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Abstract

This article opens with a pedagogical discussion of holography aimed at cal-
culating the thermodynamics and transport coefficients in condensed matter
systems. Therein, we will discuss the duality of thermodynamics to classical
field theory, construct the associated dual action at the field theory’s bound-
ary, and divulge the numerical techniques of the Einstein-DeTurck equations.
The latter allows a numerical treatment of linear response theory in highly
nontrivial gravitational backgrounds. We will use these techniques in the
analysis of two major problems. In the first, we will discuss the specific
implementation of the numerical methodology in the exploration of holo-
graphic lattices. Particularly, we construct generalizations of AdS-Reissner-
Nordström that interpolate between those used in two previous studies — one
that reports power-law scaling for the mid-frequency regime of the optical
conductivity and one that does not. We find no evidence for power-law scal-
ing of the conductivity, thereby corroborating the previous negative result
that gravitational crystals are insufficient to generate the power-law mid-
infrared conductivity observed in cuprate superconductors. In the second
problem, we present the full charge and energy diffusion coefficients for the
Einstein-Maxwell dilaton (EMD) action for Lifshitz spacetime characterized
by a dynamical critical exponent z. We compute the fully renormalized static
Lifshitz thermodynamic potential explicitly, which confirms the forms of all
thermodynamic quantities including the Bekenstein-Hawking and Smarr-like
relationships. For transport, we target our analysis at finite chemical po-
tential and include axion fields to generate momentum dissipation. Beyond
analysis of the bounds, we find deviation from universal transport obtains
when either the chemical potential or momentum dissipation are large rela-
tive to temperature, an echo of strong thermoelectric interactions. We also
find that regardless of what is diffusing, energy or charge, the diffusion con-
stant is independent of matter content when z = 2. This state of affairs
obtains because the diffusion equation is scale invariant when z = 2.
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Notations

• Einstein notation where indices are repeated denote summed contrac-
tions, e.g.

FacF
c
b =

∑
c

FacF
c
b

• Symmetrized indices: A(aBb) = 1
2

(AaBb + AbBa)

• Antisymmetrized indices: A[aBb] = 1
2

(AaBb − AbBa)

• p-form1: ω = 1
p!
ωa1···apdx

a1 ∧ · · · ∧ dxap

• Exterior derivative: dω = 1
p!
∇bωa1···apdx

bdxa1 · · · dxap

• Interior product: iξω = 1
p!
ξbωba1...ap−1dx

a1 · · · dxap−1 fix maybe

• Lie derivative: Lξω = (diξ + iξd)ω

1In general wedge products are presumed and not written.
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1 Holography for the Practical
Person

1.1 Duality of Semi-classical Field Theory

and Thermodynamic Potentials

Holgraphy is a technique borne of string theory and a high-browed conjec-
ture [1], but its skeleton is classical field theory. Holography is generally
implemented as a duality in the sense of the AdS/CFT correspondence: a
duality between a specific bulk geometry (anti-de Sitter spacetime) to a con-
formal field theory that exists at the boundary of said bulk [2]. However, this
is only a specific implementation of a universal feature of semi-classical field
theories. Any field theory where a saddle point approximation is applicable
allows a duality between a bulk field theory and an interpretation of a bound-
ary thermodynamic potential. All we really need is to define an action and
follow the holographic program, and any features that we choose to include
have nontrivial effects in the dual theory than can depend on many details
of the bulk geometry.

Consider the partition function for a general field theory,

Z =

∫ ∏
n

Dφne−I[{φn}], (1.1)

where I[{φn}] is a (local) action and {φn} refers to some collection of fields
and their relevant derivatives. Here M is a (ds + 2)-dimensional Lorentzian
manifold which we will define in the next section1. Throughout this work we
will always assumeM is a Lorentzian manifold. Implicit in Eq. (1.1) is that
we have performed a Wick rotation to a Euclidean time.

For the saddle point approximation, consider that all fields in the system
take the form

φn = φn + δφn, (1.2)

where {φn} is the set of classical solutions that solve the Euler-Lagrange
equations and {δφn} are small variations about them. A generic variation of

1Typically it is convenient in holographic problems to have ds be the number of spatial
dimensions, with the extra two as the time and radial dimensions.
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I can be expressed

δI =

∫
M

(EOMs) +

∫
∂M

∑
n

Π(φ)
n δφn. (1.3)

where ∂M is the (ds + 1)-dimensional boundary of the bulk manifold and

{Π(φ)
n } the conjugate momenta to {φn}. By definition, the variation in the

bulk action vanishes on-shell where the equations of motion are satisfied,
and the only piece to survive is the boundary contribution. This is the
“hologram,” where a classical approximation to a field theory amounts to a
projection onto a one-lower dimensional spacetime.

For a thermodynamic system, the partition function is directly related to
the free energy W :

Z = e−W/T . (1.4)

If we are working in the saddle point approximation, we arrive at the essential
statement of holography:

δI(o.s.) =
δW

T
. (1.5)

As we established, the variation of the action only contributes to the bound-
ary, and thus the surviving boundary term has the interpretation of a fun-
damental thermodynamic relation,

δW

T
↔
∫
∂M

∑
n

Π(φ)nδφn. (1.6)

Thus we can establish a holographic dictionary between the bulk field quan-
tities {φn} and {Π(φ)

n } and thermodynamic quantities in W . The variation of
W will take on a quite literal description of a fundamental thermodynamic
relation like

dW = −SdT −Qdµ− JdE + · · · (1.7)

where we have “source” quantities like temperature T , chemical potential µ,
electric field E, and so on, and respective “responses” like entropy S, charge
Q, current J , and so on. In the most general sense, we will think of the
relations

φn ↔ sources, Π(φ)
n ↔ responses (1.8)

where the information about the thermodynamic potential is all contained
within the classical field solutions. At its core, this is the program of hologra-
phy. The game is to construct your personal choice of action I and see what
thermodynamic potential it generates! In this way, thermodynamic systems
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can be constructed that ostensibly can deal with strongly-interacting systems
without ever touching a microscopic model; we have all the tools we need
to solve for macroscopic quantities. Holographic models exist for a host of
condensed matter systems including strange metals [3], superconductors [4],
Josephson junctions [5], Mott insulators [6], graphene [7] and innumerable
others. Generally, we are looking to observe qualitatively similar features in
excitations and phases to map these holographics models by hand to their
corresponding condensed matter system.

1.2 General Relativity: a Brief Refresher

Holographic methods are underpinned by general relativity so it is important
to keep track of some of the objects and ideas we’ll frequently refer to. For
a complete overview of general relativity, we refer to Wald [8]. Imagine we
have a Lorentzian manifold (M, gab), which is a real, smooth manifold M
which possesses a metric (tensor) gab. The metric is a fundamental measure
of infinitesimal length scales in a spacetime,

ds2 = gabdx
a ⊗ dxb. (1.9)

The distinction of Lorentzian indicates a (1, D − 1) signature; one timelike
coordinate and D − 1 spacelike coordinates, such that is locally similar to
Minkowski spacetime.2 As always, we lazy physicists will drop the tensor
product ⊗ from the notation hereon.

The coordinates xa in Eq. (1.9) are, of course, arbitrary. They are merely
a nonphysical naming scheme to help us keep track of where we are. Coordi-
nates can be freely changed with a transformation matrix of partial deriva-
tives,

dxa =
∂xa

∂yb
dyb. (1.10)

Such a transformation is called a diffeomorphism. How objects change under
diffomorphisms is paramount in general relativity. Essentially, objects that
transform “nicely” are known as tensors, which merely transform through
successive applications of the transformation matrix in Eq. 1.10 or its in-
verse.3

Speaking of a tangled mess, the friendly old partial derivative ∂a is not so
friendly in a curved spacetime. It is not a tensor. It behooves us to introduce

2Such manifolds are also called pseudo-Riemannian, reflecting that not all metric com-
ponents are positive-definite as in a Riemannian manifold.

3The official statement is that all indices in a tensor must transform covariantly or
contravariantly with a change of basis.
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the covariant derivative,

∇cT
a1···aq
b1···bq = ∂cT

a1···aq
b1···bq + Γa1cdT

d···ap
b1···bq + · · ·+ Γ

ap
cdT

a1···d
b1···bq

− Γdcb1T
a1···ap
d···bq − · · · − ΓdcbqT

a1···ap
b1···d , (1.11)

where the Levi-Civita connection Γabc is introduced to ensure (1.11) trans-
forms like a tensor. The Levi-Civita connection is defined,

Γabc =
1

2
gad (∂bgdc + ∂cgbd − ∂dgbc) , (1.12)

which follows if:

1. It is metric compatible: ∇cgab = 0,

2. It is torsion-free: Γabc = Γacb (or Γa[bc] = 0).

Metric compatibility ensures that raising and lowering indices is a tranquil
process; raising and lowering operations can just phase through derivatives
willy nilly.

Now that we have a usable derivative for curved spacetimes, let us exam-
ine the notion of curvature. In particular, we take a look at what happens if
we commute covariant derivatives and find

[∇b,∇c]T
a = Ra

bcdT
d, (1.13)

Ra
bcd = ∂cΓ

a
db − ∂dΓacb + ΓaceΓ

e
db − ΓadeΓ

e
cb, (1.14)

where Ra
bcd is the Riemann curvature tensor. You can think of this com-

mutation like taking an infinitesimal two-step stroll, then doubling back but
reversing the order of your steps. If the spacetime is curved, in general you
will not arrive back at your starting point, but instead some other point that
is dependent on just how curved the spacetime you’re wading through is.
Two contractions of the Riemann tensor are also fundamentally important
for us,

Rab = Rc
acb, R = Ra

a, (1.15)

the Ricci tensor and Ricci scalar, respectively.
The Riemann tensor contains a host of symmetries and redundancies

which we will not discuss here, except to note it follows a Bianchi identity,

∇eRabcd +∇cRabde +∇dRabec = 0, (1.16)

which implies that the trace-reversed Ricci tensor is conserved,

∇a

(
Rab −

1

2
Rgab

)
= 0. (1.17)
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This is the very relation that prompted Einstein to postulate his famous
equation relating geometry and matter (reference),

Rab −
1

2
Rgab + Λgab ∝ Tab (1.18)

due to the fact the stress-energy tensor Tab, a tensor that describes the density
and flux of energy and momentum in spacetime, is also conserved,

∇aTab = 0. (1.19)

This conservation law is really just the tensor-ized statement of conservation
of energy and momentum. This fundamental proposal promotes the metric to
being its own dynamical variable complete with its own equation of motion.
Here Λ is an arbitrary additive constant called the cosmological constant.
Einstein considered the necessity of this arbitrary addition a failure of the
theory, but it is actually quite a useful quantity as we will later see! These
conservation laws will be important for more than a historical perspective
and will be necessary for defining a stable and consistent numerical scheme.

The equation of motion Eq. (1.18) can be obtained from a principle of
least action formulation, where

I =

∫
M

√
−g (R− 2Λ + Lmatter) (1.20)

is the Einstein-Hilbert action. The piece
√
−g is a volume factor where

g = det gab; the volume form dDx
√
−g measures an infinitesimal volume of

the spacetime and is invariant under diffeomorphisms. This action contains
the scalar curvature R as a measure of the kinetics of the geometry and L
for all the matter contained within the system. The stress energy tensor is
defined as

Tab ≡ −
2√
−g

δ (
√
−gLmatter)

δgab
. (1.21)

For convenience I have done away with the usual Newton constant that de-
fines the proportionality in Eq. (1.18) (GN = 1/16π). The conservation of
the stress-energy tensor is a consequence that the action I is invariant under
diffeomorphisms, hereunto saying a theory is diffeomorphism invariant. This
is a property of all constructions because coordinate choices are always ar-
bitrary and should have no physical consequence. A variation of the action
under a diffeomorphism is

δξI = 0 =

∫
M

√
−g
(
Rab −

1

2
Rgab + Λgab − Tab

)
∇aξb

=

∫
M

√
−gξb∇aTab (1.22)
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up to boundary terms. Because ξb is arbitrary, Tab is conserved in the bulk.
That concludes our review! Contained herein are most of the tools you’ll

need to approach holographic problems, with one exception to cover: how to
define a boundary.

1.3 Defining a Boundary

Suppose one of our coordinates is oh-so-special. Call it r, for radial. Let us
foliate our bulk spacetime into hypersurfaces Σr of constant r along this radial
direction. The bulk metric can be divvied up through the ADM formalism4

as

ds2 = N2dr2 + γij
(
dxi +N idr

) (
dxj +N jdr

)
(1.23)

where γij is the intrinsic metric on Σr, and the parameters N and N i are
called the lapse and shift, respectively. The metric gab is then codified by the
parameters {N,N i, γij} with the inverse

gab∇a ⊗∇b =
1

N2

(
∇r −N i∇i

)
⊗
(
∇r −N j∇j

)
+ γij∇i ⊗∇j. (1.24)

Be aware that γij is the inverse of the intrinsic metric, which is not the same
thing as raising the indices of γij with the bulk metric! We will use the
indices (i, j, k, . . . ) to denote non-radial components and the contractions of
such objects use the intrinsic metric. The Ricci scalar can then be reexpressed
as

R[g] = R[γ] +K2 −KijK
ij +∇a

(
−2Kna + 2nb∇bn

a
)

(1.25)

where R[g] and R[γ] are the Ricci scalars for the bulk metric and intrinsic
metric, respectively, and the vector na = (1/N,−N i/N) is the outward unit
normal vector to Σr. The extrinsic curvature Kij is defined

Kij ≡ ∇(inj)

=
1

2N

(
γ̇ij − 2∇(γ)

(i Nj)

)
(1.26)

where ∇(γ)
i is the covariant derviative defined for the intrinsic curvature γij

and K = Ki
i . The dot denotes a radial derivative ∂r.

Let us examine a generic action

I = −
∫
M

√
−g
(
R− 1

2
(∇φ)2 − V (φ)− 1

4
Z(φ)F 2

)
−
∫
∂M

√
−γ2K (1.27)

4Named for Richard Arnowitt, Stanley Deser and Charles W. Misner.
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which features a U(1) field strength F = dA for a 1-form A and a scalar
field φ. These types of objects are the general stuff of field theory so it
is important that we understand how to handle them! The K-dependent
boundary term added is the Gibbons-Hawking term, added to cancel the
boundary contribution from the total derivative term in Eq. (1.25). This is
required to have a well-defined variational problem. A generic variation of
this action yields

δI =

∫
M

√
−g (EOMs) +

∫
∂M

(
1

2
T abδγab − JaδAa +Oφδφ

)
, (1.28)

which as we have discussed, leaves only a boundary term on-shell. The
boundary stress-energy tensor Tab, current Ja and scalar operator Oφ are
given by

T ab = 2
√
−γ
(
Kab −Kγab

)
, Ja =

√
−γnbZ(φ)F ab, Oφ = −

√
−γna∇aφ.

(1.29)

These bare responses are not guaranteed to be stable at the boundary and
will in general require renormalization! This is performed with the addition
of boundary action counter-terms Ic.t., which we demand to depend only
upon intrinsic fields in Σr.

The action of Eq. (1.27) can be formulated in the language of radial
evolution [9, 10] as I =

∫
drL with a Lagrangian

L = −
∫

Σr

√
−γN

(
R[γ] +K2 −KijK

ij

− γij

2N2
Z(φ)

(
Ȧi − ∂iAr +NkFki

)(
Ȧj − ∂jAr +N lFlj

)
− 1

4
Z(φ)γijγklFikFjl −

1

2N2

(
φ̇2 −N i∂iφ

)2

− 1

2
γij∂iφ∂jφ− V (φ)

)
,

(1.30)

where the Gibbons-Hawking term has already canceled out the boundary
contribution from R. Note that N , N i and Ar have no kinetic terms and are
therefore Lagrange multipliers which will yield some first-order constraints.
The constraints from N and N i are a consequence of diffeomorphism in-
variance; that is, we have exactly D first-order constraints, removing the
dynamics of the D free reparameterizations. The constaint from Ar is one
from U(1) invariance. The conjugate momenta are defined

Π(γ)ij ≡ δL

δγ̇ij
=
√
−γ
(
Kij −Kγij

)
, (1.31a)

Π(A)i ≡ δL

δȦi
=

√
−γ
N

γijZ(φ)
(
Ȧj − ∂jAr +NkFkj

)
(1.31b)

Π(φ) ≡ δL

δφ̇
=

√
−γ
N

(
φ̇−N i∂iφ

)
(1.31c)
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which are exactly the same as the responses in Eq. (1.28). As stated pre-
viously, these are in general not well-defined in the boundary limit r → ∞.
However, counter-terms can be generated in a controlled way. The general
mechanism solves the radial Hamilton-Jacobi equations with a recursive so-
lution involving a functional series expansion [9, 10].

The Hamiltonian is

H =

∫
Σr

(
Π(γ)ij γ̇ij + Π(A)iȦi + Π(φ)φ̇

)
− L (1.32)

=

∫
Σr

(
NH +N iHi − Ar∂iΠ(A)i

)
(1.33)

where

H =
1√
−γ

(
Π(γ)ijΠ

(γ)
ij −

1

D − 2
Π(γ)2 +

1

2Z(φ)
Π(A)iΠ

(A)
i +

1

2
Π(φ)2

)
+
√
−γ
(
R[γ]− 1

4
Z(φ)FijF

ij − 1

2
∂iφ∂

iφ− V (φ)

)
, (1.34)

Hi = −2∇(γ)jΠ
(γ)
ji + Π(A)jFji + Π(φ)∂iφ (1.35)

Thus, the first-order constraints imposed by the variations of N , N i and Ar
are

H = 0, Hi = 0, ∂iΠ
(A)i = 0. (1.36)

As expected, N and N i yield Hamiltonian and momentum constraints, re-
spectively, and Ar yields a continuity equation for the current Π(A)i within
Σr. The last feature is crucially important: we have established a mechanism
to encode a locally conserved boundary current.

1.4 Example to Live By: The AdS

Reissner-Nordström Black Hole

Paramount to all our discussion is the fundamental solution of the AdS
Reissner-Nordström black hole. In general relativity nomenclature, Reissner-
Nordström refers to a black hole with electric charge. We take a bulk action
which contains only features of geometry and electromagnetism, the Einstein-
Maxwell action5

Ibulk = −
∫
M

√
−g
(
R− 2Λ− 1

4
F 2

)
(1.37)

5The astute reader will notice the minus sign in front of the action, which is necessary
to prescribe the dual thermodynamics. If it’s more comfortable, you might think this
minus sign is meant to be there in a spacetime with negative curvature!

8



where F = dA is the exterior derivative of a U(1) field and M is a (ds + 2)-
dimensional Lorentzian manifold. The metric ansatz

ds2 =
L2

r2f(r)
dr2 − r2

L2
f(r)dt2 +

r2

L2
d~x2

ds , (1.38)

is a possible solution to the Einstein equations, where L is the AdS length.
The emblackening factor f is taken such that limr→∞ f(r) = 1 and f(r+) = 0,
where r+ is the largest root of f . These conditions imply that our metric is
asymptotically AdS as r →∞ and that there is an event horizon at r = r+.
Thus, r is a radial coordinate that takes us from a black hole horizon to a
conformal boundary. As r →∞, the scaling symmetry

r → λ−1r, t→ λt, xi → λxi (1.39)

obtains.6

This action yields the bulk equations of motion, the Einstein-Maxwell
equations:

Eab = Rab −
2Λ

ds
gab −

1

2

(
FacF

c
b −

1

2ds
F 2gab

)
= 0, (1.40a)

Ma = ∇bF
ab = 0 (1.40b)

Here we have removed the Ricci scalar from the Einstein-Maxwell equations
using

R =

(
2 +

4

ds

)
Λ +

(
1

4
− 1

2ds

)
F 2, (1.41)

which can be acquired by taking the trace of the Einstein equations. It is
convenient to do this both for compactifying the equations of motion and,
more importantly later on, to define a stable numerical solution scheme.

The Einstein-Maxwell equations allow an enormous class of solutions. In
fact, a general set of solutions to the equations does not exist and there only
a handful of nontrivial analytic solutions. One possible such solution is the
AdS Reissner-Nordström black hole,

Λ = −ds(ds + 1)

2L2
, (1.42)

A = µ

(
1−

(r+

r

)ds−1
)
dt, (1.43)

f(r) = 1 + q2
(r+

r

)2ds
−M

(r+

r

)ds+1

, (1.44)

q =

√
ds − 1

2ds

µL

r+

, M = 1 + q2 (1.45)

6Often, scale invariance is close enough to conformal invariance that most people don’t
segregate the two.
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Let us take some time to dissect the features of this solution. The nature
of the AdS hyperbolic geometry is encoded by the negative cosmological
constant Λ. The boundary conditions imposed on At are a Dirichlet condition
at the boundary, limr→∞At(r) = µ, and a regularity condition at the horizon,
At (r+) = 0. For convenience, we often set L = 1, noting that it can be
restored through dimensional analysis.

Why black holes? We will demonstrate how a black hole naturally imparts
the properties of a thermodynamic system. Near the horizon

ds2 ≈ L2

r2
+f
′(r+)

dr2

r − r+

−
r2

+f
′(r+)

L2
(r − r+) dt2 +

r2
+

L2
d~x2

ds , (1.46)

which with a change of variables %2 = r − r+ and Wick rotation τ = −it
obtains

ds2 ≈ 4L2

r2
+f
′(r+)

[
d%2 +

(
r2

+f
′(r+)

2L2

)2

%2dτ 2

]
+
r2

+

L2
d~x2

ds . (1.47)

We see the radial coordinate and Euclidean time take the form of simple polar
coordinates near the horizon. For a suitable dual theory, the Euclidean time τ
must have a period of 1/T where T is the temperature of the thermodynamic
ensemble. To avoid a conical singularity, the constraint

T =
r2

+f
′(r+)

4πL2
,

=
r+

4πL2

(
ds + 1− (ds − 1)2

2ds

µ2L2

r2
+

)
, (1.48)

is forced, and is dubbed the Hawking temperature. This singularity, in

essence, is a guarantee that the near-horizon polar coordinates {%, r
2
+f
′(r+)

2L2 τ}
function appropriately; that is, the dimensionless polar angle has a period of
2π. Anything else and the polar system could be visualized as a cone (more
or less than 2π to loop around) and a singularity emerges at % = 0, the cone’s
tip.

The temperature of our theory is entirely determined by the near-horizon
geometry. The mere presence of a black hole both turns on and completely
determines the temperature, and its absence guarantees T = 0. Of course,
T = 0 can be achieved despite the presence of the black hole when f ′(r+) = 0,
or q2 = ds + 1. Such a black is dubbed extremal and results in a double root
of f at the horizon, giving a completely different near-horizon geometry of
the form AdS2 × Rds .7

Instead of viewing the horizon radius as constraining the temperature, we
will visualize T and µ as the independent variables that determine r+(T, µ).

7This T = 0 horizon structure imparts unique features which aid in the computation
of response functions, as seen in [11].
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Inverting (1.48),

r+(T, µ)

L
=

2πTL

ds + 1

(
1 +

√
1 +

2

ds
(ds + 1)(ds − 1)2

( µ

2πTL

)2
)
, (1.49)

and the thermodynamic potential can be expressed explicitly as a function
of T and µ.

The free energy can be computed from the on-shell action. In order to
evaluate a stable boundary action we will integrate over the interval [r+, r∞],
where r∞ is a placeholder radial cutoff to signify r → ∞. We demand that
all our symplectic form is stable in this limit and nothing is ultimately a
function of the cutoff r∞. The Ricci scalar (1.41) can be plugged in to yield
the on-shell action:

I(o.s.) = −
∫
M

√
−g
(

4Λ

ds
− 1

2ds
F 2

)
−
∫
∂M

√
−γ2K. (1.50)

The bulk contribution can be expressly integrated, and the Gibbons-Hawking
term for our ansatz is easily computed We arrive at

I(o.s.) =
volds
TL

[
−2ds

(r∞
L

)ds+1

+ (ds − 1)M
(r+

L

)ds+1
]

(1.51)

after removing all vanishing contributions from the boundary limit. The
parameter volds is a ds-dimensional spatial volume.

Presently, our boundary action diverges and is not well-defined. As it
happens, the only term required to stabilize our theory is a volume term,

Ic.t. =

∫
∂M

√
−γ 2ds

L
. (1.52)

This modification affects only the stress-energy tensor in Eq. (1.28), which
is now

Tab = 2
√
−γ
(
Kab −Kδab +

ds
L
δab

)
. (1.53)

The stress-energy tensor is now stable in the r →∞ limit, and obtains

Tt t = ds
M

L

(r+

L

)ds+1

, Txixj = −M
L

(r+

L

)ds+1

δi j. (1.54)

We first notice that the stress-energy tensor is traceless, Taa = 0. This is a
standard property of a conformally invariant theory, which emerges as the
Ward identity for Weyl invariance; namely, the consequence of the action
being invariant under the Weyl transformation

γab → e−2Ω(x)γab. (1.55)
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Now, the full on-shell boundary action is

I(o.s.) =
W

T
= −volds

M

TL

(r+

L

)ds+1

, (1.56)

and W is the free energy. This is it! We have computed the thermodynamic
potential for our theory. Let us check that the response it computes are
intuitive! Armed with (1.49), all partial derivatives and expressions can be
computed explicitly. First, the entropy,

S = −∂W
∂T

,

= volds4π
(r+

L

)ds
, (1.57)

where volds(r+/L)ds is exactly the surface area of the black hole. This is the
celebrated Bekenstein-Hawking relation (where we have chosen GN = 1

16π
).

Next, the charge associated with the chemical potential µ is

Q = −∂W
∂µ

,

= volds(ds − 1)
µ

L

(r+

L

)ds−1

= voldsJ
t, (1.58)

which is exactly the predicted charge density. Now we can compute the
system’s internal energy,

E = W + TS + µQ,

= voldsds
M

L

(r+

L

)ds+1

= voldsTtt (1.59)

which is in fact directly represented by the tt-component of the stress energy
tensor.

The final quantity we will check is the system pressure p. Our system’s
volume dependence is trival, so the pressure is just

p =− W

volds
,

=
M

L

(r+

L

)ds+1

= −Tx1x1 . (1.60)

In a system with translational invariance, the pressure is simply related to the
system’s stress! What’s more, the pressure’s relation to the thermodynamic
potential guarantees the satisfaction of a Smarr-like relation

ε+ p = Ts+ µρ, (1.61)

where ε, s and ρ are the energy, entropy and charge densities respectively.
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1.4.1 Kubo Formula for Conductivities

As a quick aside, let us discuss the effect of a time-dependent perturbation
on a system of the form

Hsource =
∑
A

OA(t)φA(t) (1.62)

where φA are small potentials sourcing responses OA. Mathematically, any
such linear response can expressed with a Green function via

δ〈OA(t)〉 =

∫
dt′GAB(t− t′)φA(t′). (1.63)

In a traditional problem, φA may be something like an electric or thermal
potential. However, we are often interested not in the response to a potential
but to its corresponding “force,” i.e. an electric field or temperature gradient.
Mathematically, we use a generalized force FA = −∂tφA. Then, in frequency
space

F̃A(ω) = iωφ̃A(ω). (1.64)

We can define a conductivity as accumulated response of the force throughout
history,

δ〈OA(t)〉 =

∫
dt′σAB(t− t′)FA(t′). (1.65)

The relation of the Green function to conductivity is then simply

σ̃AB(ω) =
G̃AB(ω)

iω
, (1.66)

which is the Kubo formula for conductivities. Importantly, we note that a
source of frequency ω generates a response at exactly the same frequency.
Thus, it is fruitful to only work in Fourier space for conductivities, so we will
drop the tildes in the future.

1.4.2 Transport Properties of the AdS

Reissner-Nordström Black Hole

Thus far we have established the AdS-RN black hole static background : a
spacetime with a massive charged black hole that is asymptotically anti-de
Sitter. Now that everything’s settled, the best way to learn more is to prod
it! We’ll now consider how to compute dynamical quantities, namely linear
transport. For further details on this treatment, see [12, 13].

To observe the character of charge and thermal transport in this theory,
let us implement a linear response mechanism. We will consider both that
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the temperature and chemical potential will be modified to be have a slight
and perturbatively treatable gradient,

T → T + x1∇x1T, µ→ µ+ x1∇x1µ, (1.67)

which without loss of generality we can choose to be along x1 by rotational
symmetry. The effect of a chemical potential gradient is exactly the same as
an applied electric field; it generates motion of its conjugate charge. And of
course, a thermal gradient will generate a flow of heat. Calling the charge
and heat currents j(ρ)x1 and j(q)x1 respectively, these gradients will define a
conductivity matrix(

j(ρ)x1

j(q)x1

)
=

(
σ Tα
Tα Tκ

)(
−∇x1µ

− (∇x1T ) /T

)
(1.68)

where σ is the optical condutivity, κ is the closed-circuit thermal conductivity,
and α is the Seebeck coefficient. The charge and heat currents can inform us a
great deal about material behavior. For instance, in a metal they are directly
proportional to each other! This is because the only carriers of energy in the
system are effectively free electrons, so the charge and thermal carriers have
a total overlap. This is the Wiedemann-Franz Law, and it breaks down in
the converse: any other interactions in the material mean that these currents
will not overlap.

Let us take a moment to examine how the temperature gradient is im-
plemented. In our theory, it is expressly included by measuring the period of
Euclidean time. Thus, we can rescale the time coordinate t = t/T and the
new coordinate t has a period independent of temperature. Then perturbing
with a gradient, all tensors in our theory are adjusted using

dt =
dt

T
→ dt

T

(
1− x1∇x1T

T

)
= dt

(
1− x1∇x1T

T

)
. (1.69)

Then overall, we formulate the gradient perturbation on our background
fields near the boundary like

δds2 ≈ 2x1∇x1T

T

( r
L

)2

dt2, (1.70)

δA ≈ x1

(
∇x1µ− µ

∇x1T

T

)
dt. (1.71)

Before we take the next step, let us bestow time-dependence upon our gra-
dients as well,

∇x1T → e−iωt∇x1T, ∇x1µ→ e−iωt∇x1µ, (1.72)

Of course, because we are working to linear order it is salubrious to immedi-
ately work in the Fourier basis.

14



It will prove convenient to modify our perturbations with a set of gauge
transformations to shift all our sources onto transverse modes. Consider a
small diffeomorphism xa → xa + ξa and U(1) transformation λ given by

ξ = −e−iωtx
1

iω

∇x1T

T
∇t, λ = e−iωt

x1

iω
∇x1µ. (1.73)

This choice leaves the perturbation as

δds2 ≈ e−iωt
2

iω

∇x1T

T

( r
L

)2

dtdx1, (1.74)

δA ≈ e−iωt
1

iω

(
∇x1µ− µ

∇x1T

T

)
dx1 (1.75)

where we have used

δgab = Lξgab = 2∇(aξb), (1.76)

δAa = LξAa +∇aλ = ξb∇bAa + Ab∇aξ
b +∇aλ (1.77)

where Lξ denotes the Lie derivative.
This formulation is very convenient: not only has the x1-dependence

dropped completely, but the equations of motion for the transverse modes

δA = e−iωtδÃx1(r)dx
1, δds2 = e−iωt2

( r
L

)2

δg̃tx1(r)dtdx
1 (1.78)

are (
L

r

)ds [( r
L

)ds
fδÃ′x1 + ρδg̃tx1

]′
+
ω2

f

(
L

r

)4

δÃx1 = 0, (1.79a)

δg̃′tx1 +

(
L

r

)ds+2

ρδÃx1 = 0, (1.79b)

which completely decouple from all other modes. Thus, the dynamics of
the system need only be described by these two fields. The second of these,
Eq. (1.4.2), is a first-order constraint that effectively implements momentum
conservation. Actually, the constraint readily compacts all our dynamics to
a single equation of motion:(

L

r

)ds [( r
L

)ds
fδÃ′x1

]′
−
(
L

r

)2ds+2

ρ2δÃx1 +
ω2

f

(
L

r

)4

δÃx1 = 0, (1.80)

and thus the entirety of the transport problem has reduced to a single ordi-
nary differential equation!

In general, the asymptotic series at the boundary is

δÃx1 = δÃ
(0)

x1 −
1

ds − 1

(
L

r

)ds−1

δÃ
(J)

x1 + · · · , (1.81)

δg̃tx1 = δg̃
(0)

tx1 −
1

ds + 1

(
L

r

)ds+1

δg̃
(J)

tx1 + · · · , (1.82)
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and thus the source gradients are implemented as boundary conditions on
δg̃

(0)

tx1 and δÃ
(0)

x1 via Eq. (1.75). Then the boundary action at quadratic order
in the perturbations is

δI =

∫
∂M

[(
γttTtx

1 − µJx1
)(
− 1

iω

∇x1T

T

)
+ Jx

1

(
− 1

iω
∇x1µ

)]
. (1.83)

As advertised, the role of −∇x1µ is exactly the same as an applied electric
field sourcing an electric current j(ρ)x1 = Jx

1
. The temperature gradient

sources a heat current defined by

j(q)x1 ≡ γttTtx
1 − µJx1 , (1.84)

which is exactly what we wanted: a measure of how much energy flows in
excess of charge transport.

Dual-wielding our boundary expansion (1.81) and renormalized responses
we can express

γttT̃tx
1

= L−1δg̃
(J)

tx1 − εδg̃
(0)

tx1 + · · · , (1.85)

J̃x
1

= −δÃ(J)

x1 − ρδg̃
(0)

tx1 + · · · , (1.86)

where the remaining terms will not contribute to the finite action. At this
point, we note that the constraint guarantees

δg̃
(J)

tx1 = −LρδÃ(0)

x1 . (1.87)

This constraint is straightforward there is momentum dissipation, but in
general the response is not so simple! Now, the whole of the response is
determined to be(

Jx
1

γttT
tx1

)
=

− 1
Lds−1

δÃ
(J)

x1

δÃ
(0)

x1

−ρ

−ρ −ε

(δÃ(0)

x1

δg̃
(0)

tx1

)
. (1.88)

This is all the information we need and with one final swift substitution, the
conductivity matrix is established89:

σ(ω) =
1

iωLds−1

δÃ
(J)

x1

δÃ
(0)

x1

, (1.89)

Tα(ω) =
ρ

iω
− µσ, (1.90)

Tκ(ω) =
ε+ p − 2µρ

iω
− µ2σ. (1.91)

8For diffusive properties, the open-circuit thermal conductivity Tκ = ε
iω + ρ2

σω2 is the
one of importance instead of κ.

9In general, the pressure term contained in κ should emerge from translation invariance
though it is not manifest from our consideration.
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We know every quantity here except for σ, which must be determined by
solving (1.80). This procedure must be done numerically.

The only thing that remains is to establish the boundary conditions for
the differential equation (1.80). At the boundary, we simply choose the
Dirichlet condition

δA
(0)

x1 = 1. (1.92)

For the second condition, let us examine the form of δÃx1 near the horizon.
In the vicinity, it is easy to see

δÃx1 ∼ (r − r+)±
iω

4πT (1.93)

This near-horizon wave-like solution is a universal feature, with the plus and
minus signs corresponding to out-going and in-falling waves, respectively. We
demand that all waves near a black hole horizon will be in-falling, which will
correspond to causal response functions. A wave is leaving the event horizon
is the signature of a white hole and oppositely corresponds to anti-causal
response functions. Thus, the horizon boundary condition is

δÃx1 =
(

1− r+

r

)− iω
4πT

δĂx1 (1.94)

with δĂx1 analytic near r = r+. In practice, we substitute10 into (1.80) and
solve for δĂx1 .

0 1 2 3 4
0

0.5

1

0 1 2 3 4

0

1

2

3

Figure 1.1: Plots of real and imaginary parts of σ for ds = 2, µ = 1.4
√

2 and
T/µ = 0.115. L = 1 is used for convenience.

In Fig. 1.1 we display a typical solution for σ in the AdS-Reissner-
Nordström black hole. These forms actually match quite well to low-energy
graphene, which is described by a 2+1-dimensional relativistic theory [12,14].
Let us examine the high and low frequency behavior. Firstly, we notice that

10Often, it is wise to substitute some other factors as well, which we discuss in the
numerics chapter.
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limω→∞ σ = 1 in ds = 2. In general, σ will follow a power law behavior for
high-frequency which is dependent upon ds:

σ ∼ (−iω)ds−2. (1.95)

The power law can be extracted by examining (1.80). If we rescale r → −iωr
and send ω →∞, the equation of motion becomes independent of ω and thus
the power law of the current is just given by its scaling dimension in r. It is
quite common for high-frequency behavior in holographic system to behave
in this manner! Once the energy scale of ω vastly exceeds all others (T and
µ, in this case), it is the only thing the response functions can see.

For the low frequency behavior, we observe Im(σ) ∼ 1/ω as ω → 0. It
would easy to mistakenly think that Re(σ) tends to a finite value, but by the
Kramers-Kronig relations, the imaginary divergence indicates Re(σ) ∼ δ(ω).
Thus the real part diverges as well, despite the lack of direct indication in the
finite frequency numerics. The DC conductivity completely diverging is an
expected feature of a system that does not have any momentum dissipation.

Here is a thought experiment to help understand. Our system possesses
a nonzero charge density and a boost symmetry from Lorentz invariance.
Therefore, if we boost the system, it appears we have a current without ever
having to apply an electric field! By breaking translational symmetry, i.e.
inserting momentum dissipation, we can no longer freely boost and the DC
conductivity will be finite.11

This calculation has hopefully elucidated the holographic program. We
can clearly see how bulk fields contain information within that is imprinted
on the boundary as sources and responses.

11Momentum dissipation is not strictly required to obtain a finite DC conductivity, as
we will see in Lifshitz holography.
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2 Numerics

Analytics are beautiful, sometimes. Perhaps less so after a few hundred
counter-term calculations and asymptotic expansions. But frankly, at some
point, analytics will fail you. It really doesn’t take much in the way of
complicating your model to push analytic solutions well out of reach. This
is when we must turn our attention to an incredibly important and deep set
of tools that are often brushed under the rug for the cardinal sin of being
“boring”: numerics. It should be noted that numerics is not the easy way
out. It will be just as tedious and frustrating as the analytics, except that
some of the procedure may take place in a computational black box.

This chapter is meant to lay out a procedure in detail to assist in the
computations of a particular set of gravitational problems. Namely, we will
work through the Einstein-DeTurck formalism [15], which is a way of handling
time-independent solutions to the Einstein equations. Time dependence can
be included at the level of linear response, where a static system is jolted by
small time-dependent sources, just as we’ve done previously in the AdS-RN
solution. The first step of our numerical prep is to understand how in the
world the Einstein equations can be handled by a computer.

2.1 The DeTurck Term

The Einstein equations must be among some of the most awful equations
us feeble humans could envision solving. Second-order, coupled, highly non-
linear partial differential equations complete with gauge invariance. A real
nightmare beyond the scope of a select few analytic solutions. The question
begs, how can such a thing be fed to a computer? We must carefully sculpt
a procedure that our computer can stomach.

Broadly, we can categorize the Eintstein equations into either elliptic or
hyperbolic partial differential equations. Our equations can be formatted
into (weakly) elliptic operators in the absence of time-dependence, which are
generalizations of the Laplace equation. This type of equation can naturally
be solved supplied only with boundary data. This class of solutions is what
we will examine in this work and is sufficient for all of linear response theory.
Some problems, such as turbulence [16], require full time-dependent treat-
ment from the hyperbolic class of solutions, which is beyond the scope of this
work.
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The proposed scheme is then to solve for a nonlinear static background,
and then compute the time-depdendent fluctuations around this background.
By linearizing the time dependence, we are able to simply Fourier transform
away the once problematic minus sign and keep our solutions all confined
into elliptic operators. That said, the treatment of each of these two sections
is quite different and demand different schemes.

We now modify the Einstein equations to the Einstein-DeTurck equations,

EH
ab ≡ Eab −∇(aξb) = 0, (2.1)

where the additional piece is call the DeTurck term. By identically fixing
the constraint ξa = 0, the gauge of the problem can be sufficiently fixed. We
reiterate the conserved quantities

∇a

(
Rab −

1

2
Rgab

)
= 0, ∇aTab = 0, (2.2)

and demanding the Einstein-DeTurck equations are solved in conjunction
with the always-true conservation laws gives us

�ξa +Ra
bξ
b = 0. (2.3)

Thus, hidden in these expressions is the fact that ξa itself solves an elliptic
equation. If we implement ξa = 0 as boundary data, we will inherently fix
ξa = 0 globally a posteriori! Thus the gauge will be fixed and the original
Einstein equations are satisfied.

The vector ξa thus far has been a free choice, but now we will hone in
on a specific one, one that will afford us a controlled iteration scheme. Let’s
examine the Ricci tensor Rab under the perturbation gab → gab + δgab,

δRab = −1

2
�δgab −Racbdδg

cd +R
c

(a δgb)c +∇(a∇
c
δĝb)c, (2.4)

where the overline denotes operations dependent only upon the background
metric and the hat denotes the trace-reversed metric, δĝab = gab − 1

2
gabδg.

The character of this linearized equation is determined by its second-order
derivatives. If we choose

ξa = gbcΓabc, (2.5)

then the Einstein-DeTurck equations will grant us a weakly elliptic operator
in the iteration by eliminating the last term in (δRab eqn), as demonstrated:

δRH
ab = −1

2
�δgab −Racbdδg

cd +R
c

(a δgb)c − δΓcabξc. (2.6)

For the actual numerical implementation, we attenuate the DeTurck term
by introducing a reference metric g̃ab, with associated Christoffel symbol Γ̃abc
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and covariant derivative ∇̃a, such that

ξa = gbc
(

Γabc − Γ̃abc

)
= −

(
g

g̃

)−1/2

∇̃b

((
g

g̃

)1/2

gab

)
, (2.7)

ξa = gbc
(
∇̃bgca −

1

2
∇̃agcb

)
. (2.8)

(tension field map Riemannian manifold identity map is harmonic) In the
iteration scheme, the reference metric can just be taken to be the initial
solution guess; for our systems, this is usually Reissner-Nordström. Thus,
ξa = 0 is satisfied initially and the numerical scheme is more stable.

We see this scheme both fixes our gauge and gives a controlled iteration.
To actually solve the Einstein-DeTurck equations we employ the Newton-
Raphson method. This method may be familiar from elementary calculus,
where it is used to iteratively compute a root of a function f(x). We begin
with an initial guess x0 for the root and add a small correction δx. Using
the Taylor series expansion for f about x0, we may use f(x0) and f ′(x0) to
estimate the correction δx that takes us towards the root, namely

f(x0 + δx) = 0 ⇒ δx ≈ − f(x0)

f ′(x0)
. (2.9)

To find the true root we may iterate this process until the corrections ε
converge to zero. In a similar fashion, we may make an initial guess for a
metric g satisfying the Einstein-DeTurck equations then use the linearized
equations to solve for a correction. Viewing the equations as a nonlinear
functional of the metric components (using the notation L[g]), we would
write

L[g] +
δL

δg

∣∣∣
g
δg = 0. (2.10)

In our implementation L[g] is a numerical vector obtained by plugging the
guess into the full equations, while δL[g]/δg is a numerical matrix obtained
from plugging the guess into the linearized equations. The vector of cor-
rections δg is obtained by solving the system of equations, and successive
iterations ideally (but not necessarily) converge to a complete solution. Our
code typically converges to about ten digits of precision in seven iterations
or less for the holographic lattice models discussed in chapter 3 using dou-
ble precision numbers. It is ill-advised to try to invert the matrix operation
in Eq. (2.10) directly. Some examples of more advanced programs for lin-
ear solutions are LU or SVD decomposition, which organize the matrices
into easy-to-manage submatrices. Most modern day mathematics software
like MATLAB and Mathematica have numerous optimized solvers for linear
systems with these methods built-in, so we will not detail them.
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2.2 Differentiation Matrices

Let us now explore in specifics how the discretization will work. There are
two primary methods: finite difference and pseudospectral. These are two
possible ways to choose a grid and accompanying differentiation matrix, each
with their advantages and disadvantages. For a thorough look into spectral
methods, see Trefethen [17].

2.2.1 Finite Difference

Finite difference is the tried and true method for approximating derivatives.
In the vicinity of a point, any differentiable function f(x) can be expanded
as

f ′(x) =
1

2∆x
[f(x+ ∆x)− f(x−∆x)] +O

(
∆x2

)
, (2.11)

f ′′(x) =
1

∆x2
[f(x+ ∆x)− 2f(x) + f(x−∆x)] +O

(
∆x2

)
. (2.12)

To increase the precision, a larger locus of points can be used. The higher
order the scheme, the more accurate our approximation. Generally, we select
a centralized differentiation scheme as in Eq. (2.12), but we will need to use
an asymmetric form near the boundary. We can expand to whatever order
we like, though we typically use sixth-order in for our purposes, whose sizable
differentiation matrices look like

D(1) =
1

60∆x



147 −360 450 −400 225 −72 10 0 · · ·
10 77 −150 100 −50 15 −2 0 · · ·
−2 24 35 −80 30 −8 1 0 · · ·
. . . . . . . . . . . . . . .
. . . 1 −9 45 0 −45 9 −1

. . .
. . . . . . . . . . . . . . .

· · · 0 −1 8 −30 80 −35 −24 2

· · · 0 2 −15 50 −100 150 −77 −10

· · · 0 −10 72 −225 400 −450 360 −147



,

(2.13)
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D(2) =
1

180∆x2



938 −4014 7911 −9490 7380 −3618 1019 −126 · · ·
126 −70 −486 855 −670 324 −90 11 · · ·
−11 214 −378 130 85 −54 16 −2 · · ·
. . . . . . . . . . . . . . .
. . . 2 −27 270 −490 270 −27 2

. . .
. . . . . . . . . . . . . . .

· · · −2 16 −54 85 130 −378 214 −11

· · · 11 −90 324 −670 855 −486 −70 126

· · · −126 1019 −3618 7380 −9490 7911 −4014 938



,

(2.14)

where all the unfilled entires are zeros and the middle rows are always cen-
tered on the diagonal. Hence, the finite difference matrices will be sparse
matrices and should be stored accordingly. Finite difference is the simple
and safe way to implement numerical differentiation, though perhaps some-
what crude. Being such a safe bet is a bonus though! It is recommended
that prior to attempting a fancier pseudospectral method, to check that your
system works with finite difference.

2.2.2 Pseudospectral

Periodic Functions

In the world of periodic functions, there is a generally superior method for
implementing a differentiation matrix over finite difference to take advantage
of periodicity. Periodic functions emerge in physics in a multitude of places;
any periodic structure or symmetry present will impart wavelike properties
upon a system. In holography, “lattices” can be imprinted, and by extension
disorder, using periodic functions.

Suppose a periodic function on the interval (0, 2π] is evenly divided into
N points,

xn =
2πn

N
, n = 1, . . . , N, (2.15)

and the points fn = f(xn) are the respective discretized values for some func-
tion f(x) at those points. The discrete Fourier transform can be represented,

f̃k =
2π

N

N∑
n=1

e−ikxnfn, k =

{
−N−1

2
, . . . , N−1

2
, N odd

−N
2
, . . . , N

2
+ 1, N even

(2.16)

and the inverse,

fn =
1

2π

∑
k

eikxn f̃k, (2.17)

23



is summed over the aforementioned k values. The form of the eventual dif-
ferentiation matrices varies depending on N being odd or even, and I will
list both. Suppose we have an interpolating function p(x) on this interval,

p(x) =
1

2π

∑
k

eikxf̃k, (2.18)

=
N∑
n=1

fnSN(x− xn), (2.19)

where SN(xm − xn) = δmn such that p(xn) = fn. The kernel can then be
expressed,

SN(x) =

{
1
N

sin
(
Nx
2

)
csc
(
x
2

)
, N odd

1
N

sin
(
Nx
2

)
cot
(
x
2

)
, N even

. (2.20)

Now, the derivatives of the original function can be approximated by
taking derivatives on p(x) and evaluating at the grid points. We will call these
the Fourier differentiation matrices. The first-order differentiation matrices
are, for N odd,

D(1)
mn =

{
0, m = n
(−1)m−n

2
csc
(
π(m−n)

N

)
, m 6= n

, (2.21)

and N even,

D(1)
mn =

{
0, m = n
(−1)m−n

2
cot
(
π(m−n)

N

)
, m 6= n

. (2.22)

The second-order differentiation matrices are, for N odd,

D(2)
mn =

{
−N2

12
+ 1

12
, m = n

− (−1)m−n

2
csc
(
π(m−n)

N

)
cot
(
π(m−n)

N

)
, m 6= n

, (2.23)

and N even,

D(2)
mn =

{
−N2

12
− 1

6
, m = n

− (−1)m−n

2
csc2

(
π(m−n)

N

)
, m 6= n

. (2.24)

Notably, D(2) 6=
(
D(1)

)2
, so it is important to define the second-order differ-

entiation matrix separately.
Contrary to finite difference, this spectral method yields full matrices,

not sparse ones. Appropriately, its rate of convergence is much faster: expo-
nential instead of polynomial as the grid size shrinks. A dozen points in the
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spectral method may do the job of hundreds in finite difference. Whenever
a periodic function rears its head, it is worthwhile to utilize. However, these
methods can be extended to non-periodic functions.

A quick note on a possible error than can crop up when implementing
these Fourier differentiation matrices: we generally recommend using an odd
number of points. The even matrices actually possess a zero mode, and
when inverted for solving a set of linear differential equations can potentially
introduce a numerical artifact into the solutions. This does in fact happen in
holographic problems when it comes time to consider fluctuations for linear
response theory. Using an odd number of points tempers this artifact and
will give much more agreeable solutions, and it is unfortunate that the even
definition is almost always the only one listed.

Non-Periodic Functions: the Chebyshev Grid

In the case of periodic functions, the functions were approximated through
a “trigonometric polynomial,” a sum of phase factors. For a generic non-
periodic function, instead the sensible interpolation function will be an al-
gebraic polynomial. However, once again using an evenly spaced grid often
results in the disastrous Runge phenomenon. The approximation not only
fails to converge as N →∞, but the error in the interpolated points diverges
at the potentially exponential rate of 2N .

The countermeasure is simple enough: instead of using an evenly spaced
grid, use an uneven one. There is no unique choice of an approriate grid, but
to counteract the Runge phenomenon we require a grid whose density goes

density ∼ N

π
√

1− x2
(2.25)

as N → ∞. A nearly ubiquitous choice that should cover almost anything
but very special cases is the Chebyshev grid, given by

xn = cos
(πn
N

)
, n = 0, 1, . . . , N, (2.26)

which we might consider recommended to us by the form of the density (the
derivative of cos−1 x). This grid ranges over [−1, 1] (backwards) and has a
higher clustering of points near the boundary than the center (this can of
course be easily extended to any domain size).

As in the Fourier case, we’ll define a so-called cardinal function,

pn(x) =

∏N
l 6=n (x− xl)∏N
l 6=n (xn − xl)

, (2.27)

which on this go-around is a polynomial that follows pn(xm) = δmn at the grid
points, and thus serves to interpolate the Kronecker delta. Once again, by
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x0  1xN  -1 x

Figure 2.1: The Chebyshev grid is evenly spaced on the semicircle arc which
increases the endpoint density once projected onto the x-axis.

taking derivatives on this function and evaluating at the grid points, we can
express a differentiation matrix. The first-order Chebyshev differentiation
matrix entires are

D
(1)
00 = −D(1)

NN =
2N2 + 1

6
, (2.28)

D(1)
nn = − xn

2 (1− x2
n)
, 1 ≤ n ≤ N − 1, (2.29)

D(1)
mn =

cm
cn

(−1)m+n

xm − xn
, 0 ≤ m,n ≤ N, m 6= n (2.30)

where

cn =

{
2, n = 0, N

1, n 6= 0, N.
(2.31)

The second-order matrix entries are

D
(2)
00 = D

(2)
NN =

N4 − 1

15
, (2.32a)

D
(2)
0n =

2

3

(−1)n

cn

(2N2 + 1) (1− xn)− 6

(1− xn)2 , 1 ≤ n ≤ N, (2.32b)

D
(2)
n0 =

2

3

(−1)n+N

cn

(2N2 + 1) (1 + xn)− 6

(1 + xn)2 , 1 ≤ n ≤ N, (2.32c)

D(2)
nn =

(N2 − 1) (1− x2
n) + 3

3 (1− x2
n)2 , 1 ≤ n ≤ N − 1, (2.32d)

D(2)
mn =

(−1)m+n

cn

x2
m + xmxn − 2

(1− x2
m) (xm − xn)2 , 1 ≤ m,n ≤ N − 1, m 6= n

(2.32e)
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which unlike the Fourier case we do in fact have D(2) =
(
D(1)

)2
. While it is

edifying to write out these expressions, as listed they are perhaps not terribly
useful. There is potentially an enormous disparity in magnitudes of elements
given here, so the best bet is to express D(1) as tamely as possible using some
trigonometric relations:

D
(1)
00 = −D(1)

NN =
2N2 + 1

6
, (2.33a)

D(1)
nn = −1

2
csc
(πn
N

)
cot
(πn
N

)
, 1 ≤ n ≤ N − 1,

(2.33b)

D(1)
mn =

(−1)m+n

2

cm
cn

csc

(
π(m+ n)

2N

)
csc

(
π(m− n)

2N

)
, 0 ≤ m,n ≤ N,

m 6= n, (2.33c)

and simply use
(
D(1)

)n
for n-th order differentiation matrices. This procedure

should help to avoid round-off error by computing a product of numbers for
each element rather than subtracting large numbers from one another.

Pseudospectral methods do meet some limitations; they do not behave
well for non-analytic functions. If there exists a region where a function
becomes non-analytic, this method is not trustworthy in the region’s vicinity
(for example, if a function contains logarithmic components, as happens often
in holography). For such cases, finite difference methods are recommended.
If you are adamant about using pseudospectral methods insofar as they can
be applied, you can patch Chebyshev and finite difference grids together,
using finite difference only when the pseudospectral methods begin to fail.

Figure 2.2: Example of a patched grid where the red lines mark the overlap.

Generally, finite difference is sufficient for the job can be used exclusively.
It is often salubrious to knit patches of different densities together even in just
the finite difference case; in holographic systems with conformal boundaries,
increasing the grid density in the boundary region can increase precision in
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the answer without resorting to going beyond machine precision using 16-bit
numbers. For an nth-order differential equation, the only requirement for
patching is that all derivatives of orders {0, . . . , n− 1} are continuous where
they meet. Thus, each patch is merely implemented with the continuity
conditions as boundary conditions.

2.2.3 Multivariate Problems

If we aim to solve the Einstein equations, we should level-up to handle func-
tions of more than one variable. Consider a function f(x, y), that we will
discretize as fmn = f(xm, yn) on a grid of Nx ×Ny points. The setup is very
much the same: we will turn f into a vector and differentiate it with matrix
multiplication, but we must specify how to organize multiple coordinates.

Nx

Ny

Figure 2.3: A sample grid where we elect to trace over the x-coordinate first
and increment in the y-direction.

The straightforward way to parameterize the discretization is to begin
at the corner (x1, y1) and trace over the entirety of x for this y-value, then
increment y and repeat. The tracing of the grid is displayed in figure 2.3 and
f ’s discretized form is

f(x, y)⇒
(
f11 · · · fNx1 f12 · · · fNx2 · · · · · · f1Ny · · · fNxNy

)T
.

(2.34)

For matrices, the extension can made with the Kronecker product. Given
some matrix A of dimension m× n and a matrix B of dimension p× q, the
Kronecker product between the two gives a mp× nq matrix defined by1

A⊗B ≡

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (2.35)

1As the notation might indicate, the Kronecker product is a special case of the tensor
product.
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Thus, we can express all coombindations of partial dervatives:

∂ix∂
j
y ⇒ D

(i)
Ny
⊗D(j)

Nx
. (2.36)

All coefficients in front of derivatives will merely become diagonal matrices.
The application of boundary conditions works exactly like it does in the

one-dimensional problem. Each row of the differential operator returns the
value of the differential equation at that ponit. If we wish to implement
a boundary condition at that point, we merely replace that row with the
boundary condition.

Naturally, this process can be extended for as many coordinates as de-
sired. However, if for each of D dimensions we were to use, say, a Chebyshev
grid of N points then the system we are working with requires full matrices of
size ND ×ND. This exponential growth rate means that memory allocation
becomes a problem very quickly for higher dimensions. Even D = 3 often
takes a supercomputer to handle a system requiring high precision. For this
reason, we manage to keep ourselves limited to D ≤ 2 in the scope of this
work.
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3 Holographic Lattices

3.1 Introduction

In holography, one of our features is that we have completely avoided a
microscopic description of a theory. Instead, we describe smeared thermo-
dynamic objects like entropy, charge, currents and the like. However, our
ultimate goal is to encapsulate features of actual condensed matter systems
and match results onto experiments, and one important ubiquitous feature
is a lattice. Our central aim in these lattice models is to understand how the
lattice will affect the optical conductivity; that is, how a lattice will dissipate
electric charge transport.

Superficially, a lattice is a material structure present in solids. Atoms
arrange themselves in some discrete pattern, and this has a host of physi-
cal consequences. The most obvious and notable effect of a lattice is that it
breaks continuous translation invariance and thus causes momentum dissipa-
tion. One of the earliest attempts to capture this behavior in holography was
the holographic lattice introduced by Horowitz, Santos, and Tong [18]. Their
model takes a minimal holographic description of charged matter, namely a
Einstein-Maxwell formulation in AdS, and deform the solution with a scalar
field with a periodic source. The periodicity of the scalar is imprinted upon
the charged matter, and thus provides a means of breaking translation in-
variance and dissipating momentum. For this series of lattice models, we
begin with a usual Einstein-Maxwell action in ds + 2 = 4 bulk dimensions,
but add a scalar field component

Ibulk = −
∫
M

√
−g
(
R− 2Λ− 1

4
F 2

)
+ Iφ, (3.1)

where F = dA is the usual exterior derivative of a U(1) field. Iφ is a scalar
field contribution to the action that will imprint a lattice through gravita-
tional interactions. We will dicuss the findings of these models, then divulge
how to actually solve them.
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Figure 3.1: From [18]. Real and imaginary parts of the optical conductivity
in the holographic lattice (red and purple) and RN-AdS4 (black dashed
lines). The holographic lattice displays a broadened Drude peak in its real
part that is absent from RN-AdS. Destruction of the 1/ω divergence in
Im σ by the holographic lattice further supports interpretation of the rise in
Re σ as a broadened Drude peak.

3.1.1 The Horowitz-Santos-Tong Holographic Lattice

The original holographic lattice endeavor of Horowitz, Santos and Tong
(HST) used a single scalar field with an action like

Iφ = −
∫
M

[
1

2
(∇φ)2 + V (φ)

]
(3.2)

where for simplicity the scalar potential is just a mass term, V (φ) =. This
scalar field, like all bulk fields, generate a dual source and response in the
boundary theory. To imprint a lattice, HST chose to use a scalar source of
the form

φsource ∼ A0 cos kx. (3.3)

This term will explicitly impart x-dependence throughout all of the bulk
fields, and requires an extensive numerical treatment.

Fig. 3.1 is a plot from the original HST lattice paper [18], clearly demon-
strating the impact of the lattice in the low-frequency behavior of the con-
ductivity. In particular, the Drude peak divergence of the DC conductivity
has disappeared now that limω→0 Im(σ) = 0. One might consider that the
peak in Re(σ) has broadened and imparted a host of nontrivial features to
the low-frequency regime. Indeed, the low frequency behavior now follows a
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Figure 3.2: From [18]. Magnitude of the optical conductivity minus the
offset C, displayed as log-log plots. Left: T/µ = 0.115 and wavenumber of
k0 = 3 (diamonds), k0 = 1 (squares), and k0 = 2 (circles). Right: k0 = 2
with T/µ = 0.98 (diamonds), T/µ = 0.115 (circles), and T/µ = 0.13
(squares). Both plots take A0/k0 = 3/4 exhibit a power law falloff with
exponent −2/3 (indicated by the slope of the linear part).

Drude-like form for simple hydrodynamic momentum dissipation [19],

σ(ω) =
Kτ

1− iωτ
(3.4)

where τ is a characteristic relaxation time for the fluid’s momentum. The
Drude form captures the behavior of any quantum field theories described
by hydrodynamic models, and this includes the low-frequency behavior in
strange metals [20].

Beyond these intuitive results, the HST treatment claimed a very sur-
prising feature: that in the mid-frequency regime, the optical conductivity
follows a power law

|σ(ω)| ∼ ω−2/3. (3.5)

This is precisely the power law observed in the mid-infrared frequency range
of the optical conductivity [20–23] for optimally doped copper-oxide super-
conductors! On the face of it, this is a stupendously unexpected result. If
true, the power law is perhaps a fundamental feature that can occur irre-
spective of the microscopic behavior of the materials it occurs in. Thus,
the holographic lattice must offer some tunable parameter to control a mid-
frequency scaling regime. In Fig. 3.2 is the log-log plot from [18] used to
demonstrate the power law. Over a short band in frequency, it seems the
power law is present due to the −2/3 slope.
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Figure 3.3: From [20]. On the left, the optical conductivity of optimally
doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ in its normal state. There is a universal
ω−2/3 scaling over a wide range of temperatures. On the right, the phase
angle between the real and imaginary parts of the conductivity.

Power laws are ubiquitous in critical phenomena as they are the finger-
print of scale invariant correlations. To no surprise then, quantum criticality
is the most commonly proffered explanation [24–26] for the power-law scaling.
However, we currently have no microscopic understanding of how quantum
criticality emerges from the strong correlations that mediate the normal state
near optimal doping. Such an understanding requires precise knowledge of
the low-energy degrees of freedom in the strongly coupled regime. Ascer-
taining these degrees of freedom has proven difficult because the integral of
the optical conductivity [27,28] up to the optical gap exceeds the number of
doped holes. Consequently, no one-to-one mapping [29] exists between the
number of doped holes and the actual propagating degrees of freedom at low
energy.

An early spoiler: we will go through a lot of analysis and model com-
parisons to arrive the conclusion that the result is false. There is no power
law to speak of. The true lesson after the rigamarole of numerical hologra-
phy is this: beware the log-log plot! This type of plot is useful precisely for
analyzing data over several orders of magnitude, and nothing less!

3.1.2 The Q-lattice

However, the key claim that Einsteinian gravity, a Maxwell field and an
inhomogeneous charge density encode the mid-infrared conductivity of the
cuprates has been called into question [30, 31]. In reference [30] Donos and
Gauntlett (DG) studied a model inspired by the Q-ball potential of Coleman
[32] which has the added simplification that only ordinary rather than partial
differential equations need be solved to obtain the conductivity. Their scalar
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field contribution is of the form

Iφ = −
∫
M

1

2

[
|∇φ|2 + V

(
|φ|2
)]
, (3.6)

where the complex scalar field uses a plane wave formulation,

φ(r, x) = ϕ(r)eikx. (3.7)

This clever choice imparts x-dependence on the model implicitly, but will
leave all Einsteinian background fields independent of x, bypassing the need
for PDEs. Inherently, this consideration leads to a uniform charge density.
Added differences with the work of HST is the use of a scalar mass of m2 =
−3/21 and the radial gauge as opposed to the de Donder gauge and Lorenz
gauges. Their optical conductivity results are displayed in Fig. 3.4, which
captures the low-frequency Drude form we expect for a dissipative system. In
addition, rather than using a log-log plot to discern the presence of a power
law, they plotted

α = 1 + ω
|σ|′′

|σ|′
. (3.8)

A value of α = −2/3 would correspond to the mid-infrared power-law con-
ductivity of the cuprates. None was found. In fact, α was found to vary
fairly widely as a function of frequency precisely where the power law was
reported by HST, as observed in Fig. 3.5. Similar results from a slightly
different model have also been reported in [31].

3.1.3 The Two-Scalar Model

If we presume both results are correct, then the only resolution to the problem
must lie somewhere in the explicit x-dependence of the background fields! In
order to investigate the discrepancy, we introduced the two-scalar model to
parameterize a smooth transformation between the two models [33]. Consider
the action

Iφ = −
∫
M

2∑
I=1

[
1

2
(∇φI)2 + V (φI)

]
(3.9)

with the usual mass potential V (φ) = m2

2L2φ
2. For our scalar field sources, we

demand

φ1,source ∼ A1 cos

(
k1x+

θ

2

)
,

φ2,source ∼ A2 cos

(
k2x−

θ

2

)
, (3.10)

1Extremal RN-AdS4 has an emergent AdS2 × R2 geometry near the horizon, which
hosts a quantum dual with a Breitenlohner-Freedman (BF) bound higher than that of the
boundary theory. Donos et al. argue that the HST results may be unstable because their
chosen scalar field mass violates the BF bound in the near-horizon CFT.
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Figure 3.4: Real and imaginary parts of the optical conductivity in the
Q-lattice model with λ/µ = 1/2 and k/µ = 1/

√
2. The falloff of Im σ and

the broad peak in Re σ in the zero frequency limit are indicative of a
broadened Drude peak stemming from breaking of translational invariance.

Figure 3.5: An ω−2/3 falloff of |σ(ω)| is reflected in a constant value of −2/3
for 1 + ω(|σ|′′/|σ|′) (red dashed line). The Q-lattice does not exhibit
universal scaling of this form for λ/µ = 1/2 and k/µ = 1/

√
2.

For the selection A1 = A2 and k1 = k2, the phase θ smoothly shifts between
the two lattice solutions. Specifically, for θ = 0 the HST lattice obtains,
and for θ = π/2 the Q-lattice obtains, with the two scalar fields functioning
identically to the real and imaginary parts of a complex scalar field.

The equations of motion for this model are

Eab ≡ Rab −
2Λ

ds
gab +

2∑
I=1

(
1

2
∇aφI∇bφI +

1

ds
V (φI)gab

)
− 1

2

(
FacF

c
b −

1

2ds
F 2gab

)
= 0, (3.11a)

Ma ≡ ∇bF
b
a = 0, (3.11b)

ΞI ≡ �φI − V ′(φI) = 0. (3.11c)

Here we have written the metric’s equation of motion Eab only in terms of
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the Ricci tensor and not the Ricci scalar, which can always be eliminated by
taking the trace of the equation.

3.2 Static Solution with Spatial Dependence

The first objective is to find a static solution to (3.11), which requires a
numerical approach. We will assume that, in addition to the usual radial
dependence in AdS solutions, there is also some non-trivial x-dependence for
one of our spatial coordinates and invariant in y, the other. First, we must
make an ansatz that will be computer-friendly. Our line element takes the
form

ds2 =
L2

u2

[
Quu

(1− u)P (u)
du2 − (1− u)P (u)Qttdt

2 +Qxx(dx+Quxdu)2

+Qyydy
2

]
. (3.12)

In addition, we format the U(1) and scalar fields as

A = (1− u)a(u, x)dt, (3.13)

φI = u∆−ϕI(u, x), (3.14)

where ∆− is the smallest (i.e., leading) power in φI as u→ 0. The functions
Qab, a and ϕI will be determined numerically by solving Eq. (3.11). We have
previously worked with the radial coordinate r to measure from horizon at
r+ to boundary at r → ∞. For the purposes of numerical computation, we
would like to compactify this coordinate. We have made the transformation
to Poincaré coordinates with

u =
r+

r
(3.15)

so the entire radial spacetime is collapsed onto u ∈ [0, 1], with u = 0 the
boundary and u = 1 the horizon. To appropriate the numerical formatting,
we have taken out factors of u and (1 − u) in our ansatz. Then, we ensure
that the remaining functions all follow boundary conditions to guarantee
the asymptotic forms we desire. The function P (u) is a remnant from the
emblackening factor, which for AdS-RN4 we take to be

P (u) = 1 + u+ u2 − µ2
0

2
u3. (3.16)

This ansatz clearly reduces to the planar Reissner-Nordström black hole when
Quu = Qtt = Qxx = Qyy = 1, Qux = 0, a = µ = µ0 and ϕ = 0. We will also
note that the boundary line element is easily interpreted as a 2+1 Minkowski
metric,

ds2
bdy = −dt2 + dx2 + dy2. (3.17)
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The lattice will be imposed via the scalar field sources. Asymptotically,
the scalar fields takes the form

φI = u∆−φ
(−)
I (x) + u∆+φ

(+)
I (x) + · · · (3.18)

where φ
(−)
I and φ

(+)
I are the source and response of some dual scalar operator

O in the boundary, respectively.2 The asymptotic powers ∆± are given by

∆± =
ds + 1

2
±
√

(ds + 1)2

4
+m2L2, (3.19)

and thus the scalar field mass determines the asymptotic scaling forms. In
our calculations, we consider for convenience m2L2 = −2 which generates
the amiable leading powers ∆− = 1 and ∆+ = 2.

To imprint the lattice, match our sources as in Eq. (3.10)

φ
(−)
1 (x) = A1 cos

(
k1x+

θ

2

)
,

φ
(−)
2 (x) = A2 cos

(
k2x−

θ

2

)
(3.20)

These simple boundary conditions will be imprinted throughout every func-
tion. The amplitude of the lattice(s) can be tuned through the amplitudes
AI and the wavenumbers kI = 2π/lI set length scales lI that can be in-
terpreted as lattice spacings. For simplicity, we have limited ourselves to a
one-dimensional lattice, but the effects can be generalized to higher dimen-
sions at a great cost to numerical complexity.

Instead of solving Eab = 0, we modify our equations with the DeTurck
term discussed in section such and such,

EH
ab = Eab −∇(aξb), (3.21)

where the vector

ξa = gbc
(

Γabc − Γ̆abc

)
(3.22)

is defined with respect to a reference metric ğab. For the reference metric, we
use exactly the ansatz (3.12) with the aforementioned RN-ADS4 solution. It
is paramount that we use a reference metric with a similar structure to our
eventual solution; that is, one with the same poles.

Holography is fundamentally about boundary conditions and it is time to
define ours. At the boundary, we will impose Dirichlet conditions

Quu(0, x) = Qtt(0, x) = Qxx(0, x) = Qyy(0, x) = 1,

Qux(0, x) = 0, a(0, x) = µ, ϕI(0, x) = φ
(−)
I (x). (3.23)

2It is also possible to consider the reverse where φ+ serves as the source and φ− the
response, which is known as alternative quantization.
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At the horizon we specify regularity conditions. We assume that all our
functions follow a Taylor expansion about the horizon,

Qab(u, x) = Qab(1, x)− (1− u)∂uQab(1, x) + · · · (3.24a)

a(u, x) = a(1, x)− (1− u)∂ua(1, x) + · · · (3.24b)

ϕI(u, x) = ϕI(1, x)− (1− u)∂uϕI(1, x) + · · · (3.24c)

and plug these expansions into the equations of motion (3.11) and demand
they are solved order-by-order at u = 1. This will in general fix relationships
among the (0) and (1) coefficients giving Robin-type boundary conditions.
One such condition is Quu(1, x) = Qtt(1, x), and thus the corresponding
temperature of the black hole is

T =
P (1)

4πL
=

6− µ2
0

8πL
. (3.25)

Finally, along the x-direction we will take periodic boundary conditions on
all functions,

Qab(u, x) = Qab(u, x+ l), (3.26a)

a(u, x) = a(u, x+ l), (3.26b)

ϕI(u, x) = ϕI(u, x+ l), (3.26c)

which we can automatically achieve by utilizing a Fourier differentiation ma-
trix. For simplicity we choose l = 2π, with the option to have periodicity of
higher harmonics.

Here we present some numerical results for the static background. In
Fig. 3.6 we demonstrate the shift between a uniform and x-dependent charge
density for our two models. In Fig. 3.7 we use the decreasing magnitude of
max(ξ2) to demonstrate convergence for higher grid density in u. Conver-
gence in x proceeds in avalanches, thanks to effective Nyquist sampling. The
u convergence is plotted for a uniform grid. We notice saturation occurring
at Nu & 50 points, which is merely due to machine precision! This result
can be improved without increase to precision by patching together higher
density grids near the boundary. We have used higher precision results for
all our numerics, and use this plot to demonstrate both the convergence of
our scheme and the importance of careful grid formulation. In Fig. 3.8 we
provide a sample static solution for all of our background fields.
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Figure 3.6: Plot of the charge density ρ = limu→0

√
−gF tu for same

parameters as Fig. 3.8.
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Figure 3.7: Plot demonstrating convergence for increasing grid density in u
with Nu grid points. Model is calculated at double precision with Nx = 35
with a uniform grid, k1 = k2 = 2 and θ = π

4
(other parameters: µ = 1.4

√
2,

T/µ = 0.115, and A1 = A2 = 2).
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Figure 3.8: The full static solution for k1 = k2 = 2 and θ = π
4

(other

parameters: µ = 1.4
√

2, T/µ = 0.115, and A1 = A2 = 2). This data is taken
for Nx = 65 and Nu = 200 and has ξ2 . 10−23.
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3.3 Conductivity of the Holographic Lattice

3.3.1 Fluctuation Ansatz

Upon constructing the static background with broken translation invariance,
we can now poke and prod it to obtain time-dependent response functions
at the linear response level. Such response functions can be obtained by
considering linear time-dependent fluctuations about the static background.
In particular we aim to extract the AC conductivity σ(ω) by supplying a
uniform time-dependent electric field e−iωtE in the x-direction. Denoting
the background fields with bars, we write

gab = gab + δgab, Aa = Aa + δAa, φI = φI + δφI , (3.27)

where δgab, δAa and δφI are fluctuations small compared to the static back-
ground. The linearized equations of motion (3.11) governing the fluctuations
are given by

− 1

2
�δgab −Racbdδg

cd +R
c

(a δgb)c +∇(a∇
c
δĝb)c = Λδgab

+
2∑
I=1

[
∇(aφI∇b)δφI +

1

4
V ′
(
φI
)]
gabδφ+

1

2
V
(
φ
)
δgab + F

c

(a δFb)c

− 1

2
F acF bdδg

cd − δgab
8
F

2 − gab
4
F
cd
δFcd +

gab
4
F cdF

d

e δg
ce (3.28a)

�δAa −R
b

a δAb −∇a∇
b
δAb − F ca∇bδĝ

bc − δgbc∇bF ca − F
bc∇bδgca = 0,

(3.28b)

�δφI −∇aδĝ
ab∇bφI − δgab∇a∇bφI − V ′′

(
φ
)
δφI = 0, (3.28c)

where δF = d(δA) is the field strength perturbation and δĝab ≡ δgab −
(δg/2)gab is the usual trace-reversed metric perturbation. Note that δgab =
−δ(gab), which is to say that the metric perturbation with raised indices is
not the same as the perturbation of the metric’s inverse.

The background is static, so a Fourier transform in time is salubrious.
All the fluctuations can be expressed

δgab(u, t, x) ∼ e−iωtδg̃ab(u, x), (3.29a)

δAa(u, t, x) ∼ e−iωtδÃa(u, x), (3.29b)

δφI(u, t, x) ∼ e−iωtδφ̃I(u, x), (3.29c)

and in the Fourier basis the problem is once again reduced to a two-dimensional
(u, x) grid.

The electric field will be generated by δAx, which then feeds back into
the equations of motion and turns on various fluctuations. In general, this
can turn on 12 fluctuations:

{δguu, δgut, δgux, δgtt, δgtx, δgxx, δgyy, δAu, δAt, δAx, δφ1, δφ2}, (3.30)
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where all the terms with odd y-parity can be turned off by symmetry. The
fluctuation equations possess the gauge symmetries of diffeomorphism invari-
ance and U(1) invariance. One common choice is to pick the de Donder and
Lorenz gauges, respectively given by

∇a
δĝab = 0, ∇a

δAa = 0. (3.31)

Such a choice would leave only d’Alembertians as second derivative terms in
our fluctuation equations (3.28) . Notably, these gauges are not sufficient in
general to fix a unique solution and further choices (for example, the Coulomb
gauge) are required. HST chose this gauge and would go on to solve the 11
coupled PDEs (one scalar field turned off). There is a more convenient choice
that will reduce the number of equations we have to work with.

Instead, the number of fluctuations to work with can be cleanly reduced
with a radial gauge,

δgua = 0, δAu = 0. (3.32)

We can take the ansatz

δds2 =
1

u2
[−fQtthttdt

2 +Qxxhxx (dx+Quxdu)2 +Qyydy
2

+ 2fQtthtxdt (dx+Quxdu)], (3.33a)

δA = (1− u)btdt+ bx (dx+Quxdu) , (3.33b)

δφI = u∆−ψI , (3.33c)

This has reduced our pool of functions to 8: {htt, htx, hxx, hyy, bt, bx, ϕ1, ϕ2}.
Note that all 12 equations of motion still need to be solved!

Regularity will imply that htt ∼ O(1 − u), which is to say the horizon
structure is unmodified, maintaining the same location and the same tem-
perature.3 It is convenient to define

hxx = (1− u)h+ + h−, hyy = (1− u)h+ − h−, (3.34)

which is also implied by the horion structure. This reveals that the trace of
the metric fluctuations vanishes at the horizon.

3.3.2 Fluctuation Boundary Conditions

As with the static background, we will specify Dirichlet conditions at the
boundary and regularity conditions at the horizon. In the radial gauge, there
are 7 second-order differential equations to solve, giving 14 conditions to fix.
However, the 4 remaining radial equations of motion must also be solved.
Fortunately, this can be swiftly accomplished with a choice of boundary

3This fall-off is of course guaranteed by the radial gauge.
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conditions (as we might expect, seeing how this is a gauge theory). To see
this, remember that everywhere the Einstein-Maxwell equations of motion
obey a set of continuity equations,

∇aE
ab = 0, ∇aM

a = 0. (3.35)

(define these things) By construction, we suppose that our non-radial equa-
tions of motion will be solved everywhere. Then if the radial equations are
solved at a single point, Eua = 0 and Mu = 0, the continuity equation re-
quires that ∂uE

ua = 0 and ∂uM
u = 0 at that point as well. Hence, the radial

equations would not just be solved at that point but in the locus of all nearby
points in the radial direction. And on it goes. Therefore, the requirement
that the radial equations are solved to lowest order at a single point in u is
sufficient to fix them everywhere. Thus, we can fix the radial equations to
be solved at the horizon and simultaneously solve all 11 equations.

Near the black hole horizon, all time-dependent functions take infalling
boundary conditions. This is the statement that in tortoise coordinates, all
fluctuations take the form of waves near the horizon, with infalling waves
corresponding to causal response functions and outgoing waves to anticausal
ones.4 The singularity present at u = 1 is not a physical singularity; it can
be removed with a coordinate transformation. If we switch over to infalling
Eddington-Finkelstein coordinates, defined by a time coordinate shift of the
form

dt+ = dt+
du

f
, (3.36)

then the coordinate singularity at u = 1 is no longer present. Because the
singularity can removed with a gauge choice, this is not a physical singularity.
Additionally, near the horizon,

e−iωt → e−iωt+(1− u)
iω

4πT , (3.37)

which itself is the form of an infalling wave.Thus, we demand our functions
take the form

hab = e−iωt
(
1− u3

) iω
4πT h̃ab, (3.38)

ba = e−iωt
(
1− u3

) iω
4πT b̃a, (3.39)

ψI = e−iωt
(
1− u3

) iω
4πT ψ̃I (3.40)

and that the functions {h̃ab, b̃a, ψ̃I} are regular at the horizon, infalling bound-
ary conditions are guaranteed.5 In this way, the horizon conditions are re-
duced to the very same type of Robin boundary conditions that the static

4Anticausal boundary conditions correspond to a white hole.
5The factor u3 is only chosen for convenience.
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background was constructed with. It is convention for physicists to be lazy
in notation, so in keeping with tradition we will from hereon just t instead
of t+, which will surely never be confusing.

Now let us look toward the boundary at u = 0. The functions take the
asmyptotic form

h̃ab(u, x) = h̃
(0)
ab (x) + · · ·+ u3h̃

(3)
ab (x) + · · · , (3.41a)

b̃a(u, x) = b̃(0)
a (x) + ub̃(1)

a (x) + · · · , (3.41b)

ψ̃I(u, x) = ψ̃
(0)
I (x) + · · ·+ u3−2∆ψ̃

(3−2∆)
I (x) + · · · , (3.41c)

where the listed components are the non-normalizable and normalizable
modes to be fixed with boundary data. If we use 11 regularity conditions,
one for each equation of motion, then only three conditions remain to be
specified at the boundary. However, still seven Dirichlet conditions must be
enforced and we must avoid overconstraint.

The number of boundary conditions can be reduced with a clever gauge
choice [34]. Combined with gauge invariance, the boundary conditions as
u→ 0 are asymptotically constrained to be

u2 (δgab + Lξgab)→ 0, (3.42a)

δAa + LξAa +∇aλ→ e−iωtEdx, (3.42b)

u−∆
(
δφI + LξφI

)
→ 0, (3.42c)

where the vector ξa encodes an infinitesimal diffeomorphism xa → xa + ξa

via a Lie derivative L and the scalar field λ an infinitesimal U(1) transfor-
mation. These conditions demand that both (1) the asymptotic forms of the
metric, chemical potential, and scalar source are unchanged from the static
background, and (2) a uniform electric field is sourced in the x-direction.
The gauge transformations take the specific form

ξ = e−iωt
(
ξ̃u(x)u∂u + ξ̃t(x)∂t + ξ̃x(x)∂x

)
+ · · · (3.43a)

λ = e−iωtλ̃(x) + · · · . (3.43b)

These four functions {ξ̃u, ξ̃t, ξ̃x, λ̃} absolve four of the boundary conditions,
leaving exactly three conditions to be imposed on the fluctuations, which is
exactly the number of remaining conditions. Then (3.42) becomes

ξ̃u =
1

2

(
h̃

(0)
+ − h̃

(0)
−

)
, ξ̃t =

i

2ω

(
h̃

(0)
tt + h̃

(0)
+ − h̃

(0)
−

)
ξ̃x′ = −h̃(0)

− , ξ̃x =
i

ω

(
−h̃(0)

tx + ξ̃t′
)
, (3.44a)

λ̃ = − i
ω
b̃

(0)
t − µξ̃t, b̃(0)

x = E − µξ̃t′ − λ̃′, (3.44b)

ψ̃
(0)
I = −ξ̃xφ(−)′

i − ∆−
2

(
h̃

(0)
+ − h̃

(0)
−

)
φ

(−)
i . (3.44c)
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Now, the set of four gauge conditions can be eliminated, yielding

h̃
(0)
− −

i

ω
h̃

(0)′
tx −

1

2ω2

(
h̃

(0)′′
tt + h̃

(0)′′
+ − h̃(0)′′

−

)
= 0, (3.45a)

b̃(0)
x −

i

ω
b̃

(0)′
t = E, (3.45b)

ψ̃
(0)
I +

∆−
2

(
h̃

(0)
+ − h̃

(0)
−

)
φ

(−)′
I − i

ω
h̃

(0)
tx φ

(−)
I − 1

2ω2

(
h̃

(0)′
tt + h̃

(0)′
+ − h̃(0)′

−

)
φ

(−)
I = 0.

(3.45c)

All the gauge artifacts introduced in the radial components of the metric are
subleading; our boundary conditions are self-consistent and sufficient.
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Figure 3.9: Low frequenecy plots of real and imaginary parts of the conduc-
tivity for various parameters. In each plot A0/k = 3/(2

√
2), µ = 1.4

√
2 and

T/µ = 0.115/
√

2.

This gauge choice modifies all boundary quantities, including the current
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response, whose x-component is now given by

j(ρ) = b̃(1)
x −

i

2ω

(
h̃

(0)′
tt + h̃

(0)′
+ − h̃(0)′

−

)
ρ. (3.46)

Then we can compute the average current,

〈
j(ρ)
〉

=
1

l

∫ l

0

dxj(ρ) (3.47)

and the AC conductivity will be given by the Kubo formula,

σ =

〈
j(ρ)
〉

iωE
. (3.48)

Because E sources all the perturbations, without loss of generality we can
set E = 1. In Figs. 3.13 and 3.14 we display a full sample solution for the
fluctuations.

Using this method, we computed the conductivity as a function of the
interpolating parameter θ. Shown in Fig. 3.9 are the real and the imaginary
parts of the conductivity for two different values of k and three values of θ.
For each choice of parameters the low frequency conductivity obeys the Drude
form. Note, even though θ = π/2 corresponds to a uniform charge density
of DG, the conductivities are almost identical to those of HST (θ = 0).
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Figure 3.10: Plots of the power function and the argument of the conductivity
for the same parameters as Fig. 3.9. The dotted line marks −2/3. Refer to
Fig. 3.9 for legend.

Fig. 3.10 is the key test for the existence of the power-law conductivity.
We show a couple of plots using the parameter choices of reference [18]. The
dotted line on the left plot indicates a power law of −2/3. As is evident,
regardless of the value of θ, no discernible power law exists even as k is
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varied. Also of note is the fact that the DG (θ = π/2) and HST (θ = 0)
models yield almost identical numerical results for the conductivity. The
right figure presents the phase angle which also deviates from 60◦ and does
not remain at any appreciable constant value over this frequency range.
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Figure 3.11: This plot was generated using A1 = 1.5, k1 = 1, k2 = 2, θ = 0,
µ = 1.4

√
2 and T/µ = 0.115/

√
2. The amplitude A2 of the higher harmonic

lattice was adjusted.

As a final check we also varied the amplitude A2 for a dichromatic lattice
in Fig. 3.11, as this could introduce a mix of higher harmonics. In this case
as well, no evident power law exists. In fact, for any range of parameters
including temperature, no power law was found.

3.3.3 Conductivity Sum Rules

As part of our rigorous collection of checks we include sum rules for the optical
conductivity. Our system has limω→∞ σ(ω) = 1 for the 2 + 1-dimensional
boundary, and thus we define the integrated spectral weight

Σ(ω/µ) ≡
∫ ω/µ

0

dω′ [Re(σ(ω′))− 1] . (3.49)

We here can swiftly prove that in fact, limω→∞Σ(ω) = 0. This fact is a
consequence of the Kramers-Krönig relation. The statement of the relation
begins with a complex analytic function χ(ω) which vanishes as the real
variable ω →∞ at least as fast as 1/|ω|. This function must obey

χ(ω) =
1

iπ
P
∫ ∞
−∞

dω′
χ(ω′)

ω′ − ω
(3.50)

where P deneotes the principal part of the integral.
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Figure 3.12: An example display of both sum rules for Σ and Σ∗ satisfied
within the numerical scheme.

Our conductivity is given in terms of the current-current Green function
G(ω) by σ(ω) = G(ω)/iω. For the Kramers-Krönig relation to hold, we
assume G(ω) − iω vanishes quickly enough as ω → ∞. If so, the relation
merely reduces to

lim
ω→∞

Σ(ω) = −
∫ ∞

0

dω′
Im(G(ω′)− iω′)

ω′
,

= lim
ω→0+

π

2
Re (G(ω)− iω) = 0, (3.51)

which vanishes so long as Re(G(0)) = 0 which is indeed true as we note
Im(σ(0)) = 0. The satisfaction of this sum rule is a robust feature of holo-
graphic lattices. The D = 4 Einstein-Maxwell theory also supports another
sum rule, which defines a dual weight

Σ∗(ω/µ) ≡
∫ ω/µ

0

dω′
[
Re

(
1

σ(ω′)

)
− 1

]
. (3.52)

This weight also obeys limω→∞Σ∗(ω) = 0 and emerges from an alternative
quantization scheme [35–37]. In Fig. 3.12, we display a sample solution from
our code satisfying these rules in the presence of a lattice.

3.4 Summary of Lattice Transport

Since we have introduced a model that is capable of interpolating between
DG and HST and we find no power law in either case, we conclude that
gravitational crystals, although adequate in describing Drude response, do
not encode the power-law optical conductivity of the cuprates.

Regarding the origin of the power-law optical conductivity, the only study
[38] to date that has successfully reproduced the ω−2/3 scaling relies on exci-
tations which exist on all energy scales — namely scale-invariant matter or
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unparticles. Given that the radial direction in AdS represents the running of
coupling constants, in principle it contains the correct ingredients to capture
unparticle excitations. Hence, we anticipate that some construction using
gauge/gravity duality, other than the one presented here, should be able to
reproduce the power law.

Beyond the specific results of the holographic lattice calculations, the
numerical scheme presented in this chapter is a robust model that can han-
dle systems vastly beyond the scope of analytic solutions; examples include
Josephson junctions [5], superfluid vortices [39] and disorder [35].
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Figure 3.13: Metric fluctuations for ω/µ = 0.09
√

2 and same parameters as
Fig. 3.8.
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Figure 3.14: U(1) and scalar field fluctuations for ω/µ = 0.09
√

2 and same
parameters as Fig. 3.8.
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4 Diffusive Transport and
Thermodynamics in Lifshitz
Holography

4.1 Introduction

Because most condensed matter systems do not conform to the full Lorentz
symmetry and contain dynamical behavior characterized by Lifshitz transi-
tions [40–43], tailoring the AdS/CFT program to condensed matter systems
such as the cuprates requires a considerable extension. The simplest proffer
to engineer such a non-relativistic setup is a Lifshitz geometry characterized
by a dynamical critical exponent z [44–48]. A metric ansatz that encodes
the features of both the dynamical exponent and a finite temperature is the
form

ds2 =
dr2

r2f(r)
− r2zf(r)dt2 + r2d~x2

ds , (4.1)

which defines a horizon by the largest root of f(r+) = 0 and boundary at
r →∞ where f → 1. This ansatz encapsulates the scaling symmetry

r → c−1r, t→ czt, xi → cxi. (4.2)

at the boundary. For z 6= 1, this metric ansatz cannot be a vacuum solution to
the Einstein equations. Indeed, such a Lifshitz geometry requires a nontrivial
bulk stress-energy tensor. Herein lies the problem: there is no unique way of
engineering the requisite stress-energy tensor.

A full analytic solution to an asymptotically Lifshitz geometry that fea-
tures a black hole can be constructed via an Einstein-Maxwell-dilaton (EMD)
action. This model is a direct extension of the AdS-Reissner-Nordström black
hole to z 6= 1. This action is well-known in the literature as it has served as
the workhorse for most of the Lifshitz papers [49–55].

In this work, we address a fully-renormalized solution to the EMD action
that features both a chemical potential and a set of spatially-dependent axion
fields that induce momentum dissipation for general z and dimensionality.
The action is addressed completely at the level of the static background and
DC transport. This range of analysis allows us to compute the set of both
static susceptibilities and conductivities under a uniform “Lifshitz charge”,
which by the Einstein relations obtain the full set of thermoelectric diffusion
constants. We are able to compare and contrast our results with universal
features of diffusivity by Blake et al. [56, 57]. They consider the limits of
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decoupled charge and thermal diffusion, and we find exact agreement in
this limit. However, we find deviations from such behavior when matter
interactions are cranked such that the thermoelectric coupling is significant.

A significant result we obtain once all the dust settles is that the length
dependence of the transport properties, although they are governed by sev-
eral independent scales ranging from the chemical potential to the strength of
momentum dissipation, are ultimately controlled by the engineering dimen-
sion [D] of the diffusion constants; by inspection of the diffusion equation,
[D] = 2− z. Consequently, the effective β-function [58],

β ≡ ∂

∂`

(trD)T

v2
B

, (4.3)

should exhibit universal features as a function of the characteristic length
scale `. In Eq. (4.3), we measure the diffusion matrix D against the char-
acteristic scale v2

B/T , defined in terms of the butterfly velocity and the tem-
perature [56]. We find that sgn(β) = sgn(2 − z), indicating a fixed point at
z = 2. At the scale-invariant point z = 2, diffusion is given exactly by the
dimensionless number

D(z = 2) =
1

ds
. (4.4)

Our diffusion constants are strictly positive unlike the previous results with
restricted range of validity for z [59, 60]. We find z = 2 corresponds to
the fixed point associated with the length dependence of the diffusivities,
in direct analogy with the β-function in Anderson localization [58]. Our
conclusion here is made possible entirely because we have a regularizable
boundary theory.

We find in general that diffusivity bounds [61, 62] do indeed exist for
Lifshitz holography, with two possible violations. The first for z = 1, as is
standard, has a divergent energy diffusion constant in the absence of mo-
mentum dissipation, caused by the inability of any sourced momentum to
relax. The second occurs at z →∞, whereupon charge becomes completely
localized and does not diffuse, manifest in the vanishing of the upper bound
in the respective diffusion constant.

As a final important note, our exact treatment finds that the Ward iden-
tity associated with the Lifshitz symmetry in the EMD model. We find that
the boundary stress-energy tensor Tab and dilaton response λφOφ obey

zTt t + Txixi + λφOφ = 0, (4.5)

which aligns with the encoding of the Lifshitz symmetry via dilatation. This
is a slight contrast to the usual identity which omits any contribution from
the dilaton. In spite of this, these results are not contradictory in the context
of [53, 54] for instance, due to an alternative construction of the boundary
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theory and the dual stress-energy tensor. In fact, due to the nebulous nature
of the interpretation of the boundary geometry, there is some leeway in the
formulation.

0
z > 2

z < 2
�

z = 2 `

Figure 4.1: Heuristic plot of the β−function defined as the derivative of the
trace of the diffusion matrix with respect to the system size. At z = 2, the
diffusion coefficient is a universal dimensionless constant determined solely
by the number of spatial dimensions. Away from z = 2, the diffusion
constants (either charge or energy) have opposite slopes relative to an
increase in the system size indicating a fixed point at z = 2. Regardless of
z, β asymptotes to zero as the system size increases, indicating the bounded
nature of the diffusivities. At z = 2, the diffusion equation is scale-invariant.

4.2 An Abridged History of Lifshitz

Holography

The short history of Lifshitz holography is one of many fits and starts.
The initial advance [44] in this context supplemented the standard bulk La-
grangian with two gauge fields, a 1-form and a 2-form both, coupled together
via a topological term that controls the dynamical exponent z. Though a
clean analytic construction, it is restricted to ds = 2 spatial dimensions and
is not amenable to emblackening factors which would encode a horizon.

Several other models have been proposed and analyzed [63], such as the
Einstein-Proca model [64,65]. However the EMD model imbibes the most ro-
bust features for thermodynamics. One of the long-standing issues with this
theory is the absence of a renormalization scheme for the boundary action,
unlike AdS [66]. Without such a scheme, there is no real interpretation to
the response functions and thermodynamics of the system. While some mod-
els could be worked out under specific conditions — the z = 2 Schrödinger
symmetry [67] a case in point — or certain response functions obtained such
as the specific heat [68], the general theory remained elusive [69]. One of
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the culprits is the U(1) field responsible for turning on z 6= 1 is poorly be-
haved at the boundary. There have been several proposals for dealing with
this divergence. The original proposition for handling this divergence was to
perform a Legendre transformation [52] to instead consider the stable dual
U(1) current as the fundamental variational instead of the electric field.

The Legendre transformation alone leaves the scheme incomplete. An al-
ternative was proposed. Kiritsis and Matsuo’s hydrodynamic ansatz, wherein
the constant parameters controlling the static solution are promoted to slowly-
varying functions of time and space, permits an analytic solution to the in-
duced fluctuation equations. As its title suggests, this formulation allows all
thermodynamic quantities to be expressed as components of a nonrelativistic
fluid. The controlled expansion allows them to make contact with a renor-
malization scheme without performing a Legendre transformation. Their
solution involves an infinite series of counter-terms involving the divergent
U(1) field and supports slowly varying transport properties.

The next stride was made by Cremonini et al. who examined the trans-
verse modes of the EMD theory [70, 71]. Previous attempts on this model
ignored the crucial coupling between the two U(1) fields [72,73], which must
be present for a nontrivial solution. Cremonini et al. sought heat and charge
transport response functions of the system at low frequencies. Therein, their
program enabled a renormalization of specifically the transverse modes: they
(1) perform the Legendre transformation for the divergent U(1) field, (2)
build a second ADM breakdown to separate time and space in the boundary
with a timelike shift, and (3) renormalize the theory in terms of the corre-
sponding U(1) current and timelike shift. A feature of this scheme is that
the counter-terms actually depend on both the non-normalizable and nor-
malizable modes of the model. A renormalization scheme depending upon
the theory’s renormalizable modes is usually problematic, but in fact the
counter-terms can be state-dependent for systems perturbed by irrelevant
operators [74].

4.3 Action and Static Background

We suppose the Einstein-Maxwell-dilaton (EMD) action

I = −
∫
M

√
−g

(
R− 1

2
(∇φ)2 − V (φ)− 1

4

2∑
q=1

Zq(φ)F 2
q −

1

2
X(φ)

ds∑
I=1

(∇χI)2

)

−
∫
∂M

√
−γ2K + Ic.t., (4.6)

where Ic.t. is a smattering of counter-terms to give us well-defined boundary
action. Here, M is a ds + 2-dimensional Lorentzian manifold and ∂M is
its boundary. This action features two U(1) fields, one which will serve to
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assist turning on a nontrivial z 6= 1 solution and one which generates a stan-
dard chemical potential µ, a straight extension of the usual AdS-Reissner-
Nordström black hole. The axion fields will generate momentum dissipation.
This action yields the equations of motion

Eab = Rab −
1

2
∇aφ∇bφ−

1

ds
V (φ)gab

− 1

2

2∑
q=1

Zq(φ)

(
Fq,acF

c
q,b −

1

2ds
F 2
q gab

)
− 1

2
X(φ)

ds∑
i=1

∇aχi∇bχI = 0,

(4.7a)

Dφ = �φ− V ′(φ)− 1

4

2∑
q=1

Z ′q(φ)F 2
q −

1

2
X ′(φ)

ds∑
I=1

(∇χI)2 = 0, (4.7b)

Ma
q = ∇b

(
Zq(φ)F ab

q

)
= 0, (4.7c)

ΞI = ∇a (X(φ)∇aχI) = 0. (4.7d)

This system has a static solution, with matter fields given by

φ = λφ (ln r + φ1) , λφ =
√

2ds(z − 1),

V (φ) = −(z + ds − 1)(z + ds), Zq(φ) = e
2
λq
λφ
φ
, X(φ) = e

2
λχ
λφ
φ
,

A1 =

√
2(z − 1)

z + ds
edsφ1

(
rz+ds − rz+ds+

)
dt, λ1 = −ds,

A2 = µ2

[
1−

(r+

r

)z+ds−2
]
dt, λ2 = z − 1,

χI = kδIix
i, λχ = −(z − 1), (4.8)

and the emblackening factor

f(r) = 1 +
z + ds − 2

2ds

µ2
2e

2(z−1)φ1

r2
+

(r+

r

)2(z+ds−1)

+
1

2(z − ds)
k2e−2(z−1)φ1

r2z
+

(r+

r

)2z

−M
(r+

r

)z+ds
, (4.9)

where M is the mass of the black hole,

M = 1 +
z + ds − 2

2ds

µ2
2e

2(z−1)φ1

r2
+

+
1

2(z − ds)
k2e−2(z−1)φ1

r2z
+

. (4.10)

Note that this solution demands z ≥ 1 and forbids k 6= 0 for z = ds. The
temperature is

T =
rz+1

+ f ′(r+)

4π
=
rz+
4π

(
z + ds −

(z + ds − 2)2

2ds

µ2
2e

2(z−1)φ1

r2
+

− 1

2

k2e−2(z−1)φ1

r2z
+

)
,

(4.11)

derived by eliminating the conical singularity at the horizon.
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4.4 Renormalization

In order to have a well-defined boundary action, and therefore dictionary, we
must have a renormalization scheme to ensure all divergences are removed.
If our action’s variation can be expressed as

δI =

∫
∂M

∑
n

Π(φ)
n δφn, (4.12)

where we have symplectic data and the products of all the variations δφn and
their radial conjugate momenta Π

(φ)
n are O(1) as r → ∞, then we have as-

certained a renormalized boundary action. This scheme can be implemented
not requiring a full, generalized solution but rather utilizing details of spe-
cific solutions only as necessary. The scheme for the low-frequency transverse
transport properties was first laid out in [71]. If the reader seeks a more gen-
eralized approach beyond the scope of specific solutions, it is wise to turn
to the radial Hamilton-Jacobi equations to define a boundary potential via
a functional derivative expansion, as in [9, 10]. For our purposes, we need
only examine the possible forms of nontrivial counter-terms to ascertain the
renormalized action within the scope of our solution.

The variation of the action (4.6) yields

δI =

∫
∂M

(
1

2
T abδγab −

2∑
q=1

Jaq δAq,a +Oφδφ

)
, (4.13)

T ab = 2
√
−γ
(
Kab −Kγab

)
, Jaq =

√
−γNbZq(φ)F ab

q , Oφ =
√
−γNa∇aφ,

(4.14)

where Na is a unit vector normal to the boundary hypersurface foliating
the bulk spacetime along the radial direction, and Kab ≡ ∇(aNb). We have
neglected the conjugate momenta for the axions as they vanish at the level
of the static background and will not contribute to the DC currents. We
absolutely do not have renormalized symplectic data, with the most glaring
issue being that A1 is divergent. However, its conjugate momentum is O(1);
hence we can switch to a stable scheme via a Legendre transformation. We
select the counter-terms

Ic.t. =

∫
∂M

(
A1,aJ

a
1 + c

(vol)
0

√
−γ + c

(J2
1 )

0

J2
1√

−γZ1(φ)
+ · · ·

)
, (4.15)

where we can see the first term switches our potential to vary under J1

instead of A1, changing the boundary condition from Dirichlet to Neumann,
as proposed in [52]. We will thusly refer to this action as IN . While A2 and J2

already combine to yield an O(1) boundary contribution, we must yet ensure
the other responses are renormalized. Equipped with these counter-terms,
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we define the new responses as

T
a
b = 2

√
−γ
(
Ka

b −Kδab +
1

2
c

(vol)
0 δab

)
+

2c
(J2

1 )
0√

−γZ1(φ)

(
Ja1J1,b −

1

2
J2

1 δ
a
b

)
+ · · · ,

(4.16a)

A1,a = A1,a +
2c

(J2
1 )

0 J1,a√
−γZ1(φ)

+ · · · , (4.16b)

Oφ =
√
−γNa∇aφ− c(J2

1 )
0

Z ′1(φ)

Z1(φ)2

J2
1√
−γ

+ · · · . (4.16c)

We find that

c
(vol)
0 = z + 2ds − 1, c

(J2
1 )

0 =
1

2(z + ds)
(4.17)

is sufficient. Note that implicit in the ellipses are remaining counter-terms,
but the outlined contributions are the only terms that contribute to the finite
action. All other terms will simply cancel divergences without contributing
to the free energy and are worked out accordingly in Appendix A.1.

If we substitute in our static solution, we will find as r →∞,

Ttt = dsMrz+ds+ + · · · , (4.18a)

Txixj = −Mrz+ds+ δij + · · · , (4.18b)

A1,t =

√
2(z − 1)

z + ds
edsφ1

(
M

2
− 1

)
rz+ds+ + · · · , (4.18c)

Oφ = −
√

2ds(z − 1)
M

2
rz+ds+ + · · · . (4.18d)

We can now define a chemical potential associated with J1: µ1 = limr→∞A1,t.
If we would like to switch ensembles back to Dirichlet boundary conditions,
we can now use our renormalized A1 to do so,

ID = IN −
∫
∂M

A1,aJ
a
1 . (4.19)

Note that the stress-energy tensor is actually traceless, which is a bit sur-
prising for a Lifshitz theory as this is usually indicative of a scale-invariant
theory, though it is not a necessary condition. Regardless, the Lifshitz scal-
ing symmetry is manifestly encoded as a dilatation. This is reflected in the
new Ward identity,

zTt t + Txixi + λφOφ = 0. (4.20)

This modification to the Ward identity for the anisotropic Weyl transforma-
tion [75] is perhaps not so strange. Unlike the pure AdS case, there is no
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simple interpretation of the boundary metric. Under separate constructions
such as the Newton-Cartan background, modifications are expected [76].

While this renormalization machinery is sufficient for the static back-
ground, when it comes to the currents we will find that z 6= 1 causes the
scaling of the source terms to be divergent. We can remove the source terms
from our boundary action with a simple reformulation of our intrinsic metric,

γabdx
adxb = −n2

(
dt− ni

n2
dxi
)2

+ σijdx
idxj, (4.21)

which functions akin to an inverted ADM formalism, which we further discuss
in Appendix A.3.

4.5 Free Energy

The free energy can be computed from the on-shell action. The Ricci scalar

R =
1

2
(∇φ)2 +

(
1 +

2

ds

)
V (φ)

+

(
1

4
− 1

2ds

) 2∑
q=1

Zq(φ)F 2
q +

1

2
X(φ)

d∑
I=1

(∇χI)2 (4.22)

can be plugged in to yield the on-shell bulk action

I
(o.s.)
bulk = −

∫
M

√
−g

(
2

ds
V (φ)− 1

2ds

2∑
q=1

Zq(φ)F 2
q

)
, (4.23)

which we can expressly integrate. Combining with our boundary terms, we
find that the full on-shell boundary action is

I
(o.s.)
N =

WN

T
= volds

rz+ds+

T

(
− z +

(z − 2)(z + ds − 2)

2ds

µ2
2e

2(z−1)φ1

r2
+

+
z

2(z − ds)
k2e−2(z−1)φ1

r2z
+

)
, (4.24)

where volds is a ds-dimensional spatial volume and WN is the “Neumann”
free energy. We are working in an ensemble with WN(T, φ1, µ2, k), indi-
cating our independent variables, with r+(T, φ1, µ2, k) are an implicit func-
tion that solves Eq. (4.11). A priori, we notice that the charge density
J t1 =

√
2(z − 1)(z + ds)e

−dφ1 is a function of only φ1, meaning that the pa-
rameter φ1 directly and single-handedly sources both the responses µ1 and
Oφ.
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Let us compute (and verify) our thermodynamic quantities. First, the
entropy,

S = −∂WN

∂T
,

= volds4πr
ds
+ , (4.25)

where voldsr
ds
+ is exactly the surface area of the black hole. This is the

celebrated Bekenstein-Hawking relation (where we have chosen GN = 1
16π

).
Second, the charge associated with the chemical potential µ2 is

Q2 = −∂WN

∂µ2

,

= volds(z + ds − 2)µe2(z−1)φ1rz+ds−2
+ = voldsJ

t
2, (4.26)

which lines up exactly with our expectations. From here, it is possible to
compute the system’s internal energy,

E = WN + TS + µ2Q2,

= voldsdsMrz+ds+ = voldsTtt, (4.27)

which again is self-consistent: the energy contained is proportional to the
black hole’s mass, and given by the tt-component of the stress-energy tensor.

Next, let us consider what happens under the variation of φ1. This, of
course, is an effect that exists only for z 6= 1 and couples the variation of the
Lifshitz U(1) field and the dilaton. We find

∂WN

∂φ1

= −volds2ds(z − 1)(M − 1)rz+ds+ ,

= µ1
∂Q1

∂φ1

+ voldsλφOφ, (4.28)

where

Q1 = volds
√

2(z − 1)(z + ds)e
−dsφ1 = voldsJ

t
1. (4.29)

As expected, the explicit response of both components is manifest and they
are not independent of each other in the context of the static solution. Fi-
nally, we compute the pressure p. Our system’s trivial volume dependence
means the pressure is just the negated thermodynamical potential density in
the grand canonical ensemble — namely the density of the “Dirichlet” free
energy WD = WN − µ1Q1 — and is given by

p = − WD

volds
,

=

(
M − 1

z − ds
k2e−2(z−1)φ1

r2z
+

)
rz+ds+ = −Tx1x1 +

kOk
volds

. (4.30)
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Here we have introduced an operator dual to the impurity k,

Ok ≡ −
1

ds

∂WN

∂k
= −volds

ke−2(z−1)φ1r−z+ds+

z − ds
, (4.31)

which functions analogously to a magnetization in response to an applied
magnetic field [77]. The 1/ds factor is chosen to normalize the response to one
spatial coordinate. As expected, turning on impurities creates the disparity
p 6= −Tx1x1 . The simple form of the pressure guarantees the satisfaction of a
Smarr-like relation,

ε+ p = Ts+
2∑
q=1

µqρq, (4.32)

where ε, s, and ρq are the energy, entropy and charge densities respectively.

4.6 DC Conductivities

When we consider fluctuations of the bulk spacetime and fields at the level
of slowly-varying gradients, the equations of motion decouple into three sep-
arate modes. A so-called sound mode from which susceptibilities can be
derived, a tensor mode which expresses vorticity of the fluid, and a vector
mode which contains the system’s heat and charge currents [53, 54]. To ac-
quire the DC conductivities, we can supply linear time sources for the vector
mode and extract the current responses. We take the ansatz,

δds2 = 2r2δgrx1drdx
1 + 2

(
−∇T

T
r2zft+ r2δgtx1

)
dtdx1, (4.33a)

δAq =

(
−∇µqt+

∇T
T
Aq,tt+ δAq,x1

)
dx1, (4.33b)

δχI = δI1δχ1, (4.33c)

where the perturbations — without loss of generality due to rotational sym-
metry — are sourced along the x1-direction. The equations of motion come
in two batches,

− frz−ds+1

(
r−z+ds+3δg′tx1 +

2∑
q=1

ρqδAq,x1

)′
+ k2X(φ)δgtx1 = 0, (4.34a)

j(ρq)′ = 0, j(ρq) = −rz+ds−1fZq(φ)δA′q,x1 − ρqδgtx1 , (4.34b)
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which are Etx1 and Mx1

q , and[
rz+ds+1

+ f ′(r+)− 1

z − ds
k2X(φ)r2(z−1)

(
r−z+ds − r−z+ds+

)] ∇T
T

+
2∑
q=1

ρq∇µq − kX(φ)rz+ds+1f(δχ′1 − kδgrx1) = 0, (4.35a)

− k∇T
T

+ rz−ds+1
[
r−z+ds+3f (δχ′1 − kδgrx1)

]′
= 0, (4.35b)

which are Erx1 and Ξ1, respectively. We can see Ξ1 = 0 follows from Etx1 = 0.
Thus, Erx1 completely decouples from the other equations and acts as a first-
order constraint.

The electric currents j(ρq) = Jx
1

q are conserved in the bulk, but we can
construct another conserved current by considering a Killing vector as shown
in Appendix A.2. The result is

j(q)′ = 0, j(q) = r3z+ds−1f 2
(
r−2(z−1)f−1δgtx1

)′ − 2∑
q=1

Aq,tj
(ρq), (4.36)

and the conserved bulk quantity j(q) is the boundary heat current. We
demand these functions are regular at the horizon in in-going Eddington-
Finkelstein coordinates, given by the transformation

dt+ = dt+
dr

rz+1f
, (4.37)

and thus near the horizon we obtain t = t+ − 1
4πT

ln(r − r+). Regularity
yields the asymptotic relations

δgrx1 ∼
1

k2X(φ+)sT (r − r+)

(
s∇T +

∑
q=1

ρq∇µq

)
, (4.38a)

δgtx1 ∼
4π

k2X(φ+)s

(
s∇T +

∑
q=1

ρq∇µq

)
, (4.38b)

δAq,x1 ∼
1

4πT
∇µq ln(r − r+), (4.38c)

where we express our quantities in terms of the entropy and charge densities
and defined φ+ = φ(r+). Plugging into our currents, which are conserved in
the bulk, we find

j(q) = − 4πT

k2X(φ+)

(
s∇T +

2∑
q=1

ρq∇µq

)
, (4.39a)

j(ρq) = −rds−2
+ Zq(φ+)∇µq −

4πρq
k2X(φ+)s

(
s∇T +

2∑
p=1

ρp∇µp

)
. (4.39b)
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The heat current is related to the energy current via

j(q) = j(ε) −
2∑
q=1

µqj
(ρq), (4.40)

which of course is a measure of energy flow in excess of the energy due to
charge transfer. Thus, the energy current is given by

j(ε) = −rds−2
+

2∑
q=1

Zq(φ+)µq∇µq −
4π
(
sT +

∑2
q=1 µqρq

)
k2X(φ+)s

(
s∇T +

2∑
p=1

ρp∇µp

)
.

(4.41)

4.7 Energy and Charge Diffusion

Let us consider the diffusion of energy and charge in our system. From hereon
we can simply work with densities. The energy and charges follow continuity
equations,

∂tε+∇ · j(ε) = 0, ∂tρq +∇ · j(ρq) = 0. (4.42)

In the Neumann ensemble, gradients of T , φ1 and µ2 source gradients of
energy and charge density. We will examine the diffusion of the system’s
energy and electric charge under the constraint where the “Lifshitz charge”
is completely fixed and uniform; that is, j(ρ1) = 0 and ∇ρ1 = 0. Under this
constraint,

∇ε = (cµ2 + µ2ζ)∇T + (Tζ + µ2χ)∇µ2, (4.43a)

∇ρ2 = ζ∇T + χ∇µ2, (4.43b)

where

cµ2 = T
∂s

∂T

∣∣∣∣
ρ1,µ2

= −T ∂
2wN
∂T 2

, (4.44a)

ζ =
∂s

∂µ2

∣∣∣∣
T,ρ1

=
∂ρ2

∂T

∣∣∣∣
ρ1,µ2

= − ∂2wN
∂T∂µ2

, (4.44b)

χ =
∂ρ2

∂µ2

∣∣∣∣
T,ρ1

= −∂
2wN
∂µ2

2

, (4.44c)

the susceptibilities are computable as second-order derivatives of the free
energy density wN .

The associated heat and charge currents,

j(q) = −κ∇T − Tα∇µ2, j(ρ2) = −α∇T − σ∇µ2,

j(ε) = − (κ+ µ2α)∇T − (Tα + µ2σ)∇µ2, (4.45)
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are given by, utilizing Eq. (4.39) and the constraint j(ρ1) = 0,

κ =
4πsT

Σ1k2X(φ+)
, (4.46a)

α =
4πρ2

Σ1k2X(φ+)
, (4.46b)

σ = rds−2
+ Z2(φ+) +

4πρ2
2

Σ1k2X(φ+)s
, (4.46c)

Σ1 = 1 +
ρ2

1

k2X(φ+)Z1(φ+)r2ds−2
+

, (4.46d)

where Σ1 measures the response due to application of∇µ1 on the non-Lifshitz
matter. The application of this gradient is what allows the conductivities to
be finite even in the absence of momentum dissipation, i.e. k → 0. This is an
expected feature in a system with two species of U(1) fields, first observed by
Sonner [78] and later by Cremonini and Pope [70]. This conductivity feature
is an instance of some of the more robust behavior a U(1)×U(1) model can
afford.

The continuity equation (4.42) in concert with the conductivities (4.45)
and susceptibilities (4.43) yields a diffusion equation for energy and charge:(

∂tρ2

∂tε

)
= D

(
∇2ρ2

∇2ε

)
, (4.47)

where the diffusion matrix D is determined from the conductivity matrix σ
and susceptibility matrix χ via the celebrated Einstein relation,

D = σχ−1. (4.48)

The diffusion eigenvalues follow

D+D− =
κ

cρ2

σ

χ
, (4.49a)

D+ +D− =
κ

cρ2
+
σ

χ
+
Tσ

cρ2

(
ζ

χ
− α

σ

)2

, (4.49b)

where we define

cρ2 = cµ2 −
Tζ2

χ
(4.50)

as the specific heat for fixed electric charge — which follows from Maxwell
relations — and

κ = κ− Tα2

σ
,

=
4πsT

Σ1k2X(φ+) +
4πρ22

rds−2
+ Z2(φ+)s

(4.51)
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to be the open-circuit thermal conductivity, where no electric charge can
flow. We note that κ is explicitly dependent on both the metric and A1, in
contrast to traditional holographic systems where κ is explicitly dependent
only upon the form of the metric [57]. This is a direct consequence of our
fixed Lifshitz charge scenario.

4.7.1 The Butterfly Velocity

Computing the absolute diffusion constants is nice, but the size of quan-
tities in physics that carry meaning must be dimensionless. To that end,
the diffusion constants must be measured against the theory’s characteristic
velocity. In diffusion of non-interacting particles, the characteristic velocity
is the speed of light c [61]. To discuss diffusion of anything in an absolute
sense requires some kind of characteristic velocity that governs transport.
In a metal, perhaps it is the Fermi velocity. What could it be in a Lifshitz
geometry?

There is no direct speed of light analogue for a Lifshitz geometry. By
design, any radial slice of our bulk geometry has a different “effective” speed
of light, and as we approach the boundary the light cone diverges. We
need a new idea. Here, we will review the butterfly velocity, a universal
characteristic velocity for Lifshitz geometries [56].

To conjure our ethereal quantity, we begin by transforming the Lifshitz
geometry into Kruskal shockwave coordinates. We start with the ansatz

ds2 =
d%2

U(%)
− U(%)dt2 + V (%)d~x2

ds , (4.52)

which can be acquired from (4.1) under the transformation % = rz/z. Under
this transformation, the metric functions are

U(%) = z2%2f, V (%) = (z%)2/z. (4.53)

The tempearture in these coordinates is given simply by T = U ′(%+)/4π.
From this point we can transfer to the Krusal shockwave coordinates by
defining

uv = −eU ′(%+)%∗(%),
u

v
= −e−U ′(%+)t, (4.54)

where %∗ is defined as the usual tortoise coordinate via d%∗ = d%/U(%). The
metric is then given by

ds2 = A(uv)dudv +B(uv)d~x2
ds ,

A(uv) =
4

uv

U(%(uv))

U ′(%+)2
, B(uv) = V (%(uv)) (4.55)
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The coordinates u and v are natural axes for the light cone. What’s more,
there are two event horizons: a “future” horizon at u = 0 and a “past”
horizon at v = 0.

Consider a test particle launched from a distant time in the past tw with
energy E. As time runs forward, we watch this particle crash into the event
horizon at u = 0. The particle’s energy is then, of course, absorbed by the
black hole and creates a shock.

The shock can be conceptualized as a kink v → v + h(x) occuring as the
particle crosses the u = 0 horizon [79–81]. We rewrite the metric so that it
takes the Kruskal form (4.55) for u < 0 and acquires the kink for u ≥ 0:

ds2 = A [u(v + Θ(u)h(x)] du
(
dv + Θ(u)∂ih(x)dxi

)
+B [u(v + Θ(u)h(x)] d~x2

ds , (4.56)

where Θ(u) is the Heaviside step function. Then, let us transform back
directly with v̂ = v + Θ(u)h(x), and the metric becomes

ds2 = A(uv̂)dudv̂ +B(uv̂)d~x2
ds − A(uv̂)δ(u)h(x)du2, (4.57)

which is nearly identical to our starting metric. The kink is then encoded
geometrically through the uu term in the metric and a delta function at the
u = 0 horizon.

The evolution of our kink h(x) is of course controlled through the Einstein
equations. To match, the uu component of the stress-energy tensor for our
test particle goes like

δTuu ∼ Ee2πTtwδ(u)δ(~x), (4.58)

where the particle’s momentum Ee2πTtw grows exponentially with time. This
is the butterfly effect: regardless of a small initial perturbation, the con-
tribution of back-reaction of the particle is not negligible after a sufficient
scrambling time t∗ [82]. If we retain only the terms proportional to δ(u)h(x),
the dominant contributions at u = 0, we find the kink must obey(

�(x) −m2
)
h(x) ∼ B(0)

A(0)
Ee2πTtwδ(~x) (4.59)

where �(x) is the spatial Laplacian and the screening length m is generally
given by

m2 =
ds
A(0)

∂B(uv̂)

∂(uv̂)

∣∣∣∣
u=0

. (4.60)

= dsπTV
′(%+) = 2dsπTr

2−z
+ (4.61)

which is easily obtained from

A(0) = − 1

πT
,

∂B(uv̂)

∂(uv̂)

∣∣∣∣
u=0

= −V ′(%+). (4.62)
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Eq. (4.59) utilizes that at u = 0(
1

A(0)

∂A(uv̂)

∂(uv̂)
+

ds
2B(0)

∂B(uv̂)

∂V (uv̂)
− T̂uv̂

) ∣∣∣∣
u=0

= 0 (4.63)

where T̂ab is the trace-reversed stress-energy tensor whose contribution is neg-
ligible. The key element is that (4.59) holds even for non-trivial background
stress-energy tensors; that is, the kink’s dynamics are only determined by
the geometry components A(uv̂) and B(uv̂).

To understand the butterfly effect we need only solve Eq. (4.59). At long
distances x� m−1, we find

h(x) ∼ Ee2πT (tw−t∗)−m|x|

|x| ds−1
2

. (4.64)

The Lyapunov exponent λL and butterfly velocity vB can be read off as

λL = 2πT, vB =
2πT

m
. (4.65)

Plugging in our calculated value for the screening length, we obtain

v2
B =

2π

ds
Trz−2

+ . (4.66)

It easy to see that v2
B/T has the same scaling dimension as a diffusion con-

stant! Thus, we have a characteristic velocity against which diffusion rates
can be measured.

4.8 Lifshitz Diffusion Constants

Now that we are equipped with the Einstein relations and the characteristic
velocity vB, we are able to construct dimensionless measures of diffusion for
the Lifshitz black hole. Rescaling Eq. (4.11) yields

1 =
Rz

4π

(
z + ds −

(z + ds − 2)2

2ds
µ̃2

2R
−2 − 1

2
k̃2R−2z

)
, (4.67)

r+ = T 1/zR
(
µ̃2, k̃

)
, µ̃2 =

µ2e
(z−1)φ1

T
, k̃ =

ke−(z−1)φ1

T z
, (4.68)

and all pure numbers in our system will be functions of the two parameters
µ̃2 and k̃. Written in scaling form, the determinant and trace of the diffusion
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Figure 4.2: D±T/v
2
B for ds = 2 and z = 3/2.

matrix are given, respectively, by

D+D−T
2

v4
B

=
zds

[
2(z + ds) + k̃2R−2z

]
− (z − 2)(z + ds − 2)2µ̃2R−2

8π2(z + ds − 2)
[
2(z − 1)(z + ds) + k̃2R−2z

] ,

(4.69a)

(D+ +D−)T

v2
B

=
ds

2π(z + ds − 2)

+
zds

[
2(z + ds) + k̃2R−2z

]
+ (z − 2) [(z − 2)2 − d2

s] µ̃
2
2R
−2

4πds

[
2(z − 1)(z + ds) + k̃2R−2z

] .

(4.69b)

We will always order the eigenvalues such that D+ ≥ D−. We display a
couple of solutions explicitly in Figs. 4.2 and 4.3. Notably, we find the
diffusion eigenvalues are bounded. The bounds can be obtained analytically
through various limits of µ̃2 and k̃ and are given by

max

(
D+T

v2
B

)
=

{
ds

2π(z−1)(z+ds−2)
z < 2

1
2π

z ≥ 2
, (4.70a)

min

(
D+T

v2
B

)
=

{
z

4π(z−1)
z > 2 and z > ds

ds
2π(z+ds−2)

else
, (4.70b)

max

(
D−T

v2
B

)
=

{
z

4π(z−1)
ds < z < 2

ds
2π(z+ds−2)

else
, (4.70c)

min

(
D−T

v2
B

)
=

{
1

2π
z ≤ 2

ds
2π(z−1)(z+ds−2)

z > 2
, (4.70d)
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Figure 4.3: D±T/v
2
B for ds = 3 and z = 7/2.

which are shown in Fig. 4.4 for ds = {1, 2, 3}, in which the primacy of z = 2
as the scale-invariant point of the diffusion equation is evident. To illustrate
this further, we plot Eq. (4.3) with the length defined as ` = 2π/k̃ in Fig.
4.5.1 This characteristic length functions as an effective lattice spacing. As
is evident, there is a universal sign change at z = 2. At z = 2, the diffusion
constants are equal and given by the universal value,

D± =
1

ds
, (4.71)

as remarked in the introduction. The universal nature of the charge and
energy diffusion constants stems from the underlying scale invariance of the
diffusion equation when z = 2. The sign change of β signals a fixed point
exists at z = 2 analogous to the scale-invariance that obtains for the con-
ductance in the case of ds = 2 in Anderson localization [58]. Necessarily,
the diffusion scale v2

B/T is also a pure number at this point, as seen in Eq.
(4.66) where the horizon dependence vanishes. The marginality of z = 2 has
been noted in other contexts such as a Lifshitz string [83] and the stability
of scalar hair [84]. Note that we have allowed non-integer values of ds in our
solutions, which can effectively be obtained through the use of a hyperscaling
violating parameter.

To put our results for the transport in the context of expected results,
we first observe the universal features. In the decoupling limit where the
chemical potential is turned off, we find the charge and energy diffusion
constants follow

lim
µ̃2→0

σ

χ

T

v2
B

=
ds

2π(z + ds − 2)
, lim

µ̃2,k̃→0

κ

cρ2

T

v2
B

=
z

4π(z − 1)
, (4.72)

1We could very well have used detD instead of tr D, though the qualitative features
are identical.
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Figure 4.4: The bounds of D±T/v
2
B for ds = {1, 2, 3}. The minimum of

D+T/v
2
B asymptotes to 1/4π as z →∞.

which exactly match the purported decoupled forms in [56, 57]. For z ≥ 2
and z ≥ ds, which heads toward the decoupling limit of large z, we find
these forms match max(D−T/v

2
B) and min(D+T/v

2
B) exactly. The limits in

which deviations occur are laid bare in Fig. 4.3. For D−, deviation from this
behavior is found when µ̃2 � 1, the limit in which we expect thermoelectric
interactions to be quite strong and so inhibit charge flow. For D+, deviation
is found under either the conditions k̃ � 1 or µ̃2 � 1, emphasizing that
energy diffusivity is heavily subject to all matter interactions.

A limit of interest is z → ∞. In particular, the bounds indicate clearly
that D−T/v

2
B → 0, signaling that charge does not diffuse in this limit, only

energy. Conventionally, z →∞ corresponds to localized critical physics; the
divergence of the critical length guarantees no dynamic critical behavior can
obtain on any appreciable time scale. For our system, we can interpret this to
mean charge must follow this type of quantum critical behavior but energy
does not. We also notice the saturation of the D+ diffusion constant for
z ≥ 2, whereupon 1/4π ≤ D+T/v

2
B ≤ 1/2π. The upper bound is the typical

saturation observed in the SYK model [85]. Intuitively, this characterizes the
fact that energy diffusivity must be bounded from below and above, so long

70



as momentum dissipation is present, regardless of the value of z.

0 1 2 3 4 5

-0.04

-0.02

0

0.02

0.04

0.06

Figure 4.5: Plot of the β-function (Eq. (4.3)) illustrating the universality of
the diffusivities as a function of length for varying z, using µ̃2 = 1.8 and
ds = 3. The qualitative features of β are independent of the chemical
potential and the number of spatial dimensions. The universal sign change
signifies that the length dependence of the diffusivities is controlled by a
fixed point at z = 2.

4.9 Summary of Lifshitz Transport

From this detailed treatment of Lifshitz holography, we have been able to de-
rive a series of therodynamic and dynamical response functions. Of particular
note is the explicit derivation of both the Bekenstein-Hawking and Smarr-like
relationships, made possible by the exact computation of the renormalized
thermodynamic potential. Our calculations reveal the universal features of
the diffusion constants near z = 2 even in the complicated setting in which
charge and thermal degrees of freedom are treated on equal footing. The
vanishing of the charge diffusion constant in the local critical limit of z →∞
represents the ultimate deviation from the expected bounds. This limit, of
course, is in the extreme case where the matter content of our theory domi-
nates. Since our treament fully incorporates thermodynamics and electrical
responses, it should serve as a template for extracting the coterie of transport
coefficients relevant to quantum critical matter.
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5 Future Work

From this detailed treatment of Lifshitz holography, we have been able to
derive a series of thermodynamic and dynamical response functions. Of
particular note is the explicit derivation of both the Bekenstein-Hawking
and Smarr-like relationships, made possible by the exact computation of the
renormalized thermodynamic potential. Our calculations reveal the universal
features of the diffusion constants near z = 2 even in the complicated setting
in which charge and thermal degrees of freedom are treated on equal footing.
This universality obtains because of the emergence of a fixed point charac-
terizing the length dependence of the diffusivities at z = 2. The vanishing
of the charge diffusion constant in the local critical limit of z → ∞ repre-
sents the ultimate deviation from the expected bounds. Since our treatment
fully incorporates thermodynamics and electrical responses, it should serve
as a template for extracting the coterie of transport coefficients relevant to
quantum critical matter.
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A Appendix

A.1 Full Background Renormalization

For k 6= 0 we can have a possibly infinite number of divergent terms in Eq.
(4.13). Consider counter-terms

Ic.t. =

∫
∂M

∑
n=0

(
c(vol)
n

√
−γ + c(J2

1 )
n

J2
1√

−γZ1(φ)

)[
X(φ)

ds∑
I=1

(
∇̂χI

)2
]n
,

(A.1)

whose contributions to our boundary responses are

Tab|c.t. =
∑
n=0

[
X(φ)

ds∑
J=1

(
∇̂χJ

)2
]n−1

× 2X(φ)
ds∑
I=1

[
c(vol)
n

√
−γ
(

1

2
δab

(
∇̂χI

)2

− n∇̂aχI∇̂bχI

)

+
c

(J2
1 )

n√
−γZ1(φ)

(
Ja1J1,b

(
∇̂χI

)2

− nJ2
1 ∇̂aχI∇̂bχI −

1

2
δabJ

2
1

)(
∇̂χI

)2
]
,

(A.2)

A1,a|c.t. =
∑
n=0

[
X(φ)

ds∑
I=1

(
∇̂χI

)2
]n

2c
(J2

1 )
n J1,a√
−γZ1(φ)

, (A.3)

Oφ|c.t. =
∑
n=0

[
X(φ)

ds∑
I=1

(
∇̂χI

)2
]n

×
[
c(vol)
n

√
−γnX

′(φ)

X(φ)
+ c(J2

1 )
n

J2
1√

−γZ1(φ)

(
nX ′(φ)

X(φ)
− Z ′1(φ)

Z1(φ)

)]
. (A.4)

In general, we can increment n to cancel out higher order powers involving k2

terms that bleed over from our established action. The constants are given
by

c(vol)
n = ϑ(vol)

n

(2n− 1)(z − 1)− 2ds
(4ds(ds − z))n

, (A.5)

c(J2
1 )

n = ϑ(J2
1 )

n

1

(z + ds) (4ds(ds − z))n
, (A.6)
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and are determined recursively from n = 0 with ϑ
(vol)
n = {−1, 1, 1

2
, 1

2
, 5

8
, 7

8
, . . . }

and ϑ
(J2

1 )
n = {1

2
, 1

2
, 3

4
, 5

4
, 35

16
, 63

16
, . . . }. This is a specific encoding of the renor-

malization provided by the Hamilton-Jacobi equations, which expands in a
series of functional derivatives [9, 10].

A.2 Killing Vector Conserved Quantity

Here we determine the bulk conserved quantity that will be dual to the heat
current as outlined in [34]. Suppose there exists a Killing vector ξ, defined
by

Lξgab = ∇(aξb) = 0, (A.7)

which of course can correspond to an infinitesimal diffeomorphism. We con-
sider that the Lie derivatives on our physical observable fields vanish, that
is

LξFq,ab = Lξφ = LξχI = 0. (A.8)

The first of these, rewritten, states that

(iξd+ diξ)Fq = 0, (A.9)

and thus we can assume that iξFq is an exact form

iξFq = dθq (A.10)

for some functions θq. This also implies that we can express

LξAq = dψq (A.11)

for some functions ψq. These identities will allow us to construct a total
derivative by examining

∇b∇aξb = Ra
bξ
b,

=
1

ds
V (φ)ξa +

1

2

2∑
q=1

(
ξcZq(φ)F ab

q Fq,cb −
1

2ds
ξaZq(φ)F 2

q

)
. (A.12)

This expression can be rearranged as

∇bG
ab =

1

ds
V (φ)ξa, (A.13)

where

Gab = ∇aξb +
1

2ds

2∑
q=1

Zq(φ)
(
(ψq − dsθq)F ab

q + 2ξ[aF b]c
q Aq,c

)
. (A.14)
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To deduce this expression, we use the identities

ξcZq(φ)F ab
q Fq,cb = ∇b

(
θqZq(φ)F ab

q

)
, (A.15)

ξaZq(φ)F 2
q = ∇b

(
4ξ[aZq(φ)F b]c

q Aq,c + 2ψqZq(φ)F ab
q

)
, (A.16)

where the latter of these can be realized from rearranging the Lie derivative
LξFq,ab = ξc∇cFq,ab +Fq,bc∇aξ

c +Fq,ac∇bξ
c = 0. Now, as long as any compo-

nents of ξ vanish we can deduce a conserved quantity. By choosing ξ = ∇t,
it is clear that the xi components then generate conserved quantities, which
are dual to the boundary heat currents.

A.3 Renormalization for Currents

With the counter-terms provided in Eq. (4.15), we find that

Tx1t = j(ε) (A.17)

and as such we would like to construct our boundary theory such that this
is the response to our metric variation. Presently, we would find that the
boundary variation leaves a source term [34] in the action. This is not a
problem for z = 1, but otherwise this term is divergent. To attenuate this
divergence we can recast the intrinsic metric γab as

γabdx
adxb = −n2

(
dt− ni

n2
dxi
)2

+ σijdx
idxj, (A.18)

akin to the ADM formalism but where our boundary spacetime is instead
foliated by the normalized timelike covector 1

n
∇t. Then we can consider the

fundamental variational objects of our theory to be n, ni and σij instead of
the boundary metric. Our variation becomes

δI =

∫
∂M

[(
−Tttn2 + Tij

ninj
n2

) δn
n
− Tit

δni
n2

+
1

2
Tijδσij + · · ·

]
, (A.19)

and now the source term present in the δni term decays. Additionally, thanks
to our formulation of ni as a small parameter, the response to the normalized
variation of the lapse δn/n is exactly Ttt. Thus nothing about our static
background scheme is modified.

A.4 Linear Time Sources

Linear time sources provide a straightforward scheme for deducing DC re-
sponse functions. Additionally, through our gauge symmetries they have a
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clear interpretation as temperature and chemical potential gradients. We can
transform the metric and U(1) fields as

gab → gab + Lξgab, (A.20)

Aq,a → Aq,a + LξAq,a +∇aΛq (A.21)

where ξ parameterizes an infinitesimal coordinate transformation xa → xa +
ξa and each Λq a U(1) transformation, respectively. For the choices

ξ = −tx1∇T
T
∇t, (A.22)

Λq = tx1∇µq, (A.23)

our ansatz sources become

δds2 = 2r2zfx1∇T
T
dt2, (A.24)

δAq = x1

(
∇µq − Aq,t

∇T
T

)
dt, (A.25)

which are exactly the gradients we would expect for small perturbations
of T and µq. The form of the temperature fluctuations are determined by
perturbing the period of Euclidean time, 1/T .

A.5 Interpretation of the Lifshitz Boundary

In a traditional asymptotically AdS spacetime, a constant radial slice looks
identical to Minkowski spacetime. Thus, we have a clean picture of what the
boundary spacetime looks like: just that, Minkowski spacetime. However,
an asymptotically Lifshitz geometry does not have slices that are so easy
to interpret. The asymmetric scaling of time and space mean that a slice
looks like Minkowski spacetime with a divergent speed of light. This is no
real world interpretation at all. Instead, we can use the Newton-Cartan
formalism outlined in [53,54,76].

Rather than the boundary metric serving as the fundamental description
of spacetime, consider instead a vielbein. What’s more, we can encode the
nonrelativistic Galilean boost in this model. Consider the intrinsic metric
and its inverse to be expressed respectively as

γab = −r2zfτaτb + r2δije
i
ae
j
b, (A.26)

γab = −r−2zf−1vavb + r−2δijeai e
b
j, (A.27)

where the vielbein obeys

vaτa = 1, eai τa = 0, vaeia = 0, eaje
i
a = δij. (A.28)

76



It’s also convenient to define the spatial metric via hab = δije
i
ae
j
b. The fun-

damental objects of the theory will be the timelike 1-form τa and the inverse
spatial metric hab.

The proposed vielbein is invariant under a Milne boost ψa, defined by

τa → τa, va → va + habψb,

hab → hab, hab → hab − (τaP
c
b + τbP

c
a)ψc + τaτbh

cdψcψd, (A.29)

where τa and hab are left invariant and the operator P a
b = δab−vaτb is a spatial

projector. The Milne boost transformation should be familiar! It’s a general-
ized encoding of a Galilean boost for nontrivial spacetimes. Squint your eyes
and tilt your head to the side and you’ll see it’s identical in construction.

At the boundary, the vielbein is given by

τadx
a = dt, eiadx

a = dxi − vidt, va∇a = ∇t + vi∇i, eai∇a = ∇i,
(A.30)

where we have included a Galilean boost vi. Any U(1) fields can be encoded
by their tangent space dopplegangers,

Aq,0 = vaAq,a, Aq,i = eaiAq,a. (A.31)

In this formalism, the variation of the Einstein-Maxwell-dilaton action
can be expressed

δI =

∫
∂M

(
−S0

aδv
a + Sai δe

i
a +

2∑
q=1

(
J0
q δAq,0 + J iqδAq,i

)
+Oφδφ

)
, (A.32)

where all the fundamental variations are vielbein objects.1 Converting back,
our responses, the stress-energy tensor and currents, are given by

T ab = S0
b v

a − Sibeai , Jaq = J0
q v

a + J iqe
a
i . (A.33)

Before any counter-terms, the forms of stress-energy tensor and currents are

T ab = 2
√
−γ
(
Kab − γabK

)
+

2∑
q=1

JaqAq,b, (A.34)

Jaq =
√
−γNbZq(φ)F ab

q . (A.35)

Interestingly, this vielbein concoction modifies the form of the stress-energy
tensor! Indeed, it is actually asymmetric in general, which can accommodate
torsion. In general, because the vielbein is O(1) by construction, we are
guaranteed a stable boundary variation.

1Of course, we need only one pair from the vielbein thanks to the constraints (A.28).

77



References

[1] J. Maldacena. The Large N limit of superconformal Field theories and
supergravity. Adv. Theor. Math. Phys., 2:231, 1998.

[2] Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math.
Phys., 2:253–291, 1998.

[3] Thomas Faulkner, Nabil Iqbal, Hong Liu, John McGreevy, and David
Vegh. Strange metal transport realized by gauge/gravity duality. Sci-
ence, 329(5995):1043–1047, 2010.

[4] Sean A. Hartnoll, Christopher P. Herzog, and Gary T. Horowitz. Holo-
graphic superconductors. Journal of High Energy Physics, 2008(12):015,
2008.

[5] Gary T. Horowitz, Jorge E. Santos, and Benson Way. Holographic
josephson junctions. Phys. Rev. Lett., 106:221601, Jun 2011.

[6] Mohammad Edalati, Robert G. Leigh, and Philip W. Phillips. Dynami-
cally generated mott gap from holography. Phys. Rev. Lett., 106:091602,
Mar 2011.

[7] Yunseok Seo, Geunho Song, Philip Kim, Subir Sachdev, and Sang-Jin
Sin. Holography of the dirac fluid in graphene with two currents. Phys.
Rev. Lett., 118:036601, Jan 2017.

[8] Robert M Wald. General relativity. Chicago Univ. Press, Chicago, IL,
1984.

[9] Ioannis Papadimitriou. Holographic renormalization of general dilaton-
axion gravity. Journal of High Energy Physics, 2011(8):119, Aug 2011.

[10] Wissam Chemissany and Ioannis Papadimitriou. Lifshitz holography:
the whole shebang. Journal of High Energy Physics, 2015(1):52, Jan
2015.

[11] Thomas Faulkner, Hong Liu, John McGreevy, and David Vegh. Emer-
gent quantum criticality, fermi surfaces, and ads2. Phys. Rev. D,
83:125002, Jun 2011.

[12] Sean A Hartnoll. Lectures on holographic methods for condensed matter
physics. Classical and Quantum Gravity, 26(22):224002, 2009.

78



[13] Andrea Amoretti, Alessandro Braggio, Nicola Maggiore, Nicodemo Mag-
noli, and Daniele Musso. Thermo-electric transport in gauge/gravity
models with momentum dissipation. Journal of High Energy Physics,
2014(9):160, Sep 2014.

[14] Alexander Altland and Ben D. Simons. Condensed Matter Field Theory.
Cambridge University Press, 2 edition, 2010.

[15] Matthew Headrick, Sam Kitchen, and Toby Wiseman. A new approach
to static numerical relativity and its application to KaluzaKlein black
holes. Classical and Quantum Gravity, 27(3):035002, 2010.

[16] Allan Adams, Paul M. Chesler, and Hong Liu. Holographic turbulence.
Phys. Rev. Lett., 112:151602, Apr 2014.

[17] L. Trefethen. Spectral Methods in MATLAB. Society for Industrial and
Applied Mathematics, 2000.

[18] G. T. Horowitz, J. E. Santos, and D. Tong. Optical conductivity with
holographic lattices. Journal of High Energy Physics, 7:168, July 2012.

[19] Andrew Lucas. Conductivity of a strange metal: from holography to
memory functions. Journal of High Energy Physics, 2015(3):71, Mar
2015.

[20] D. van der Marel, H. J. A. Molegraaf, J. Zaanen, Z. Nussinov, F. Car-
bone, A. Damascelli, H. Eisaki, M. Greven, P. H. Kes, and M. Li.
Quantum critical behaviour in a high-Tc superconductor. Nature,
425(6955):271–274, 2003.

[21] A. El Azrak, R. Nahoum, N. Bontemps, M. Guilloux-Viry, C. Thivet,
A. Perrin, S. Labdi, Z. Z. Li, and H. Raffy. Infrared properties
of YBa2Cu3O7 and Bi2Sr2Can−1CunO2n+4 thin films. Phys. Rev. B,
49:9846–9856, Apr 1994.

[22] J Hwang, T Timusk, and G D Gu. Doping dependent optical prop-
erties of Bi2Sr2CaCu2O8+δ. Journal of Physics: Condensed Matter,
19(12):125208, 2007.

[23] Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Feild, S. H. Blanton,
U. Welp, G. W. Crabtree, Y. Fang, and J. Z. Liu. Superconducting en-
ergy gap and normal-state conductivity of a single-domain YBa2Cu3O7

crystal. Phys. Rev. Lett., 65:801–804, Aug 1990.

[24] P. W. Anderson. Infrared conductivity of cuprate metals: Detailed fit
using Luttinger-liquid theory. Phys. Rev. B, 55:11785–11788, May 1997.

[25] Masao Ogata and P. W. Anderson. Transport properties in the
Tomonaga-Luttinger liquid. Phys. Rev. Lett., 70:3087–3090, May 1993.

79



[26] Elihu Abrahams and C. M. Varma. What angle-resolved photoemis-
sion experiments tell about the microscopic theory for high-temperature
superconductors. Proceedings of the National Academy of Sciences,
97(11):5714–5716, 2000.

[27] S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, and S. Tajima.
Optical spectra of La2 − xSrxCuO4: Effect of carrier doping on the
electronic structure of the CuO2 plane. Phys. Rev. B, 43(10):7942–7954,
Apr 1991.

[28] Y. S. Lee, Kouji Segawa, Z. Q. Li, W. J. Padilla, M. Dumm, S. V.
Dordevic, C. C. Homes, Yoichi Ando, and D. N. Basov. Electrodynamics
of the nodal metal state in weakly doped high-Tc cuprates. Physical
Review B (Condensed Matter and Materials Physics), (5):054529–13.

[29] Philip Phillips. Colloquium : Identifying the propagating charge modes
in doped Mott insulators. Rev. Mod. Phys., 82:1719–1742, May 2010.

[30] A. Donos and J. P. Gauntlett. Holographic Q-lattices. Journal of High
Energy Physics, 4:40, April 2014.

[31] M. Rangamani, M. Rozali, and D. Smyth. Spatial Modulation and
Conductivities in Effective Holographic Theories. ArXiv e-prints, May
2015.

[32] Sidney Coleman. Q-balls. Nuclear Physics B, 262(2):263 – 283, 1985.

[33] Brandon W. Langley, Garrett Vanacore, and Philip W. Phillips. Absence
of power-law mid-infrared conductivity in gravitational crystals. Journal
of High Energy Physics, 2015(10):163, Oct 2015.

[34] Aristomenis Donos and Jerome P. Gauntlett. Thermoelectric dc con-
ductivities from black hole horizons. Journal of High Energy Physics,
2014(11):81, Nov 2014.

[35] Aristomenis Donos and JeromeP. Gauntlett. The thermoelectric prop-
erties of inhomogeneous holographic lattices. Journal of High Energy
Physics, 2015(1), 2015.

[36] William Witczak-Krempa and Subir Sachdev. Quasinormal modes of
quantum criticality. Phys. Rev. B, 86:235115, Dec 2012.

[37] Edward Witten. SL(2,Z) action on three-dimensional conformal field
theories with Abelian symmetry. pages 1173–1200, 2003.

[38] K. Limtragool and P. Phillips. Power-law Optical Conductivity in the
Cuprates from Unparticle Stuff. ArXiv e-prints, June 2015.

80
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