to show that the

∆Cost of (b) to (d) is still ∆CostII,III1 which is the δCost of (a) to (c). The

four numbers involved in those two edge-switch operations, (ri2 , li2 , ri3 , li3)

in (a) and (ri1 , li2 , ri3 , li3) in (b) have the same relation type, because ri1 >

ri2 > li3 implies that the largest number among the four becomes rr1 from

ri2 and all other numbers stay the same. According to Table 1.1, the largest

value in the relation does not affect the δCost of the edge-switch. Thus,

from (b) to (d), the ∆Cost is still ∆CostII,III1 = li2 − ri3 . Even if we have

more consecutive edges that need to be switched, we just need to adopt this

technique iteratively. As a result, we solve this problem without losing any

optimality.

To sum up our algorithm to solve ROP, we first address the problem of

WAMP and then obtain the optimal order of pairs with minimum Cost

based on the matching. The overall flow of solving ROP is presented as the

following algorithms.

Algorithm 1: ROP’s algorithm

Data: A set of margin pairs of (li, ri)
Result: An order of pairs with minimal Cost

1 Construct a complete bipartite graph G;
2 Obtain an almost-perfect matching by solving WAMP;
3 return the order determined by the almost-perfect matching;

Algorithm 2: WAMP’s algorithm

Data: Graph G built by pairs of (li, ri)
Result: A minimal Cost almost-perfect matching creating an order

of pairs
1 Sort ri and li respectively and do Naive Matching;
2 switch Number of cycles after the naive matching do
3 case One cycle do
4 Delete the last edge in the sorted G;
5 return the almost-perfect matching;

6 case Multiple cycles do
7 Merge all cycles by solving CMP;
8 Go to case One cycle;
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Algorithm 3: CMP’s algorithm

Data: Cycles (regions) determined by naive matching
Result: One cycle (region) with minimal sum of all δCost

1 Construct a graph H by regions and Boundaries;
2 Find the MST in H by Kruskal’s algorithm;
3 Switch the edges picked by the MST;
4 return the cycle after edge-switches;

1.4 Proof

In this section, we will prove the optimality of the algorithm we presented in

Section 1.3.

Note that there might be more than one optimal ordering, but our algo-

rithm can only output one of them. If we have the optimal solution OPT

which has smaller cost CostOPT than our algorithm’s CostALG, we will show

that this is not possible. We also use CostIDEAL to represent the case just

after the naive matching with the lower bound of Cost. Because of the reason

stated in Section 1.3.1, we think of ordering as matching instead, in other

words, proving the optimality of WAMP instead of proving ROP directly.

Note that if we just have one cycle after the naive matching, then we use

cut strategy to have the optimal solution. So we just need to consider the

multiple cycles case and its Cost∗IDEAL, Cost∗ALG and Cost∗OPT . In order to

determine the relationship between the ideal case and all possible ordering,

we have the following lemma.

Lemma 3. Any perfect matching in G can be achieved by finite steps of type

1 edge-switch with ∆Cost ≥ 0 from the ideal case.

Actually, because all type 1 edge-switches have non-negative ∆Cost, we

can see that

Lemma 3⇒ Lemma 1 (1.4)

Thus, proving Lemma 3 can be applied to prove Lemma 1.

Proof of Lemma 3:

Base step: (1) N = 1. As shown in the Fig. 1.11(a), there is only one

possible ordering. (2) N = 2. There are two possible matching cases as

shown respectively in Fig. 1.11(b) and (c). One type 1 edge-switch can be

done from the ideal case (b) to (c).
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Figure 1.11: Base cases.

Inductive hypothesis:

Assume that when N = k, any perfect matching can be achieved by finite

steps of type 1 edge-switch from the ideal case.

When N = k + 1, we have k + 1 pairs. Say we have an arbitrary perfect

matching between R and L as shown in Fig. 1.12(a). As shown Fig. 1.12(b),

we have another perfect matching in Fig. 1.12(b) which is the same as in

Fig. 1.12(a) except for the edges between ri1 , li1 , rix , liy . It is obvious that

from Fig. 1.12(b) to Fig. 1.12(a), we just need one type 1 edge-switch step.

For (b), the bottom k pair matchings, by the hypothesis, can be transformed

from the ideal case by finite steps of type 1 edge-switch. Thus, with one more

edge-switch of type 1, we can always achieve an arbitrary perfect matching

of k + 1 pairs. So the lemma is true. Next, we prove Lemma 2.
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Figure 1.12: Inductive steps.
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Proof of Lemma 2:

Refer to Fig. 1.7. If we do an edge-switch-not-on-boundary of (rx, lx) with

(ry, ly) for 0 ≤ x < y ≤ N , and there are M edge-switch-on-boundaries of

(rmi
, lmi

) with (rmi+1, lmi+1) such that mi ≥ x and mi + 1 ≤ y, then we

want to show that edge-switch-not-on-boundary ∆Costnb is larger or equal

to Σi=M
i=1 ∆Costobmi

where ∆Costobmi
represents the ∆Cost for the edge-switch

of (rmi
, lmi

) with (rmi+1, lmi+1).

1. Type 3 relation of rx, ry, lx, ly

∆Costnb = 0 by Table 1.1. Additionally, since rx > ry > lx > ly,

mi ≥ x and mi + 1 ≤ y , we have ∀mi, rmi
> rmi+1 > lmi

> lmi+1 and

∆Costobmi
= 0. Thus, ∆Costnb = Σi=M

i=1 ∆Costobmi
= 0, and the lemma is

true in this case.

2. Type 1 and 2 relations of rx, ry, lx, ly

Assume that we have a counterexample such that ∆Costnb < Σi=M
i=1 ∆Costobmi

.

Then by Table 1.1, we have

∆Costnb <Σi=M
i=1 ∆Costobmi

min(rx, lx)−max(ry, ly)

<min(rm1 , lm1)

−max(rm1+1, lm1+1) +min(rm2 , lm2)︸ ︷︷ ︸
<0

−max(rm2+1, lm2+1) + ...+min(rmM
, lmM

)︸ ︷︷ ︸
<0

−max(rmM+1, lmM+1)

<min(rm1 , lm1)−max(rmM+1, lmM+1)

Note that −max(rmi+1, lmi+1) + min(rmi+1
, lmi+1

) ≤ 0,∀i ≤ M , since

rmi+1 and lmi+1 are above the rmi+1
and lmi+1

in the sorted R and L

arrays. But it is not possible because min(rx, lx) ≥ min(rm1 , lm1) and

max(ry, ly) ≤ max(rmM+1, lmM+1). Thus, there is no counterexample

and the lemma is true in this case.

So, Lemma 2 is true.
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Proof of optimality:

If we have the optimal solution OPT , by Lemma 3, it can be achieved by

finite steps of type 1 edge-switch from the ideal case. At the starting point

of the ideal case, we have multiple cycles, but for any one of those switches,

if its four numbers involved are all inside the region, it cannot make any

contribution to merge the cycles. Thus, some of those switches must be cross

two regions. Besides, all regions must be merged, so those switches must

touch all cycles. Thus, those switches can construct an spanning tree in a

graph H ′ where there is one vertex for each cycle (region), and there is an

edge (u, v) with ∆Cost(u,v) for one of all possible switches that crosses any

two different regions u and v. Next, we just need to prove that this spanning

tree in H ′ has the total ∆Cost larger than or equal to the total ∆Cost of

the MST in H defined in Section 1.3.4.

By Lemma 2, H ′ can be transformed into H by a way that for every edge

of edge-switch-not-on-boundary, replace it by one or more edges of edge-

switch-on-boundary, and then merge the edges with the identical ∆Cost.

Additionally by the Lemma 2, after the transformation, the smallest ∆Cost

between any two vertices stays the same. Thus, the MST in H is also the

MST in H ′. As a result, we prove that the spanning tree of OPT in H ′

has the total ∆Cost larger than or equal to the total ∆Cost of the MST in

H by our algorithm. By Eq. 1.3, Cost∗OPT ≥ Cost∗ALG. Then, by Eq. 1.2

CostOPT ≥ CostALG. OPT could not be more optimal than ALG, so our

algorithm can output an optimal solution.

The overall running time of our algorithm is definitely polynomial. Sorting

and doing the naive matching to obtain the ideal case takes O(N logN) time,

where N is the size of the set of characters. For finding the MST in the graph

G, the number of edges in G is at most N , since the number of boundaries

in the sorted arrays is at most N . Consequently, it can be done within

O(N logN) by Kruskal’s algorithm.

Generally, we have found that all possible solutions can be transformed

from the ideal case and our algorithm can give the optimal solution which

complete the transformation with the smallest Cost increment. Thus, our

algorithm can generate the optimal solution for stencil row planning problem.
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1.5 Experimental Results

We implement our algorithm in C++ and test it on a Linux workstation

2.5G Hz CPU and 126 GB memory. Since the previous works [11, 10, 12]

use some assumptions to generate characters having similar left and right

blank margins, which might not be realistic, we create our own benchmarks

with a set of characters with blank margins generated randomly. They are

controlled to be less than the actual character size (the area impossible to be

overlapped). Input is a certain set of characters, and output is the minimum

total length of those characters in a row. We run our algorithm and only

algorithms of [11, 10] on our benchmarks, since [12] is shots saving driven and

cannot insert more characters comparing to the other two. The comparison

result is shown in Table 1.2. The number of characters is reported in column

1. The total length of blank margins, namely Cost, and running time are

reported for all three algorithms. Speed-up and length improvement are also

calculated. Because of [10]’s running time issue, the last two test cases are

not reported for it.

As shown in Table 1.2, comparing to [10], we can improve the result by

more than 5% and it is orders of magnitude faster, because [10] uses the

Hamiltonian path based method, which approximates the result but is still

not efficient, especially when the number of characters is growing. By the

comparison to [11], we can improve the result a lot and also have good speed-

up. And the runtime confirms that the time complexity of our algorithm is

O(n log n) where n denotes the number of characters. According to [10],

solving row ordering problem consumes most part of the running time of

the entire stencil planning flow. So our algorithm can be adopted and have a

great impact of performance on the solution of the overall problem. As for the

quality of the result, because of the limited data set that we have right now,

those heuristics with assumptions might perform poorly on future industrial

data. On the other hand, since we have already proved the optimality of

our algorithm, we can always achieve the best solution theoretically and the

experiments also agree with that. Adopting our algorithm, we save space in a

row, thus more characters can be inserted into the stencil and further reduce

the number of shots needed to print the layout. Additionally, our algorithm

becomes essential if the number of characters is large.
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1.6 Conclusion

In this chapter, we propose a polynomial time algorithm to solve the 1D

row ordering problem optimally for EBL stencil planning. Optimality is

proved theoretically, and the high quality as well as the high efficiency of

our algorithm are also verified by the experiments compared with previous

works. In the CP technology, our algorithm serves as a key subroutine for

the high-level character selection and distribution problem. Those problems

are proved NP-hard, but any solution of them can still benefit significantly

from our algorithm.
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CHAPTER 2

MODEL-BASED MULTIPLE PATTERNING
LAYOUT DECOMPOSITION

2.1 Introduction

Conventional lithography (193i) has reached its limit, as the minimum feature

size is consistently shrinking below 10 nm technology node. Other emerging

alternative lithography technologies such as E-beam [15], Extreme ultraviolet

(EUV) and Derected Self-Assembly (DSA) [16, 4] have been proposed and

researched for decades. However, E-beam suffers from its low throughput

issue. EUV and DSA have many fabrication process challenges to solve

before it is used for high volume manufacture. Thus, Multiple Patterning

Lithography (MPL) is widely adopted along with 193i in industry as the

favorite advanced resolution enhancement technique. Moreover, MPL could

also be used as a hybrid with EUV and DSA, if the minimum feature size

keeps shrinking.

Because of the optical diffraction effects, small features or ones that are too

close to each other cannot be printed by a single exposure. More specifically,

features within the minimum distance dmin are defined as conflicted and have

to be printed separately by different exposures in MPL. Thus, different masks

are needed, and the most challenging issue of MPL becomes how to decom-

pose the layout into different masks, e.g. two masks if Double Patterning

Lithography (DPL) and three masks if Triple Patterning Lithograph (TPL).

Traditionally, the decomposition is done by assigning the features within

dmin into different masks. It is called Rule-Based Decomposition (RBD),

and most research efforts have been devoted to it. Yu et al. [17] propose

an ILP-based algorithm, but it suffers exponential runtime. A semi-definite

programming technique is used to improve the runtime. However, it may

run into sub-optimal solution. Fang and Pan [18] use a graph based method,

which cannot always find a solution even if it exists and also relatively gen-
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erates more stitches. Tian et al. [19] propose a polynomial algorithm for row

structure layout, which can solve RBD optimally.

However, using the minimum distance as the only criteria to separate fea-

tures is obviously inadequate, for example, it does not consider the interaction

of near field waves and the fact that close proximity effect may be beneficial.

As shown in Fig. 2.1(b), the middle polygon has better corner rounding if two

polygons are closer than dmin comparing to Fig. 2.1(a) where two polygons

are far apart. However, RBD may separate the two polygons in Fig. 2.1(b)

into two different masks and the corner rounding would be like in Fig. 2.1(a).

In general, RBD is not accurate. Model based decomposition (MBD) is con-

sequently needed to improve the actual printability. MBD decomposes the

layout into multiple masks based on optical simulations and aims for achiev-

ing best printability on all the masks. The quality of the decomposition

is determined by the Edge Placement Error (EPE) or Intensity Log Slope

(ILS) of the simulation result for all masks. To our best knowledge, there are

several works on MBD, Rodrigues and Kundu [20] introduce a model based

double patterning decomposition method based on simulated annealing. But

both of the optical simulations and the convergence of simulated annealing

are very time consuming. According to its experimental results, thousands

of the polygons need to be processed for more than 10 hours. On the other

hand, there may be millions or even billions in the layout of big designs,

so this work not only cannot guarantee optimality by using simulated an-

nealing, it is also considered impracticable. Recently, ASML [21] proposes

a patent to solve the MBD for multiple patterning. It creates simulation

points along the features’ boundaries and keeps track of their ILS from the

simulations and then iteratively change the decomposition trying to improve

the result. (Though the experimental result or implementation detail is not

revealed to public, the convergence of this method could have very large run-

ning time by nature.) Also another major drawback is that many stitches

can be potentially produced in this method, and it is well known that the

stitches increase the difficulty of manufacture. The detailed comparison to

previous works will be illustrated in Section 2.2. In general, model based

decomposition potentially consumes more computational resources compar-

ing to RBD, since it needs to simulate the patterns by optical model for

exponential times which could be very expensive in terms of running time.

Additionally we cannot construct a conflict graph of features and run graph
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algorithms on it like RBD, since there is limited information of one decom-

position solution’s quality unless it is actually simulated. So the problem is

far more difficult than RBD. For a standard cell design, we propose a novel

framework to solve MBD for a whole layout in a reasonable runtime. We first

preprocess the standard library by simulations, secondly build our library for

possible local decomposition solutions, and finally construct a graph, where

a shortest path algorithm runs to select the optimal decomposition solution.

The details will be explained in following sections.

(a) (b)

Optimization
Change mask assignment

Optical Simulation 

Improved ?

Commit the change

No

Yes

Optical Simulation 

Library

Optimization

Graph construction

Graph algorithm
Look-

up

(c) (d)

Figure 2.1: (a)-(b), MBD has better corner rounding. (c)-(d), other frame-
works versus ours.

The chapter is organized as following. The motivations and the literature

reviews are given in Section 2.2. The preprocessing step is discussed in Sec-

tion 2.3. The algorithm is illustrated in Section 2.4. Finally, the experimental
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result is shown in Section 2.5.

2.2 Motivation

In this section, we introduce some background terminologies and explain the

motivations of our work by analyzing the drawbacks of the previous work.

The flow of our framework is also illustrated.

The runtime of MBD comes from two part: simulation and optimization.

It is well known that optical simulations are time consuming. However, both

previous works [20, 21] use a similar framework that iteratively assigns some

features into different masks and then do the simulation to evaluates the

improvement and decide whether the new assignment is accepted or not,

as shown in Fig. 2.1(c). This strategy may have runtime issues, since its

convergence may be slow in some cases and also may get stuck in the local

optimal solution. It is even worse that for every iterative step, we need to do

optical simulations. So we have to iterate through the loops of optimization

phase and simulation phase, which is extremely inefficient. They use some

techniques trying to reduce the runtime. We use the term ambit(AM) for

the distance that optics have notable influence. The first technique is that

instead of simulating the full layout, we only re-simulate the ambit area

of the changing features in every iteration. We adopt the similar idea but

use windows, which will be explained in Section 2.3. The second type of

technique is to speed up the convergence. Rodrigues et al. [20] use simulated

annealing, while Socha [21] relies on the gradient and the Hessian of ILS

regarding to mask assignment to indicate whether a mask movement is the

most beneficial.

Nevertheless, the iterative method itself by nature is inefficient and possi-

bly gets sub-optimal results in some cases, since it lacks the global view of

the optimization and wastes computational resources on local optimization

moves. Simulated annealing [21] is very consuming according to the exper-

imental results, and only thousands of features can be processed. Though

Socha [21] does not reveal experiment data nor its implementation detail,

but it is easy to see that it potentially consumes lots of runtime, since it

fragments the layout and creates many evaluation points, which enlarges the

input set of the program. Additionally, it may creates many unnecessary
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stitches. The difficulty of the problem becomes how to reduce the runtime

but be able to achieve the quality of MBD for the entire layout. Thus, as

shown in Fig. 2.1(d), we propose a framework that instead of doing opti-

mization and simulation in series. We first preprocess the simulations of

some patterns to get enough information of possible layout decompositions

and build a library based on it. Secondly we construct a graph by scanning

through the layout and looking up the library. Finally we run an efficient

algorithm on the graph to solve for the best mask assignment. In general,

our framework does the simulation and optimization in parallel such that the

optimization does not need to wait for the simulation, and the simulations

can be reused for a different layout since they just need to be done once for

the standard cell library.

2.3 Preprocessing

Since we assume that the layout design is based on a standard cell library,

there are many frequent patterns in the layout. Thus, we can preprocess

the simulations to save runtime. The preprocess is done by three steps: (1)

defining the window, (2) getting a decomposition solution set for individ-

ual windows, and (3) getting the decomposition solution set for consecutive

windows. The goal is to build a library such that when we solve the decom-

position of the whole layout, we do not need to re-simulate but rather look

up the available solutions.

2.3.1 Windows Creation

First, we define a window to be the unit area that is actually simulated.

In our framework, the height of the windows is selected as the height H of

all standard cells, and the width is selected as the minimum width W of

all standard cells. The size of the windows is a design decision and can be

designed differently, such as the largest common factor for all standard cells.

However, we will show later that our framework can work with any window

width less than W . As an example standard cell library shown in Fig. 2.2(a),

the window size is determined as the size of an inverter. Next, all other cells

in the library are divided into unit windows and we create a window library
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Figure 2.2: Standard cells are split into windows.

π = {wi}. Note that we have partial window sometime, but it could be

handled. The total of different windows in the library is N . In the example,

we have a set of 11 different windows w1 to w11. If the layout is produced

by the standard cells, it is also covered by window library π. For the layout

shown in Fig. 2.2(b), it is covered by patterns from w1 to w11. Note that the

windows are overlapped vertically at the power tracks, but we assume that

all the power tracks are preassigned to mask 1.
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Figure 2.3: Each window has a set of possible solutions.
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2.3.2 Solution Set of a Window

Secondly, we build a solution set αi = {Sik} for each window wi, where Sik
represents each solution. Since the number of features in one window is

limited (usually less than 10), thus we can easily simulate all enumerations

of features’ mask assignments (decompositions) and get their EPE values. In

αi, we record a cost Sik to indicate the quality of the kth solution of wi, where

the cost is defined as the EPE value. Note that we preassign all the power

track into one of the mask, say mask 1. Considering the memory usage, one

option is that we can only record the K best solutions. So K could be altered

by designers. In this chapter, we use K = 3 for illustration convenience and

the experiments are also done under the same assumption. As shown by an

example in Fig. 2.3, for one row in the layout, we have the solution sets from

α1 to α11.

2.3.3 Solution Set of Consecutive Windows

However, the optical influence can go across the windows, thus it is not suffi-

cient to just record the cost of the solutions of individual windows. Because

of the standard cell design assumption, the layout is row-based as shown

in Fig. 2.2(b). Additionally the power tracks are preassigned and they are

much thicker than features, thus the optical influence between vertical win-

dows can be neglected [19]. Horizontally, we have ambit AM defined as

the optical influence distance. So for each window wi, we group all windows

within the ambit, say they have indices from r1 to rC , where C is the number

of windows in the group. Then we simulate all possible combinations of the

available solution from each of their solution set αri if 1 ≤ i ≤ C, and we

call those windows the relatives of wi. For convenience, we assume that the

ambit is the same with the unit width of a window. As an example shown

in Fig. 2.4(a), w2’s simulation quality can be affected by w1 and w3, thus all

combinations of S1
x, S

2
y and S3

z are simulated and each one gets a cost S123
xyz,

where x, y, z are the indices of the solutions perspectively. In other words,

we pick one solution for each window in the group, which is illustrated by

one line with a different color in the figure, and do the simulation for the

whole group based on the selected solutions. Besides, w5 shows an example

of more than three consecutive windows’ solutions that need to be simulated
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together, in which the partial window is handled. As a result, we can build

a solution set βr1,...,rC for window sequence wr1 , ..., wrC and keep a record of

their costs. If all αi have size K, then the size of βr1,...,rC is KC , where C is the

total number of consecutive windows in ambit. In the example, C(w2) = 3.

The maximum number of simulations depends on the maximum number

of possible window sequences in the cell library and the number of available

solutions for each sequence, namely the maximum size of all βr1,...,rC which is

KCmax . Here, we give a loose upper bound of the number of possible window

sequences. Suppose that the standard cell library has size of M , and the

length of the longest window sequence Cmax = max(C(w1), ..., C(wi)). If the

sequence crosses multiple cells, it generates at most MCmax ∗ Lmax possible

sequences, where Lmax is the largest number of windows in one cell. The

reason is that the window sequence crosses at most Cmax cells, and in the first

cell we have at most Lmax choices of the starting window. If the sequence is in

one cell, then the number of possible sequences is at most M(Lmax−2), since

there are M cells, and in each of them there are (Lmax−2) possible sequences,

since the sequence has the minimum length of three. Thus the bound of the

total number of simulations is KCmax(MCmax ∗ Lmax + M(Lmax − 2)). Since

the term M(Lmax− 2) is small compared to MCmax ∗Lmax, we can neglect it.

Thus, we have LmaxK
CmaxMCmax . It is obvious that the bound is very loose.

First, in the extreme case that every cell has only one window, we could

achieve MCmax , while in practice, we may just have one cell that contains

one window. This will dramatically reduce the number of possible window

sequences. Also, we could not always achieve Cmax and Lmax, and not all

cells have chance to be adjacent. So to reduce the number of simulations,

one technique is that we can simply go through the layout and remember all

possible sequences of windows for each wi.

To sum up, we first define the window, and at the second step do simula-

tion on individual windows, the at the third step do simulations on consecu-

tive windows. Compared to simulate the whole layout, we simulate a much

smaller area of a window or window sequence each time, so the runtime of

each simulation is relatively small. Further, instead of having an extremely

large number of possible decomposition solutions of the layout if we simply

enumerate it, which has runtime growing exponentially, the second step nar-

rows down the solution space by looking at the local window area and the

third step is to capture the influence between the windows. In terms of the
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running time, the number of the simulation is bounded and not exponentially

increasing with the number of polygons or cells. As a result, we have a library

that contains pre-calculated solutions of window sequences for look-up. The

decision of choosing a solution for a window will be done in a graph.
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Figure 2.4: In (a), by the different combinations of solutions in each window,
we have a solution set for each window sequence. Different color shows
different combinations. In (b), a graph is constructed and the shortest path
is found.

2.4 Algorithm

In this section, we firstly show how to construct a graph based on the library

that we build in Section 2.3. Secondly, the algorithm to optimally solve the

solution selection problem is illustrated.

After having a library of solutions of all window sequences, we construct

a graph to abstract the layout by window sequences and their solutions sets.

Based on the assumptions in the previous section, we just need to consider

one row of the layout at a time. As shown in the Fig. 2.4(b), we create
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the graph G(V,E) by going through the row of windows. For each window,

we get the window sequence wr1 , ..., wrC that is covered by ambit, and then

look it up for its solution set βr1,...,rC . Next for each solution in the set, we

create a vertex with a weight equaling to the cost Sr1,...,rCx1,...,xC
. As shown in

the Fig. 2.4(b), if K = 2, w2 has K3 = 8 vertices. At window wi, for one

vertex, create a directed edge from itself to all vertices at the next window

if those vertices have the same solutions for all overlapped windows. In the

example shown in Fig. 2.4(b), vertex S123
111 has two out-going edges, one to

S234
111 and the other one to S234

112 , since they use the same solution for window

w2 and w3. As a result, we have a graph G such that vertices present the

possible solutions of a window, and edges represent its compatibility with

the surrounding windows’ solutions that affect simulation of this window.

Note that one path in G from the rightmost window to the leftmost window

means a valid solution selection for each window. Since we have each vertex

with a weight of cost to record the simulation quality, a shortest path in G

gives us the optimal solution selection for all windows, which also solves the

MBD problem. After creating a source node S and a sink node T as shown

in Fig. 2.4(b), the shortest path from S to T can be done in polynomial time

by Dijkstra’s algorithm.
0

1

2

3

4

5

6

7

8

NOR3XOR2

Half Adder

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

w1 w2 w3 w4 w5 w6

w7 w8 w9 w10 w11

w7 w8 w9 w10 w11 w1 w2 w3 w4 w5 w6

w10 w11 w7 w8 w9 w2 w3 w4 w5 w6 w1

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

(a) (b)

Inverter

w1 w2 w3 w4 w5 w6 w7

AM AM AM AM

w1 w2 w3 w4 w5 w6 w7

AM AM AM AM

(a) (b)

S T

S T

(a) (b)

Optimization
Change mask assignment

Optical Simulation 

Improved ?

Commit the change

No

Yes

Optical Simulation 

Library

Optimization

Graph construction

Graph algorithm
Look-

up

(c) (d)

S T

0

5000000

10000000

15000000

20000000

25000000

30000000

400000 600000 800000 1000000

Quality Comparison to Random assignment

Random path Shortest Path

Number of 
polygons

Rodrigues et al. 
[ISQED’11] 
Run-time

Rodrigues et al. 
[GLSVLSI’10]
Run-time

558 3m22s 36m54s

932 4m32s 2h14m13s

1911 1h8m5s 8h52m12s

2234 1h54m11s 10h32m45s

2347 1h10m12s 11h12m14s

(a) (b)
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2.5 Experimental Result

We implement our algorithm in C++ and test it on a Linux workstation

with four 3.00 GHz CPUs and 190 GB memory. The main issue of MBD is

runtime, so we mainly compare and discuss the running time. We create a set

of 100 random windows, and based on the windows we build two benchmarks

of 30 standard cells and 50 standard cells respectively. Each cell has the

largest length of 10 windows. Then we generate a random layout different

sizes shown in Table 2.1. We keep three best decomposition solutions of

each window with a random cost value 1 to 10. We assign the cost of a

window sequence by summing up the costs of individual windows and random

connectivity costs from 1 to 10 for every adjacent two window pair. For

quality, we compare the total cost of the shortest path with the cost of a

random path. The result is shown in Fig. 2.5(b), x-axis is the number of

windows in the layout and y-axis is the total cost. We reduce nearly half of

the cost. For the runtime, as shown in Fig. 2.5(a), previous works [22, 20]

can process only thousands of polygons within hours, which has a scalability

issue. For our runtime, there are two parts, preprocessing and the shortest

path algorithm. For runtime report, we use Calibre Workbench V2013 by

Mentor Graphic to do the simulations. For the area of a window sequence,

the average time of pure optical imaging time is 0.24 s. Then we multiply

this time with the number of all possible sequences of windows with solutions

to estimate the runtime of preprocessing. As shown in the Table 2.1, if we

have 50 cells with 100 windows in our standard cell library and about 1

million windows with 0.15 million cells in the layout, we need less than 10

hours to solve MBD. The shortest path algorithm is very fast and relatively

neglectable. So for our framework, we can see that it is possible to process a

full layout with a million windows within hours. The preprocess only needs

to be done once, so as long as we have the standard cell library preprocessed,

finding the optimal MBD is very efficient. Additionally, since all window

sequences are independent to each other, so the preprocessing actually can

be done in parallel, which would further reduce the runtime.
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Table 2.1: Runtime analysis

Cell library size Layout size Our algorithm runtime
# windows # cells # windows # cells Preprocessing Shortest path

100 30 99675 15181 3h15m 22.0s
100 30 996621 147465 3h15m 217.9s
100 50 99635 14549 7h25m 22.2s
100 50 996491 154347 7h45m 220.2s

2.6 Conclusion

In this chapter, we propose a novel framework of model-based multiple pat-

terning layout decomposition. We first preprocess the standard cell library

and then optimize the decomposition by constructing a graph and running a

polynomial time optimal algorithm on it. In terms of the major runtime issue

of this problem, our method is far more practical comparing it to previous

works. By this work, it is possible to process a large layout with millions of

features.
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CHAPTER 3

COLORING RECTANGULAR AND
DIAGONAL GRID GRAPHS FOR

MULTI-PATTERNING LITHOGRAPHY

3.1 Introduction

Rectangular grid graphs (RGGs) and diagonal grid graphs (DGGs), formed

as induced subgraphs of regular square grids and diagonal grids shown in

Fig. 3.1(a) and (b) respectively, are well defined and widely used in graphical

representation of geo-location, placement/route, urban planning, etc. [23,

24]. The application can be further extended to cover any problem where

instances are regularly distributed and sized. Their intrinsic regularity gives

us leverages to solve hard graph problems by efficient algorithms. However,

the coloring problem on those graphs, especially for DGG, does not draw

much attention. In this chapter, we discuss the k-coloring problem along with

its variants on RGGs and DGGs, as they can be directly applied to several

scenarios in the multiple patterning problem of design for manufacturing

(DFM).

In the territory of DFM, multiple patterning lithography (MPL) technique

that k-partitions the layout, is still a challenging design problem, yet to be

solved with a more complex process in the sub-10 nm technology node [25].

Given that metal layers lean into a regular 1D design, where the coloring

is studied heavily and can be helped by using cuts [26], the outstanding

challenge concerns via/contact layer decomposition. As via/contact layer

layouts can be extremely complex for random logics and no stitches can

facilitate the coloring, unlike metals, their decomposition problem must be

addressed with great care in order to adopt MPL.

However, if we match the challenges in multi-patterning on via/contact

layers with the opportunities provided by RGG/DGG, we can find natural

correlations, as illustrated by Figs. 3.1(a), (b) and (c). First, due to many

advantages of simple design rules over complex ones [27, 28], especially in fa-
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Figure 3.1: (a) The corresponding rectangular grid graph induced from a
full rectangular grid for the contact/via layout in (c). (b) The corresponding
diagonal grid graph induced from a full diagonal grid for the contact/via
layout in (c). (c) A sample contact/via layout.

vor of design specialists, regular/semi-regular 1D layouts are most commonly

adopted for metal layers. As a result, the vias and contacts are usually on

grid [29] and the grid size is most likely equally distributed by virtue of

the regular design rule and the concern over OPC/SRAF-insertion. Second,

the color conflict during the multiple patterning is defined by design rules

to avoid optical diffractions. Design rules are usually distance based, thus

nodes within a distance are considered conflicted and connected by edges

[30]. Such distance can be a multiple of the grid cell length: when it is be-

tween 1 and
√

2 cell lengths, the conflict graph naturally forms a RGG as

shown in Fig. 3.1(a); when it is between
√

2 and 2 cell length, it falls into

a DGG as shown in Fig. 3.1(b). Those two cases are the most fundamental

and commonly appear in today’s designs. Additionally, even if some outlier

contact/vias might be slightly off-grid, the conflict graph is still very likely a
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subgraph of RGG or DGG.

Those natural connections provide a perfect solution to address the multi-

patterning lithography on via/contact layer through RGG and DGG. Unfor-

tunately, we are shorthanded from existing results. Several previous works

have worked on the problem of partitioning layouts, but they aimed at solv-

ing a relatively general graph. Tian et al. proposed a polynomial algorithm

of 3-coloring a row-structure layout [19]. Kuang et al. [31] utilized graph

simplification techniques to reduce the problem size and assumed that the

resulting subproblem left is of trivial size. This method can hardly be used

for via/contacts, as the conflict graph may remain large after adopting those

techniques. In [32], the major contribution focuses on inserting stitches that

are not possible for contact/vias. Yu et al. modeled the coloring into integer

linear programming (ILP) and also solved it by a semidefinite programming

approximation [17]. Zhang et al. provided solutions based on a randomized

iterative method using pairwise coloring [33]. Nevertheless, none of them

targets at contact/via layer and is able to take advantage of the regularity of

the conflict graphs. On the other hand, coloring RGG and DGG is also open

in graph theory area, though many theorems exist on coloring graphs and

planar graphs [34]. Therefore, for both of theoretical and practical purposes,

it is significantly valuable to investigate the coloring property of RGG and

DGG.

In this chapter, we completely analyze the k-coloring problem on RGG and

DGG, and claim that all except for 3-coloring DGG are tractable. More-

over, we prove that the 3-coloring DGG graph is actually NP-complete,

which means that we are not able to have an efficient algorithm to color

a via/contact layer by three colors unless NP = P. This result also implies

that 3-coloring 1D metal layers without using cuts is NP-complete, because

the conflict graph of a via layer can be treated as a special case of a 1D

metal layer if every metal polygon is as small as a via. Besides, coloring

properties and some 3-colorable subclasses of DGG are explored. Based on

that, an exact algorithm is proposed to handle sufficiently large DGGs, and

the experiments show that our algorithm has good performance with much

better results over heuristics.

The rest of the chapter is organized as follows. In Section 3.2, we define the

notations of graphs and their coloring problems. In Section 3.3, we analyze

the problem of coloring RGG. In Section 3.4, we discuss how to color DGG
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and provide several sufficient conditions. We prove the NP-completeness of

3-coloring DGG in Section 3.5. In Section 3.6, we propose an exact algo-

rithm of 3-coloring DGG and discuss its effectiveness and performance by

experiments. Finally, we conclude the chapter in Section 3.7.

3.2 Problem Definition

We provide a formal definition of our problems in this section. We first define

the rectangular and diagonal grid graphs, namely RGG and DGG.

Definition 1. Rectangle grid graph (RGG) / Diagonal grid graph

(DGG): Given a grid Z2
r (Z2

d) whose vertices correspond to the points with

integer coordinates in the plane, and in which two vertices are connected by

an edge whenever the corresponding points are within distance 1 (
√

2), a

rectangle (diagonal) grid graph is an induced subgraph of Z2
r (Z2

d).

Then we define our coloring problems on the two graph classes:

Definition 2. K-coloring an RGG/DGG: Given an RGG(VR,ER) or

DGG(VD,ED), assign each v ∈ VR(VD) a color such that ∀(u, v) ∈ ER(ED)

u and v do not share the same color and the total number of colors used k is

minimized.

We will study the k-coloring problems in the following sections.

3.3 Coloring a Rectangular Grid Graph

We first investigate the problem on RGG. By intuition, we first ask: When

is RGG 1-colorable? Obviously any edge will make the coloring impossible.

So RGG is 1-colorable if and only if it is isolated.

Then the next question is: When can RGG be colored by two colors? As

shown in Fig. 3.2(a), an RGG cannot contain an odd cycle. The reason is as

follows: If we have a clockwise orientation for any cycle in RGG, the cycle

must have equal numbers of ↑ edges and ↓ edges, so the total number is even.

Similarly it is also true for ← edges and → edges. Thus the total number of

edges, which is the same as the number of vertices in a cycle, is even. As a
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Figure 3.2: (a) No odd cycle in a rectangular grid graph. (b) Coloring a full
rectangular grid. (c) Coloring a full diagonal grid.

result, RGG is 2-colorable. Alternately, we observe that RGG is a subgraph

of a full rectangular grid, which can be colored by two colors as illustrated

in Fig. 3.2(b), so we have the following theorem.

Theorem 4. RGG is 2-colorable.

Consequently there is no need to discuss its k-coloring for k > 2.
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Figure 3.3: (a) An example of DGG is not 3-colorable due to K4. (b) An
example of DGG is not 3-colorable because all red vertices must have the
same color. (c) A DGG is not 3-colorable, but it is 3-coloring critical, since
if we remove the red vertex, it will be 3-colorable. (d) A 3-colorable DGG
with maximum degree less than 4.
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3.4 Coloring a Diagonal Grid Graph

Similarly to RGG, DGG is 1-colorable if and only if it is isolated. Its 2-

colorability can be checked by a linear algorithm of searching for odd cycles.

Then the following question is whether DGG can be 3-colored. If not, what

is the minimum number of colors to guarantee a valid coloring? The answer

to the latter question is 4. As shown in Fig. 3.2(c), a full diagonal grid can be

colored by 4. Therefore, as its induced subgraph, DGG is always 4-colorable.

We have the following.

Theorem 5. The k-coloring problem of DGG is solvable in polynomial time

except for k = 3, and DGG is always 4-colorable.

However, the remaining problem of 3-coloring becomes difficult. Before the

analysis of 3-coloring, we can always conduct graph simplification techniques

to remove vertices that have degree 1 or 2, or are cut vertex, and delete

edges that are cut or in a two-edge cut pair, as the 3-colorability would not

be affected [31]. Note that DGG could potentially be divided into smaller

components, but the results may not be trivial to conduct enumeration (ex-

ponential) algorithms as stated in [31]. W.L.O.G, we assume that the DGG

discussed in the rest of the chapter is a connected component free of those

vertices and edges.

In fact, many structures that are not 3-colorable could appear in DGG

as shown in Figs. 3.3(a), (b) and (c). For example in Fig. 3.3(a), DGG can

potentially contain a K4 (complete graph of four vertices), which cannot be

3-colored and thus spoils the 3-colorability of the whole graph. K4 can be

easily found by checking whether a tile of the grid has all of its 4 vertices in

the DGG. Then it is natural to ask about the 3-colorability of DGG without

K4. To simplify the illustration, we use G refer to a DGG not containing K4.

As shown in Fig. 3.3(c), G is a planar graph consisting of triangles and

polygon faces. Its maximum degree ∆(G) is 6, as shown by the black vertex.

Thus, G is considered sparse and seems to be a restricted subclass of planar

graphs. Thus, we first apply our knowledge in graph theory, in this case some

sufficient conditions of 3-coloring, to discuss the property of DGG.
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3.4.1 The Maximum Degree

First of all, the maximum degree of a graph is highly related to the color-

ing problem. Intuitively, the smaller the degree of a vertex, the greater its

flexibility for coloring. Since the maximum degree of our graph ∆(G) = 6,

it is natural to ask what happens if ∆(G) ≤ 5; however, G ≤ 5 is not

strong enough to guarantee the 3-colorability as shown in Fig. 3.3(b). On

the other hand, ∆(G) ≤ 3 is able to imply the 3-colorability of G, because

if a connected graph G′ is not a complete graph or an odd cycle, then its

chromatic number equals its maximum degree ∆(G′) by Brook’s theorem.

The only case in which G is a complete graph is when it is a triangle that is

3-colorable, and the cases in which G is an odd cycle can be 3-colored too.

As an example shown in Fig. 3.3(d), a G with ∆(G) ≤ 3 is colored by three

colors, and we have the following lemma.

Lemma 6. G is 3-colorable if its maximum degree is less than 4.
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Figure 3.4: The path of the outer face makes (a) a 45◦ turn, (b) a 90◦ turn,
(c) a 90◦ turn, (d) a 135◦ turn, (e) a 135◦ turn. (f)-(h) show the cases of
possible neighbors of u. (i) An orientation forms a path of the outer face.

3.4.2 Triangles and G without Diamond

Triangles always make the graph hard to be 3-colored. Inspired by that, re-

searchers have worked to prove the 3-colorability for graphs with constraints

on triangles. The first famous result is Grotzsch’s theorem, which states

that a triangle-free planar graph is 3-colorable. Besides, [34] has shown that

graphs with a small number of triangles (fewer than four) or with triangles far
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Figure 3.5: (a) Two diamonds (K4 − e). (b) A chain of diamonds. (c)
An invalid connection of three diamond chains that introduces a K4 in red
dashes. (d) A valid connection of 4 diamond chains.

apart from each other (distance is at least three) are likely to be 3-colorable.

In this section, we improve those conditions for our graph G and show that

G without diamond (two triangles sharing an edge) is 3-colorable. We first

prove the following lemma.

Lemma 7. Suppose that G∗ is a G without diamond. There exists a vertex

v in G∗ such that d(v) ≤ 2.

Proof. Take one component of G∗ and delete all leaves (degree 1), which

does not affect the colorability. Then create a clockwise orientation of its

boundary (the outer face) as shown in Fig. 3.4(i). There always exists a

vertex v on the boundary such that the angle θ from its incoming edge to its

outgoing edge is less than 180◦; namely the path of the boundary has to make

a convex turn at some point, since the boundary encloses an area. As shown

in Figs. 3.4(a) to (c), for the cases of θ = 45◦ to θ = 90◦, v has the maximum

degree 2; otherwise, a K4 or a diamond is created. When θ = 135◦, we have

two possible cases as shown in Figs. 3.4(d) and (e). In Fig. 3.4(d), v cannot

have degree 3, otherwise a diamond is created. For the case in Fig. 3.4(e),

v is able to have degree 3, but for vertex u, if u has no other neighbor as

shown in Fig. 3.4(e) then u is the vertex with degree less than 3. If u has a

neighbor as shown in Figs. 3.4(f) and (g), then a diamond appears, which is

not allowed. If u has a neighbor shown in Fig. 3.4(h), then the path of the

directed edges e1, e2, e3 retains the direction of e1 and thus contradicts the

fact that a turn has to be made. Therefore, there is a vertex with degree at

most 2 in all cases, and the lemma is true.

Theorem 8. G∗ is 3-colorable.
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Proof. Based on the lemma, it implies that G∗ is a 2-degenerate graph, which

implies the 3-colorability. There is always a vertex vi with degree at most

2 and deleting it will not affect the 3-colorability of the graph. Thus, if we

keep deleting the smallest degree vertex (degree 1 or 2) from G∗ until the

last vertex, the remaining vertex can be assigned any color, and G∗ can be

3-colored in the way of adding those deleted vertices back iteratively because

in each iteration at most two edges are created. So the proof is complete.

To sum up, we have several results on the 3-colorability of DGG. However,

none of them is a necessary and sufficient condition, which leads us to develop

optimal algorithms. Indeed, the problem is NP-complete as explained in the

next section.

3.5 3-Coloring a Diagonal Grid Graph

In this section, we demonstrate the hardness of 3-coloring DGG and provide

an NP-complete proof. We utilize a common structure in DGG, diamond

(K4 − e), to establish our proof. As shown in Fig. 3.5(a), two red vertices of

a diamond must have the same color.

If we connect the diamonds as a chain, shown in Fig. 3.5(b), all red vertices

must share the same color and all green vertices must be assigned another

color, and it is the same for the remaining vertices. Thus, a part of G could

be a chain of diamonds as shown in Fig. 3.5(b) and is highly constrained

for coloring. Then interactions between diamond chains become the key to

solve for 3-coloring. For example, in Fig. 3.3(b), a loop-back of a diamond

chain makes it impossible to 3-color, since two red vertices have to share the

same color but they are connected by an edge. The key observation is that

vertices in a diamond chain, such as the red vertices in Fig. 3.5(b), must

share the same color and thus can be treated as a single vertex. Additionally

all green red vertices and red vertices must have different colors. Thus, if

we use one node to present all red vertices and one node for green vertices,

we can have an edge connect the two nodes to enforce the distinct colors.

Therefore, it might be possible to construct a random graph by “vertice” and

“edge” formed by diamond chains. Based on the idea, the remaining section

will discuss the hardness of this problem and prove the following theorem.
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Theorem 9. Suppose DGG is an induced subgraph of a diagonal grid. The

problem of determining its 3-colorability is NP-complete.

Nevertheless, the construction is not straightforward, as the regularity and

sparsity of DGG may forbid many structures. The problems whether we can

connect a point to anywhere with only two directions of chains and whether

a point is able to connect to enough other points need to be addressed. For

instance, chains cannot be connected arbitrarily because of the limitation on

the degree of a vertex. As shown in the example of Fig. 3.5(c), three diamond

chains tend to be incident to one vertex but it introduces a forbidden K4,

while it is possible to have four diamond chains incident to one vertex as

shown in Fig. 3.5(d). So the construction is critical.

The general idea of the proof for Theorem 9 is a polynomial reduction from

the planar graph 3-coloring problem, which is known as NP-complete. The

outline of the proof is as follows: First, we transform an instance H(Vh, Eh) of

planar graph into a straight line embedding and expand its vertices to blocks.

Second, we construct a rectilinear embedding and prove that it occupies a

polynomial area on the grid in order to ensure the reduction is polynomial.

Third, the rectilinear embedding can be subdivided by replacing its vertices

and edges with a chain of triangles so that an instance of G is obtained.

Then solving 3-colorability for the resulting G can be used to solve the 3-

colorability of arbitrary H, and then 3-coloring DGG can be proved as an

NP-complete problem.

3.5.1 Straight Line Embedding and Vertex Expansion

A straight line embedding ES exists for any simple planar graph H(Vh, Eh)

by Fary’s theorem [34], as shown in Fig. 3.6. However, a stronger rectilinear

embedding is needed to construct G. On the other hand, a rectilinear embed-

ding is only possible when the degree of all vertices is at most 4. Therefore,

we introduce a technique to expand vertices of H by replacing them with

blocks.

Definition 3. Vertex expansion: There are two steps of vertex expan-

sion. First, given a straight line embedding ES
H , replace each vi ∈ Vh by a

square block pi that is chosen to have the edge length as the degree of vi such

that there are enough access points on both left and right sides of the block.
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Figure 3.6: Straight line embedding of a planar graph.

Second, for each edge (vi, vj) ∈ Eh, connect pin vi,k in pi and pin vj,l in pj

such that the geometric relation of pins preserves the ordering of incident

edges.

We name the resulting graph after expansion as H. Because the vertex

expansion preserves the circular ordering of edges, the new edges remain

straight and non-crossing. As a result, there is always a valid vertex expan-

sion; for example, the graph in Fig. 3.7(a) is obtained by applying vertex

expansions on the graph in Fig. 3.6(b).

We horizontally stretch and rotate H such that we can divide the plane into

n slabs S1, S2, S3, ..., Sn, and each Si solely contains pi as shown in Fig. 3.7(b).

The intersection points of the slab boundary and the edges of H are indexed

as ui,k if ui,k is on the right boundary of Si and it is the kth intersection point

from top to bottom along that boundary.

3.5.2 Rectilinear Embedding

We follow the definition of rectilinear embedding in [35]. In order to con-

struct the target G, we want to obtain a rectilinear embedding ER
H of H

first. Additionally, we need to restrict the area occupied by the rectilinear

embedding to a polynomial of the size of H in order to ensure the polynomial

reduction. At the initial step, p1 is added onto the grid as well as its edges

(v1,l, u1,m). Since it is the leftmost block, and all its edges go to blocks on the
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Figure 3.7: The graph after vertex expansion and dividing the plane into
slabs.

right, (v1,l, u1,m) is assigned to a horizontal line from v1,l to the boundary of

S2. At an inductive step shown in Fig. 3.8(b), everything up to the boundary

of Sk+1 has been constructed as a rectilinear embedding, and pk+1 needs to

be placed onto the grid. We want to make an arrangement of pk+1, edges

(uk,m, vk+1,l) and edges (uk,m, uk+1,n) such that rectilinearity is satisfied and

all edges can proceed right to the boundary of Sk+2. At first, we consider

the placement of pk+1. For edges entering Sk+1 through uk,m as shown in

Fig. 3.8(b), enforced by the embedding H in Fig. 3.7(b), they follow a strict

order from the top to bottom:

1. edges (black) not going to connect pk+1 (through uk,1, uk,2 and uk,3).
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Figure 3.8: The inductive steps of constructing a rectilinear embedding.
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2. edges (purple) going to incident to pins of pk+1 (through uk,4, uk,5 and

uk,6).

3. edges (black) not going to connect pk+1 (through uk,7 and uk,8).

We define the navy region as the half-plane above the uk,m if uk,m is the

highest uk,m connecting to pk+1 according to H in Fig. 3.7(b). Similarly, the

purple region is defined as opposite to the navy region. We first place pk+1

such that its highest pin on the left side matches up with the edge from uk,m

vertically and the edge can naturally extend to it as shown in Fig. 3.8(b).

Note that the block size is controlled to guarantee sufficient pins on both

sides and every intersection point with the grid is an available pin. The

graph in the navy region can remain unchanged and the edges can extend to

the next slab, but operations are needed for the components in the purple

region, since the pins are not aligned with edges. As shown in Fig. 3.8(c),

when pk+1 is small, we need to stretch the edges such that we can route to

the pins. This results in an enlarged gap between blocks, and the gap is

bounded by the degree of pk+1. In Fig. 3.8(d), when pk+1 is large and some

edges need to detour to the next slab, we move all blocks in the purple region

down and some edges between navy and purple regions are stretched. The

operations of moving and stretching are shown in Fig. 3.8(a). Then, we are

able to achieve a rectilinear embedding from S1 to Sk+1. By induction, we

can obtain the rectilinear embedding ER
H

by such procedures.

3.5.3 Construct G from the Rectilinear Embedding

At the final step, we construct our target G based on the rectilinear embed-

ding ER
H

by replacing its blocks and edges by pre-designed structures.

Edge design

A rectilinear edge can be designed as a combination of structures in Fig. 3.9(a).

Based on the coloring property of diamonds, (a, b) are enforced to have the

same color by a diamond chain, while (c, d) are enforced to have different

colors by the structure named as bridge. Thus, by connecting them, we can

obtain any edge (vi,j, vk,l) in ER
H

such that (vi,j and vk,l) have distinct col-

ors. Nevertheless, we need to avoid a rhombus that will produce a K4 in
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G. Thus, we have to adopt some operations for those structures. As shown

in Figs. 3.10(b) and (d), each one has a rhombus and we flip the chain to

resolve it as shown in Figs. 3.10(c) and (e) respectively. In this way, two pins

connected by an edge in ER
H

are ensured to have distinct colors.

(b) (c)

+45°

a b

c d

c d

a b

(a)

Figure 3.9: (a) Transformations of rectilinear edge into a chain of diamonds
or a bridge. (b) A block with four pins on each side is designed as chains of
diamonds. (c) A DGG obtained by rotating the block in (b) by 45◦.

Block design

We want to design the block in such a way that all its pins vi,j have to be

colored the same. We utilize chains of diamonds again by connecting them in

a way shown in Fig. 3.9(b). The polygon at the center formed by a chain has

all its cornered vertices the same color and they reach out to pins on block

boundaries. In this way, the design of a block with any number of pins can

be established. As a result, the rectilinear embedding can be transformed

into a graph with those structures.
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(b)

(a) (b)

(c)

(d)

(e)

Figure 3.10: (a) A forbidden rhombus. (b) A forbidden pattern when a
diamond chain turns. (d) A forbidden pattern when diamond chains connect.
(c) and (e) show flipping the chain at the half point to resolve the forbidden
patterns.

Grid rotation

At the last step, as shown in Fig. 3.9(c), we rotate the resulting graph by

45◦ to get G.
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Figure 3.11: The process to construct an instance of G for H in Fig. 3.6(b)
is sketched from (a) to (b).
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3.5.4 NP-Completeness

Following the construction procedures, which are sketched in Fig. 3.11, we

can draw an induced subgraph of a diagonal grid G without containing any

K4 for arbitrary planar graph H such that determining the 3-colorability of

H is the same as determining the 3-colorability of G. We also prove that the

reduction is polynomial:

Lemma 10. The size of the grid containing G built by the construction is

polynomial to the size of H.

Proof. First of all, the width of the rectilinear embedding ER
H

is bounded

by the total width of blocks and gaps between them. Second, since rectilin-

ear edges are replaced by the structure in Fig. 3.9(a), each gap has width

as a polynomial function of vertex degree in H. A block is replaced by the

structure in Fig. 3.9(b), and its width is proportional to the degree of the cor-

responding vertex as well. Third, following the same logic, the height of the

ER
H

is bounded by the total height of blocks, which is the same as its width.

Note that there is no gap between blocks vertically by our construction, and

the degree of vertex is bounded by the number of vertices. Therefore, the to-

tal area is bounded by the product of width and height which is a polynomial

function of Vh.

Because 3-coloring H is NP-complete and DGG without K4 is a subclass

of DGG, Theorem 9 is proved.

v
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Contract
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(a) (b) (c) (d) (e) (f)

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.12: (a) Two diamond vertices are glued. (b) A diamond chain is
contracted to a single triangle.
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3.6 An Exact 3-Coloring Algorithm and Its

Experiments

The previous sections conclude the k-coloring properties of DGG, but do

not give out a practical solution to the problems like triple patterning con-

tact/vias due to the intractability of 3-coloring DGG. On the other hand,

in this section, we learn from the proof and propose an exact algorithm to

3-color DGG. Though it has exponential complexity, but we will show that

it is indeed efficient for considerably large graphs.

At first, we introduce a technique to contract diamond chains. For a

diamond shown in Fig. 3.12(a), v1 and v2 must have the same color, then

we can glue them such that all their neighbors are connected to the new

vertex v1/2. The resulting graph retains its 3-coloring property. By applying

a sequence of the gluing operations, a chain of diamonds can be contracted

to one triangle, as shown in Fig. 3.12(b). The pseudo code is shown in

Algorithm 4.

Though the diamond contraction technique was commonly observed by

researchers, it is very effective in the case of 3-coloring DGG and the reasons

are as follows. We can categorize DGG into two types: (1) Sparse and easy

to color. (2) Dense and hard to color. For type 1, the algorithm should be

able to return the result in a relatively timely manner. For type 2, it requires

extra computational resources, since an exact algorithm needs to explore a

much larger solution space to make sure that it is not colorable. However, by

the proof, we know that the hardness of coloring is mainly due to diamond

chains and their interactions. Therefore, if we can contract all diamond

chains, the problem size for type 2 DGG can be reduced dramatically. Based

on the observations, we propose an exact algorithm based on the following

two steps: (1) We apply diamond contraction. (2) We adopt maximum-

degree-of-saturation based (DSATUR) backtracking, which picks the most

saturated vertex (has the least number of available colors) to color first and

backtracks when a vertex is saturated. The pseudo code is illustrated in

Algorithm 5.

To evaluate our algorithm, we randomly generate a set of N×N grids with

density d and obtain their DGG. We exclude the cases that contain K4, since

its uncolorability will be returned immediately. We also run UTDecomposer

(UTD) in [17] on those graphs to compare with our algorithm, as it is the
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Algorithm 4: Contract diamond chains

Data: A graph G(V,E)
Result: A graph G′(V,E) free of diamond chain

1 while diamond exists do
2 Find any diamond (a, b, c, d) with (b, c) as the shared edge of two

triangles;
3 For any edges (vi, a) ∈ E such that vi ∈ V/{b, c}, replace it by

(vi, d);
4 Remove vertex a;

5 return G′;

Algorithm 5: Our exact algorithm

Data: A graph G(V,E)
Result: Whether G(V,E) can be 3-colored

1 Function Backtracking(G(V,E))
2 if all vertices are colored then
3 return True;

4 Update the saturation sat(vi) for all uncolored vertices, where
sat(vi) equals the number of distinct colors of neighbors;

5 Pick the most saturated vertex vx;
6 if sat(vx) is 3 then
7 return False;

8 forall possible color cj for vx do
9 Color vx by cj;

10 if Backtracking(G) returns True then
11 return True;

12 return False;

13 Function Main(G(V,E))
14 Contract diamonds in G by Algorithm 1;
15 Find the maximum clique and color it by distinct colors;
16 return Backtracking(G);
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newest layout decomposer and has the best performance and quality of results

among [32, 31, 33] (see Section VIII of [17] for details). Note that UTD

is an application-orientated software and is designed to color metal layers

which have more general conflict graphs, while our algorithm just targets at

coloring DGG. Our exact algorithm is implemented in C++ and we obtain

the binary of UTD from its website. The experiments are conducted on

a four-core Linux machine with 3.2 GHz and 24 GB memory. At each N

and d, 1000 random grid graphs are generated and used as benchmarks. In

order to examine the robustness of the algorithms regarding to the grid size,

we make the mean of d to be 50% and run experiments on various grid

sizes from N = 60 to N = 400. As shown in Table 3.1, the number of 3-

colored DGGs, the number of uncolorable ones and the average runtime over

the 1000 testcases are reported in columns 2-4 and 5-6, 8 for our algorithm

and UTD respectively. Based on the data, our algorithm can efficiently

(average runtime less than 7 minutes) handle the large grids with size up to

400×400, which potentially could have about 16×104 vertices. What is more

important is that our algorithm is optimal while UTD mistakenly determines

many colorable cases to be uncolorable and colors them with conflicts. The

colorability accuracy of UTD is calculated as the percentage of the colorable

cases found in all colorable DGGs and it is reported in column 7. As shown

in the column, the accuracy of UTD reduces rapidly with increasing grid

size and it can barely produce an optimal coloring when N is over 300.

Additionally, our algorithm has average runtime on a single core while the

SDP solver in UTD takes advantage of the four cores in our machine. In the

future, our algorithm has potential to be parallelized. If we consider a more

dense layout and increase the grid density to 60%, as shown in Table 3.2,

our algorithm can still handle 100 × 100 grids efficiently. On the contrary,

except that the accuracy remains low, UTD’s runtime increases significantly

so that the experiment on 100 × 100 grids is too time-consuming to collect

data.

Indeed, for any algorithm that checks the 3-colorability optimally, its run-

time should increase exponentially as the graph size according to Theorem 9.

However, according to the experiments, our algorithm shows superior effec-

tiveness and performance. Compared to the best existing heuristic UTD, our

algorithm can determine the colorability of the graph much more accurately,

and it is extremely important to provide such optimal coloring results to
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Table 3.1: Comparisons between UTD and our algorithm for less dense DGGs
d:50% Ours UTD [17]
N # C # UnC CPU # C # UnC Accuracy CPU
60 995 5 0.99s 715 285 71.86% 1.16s
80 991 9 0.99s 559 441 56.41% 1.53s
100 983 17 1.65s 362 621 36.83% 1.90s
200 910 90 23.28s 8 992 0.88% 6.81s
300 780 220 118.46s 0 1000 0% 16.66s
400 735 265 383.03s 0 1000 0% 30.86s

Table 3.2: Comparisons between UTD and our algorithm for dense DGGs
d:60% Ours UTD [17]
N # C # UnC CPU # C # UnC Accuracy CPU
40 877 123 1.00s 102 898 11.63% 14.25s
60 728 272 2.146s 3 997 0.41% 165.27s
80 602 398 7.27s 0 1000 0% 928.36s
100 339 661 19.52s - - - -

layout designers in order to avoid additional cost by using EBL or DSA to

remedy the conflicts. Moreover, considering that the via/contact layers are

very dense, especially in advanced technology nodes, our algorithm shows

greater performance over the heuristic in such cases. Besides, even though

it is not scalable theoretically, it can be used as a subroutine to facilitate

other algorithms or heuristics. For example, in [31], a graph is partitioned

into smaller components. Instead of assuming that it has size less than 7 and

otherwise using heuristics, our exact algorithm can be adopted. Moreover,

some smart heuristics can be developed by a strategy of dividing the graph

into partitions and solving them independently by our method.

Table 3.3: A complete classification of k-coloring problems

2-colorability 3-colorability 4-colorability
RGG YES YES YES

DGG w/ small degree Polynomial YES YES
DGG w/o diamond Polynomial YES YES

DGG Polynomial NP-complete YES
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3.7 Conclusion

Our major results are presented in Table 3.3 as a complete classification of the

complexity for k-coloring problems on grid graphs. All necessary proofs are

provided in previous sections. Based on those insights, they can facilitate the

development of algorithms for litho-related problems, such as layout decom-

position, design strategies in terms of place/route and design rule develop-

ment. With our study in place, designers working on MPL can estimate the

decomposition difficulty to decide the feasibility of the design pitch. When

the design falls into the case of high complexity such as 3-coloring DGG,

designers can first try to avoid complex layout and obtain a simpler conflict

graph, such as DGG with small degree or DGG without diamond by en-

forcing some design rule. Moreover, a router that incrementally assigns nets

may also attempt to keep the connected component of conflicted contact/vias

within a relatively small size, such as 400 × 400, which is highly possible in

practice, such that our exact algorithm can report the 3-colorability to the

router and facilitate its decision of placing next contact/via. The optimal

result can be returned with high confidence in a timely manner. For designs

with larger connected components, our study can be applied in a divide-and-

conquer fashion to solve the decomposition problem. We plan to work on it

as our future works.
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CHAPTER 4

GROUPING AND COLORING DIAGONAL
GRID GRAPHS FOR DIRECTED

SELF-ASSEMBLY LITHOGRAPHY

4.1 Introduction

As the dimensions of features keep shrinking toward sub-10 nm or further,

it is impossible for conventional lithography (193i) to match the resolution

requirement. Next-generation lithography techniques, such as extreme ultra-

violet lithography (EUV) and electron beam lithography (E-beam) [15], have

been heavily researched in the past decades. However, there are still several

challenges of EUV. For instance, it has issues of mirror defects and low source

power. For E-beam, it suffers from the major drawback of low through-

put. Alternatively, multiple patterning lithography (MPL) [17] and block

copolymer directed self-assembly (DSA) [4, 16] becomes the most promising

candidates of solutions to enhance the resolution. In order to print a dense

layout, MPL utilizes k masks (k = 2 for double patterning (DPL) and k = 3

for triple patterning (TPL)) to print features within the minimum feature

distance separately. According to [36, 37, 38, 39], DSA is capable of printing

regular shape patterns such as holes by grouping them into a guiding tem-

plate, which relaxes the resolution requirement. They both are compatible

to work with either conventional lithography or EUV.

Based on the research progress for the last few years, DSA has been shown

to be a perfect fit for manufacturing the layer of contacts/vias because of its

capability to generate holes that are uniform shaped and regular positioned.

In addition, it is confirmed recently that DSA can be used with MPL as

DSA-MPL hybrid Lithography (litho-DSA-litho-DSA...)[40] such that the

number of masks is reduced, which leads to a lower cost of the fabrication

process. Given the layout of contacts/vias, the first step is grouping them into

templates, and the second step is to decompose the resulting templates into

different masks as shown in Figs. 4.1 (d) and (e). As the contact/via layout
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can be represented by grid graphs introduced in Chapter 3, in this chapter,

we study the problem of grouping and coloring grid graphs, especially the

diagonal grid graph (DGG).

(a) (b)

(b) (c)

(a) (b)

(a) (b)
(a) (b) (c)

(b)

(a)

(c) (d)

(a) (b)

(b) (c)(a)

(a) (b)

(c) (d) (e)

(a) (b)

Figure 4.1: (a) The corresponding rectangular grid graph induced from a
full rectangular grid for the contact/via layout in (c). (b) The corresponding
diagonal grid graph induced from a full diagonal grid for the contact/via
layout in (c). (c) A sample contact/via layout. (d) Robust DSA guiding
templates. From top to bottom: 1 × 1, 1 × 2, 1 × 3, 2 × 2. (e) A DGG is
grouped by templates from (d). The edges between templates will inherit
from the edges between the vertices of DGG.

As shown in Fig. 4.1(d), predefined DSA templates can be used to print

neighboring contact/vias simultaneously, but in the most cases it is still not

sufficient to resolve all conflicts in a layout. On the other hand, when work-

ing together with MPL, DSA [40] is found useful in reducing the chromatic

number k, because it can group vertices into one template, which essentially

deletes (contracts) edges in the conflict graph like RGG/DGG, as shown

in Fig. 4.1(e). Alternatively, the k-coloring problem can be seen as group-
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ing by 1 × 1 templates and then coloring with minimum number of colors.

So grouping-k-coloring is a broader problem than k-coloring and recently

generated attention from [40, 41, 42]. In [40], an ILP formulation and a

simple greedy heuristic are proposed, while the former method cannot scale

to handle large RGG/DGG and the latter one has no guarantee of solution

quality. Kuang et al. [42] worked on the problem of k = 2, 3, but their

empirical assumptions are ineligible for RGG/DGG. In fact, RGG/DGG is

not always easy to simplify and the edge constraint graphs may not be suffi-

ciently small to find all maximal independent sets, which requires exponen-

tial runtime. Besides, the row structure layout studied by Xiao et al. [41]

does not apply to RGG/DGG as well. In this chapter, we investigate the

grouping-k-coloring problem based on the knowledge built in the previous

study. Consequently, given a commonly used template library [4, 42], we

prove the NP-completeness when k = 2 and demonstrate a solution when

k = 3.

The rest of the chapter is organized as follows. In Section 4.2, we define

the problem to solve. In Section 4.3 we demonstrate a solution for grouping-

3-coloring DGG, and in Section 4.4, we show that the problem of grouping-

2-coloring is NP-complete. Finally, we conclude the chapter in Section 4.5.

4.2 Problem Definition

We provide a formal definition of our problem in this section. We adopt the

definition of diagonal grid graph (DGG) from Chapter 3.

Definition 4. Grouping-k-coloring an RGG/DGG:

Given an RGG(VR, ER) or DGG(VD, ED) and a template library T = {1 ×
1, 1 × 2, 1 × 3, 2 × 2}, a valid grouping is a partitioning of v ∈ VR(VD) into

disjoint subsets {gi} such that any gi belongs to T . Subset gi and gj have a

conflict edge if there exists any vx ∈ gi, vy ∈ gj such that (vx, vy) ∈ ER(ED).

The problem is to find a valid grouping such that subsets can be k-colored.
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4.3 Grouping-3-Coloring a Diagonal Graph

After the discussion of direct k-coloring RGG/DGG, in this section, we study

the problem of grouping-3-coloring enabled by DSA+MPL technology. Since

RGG is already 2-colorable and trivial to solve for the grouping-1-coloring,

DGG is sufficient for the discussion. In this chapter, we consider the library

of templates: 1 × 1, 1 × 2, 1 × 3, 2 × 2, as shown in Fig. 4.1(d), since they

are commonly recognized robuster comparing to other larger and irregular-

shaped templates, such as 1×4 and “L” shape [4]. Besides, the templates can

only be used horizontally and vertically, since the “peanut” shape template

along the 45 degree diagonal is not desirable [4]. As a result, the problem

becomes how to cover the horizontal and vertical edges in DGG by those

templates disjointly such that the resulting conflict graph is 3-colorable. In

fact, we have the following theorem.

Theorem 11. DGG is grouping-3-colorable.

This implies that we can always adopt a grouping strategy and 3-color it

in order to decompose DGG. In this section, we show the correctness of this

theorem by proposing a solution.

(b) (c)

(b)

(a)

(c) (d)

(a) (b)

Figure 4.2: (a) Forbidden grouping that produces a K4. (b) Forbidden group-
ing in which the bottom template has three neighbors on its upside. (c) An
example of DGG is grouped based on the observations.

Two kinds of grouping patterns are undesirable: (1) four templates pro-

duce a conflict graph of K4, as shown in Fig. 4.2(a); and (2) one template

shares edges with more than two templates on one side (up or down) as

shown in Fig. 4.2(b), since it forms a diamond that could potentially make a
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graph not 3-colorable based on previous sections. Following the hard and the

soft constraint, it is not difficult to do the grouping row by row as shown in

Fig. 4.2(c), but we still need to figure out the grouping that can be 3-colored.

We find that a hexagonal matrix of 1×2 template can be 3-colored as shown

in Fig. 4.3(a), as templates can be periodically assigned red, blue and green

in each row. We use such matrix to cover the vertices in DGG as shown

in Fig. 4.3(b), and remove the extra templates, and then shrink the wasted

1× 2 templates to 1× 1 ones. By making the remaining templates hold the

same colors from Fig. 4.3(a), they can be 3-colored as shown in Fig. 4.3(b).

Consequently, we are able to conclude that all DGG can be group-3-colored

by this approach and Theorem 11 is proved.

(a) (b)

Figure 4.3: (a) A hexagonal matrix of 1 × 2 DSA templates. (b) A valid
grouping-3-coloring derived from the matrix in (a).

4.4 Grouping-2-Coloring a Diagonal Graph

In contrast to grouping-3-coloring, we find that it is intractable to do grouping-

2-coloring on DGG. The problem is essentially how to cover the horizontal

and vertical edges by those templates disjointly such that all odd cycles are

eliminated. Thus, covering an edge can be seen as contracting it and sub-

tracting one from the affected cycle length when considering the 2-colorability

of the resulting graph. The problem is solvable if the edge covering does not

have to be disjoint and the graph is planar, since it can be formulated as an
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edge contraction bipartite problem [42] and a polynomial algorithm based on

perfect matching is available. However, edges have to be grouped disjointly

as shown in Fig. 4.4(b). On the other hand, in the scenario of DGG, its reg-

ularity and sparsity may ease the difficulty. Only the horizontal and vertical

edges are the candidates for grouping as contracting an diagonal edge would

produce a forbidden peanut shape template. Besides, two neighboring edges

cannot be grouped simultaneously except that they are aligned and able to

be grouped by a 1× 3 template.

We notice that the relation of vertical and horizontal edges in an odd cycle

can be formulated as XOR-SAT expressions. For instance in Fig. 4.4(b),

one of e1 and e2 must be grouped (contracted), since they are the only two

options in an triangle. If we use 1 to signify that the edge is grouped and 0

otherwise, e1 and e2 will have to obey the equation e1⊕ e2 = 1. XOR-SAT is

solvable in polynomial time by Gaussian elimination. However, there exists

other more complicated constraints in the graph. For instance in Fig. 4.4(b),

the diamonds on the right can be grouped in two ways (top and bottom).

Generally, Fig. 4.4(b) shows some possible ways to group adjacent edges. In

fact, due to the complex grouping relation between edges, we are able to

prove the following theorem.

Theorem 12. Grouping-2-coloring DGG is NP-complete.

The proof will be demonstrated in the following sections. In general, we

reduce the planar 3-SAT problem to the grouping-3-coloring. The reduction

can be done polynomially by using the techniques from Section 3.5.

4.4.1 Planar 3-SAT

3-SAT is one of the most famous NP-complete problems, while planar 3-SAT

is a special case in which the bipartite graph B of variables and clauses is pla-

nar as shown in Fig. 4.4(c). The problem remains NP-complete. Moreover,

any 3-SAT clause can be written as a form of 2SAT-XOR as follows.

(a+ b+ c) (4.1)

is equivalent to

(a+ ȳ)(y ⊕ b⊕ z)(z̄ + c) (4.2)
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Var1 Var2 Var3

Var4 Var5 Var6 Var7

Clause1 Clause2 Clause3 Clause4

(a)

e1

e2

(b) (c)

Figure 4.4: (a) Library of templates. (b) Grouping examples. Red edges are
grouped while yellow ones are not. (c) Planar 3-SAT problem. Blue blocks
stand for variables, and they are connected to a red block if they appear in
the corresponding clause.

where y, z are auxiliary variables. To prove our Theorem 12, we use edges

in DGG as binary variables in planar 3-SAT. An edge is assigned 1 if it

is grouped and 0 otherwise. In the rest of this section, we explain how to

build an instance of DGG such that it can be mapped to a planar 3-SAT

expression. The graph B, including edges and Var/Clause blocks as shown

in Fig. 4.4(c), will be implemented by DGG components.

4.4.2 Edge Implementation

Diamond chains are unsurprisingly utilized as the DGG component to imple-

ment edges in B. As an example shown in Fig. 4.5(a), all red (vertical) edges

have to be grouped simultaneously, which is also true to all yellow edges.

Otherwise, a non-2-colorable triangle will be formed by three templates as

shown in Fig. 4.5(b). Consequently, two ends of the chain, the leftmost and

the rightmost edges, can be used to connect variable and clause blocks such

that their corresponding edge values are enforced to be the same as shown

in Fig. 4.5(c). Note that this structure can extend and make turns anytime

if necessary.
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(a) (b)

Var

Clause

(c)

Figure 4.5: (a) Diamond chain is used as an edge. All yellow/red edges have
to be the same value. (b) The grouping is not 2-colorable because the three
red templates form a triangle. (c) The diamond chain in (a) can connect
blocks.
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e1

e2

e3

e4

(a) (b)

Odd 
cycle 2

Figure 4.6: (a) The structure for variable block. We have e1 = e5 = e6 = e3 =
e7 = e8. (b) The structure of negating a variable. We have e1 = e2 = ē3 = ē4.

4.4.3 Variable Block Implementation

Because diamond chains can only connect two variables, we need a specific

structure for variable blocks such that multiple edges can be connected to

have the same value. As shown in Fig. 4.6(a), since the odd cycle 1 in

green has length 11 and its diagonal edges cannot be used to group, the only

horizontal edge e1 and the only vertical edge e2 have to be different in order

to make the cycle length even. The same rule applies to e3 and e4 due to
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the odd cycle 2. Since e1 and e4 cannot be grouped together, otherwise a

triangle will be produced, we have e1 = e3. If we choose e1 = 1 shown as red

and e2 = 0 shown as yellow, then we must pick all the red edges to group.

Thus, it implies that e1 = e5 = e6 = e3 = e7 = e8. Based on this structure,

we are able to connect four edges (e5, e6, e7 and e8), and enforce them with

the same value. Figure 4.6(b) utilizes the similar structure to have negated

variables, where e1 = e2 = ē3 = ē4. To achieve variable blocks with any

degree, we can build larger blocks by connecting multiple structures. An

example of variable block with degree 8 is shown in Fig. 4.7. To sum up, we

can implement variable blocks for any planar 3-SAT expression with those

DGG structures.

  

  

  

(b)

(a)
Figure 4.7: A variable block that has 8 pins consists of 5 structures in
Fig. 4.6(a) rotated by 45◦.

4.4.4 Clause Block Implementation

In order to implement the clause block of the planar 3-SAT, we utilize its

equivalent 2SAT-XOR expression. The DGG structure is shown in Fig. 4.8(a).

The green cycle in the middle has even length, and we can force e4 = 1 by the

structure cycled by gray dashes. The number of grouped edges in the cycle
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Figure 4.8: (a) The structure for clause block, where we have ey ⊕ e2 ⊕ ez.
(b) For e3 and ey, all 4 possible value assignments are shown. Only when
e3 = 0 and ey = 1, there is no valid grouping-2-coloring due to the lack of
4-node template. So we have e3 + ēy.

must be even to avoid any odd cycle and diagonal edges cannot be grouped,

so the number of ones in ey, e2 and ez must be odd, which is equivalent to

ey ⊕ e2 ⊕ ez. Besides, based on Fig. 4.8(b), when e3 = 0 and ey = 1, there

is no valid grouping-2-coloring, but other cases can produce a valid solution.

Therefore, we have e3 + ēy. Similarly, we can have e1 + ēz. All the constraints

must be satisfied. Thus, by this DGG component, we could have 2SAT-XOR

expression: (e1 + ēy)(ey ⊕ e2 ⊕ ez)(ēz + e3). Here e1, e2 and e3 can further

connect to edges implemented by diamond chains.

4.4.5 NP-Completeness

As a result, once we are given an instance of a planar 3-SAT problem, we can

construct a DGG such that it is grouping-2-colorable if and only if all planar

3-SAT clauses can be satisfied. Additionally, the size of the resulting DGG

has the polynomial size as explained in Section 3.5. Since planar 3-SAT is

NP-complete, grouping-2-coloring DGG is also NP-complete. This completes
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the proof of Theorem 12.

Table 4.1: A complete classification of group-k-coloring problems

g-2-colorability g-3-colorability
RGG YES YES
DGG NP-complete YES

4.5 Conclusion

Our results are presented in Table 4.1 as a complete classification of the com-

plexity for group-k-coloring problems on grid graphs. All necessary proofs

are provided in previous sections. By our study, designers are able to under-

stand the properties of the group-coloring problem and devise the algorithms

to place contact/vias such that they can be manufactured by DSA lithogra-

phy.
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CHAPTER 5

DENSITY DRIVEN PLACEMENT OF
SUB-DSA RESOLUTION ASSISTANT

FEATURES (SDRAFS) FOR DIRECTED
SELF-ASSEMBLY LITHOGRAPHY

5.1 Introduction

In sub-22 nm technology node, conventional lithography (193i) has reached

its limit due to continuously shrinking feature size. Alternatively, elec-

tron beam lithography (E-beam) [15, 43], extreme ultraviolet lithography

(EUVL) [44] and directed self-assembly (DSA) [16, 4, 45] have been proposed

as next generation lithography techniques and been intensively researched for

years. However, E-beam suffers from its low throughput problem and EUVL

keeps delayed because of mirror defects and low source power. DSA has been

proven as a promising candidate to generate periodic patterns in a large area.

Therefore, it is a perfect fit to print contact/via layers, which are usually the

densest and hardest to print. Recent studies also show that DSA can also

work compatibly with multiple patterning, which can achieve even smaller

feature size. In DSA process for random logics, guiding templates are used

to confine the block copolymers such that small clusters of cylinders can be

formed inside the template. A matrix of templates with two cylinders (holes)

are shown as an example in Fig. 5.1.

However, DSA also suffers from possible defects. Previous works [45, 46]

have demonstrated that uneven block copolymer fill level of the templates

may cause missing hole defects. Since block copolymers are spin-coated uni-

formly over the substrate, a template within the relatively lower density

region will be overfilled and consequently produces no hole inside the tem-

plate. Even though neutral substrate is more robust to this defect, it suffers

poor (LCDU) due to the uneven fill level [47]. Thus, it becomes critical to

uniform the local density of the templates in the layout.

To mitigate this problem, Yi et al. [45] proposed sub-DSA resolution assis-

tant features (SDRAFs). SDRAF is a template with smaller dimensions such

69



that no transferable pattern will be printed on the wafer, but it can preform

as a reservoir to divert redundant co-polymers away from the overfilled tem-

plates [45]. Therefore, SDRAFs can be placed to the area with lower density

in order to even out the density. As an example shown in Fig. 5.2 (a), holes

are missing in the templates marked by red squares because they are in low

density region, but in Fig. 5.2 (b) holes are formed by adding SDRAFs in

this area (blue) to consume the copolymers.

SDRAFs could be difficult to print [45]. Consequently, in order to min-

imize the process variations, it is undesirable to insert unnecessarily many

SDRAFs. Besides, enough space needs to be reserved for other features such

as sub-resolution assistant features (SRAFs). In this chapter, we propose an

algorithm to place SDRAFs into the layout such that the density can be as

even as possible and the number of SDRAFs are minimized at the same time.

The rest of chapter will be organized as following. Section 5.2 will introduce

the background of SDRAFs and give the problem definition. Section 5.3 will

demonstrate the proposed placement algorithm in detail. Section 5.4 will

show the experimental results and we will conclude our chapter in Section

5.5.

Figure 5.1: Two-hole templates.

5.2 Preliminary

In this section, we will demonstrate the background knowledge of SDRAFs

and introduce the definition of the density evening problem that will be

addressed in this chapter.
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Figure 5.2: (a) Two templates in red squares have missing hole defect. (b)
With SDRAFs in blue area, holes are formed back inside the two templates
in red square.

For a random logic circuit, the contact/vias may not be uniformly dis-

tributed as an example in Fig. 5.3 (a). Thus, after grouping them into guiding

template, the local density of templates may vary dramatically. As results,

the fill levels of the templates are also significantly uneven. Recent work [45]

has shown that holes may not be formed inside the templates that are over-

filled or underfilled. However, the block copolymer film thickness must be

adjusted to ensure that sufficient copolymers are deposited to the densest re-

gion. Since the thickness is uniform, block copolymers will inevitably increase

the fill level of templates in the less dense region and cause DSA holes disap-

peared [45]. Although templates with neutral substrates have been shown to

be more robust to this defect due to template overfill, Doise et al. [48] have

reported that varying fill levels in templates cause poor LCDU, because the

DSA holes in templates with more copolymers have higher aspect ratio than

those with less copolymers. The scenario of overfilling is shown in Fig. 5.2

(a). Because of the lower density around, the templates in red squares are

overfilled by BCPs and have no hole formed inside.

To remedy the uneven density issue, Yi et al. [45] proposed sub-DSA reso-

lution assistant features (SDRAFs) to balance the template density. SDRAFs

are small openings in the template layer such that they can act as sinks to

share extra polymers, which can effectively prevent the overfilling problem

in the lower density region [47]. It is essential that no transferable pattern
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will be actually printed by SDRAF and thus the dimensions of SDRAFs

need to be controlled precisely. Thus, it is not desirable to add unneces-

sarily SDRAFs and increase the process variations, which might result in

unexpected patterns. Consequently we aim at using the minimum number

of SDRAFs to even out the density. For instance as shown in Fig. 5.3, a

layout of vias in (a) could be fully filled by SDRAFs in order to uniform

the density as presented in (b), but many redundant SDRAFs are inserted.

Indeed, Fig. 5.3 (c) shows that our algorithm can place SDRAFs to even

out the density in a more efficient way and the number of SDRAFs can be

reduced dramatically.

Figure 5.3: Blue rectangles are templates, and green ones are SDRAFs. (a) A
sample layout of vias. (b) SDRAFs fully fill out the layout. (c) The optimal
placement uses much less SDRAFs to even out the density.

The density of templates is defined on a local circular region based on the

diffusion nature of polymers. Formally, we first define the interactive region

(IR) of a template ti as the following.

Interactive Region IR(ti): The interactive region IR of a template ti

is the circular area centered at ti with radius R(ti) so that block copolymers

inside could possibly diffuse into ti.

An example IR is shown in Fig. 5.3 (a). Then, we define the local density

of a template ti as the following.

Density D(ti): The density D of a template ti is the total number of

guiding templates and SDRAFs in its IR.

Note that R(ti) could be different but we assume that R(ti) is the same

for all ti for simplicity to illustrate our algorithm. Thus, the problem left is

how to place SDRAFs in the layout such that the density of each template
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can be as even as possible and the number of SDRAFs used is minimized.

If we use variance to measure the evenness of the density, we can define this

problem as the following.

SDRAF Placement Problem: Given a layout, use the minimum num-

ber of SDRAFs to minimize the variance of densities V ar(D(ti)) for all i.

5.3 Algorithm

In this section, we demonstrate the algorithm to solve the SDRAF placement

problem. We adopt an iterative approach, which is illustrated by a flowchart

shown in Fig. 5.4 (a). First, we preprocess the input layout to find the densest

region and obtain the maximum density. Second, we determine all available

locations to insert an SDRAF. Third, we calculate priority and choose the

area with the highest one to place an SDRAF. Then, we update the priority

and lock the densest region. Finally, we continue to conduct those steps

iteratively until no location available to add an SDRAF that can improve

the evenness of the density. The details will be explained in the following

sections.

Figure 5.4: (a) A flowchart of proposed algorithm. (b) All possible SDRAF
locations (yellow) inside one interactive region. The red arrow indicates that
this location does not violate the spacing rule with the template (blue).
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5.3.1 Preprocess

In order to reduce the variance of density through out the layout, we need

to add SDRAFs to the lower density region to match up with the highest

density region, since there is no way to remove any template from the layout.

Thus, we first need to find the hight density as DMAX = maxi(D(ti)) for all

i.
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Figure 5.5: DMAX = 7 is assumed. (a) The value of demand of each IR is
shown in the black circle. (b) The demands are sum up in intersected area
to be a part of the priority.

Next, we place a grid of candidate locations for SDRAFs as shown in

Fig. 5.4 (b). The length of each line segment in the grid is dSSmin which is

the minimum distance between two SDRAFs. Note that the grid points that

violate the minimum spacing rule with DSA templates are removed from the

candidate set.

5.3.2 Priority

In each iteration of our algorithm, we find one candidate location to place a

SDRAF, which is determined by priority Px,y, where x and y are the indices of

grid points. The priority is calculated by two factors: demand and flexibility.

Demand of an IR, denoted by M(ti), represents how large the gap is be-

tween the current density to DMAX and it is also the number of SDRAFs
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needed to add in this IR. Formally, M(ti) = DMAX − D(ti). SDRAFs es-

sentially are added to reduce the demand. By intuition, the area with the

higher demand should have higher priority to insert an SDRAF. Areas with

zero demand including the area outside any IR or inside the IR with the

maximum density should not have any SDRAF added, which can avoid lots

of unnecessary SDRAF used. To further reduce the number of SDRAFs,

the area that are intersected by multiple IRs should have higher priority,

since adding SDRAFs in those areas can effectively decrease the demand of

multiple IRs instead of just one. As an example shown in Fig. 5.5 (a), the

values of demands are shown for all IRs. While, in Fig. 5.5 (b), if an area

is intersected by more than one IRs, we sum up all demands from those IRs

and this sum would be a part of the priority. In this example, we have the

highest sum as 14 in this layout if DMAX = 7.
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are needed.

However, demand cannot cover all factors of the priority by itself. So, we

introduce flexibility F (ti) to keep track of the number of available locations

left to place SDRAFs. As an example in Fig. 5.6 (a), if only the demands

are considered, SDRAFs (green) will be added because of the high demands.

Consequently, in Fig. 5.6 (b), the IRs (blue dashes) are locked up because

they reach the maximum density, and all possible locations are removed
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in those IRs. However, the IR with red dashes loses all its places to add

any SDRAF, so it will not reach the maximum density any more. Thus, it

preferable to assign high priority to IRs with a small number of available

locations and we use flexibility as a trade-off factor to the demand when

calculating the priority.

As a result, we compute the priority by Px,y = ωM × ΣM(ti) − ωF ×
max(F (ti)) for all ti that their IR contain the location (x, y), where ωM and

ωF are two positive weights. We keep updating the priority, and pick the

location with highest priority to place an SDRAF, and lock up any IR with

the highest density at each iteration. The algorithm will be terminated when

no location is available to place an SDRAF and decrease the demand.

Figure 5.7: A placement result of a sample layout with 1000 DSA templates
by algorithm proposed.

5.4 Experimental Result

In this section, we will show the experimental result of our proposed algo-

rithm. The algorithm described in the previous sections is implemented by

C++ and it is optimized by using KD-tree structure to store the DSA tem-

plate locations to speed-up the geometric query. We run the program on a

Linux workstation with four cores of 3.2 GHz and 24 GB memory. The re-

sults are shown in Table 5.1. The first column shows the number of templates

in the layout. The second to the forth column present the initial variance

of the density, the result variance of the density and the percentage of this

variance reduced respectively. The fifth to the seventh column present the
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number of SDRAFs inserted if the whole layout are filled by SDRAFs, the

number of SDRAFs inserted by our algorithm and the percentage of this

number reduced respectively. The last column reports the running time.

Our benchmarks consist of five layouts with 100, 400, 700, 1000 and 10000

templates respectively. We run our placement algorithm on each layout for

10 times and pick the best result in each case. We use 96 nm for the min-

imum distance between two SDRAFs and between an SDRAF and a DSA

template. As shown in the table, we use variance to measure the evenness

of the density, and we can significantly reduce the variance by more then

85% by placing SDRAFs by our algorithm. Our algorithm can also reduce

the number of SDRAFs by around 50% comparing to filling the whole layout

with SDRAFs. An example layout after the placement is shown in Fig. 5.7.

5.5 Conclusion

The DSA process is one of the most promising lithography techniques to print

contact/via layers, but it has defect issues caused by uneven density of the

templates. Sub-DSA resolution assistant features (SDRAFs) can be utilized

to mitigate the problem by evening out the density. We propose an SDRAF

placement algorithm that can make the density as even as possible and min-

imize the number of SDRAFs. The experimental results indicate that our

method is very effective and efficient. This SDRAF placement scheme gives

a path to integrating SDRAFs into random logic contact/via layouts and to

mitigating the effects of template overfill due to density non-uniformity. This

investigation of SDRAF placement sheds light on the DSA density variation

problem and suggests future paths to mass deployment of DSA.
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CHAPTER 6

DENSITY BALANCING AWARE MASK
ASSIGNMENT IN DSA-DPL HYBRID

LITHOGRAPHY FOR CONTACT LAYERS

6.1 Introduction

In sub-10 nm technology node, conventional lithography (193i) has reached

its limit because of optical diffraction. Other options are explored includ-

ing extreme ultraviolet lithography (EUV) and electron beam lithography

(E-beam) [15]. However, they suffers problems of defects and low through-

put respectively. Meanwhile, to print contact/vias that usually has the most

dense layers in a circuit, directed self-assembly (DSA) technology [4, 16]

shows its great potential, since it can generate uniformly shaped and dis-

tributed cylinders [36, 37, 38, 39]. DSA first groups the contacts into guiding

templates and contact holes are formed inside a template by copolymers to

achieve better resolution. However, is it hardly sufficient for a single litho-

DSA process to resolve all conflicts (features violate the minimum spacing

rule) in the layout. Therefore, DSA usually works with multiple patterning,

for instance double patterning (litho-DSA-litho-DSA) in order to further im-

prove the resolution.

In order to form desired patterns inside the DSA template, the number

of the block co-polymers (BCPs) must be controlled precisely such that no

template is overfilled or underfilled [45]. On the other hand, the BCPs are

spin-coated uniformly over the substrate. As a result, some isolated template

is likely to be overfilled since all nearby BCPs diffuse toward it, and thus

undesirable patterns are generated inside the template. Consequently, the

density of the template distribution becomes critical.

For DSA without MPL, one of the options to mitigate the condition is

to insert sub-DSA resolution assistant features (SDRAFs) specially designed

such that no etch-transferable pattern is formed inside but they can perform

like reservoirs to share the BCPs [45] as shown in Fig. 6.1(b). Though this
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could potentially make the density as even as possible, if too many SDRAFs

are added, it most likely generates a much denser layout, and has to run the

risk of undesirable hole on the wafer created by faulty SDRAFs. Additionally,

it leaves little space for sub-resolution assist features (SRAFs) used to help for

printing and increases the complexity for optical proximity correction (OPC)

optimization [49]. Because of those reasons, when considering DSA-MPL, it

is important to assign the templates into different masks in a balanced way

such that the template density could be relatively even distributed and needs

a minimum number of SDRAFs added.

Given the layout of contacts/vias, the first step is grouping them into tem-

plates such that the minimum number of masks are required, and the second

step is to decompose the resulting templates into different masks. The for-

mer problem of grouping contacts is shown hard to solved optimally [40].

In this chapter, we focus on optimizing the latter step of mask assignment

for DSA with DPL (DSA-DPL) such that the optimal density of the tem-

plates is achieved and the minimum number of SDRAFs is required. To our

knowledge, it is the first work to handle the optimization problem of mask

assignment aware of the DSA template density issue. Our contribution is

summarized as the following.

1. A novel optimization problem of mask assignment is formulated for

DSA template density balancing purpose.

2. An integer linear programming (ILP) formulation is presented to solve

for the mask assignment optimally.

The rest of the chapter is organized as follows. Section 6.2 introduces the

background of the technology, and then discusses the optimization objective,

and finally provide the definition of the problem. Section 6.3 presents an

ILP approach to solve the problem. Finally, the experimental results are

discussed in Section 6.4. We conclude this chapter in Section 6.5.

6.2 Background and Problem Formulation

In this section, in order to illustrate the formulation of the problem, we

first introduce the background knowledge of DSA-MPL hybrid lithography
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Figure 6.1: (a) Relatively low density causes no hole formed in the templates
(red). (b) After adding SDRAFs (blue), the templates are not overfilled.

as well as its density issue. Then the problem objective is analyzed. Finally

we define our optimization problem.

6.2.1 DSA-MPL Hybrid Lithography

Left unconfined, block copolymers are known to self-assemble into arrays of

hexagonally packed cylinders. However, this long-range periodicity is incon-

gruous with the needs of random logic, where contacts and vias are scattered

aperiodically in layouts. For this reason, topographical guiding templates are

used to confine the block copolymer, causing it to instead form small clusters

of cylinders according to the template shape and at a pitch dictated by the

natural pitch of the block copolymer [50]. Because the block copolymer can

self-assemble into multiple holes per guiding template, block copolymers can

effectively enable pitch multiplication. Vias that would conventionally have

to be printed on separate masks can instead be printed together on one mask

in a multi-hole template and later resolved by the block copolymer into sep-

arate holes. In this way, the use of block copolymer directed self-assembly to

print circuits can allow contacts and vias to be grouped in such a way that

fewer masks can be used relative to conventional optical lithography.

When decomposing a via layout for DSA, it is important to consider the
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range of templates that can be used. Previous work has posted that for DUV,

template fidelity is insufficiently high to allow for good DSA hole placement

accuracy in templates larger than doublets or triplets. Indeed, in Karageorgos

et al. [51], the range of templates available for layout decomposition for 193i

MPL is specifically linked to the layout grid dimensions for the technology

node. The template alphabet, such as singlet, doublet and triplet can be used

to group vias into templates. The grouping of the vias may not be sufficient

to resolve all minimum distance rule violations, then MPL is adopted and

the templates are assigned to different masks.

6.2.2 Template Density and SDRAFs

A notable feature of these decomposed layouts is their inherent density varia-

tion that comes as a result of the uneven distribution of vias. Recent work [45]

has demonstrated that this density variation can prove problematic for the

DSA process, as uneven density can cause the fill level in templates to vary

dramatically. Because the BCP film thickness across a given collection of

templates is uniform and the amount of BCPs deposited must be optimized

for the most dense region, spare BCPs around a template in less dense area

would diffuse toward the template and increase its fill level. The uneven fill

level has been shown in PMMA-affinitive templates to cause missing DSA

holes in areas where the templates have overfilled due to relatively low tem-

plate density [52]. Although templates with neutral substrates have been

shown to be more robust to missing holes due to template overfill, Doise

et al. [48] have reported poor LCDU control post-etching in templates with

varying fill level, as the DSA holes in templates with more polymer have

higher aspect ratio than those with less polymer. The scenario of overfilling

is shown in Fig. 6.1 (a). Because of the lower density around, the templates

in red squares are overfilled by BCPs and have no hole formed inside. For

convenience, we define impact region, radius and its density as following.

Impact Region IR(ti): The impact region IR of a template ti is the

circular area that the BCPs inside could possibly diffuse to ti.

Radius R(ti): The radius R of a template ti is the radius of its IR.

Density Dm(ti): The density Dm of a template ti is the total number of

templates on mask m in its IR. For DPL, m = 0 or 1.
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The density is measured for each template to evaluate the chance of over-

filling, and it is defined on an circular region because of the diffusion nature

of BCPs.

In MPL, the templates are partitioned into different masks, which possi-

bly generates uneven layouts and has some template overfilled. As shown in

Fig. 6.2(a), a set of templates in layout needs to be printed by double pat-

terning (two masks). Though the partitioning shown in Fig. 6.2(b) resolves

all minimum distance violations, this unbalanced partitioning enlarges the

template density variation, for instance, the densities in the circle area of the

top and bottom figures are much different. Thus, the template at the center

of the circle in the lower figure will be possibly overfilled. On the other hand,

Fig. 6.2(c) shows another partitioning result that both masks have relatively

even density. It lowers the possibilities of overfilling dramatically and thus is

desirable.

As a complementary to balanced partitioning, another way to solve the

uneven template fill levels proposed by Yi et al. [45] calls for the use of

sub-DSA resolution assist features (SDRAFs) to balance template density

illustrated in Fig. 6.1(b). These SDRAFs surrounded by blue lines are placed

in regions of low template density, and act as polymer sinks to divert co-

polymer away from overfilled templates. They do not create actual holes on

the wafer during the DSA process. In DSA-MPL, after the mask assignment

is done, the uniform BCP film thickness is optimized to be compatible with

the region with the largest density of all masks. Then the rest of areas have

lower density and templates in those areas are risky to be overfilled. To

remedy the issue, SDRAFs are inserted to increase the density of the rest of

the layout to match the most dense region. However, the size and shape of

SDRAFs need to be controlled precisely such that they do not themselves

produce any etch-transferrable features (holes).

6.2.3 Problem Formulation

In this chapter, we mainly study the problem of DSA with double patterning

(DSA-DPL). Given a layout of vias, after grouping the vias into templates,

they are 2-colored and assigned to mask 0 and mask 1. The template dis-

tribution on each mask may be unbalanced. Thus, SDRAFs are inserted to
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Figure 6.2: Layout (a) is colored into 2 masks. The partitions in (b) have
larger density variation than the partitions in (c).

even the template density, but they are potentially to be faulty and produce

etch-transferrable features due to fabrication variations. Consequently, in

order to reduce the uncertainty caused by SDRAFs, it is desirable to mini-

mize the number of the SDRAFs added. The problem becomes how to assign

templates to the masks such that the density is optimized in a way that the

number of the SDRAFs needed is minimized. If we use NSDRAF to present

the number of SDRAFs, the problem is to minimize

NSDRAF =
DMAX(0)

A(IR)
× A(0)−Nt(0) +

DMAX(1)

A(IR)
× A(1)−Nt(1)

DMAX(i) is the maximum density of mask i. A(IR) is the area of an IR,

which has neglectable variance between different templates, so we treat it as

a constant in this work. A(i) is the total area occupied by IRs on mask i.

Nt(i) is the number of original templates assigned to mask i. Note that the

summation of Nt(0) and Nt(1) is the total number of templates, so they can

be treated as constant as well. As a result, the problem becomes to minimize

DMAX(0)× A(0) +DMAX(1)× A(1)
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Table 6.1: Terminologies
Nt(i) The number of templates in mask i.
NM The number of masks.

NSDRAF The number of SDRAFs needed.
T The set of all templates in the layout.
ti The ith template for 1 ≤ i ≤ N .

IR(ti) The Impact Region of ti.
R(ti) The Radius of IR(ti).

D(ti,m) The number of templates in IR(ti) on
Mask m.

DMAX(i) The maximum density of templates on
mask i.

M(ti) The binary indicator for the mask as-
signment of ti. It is 0 if ti is assigned to
Mask 0. It is 1 if it is assigned to Mask
1.

Ne(ti) The set of templates tj such that ti and
tj are neighbors (in each other’s IR).

Additionally, A(i) is very insensitive to different mask assignments because

(1) two conflict templates will produce almost the same IR on each mask

because they are very close to each other, and (2) the radius of IR is quite

large comparing to the distance between templates. Therefore, as shown in

Fig. 6.3, the total union area of IRs in mask 0 is almost the same to the total

area of the mask 1 in practice. So, we can neglect A(i). Thus, the problem

is to choose the color assignment such that the following is minimized.

DMAX(0) +DMAX(1)

6.3 ILP Approach

In this section, we formulate our problem into an integer linear programming

(ILP) and solve it optimally by an ILP solver. Some notations are shown in

Table 6.1.

Given a layout of templates, a conflict graph G(Vg, Eg) can be constructed

such that each vertex refers to a template ti ∈ Vg and an edge (ti, tj) ∈ Eg
if ti and tj violate the minimum spacing rule. In this chapter, we assume
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Figure 6.3: (a) IRs of all templates are shown in red. (b) IRs of templates
assigned to mask 0 is shown in green. (c) IRs of templates assigned to mask
1 is shown in blue.

that the given layout is 2-decomposable, namely G is 2-colorable, since we

focus on the stage of mask assignment. As shown in Table 6.1, we define the

neighborhood of ti as follows.

Neighbor: ti and tj are neighbors if they are in each other’s IR.
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Note that we assume the radius is a constant, so ti and tj are neighbors

of each other simultaneously. In other words, tj ∈ Ne(ti) always implies

ti ∈ Ne(tj).
First, in order to enforce the conflicts, M(ti) ⊕ M(tj) = 1 if ti and tj

are conflicted. The exclusive or operation enforces that M(ti) and M(tj) are

assigned to different masks. Because M(ti) is a binary, this can be interpreted

into the following.

Conflict constraints:

M(ti) +M(tj) = 1 ∀(ti, tj) ∈ Eg

Second, we use positive integer variables D(ti,m) to represent the number

of templates in the IR of ti on Mask m. Note that if ti is assigned to mask

1, then D(ti, 0) is set to 0. They are calculated as the following.

Density constraints:
D(ti, 1) = M(ti) +

∑
tj∈Ne(ti)

M(tj)

D(ti, 0) = 1−M(ti) +
∑

tj∈Ne(ti)
1−M(tj)

Third, we need to get the maximum density on each mask. We present it

by DMAX(i). This is enforced by the following.

Maximum constraints:

D(ti, 1) ≤ DMAX(1) ∀ti ∈ T

D(ti, 0) ≤ DMAX(0) ∀ti ∈ T

Combining all those constraints, the final ILP is as follows.
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minimize DMAX(0) +DMAX(1)

subject to:

M(ti) +M(tj) = 1 ∀(ti, tj) ∈ Eg
D(ti, 1) = M(ti) +

∑
tj∈Ne(ti)

M(tj) ∀ti ∈ T

D(ti, 0) = 1−M(ti) +
∑

tj∈Ne(ti)
1−M(tj) ∀ti ∈ T

D(ti, 1) ≤ DMAX(1) ∀ti ∈ T
D(ti, 0) ≤ DMAX(0) ∀ti ∈ T
M(ti) ∈ {0, 1} ∀ti ∈ T

6.4 Experimental Results

We solve our ILP by GUROBI [53] solver on a Linux workstation with 3.2

GHz CPU and 7.5 GB memory. We build our benchmarks by randomly

picking a portion from an industrial metal 0 via layout by applying a var-

ious size window. We use 1 µm as the radius of the impact regions. We

compare the results from ILP to random color assignment and show them in

Table 6.2. Based on the results, the ILP can be solved for the large testcase

with more than 31000 templates in hundreds of seconds and it can affectively

reduce the number of SDRAFs needed more than 10% compared to randomly

assignment.

6.5 Concluding Remarks

For the 10 nm technology node and beyond, DSA-MPL technology has pre-

sented a unique opportunity of mask design optimization for improving the

manufacturability. This chapter is the first work studying the density aware

mask assignment. For the first time, we define the density of a template by

using a circular impact region based on the property of block co-polymers

diffusion. Then we formulate the objective to minimizing the maximum den-

sities. The problem can be optimally and efficiently solved by integer linear

programming (ILP).
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