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ABSTRACT

Energy efficiency has been a first order constraint in the design of micro processors for the

last decade. As Moore’s law sunsets, new technologies are being actively explored to extend

the march in increasing the computational power and efficiency. It is essential for computer

architects to understand the opportunities and challenges in utilizing the upcoming process

technology trends in order to design the most efficient processors. In this work, we consider

three process technology trends and propose core designs that are best suited for each of the

technologies. The process technologies are expected to be viable over a span of timelines.

We first consider the most popular method currently available to improve the energy ef-

ficiency, i.e. by lowering the operating voltage. We make key observations regarding the

limiting factors in scaling down the operating voltage for general purpose high performance

processors. Later, we propose our novel core design, ScalCore, one that can work in high

performance mode at nominal Vdd, and in a very energy-efficient mode at low Vdd. The re-

sulting core design can operate at much lower voltages providing higher parallel performance

while consuming lower energy.

While lowering Vdd improves the energy efficiency, CMOS devices are fundamentally lim-

ited in their low voltage operation. Therefore, we next consider an upcoming device technol-

ogy – Tunneling Field-Effect Transistors (TFETs), that is expected to supplement CMOS

device technology in the near future. TFETs can attain much higher energy efficiency than

CMOS at low voltages. However, their performance saturates at high voltages and, there-

fore, cannot entirely replace CMOS when high performance is needed. Ideally, we desire a

core that is as energy-efficient as TFET and provides as much performance as CMOS. To

reach this goal, we characterize the TFET device behavior for core design and judiciously

integrate TFET units, CMOS units in a single core. The resulting core, called HetCore, can

provide very high energy efficiency while limiting the slowdown when compared to a CMOS

core.

Finally, we analyze Monolithic 3D (M3D) integration technology that is widely considered

to be the only way to integrate more transistors on a chip. We present the first analysis

of the architectural implications of using M3D for core design and show how to partition

the core across different layers. We also address one of the key challenges in realizing the

technology, namely, the top layer performance degradation. We propose a critical path based

partitioning for logic stages and asymmetric bit/port partitioning for storage stages. The

result is a core that performs nearly as well as a core without any top layer slowdown. When

ii



compared to a 2D baseline design, an M3D core not only provides much higher performance,

it also reduces the energy consumption at the same time.

In summary, this thesis addresses one of the fundamental challenges in computer architec-

ture – overcoming the fact that CMOS is not scaling anymore. As we increase the computing

power on a single chip, our ability to power the entire chip keeps decreasing. This thesis

proposes three solutions aimed at solving this problem over different timelines. Across all

our solutions, we improve energy efficiency without compromising the performance of the

core. As a result, we are able to operate twice as many cores with in the same power budget

as regular cores, significantly alleviating the problem of dark silicon.
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CHAPTER 1: INTRODUCTION

In pursuit of higher performance, computer architects have embraced multi-core designs

to work around the power wall that halted the rapid progress in increasing single core

frequency. Additional transistors available on a chip at smaller process technology nodes

are now employed to increase the number of cores on a single chip. This proved to be a

good alternative that could provide higher performance at the same operating frequency, for

applications that are inherently parallel. However, the number of cores that can run at their

highest operating frequency in a large many-core chip is limited by the amount of heat that

can be dissipated by the chip. Therefore, only a limited subset of cores can be operated

at a time, resulting in dark silicon [7]. Researchers have been exploring several approaches

to utilize the additional transistors available on newer process technologies without running

into the problem of dark silicon.

One of the widely considered solutions to this problem involves operating the processor

cores at a lower voltage and frequency. As a result, the power consumption of each core is

reduced and more cores can be turned on within the same power budget. Such a design is

also advantageous, as the energy efficiency is higher at lower voltages, i.e. energy consumed

per operation is lower at lower voltages. In particular, it is well known that a near-threshold

voltage operation provides the highest energy efficiency [8]. However, at these low voltages,

the single threaded performance is poor. As applications tend to have alternating serial and

parallel code sections, ideally, we need a design that not only operates all the cores available

during a parallel section by running them in the most energy efficient manner, but also

provides high performance during a critical serial section when only few cores are active.

In the first part of my thesis, I present the design of such a core called ScalCore. ScalCore

operates in two modes – a high-performance mode and an energy-efficient mode, based on

the requirements of application.

While lowering the operating voltage of silicon CMOS devices provides higher energy ef-

ficiency, it is still limited by the fact that CMOS is an intrinsically-poor switch [9]. CMOS

devices need a relatively large change in voltage to go from on-to-off state and vice-versa.

As the supply voltage and the corresponding threshold voltage is lowered beyond a point,

the leakage power soars, negating the energy savings. Therefore, researchers are actively

developing new devices that can turn-off transistor sharply with a small decrease in volt-

age and vice-versa. Among the various new devices being explored, Tunneling Field-Effect

Transistors (TFETs) are one of the most promising, thanks to manufacturing feasibility and

ability to integrate with the current FinFET CMOS devices [1, 10, 11, 12]. While TFETs
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operate efficiently at very low voltage, they do not scale well with increasing voltage. Their

performance saturates beyond a certain voltage. Hence, they cannot replace CMOS transis-

tors when high performance is needed. Ideally, we desire a core that is as energy-efficient

as a TFET core and provides as much performance as a CMOS core. In the next part of

my thesis, I present the design of such a core that judiciously integrates CMOS units and

TFET units with in the same core effectively creating a hetero-device core, called HetCore.

Finally, as the transistor scaling inevitably slows down, it is increasingly apparent that

the only way to put more transistors on a single chip is by building vertical transistors and

eventually a Monolithic3D (M3D) chip [13, 14]. Traditionally, 3D integration consisted of

stacking two or more pre-fabricated dies on top of each other using Through Silicon Vias

(TSV) [15, 16]. A Monolithic3D chip, however, is manufactured by sequentially fabricating

different layers of devices on top of one another [17, 18]. M3D technology can provide ultra

high-density 3D integration and very high-bandwidth communication across layers. It has a

significant advantage over TSV 3D stacking in several key metrics such as the area overheads,

wire length reductions and thermal characteristics. As Monolithic3D becomes mature, there

is a need to understand processor design with this technology. In the final part of my

thesis, we analyze the architecture implications of using Monolithic3D, and present the

microarchitecture design for a core that uses this technology. We then present architecture

solutions to an important limitation of Monolithic3D – degraded transistor performance in

the top layer due to manufacturing challenges. Together, we present a core design that

overcomes the challenges posed by the Monolithic3D manufacturing technology and exploits

the opportunities provided by the Monolithic3D integration.

1.1 SUMMARY OF THE WORK

In this thesis, we present the design of energy efficient cores that are optimized for the

upcoming process technology trends. We begin by considering process technologies that

are currently available and then proceed to the the ones that are expected to be viable in

the medium to long term. The first work involves the design of a core that can operate

efficiently at low voltage as well as at high voltage. It focuses on the short-term trends and

is feasible with the current process technologies. In the next part, we present a core that

judiciously integrates the conventional CMOS and the futuristic TFET units. This work

takes advantage of the TFET devices which are expected to be commercially available in

a few years. Finally, we present the design of a core in Monolithic3D technology that is

expected to succeed the current FinFET based 2D design over a slightly longer timeline. We

also provide a detailed analysis of the challenges, opportunities and tradeoffs involved in the
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design of such a core. Overall, our work improves the energy efficiency of cores by taking

advantage of the upcoming process technology trends.

1.2 CHALLENGES AND OUR CONTRIBUTIONS

The design of a processor inherently involves trade offs between several elements such as

performance and energy efficiency. Often, the most energy efficient designs don’t provide

the best performance and vice-versa. This holds true even with newer device technologies

such as TFETs. We present below, a brief of summary of such challenges and the novel

techniques we proposed to overcome them.

1.2.1 ScalCore: Designing a Core for Voltage Scalability

Ideally, we want a core that can flexibly work in high-performance mode (HPMode) at

nominal Vdd, and in a very energy-efficient mode (EEMode) at low Vdd — a voltage lower than

that can be attained with DVFS alone. This is tricky because there is a fundamental design

trade-off for a core: A core designed for nominal Vdd cannot operate at very low voltages

as storage cells become failure-prone. Alternatively, if it is designed to operate at very low

Vdd, the resulting circuit overheads will cause it to consume higher power than needed at

nominal Vdd — which in turn may trigger performance throttling at nominal Vdd.

We make two observations to address this problem. First, we note that the logic and the

storage structures in a pipeline scale differently when we lower Vdd. Second, at these low

voltages a small increase in Vdd results in a large increase in frequency. Based on these two

observations, we first propose to supply two voltages to the core pipeline, one to the logic

stages and a higher one to storage-intensive stages. Next, ScalCore further increases the low

Vdd of the storage-intensive stages, so that they are substantially faster than the logic ones.

Then, it exploits the speed differential by either fusing storage-intensive pipeline stages or

increasing the size of storage structures in the pipeline. The result is a design which, in

EEMode, is much more energy-efficient as well as faster than the one with conventional

cores (using DVFS) while retaining the same performance in HPMode. In the EEMode, we

can operate twice as many cores as a conventional design and therefore mitigate the problem

of dark silicon.
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1.2.2 Hetero-Device Architecture for CPUs and GPUs

As we mentioned earlier, while TFETs operate very efficiently at low voltages, they do

not scale well with voltage and their performance saturates quickly. Therefore, they cannot

replace CMOS devices completely. Ideally, we desire a core that is as energy-efficient as a

TFET core and provides as much performance as a CMOS core.

To attain this goal, we first perform a thorough analysis of the architectural implications

of using TFETs in a core. Based on our analysis, we formulate a set of guidelines to identify

units that are suitable for replacement by TFETs in a CMOS core. Specifically, an ideal

unit to replace with TFETs has the following traits: (i) consumes high power, (ii) amenable

to pipelining and/or latency insensitive and (iii) use sizeable area. The CMOS and TFET

units in our design are powered at different voltages that are optimal for the respective

device technology. We further improve the design by adapting a few micro-architecture

optimizations, that are made possible by the presence of slower TFET units. The resulting

design, called HetCore, is much more energy efficient than only a CMOS-only core with

a small impact on performance. We also show that, in an environment with a fixed power

budget, our design can employ twice as many cores as CMOS-only design and provide better

performance as well as energy efficiency.

1.2.3 Designing Vertical Processors in Monolithic3D

Monolithic 3D integration offers several new capabilities at a circuit level over a conven-

tional 2D chip or a TSV-based 3D stacked chip. In addition to increasing the transistor

density of a chip, M3D has a few key advantages. First, the two layers are extremely close

(less than 1µm) and have lower wire length/delay/power in comparison to a 2D or a TSV3D

design. Next, the density of interconnection across the layers is very high. Finally, it has

good vertical thermal conduction. However, the current M3D manufacturing technology

has an important limitation, the layers in the stack beyond the bottom most one have a

relatively lower performance.

In this work, we show how to partition a processor for M3D taking into account that the

top layer has lower-performance transistors. We design a vertical processor by taking logic,

storage, and mixed logic-storage pipeline stages, and partition each of them into two layers.

For logic structures, we place the critical paths in the bottom layer and the non-critical ones

in the top one. For multiported storage structures, we asymmetrically partition the ports,

assigning to the top layer fewer ports with larger access transistors. For single-ported storage

structures, we asymmetrically partition the bitcell array, assigning to the top layer a shorter
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subarray with larger bitcells. Even with very conservative assumptions on M3D technology,

we show that the M3D core executes applications faster than a 2D core, while consuming

less energy. Further, under a similar power budget, an M3D multicore can operate twice as

many cores as one with 2D cores.

1.3 LONG TERM IMPACT

One of the fundamental challenges in computer architecture is overcoming the fact that

CMOS is not scaling anymore. As the computing power on a single die keeps increasing, the

ability to power the entire chip keeps decreasing due to the problem of dark silicon. The

computing community needs to find a solution to this problem.

One of the ways to address this is by utilizing near-threshold voltage computing. However,

the performance of such designs is low. Our work, ScalCore [19], addresses this issue directly

by providing an energy-efficient mode and a high-performance mode. In the energy-efficient

mode, we can enlist as many cores as required by the application. When the application does

not need many cores, we can then switch to the high-performance mode. Thus we provide

the best of the both worlds: we avoid the problem of dark silicon and still provide very high

performance as needed.

ScalCore also provides a fast transition between modes, requiring only a pipeline flush

and a voltage change (similar to DVFS). It avoids the numerous overheads associated with

thread migration between heterogeneous cores (like in big–little). As a result, the decision

of switching between the energy-efficient and high-performance modes can be made at a

fine granularity and whenever it is necessary. The overall ScalCore approach is general and

applicable to a wide range of core designs. It provides higher energy efficiency at low voltage

without impacting performance at nominal voltage. In addition, it enables fast transition

between energy-efficient and high-performance modes based on the application needs.

A second way to address the problem of dark silicon is by utilizing Beyond-CMOS devices

with better characteristics than the CMOS. While there is no consensus on the type of

devices that will be used, TFET is one of the leading candidates. TFET consumes about

8X less power than CMOS, is around 2X slower than CMOS, and can be integrated in the

same chip as CMOS. Our work, HetCore [20], provides for the first time, an architectural

solution that combines TFET and CMOS in the same core.

The HetCore approach is general and can be applied to any of the Beyond-CMOS technolo-

gies with similar properties. The approach that we propose is not specific to TFET devices.

If a different device type is found to be more practical, we can apply our techniques—as long

as the new device can be integrated with CMOS at pipeline-stage granularity. Our analysis
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of the architectural implications provides comprehensive guidelines on how to treat such new

devices, and come up with the most efficient micro-architecture.

The HetCore approach is also widely applicable to different types of compute engines —

with the main focus on power constrained and throughput-oriented environments. In our

work we show it applies very well to GPUs. Similarly, it applies well to accelerators. For

example, TFETs can be used in systolic arrays with matrix multiplication units to accelerate

deep learning applications. The systolic arrays can be implemented in TFETs without much

impact on the overall throughput, while significantly reducing the energy consumption.

Finally, we consider Monolithic3D technology that is broadly considered to be the only way

to continue increasing the transistor integration beyond the traditional 2D scaling. As the

technology becomes feasible, it is essential for architects to understand the opportunities and

challenges of building processors vertically with this technology. While M3D technology has

numerous advantages such as short wire lengths, good thermal properties and high density

integration, it has a key limitation in the form of degraded performance of top layers.

Our work is the first one to partition a core in M3D technology and present the corre-

sponding tradeoffs in different structures. This is also the first work to address the imbalance

in the performance of different layers of silicon, by proposing critical path aware partitioning

schemes for both logic and storage structures.

Finally, in all our proposed designs, it is possible to operate twice as many cores within

the same power budget as a conventional design, mitigating the problem of dark silicon.

In addition, our work uses off-the-shelf software. The program, compiler, or runtime does

not need to change at all. This is in contrast to most solutions based on accelerators or

heterogeneous architectures. This makes the work highly portable across different platforms.

Overall, our work improves the energy efficiency significantly without compromising the

performance.

1.4 THESIS ORGANIZATION

This thesis is organized as follows. Chapter 2 describes the design of a core that operates

very energy efficiently at low voltage, without compromising the performance at nominal

voltage. Based on the insight that the storage and logic structures scale differently with

voltage, our design supplies two separate voltages within the core and further reconfigures

the pipeline to exploit the speed differential for better performance and energy efficiency.

Chapter 3 presents the design of a core that mixes CMOS and TFET units within the core

pipeline. We describe the principles to decide whether a unit should be placed in CMOS

or TFET. Later, we discuss a few microarchitectural techniques to offset any imbalance
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created in the pipeline. In Chapter 4, we analyze the Monolithic3D integration technology

and its implications on core design. We address an important constraint in the current M3D

manufacturing technology and present the partition of the core into different layers that

overcomes the limitation. In Chapter 5, we qualitatively compare our work to the prior

work. Finally, Chapter 6 presents the summary of our work in conclusion.
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CHAPTER 2: SCALCORE: DESIGNING A CORE FOR VOLTAGE
SCALABILITY

2.1 INTRODUCTION

Upcoming trends call for flexible processors. Users will continue to demand higher energy

efficiency from computing devices in all domains, even as workloads become more dynamic.

For example, sometimes all the cores in a large manycore can contribute to the application,

but we can avoid dark silicon only if they all run in a most energy-efficient manner. At other

times, only a few cores are active, executing a critical or serial section, and we want them

to deliver high performance at any energy cost.

For homogeneous chips, some of this flexibility is currently attained with DVFS [21, 22].

A core operates at high voltage (Vdd) and frequency (f) when it needs to deliver high per-

formance, and at low Vdd and f when it needs to run energy-efficiently. However, the effec-

tiveness of DVFS is limited. Typically, its lowest Vdd is still “high” compared to the most

energy-efficient regime.

It is well-known that the most energy-efficient operating point occurs at ultralow Vdds [8].

However, this is a challenging environment, where circuits are affected by process variations.

In particular, storage cells become failure-prone, since the Vdd is close to their minimum

voltage for correct operation (Vmin) [23, 24]. Intel has recently prototyped the experimental

Claremont core [25, 26], which aggressively works all the way down to 0.28V.

The goal of this work is to design a core for Voltage Scalability, meaning that it can

flexibly work in high-performance mode (HPMode) at nominal Vdd, and in a very energy-

efficient mode (EEMode) at low Vdd — a Vdd lower than can be attained with DVFS but

not as low as Claremont’s challenging levels. This is tricky because there is a fundamental

design trade-off for a core: if it is designed to operate at very low Vdd, the resulting circuit

overheads will cause it to consume higher power than needed at nominal Vdd — which in

turn may trigger performance throttling at nominal Vdd. This is unacceptable, since we want

our core to be competitive with the state of the art at nominal Vdd.

To address this problem, we make two observations. First, we note that the logic and the

storage structures in a pipeline scale differently with lower Vdd [27]. If both share Vdd and f

then, at low Vdd, the storage structures force the logic to work less energy-efficiently than it

could. If, instead, storage cells are designed for low Vmin, they have to use larger or more

transistors, which consume additional power when operating at nominal Vdd. Hence, we

propose to supply two different low Vdds to the pipeline in EEMode: logic-intensive pipeline

stages are powered at a lower Vdd (Vlogic), while storage-intensive stages like those accessing
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registers and load/store queues are powered at a higher Vdd.

Secondly, at these low Vdd levels, tiny Vdd increases enable big f gains. Therefore, given

that storage structures consume little dynamic energy, we propose to set the low Vdd of

the storage-intensive stages in EEMode (Vop) to a value that is higher than we would need

if we only took into account Vmin. The result is storage structures that are substantially

faster than logic ones. We propose to exploit this speed differential by either fusing storage-

intensive pipeline stages or increasing the size of storage structures in the pipeline. Both

changes increase IPC and reduce total energy. The result of our proposals is a Voltage-

Scalable core, or ScalCore.

We describe the pipeline modifications to fuse stages and to increase storage structure

sizes. The resulting pipeline is kept relatively simple as it has a single f, and operates very

energy-efficiently in EEMode. In HPMode, we disable the dual Vdds, fused stages, and larger

structures, recreating a plain out-of-order core optimized for high performance.

We use simulations of 16 cores to show that a design with ScalCores in EEMode is much

more energy-efficient than one with conventional cores and aggressive DVFS: for approxi-

mately the same power, ScalCores reduce the average execution time of programs by 31%,

the energy (E) consumed by 48%, and the ED product by 60%. In addition, dynamically

switching between EEMode and HPMode based on program phases is very effective: it re-

duces the average execution time and ED product by a further 28% and 15%, respectively,

over running in EEMode all the time.

The main contributions of this work are:

• The design of a voltage-scalable core based on our two observations

• Pipeline changes to exploit the faster storage

• Evaluation of ScalCore and comparison to aggressive DVFS.

2.2 MOTIVATION

2.2.1 The Need for Voltage Scalability

In this work, we consider a high-performance, power constrained large manycore of the

future, e.g. targeting cloud servers and high-performance computing. In such environments,

users will continue to demand increasing energy efficiency while, at the same time, requiring

different execution modes. Sometimes, a program will be highly parallel. In this case, we

will attain highest performance by enlisting all the cores in the manycore — as long as they
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run very energy-efficiently to avoid dark silicon. At other times, only a few cores will be able

to run, as they execute mostly-serial sections. In this case, they will run with the highest

performance, taking all the power budget of the chip.

Currently, there are two main approaches to address this conundrum: heterogeneity and

DVFS. With heterogeneity, the chip contains some cores designed for energy efficiency and

some for high performance. In the example above, the former would be used in the parallel

section, while the latter in the mostly-serial one. The unused cores are power gated. An

example of this approach is ARM’s big.LITTLE [28].

While this approach is useful, it is suboptimal. First, the partition between the two types

of cores in the chip is fixed, and may not be the best one for a given application. Second,

there is always a fraction of the chip area that is unused — in a big-little pair, either the

area of the big core or that of the little one (which can be ≈30% of the big core’s area [29]).

Finally, changing regimes involves migrating state, which has a performance overhead —

e.g., ≈20µs [30].

DVFS [21, 22] uses cores of a single type and changes their Vdd and f values (and active

core count) depending of the regime. However, this approach is also suboptimal. First,

logic and storage structures scale differently with Vdd [27]. Hence, either at the high-Vdd or

low-Vdd end, either the logic or the storage structures function suboptimally. Note that this

is not fully solved by providing one Vdd domain for the core and one for the caches: the core

pipeline still has both logic and storage structures. The second reason for suboptimality is

that the lowest Vdd with DVFS is still “high” compared to the most energy-efficient regime.

Such regime is at significantly-lower Vdds [31, 23, 32]. In this regime, Intel has prototyped

the Claremont processor, which supports Vdd scaling all the way to 0.28V [25, 26]. Core and

caches are in two different Vdd domains. However, a core designed to operate at such ultralow

Vdd needs to employ various circuit-level techniques that increase the area and, when the

core operates at nominal Vdd, induce higher energy consumption.

This work goes deeper into the general DVFS approach. Our goal is to design a core

that scales Vdd to values lower than conventional DVFS — but not as low as Claremont,

to minimize design complexity, area cost, and power overhead at nominal Vdd. Such power

overhead is unacceptable because it may trigger performance throttling, and makes the core

non-competitive in HPMode. Note that our goal is not to compare the heterogeneity and

DVFS approaches. Comparing our design to a heterogeneous one is outside our scope.
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2.2.2 Logic and Storage Structures in the Pipeline

A pipeline contains multiple storage structures, such as the register file, load/store queue,

or ROB. In general, these structures are built with static cells, which become failure-prone

as the Vdd goes below a value called Vmin [23, 24]. There is a fundamental tradeoff between

Vmin and cell size: if we want a lower Vmin, we need a cell with more transistors, with larger

transistors, or FinFETs with more fins [33]. Hence, memory cells designed for lower Vmin

consume higher power and energy when operating at nominal Vdd.

This problem worsens for the storage structures used in the pipeline because they are

heavily multi-ported. In this case, more transistors are connected to the cross-coupled

inverters that form the core of the storage cell. The resulting higher loading effect on

the cross-coupled inverters makes the cell more sensitive to process variations [34, 8, 35].

Consequently, we need to increase the cell size, which increases its consumption at nominal

Vdd.

Since our goal is to keep the processor competitive at high Vdd operation, this is an

unacceptable tradeoff. For example, Zhao et al. [35] show that going from a 1-fin 8T cell

to a 2-fin 8T cell increases the leakage current by ≈20%. Moreover, our Spice simulations

show that increasing the number of fins from 1 to 2 causes the 8T cell to consume 21%

more power at nominal Vdd. This is shown in Figure 2.1, which plots the energy of 1-fin 8T

and 2-fin 8T cells for different Vdds normalized to 1-fin 8T at the nominal Vdd of 0.9V. The

figure corresponds to 22nm and an activity factor of 1. Overall, since we want the storage

cells in the pipeline storage structures to be competitive at high Vdd, we propose to use

finFET-based cells with a single fin.

As we lower the Vdd, both logic and storage structures in the pipeline become slower.

However, logic and storage structures scale differently [27]. This is shown in Figure 2.2, which

we generate with Spice simulations of 22nm technology. The figure shows the increase in

delay for a chain of FO4 inverters (LogicDelay) and for an 8T register-file bank (SRAMDelay)

as Vdd decreases. The delay is the same and normalized to 1 at nominal Vdd. This plot

includes the effect of random dopant fluctuation based on ITRS [14]. We see that storage

structures become relatively slower. This is in line with the observation made by [36].

In related work, Dreslinski et al. [37] characterized the energy consumption of cores and

caches at near-threshold voltage, and found that the energy-optimal Vdd for caches makes

them 2-4x faster than the cores. We go beyond and exploit the different behavior of logic

and storage structures within the pipeline.
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Figure 2.1: Effect of the number of fins in the FinFETs of the 8T cell on energy consumption
for different Vdds.

2.3 SCALCORE CONCEPT

2.3.1 Main Ideas

Our goal is to design a core for Voltage Scalability, which means that it can flexibly work

in a high-performance mode (HPMode) at nominal Vdd, and in a very energy-efficient mode

(EEMode) at low Vdd. The low Vdd is the lowest that can be sustained by the logic structures

in the pipeline (but not the storage ones) before their performance becomes substantially

degraded — and without requiring changes to basic circuit structures, or changes to tran-

sistor size or doping that can hurt the operation at nominal Vdd. To attain our goal, we rely

on three ideas: (i) provide separate low Vdds in the pipeline for logic and storage structures,

(ii) further increase the low Vdd for the storage structures, and (iii) leverage the higher speed

of the storage structures in the pipeline.

Two Low Vdds in Pipeline: Logic & Storage Designing storage cells to work at very

low Vdd results in power inefficiency at nominal Vdd. Hence, we propose to modify the core

to feed two Vdds to the pipeline in EEMode: (1) logic structures are powered at a very low

Vdd that still enables them to perform acceptably (Vlogic); and (2) storage structures such as

the register file and load/store queue are connected to a Vdd that is higher than Vlogic (and at

least as high as their Vmin). With this design, the core operates with high energy-efficiency.
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Figure 2.2: Increase in delay for logic and storage structures in the pipeline as we decrease
Vdd.

Moreover, when we do not want to operate in EEMode, we apply a higher, equal Vdd level

to both logic and storage structures.

To determine the Vdds, we proceed as follows. We take a four-issue out-of-order core (more

details in Section 2.7) and use McPAT’s [38] high-performance process at 22nm to determine

its fnom at the nominal Vdd of 0.9V. Such fnom is≈3.5GHz. Starting from this point, we use our

Spice simulations of Figure 2.2 to generate the Vdd-f scalability curves for logic and storage

structures. We then adjust these curves with the effects of systematic process variations,

using VARIUS [39] with the systematic variation values of EnergySmart [40]. The resulting

Vdd-f curves are shown in Figure 2.3.

To pick Vlogic, we observe that the logic delay curve in Figure 2.2 has a knee at Vdd ≈0.5V.

Going below such value results in increasingly slower structures, which would cause the

program to run substantially slower and consume substantially more leakage energy. This

observation is consistent with the data in Kaul et al. [8]. Hence, in Figure 2.3, we set

Vlogic=0.5V, which corresponds to flogic ≈600MHz.

To find the Vmin of the storage structures, we argue that upcoming storage cells are likely

to be aggressively designed for energy efficiency, and hence for low Vmin. For example,

Intel has attained SRAMs with Vmin=0.6V in 22nm [41] and 14nm [42]. Hence, we set

Vmin=0.60V, which in Figure 2.3 corresponds to fmin ≈900MHz. This operating point

{Vdd=0.60V, f=900MHz} is the lowest point that we assume can be reached with conventional
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Figure 2.3: Vdd-f curves for logic and storage structures.

DVFS with a single Vdd domain for the whole pipeline. While the Vdd looks aggressively low

by today’s standards, we think it is plausible, given the need for energy efficiency in upcoming

designs.

Further Increase Vdd for the Storage Structures We can improve the energy efficiency

of the EEMode if we consider the following traits of the EEMode regime:

• While the storage structures need a higher Vdd than the logic ones for safe operation

(Vmin > Vlogic), the storage structures at Vmin can in fact operate faster than the logic

structures at Vlogic [27, 43]. This is seen in Figure 2.3.

• At this range of Vdds, a small increase in Vdd provides a significant boost to the operating

frequency f.

• For storage structures at these low Vdds, the dominant component of power consump-

tion is leakage.

These observations suggest that, in EEMode, a small further increase in the Vdd of the

storage structures can make them significantly faster, while consuming only a little more
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Figure 2.4: Pipeline of an out-of-order processor with the main storage structures.

power. A higher Vdd increases the dynamic power comparatively more than the static power.

However, since the dynamic power of storage structures in EEMode is small, the overall power

will increase little.

Hence, we propose ScalCore as a core where, in EEMode, the Vdd of the storage structures

is set to a voltage Vop that is higher than Vmin. Specifically, we set Vop > Vmin such that

storage structures can operate at 2x the f of the logic structures (which use Vlogic). This is

shown in Figure 2.3, where Vop ≈0.65V and fop ≈1200MHz.

By setting the storage structures to Vop rather than Vmin, we will improve the IPC of the

cores. The resulting lower execution time of the applications in turn reduces the leakage

energy — not only of the cores, but also of the caches. This reduction more than compensates

the small increase in dynamic energy in the storage structures induced by going from Vmin

to Vop.

Leverage the Higher Speed of Storage Finally, we exploit that storage structures are

faster than logic ones in ScalCore’s EEMode in one of two ways:

• Without changing the core’s f, we fuse two consecutive pipeline stages that are dom-

inated by storage structures into one. This reduces pipeline depth and improves the

IPC.

• Without changing the core’s f, we enable more entries in critical storage structures in

the pipeline, consuming some of the available time slack. This increases the exploitable

15



instruction-level parallelism (ILP) and memory-level parallelism (MLP), and improves

the IPC.

In either case, in EEMode, all the stages of the ScalCore pipeline cycle at the same f.

This keeps the pipeline relatively simple. Outside EEMode, we disable the fusing of pipeline

stages and the larger storage structures, and use a single Vdd. The core becomes a plain

out-of-order core optimized for high performance. It can use conventional DVFS (with a

single Vdd in the pipeline) to vary its operating point.

Overall, ScalCore can flexibly deliver high performance in HPMode and high energy effi-

ciency in EEMode. However, we need to carefully select which pipeline stages to fuse and

which structures to resize , so that energy-efficiency is maximized. In addition, supporting

this fusing and reconfiguration in EEMode should not hurt the performance in HPMode.

The remainder of this section and the next addresses these two issues.

2.3.2 Analysis of Pipeline Stages

We analyze the pipeline stages that have storage structures to identify opportunities to

improve EEMode operation. At low Vdd, Dreslinski et al. [37] showed that operating the L1

caches at a higher Vdd than the core delivers energy efficiency. This same approach was used

in Claremont [25, 26]. Hence, all of our low-Vdd designs (including the baseline) operate the

L1 caches at Vop by default. With ScalCore, we go beyond and use two Vdd domains in the

pipeline.

Figure 2.4 shows the pipeline of an out-of-order processor and identifies the main storage

structures. They are the register file, allocation structures, load/store unit (LSU), ROB, and

branch predictor. We now analyze each of these structures for possible enhancements when

we operate them at Vop. The enhancements can consist of either fusing stages or increasing

the size of structures. The implementation details are discussed later in Section 2.4.

Register File The critical path of a register file access in a pipelined design consists of

two steps. In the first step, the operands are read from the data array into a buffer; in the

second step, they are delivered to the execution units. This process takes at least two cycles

in a typical high-frequency design [44]. By operating at Vop in EEMode, we can enhance the

register file in one of two ways: either reducing its access latency in cycles or increasing its

size.

In the first case, we operate the two steps of a register file access at twice the speed, and

fuse them into a single cycle. In the second case, we increase the size of the physical register

file without changing the two cycles of access time.
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Allocation Structures The allocation step primarily involves register renaming and in-

struction dispatch. A detailed analysis of the critical path in renaming is performed by

Palacharla et al. [45]. The authors found that the critical path in rename consists of reading

the current mappings of the source registers in the Register Alias Table (RAT), followed

by updating the mappings of the destination registers in the RAT. The dependence check

among the registers currently being renamed is not in the critical path, and is implemented

using low-power transistors, which reduces the dynamic power. Also, the design of the RAT

is similar to the register file. Hence, we operate the rename unit at Vop in EEMode.

The rename delay in an out-of-order core is proportional to the core’s width. In a very

wide core, the rename operation may take more than one cycle. However, for a core width

of four like ours, renaming in a baseline design can be completed in a single cycle. Hence,

in ScalCore, we can combine the rename and dispatch stages and fuse them into one cycle

operating at Vop. Since the dynamic power consumption of the dispatch unit is low [46],

the increase in Vdd to Vop has only a small effect. We do not change the size of the rename

unit because we find that it does not have a critical resource whose size can be increased to

improve performance.

Load/Store Unit (LSU) At a high level, the LSU consists of two stages, each taking

one cycle. The first stage performs address generation, and the second one memory dis-

ambiguation. Also, in parallel to the disambiguation, store instructions write values to the

store buffer. The load/store queue in the LSU contains in-flight memory instructions and

maintains the ordering between instructions.

Since the LSU takes two cycles and also has a resource (load/store queue) whose size can

be increased, as we operate the LSU at Vop, we can do one of two things: either we fuse

the two stages to reduce the latency to one cycle, or we increase the load/store queue size.

When we fuse the two stages, stores write to the store buffer in half of a cycle. When we

increase the load/store queue size, we also increase the store buffer size. Note that increasing

the size of the load/store queue requires extra care, since it uses CAM structures to perform

memory disambiguation (Section 2.4.1).

ROB We consider a merged register file-based renaming scheme as described in [44]. The

ROB only acts as a completion table, keeping track of the in-flight instructions. The entries

in the ROB are reserved on instruction dispatch and are freed on commit. The commit

process in HPMode takes only one cycle. Hence, there is no obvious opportunity to reduce

the latency in EEMode. However, we modify the size of the ROB in EEmode to enable more

in-flight instructions. This allows us to exploit more ILP or MLP, based on the application.
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The dynamic power of the ROB itself is low [46]. Hence the increase of the Vdd to Vop

causes a modest increase in dynamic energy.

Branch Predictor Branch prediction in modern processors consists of a fast BTB to

provide prediction in a single cycle, which is backed-up with a more complex and accurate

branch predictor with a longer latency. In our baseline design, we have a tournament pre-

dictor with a total size of 48K entries and a BTB of 2K entries. Although the BTB is

structurally similar to a register file or cache, there is no obvious opportunity to further

reduce its latency. While it is possible to take advantage of the faster operation at Vop by

using a fancier branch prediction, it is out of our scope. Also, by simply increasing structure

sizes, the expected improvement in IPC is small, considering the high baseline size [47, 48].

Hence, we do not optimize the branch predictor.

2.3.3 Summary

Based on the above analysis, Table 2.1 lists the pipeline structures that can be enhanced

by ScalCore in EEMode, and the enhancement options. Note that a given structure cannot

both run faster and be bigger at the same time. Outside EEMode, all structures are operated

at the same Vdd, and at their baseline speed and size.

Table 2.1: Enhancements considered for different structures.

Structure Faster Bigger

Register File X X
Allocation Struc. X 7

Load Store Unit X X
ROB 7 X

Branch Pred. 7 7

2.4 SCALCORE DESIGN

To support the enhancements in Table 2.1, ScalCore requires some changes over conven-

tional processors. We classify them into microarchitectural changes in the datapath and

controlpath, and circuit changes. We consider each in turn.

2.4.1 Datapath Microarchitectural Changes
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Figure 2.5: Datapath changes in ScalCore: Fusing pipeline stages using a flow-through latch.
The shaded components are disabled.

Reduction in Latency Fusing two consecutive pipeline stages in EEMode is accomplished

by transforming the latch that sits in between them into a transparent (or flow-through)

latch [49, 50]. This is done by ORing the clock to the latch with an Enable Flow-through

signal. When the signal is set to logic one, the latch is transparent.

The logic design is shown in Figure 2.5. In HPMode (upper chart), Stages 2a and 2b take

one cycle each, and operate at nominal voltage (Vnom) like the other stages. The Enable

Flow-through bit in the OR gate is set to logic zero. This causes the latch to be controlled

by the clock.

In EEMode (lower chart), Stages 2a and 2b are fused together to execute in a single cycle.

The Enable Flow-through bit is set to logic one, which makes the latch transparent. In

addition, Stages 2a and 2b operate at Vop, which is higher than the Vlogic used in Stages 1

and 3.

This OR gate is added to the latches connecting the pairs of stages to be fused: (i) the

two stages of a register file access, (ii) rename and dispatch, and (iii) the two stages in the

LSU. Designs based on flip-flops can be modified in a similar manner, by providing a bypass

path that is enabled in EEMode.

Bigger Structures The size of a storage structure in ScalCore is increased by enabling an

additional array with transmission gates. This general approach was proposed by Buyukto-

sunoglu et al. [51] for issue queues. By toggling the input to the transmission gates, we can
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Figure 2.6: Datapath changes in ScalCore: Increasing the size with transmission gates. The
shaded components are disabled.

easily enable or disable the new array. Figure 2.6 shows an example of a structure with an

original array (Array 0), and an additional one (Array 1) connected with transmission gates.

In HPMode (left chart), the transmission gates disable Array 1, while Array 0 operates at

Vnom. In EEMode (right chart), the transmission gates enable Array 1. Both arrays are

active and run at Vop.

With this design, the register file, load/store queue, store buffer, and ROB can use more

entries in EEMode than in HPMode. CACTI analysis [52] shows that, at the higher Vop, we

could increase the structure sizes substantially and still meet the cycle time. However, very

large structures incur area and leakage overheads, and are hard to use cost-effectively. As

we will see, a possible design is to increase the size of these structures by 50% in EEMode.

We make special arrangements for the load/store queue, since it uses CAM structures

to perform memory disambiguation. Specifically, to reduce complexity, ScalCore uses a

segmented load/store queue [53] with two segments. In HPMode, only one segment is active

and the other is power gated. Hence, the delay and power in HPMode are not impacted.

In EEMode, both segments are active and are sequentially searched on a request. Since the

segments operate at Vop, both segments are searched in a single cycle.

In EEMode, the dynamic power of the load/store queue increases only for the searches

that overflow into the second segment. Also, techniques like low-swing, selective precharge

of search line/matchline reduce the dynamic power of CAM by more than 50%, with no
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delay impact over a conventional design [54]. By using such techniques, the dynamic power

component becomes small even in the baseline. Hence, the increase in load/store queue size

causes only a small increase in the dynamic energy.

2.4.2 Controlpath Microarchitectural Changes

Reduction in Latency Reducing the latency of some operations has an impact on the

scheduling of various tasks in the pipeline. So, we need to modify the control logic responsible

for those tasks. Specifically, in EEMode, by reducing the register file read latency (which

includes the source drive of operands) from two to one cycle, the execution units receive

operands in one cycle, and hence can begin execution one cycle earlier. In addition, as the

execution finishes a cycle earlier, the dependent instructions can be woken up and scheduled

earlier. Hence, the execution schedule time and the generation of the wakeup signal need

to be updated based on the mode of operation. Similarly, to enable the speculative issue of

load-dependent instructions, the issue logic should be updated with the new latency of the

LSU.

Reducing the latency of the allocation operation does not have an obvious direct impact

on the scheduling of tasks. The process of renaming and dispatching instructions in order

can proceed in the same manner in both modes.

Therefore, the only controlpath modifications required are to ensure that the part of the

issue-queue state machine responsible for generating ready signals accurately reflects the

mode of operation. The issue queue already contains functionality to generate the wakeup

signal at different times based on the latency of the functional unit (e.g., ADD vs. DIV) [44].

Hence, by modifying the counters used for this process, we ensure correct scheduling in both

HPMode and EEMode.

Bigger Structures The availability of a bigger resource should be conveyed to its corre-

sponding resource manager to enable its usage. In EEMode, the sizes of the register file,

load/store queue, store buffer, and ROB are higher. To benefit from the bigger physical

register file, the list of free registers in the rename unit must be updated. The list of free

registers is typically maintained as a circular buffer with head and tail pointers, which can

be resized based on the mode of operation.

The dispatch unit is responsible for checking various execution resources and stall in case

of unavailability. It maintains counters for the availability of each resource. To indicate

the sizes of the current ROB, load/store queue, and store buffer, we just need to update

these counters based on the mode of operation. Overall, therefore, the changes required in
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the controlpath for bigger structures involve reconfiguring the counters in the rename and

dispatch stages.

Table 2.2 summarizes the microarchitectural changes in the datapath and controlpath to

enable our enhancements.

Table 2.2: Microarchitectural changes in ScalCore.

Component Reduced Latency Bigger Size

Datapath Gated clocks for transparent
latches

Transmission gates to resize
structures

Controlpath Programmable counters for
latency

Programmable counters for
size

2.4.3 Circuit Changes

The circuit changes involve supporting dual voltage rails and level converters.

Dual Voltage Rails In ScalCore, each pipeline stage is connected to one of two Vdd rails,

as shown in Figure 2.7. All the storage-intensive stages are connected to one rail. They are

the two stages of register file access, the rename stage, the dispatch stage, the two stages

of LSU access, and the commit stage. The other stages are connected to the other rail.

Each rail is set to the required Vdd level, based on the mode of operation. In EEMode, the

storage-intensive stages receive Vop, while the rest receive Vlogic; outside EEMode, both rails

supply the same voltage.
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Figure 2.7: ScalCore pipeline with dual voltage rails.

These storage-intensive stages share the Vdd domain with the L1 caches which, as indicated

in Section 2.3.2, also operate at Vop in EEMode. As a result, there is no need to add any
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additional voltage regulator in ScalCore over the baseline design. Note that the L1 caches

are laid out together with the pipeline in current designs.

Level Converters All the stages in ScalCore always operate at a common f. This simplifies

the design by avoiding multiple clock trees and synchronization overhead across stages.

However, consecutive pipeline stages may operate at different Vdd levels in EEMode. Hence,

a level converter is required on the boundary between a stage at Vlogic and one at Vop, to

provide full swing input to the higher Vop domain. Note that the difference in Vdd levels is

only 150mV.

Level converters can be designed as part of the latches or flip-flops that separate the

stages (Figure 2.7). The design of a level converter is shown in Figure 2.8. It is based

on [55], where pulsed half-latch level converting flip-flops are shown to be efficient, both in

area and in energy-delay, compared to asynchronous level conversion in a dual-Vdd system.

Vlogic 

Vop 

d q (inv) 

ck 

ck 
clk 

Figure 2.8: Level converter for up-conversion.

2.5 IMPLEMENTATION CONSIDERATIONS

This section considers three implementation issues: the transition between modes, a sum-

mary of ScalCore overheads, and a comparison to Intel Claremont.

2.5.1 Transition Between Modes

In highly-parallel sections, all the cores in a large manycore are powered-on and run in

EEMode. In sections with little parallelism, only a few cores are powered-on and run in

HPMode, using all the power budget of the chip. While in HPMode, ScalCore can also use

DVFS.
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ScalCore provides a simple way to reconfigure the pipeline between the two modes. First,

pipeline reconfiguration can only occur when the pipeline is empty. Consequently, recon-

figuration requires a pipeline flush. Such a flush can take a variable number of cycles —

e.g., depending on whether there are pending writes in the store buffer (pending reads are

squashed). However, the average flush is not likely to take more than several tens of cycles.

Second, we need to change the f and Vdd of the core. Specifically, from a common Vdd in all

stages in HPMode, we transition to Vop for the storage-intensive stages and Vlogic for the

others in EEMode (or vice-versa). This transition uses conventional DVFS mechanisms. Its

overhead is likely to be modest in the future, as increasing DVFS speed is an active area

of research and development. In our evaluation, we set this overhead of changing f and Vdd

between modes to 1 µs. Note that pipeline stages do not switch Vdd rails; ScalCore merely

changes the rails’ voltage.

Overall, the overhead of transitioning from EEMode to HPMode and vice-versa is small.

The reconfiguration can be triggered either in hardware by the power management unit, or

in software by the operating system or program.

2.5.2 Summary of ScalCore Overheads

Table 2.3 summarizes the ScalCore overheads and their impact on HPMode. The first

issue is dual Vdd rails. Their main overheads are the additional area they take and the need

to customize their layout/routing, since automatic tools may not be able to handle them.

One implementation of dual rails [56] estimates the area cost to be ≈5% of the core.

Table 2.3: Summary of ScalCore overheads.

Issue Type of Overhead Impact on HPMode

Dual Vdd rails 1) Custom layout and routing. 2) Area increase ≈5% area [56]

Level converters 1) Carefully manage clock skew/timing. 2) Add
gates in critical path

≈5% delay [55]

Fusing Pipeline
Stages

1) OR gate added to the clock signal for each
latch connecting fused stages. 2) Control logic
for counters for latency

Tiny area and power

Increasing Array
Sizes

1) Additional array. 2) Transmission gates to
enable/disable additional array. 3) Segmented
ld/st queue. 4) Control logic for counters for
size

Area of power-gated ar-
ray. Tiny power and de-
lay [51]

The second issue is level converters. They require carefully managing the clock skew and

timing across domains. Moreover, they add a few gates to the pipeline stage. Based on
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Ishihara et al.’s [55] work, we estimate a delay impact in HPMode of ≈5%. The additional

area and power of the level converters is negligible [55].

The third issue is fusing pipeline stages. It requires an OR gate added to the clock signal for

each latch connecting fused stages, and control logic for counters for latency (Section 2.4.2).

In HPMode, it adds a tiny area and power overhead but no delay in the critical path.

A fourth issue is increasing array sizes. It requires an additional array, transmission

gates to enable/disable the additional array, a segmented load/store queue, and control

logic for counters for size (Section 2.4.2). In HPMode, the additional array is power gated,

but takes up area. The additional logic introduces only tiny power and delay overheads.

Buyuktosunoglu et al. [51] show that the transmission gate delays are negligible. Their

design is more involved than ours in that they get multiple, dynamically variable latencies,

which require careful synchronization with the rest of the pipeline. In our case, we only have

two configurations, and the large one has ample timing slack. Similarly, Park et al.’s [53]

segmented load/store queue is more involved because disambiguation can take a variable

number of cycles, while ours always takes one cycle.

Finally, ScalCore introduces design complexity and verification costs, which are hard to

quantify.

2.5.3 Comparison to Intel Claremont

Table 2.4 compares Intel’s Claremont prototype [25, 26] to ScalCore. A main difference

is that Claremont targets a very wide Vdd operating range (1.2V to 280mV) while ScalCore

targets a more modest range (0.9V to 0.5V). As a result, Claremont uses more aggressive

techniques, including manually prioritizing the placement of logic paths that have a high

Table 2.4: Comparing Intel Claremont to ScalCore.

Trait Claremont ScalCore

Vdd range Very wide: 1.2V to 280mV Wide: 0.9V to 0.5V

Focus Circuit techniques: Architectural techniques:
1) Variation aware pruning &
beefing-up of cells.

1) Separate Vdd for memory inten-
sive pipe stages.

2) Circuits optimized for reliability
at ultralow Vdd

2) Fuse pipeline stages. 3) Increase
array sizes

Vdd domains 1 for the pipeline + 1 for the L1 1 for the memory intensive pipe
stages and L1 + 1 for the other pipe
stages
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percentage of interconnect, or using two level-converters in series to bring the voltage to

high Vdd.

Another difference is that Claremont’s focus in on circuit techniques, while ScalCore’s

is on architectural techniques. Claremont includes variation-aware selective pruning and

beefing-up of the standard cell library, and circuits optimized for reliability at ultralow Vdd

— e.g., avoiding wide transmission-gate multiplexers and circuits with high transistor stacks.

The result of needing to reach an ultralow Vdd is device area bloat.

ScalCore focuses on architectural techniques such as a separate Vdd for memory-intensive

pipeline stages, fusing pipeline stages, and increasing array sizes.

Although the number of Vdd domains in both designs is the same, they are organized

differently. Claremont has one domain for the pipeline and one for the L1; ScalCore has one

for the memory-intensive pipeline stages plus the L1, and one for the rest of the pipeline

stages.

2.6 IMPLICATIONS ON APPLICATIONS

The performance of a core is dependent on various factors, including the frequency,

cache/memory latency, pipeline depth, and pipeline structures. In ScaleCore, we modify

the pipeline depth and sizes of structures in EEMode. We now qualitatively discuss the

impact of these modifications on application performance. We will discuss the detailed

evaluation results later in Section 2.8.

2.6.1 Pipeline Stage Fusion

In EEMode, ScalCore can perform register access, rename-dispatch, and LSU handling

in one cycle each, rather than in two cycles each. In total, the pipeline depth reduces by

three cycles for load/store instructions and by two cycles for others. This reduction has a

few implications, as noted by Tullsen et al. [57]. First, it reduces the branch misprediction

penalty by 2 cycles. Second, it results in fewer instructions from the mispredicted path in

the pipeline, which saves energy and resources. Third, registers are now held for a shorter

duration, reducing the contention for physical registers during renaming. Finally, reducing

the LSU latency also helps the optimistic issue of load-dependent instructions that assume

a cache hit.

Overall, these effects result in an increase in the average IPC for a broad range of appli-

cation types — especially for integer applications, which have more branches.
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2.6.2 Bigger Structures

Increasing the sizes of the register file, load/store queue (LSQ), store buffer, and ROB

enables an out-of-order core to extract more ILP/MLP and, therefore, boost performance.

Traditionally, increasing LSQ size to exploit higher MLP results in additional pipeline stages,

hurting the IPC. In ScalCore, by operating the LSQ at Vop, we are able to increase the size

and still keep the number of stages constant.

These changes improve the IPC for most applications, especially those that stress the cur-

rent structures — e.g., memory intensive codes constrained by LSQ size, or FP applications

with sizable ILP.

2.7 EVALUATION METHODOLOGY

To evaluate ScalCore, we use the SESC architectural simulator [58], modeling up to 16

4-issue out-of-order cores. We use McPAT for detailed energy calculation [38]. For a more

accurate evaluation of dynamic and leakage energies, we model the L1 and L2 caches with

CACTI [52]. Table 2.5 shows the parameters of the simulated architecture.

Table 2.5: Parameters of the simulated architecture for the evaluation of ScalCore.

Parameter Value

Architecture Up to 16 4-issue out-of-order cores at 22nm
Register file; ROB 128 regs; 128 entries
Issue queue 48 entries
Ld queue; St queue 48 entries; 32 entries

Branch prediction Tournament predictor: bimodal (16K entry), gshare (16K entry) and
selector (16K); 32-entry RAS; 4-way 2K-entry BTB

Functional units:
2 integer ALU 4-cycle Mult/Div, 1-cycle for rest
2 LSU 2 cycles
2 FPU 1-cycle Add, 4-cycle Mult, 12-cycle Div

Private I-Cache 64KB; 2way; 64B line; Round-trip (RT): 2cycles (HPMode) or 1cycle
(EEMode or any low-Vdd design)

Private D-Cache 64KB; 4way; writeback (WB); 64B line; RT: 2cycles (HPMode) or 1cycle
(EEMode or any low-Vdd design)

Shared L2 Per core: 1MB; 8way; WB; 64B line; RT to local bank: 8cycles (HP-
Mode) or 6cycles (EEmode or low-Vdd design)

DRAM latency RT: 50ns

Network 2D mesh with MESI directory-based protocol

EEMode-HPMode Pipeline flush + 1µs (for Vdd and f change)
change overhead
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Table 2.6 shows the f and Vdd for HPMode and EEMode. They were justified in Sec-

tion 2.3.1. We have penalized the f of our HPMode by 5%, due to the delay overhead of

ScalCore in Table 2.3. Note that the cache latencies in cycles in Table 2.5 are higher in

HPMode than in EEMode (and all of the low-Vdd designs that we will analyze). This is

because the core’s f is different. Finally, in EEMode and all of the low-Vdd designs, caches

operate at the higher Vop=0.65V to improve efficiency, as suggested in [37].

Table 2.6: HPMode and EEMode design points.

HPMode Vdd=Vnom=0.9V; f=3.3GHz /* 5% penalty as per Table 2.3 */

EEMode Vlogic=0.50V for logic and Vop=0.65V for storage; f=0.6GHz

2.7.1 Design Configurations

We evaluate several configurations operating at low Vdd, as shown in Table 2.7. First,

DVFS+ is the most energy-efficient voltage-frequency setting that we assume an aggressive

DVFS can reach. It operates the whole pipeline at Vdd=Vmin=0.6V, and f=0.9GHz. In

addition, the caches operate at the more energy efficient Vop=0.65V (like all the other designs

in the table) — hence, the suffix “+”. This is the Vdd domain arrangement of Dreslinski et

al. [37] and Claremont [25, 26], although the actual Vdd levels are different.

Table 2.7: Configurations explored in low Vdd.

Config. Parameters

DVFS+ Whole pipeline at Vdd=Vmin=0.60V; f=0.9GHz. /* Uses the Vdd domain
arrangement of Dreslinski et al. [37] and Claremont [25, 26] */

Pipe2Vdd Pipe logic at Vlogic=0.50V and pipe storage at Vdd=Vmin=0.60V;
f=0.6GHz. /* Storage not fast enough to exploit the speed difference */

SC: Pipe logic at Vlogic=0.50V and pipe storage at Vdd= Vop=0.65V;
f=0.6GHz. /*ScalCore EEMode variations*/

SCsp1 Reg = 1 cycle latency
SCsp2 Reg, alloc, LSU = 1 cycle latency
SCsz Reg, LSQ, store buff, ROB = 1.5x size
SCmx Reg, alloc = 1 cycle lat; LSQ, store buff, ROB = 1.5x size

Pipe2Vdd adds a dual Vdd domain in the pipeline: it sets Vlogic=0.50V for the logic stages,

and Vdd=Vmin=0.60V for the storage stages. However, storage is not fast enough to exploit

the speed difference with logic. f is 0.6GHz.
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Next, SC creates ScalCore by keeping Vlogic=0.50V for the logic stages but increasing

Vdd=Vop =0.65V for the storage stages. f remains at 0.6GHz. We have four variations with

different hardware support. First, SCsp1 and SCsp2 (for speed) reduce latencies by fusing

pipeline stages. Specifically, SCsp1 fuses the two stages in the register file access into one.

SCsp2 augments SCsp1 by also fusing the two stages in the allocation and the two in the

LSU into one each.

SCsz (for size) keeps the pipeline unchanged but increases the sizes of the register file,

LSQ, store buffer, and ROB. We have evaluated different amounts of size increases. For

brevity, we present data for only one size, which delivers one of the best tradeoffs between

energy and performance. The design is for 1.5x structure sizes. It can be shown that other

sizes are less cost-effective or only marginally more cost-effective.

SCmx (for mixed) combines fusing stages and increasing structure sizes. Specifically, it

fuses the two stages in the register file access into one, and the two in the allocation into

one. It sets the sizes of the LSQ, store buffer, and ROB to 1.5x their original sizes. Note we

can only increase either the speed or the size of a given unit at a time.

All of these low-Vdd designs have the same low cache latencies in cycles as ScalCore’s

EEMode. The values were shown in Table 2.5.

At Vnom, we evaluate HPMode (our ScalCore) and HPRef (state-of-the art, like HPMode

but without the 5% f penalty).

2.7.2 Applications & Metrics

We evaluate the architectures with a variety of parallel applications. From SPLASH-

2, we use Barnes (16K particles), Cholesky(tk29.O), FFT(220), FMM(16K), LU(512x512),

Radiosity(batch), and Radix(2M keys). From PARSEC, we use Blackscholes (sim medium),

Fluidanimate (sim small), and Streamcluster (sim small). From NAS, we use BT, LU, and

SP (all W size). We run each application to completion.

Our metrics are execution time, energy consumption (E), and energy-delay product (ED).

In our evaluation, we start by comparing the different ScalCore EEMode configurations to

HPRef, DVFS+, and Pipe2Vdd. We do it in an environment with a fixed power, and one

with no power constraints. In both cases, we run the SPLASH-2 and PARSEC codes and do

not change configurations dynamically. Then, we consider the environment with the fixed

power again, and allow changing the configurations dynamically. In this case, we run the

NAS codes. In each NAS code, we prevent the parallelization of some parts so that the serial

section takes ≈30% of the total execution time.
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2.8 EVALUATION

2.8.1 Environment with a Fixed Power

We compare the different ScalCore EEMode configurations, HPRef, DVFS+, and Pipe2Vdd

for a fixed amount of power. To do this, we note that the power consumption of a single

HPRef core and its caches is ≈12W. Then, each of the other configurations can have as

many cores as needed to get to ≈12W. Figure 2.9 shows, for each configuration, the power

consumed and the number of cores that can execute. From the figure we see that, for our

applications, for the power of one HPRef core (1-HPRef), we can run one HPMode core

(1-HPMode), or eight DVFS+ cores (8-DVFS+), or 16 Pipe2Vdd cores (16-Pipe2Vdd), or

16 cores under the various ScalCore EEMode configurations (16-SC* ).
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Figure 2.9: Configurations for a fixed power.

We now take these designs and compare their execution time, total E, and ED product

running the applications. Figure 2.10 shows, for each design, the execution time of each

application and the average. In each application, the bars are normalized to 16-Pipe2Vdd.

We consider first the different ScalCore designs. We see that all of its variants reduce

the execution time over 16-Pipe2Vdd. The gains come from the increase in the Vdd of the

storage structures in the pipeline, and the resulting pipeline reconfiguration. Most of the

applications show higher gains due to a reduction in the latency (16-SCsp1 and 16-SCsp2 )

than due to an increase in the size of the structures (16-SCsz ). This is because applications

typically exhibit sensitivity to branch misprediction penalty and load-to-use delay, both of

which are reduced in the 16-SCsp* designs. However, for these applications, the additional

changes going from 16-SCsp1 to 16-SCsp2 have minimal impact, as they are hidden by other

effects such as pipelining and inter-thread synchronization. In addition, applications that
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Figure 2.10: Execution time of different designs with the same power, normalized to 16-
Pipe2Vdd.

exhibit higher levels of MLP/ILP can also take advantage of bigger structures (16-SCsz ).

Overall, 16-SCmx performs the best, as it provides a latency reduction of 2 cycles for all

instructions, and also bigger structures for applications that can benefit from them.

Looking at the aggressive DVFS (8-DVFS+), we see that, despite having a frequency

advantage, it performs much worse than 16-SCmx. This is due to its lower number of cores.

The high performance designs (1-HPRef and 1-HPMode) perform even worse, and they are

practically identical.

Overall, for our programs, which try to represent the load in large manycores, 16-SCmx

reduces the execution time by an average of 31% relative to 8-DVFS+, and by 15% relative

to 16-Pipe2Vdd. These are substantial reductions.
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Figure 2.11: Energy consumption of different designs with the same power, normalized to
16-Pipe2Vdd.

Figure 2.11 shows the energy consumed by all the designs. The figure is organized as the

previous one, except that the bars are broken down into the contributions of core, L1, and

L2. Since this experiment is done at approximately constant power, the bars in Figure 2.11
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Figure 2.12: Energy-delay product of different designs with the same power normalized to
16-Pipe2Vdd.

roughly follow those of Figure 2.10. From the figure, we also see that, going from Pipe2Vdd

to SC*, there are good savings in L2 energy. This is mostly leakage eliminated by finishing

the application earlier — even though the storage structures in the pipeline use a higher Vdd

in SC*.

Overall, the best design (16-SCmx ) reduces the energy consumption by an average of 48%

relative to 8-DVFS+, and by 13% relative to 16-Pipe2Vdd.

Finally, we consider the ED product. Figure 2.12 shows the ED product for all the

designs. We see that most of the ScalCore EEMode designs provide substantial ED product

reductions. 16-SCmx reduces the ED product by an average of 60% relative to 8-DVFS+.

We can see that not even this aggressive DVFS level can get close to the efficiencies delivered

by ScalCore. Moreover, 16-SCmx reduces the ED product by an average of 23% relative

to 16-Pipe2Vdd. Note that 16-Pipe2Vdd is already very energy efficient, with its separation

of voltage rails for pipeline logic and storage structures. These results provide a strong

motivation for ScalCore.

2.8.2 Environment without Power Constraints

We now repeat the previous experiments without imposing any power constraint. All the

configurations run with 16 cores and, as a result, the power consumption is very different.

Figure 2.13 shows the execution time organized like in Figure 2.10. The names of the designs

do not include the core count anymore. Note that, in the figure, DVFS+ and, especially,

HPRef and HPMode are faster than SC*. Also, Figure 2.14 shows the resulting ED products

of the different designs. Thanks to the faster execution of HPRef and HPMode, their ED is

now substantially lower than SCmx. However, the ED of DVFS+ is still higher than SCmx.
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Figure 2.13: Execution time of different designs with 16 cores normalized to Pipe2Vdd.
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Figure 2.14: Energy-delay product of different designs with 16 cores normalized to Pipe2Vdd.

Unfortunately, these execution time improvements of HPRef, HPMode, and DVFS+ come

at a staggering power cost. Indeed, extrapolating from Figure 2.9, we can see that each

HPRef and HPMode core consumes ≈16x the power of a SCmx core. In addition, a DVFS+

core consumes over 2x the power of a SCmx core. Consequently, in practice, this much

power may not be available in the chip, and some of the cores under HPRef, HPMode, and

DVFS+ may be powered down, becoming dark silicon. In fact, HPRef and HPMode cores

are most effective when executing mostly-serial codes, where a few cores can use all the chip

power budget. This motivates the next section.

2.8.3 Dynamically Changing Configurations

To deliver the most energy-efficient execution, ScalCore can dynamically reconfigure —

e.g., between its energy efficient SCmx EEMode and its HPMode. Hence, in this section,

we impose the same power limit as in Section 2.8.1, but allow ScalCore to dynamically

reconfigure between the SCmx EEMode and HPMode. Recall that HPMode is penalized

with a 5% f reduction relative to HPRef. At any point, any unused cores are power gated.

We call the design Dyn-SC.

We run the NAS applications, where an application executes a series of parallel loops and
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serial sections. We instrument the applications, so that ScalCore transitions to 16 SCmx

cores before entering a loop, and transitions to one HPMode core after finishing the loop.

This setup models support for program hints that directly invoke the power management

unit. The analysis of more advanced interfaces to trigger the reconfiguration is beyond our

scope.

We compare Dyn-SC to the best reconfigurable design that uses conventional processors.

Such design dynamically switches between one HPRef core outside loops (a very high per-

formance core without any f penalty) and 8 DVFS+ cores in the loops (a very aggressive

DVFS that sets Vdd to 0.6V). We call this design Dyn-HPRef/8-DVFS+. Such design is free

of any ScalCore modifications.

As a reference, we also compare to three other designs. One is a single HPRef core all the

time (1-HPRef ). A second one is 16 SCmx cores all the time (16-SCmx ). The third one is

a reconfigurable environment that transitions between one HPMode core outside loops and

16 Pipe2Vdd cores in the loops (Dyn-HPMode/16-Pipe2Vdd). This is a design that includes

some of the ideas of ScalCore, but not all. Specifically, it includes two Vdd domains in the

pipeline and, hence, level converters. However, it does not include ScalCore’s pipeline stage

fusing or storage structure resizing.

Figure 2.15 shows the execution time, energy consumed, and ED product for the five

designs. For each metric, the bars correspond to the average of the three NAS applications

and are normalized to 16-SCmx.
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Figure 2.15: Dynamically reconfiguring ScalCore.

Dyn-SC provides the lowest execution time and the lowest ED product. It does not

deliver the lowest energy because it runs a high-performance core during the serial sections.

Instead, 16-SCmx consumes less energy; however, it is slower. Compared to 16-SCmx, Dyn-
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SC reduces the execution time and the ED by 28% and 15%, respectively, at the cost of 19%

more energy. This is a very favorable tradeoff.

Dyn-SC is much better than Dyn-HPRef/8-DVFS+ and substantially better than Dyn-

HPMode/16-Pipe2Vdd. The comparison of Dyn-SC to Dyn-HPMode/16-Pipe2Vdd shows

the impact of ScalCore’s pipeline stage fusing and storage structure resizing, over simply

having two Vdd domains in the pipeline. We can see that Dyn-SC reduces the execution

time, energy, and ED of Dyn-HPMode/16-Pipe2Vdd by 14%, 10%, and 21%, respectively.

Hence, both contributions of the ScalCore design, namely dual Vdd domains in the pipeline,

and the resulting pipeline stage fusing and structure resizing, are beneficial.

The transition overhead between modes in Dyn-SC is negligible because of the relatively

low frequency of transitions. Specifically, Dyn-SC performs 6-32 transitions in 130-700 mil-

lion cycles. Overall, ScalCore with dynamic reconfiguration is a very attractive design for

applications that change phases.

2.9 SUMMARY

The goal of this project was to design a voltage scalable core — namely, one that can

work in high-performance mode (HPMode) at nominal Vdd, and in a very energy-efficient

mode (EEMode) at low Vdd. We call this core ScalCore. ScalCore introduces two ideas

to operate energy-efficiently in EEMode. First, it applies two low Vdds to the pipeline:

one to the logic stages (Vlogic) and a higher one to the storage-intensive stages. Second,

it increases the low Vdd of the storage-intensive stages (Vop) even further and exploits the

speed differential to the logic ones by either fusing storage-intensive stages or increasing

the size of storage structures in the pipeline. Simulations of 16 cores show that a design

with ScalCores in EEMode is much more energy-efficient than one with conventional cores

and aggressive DVFS: for approximately the same power consumption, ScalCores reduce

the average execution time of programs by 31%, the energy consumed by 48%, and the ED

product by 60%. In addition, dynamically switching between EEMode and HPMode is very

effective: it reduces the average execution time and ED product by an additional 28% and

15%, respectively, over running in EEMode all the time.
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CHAPTER 3: HETCORE: TFET-CMOS HETERO-DEVICE
ARCHITECTURE FOR CPUS AND GPUS

3.1 INTRODUCTION

In pursuit of higher energy efficiency, researchers try to lower the operating voltage of

CMOS transistors, as we discussed in Chapter 2. Unfortunately, CMOS is, intrinsically, a

poor switch [9]. If one reduces the threshold voltage as the supply voltage goes down, leakage

power soars, negating the energy savings.

In this work we explore Steep Slope (SS) devices, which are a class of devices that are

much better switches [9]. They can turn-off a transistor hard with a small decrease in

the voltage applied. This makes these devices attractive when operated at low voltage:

they both consume low dynamic energy while working, and leak little. Among the various

SS devices being explored, Tunneling Field-Effect Transistors (TFETs) [6] are one of the

most promising [1], thanks to manufacturing feasibility and ability to integrate with current

FinFET CMOS devices.

While TFETs operate efficiently at low voltage, they do not scale well with increasing

voltage. Their performance saturates beyond a certain voltage. Hence, they cannot replace

CMOS transistors when high performance is needed. Instead, the best course to execute

workloads with both high performance and high energy efficiency may be to combine CMOS

and TFET transistors.

CMOS and TFET devices can be integrated in the same chip [10, 11, 59, 60]. Circuits with

a combination of CMOS and TFET transistors have been used to build SRAM cells [61, 12],

voltage reference circuits [62], level converters [63], multiplexers [64], 32-bit adders [64],

power management circuits [65], analog circuits [66], and benchmark circuits [67].

Integration at such fine granularity provides an opportunity for system designers to explore

novel architectures. Prior work has proposed a heterogeneous multicore with some CMOS

cores and some TFET cores [68, 69, 70]. The authors migrate threads across the cores to

attain most efficient executions. This is an exciting approach, although it is limited in that

a given core delivers either high performance or energy efficiency, but not both.

In this work, our goal is to go one step further and design a core that, ideally, is as energy-

efficient as a TFET core, and provides as much performance as a CMOS core. For this, we

judiciously integrate both TFET units and CMOS units in the same core, effectively creating

a hetero-device core. We call it HetCore, and present CPU and GPU versions.

At their optimal operating voltage levels, TFET structures switch at half the speed of

CMOS ones, but consume about 8x lower power. This high-level tradeoff provides guidance
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to select the TFET and CMOS units. TFETs should be used in units that consume high

power under CMOS, are amenable to pipelining or are not very latency sensitive, and use

enough area to amortize the additional design effort.

HetCore powers CMOS and TFET units at different voltage levels, so they operate at

optimal conditions. However, all units are clocked at the same frequency. To make this

feasible, HetCore reduces the work done by each TFET pipeline stage, effectively giving to

a TFET unit more pipeline stages than an equivalent CMOS unit would have.

In this work, we start by proposing a simple HetCore design called BaseHet. While

BaseHet reduces energy consumption substantially, it is slow. Hence, we improve it by

adapting a few known micro-architecture optimizations, enabled by the presence of the

TFET units. The result is the better-tuned AdvHet design.

The alternative of simply using high-Vt CMOS transistors in the units that are candidates

for TFET implementation is not as good a design. The reason is that high-Vt CMOS tran-

sistors consume higher dynamic energy and leak more than TFET transistors. In addition,

applying the HetCore micro-architecture optimizations to a CMOS core is of little benefit.

The reason is that such core is already highly tuned without the optimizations.

Overall, the contributions of this work are:

• The concept of a hetero-device TFET-CMOS core architecture for high performance

and energy efficiency (HetCore).

• The design of the AdvHet core for CPUs and GPUs, which judiciously integrates

CMOS and TFET units, and customizes known micro-architecture optimizations.

• An evaluation of BaseHet and AdvHet.

In the following sections, we first provide a background on TFETs and then analyze

the TFET devices from an architectural perspective. Later we discuss the BaseHetand

AdvHetdesigns, followed by an evaluation of the designs proposed.

3.2 BACKGROUND

3.2.1 Tunneling Field-Effect Transistors (TFETs)

To improve energy efficiency substantially, we need devices that can operate at low voltage

(Vdd), and that can switch between ON and OFF conditions with little Vdd changes. Ideally,
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the ON and OFF currents of a device should be separated by four orders of magnitude. Con-

ventional CMOS transistors are inherently limited to needing 60mV to increase the current

tenfold — i.e., they need at least a change of 240mV to go from OFF to ON conditions.

The class of devices that have a slope higher than 60mV per decade are called Steep sub-

threshold Slope (SS) devices. Among the various SS devices being explored, Tunneling Field-

Effect Transistors (TFETs) are one of the most promising [9, 2, 1, 6]. They consume low

power and have a steep slope. Moreover, they are the closest to being realized industrially,

thanks to their manufacturability and ability to integrate with current FinFET-based CMOS

devices.

TFETs’ steep slope is the result of electron flow being facilitated through a band-to-

band tunneling process, as opposed to through a transport channel like in MOSFETs. The

materials used in TFETs range from the usual Group IV elements like Si and Ge, to Group

III-V materials like InAs, GaSb, InGaAs, and AlGaSb [9]. Various TFET devices have been

proposed over the last decade that have successively improved their characteristics.

TFETs are typically classified into HomoJunction TFET (HomJTFET) and HeteroJunc-

tion TFET (HetJTFET), based on the materials used for source and drain. A HomJTFET

uses the same materials for the source and the drain. However, the ON current is low and,

hence, this device exhibits low performance. A HetJTFET uses a different material for the

source and the drain — e.g., GaSb for source and InAs for drain. The materials are chosen

to allow for a higher ON current and an extremely low OFF current.

Figure 3.1 compares the I-V characteristics of a HetJTFET and a MOSFET transistor. As

we can see, HetJTFET has a higher slope than MOSFET. HetJTFET performs better than

MOSFET at low Vdd, but stops scaling beyond ≈0.6V, when the curve saturates. For higher

Vdd, MOSFET performs better. As a result, HetJTFET cannot be used as a replacement of

MOSFET for high-performance designs.

3.2.2 CMOS-TFET Integration

The structure of HomJTFET is very similar to that of a CMOS FinFET. Hence, it is

possible to manufacture both of them using the same fabrication process with minor changes.

For example, Huang et al. [71] have recently fabricated Complementary HomJTFET (C-

TFET) devices in a standard CMOS foundry, showcasing the readiness for high-volume

production and, from an architect’s perspective, the feasibility of a hybrid CMOS-TFET

system.

There has also been extensive work on fabricating HetJTFET on standard CMOS foundries.

For example, InAs-Si HetJTFETs have been fabricated on a silicon substrate [59, 60]. The
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Figure 3.1: ID-VG characteristics of N-HetJTFET and N-MOSFET based on data from Intel
[6].

compatibility of CMOS and TFET process flows has been shown by a number of groups,

both through simulation and through fabrication [10, 11, 62, 72]. Recently, mixed MOSFET-

HetJTFET SRAM cells and corresponding design layout rules to integrate them at device

level have been proposed [12, 61]. Moreover, circuits with a combination of CMOS and

HetJTFET transistors have been used to build level converters [63], multiplexers [64], 32-bit

adders [64], power management circuits [65], and analog circuits [66]. There is also substan-

tial ongoing research on improving HetJTFET performance and building complementary

devices [73, 74, 75, 76].

3.2.3 System Architectures with CMOS and TFET

Integration at such fine granularity provides an opportunity for system designers to ex-

plore system architectures with CMOS and TFET. Past work has proposed a heterogeneous

multicore with some CMOS cores and some TFET cores [68, 69, 70]. A core provides either

high performance or energy efficiency, but not both at the same time. The authors propose

various techniques to manage the migration of threads across the different types of cores. In

our work, we go beyond in that we judiciously integrate both TFET units and CMOS units
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Table 3.1: Characteristics of CMOS and TFET technologies at 15nm, using data from [1, 2].

Parameter Si-CMOS HetJTFET InAs-CMOS HomJTFET

Supply voltage (V) 0.73 0.40 0.30 0.20
Transistor switching delay (ps) 0.41 0.79 3.80 6.68

Performance Interconnect delay per transistor length (ps) 0.18 0.42 2.50 3.60
32bit ALU delay (ps) 939 1881 9327 15990
Transistor switching energy (aJ) 32.71 7.86 3.62 1.96

Energy Interconnect energy per transistor length (aJ) 10.08 3.03 1.70 0.76
32bit ALU dynamic energy (fJ) 170.1 43.4 20.5 10.8

Power 32bit ALU leakage power (uW ) 90.2 0.30 0.14 1.44
ALU power density (W/cm2) 50.4 5.1 0.6 0.2

in the same core, effectively creating hetero-device CPUs and GPUs.

3.3 ARCHITECTURE IMPLICATIONS

CMOS remains the choice for high-performance systems, while operating at high Vdd.

However, at low Vdd, the performance and energy efficiency of TFET far exceed those of

CMOS. To aid in the analysis, Table 3.1 compares the performance, energy, and power of four

types of devices at 15nm: Silicon CMOS (Si-CMOS), HetJTFET, HomJTFET, and InAs-

CMOS. The latter is a futuristic MOSFET built out of InAs (a Group III-V material) that

can operate at low Vdd. InAs-CMOS would use the same approach as TFET to integrate with

Si-CMOS. In HomJTFET, the source and drain use InAs, while in HetJTFET, they use GaSb

and InAs, respectively. The table compares each device at its most cost-effective Vdd: 0.73V

for Si-CMOS, 0.40V for HetJTFET, 0.30V for InAs-CMOS, and 0.20V for HomJTFET.

The data is obtained from Nikonov and Young [1, 2]. Similar numbers have been reported

elsewhere [68, 77].

3.3.1 Performance

Row 2 of Table 3.1 shows that the switching delay of a HetJTFET, InAs-CMOS, and

HomJTFET transistor is about 2x, 10x, and 16x longer, respectively, than the switching

delay of a Si-CMOS one. The next row compares the interconnect delay for a distance equal

to the transistor length. Since the dimensions of MOSFET and TFET transistors are similar,

these delays are directly comparable. These delays follow similar trends as the transistor

switching delays. Finally, Row 4 shows the delay of a 32bit ALU operation, which includes

both transistor switching and interconnect delay. We can see that the ratios are about the

same as for the transistor delays.
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Our goal is to implement some of the units in a Si-CMOS CPU or GPU core in TFET

technology. Mixing Si-CMOS and HetJTFET units in the core is feasible, as a 2x differential

speed can be handled by keeping a single frequency, but pipelining the HetJTFET unit at

least twice as deeper. An example can be an HetJTFET functional unit in a CMOS core.

However, including InAs-CMOS or HomJTFET units would be too challenging: their speed

differential would require unrealistic 10x and 16x deeper pipelines, which would be too

disruptive. HomJTFET and InAs-CMOS are better suited for ultra-low power applications

in wearables or IoT devices. Note also that, since Si-CMOS and HetJTFET operate at

different Vdd, we need level converters when we go from a HetJTFET to a Si-CMOS unit.

These level converters can be integrated with pipeline latches [55].

3.3.2 Energy and Power

Rows 5 and 6 of Table 3.1 show the switching energy of a transistor, and the interconnect

energy for a distance equal to the transistor length for all the technologies. The next row

shows the dynamic energy of a 32bit ALU operation, which includes both transistor switching

and interconnect energy. We see that a Si-CMOS 32bit ALU operation consumes about 4x,

8x, and 16x as much energy as with HetJTFET, InAs-CMOS, and HomJTFET, respectively.

Since HetJTFET is 2x slower than Si-CMOS, the operation with HetJTFET consumes about

8x less power.

Overheads like separate voltage rails for CMOS and TFET units, and timing guardbands

reduce the power savings of TFETs. Our conservative estimate of overheads (Section 3.5.2)

shows that HetJTFET still consumes 6.1x lower power than Si-CMOS. However, in this

work, we impose even stricter guardbands, and evaluate TFETs conservatively assuming

that they provide only a 4x power savings over CMOS.

The best property of HetJTFET transistors is their low leakage power. Row 8 shows the

leakage power of a 32bit ALU. A HetJTFET ALU consumes about 300x lower leakage power

than a Si-CMOS ALU. In practice, the reduction is not so high. This is because, in CMOS

processors, many logic structures not in the critical path use high-Vt CMOS transistors

to reduce leakage. For example, commercial processors like AMD Ryzen [78] and prior

designs [79] contain about 60% high-Vt transistors. Such transistors consume about the

same dynamic energy as the regular-Vt CMOS transistors assumed in Table 3.1. However,

they consume less leakage power.

Specifically, using a Synopsis library for 28/32nm technology, we find that they consume

25-30x less leakage power than regular-Vt transistors. This is in line with numbers reported

in prior work [79, 80]. Using these numbers, the leakage power of a typical Si-CMOS unit
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Figure 3.2: Total power consumption of a Si-CMOS ALU and a HetJTFET ALU with
varying activity factors.

is only about 42% of the value in Table 3.1. This agrees with dual-Vt designs of both logic

and SRAM cells in the literature [81, 82, 83, 84]. Overall, using this figure, a HetJTFET

ALU consumes 125x lower leakage power than a dual-Vt Si-CMOS ALU.

6T and 8T HetJTFET-based SRAM cells have been proposed by some authors [85, 86, 87].

They show that the leakage power of these cells is several hundred times lower than a

competitive Si-CMOS SRAM cell [85].

Overall, HetJTFET units provide over two orders of magnitude savings in leakage power

compared to Si-CMOS. In the worst case, when 100% of the Si-CMOS transistors are high-

Vt, the savings reduce to a still sizable 10x. Therefore, we will use HetJTFET devices in

logic and memory structures of the core where leakage power dominates.

Finally, row 9 shows the power density of an ALU. A Si-CMOS design has a 10x higher

power density than a HetJTFET design. This indicates that HetJTFETs will be a better

choice for units that need high computational density, such as SIMD FPUs.

3.3.3 Activity Factor

Because of their low leakage power, HetJTFETs are a good choice for units that have a

low activity factor. When there is no activity, the HetJTFET implementation consumes very

little, while the Si-CMOS one still consumes a large leakage power. In such a unit, the ratio
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of power consumed by the Si-CMOS implementation over the HetJTFET implementation

keeps increasing the lower the activity factor is.

Figure 3.2 depicts the total 32bit ALU power of both designs and the ratio of powers, as

the activity factor decreases. An activity factor of 1 means that the ALU is used every cycle.

In the figure, the Si-CMOS ALU is composed of 60% high-Vt transistors in noncritical paths

to minimize leakage. We see that, as activity decreases, the HetJTFET implementation

becomes relatively more attractive.

3.3.4 Dynamic Voltage-Frequency Scaling (DVFS)

We envision a core with two Vdd, one for the Si-CMOS units (V 0
CMOS), and one for the

HetJTFET units (V 0
TFET ). All units are clocked at a single frequency (f0). To make this

possible, we reduce the work that each TFET pipeline stage does, giving at least twice as

many pipeline stages to the TFET unit as a CMOS unit would have.

We also envision the ability to apply DVFS. When higher performance needed, both Si-

CMOS and HetJTFET units increase their Vdd; when more energy efficiency is needed, both

decrease their Vdd. This means that we need to find pairs of voltages (V i
CMOS, V i

TFET ) such

that the Si-CMOS circuit is always 2x faster than the HetJTFET circuit to do equivalent

work. From the previous discussion, these pairs are such that, if V i
CMOS attains f i, then

we need a V i
TFET that would attain f i/2 to do the same work per pipeline stage for the

HetJTFET units.

One challenge is that each technology has a different Vdd-frequency curve, with a different

slope and a different range. These curves are shown in Figure 3.3. We generated the

Si-CMOS curve from [19], and the HetJTFET curve from [6]. In the curves, we show

V 0
CMOS=0.73V, V 0

TFET=0.40, and f0=2GHz.

If we want to increase Si-CMOS’s Vdd by ∆V i
CMOS to attain f i, we need to increase

HetJTFET’s Vdd by an amount ∆V i
TFET that is different than ∆V i

CMOS. It is an amount

that can deliver f i/2 for the HetJTFET units to do the same work per pipeline stage.

Given that the slope of the HetJTFET curve is less steep, ∆V i
TFET will typically be larger

than ∆V i
CMOS. For example, to turbo-boost to a f 1=2.5GHz, we need ∆V 1

CMOS=75mV and

∆V 1
TFET=90mV.

3.3.5 Process Variation

The main source of variation in both TFET and MOSFETs is the work function [88].

The extent of work function variation in TFETs and MOSFETs is similar, both in logic and
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Figure 3.3: Vdd-freq. curves for Si-CMOS and HetJTFET.

SRAM [88, 86]. While the variation affects both Ioff and Ion, the impact is higher on Ioff for

TFET, and Ion for CMOS. This is due to the steeper slope of the I-V curve (Figure 3.1)

close to the OFF state in TFETs, and in the ON state in CMOS.

As indicated by Avci et al. [88], the performance of the transistors lost to variation can be

reclaimed by increasing the Vdd of both Si-CMOS and HetJTFET. We show in Section 3.7

that the result is that HetJTFET loses a small fraction of its energy savings relative to

Si-CMOS.

3.3.6 Area Consumption

A HetJTFET transistor has dimensions similar to a Si-CMOS transistor. Further, the

contacted gate pitch, and the pitch of the two lowest metal layers (MP0 and MP1) are the

same in both CMOS and TFET devices [89]. The fact that HetJTFETs have asymmetric

source and drain materials does impose some layout constraints when placing transistors

close to each other. However, a recent study [89] compares the area of standard library

cells of vertical HetJTFETs to FinFETs and finds that, for the technology node of 15nm

considered in this work, the areas are similar. For older technology nodes, the HetJTFET im-

plementations occupy more area than the FinFET ones, while for future, smaller technology

nodes, it is expected that HetJTFETs will have an area advantage over FinFETs.
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3.4 HETCORE ARCHITECTURE

Our goal is to design a hetero-device core architecture that integrates CMOS and TFET

devices, and that, ideally, is as energy efficient as a TFET implementation and provides the

performance of a CMOS implementation. We call the architecture HetCore, and provide

CPU and GPU designs.

3.4.1 Main Idea

HetCore takes a high-performance CMOS CPU and GPU, and selectively replaces some

units with TFET implementations. The TFET units are supplied a Vdd (VTFET ) that is

lower than that of the CMOS units (VCMOS). The TFET units are slower than the CMOS

units. This is because TFET devices take about 2x longer to switch than CMOS devices.

HetCore clocks the TFET units at the same frequency as the CMOS units. This is made

possible by reducing the work that each TFET pipeline stage does, and at least doubling the

number of pipeline stages of the operation. Keeping a single frequency domain in the core

reduces the complexity of the design, and eliminates any associated clock synchronization

overheads. Overall, through careful selection of TFET units, we substantially reduce the

energy consumption of the CPU and GPU. However, we suffer performance degradation.

We name this design BaseHet.

Since BaseHet is slow, we then introduce mitigation techniques to recover some of the

performance lost. These mitigation techniques are enabled by one of the two following

effects. First, the slowdown caused by TFET structures presents new opportunities for micro-

architectural optimization. Second, TFET structures present different power-performance

tradeoffs than CMOS ones and, hence, require re-evaluation of certain design decisions. We

call this final design AdvHet.

3.4.2 BaseHet Design

An ideal unit to replace with a TFET implementation has the following traits:

• Is Highly Power Consuming. The power consumed by the CMOS variant should be

significant compared to the total power of the CPU or GPU. Otherwise, any savings

will be small — or even negative, due to the program slowdown.

• Is Amenable to Pipelining and/or is Not Very Latency-Sensitive. The longer latency
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Figure 3.4: TFET-based units selected for the BaseHet design.

induced by TFET devices should not hurt the overall performance too much.

• Uses a Large Area. To amortize the design effort, it is preferable that the unit be

relatively large. We impose this constraint for BaseHet, and later relax it slightly for

AdvHet.

We now discuss the candidate units that have such traits in a CPU and GPU. They are

shown in Figure 3.4.

Floating-Point Units in the CPU and GPU Floating-Point Units (FPUs) in both

the CPU and the GPU (SIMD FMA units) are power hungry. They are also pipelined for

multiply and add operations. While divide and a few other complex operations are not

typically pipelined in the CPU, such operations are less common in most applications. In

addition, floating-point intensive applications are known to exhibit high Instruction Level

Parallelism (ILP). Hence, deeper-pipelined FPUs can still attain high levels of occupancy.

As a result, moving to TFET FPUs, and making their pipeline deeper should have modest

impact on performance. In case of a SIMD FMA unit in the GPU, due to the inherent

throughput-oriented nature of the programs, it is even easier to fill the pipeline with other

threads and minimize the performance impact. The FPUs, therefore, are ideal candidates

for moving to a TFET design.
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ALUs in the CPU The ALUs in a CPU core consume substantial dynamic power and can

be pipelined. The more complicated ALU operations such as multiply and divide are usually

pipelined. Pipelining an ALU, however, will have a negative impact on the performance,

especially in the case of branch mispredictions. Despite the slowdown caused, pipelined ALU

designs have been employed in commercial microprocessors since Alpha 21064 to reach high

frequencies. Therefore, even though pipelining the ALUs has a performance impact, as we

show in our evaluation, the energy savings of implementing the ALUs in TFET is attractive.

Caches in the CPU Caches contribute the majority of the leakage power consumption

in a CPU. Since TFETs leak very little, even compared to high-Vt transistors, caches are

excellent candidates to move to TFET. Out of the three levels of caches in a modern hier-

archy, the latency of L3 has the least impact on performance. Hence, L3 can definitely be

implemented in TFET. The latency of L2 has impact on some programs, but it is limited.

Note that out of an 8-10 cycle round trip to L2, only 3-5 cycles are actually spent accessing

L2. Therefore, by moving to a TFET L2, the additional latency of L2 access is only 3-5

cycles.

In the case of L1, an increase in access latency clearly causes performance degradation.

This is especially true for the instruction cache (IL1). Any latency increase of the data

cache (DL1) is unwanted as well, but it can be hidden partially in an out-of-order core with

enough ILP. The cache accesses are pipelined and may be distributed among multiple banks,

allowing multiple accesses to proceed in parallel. Finally, both leakage and dynamic power

consumption in DL1 are significant. Hence, even though we induce a performance loss, we

move DL1 to TFET.

Register File in the GPU The Register File (RF) in a GPU is big and consumes sig-

nificant power (up to 10% of the GPU power [90]). RF access can also be pipelined by

partitioning it into multiple stages, such as data array access and source drive [91]. The

additional latency increase results in a performance degradation, which may be hidden in

throughput-oriented workloads. Hence, the RF in GPUs is also a good candidate for imple-

mentation in TFETs.

3.4.3 AdvHet Design

BaseHet improves the energy efficiency over a pure-CMOS design at a performance cost. In

AdvHet, we adapt known performance-improvement techniques to BaseHet and recover most

of the performance lost. BaseHet exposes an opportunity for such techniques by changing the
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balanced power/performance design of the baseline CMOS. First, the slowdown due to the

TFET units provides avenues for previously-suboptimal micro-architectural design choices.

Second, equipped with the lower power consumption of TFET units, a small power penalty

might now be a good tradeoff for a big performance gain. This may sometimes result in

overall energy savings as well, due to the corresponding reduction in leakage energy.

Asymmetric DL1 Cache The DL1 cache access latency is critical to the performance of

most applications. By using a TFET DL1, BaseHet doubles the round trip to 4 cycles from

2 cycles in baseline. We present the design of an Asymmetric Cache (Figure 3.5) to alleviate

some of the latency penalty introduced by TFETs.

The goal of the asymmetric cache is to reduce the hit latency. To accomplish this, the

asymmetric cache partitions the ways in an associative cache. One way is implemented in

CMOS (FastCache), and the rest of the ways in TFET (SlowCache). A request from the

processor checks the FastCache first. A hit is satisfied in 1 cycle. A miss sends the request

to the SlowCache, where a hit takes 4 additional cycles. Hence, the hit latency is either 1

cycle (for FastCache hits) or 5 cycles (for SlowCache hits). Such a tradeoff is attractive in

AdvHet because, otherwise, all hits would take 4 cycles. However, it is not as attractive in

the baseline CMOS where hits take 2 cycles.

The Most Recently Used (MRU) line from each set is moved to the FastCache to improve

the hit rate. The FastCache is partitioned into two banks with two read/write ports to

facilitate the data transfer between FastCache and SlowCache. CACTI [52] analysis shows
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that the access latency of the FastCache is about one third of the base 32KB DL1.

The access energy of the FastCache is small. On average, this approach of accessing

the FastCache first and, potentially, then accessing the SlowCache, and even moving a line

between caches saves energy over accessing a whole CMOS DL1, or accessing a whole TFET

DL1. In fact, prior work has looked at using similar cache designs for energy reduction

[92, 93, 94]. Overall, compared to a whole TFET DL1, the asymmetric cache improves

performance and reduces energy consumption over the whole program execution.

Dual-Speed ALU Cluster Increasing the latency of an ALU degrades the overall per-

formance. Notably, it prevents the back-to-back issue of dependent instructions, and also

increases the branch misprediction penalty. We mitigate the impact of the first issue by keep-

ing one of four ALUs in the core implemented in CMOS, hence creating a dual-speed ALU

cluster. By identifying appropriate producer-consumer instructions and executing them on

the CMOS ALU, we enable back-to-back issue of these instructions.

The algorithm to identify such producer-consumer instructions in AdvHet has the follow-

ing objectives. First, it minimizes the situations where back-to-back dependent instructions

are sent to a TFET ALU. Second, it maximizes the power savings by steering the majority

of the instructions to a TFET ALU. Finally, it balances the overall utilization of the TFET

ALUs and the CMOS ALU. Note that the penalty of mis-steering is only to increase the

latency of an ALU operation from 1 to 2 cycles. Due to this reason, the objective of our

scheme is different from some of the prior work on identifying the most critical path [95]. A

simple algorithm suffices for us.

Dual-speed clusters have been studied previously as a mechanism to reduce power con-

sumption [96, 97, 98]. In our design, we employ a simplified version of the Generation Time

Gap metric [97] for steering instructions to slow and fast clusters. Specifically, for each

instruction in the dispatch stage, we check if any consumer is present in a small window

of instructions behind the current one. As the additional latency of a TFET ALU over a

CMOS ALU is one cycle, we set the window length as the number of instructions that can

be issued in one cycle — i.e., the core’s issue width. Intuitively, if a consumer exists in

this small window, then executing the current instruction on the CMOS ALU may benefit

the consumer. Note that in an out-of-order machine, this is not a necessary condition, and

we may mis-steer occasionally. Such scenario could be avoided by performing the check in

the issue stage. However, doing so would interfere with the issue process and add to the

complexity of the issue stage. Hence, steering is best performed in the dispatch stage, in

parallel to its current functionality. This minimizes the additional complexity.
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Register File Cache in the GPU Register file access is in the critical path of an arith-

metic operation in a GPU. In throughput-oriented workloads, the compiler could customize

the binary to hide the additional latency of accessing a TFET register file. However, this

would likely not be enough. Therefore, to reduce the access latency, we instead use a regis-

ter file cache, with 6 entries per thread. This is a very small subset of the 256 registers per

thread in the GPU that we model (based on AMD’s Southern Islands). The access latency

of this small cache is only one cycle.

To maximize the utility of this register file cache and avoid thrashing, we only cache

registers that we write. This is because as much as 40% of the writes are consumed by

reads within a few instructions [91]. Hence, caching only the writes provides good locality

for reads and minimizes thrashing. In our simulations, we observe that this cache is able to

recover up to 70% of the performance loss caused by the increase in the register file access

latency.

The register file cache was originally proposed to reduce the power consumption of GPUs

[91]. In AdvHet, however, we also reap the benefits of a faster register access enabled by such

cache. The opportunity for reducing latency is much higher in HetCore than in a CMOS

design, in a manner similar to the asymmetric cache.

Discussion The deeper pipelining of the FPUs in BaseHet unbalances the core pipeline.

To keep such deeper-pipelined FPUs utilized, we need to sustain more inflight instructions.

Hence, we increase the sizes of the FP register file and ROB appropriately. Note that a

larger ROB size will also aid in some non FP-intensive applications.

Other optimizations are possible, but we do not consider them due to questionable trade-

offs. For example, there are FPU designs that reduce latency but increase area and/or

power [99]. This includes different encoding schemes (Booth 2 versus Booth 3), combining

networks (Wallace tree versus OS1), and multiplier types (CMA versus FMA). For example,

a CMA design would reduce the latency over an FMA unit when forwarding the output to

another multiply/add operation. However, it would take up 15% more area and consume

20% more power. One could also customize the GPU compiler to hide some of the additional

FPU latency. We leave the analysis of these techniques to future work.

3.4.4 Summary of the Designs

Table 3.2 shows a summary of the design modifications for HetCore. In the BaseHet

design, we implement in TFET the following structures: FPUs, ALUs, DL1, L2, and L3 in

a CPU; and SIMD FPUs and register file in a GPU. In the AdvHet design, we additionally
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Table 3.2: Design modifications for HetCore.

Design CPU Structures GPU Structures

BaseHet FPUs, ALUs, DL1, L2, and
L3 in TFET

SIMD FPUs and RF in
TFET

AdvHet BaseHet + asymmetric DL1
cache + dual-speed ALU +
larger ROB and FP RF

BaseHet + register file
cache

add the following structures: the asymmetric DL1 cache, the dual-speed ALU cluster, and

a larger ROB and FP register file in a CPU; and the register file cache in the GPU.

3.5 IMPLEMENTATION CONSIDERATIONS

3.5.1 Dual Voltage Rails and Level Converters

HetCore integrates CMOS and TFET units operating at different Vdd inside a CPU and

GPU. Hence, it requires provisioning for separate Vdd rails for the two groups of units, and

level converters between such units. More specifically, each pipeline stage is powered at a

single Vdd. This is shown in Figure 3.6, which shows two TFET stages in between two

CMOS stages. The former are powered with the lower VTFET, while the latter with the

higher VCMOS. A given stage includes both data-path and control-path signals.
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Figure 3.6: HetCore dual voltage rail design.

Latches between two same-device stages are implemented with the same device type.

Latches between two different-device stages are implemented in CMOS, and are powered

at VCMOS. Additionally, those latches that connect a TFET stage to a CMOS stage need

to perform up-conversion. Hence, as shown in Figure 3.6, they are augmented with a level

converter and take both Vdd levels [55, 63].
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HetCore employs a level converter design based on Ishihara et al. [55], which is imple-

mented as part of a latch. This design uses pulsed half-latch level converting flip-flops,

which are shown to be more efficient in terms of energy-delay and area when compared

to asynchronous level conversion. Moreover, the level converter follows the hybrid CMOS-

TFET organization that has recently been proposed by Lanuzza et al. [63].

The fact that the whole pipeline uses a single frequency domain keeps the design simpler.

There is no need to perform synchronization across stages. The presence of multiple Vdd

domains requires careful design of the clock tree, but it has been shown that such tree can

be generated with very little skew (<0.5% of the clock cycle) [100].

3.5.2 Overheads of the Multi-Vdd Substrate

The multi-Vdd substrate of HetCore introduces delay, area, and power overheads. The

first issue is the dual Vdd rails themselves. Their main overheads are the additional area

they take, and the need to customize their layout/routing, as automatic tools may not be

able to handle them. One implementation of dual rails [56] estimates the area cost to be

≈5% of the core.

The second issue is the level converters. They require carefully managing the clock skew

and timing across Vdd domains. Moreover, they add a few gates to the critical path of the

pipeline stage. Based on Ishihara et al.’s [55] work, we estimate a delay impact of ≈5%. The

additional area and power of the level converters is negligible [55].

A third issue is the deeper pipelining of the TFET structures. It introduces delay in two

ways. First, the work in a pipeline stage cannot usually be sliced into two equally-sized

portions; instead, one portion takes longer. We estimate that this effect makes TFET stages

≈5% longer than ideal. Second, TFET latches are themselves slower that CMOS ones.

Given that latches account for ≈10% of a stage’s latency [101], we add one extra 10% stage

delay due to slow TFET logic. The latches added for the deeper pipelining also introduce a

power overhead of ≈10% of the stage power [101].

The fourth issue is that HetCore introduces design complexity and verification costs, which

are hard to quantify.

In summary, TFET stages in HetCore suffer from a delay of up to 15% — resulting from

5% due to unequal work partitioning between stages, and 10% due to a level converter or

a slow TFET latch (but not both). Since we do not want to penalize the frequency of the

pipeline, HetCore raises VTFET slightly over its value in Table 3.1, to meet CMOS timing

constraints. Specifically, to recover this 15% delay, VTFET is increased by 40mV. As a result,

the power consumption of TFETs increases by 24%, which lowers the overall dynamic power
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savings of moving from CMOS to TFET from 8× to about 6.1×. Further, to be very

conservative, in the rest of the work, we set the overall reduction in dynamic power when

moving from CMOS to TFET to be only 4x.

3.6 EVALUATION SETUP

We evaluate HetCore using the Multi2Sim [102] architectural simulator, which models

CPUs and GPUs. We model a processor with 4 CPUs and 1 GPU. Each CPU is 4-wide

and out of order. The GPU hardware is modeled after the AMD Southern Islands, with 8

compute units. Table 3.3 shows the detailed parameters of the modeled CPU and GPU. We

obtain the power numbers by using the HP-CMOS process of McPAT [38] and GPUWattch

[103] for the CPU and GPU, respectively. Recall that TFET units now operate at a Vdd

of 0.440 V, and CMOS units at 0.730 V. At these voltages, the frequency reached by all-

CMOS and all-TFET CPUs is 2GHz and 1GHz, respectively. While the dynamic power

consumption of TFET units is 6.1x lower than HP-CMOS ones, we conservatively use a 4x

factor. Further, to calculate the TFET leakage power, we conservatively assume that it is

only 10x lower than the CMOS leakage power, as if all the CMOS transistors were high-Vt

devices.

Table 3.3: Parameters of the simulated architecture for the evaluation of HetCore.

Parameter Value

CPU Hardware 4 out-of-order cores, 4-issue each, 2GHz
INT/FP RF; ROB 128/80 regs; 160 entries
Issue queue 64 entries
Ld-St queue 48 entries
Branch prediction Tournament: 2-level, 32-entry RAS, 4way 2K-entry BTB
Functional units:
4 ALU CMOS: 1 cycle, TFET: 2 cycles
2 Int Mult/Div CMOS: 2/4 cycles, TFET: 4/8 cycles
2 LSU 1 cycle
2 FPU CMOS: Add/Mult/Div 2/4/8 cycles; TFET: 4/8/16 cycles; Add/Mult issue every cycle, Div

issues every 8/16 cycles
Private I-Cache 32KB, 2way, 64B line, Round-trip (RT): 2 cycles
Asym. FastCache 4KB, 1way, writeback (WB), 64B line, RT: 1cycle
Private D-Cache 32KB, 8way, WB, 64B line, RT: 2cycles (CMOS) or 4cycles (TFET)
Private L2 256KB, 8way, WB, 64B line, RT: 8cycles (CMOS) or 12cycles (TFET)
Shared L3 Per core: 2MB, 16way, WB, 64B line, RT: 32cycles (CMOS) or 40cycles (TFET)
DRAM latency RT: 50ns
GPU Hardware 8 CUs with 16 EUs each, 1GHz
FMA unit CMOS:3 cycles, TFET:6 cycles, pipelined issue every cycle
Vector registers 256 per thread, access: 1 cycle (CMOS) or 2 cycles (TFET)
Register file cache 6 entries per thread, access: 1 cycle
Network Ring with MESI directory-based protocol

In our evaluation, we use the 15nm process node for the power and performance char-

acteristics of TFET and CMOS. This is because we can obtain reliable parameter data at
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15nm technology, but not beyond 15nm. A high-level scaling study of TFETs from 22nm

to 10nm [68] shows that the insights from Table 3.1 hold true at 10nm. CMOS is likely to

maintain a performance edge over TFET and, as a result, the HetCore tradeoffs will remain

similar.

3.6.1 Configurations

Table 3.4 shows the CPU and GPU configurations evaluated. For the CPU, we evalu-

ate 10 configurations. The baseline is an all-CMOS core (BaseCMOS ). In BaseCMOS, all

the caches use high-Vt transistors, and the core units consist of 60% high-Vt transistors.

Two other baselines are BaseCMOS enhanced with the techniques of AdvHet in CMOS

(BaseCMOS-Enh), and an all-TFET core (BaseTFET ). Note that BaseTFET operates at

2x lower frequency and consumes 8x less dynamic power than BaseCMOS. This is much

less dynamic power than HetCore, where TFET units consume 4x less dynamic power than

CMOS units.

Table 3.4: CPU and GPU configurations evaluated.

CPU Configurations Evaluated

Configuration Notes

BaseCMOS All-CMOS core

BaseCMOS-Enh BaseCMOS + Larger ROB(160→192) & FP-RF (80→128)
+ CMOS asymm. DL1 (1cycle for 1way & 3cycles for rest)

BaseTFET All-TFET core

BaseHet BaseCMOS + FPUs, ALUs, DL1, L2, and L3 in TFET

AdvHet BaseHet + Larger ROB(160→192) & FP-RF (80→128)
+ Dual speed ALU (3 ALUs in TFET & 1 ALU in CMOS)
+ Asymm. DL1 (1way CMOS & rest in TFET)

BaseL3 BaseCMOS + Larger ROB & FP-RF + L3 in TFET

BaseHighVt BaseCMOS + high-Vt in FPUs & ALUs. Latencies of
Add/Mul/Div are: Int 2/3/6 cycles & FP 3/6/12 cycles

BaseHet-FastALU BaseHet + all ALUs in CMOS

BaseHet-Enh BaseHet + Larger ROB & FP-RF

BaseHet-Split BaseHet-Enh + Dual speed ALU

GPU Configurations Evaluated

Configuration Notes

BaseCMOS All-CMOS core + Register file cache

BaseTFET All-TFET core

BaseHet BaseCMOS + SIMD FPUs & RF in TFET

AdvHet BaseHet + Register file cache
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We compare these baselines to BaseHet and AdvHet. We also evaluate several intermediate

design points. BaseL3 is BaseCMOS with the larger ROB and FP register file, and with a

TFET L3. BaseHighVt is BaseCMOS plus FPUs and ALUs with only high-Vt transistors.

These high-Vt devices have a 1.4-1.6x higher delay than regular-Vt ones [104]. The latencies

of the FPUs and ALUs are shown in Table 3.4. Note that all the caches are designed with

high-Vt transistors even in BaseCMOS, and so cache latencies remain the same. However,

the leakage power of FPUs and ALUs in BaseHighVt is 10x lower than in BaseCMOS.

Finally, other configurations include BaseHet with all the ALUs in CMOS (BaseHet-

FastALU ), BaseHet with the larger ROB and FP register file (BaseHet-Enh), and BaseHet-

Enh with the dual speed ALU cluster (BaseHet-Split).

For the GPU, we evaluate 4 configurations. The baseline is an all-CMOS core with the

register file cache (BaseCMOS ). We add the register file cache for fairness. We compare it

to an all-TFET core (BaseTFET ) and our proposed BaseHet and AdvHet designs.

3.6.2 Applications & Metrics

We use the SPLASH-2 and PARSEC applications to evaluate the CPU designs, similar

to the ones we used in the evaluation of ScalCore. From SPLASH-2, we use Barnes (16K

particles), Cholesky (tk29.O), FFT (220), FMM (16K), LU (512x512), Radiosity (batch),

Radix (2M keys), Raytrace (teapot.env), Water-Nsquared (random.in), and Water-Nspatial

(512). From PARSEC, we use Blackscholes(16K), Canneal(10000), Streamcluster (4K), and

Fluidanimate(15K). For the GPU evaluation, we use all the applications from the AMD-

SDK-APP suite provided along with the Multi2Sim simulator, with the suggested input

sizes [102]. Our metrics of comparison are execution time, energy consumption, and energy-

delay-squared (ED2).

3.7 EVALUATION

3.7.1 HetCore CPU Evaluation

Figure 3.7 compares the execution time of BaseCMOS, BaseCMOS-Enh, BaseTFET, Base-

Het, and AdvHet running our applications. The bars are normalized to BaseCMOS. There

is an extra bar (AdvHet-2X) that we discuss later.

On average, BaseHet experiences a slowdown of 40%. This is mostly due to the increased

latencies of the FPUs, ALUs, and DL1. Applications that often hit in the DL1 suffer the
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Figure 3.7: Execution time of different CPU designs, normalized to BaseCMOS.
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Figure 3.8: Energy consumption of different CPU designs, normalized to BaseCMOS.
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Figure 3.9: ED2 of different CPU designs, normalized to BaseCMOS.

most, due to the higher access latency in BaseHet. The deeper-pipelined FPU and ALU

units also hurt BaseHet’s performance. Overall, BaseHet is not a very good design.

The performance enhancement techniques used in AdvHet prove effective, and recover

most of the performance losses in BaseHet. Specifically, AdvHet’s average execution time is

only 10% higher than that of BaseCMOS.

BaseTFET shows a large slowdown of 96%. This is because its frequency is half of BaseC-

MOS’ frequency. We also see that BaseCMOS-Enh does not improve over BaseCMOS on
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average. This is because the pipeline changes in BaseCMOS-Enh largely unbalance the

already balanced BaseCMOS design. These changes are only effective in AdvHet, due to

unbalanced nature of BaseHet.

Figure 3.8 shows the energy consumption of the same configurations as Figure 3.7, broken

down into the contributions of core (including the L1s), L2, and L3, and separating the

dynamic and leakage energy. The bars are normalized to BaseCMOS. We see that BaseTFET

reduces the energy consumption by 76%, thanks to the excellent energy efficiency of TFETs.

The HetCore designs also provide very good energy savings over BaseCMOS. Specifically,

BaseHet and AdvHet reduce the energy by 35% and 39%, respectively. The reductions come

from both dynamic and leakage energy.

AdvHet saves slightly more energy than BaseHet for two reasons. First, AdvHet is faster

and, hence, has lower leakage. Second, an access to the fast CMOS way of the asymmetric

DL1 cache in AdvHet consumes less dynamic energy than an access to the TFET DL1 cache

in BaseHet. Since a large fraction of DL1 accesses in AdvHet hit in the fast CMOS way, and

never access the slow TFET ways, the overall dynamic energy consumption is low. Overall,

AdvHet is an attractive design: it consumes on average 39% less energy than BaseCMOS,

while performing within 10% of it.

BaseCMOS-Enh has similar results as BaseCMOS.

Finally, Figure 3.9 compares the ED2 of all the designs. Although BaseHet consumes less

energy than BaseCMOS, it has a worse average ED2 because it is slower. AdvHet has the

lowest ED2, because it is nearly as fast as BaseCMOS and consumes much less energy. On

average, its ED2 is 26% lower than BaseCMOS, and 20% lower than BaseTFET.

Comparison Under a Constant Power Budget AdvHet is especially appealing when

comparing chips at a constant power budget. From Figures 3.8 and 3.7, one can deduce

that an AdvHet core consumes half the power of a BaseCMOS one. Hence, under the same

power budget, we can power twice as many AdvHet cores as BaseCMOS ones in the chip.

The last column (AdvHet-2X) in Figures 3.7, 3.8 and 3.9 corresponds to this design.

AdvHet-2X executes with 8 cores, with the same power budget as BaseCMOS with 4 cores.

We can see that AdvHet-2X reduces the average execution time by 32% relative to BaseC-

MOS, while consuming 34% less energy. The result is a large 68% average ED2 reduction.

Overall, combining CMOS and TFET in AdvHet delivers a compelling solution for up-

coming energy-constrained environments. Workloads consume 39% less energy that CMOS

designs, while running only 10% slower. Moreover, if they have substantial parallelism, they

can execute much more energy efficiently as well as faster than CMOS designs.

Note that BaseTFET is also able to employ more cores within the same power budget.
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Figure 3.10: Execution time of different GPU designs, normalized to BaseCMOS.
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Figure 3.11: Energy consumption of different GPU designs, normalized to BaseCMOS.

Specifically, it can power 7-8 times more cores than BaseCMOS. The result is an efficient

execution for very parallel workloads. However, with the same thread count as BaseCMOS,

BaseTFET runs at half the BaseCMOS speed, which makes BaseTFET unattractive.

The goal of HetCore was to build a design that performs as well as a CMOS core while

providing the energy efficiency of a TFET core. With AdvHet the performance of HetCore

is within 10% of a CMOS core and exceeds the energy efficiency (ED2) of TFET core by

20%. When compared to a CMOS core, HetCore reduces the energy by 39% and ED2 by

26%. Under the same power budget, HetCore improves the performance by 32% and reduces

energy and ED2 by 34% and 68% respectively.

3.7.2 HetCore GPU Evaluation

For the GPU architecture, Figure 3.10 compares the execution time of BaseCMOS, BaseT-

FET, BaseHet, AdvHet, and AdvHet-2X running our applications. The bars are normalized

to BaseCMOS. AdvHet-2X will be discussed later.

The execution time of BaseTFET is about twice that of BaseCMOS, as BaseTFET runs
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Figure 3.12: ED2 of different GPU designs, normalized to BaseCMOS.

at half the frequency. Among the HetCore designs, BaseHet suffers an average performance

loss of 28%. This is due to the slower SIMD FMA unit and register file. In AdvHet, we

take BaseHet and add the register file cache. With this support, AdvHet improves the

performance, but the average execution time is still 20% higher than BaseCMOS.

This performance loss appears, mostly, because we do not perform any compiler optimiza-

tions on the code to hide some of the longer latencies of the SIMD FPUs and register file.

Such optimizations would help speed-up the programs, especially those with short-distance

dependencies. In reality, however, since GPU workloads are throughput oriented, we are

more interested in the performance under a fixed power budget. We consider this case in

Section 3.7.2.

Figure 3.11 shows the energy consumption of the same configurations, broken down into

dynamic and leakage energy contributions. The bars are normalized to BaseCMOS. We see

that BaseTFET reduces the average energy consumption by 75%. BaseHet and AdvHet are

also effective, reducing the average energy over BaseCMOS by 35% and 40%, respectively.

The reductions come from both dynamic and leakage energy. The savings of AdvHet over

BaseHet are due to the hits in the register file cache. Recall that, for fairness, BaseCMOS

also includes the register file cache.

Finally, Figure 3.12 shows the ED2 of the different configurations. While BaseHet con-

sumes less energy than BaseCMOS, it has a worse average ED2 because it is slower. AdvHet,

thanks to the register file cache, is able to reduce the average ED2 by 9% over BaseCMOS.

Comparison Under a Constant Power Budget The interesting scenario for AdvHet

GPUs is comparing against BaseCMOS GPUs under a constant power budget. From Fig-

ures 3.11 and 3.10, one can see that an AdvHet GPU consumes half the power of a BaseCMOS

one. Hence, we compare the execution of the 8 compute units in BaseCMOS to 16 compute
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units in AdvHet. We call the latter AdvHet-2X in Figures 3.10, 3.11 and 3.12.

We see that, under AdvHet-2X, applications take on average 30% less time to execute

(Figure 3.10) and consume on average 34% less energy (Figure 3.11) than under BaseCMOS.

Moreover, Figure 3.12 shows that AdvHet-2X’s ED2 is on average 60% lower than that of

BaseCMOS. Overall, AdvHet-2X is an attractive design for a GPU.

3.7.3 Comparison to Alternative CPU Designs

Figure 3.13 compares the execution time, energy, ED, and ED2 of BaseHet and AdvHet

to several other CPU configurations. Specifically, the figure includes three designs related to

the baseline (BaseCMOS, BaseL3, and BaseHighVt), and three designs related to BaseHet

(BaseHet-FastALU, BaseHet-Enh, and BaseHet-Split). The bars are normalized to BaseC-

MOS.
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Figure 3.13: Sensitivity analysis of HetCore CPU designs.

BaseL3 has a performance similar to BaseCMOS, and saves leakage by using TFET devices

in L3. Hence, it reduces about 10% of the energy, ED and ED2 relative to BaseCMOS.

AdvHet is better than BaseL3 because it saves 40% of the energy, reducing ED and ED2

substantially.

BaseHighVt has FPUs and ALUs that use only high-Vt transistors. The rest is like BaseC-

MOS, which uses 60% high-Vt transistors in all the core units. Since the FPUs and ALUs

have slightly higher latencies (Table 3.4), BaseHighVt is slightly slower than BaseCMOS. In
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addition, we see that it consumes higher energy. This is because the leakage energy saved

by having high-Vt FPUs and ALUs does not compensate for the increase in overall leakage

energy due to longer execution. Since BaseHighVt is less cost-effective than BaseCMOS, it

is also less cost-effective than AdvHet.

BaseHet-FastALU is BaseHet except that all its ALUs use CMOS. Compared to BaseHet-

FastALU, BaseHet is 2% slower, but saves 10% of the energy. This tradeoff justifies using

TFETs in ALUs as in BaseHet.

BaseHet-Enh takes BaseHet and increases the sizes of ROB and FP register file. This

provides a marginal 3% performance improvement at comparable energy. On top of that,

BaseHet-Split adds the dual-speed ALU cluster. This provides another 2% speedup at

similar energy. Finally, if we add the asymmetric DL1 cache to BaseHet-Split, we obtain

AdvHet. Adding the asymmetric DL1 cache reduces execution time by a substantial 17%,

with marginal energy reduction (Figure 3.13). This speed-up is due to the high hit rate of

the fast CMOS way of the asymmetric cache. Such hit rate is only 5-20% lower than that

of a whole 32KB DL1.

3.7.4 Impact of DVFS and Process Variation

As discussed in Section 3.3.4, the Vdd-frequency curves for TFET and CMOS devices

around their operating points are different. As a result, the energy consumption changes

due to DVFS are different in AdvHet and BaseCMOS. In Figure 3.14, we show the energy

consumed by BaseCMOS and AdvHet as we increase/decrease the frequency by 500 MHz.

The figure shows bars for 2GHz (BaseFreq-2GHz), 2.5GHz (BoostFreq-2.5GHz), and 1.5GHz

(SlowFreq-1.5GHz). The bars are normalized to the energy of BaseCMOS at 2GHz.

At 2GHz, AdvHet saves 39% of the BaseCMOS energy. As we move to f=2.5GHz, AdvHet

needs to increase the voltages by ∆VCMOS=75mV and ∆VTFET=90mV. This was shown in

Figure 3.3. The larger increase in VTFET is needed because of the shape of the curve. As a

result of the relatively higher ∆VTFET , AdvHet is relatively less efficient and, as shown in

Figure 3.14, only saves 36% of the BaseCMOS energy.

If we move to f=1.5GHz, AdvHet changes the voltages by ∆VCMOS= -70mV and ∆VTFET=

-80mV. The larger VTFET reduction makes AdvHet relatively more efficient, and now saves

43% of the BaseCMOS energy.

We also study the impact of process variation on the energy consumption. According to

Avci et al. [88], to protect against all the potential sources of process variation at 15nm,

we need to add Vdd guardbands equal to ∆VCMOS=120mV and ∆VTFET=70mV, for the

respective operating voltages. These are large guardbands. With these guardbands, the
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Figure 3.14: Impact of DVFS and process variation on the energy consumed by BaseCMOS
and AdvHet.

energy consumed by BaseCMOS and AdvHet is shown in the rightmost bars of Figure 3.14.

We see that the energy of both configurations goes up. Compared to BaseCMOS, AdvHet

now saves more energy in absolute terms, but slightly less (37%) in relative terms.

3.8 SUMMARY

Ideally, we desire CPU and GPU cores that operate as energy-efficiently as a TFET core,

while providing the performance of a CMOS core. To this end, we proposed the HetCore

architecture, which judiciously integrates both TFET and CMOS units in a single core,

creating a hetero-device core. We suggested that TFETs are used in units that consume

high power under CMOS, are amenable to pipelining or are latency insensitive. We further

improved the design through some microarchitectural optimizations. Our results show that

such a design is very promising, even with conservative assumptions. An AdvHet CPU

consumes on average 39% less energy than a CMOS CPU, while delivering a performance that

is within 10% of the CMOS CPU. In addition, under a fixed power budget, a multicore with

AdvHet CPUs attains average performance gains of 32% over a multicore with CMOS CPUs,

while reducing ED2 by 68%. Similarly, an AdvHet GPU consumes on average 40% less

energy and performs within 20% of a CMOS GPU. Under a fixed power budget, an AdvHet

GPU with twice as many compute units as a CMOS GPU improves average performance by

30% while lowering ED2 by 60%.
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CHAPTER 4: DESIGNING VERTICAL PROCESSORS IN
MONOLITHIC3D: OPPORTUNITIES, CHALLENGES AND TRADEOFFS

4.1 INTRODUCTION

Vertical processors — i.e., processors laid out vertically in stacked layers — can reap

major benefits in reduced wire delays, low energy consumption, and small footprint. Cur-

rently, 3D integration consists of stacking dies and using TSVs for inter-die communication

(TSV3D) [15, 16, 105]. Unfortunately, TSV3D is a poor match for vertical processors. Specif-

ically, the thick TSVs inhibit fine-grained logic partitioning across dies. Further, the chal-

lenges of cooling the layers away from the heat sink limit the flexibility of 3D designs [105, 16].

Monolithic 3D (M3D) [13, 17, 18] is a new 3D integration technology that allows high-

bandwidth communication across layers and ultra high-density integration. Rather than

bonding together pre-fabricated dies as in TSV3D, an M3D chip is built by sequentially

fabricating different layers of devices on top of one another.

Using M3D to build vertical processors is attractive for three reasons. First, the active

layers in M3D are separated by a distance of less than 1µm, which is one to two orders of

magnitude shorter than in TSV3D [106, 14, 5]. This reduces the communication latency

between the layers of a processor and allows for very compact designs.

Second, heat flows vertically very easily, thanks to a low thermal resistance. This is in

contrast to TSV3D designs, which include thick, thermally-resistive layers such as the die-

to-die layers [107]. As a result, temperatures away from the heat sink in M3D can be kept

moderate.

Third and most importantly, the layers communicate using Monolithic Interlayer Vias

(MIVs), which have diameters that are two orders of magnitude smaller than TSVs [108, 106,

109, 18, 14, 5]. The tiny diameters of MIVs allow designers to use many of them, dramatically

increasing the bandwidth of inter-layer communication. This enables the exploitation of

fine-grain partitioning of processor structures across layers, reducing wire length, energy

consumption, and footprint.

There is broad consensus that M3D is the most promising approach to continue increasing

transistor integration as Moore’s law sunsets. As a result, there has been significant recent

interest by both industry and research agencies [110, 18, 4, 111] to surmount the challenges

of fabricating M3D chips. The 2017 IRDS roadmap [112] predicts that vertical nanowires

will be realized in several years’ time, followed by M3D. Prototypes of M3D systems have

been demonstrated, signaling that this technology is feasible [18, 17, 113]. Finally, CAD

tools required for 3D floorplanning are being actively developed as well [114, 115, 111].

63



As M3D becomes feasible, it is essential for computer architects to understand the oppor-

tunities and challenges of building vertical processors with this technology. As hinted above,

M3D offers short wire lengths, good thermal properties, and high integration. However, an

important constraint of current M3D technology is that different layers in an M3D stack

have different performance. Specifically, the bottom layer is built out of high-performance

transistors. However, any subsequent layer built on top of it must be fabricated at low tem-

perature, to avoid destroying the bottom-layer devices. As a result, the transistors of any

subsequent layer have a lower performance [116, 117, 4]. This imbalance has implications

on how to design processor structures.

This work is the first one to show how to partition a processor for M3D. We design a vertical

processor by taking logic, storage, and mixed logic-storage pipeline stages, and partition each

of them into two layers. Our partition strategy uses the fact that the top layer has lower-

performance transistors. Specifically, for logic structures, we place the critical paths in the

bottom layer and the non-critical ones in the top one. For multiported storage structures, we

asymmetrically partition the ports, assigning to the top layer fewer ports with larger access

transistors. For single-ported storage structures, we asymmetrically partition the bitcell

array, assigning to the top layer a shorter subarray with larger bitcells.

Overall, our contributions are:

• First work to partition cores for an M3D stack.

• Novel partition strategies of logic and storage structures for an environment with het-

erogeneous layers.

• Performance, power, and thermal evaluation of single and multiple M3D cores.

4.2 3D MONOLITHIC INTEGRATION

3D Monolithic Integration (M3D or 3DMI) is a new device integration technology that

allows ultra-high density, fine-grained 3D integration. It involves fabricating two or more

silicon layers sequentially on the same substrate. The bottom layer of transistors is fabricated

first, using the same techniques as in a traditional die. Later, a layer of active silicon is grown

on top of the bottom layer using novel techniques at a lower temperature [13, 106, 18].

Transistors are then formed on the top layer using a low-temperature process. The resulting

top layer is often very thin, namely 100nm or less [13].

The integration process is fundamentally different from the conventional 3D integration,

where dies are pre-fabricated and later connected using Through-Silicon-Vias (TSVs). For
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Figure 4.1: M3D integration of two layers.

this reason, M3D is also referred to as sequential 3D, while TSV3D is known as parallel 3D.

Figure 4.1 shows a cross-section of an M3D stack. The layers of an M3D stack are connected

by Monolithic Inter-layer Vias (MIVs).

4.2.1 Comparing M3D to TSV3D

To understand the architectural implications of using monolithic3D integration, we com-

pare it with the TSV-3D integration. We contrast their utility based on electrical, thermal

properties and the associated area overheads. We later discuss the opportunities and chal-

lenges of using the M3D technology for designing a multi-core chip.

Physical Dimensions of Vias A major advantage of M3D is the very small size of the

MIVs. According to CEA-LETI [108, 106, 109, 18], they have a side equal to ≈50nm at the

15nm technology node. This is in contrast to TSVs, which are very large in comparison.

Specifically, ITRS projects that TSVs will have a diameter greater than 2.6µm in 2020 [14].

Hence the granularity and placement of TSVs is heavily constrained, whereas MIVs provide

great flexibility. To be conservative in our analysis, this work will assume an aggressive TSV

with half the ITRS diameter, namely 1.3µm.

Figure 4.2 shows the relative area of an FO1 inverter, an MIV, an SRAM bitcell, and a

TSV at 15nm technology. An MIV uses 0.07x the area of the inverter, while a TSV uses 37x

the area of the inverter.
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Figure 4.2: Relative area of an FO1 inverter, an MIV, an SRAM bitcell, and a TSV.

Ultra thin MIVs are possible due to two unique characteristics of M3D integration. First,

as shown in Figure 4.1, the inter-layer dielectric (ILD) and the active silicon layer are very

thin (≈100nm) [106]. This is a direct consequence of the sequential manufacturing of the

top silicon layer. Second, M3D enables very precise alignment of layers through the use of

standard lithography tools [17, 18]. Hence, the diameter of an MIV is equal to the pitch of

the lowest metal layer.

Table 4.1 compares the area overhead of an MIV and a TSV to a 32-bit adder and a 32-bit

SRAM cell at 15nm technology. The areas of the adder and SRAM cell are obtained from

Intel [1, 118]. Note that, because an MIV is so small, it is assumed to be a square. For the

TSV, we consider our aggressive design with a 1.3µm diameter, and the most recent design

produced in research [5], which has a 5µm diameter. For the TSV, we add the area of the

Keep Out Zone (KOZ) around it for mechanical strength and electrical isolation. The MIVs

do not need any additional KOZ.

Table 4.1: Area overhead of an MIV and a TSV compared to a 32-bit adder and a 32-bit
SRAM cell at 15nm.

Structure MIV(50nm) TSV(1.3um) TSV(5um)

32bit Adder (77.7 um2) <0.01% 8.0% 128.7%

32bit SRAM Cell (2.3 um2) 0.1% 271.7% 4347.8%

As we can see from Table 4.1, the MIV area accounts for a negligible overhead for both

the 32-bit adder and the 32-bit SRAM cell. In contrast, even the most aggressive TSV

implementation has noticeable overheads: its area (plus the KOZ) is equivalent to 8.0% of

an adder’s area or 272% of an SRAM cell area. Therefore, unlike TSV3D, M3D can provide

connectivity to support the ultra-fine partition of components of a core across layers [108,

17, 18].
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Table 4.2: Physical dimensions and electrical characteristics of typical copper MIV and
TSVs [3, 4, 5].

Parameter MIV TSV

Diameter 50nm 1.3µm 5µm

Via Height 310nm 13µm 25µm

Capacitance ≈0.1fF 2.5fF 37fF

Resistance 5.5Ω 100mΩ 20mΩ

Electrical Properties Table 4.2 shows the capacitance and resistance of an MIV and the

two designs of TSV. We obtain the numbers for the 5µm TSV from the literature [5, 3], and

use them to estimate the numbers for the 1.3µm TSV.

MIVs are shorter and thinner than TSVs. As a result, they have a significantly smaller

capacitance but a higher resistance. The overall RC delay of the MIV and TSV wires is

roughly similar. However, the wire power and the gate delay to drive the wire are mostly

dependent on the capacitance of the wire. Both are much smaller in the case of MIVs. For

example, Srinivasa et al. [119] show that the delay of a gate driving an MIV is 78% lower

than one driving a TSV.

Thermal Properties TSV3D stacks have die-to-die (D2D) layers in between the dies.

Such layers have ≈13-16x higher thermal resistance than metal and silicon layers [107].

Therefore, vertical thermal conductance is relatively limited in TSV3D, and the temperature

differences across the layers are substantial.

M3D integration requires only a few metal layers in the bottom layer, as they route

mostly local wires. Hence, the two active layers in M3D are physically close to each other

— typically less than 1µm apart, even with 3-4 metal layers [120, 41]. Therefore, thermal

coupling between the layers is high. In addition, the inter-layer dielectric is only 100nm thick.

As a result, vertical thermal conduction is higher than in TSV3D. Hence, the temperature

variation across layers is small.

4.2.2 Partitioning Granularity and Trade-offs

M3D technology is capable of supporting the partitioning of logic and memory structures

across layers in a very fine-grained manner [108, 17, 18]. We briefly discuss the trade-offs in

selecting the partitioning granularity.
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Transistor Level Partitioning Transistor level (or N/P) partitioning places ”N-type”

and ”P-type” transistors on two different layers. It allows independent optimization of each

layer for the type of transistor. It also allows the use of largely standard 2D CAD tools for

place and route. Finally, it also does not require any metal layers in between the two layers,

simplifying the manufacturing process. However, it requires a redesign of standard library

cells to use 3D stacked transistors. Further, static CMOS designs require a via for each N/P

transistor pair, which results in a ≈10-20% area overhead [121, 122].

Gate Level or Intra-Block Partitioning Gate level or intra-block partitioning parti-

tions logic or memory blocks at a gate level granularity. Adjacent gates can either be in the

same layer or in a different layer. This approach allows the use of standard CMOS libraries

and also has a lower via area overhead (at most 0.5% [123]).

Intra-block partitioning as a result of cell-on-cell stacking can reduce the footprint of a

core by up to 50%. A smaller footprint reduces the intra-block wire length, and reduces the

latency of some critical paths in the core such as the results bypass path, the load-to-use,

and the notification of branch misprediction. It also reduces the span of the clock tree and

power delivery networks, and their power consumption.

Block Level Partitioning Block level partitioning partitions the design by placing indi-

vidual blocks such as ALUs, register files, or instruction decoders, as units in the different

layers. It primarily has the same trade-offs as intra-block partitioning. However, there is

much less flexibility in 3D routing and, correspondingly, the wire length reductions are much

smaller. Further, it delivers no gains when the critical path is within a block as opposed to

across blocks.

In this work, based on the capabilities of M3D, and our desire to keep the analysis at the

architecture level, we focus on intra-block partitioning.

4.2.3 Prior Work on 3D Partitioning

Partitioning for TSV3D Prior architectural work on partitioning for TSV3D has exam-

ined placing cores on top of other cores [16], block level partitioning [15], and intra-block

partitioning [105, 124]. In this section, we discuss the intra-block partitioning work, and

leave the other, less relevant work, for Section 5.3.

Puttaswamy and Loh [105] examine several modules within a core and partition them into

up to four layer. The partition is based on the activity of the gates. Since the gates with

the highest activity are likely to consume the most power, the authors place them in the
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highest layer, which is closest to the heat sink. Their goal is to alleviate thermal issues. For

example, the least significant bits of an adder are placed in the top layer. However, such

partition is not desirable with TSV technology. As we show in Table 4.1, the area of a single

1.3µm-diameter TSV, together with its KOZ, is equal to 8.0% of an adder’s area. Hence,

the overhead of the 16 TSVs proposed in [105] would be 128% of the area of the adder itself.

This approach would negate any wire delay benefits. The same conclusion is reached by

other researchers using 3D floor-planning tools on general logic stages [125, 111]. They find

no wire delay reductions due to the high area overhead of TSVs.

Puttaswamy and Loh [124] also examine the 3D partitioning of SRAM array structures

to reduce the wire delay of an access. The proposed strategies are bit partitioning (BP),

word partitioning (WP), and port partitioning (PP). They are shown in Figure 4.3. These

techniques partition the bits, words and ports, respectively, into two or more layers. For a

two-layer design, BP has the lowest access latency, thanks to having the decoder drive only

half of the bit length. Port partitioning could provide maximum gains due to the quadratic

decrease in area with the reduction in number of ports. However, it requires two vias per

bit cell (Figure 4.3). As indicated above, TSVs take too much area to make these designs

attractive. For example, the area of a single SRAM bitcell is ≈0.05µm2 at 14nm [118],

whereas the area of a single 1.3µm-diameter TSV, together with its KOZ, is ≈6.25µm2.
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N Words

M/2 Bits

Mux
Sense Amps

N/2 Words

1-to-N/2 
Decoder

1-to-N/2 
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1-to-2 
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(a) Bit Partitioning (b) Word Partitioning

Bitlines: Ports 0, 1

Via

Bitlines: Ports 3, 4
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Ports 3, 4
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(c) Port Partitioning

Figure 4.3: Partitioning an SRAM array using bit partitioning (a), word partitioning (b),
and port partitioning (c).

Partitioning for M3D Some researchers have proposed to exploit the multi-layer ca-

pabilities of M3D integration to enhance the SRAM structures. Specifically, Srinivasa et
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al. [119] use the second layer in an M3D design to add column access capability to a reg-

ular SRAM cell. Further, in [126], they place a few transistors on top of the SRAM cell

either to improve the robustness/noise margins or to provide compute in memory support

by performing simple operations such as AND and OR.

Several designs propose to partition the SRAM cell into two levels by placing n-type and

p-type transistors on different levels [127, 128]. As we discuss in Section 4.2.2, we choose

to partition the design at a gate level, which has different tradeoffs than transistor-level

partitioning.

Kong et al. [129] study the benefits of using M3D integration to build large SRAM arrays

such as the last-level cache. They focus on large single-ported structures. In this work, we

focus on partitioning the processor core, where several key SRAM structures are small and

multi-ported.

Most of these works [119, 126, 129] use the CACTI tool [52] to obtain the access energy

and delay of SRAM structures. We use the same tool.

4.2.4 M3D: Opportunities and Challenges

Opportunities Modern core designs are constrained due to the historically slower scaling

of wire delay relative to transistor delay. This is evident in wire-dominated structures such

as SRAM arrays and wire-dominated critical paths such as the results bypass path. M3D

integration provides a great opportunity to reduce the wire lengths and therefore the delays

by partitioning at gate-level granularity.

M3D integration allows the optimization of the manufacturing process of each layer sep-

arately, to attain different power-performance points. For example, the bottom layer can

use bulk transistors for a high-performance (HP) process, whereas the top layer can use the

slower but lower power FDSOI transistors. This offers an opportunity for power savings

beyond the simple choice of transistors with different Vt.

Challenges The primary challenge for M3D is manufacturability issues. The top layer in

M3D is fabricated sequentially on top of the bottom one. This step usually involves high

temperature, and may damage the bottom layer’s devices and interconnects. One option is

to use a tungsten-based interconnect in the bottom layer, as it has a higher melting point

than copper [106, 18]. Unfortunately, tungsten has 3x higher resistance than copper and

results in a significant wire delay increase. Further, the use of tungsten may still not be

sufficient, as the bottom layer transistors can still be damaged.

Alternatively, the top layer can be processed at a significantly lower temperature, using
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laser-scan annealing techniques [116, 117]. However, the M3D IC manufactured using this

process showed a performance degradation of 27.8% and 16.8% for PMOS and NMOS de-

vices, respectively [117]. A more recent study estimates that the delay of an inverter in the

top layer degrades by 17% [4]. As a result, the authors found that gate-level partitioning

LDPC and AES blocks causes their frequency to go down by 7.5% and 9%, respectively.

Overall, the lower performance of the top layer poses challenges to the partitioning of the

core.

A second challenge is a scarcity of CAD tools for 3D, which are currently being actively

developed [114, 115]. In this work, we do not address this challenge. In the following Section,

we first present the design of core assuming iso-performance in both tiers and later address

the hetero-performance case in Section 4.4.

4.3 M3D CORE DESIGN

M3D integration allows a fine grained partitioning of core at an intra block granularity.

As we discussed in Section 4.2, the primary beneficiary is the wire length and wire delay

reduction. In this section, we discuss how to partition a core in M3D. For now, we assume

that both M3D layers have the same performance. We present a hetero-layer design in the

next section. We consider in turn the logic stages, storage structures, and other structures.

4.3.1 Logic Stages

The wires in a logic pipeline stage can be classified into local, semi-global, and global.

Local wires connect gates that are close to each other. These wires comprise most of the

intra-stage critical path wire delay. To optimize these wires, the best approach is to use

CAD tools for place and route. It has been shown that 3D floor-planners customized for

M3D integration reduce the lengths of local wires by up to 25% [111, 130]. There is little

scope for further optimization of local wires using micro-architectural insights.

Semi-global wires connect one logic block to another logic block within a stage. These

wires are often critical for performance from a micro-architectural viewpoint. Some examples

are wires in the micro-architectural paths that implement the ALU plus bypass, the load

to use, and the branch misprediction notification. Semi-global wires are not only critical

to the frequency attained by the specific pipeline stage, but are also critical to the IPC of

the core. M3D integration of a pipeline stage can reduce the footprint of the stage by up

to 50% — therefore requiring the semi-global wires to traverse only half the distance. By
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Figure 4.4: Two cores sharing the L2 and the router stop.

exploiting this, we reduce the latency of load to use and branch misprediction notification

(similar to [15]).

Global wires span a significant section of the chip and may take multiple clock cycles.

At best, the global footprint reduction halves the length of a global wire. An example of

global wire is a link in an Network-on-Chip (NoC). If we manage to fold each core into half

of its original area, two cores can share a single NoC router stop (Figure 4.4). In this case,

we halve the distance between neighboring routers and reduce the number of hops. This

reduces the average network delay for the same number of cores.

To verify the impact of wirelength reduction in logic stages, we synthesize and lay out

a 64-bit adder along with a bypass path in 45nm technology. We use the M3D place and

route tools developed by Lim et al. [115, 111]. The results show that a two-layer M3D

implementation achieves a 15% higher frequency. Moreover, the footprint reduction observed

is 41%. This reduction is in line with numbers reported elsewhere [111, 130]. If we had laid

out multiple ALUs with their bypass paths, the contribution of wire delay toward the stage

delay would be higher, since the length of the bypass path increases quadratically with the

number of ALUs. In the case of four ALUs with bypass paths, we estimate a 28% higher

frequency, 10% lower energy, and 41% lower footprint than a 2D design. Further, at the

15nm technology node that we consider in this work, the wire delay contribution is higher

and, therefore, the frequency gain would be higher.

For the case of TSV3D we use the partitioning technique and parameters in [105] to

estimate that the four ALUs and bypass paths enable 27% higher frequency, 10% lower

energy, and 38% lower footprint than 2D designs.
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4.3.2 Storage Structures

The storage structures in a core consist of SRAM structures such as the register file and

branch prediction table, and CAM structures such as the issue queue and load/store queue.

CAM and RAM structures are structurally very similar in their layout. Therefore, we treat

them similarly for the purpose of partitioning them in 3D.

An SRAM array is given by its height and width. The height is the number of words

(Nwords). The width is the number of bits per word (Nbits). A wordline is as long as the

width of the array; a bitline is as long as the height of the array.

Equations 4.1 and 4.2 give the width and height of the array, where Nr,Nw are the number

of read and write ports.

Width = Nbits ∗ (BitcellWidth+K1 ∗ (Nr +Nw)) (4.1)

Height = Nwords ∗ (BitcellHeight+K2 ∗ (Nr +Nw)) (4.2)

Area = Width ∗Height ∝ (Nr +Nw)2 (4.3)

As we partition an array into two layers, we keep in mind some basic rules. The area is

proportional to the square of the number of ports. Both the array access latency and the

energy consumed depend in part on the length of the wordline and bitline. The wordline

and bitline length depend on the width and height of the array, respectively.
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Bitline

Height  -- # of words

W
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  -

-#
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Figure 4.5: Basic structure of an SRAM array.

We model the partitioning of the SRAM arrays using CACTI [52]. We use high perfor-

mance (HP) transistors and, to be both conservative and reasonably accurate, use 22nm

technology parameters. MIV and TSV overheads are modeled using 50nm and 1.3µm diam-
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eters, respectively, as per Section 4.2.1.

We partition the following SRAM arrays in the core: register file (RF), issue queue (IQ),

store queue (SQ), load queue (LQ), register alias table (RAT), branch prediction table

(BPT), BTB, data and instruction TLB, data and instruction L1, and L2 cache. We parti-

tion them using bit partitioning (BP), word partitioning (WP), and port partitioning (PP)

(Section 4.2.2), and measure the reduction (or increase) in access latency, access energy, and

area footprint compared a 2D design. As examples, we describe the partitioning of a register

file and a branch predictor table. The former has 160 words of 64 bits, 12 read ports, and 6

write ports. The latter has 4096 words of 8 bits and 1 port.

Bit Partitioning (BP) BP spreads half of each word in a layer, which reduces the word-

line length. Each word requires a via across the layers (Figure 4.3(a)). Table 4.3 shows the

percentage of improvement we attain by bit partitioning our two structures using M3D and

TSV3D, compared to a 2D structure.

Table 4.3: Percentage reduction in access latency, access energy, and area footprint through
bit partitioning.

Register File (RF) Branch Pred. Table (BPT)

Latency Energy Footprint Latency Energy Footprint

M3D 28% 22% 40% 14% 15% 37%

TSV3D 25% 19% 31% 4% -3% 4%

From the table, we observe that M3D performs better than TSV3D in all metrics. This

is expected, as the diameter of an MIV is much smaller than that of a TSV. Furthermore,

we see that the gains in the multiported register file are much higher than in the single-

ported branch prediction table. This is because of two reasons related to the much larger

area required by multiported structures. First, when the area is large, the wire component

of the SRAM access delay is relatively higher; hence partitioning will be relatively more

beneficial. Second, when the area is large, the overhead of the vias becomes less noticeable,

which enables higher improvements. This is especially evident in the case of TSV3D, which

only marginally improves the BPT.

Word Partitioning (WP) WP spreads half of the words in each layer, which reduces

the bitline length. The number of vias needed is equal to the array width (Figure 4.3(b)).

Table 4.4 shows the percentage of improvement we attain by word partitioning our two

structures using M3D and TSV3D, compared to a 2D structure.
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Table 4.4: Percentage reduction in access latency, access energy, and area footprint through
word partitioning.

Register File (RF) Branch Pred. Table (BPT)

Latency Energy Footprint Latency Energy Footprint

M3D 27% 35% 43% 14% 36% 57%

TSV 24% 32% 39% -6% 9% 19%

The observations from BP hold true for WP as well. They are both affected in similar

ways by the larger area induced by multiple ports, and the larger size of TSVs. However, in

general, BP partitioning is preferable over WP, as wordlines are responsible for more energy

and delay than bitlines. Interestingly, the case of the branch prediction table is an exception:

WP proves to be a better design than BP in M3D. The reason is the aspect ratio of the

branch prediction table’s array. The array’s height is much higher than its width. Hence,

WP’s ability to halve the bitlines delivers significant savings.

Port Partitioning (PP) PP places the SRAM bit cell with half of its ports in one layer

and the rest of the ports with their access transistors in the second layer. It needs two vias

per SRAM bit cell as shown in Figure 4.3(c). Table 4.5 shows the percentage of improvement

we attain by port partitioning our two structures using M3D and TSV3D, compared to a

2D structure.

Table 4.5: Percentage reduction in access latency, access energy, and area footprint through
port partitioning.

Register File (RF) Branch Pred. Table (BPT)

Latency Energy Footprint Latency Energy Footprint

M3D 41% 38% 56% - - -

TSV -361% -84% -498% - - -

Generally, halving the number of ports is an excellent strategy: it reduces both the word-

line length and the bitline length nearly by half (Equations 4.1 and 4.2). In M3D, this

reduces the latency, energy, and area by a large amount. As can be seen in Table 4.5, the

improvements in the RF are large. Of course, PP cannot be applied to the BPT because

the latter is single ported.

PP can be applied to M3D because the MIVs are very thin. It is possible to place two vias

per RF SRAM cell — especially since a multiported SRAM cell is larger than the typical

SRAM cell. However, TSVs are too thick to be used in PP. As shown in Table 4.5, the cell
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area increases by 498%, creating large increases in access latency and energy.

Overall, we conclude that, for M3D, PP is the best design for multiported structures,

while BP is usually the best one for single-ported ones. The exception to the latter is when

the SRAM array has a much higher height than width, in which case WP is best. TSV3D

is much less effective, and is not compatible with PP. Table 4.6 shows the best partitioning

strategy for each SRAM structure in the core we evaluate in Section 4.6 — both for M3D

and TSV3D. The table shows the percentage of improvement we attain in access latency,

access energy, and footprint compared to a 2D structure.

Table 4.6: Best partition for each structure and percentage reduction in latency, energy and
area footprint.

Structure Best Latency Energy Footprint
with per bank Partition Reduc.(%) Reduc.(%) Reduc.(%)
Words;Bits/Word M3D—TSV M3D—TSV M3D—TSV M3D—TSV

RF[160;64] PP—BP 41—25 38—19 56—41

IQ[84;16] PP—BP 26—17 35—5 50—32

SQ[56;48] PP—BP 14—(-3) 21—(-18) 44—0

LQ[72;48] PP—BP 15—2 36—8 48—10

RAT[32;8] PP—WP 20—10 32—5 45—(-11)

BPT[4096;8] WP—BP 14—4 36—(-3) 58—4

BTB[4096;32] BP—BP 15—(-6) 20—(-10) 37—(-20)

DTLB[64*8;64] BP—BP 26—18 28—20 35—22

ITLB[64*4;64] BP—BP 20—7 28—11 36—11

IL1[256*4;256] BP—BP 30—14 36—23 41—25

DL1[256*4;256] BP—BP 41—31 40—33 44—34

L2[1024*8;512] BP—BP 32—24 47—42 53—46

Since the distance from a core to another core and its L2 cache is now reduced, two cores

can now share their L2 caches without increasing the overall latency. (Figure 4.4).

4.3.3 Clock Tree and Power Delivery Network

The clock-tree network and the power delivery network (PDN) only have to cover half of

the footprint of a 2D design. Since the clock tree consumes substantial dynamic power, the

power savings due to the reduced footprint can be significant. There are two options for

designing the power delivery network in M3D chips. One option is to give each of the two

layers its own PDN. This design increases the number of metal wires, which increases both

the via routing complexity and the cost. Alternatively, one can use a single PDN that is
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present in the top layer and then supply power to the bottom layer through MIVs. Billoint

et al. [131] suggests that this second approach is preferable.

4.4 HETERO LAYER M3D DESIGN

Low temperature processing of the top layer in M3D causes the top layer to have lower

performance than the bottom one. As indicated in Section 4.2.4, current projections suggest

that the overall frequency reduction is 9% [4]. Consequently, we modify the core partitioning

strategies of Section 4.3 to alleviate the impact of the slowdown. With these strategies, we

design a hetero-layer M3D core.

Our approach is shown in Table 4.7. In logic pipeline stages, we identify the critical paths

in the stage and place them in the bottom layer. The non-critical paths are placed in the

top layer and do not slow down the stage. This is possible because more than 60% of the

transistors in a typical stage are high Vt, and fewer than 25% are low Vt [78] (the rest are

regular Vt). Hence, there are always many non-critical paths.

In storage structures, the critical path spans the entire array. Hence, we cannot use

the same approach as the logic. Instead, we use two separate techniques based on the

partitioning strategy applied in Section 4.3.2. In port partitioning, we exploit the fact that

the two inverters in the SRAM bit cell are in the bottom layer (Figure 4.3(c)). Specifically,

we partition the ports asymmetrically between the two layers, and increase the sizes of

the access transistors in the ports in the top layer, which makes them relatively faster. In

bit/word partitioning, we partition the array asymmetrically between the layers, giving a

smaller section to the top layer. Further, we use the area headroom in the top layer to

increase the sizes of the bit cells. Finally, in mixed stages, we combine the two techniques.

In this section, we present these techniques.

Table 4.7: Partitioning techniques for a hetero-layer M3D core.

Logic Stages Critical paths in bottom layer; non-critical paths in top

Port Asymmetric partitioning of ports, and
Storage Partitioning larger access transistors in top layer
Structures Bit or Word Asymmetric partitioning of array, and

Partitioning larger bit cells in top layer

Mixed Stages Combination of the previous two rows
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4.4.1 Logic Stages

We analyze an out-of-order superscalar processor and identify three primarily logic ori-

ented stages: decode, dispatch, and execute in integer and FP units. We partition them as

per Table 4.7. We give two examples below.

Partitioning an Integer Execution Unit Figure 4.6 shows a 64-bit carry skip adder.

The critical path is shown shaded. It consists of a carry propagate block, a sum block, 15

muxes and a final sum block. The majority of the blocks, i.e., the remaining 15 4-bit carry

propagate blocks and sum blocks are not in the critical path. The farther away a propagate

block is from the LSB, the higher slack it has. Therefore, we place the carry propagate blocks

of bits {32:63} and the sum blocks of bits {28:59} in the top layer. There is no impact on

the critical path and hence the stage delay.

M
ux

Sum

Bits 4:7 Bits 0:3Bits 56:59Bits 60:63

Out 0:3Out 4:7Out 56:59Out 60:63

Carry
Propagate

Figure 4.6: ALU with shaded critical path blocks.

Using our M3D place and route tools of Section 4.3.1, we find that only 1.5% of the gates

in the 64-bit adder are in the critical path. We place them in the bottom layer. Even if we

assumed that the top layer was 20% slower — and, hence, we need a 20% slack — we would

only have 38% of the gates in the critical path. Hence, we can always find 50% of gates that

are not critical and place them in the top layer.

Partitioning Decode Modern x86 processors have a set of simple decoders and a complex

decoder. Most common operations that translate into a single µop are processed by the

simple decoders. More complex and uncommon instructions utilize the complex decoder

and, occasionally, a special µcode ROM to generate multiple µops. In our hetero-layer M3D

design, we place the simple decoders in the bottom layer. The complex decoder and the
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µcode ROM are placed in top layer and take one additional cycle. The µcode ROM access

already takes multiple cycles.

4.4.2 Storage Structures

Port Partitioning (PP) As shown in Table 4.6, PP is the best strategy for multiported

arrays such as the RF, IQ, SQ, LQ, and RAT. In a port-partitioned cell, the two inverters

are left in the bottom layer, while the ports are divided into the top and bottom layers. In a

hetero-layer M3D, we assign fewer ports to the top layer than to the bottom one, and double

the width of transistors of the ports in the top layer. The goal is to make the top layer’s

transistors as fast as the bottom layer’s ones and still use the same footprint in both layers.

We measure that the area of the two inverters in a bitcell is comparable to that of two

ports. However, the optimal port partitioning depends on the number of ports. For example,

consider a register file with 12 read and 6 write ports. We find that the least-footprint

partition places 10 ports in the lower layer and 8 ports (with double-width transistors) in

the top one. In this case, Table 4.8 shows that the register file uses about 47% less area than

in a 2D layout. This is 9 fewer percentage points than the partition for same-performance

M3D layers (Table 4.6).

The wider access transistors alleviate the impact of the bitline delay in the top layer.

However, they increase the capacitance on the wordlines slightly. This increases the cell

access energy and wordline delay slightly. We measured the resulting access latency, energy

and footprint of the RF, IQ, SQ, LQ, and RAT structures. Table 4.8 shows the savings

compared to a 2D structure. These are substantial reductions. Compared to the partition

for same-performance layers in Table 4.6, the numbers are only slightly lower.

Table 4.8: Percentage reduction in access latency, access energy, and area footprint with our
hetero-layer partitioning compared to a 2D layout.

RF IQ SQ LQ RAT BPT BTB DTLB ITLB IL1 DL1 L2
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Latency 40 24 13 13 20 13 13 23 18 27 37 29

Energy 32 30 17 30 24 30 16 25 25 33 36 42

Area 47 47 43 47 44 40 26 25 28 30 31 42

Bit/Word Partitioning (BP/WP) Our technique to alleviate the impact of the slower

top layer in structures using BP/WP consists of two steps. First, we perform BP/WP

asymmetrically across layers, giving a larger section of the array to the bottom layer. Next,
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we use larger transistors in the top layer. We tune these two operations to obtain the

minimum access latency, while tolerating a slight increase in access energy and footprint. In

general, a partition that gives 2/3 of the array to the bottom layer, together with doubling

the transistor width in the top layer works best. Table 4.8 shows the reductions of access

latency, energy, and footprint of these structures compared to a 2D layout. Again, these

are large reductions, only slightly smaller than those under the same-performance partition

(Table 4.6).

In Table 4.8, we see that L1 and L2 caches have large latency reductions. Since the core’s

frequency is determined by the slowest pipeline stage, we can tune the caches’ partitions to

save more on footprint at the expense of less on latency.

4.4.3 Stages with Logic and SRAM Structures

Most storage structures are part of a stage that also contains logic components. We discuss

the modifications to such stages in two parts: this subsection for SRAMs and the next one

for CAMs.

Rename The rename stage reads from and writes to the Register Alias Table (RAT),

which is a multiported structure. We use PP for the RAT as per Section 4.4.2. In parallel to

the RAT access, a dependency check is performed among the registers being renamed. This

check is not in the critical path [45]. Hence, we place this checking logic and the shadow

RAT tables used for checkpointing in the top layer. We place other critical structures such

as the decoder to the RAT’s RAM array in the bottom layer.

Fetch & Branch Prediction The fetch unit mainly consists of accessing the IL1 cache

and computing the next PC. The IL1 cache uses BP as per Section 4.3.2. Computing the

next PC has a few different parallel paths: BTB access, branch prediction, Return Address

Stack (RAS) access, and incrementing PC. Of these, only branch prediction and BTB access

are critical to stage delay. Hence, we place RAS and PC increment in the top layer.

Since the BTB is critical, we use asymmetric BP coupled with larger transistors in the

top layer. As shown in Table 4.8, we reduce its access energy by 16% compared to a 2D

layout, which is 4 percentage points fewer than the partition for same-performance M3D

layers (Table 4.6).

Our core employs a tournament branch predictor, which contains a selector table indexed

by a hash of PC and global branch history. The selector output drives a mux that chooses

between a local and global predictor. We observe that the critical path is formed by the
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selector and mux, and not by the local or global predictors. Therefore, we propose an orga-

nization where we use asymmetric BP for the selector, local predictor, and global predictor.

However, we place the larger section of the selector array in the bottom layer, and the larger

sections of the two predictors in the top layer. We save 40% of footprint relative to a 2D

layout (Table 4.8).

4.4.4 Stages with Logic and CAM Structures

CAM arrays are similar to SRAM arrays, except that they include an additional wire

per cell called the Match line, which is connected to the cell. A few additional transistors

associated with the cell (usually 4) pull the match line low when the bit stored in the cell

is different than the one being compared to it (i.e., the Tag bit). The critical path in this

structure is the time it takes to drive the tag line, plus the time for the match line to go low,

plus any peripheral logic that operates on the output of the match lines.

In a core, CAM structures are found in the IQ, LQ, SQ, and the tag arrays of caches. For

the tag arrays of caches, we use the same organization as the associated cache, namely, BP.

The IQ is multiported with as many ports as the issue width, and the LQ and SQ have two

ports each. These structures use asymmetric PP and larger transistors in the top layer.

Issue Issue in modern processors consists of two pipeline stages, namely Wakeup and

Select. During the Wakeup stage, the IQ is accessed to mark as ready the dependent

operands. They will determine the instructions that can be executed next.

During the Select stage, the select logic is activated to pick the instructions to execute.

The selection logic is made up of multi-level arbitration steps, and consists of two phases:

a Request phase in which the ready signal is propagated forward from each arbiter, and

a Grant phase in which one of the requesters is selected by the arbiter. At a particular

arbitration level, the generation of the grant signal is in turn decomposed into two parts.

First, the local priorities at this level are compared, and one requester is selected for the grant

signal. Second, the signal from this requester is ANDed with an incoming grant signal from

a higher level in the arbitration hierarchy, and an output is generated. Such an organization

minimizes the critical path delay in selection logic [132].

The first part of grant phase, when each arbiter level generates its local grant signal, is

not critical. Hence, we place this logic in the top M3D layer. The second part, when the

grant signals are ANDed and propagated, is critical. We place this logic along with the

forward request propagation logic in the bottom layer. With this, the Select stage has the

same latency as in the partition for same-performance layers, without increasing the area or
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power.

Load Store Unit The LQ and SQ in the Load Store Unit (LSU) are CAM structures

searched by incoming store and load requests. When a load searching the SQ hits, the value

from the youngest matching store is forwarded to the load. This comprises the critical path

in a LSU [133]. The search in the LQ, and the corresponding squash on a match are not

critical to the stage delay. Therefore, the critical path in the stage consists of the CAM

search of the SQ, a priority encoder to find the youngest store, and the read from the store

buffer. For the CAM SQ, we use the usual PP methodology with bigger transistors in the top

layer. We place the priority encoder in the bottom layer. The store buffer uses asymmetric

BP with more bits in the bottom layer. Finally, the less critical LQ uses asymmetric PP

occupying more area in the top layer. Compared to the partition for same-performance

layers in Table 4.8, this design attains a roughly similar footprint reduction and only a slight

increase in access latency and energy (Table 4.6).

4.5 ARCHITECTURES ENABLED BY M3D

M3D enables several types of architectures. We briefly discuss them now.

4.5.1 Exploiting Wire Delay Reduction in Conventional Cores

One can use conventional cores in M3D and exploit the reduction in wire delay in both logic

and storage stages. This can be done in three possible ways. First, wire delay reductions can

be translated into reductions in cycle time, which allows a higher core frequency. However,

this approach increases the power density.

Alternatively, one can increase the sizes or the number of ports for some of the storage

structures, while maintaining the same frequency as a 2D core. Note that most of the

structures that are bottlenecks in wide-issue cores benefit significantly from M3D. These

include multiported issue queues, multiported register files, and bypass networks. Therefore,

one can increase the issue width of the core while maintaining the same frequency.

Finally, another alternative design is to simply operate the M3D design at the same

frequency as the 2D core, and lower the voltage. Reducing the voltage lowers the power

consumption and the power density. The M3D design can now operate more cores, using

leeway in power consumption, for the same power budget. We evaluate these three designs

in Section 4.7.2.
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4.5.2 Hetero M3D design with HP and LP layers

It is possible that M3D with equal-performance layers may be manufacturable in the

future. Even in this case, our partitioning techniques may be applicable. Specifically, to

save overall energy, one may choose to build the two layers with different technology: high

performance (HP) bulk transistors in the bottom layer and low performance (LP) FDSOI

transistors in the top layer. In this case, the top layer has lower performance and power, while

the bottom layer has high performance and power. Our proposed partitioning techniques

apply directly in this environment. We evaluate such a scenario in Section 4.7.1.

4.5.3 Novel Architectures

Specialization is increasingly common in architectures, and is necessary to provide tight

integration between specialized engines and general-purpose cores, to support fine-grain

communication between the two. However, such architectures have to make compromises in

a 2D design. M3D integration facilitates such tight integration, e.g., by supporting a set of

accelerators in the top layer without compromising the layout of general-purpose cores in

the bottom layer.

Further, M3D integration allows heterogeneous integration of process technologies, such

as non-volatile memories on top of regular logic cells [113]. This allows new computing

paradigms that can take advantage of huge amounts of persistent memory very close to the

compute engines. Heterogeneous M3D integration is expected to provide 50x improvement

in performance at the same power [110].

4.5.4 Other Techniques

A different class of techniques such as time borrowing, clock skew, and speculative setting

of stage boundaries [134, 135, 136] can be used to address the problem of slower top tier.

However this approach has a few caveats. First its applicability is limited. For example, it

cannot help in the case of an intra stage loop such as ALU+bypass. Second, it constrains

the 3D routing for elements such as clock tree, instead of exploiting them. Finally, the

complexities of such a design to carefully manage clock skew etc., would have more overheads.

Therefore, we refrain from applying fancier speculative circuit techniques in our M3D core

design.
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4.6 EVALUATION METHODOLOGY

We evaluate the performance of our designs using the Multi2Sim [102] architectural sim-

ulator. We model a processor with 4 cores. Each core is 6-wide and out of order. Table 4.9

shows the detailed parameters of the modeled architecture. We model the 3D SRAM and

CAM arrays using CACTI as discussed in Section 4.3.2. We obtain the power numbers of

the logic stages by using the HP-CMOS process of McPAT [38]. We set the voltage to the

nominal Vdd at 22nm, namely 0.8V [52, 38]. We set the frequency by analyzing all the core

structures we discussed, and using CACTI to find the maximum access time of any structure.

Based on this, the frequency is set to 3.3GHz.

Table 4.9: Parameters of the simulated architecture for the evaluation of an M3D Core.

Parameter Value

Cores 4 out-of-order cores, f=3.3GHz, Vdd=0.8V
Core width Dispatch/Issue/Commit: 4/6/4
Int/FP RF; ROB 160/160 regs; 192 entries
Issue queue 84 entries
Ld/St queue 72/56 entries
Branch prediction Tournament, with 4K entries in selector, in local, and

in global predictor, 32-entry RAS, 4way 4K-entry BTB

Functional units
4 ALU 1 cycle
2 Int Mult/Div 2/4 cycles
2 LSU 1 cycle
2 FPU Add/Mult/Div 2/4/8 cycles; Add/Mult issue every cycle;

Div issues every 8 cycles

Private I-cache 32KB, 4way, 64B line, Round-trip (RT): 3 cycles
Private D-cache 32KB, 8way, WB, 64B line, RT: 4cycles
Private L2 256KB, 8way, WB, 64B line, RT: 10cycles
Shared L3 Per core: 2MB, 16way, WB, 64B line, RT: 32cycles
DRAM latency RT: 50ns

Network Ring with MESI directory-based protocol

We model M3D with the layers shown in Figure 4.1. The layers are: the heat sink,

Integrated Heat Spreader (IHS), Thermal Interface Material (TIM), bottom bulk silicon,

bottom active silicon layer, bottom metal layer, Inter Layer Dielectric (ILD), top active

silicon layer, and top metal layer. Note that the bottom part of the picture ends up being on

top in practice; we show the figure this way for the sake of consistency with manufacturing

terminology.

The core blocks are partitioned across the two silicon layers. Note that M3D requires only
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3-4 stacked metal wires in the bottom metal layer [120]. Moreover, the inter layer dielectric

is very thin. As a result, the distance between the two active silicon layers is only ≈1µm [41].

The thermal conductivity of the different layers is shown in Table 4.10. These values are

obtained from recent work on thermal models for TSV3D [107].

Table 4.10: Thermal modeling parameters for M3D & TSV3D.

Layer M3D Dimensions TSV3D Dimensions Thermal Conductivity

Top Metal 12 µm 12 µm 12 W/m-K
Top Silicon 100nm 20µm 120 W/m-K

ILD 100nm 20 µm ≈1.5 W/m-K
Bottom Metal <1µm 12µm 12 W/m-K
Bottom Silicon 100µm 100µm 120 W/m-K

TIM 50 µm 50 µm 5 W/m-K
IHS 3.0x3.0x0.1 cm3 3.0x3.0x0.1 cm3 400 W/m-K

HeatSink 6.0x6.0x0.7cm3 6.0x6.0x0.7cm3 400 W/m-K

We use Hotspot’s extension [137, 138] to model the effects of heterogeneous components

in the same layer. We model both lateral and vertical thermal conduction using the more

accurate grid-model. We first obtain the steady state temperature and then run the trace

to obtain the operating temperature.

We evaluate M3D and TSV3D designs for both single cores and multicores. For the

single-core experiments, we run 21 SPEC2006 applications. For the multicore experiments,

we run 12 SPLASH2 applications and 3 PARSEC ones; the same applications used for the

evaluation of HetCore in Section 3.6.

4.6.1 Architecture Configurations Evaluated

We compare a variety of architecture configurations. In the following, we refer to M3D

with same-performance layers as iso-layer M3D, and M3D with different-performance layers

as hetero-layer M3D.

2D Baseline. Traditionally, the clock cycle time of a microprocessor has been limited by

the wakeup plus select operations in the issue stage, or by the ALU plus bypass paths [45].

Reduction in these stage latencies has been used by previous work [105], as the potential

frequency gains. However, in recent processors, the wakeup and select steps are split into two

stages [44]. Further, the register file access has emerged as a key bottleneck for wide-issue

cores in addition to the ALU plus bypass paths. Of all the core structures we discussed,

we measure with CACTI that the one that limits the core cycle time is the access time
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of the register file at 293ps. Hence, we set the frequency of our Base 2D core to 3.3 GHz

(Table 4.11).

Table 4.11: Core configurations evaluated.

Name Configuration

Single Core

Base Baseline 2D, f=3.3GHz
M3D-Iso Iso-layer M3D, f=3.83GHz
M3D-HetNaive Hetero-layer M3D without modifications, f=3.5GHz
M3D-Het Hetero-layer M3D with our modifications, f=3.76GHz
M3D-HetAgg Aggressive M3D-Het, f=4.34GHz
TSV3D Conventional TSV3D, f=3.3GHz

MultiCore

M3D-Het M3D-Het + Shared L2, 4 cores, f=3.76GHz
M3D-Het-W M3D-Het + Shared L2, Issue width=8, 4 cores, f=3.3GHz
M3D-Het-2X M3D-Het + Shared L2, 8 cores, f=3.3GHz, Vdd=0.75V
TSV3D Conventional TSV3D + Shared L2, 4 cores, f=3.3GHz

Iso-layer M3D. Table 4.6 shows the reduction in the access latency of different structures

in iso-layer M3D relative to 2D. We see that the RF and IQ access latency reduce by 41%

and 26%, respectively. Further, in Section 4.3.1, we estimate that four ALUs with bypass

paths can sustain a 28% higher frequency. Hence, the potential of M3D is very high. If we

consider the traditional frequency-critical structures (similar to [105]), we find the frequency

is limited by reductions of IQ access at 26%. This corresponds to 3.3/(1-0.26)=4.46 GHz.

We call this design, M3D-IsoAgg, but do not evaluate due to space considerations.

However, to be very conservative, we assume that all the array structures in Table 4.6

are in the critical path. In particular, we assume that the BPT and BTB arrays need to

be accessed in a single cycle. Based on this assumption, we identify the structure with the

least reduction in access time, i.e., SQ and BPT with 14%. With this estimate, we set the

frequency of our M3D-Iso core to 3.3/(1-0.14)=3.83GHz (Table 4.11).

TSV3D. The corresponding numbers for TSV in Table 4.6 are sometimes negative. Hence,

TSVs may result in a core slowdown. The large footprint of TSVs makes intra-block 3D

partitioning undesirable. Therefore, we keep the frequency of the TSV3D core the same as

the 2D Base (Table 4.11). However, compared to 2D, we apply latency reductions in load-

to-use and branch misprediction paths saving 1 cycle and 2 cycles of the 4 and 14 cycles

respectively. M3D designs have same reductions.
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Hetero-layer M3D. We consider three designs. The first one, called M3D-HetNaive,

simply takes the M3D-Iso design and slows its frequency by 9% — which is the loss in

frequency estimated by Shi et al. [4] due to the slower top layer (Section 4.2.4). Hence, we

set the frequency of the M3D-HetNaive core to 3.83*0.91≈3.5GHz (Table 4.11).

The second design, called M3D-Het, is the result of our asymmetric partitioning of struc-

tures in Section 4.4. We consider all the array structures in Table 4.8, and take the one

that reduces the access latency the least. Specifically, the SQ, LQ, BPT, and BTB only

reduce the access latency by 13% relative to 2D. Consequently, we set the frequency of the

M3D-Het core to 3.3/(1-0.13)≈3.76GHz (Table 4.11). Finally, we evaluate another design,

M3D-HetAgg that is derived in a manner similar to M3D-IsoAgg. In this case, the fre-

quency is limited by the reductions in IQ access at 24%. The corresponding frequency is

3.3/(1-0.24)≈4.34GHz (Table 4.11).

Advanced hetero-layer M3D. We consider several multi-core designs, shown in Ta-

ble 4.11. In this case, pairs of cores share their L2 cache as in Figure 4.4. We consider a

4-core M3D-Het and two related designs we describe next: a 4-core M3D-Het-W (where W

stands for wide) and an 8-core M3D-Het-2X (where 2X stands for twice the cores). We also

evaluate a 4-core TSV3D.

To configure M3D-Het-W, we take M3D-Het, set its frequency to that of the 2D Base core

(3.3GHz), and increase the core’s width as much as possible. The maximum width is 8. To

configure M3D-Het-2X, we again take M3D-Het and set its frequency to 3.3GHz, and reduce

the voltage as much as possible. Following curves from the literature [25, 19], the maximum

reduction is 50mV, which sets the voltage to 0.75V. At this point the multicore consumes

relatively little power. Hence, we increase the number of cores as much as possible until it

reaches the same power consumption as the 2D Base. The number of cores is in between 7

and 8. We pick 8 as some parallel applications require a power-of-two core count.

4.7 EVALUATION

4.7.1 M3D Performance, Energy and Thermals

Speedup Figure 4.7 shows the speedup of different M3D designs for benchmarks from the

SPEC2006 suite over the Base. An iso-layer M3D design M3D-Iso, in which both layers

have the same performance, is on average 27% faster than Base across the applications. The

performance improvement is due to two reasons. First, M3D-Iso executes at a 16% higher

frequency over Base. Second, some of the critical pipeline paths, specifically, load-to-use
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Figure 4.7: Speedup of different M3D designs over the Base (2D).
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Figure 4.8: Energy of different M3D designs, normalized to Base (2D).

and branch-misprediction are shorter. Therefore the IPC is higher as well. Note that this

is despite the increase in memory latency in terms of core clocks. M3D-HetNaive, with a

slower top layer, has a higher stage delay, and operates only at 6% higher frequency than

Base. Therefore the speedup is only 17% over the Base.

The critical path optimizations that we proposed in Section 4.4 prove useful for M3D-Het.

The average stage delay is now 13% less than Base. As a result M3D-Het, with only 2% lower

frequency than M3D-Iso, recovers most of the performance lost due to the slower top layer.

Overall, M3D-Het is, on average, 25% faster than the Base. Finally, the aggressive M3D

configuration, M3D-HetAgg, operating at 31% higher frequency than the Base, provides a

speedup of 38% over the Base on average. This improvement is substantial.

TSV3D, which operates at the same frequency as Base, is only 10% faster than Base. The

gains are due to the reduction in critical path latencies that we discussed above.

Energy Figure 4.8 shows the energy consumption of different designs normalized to the

Base. M3D designs’ consume lower energy due to a few factors. First, the power consump-

tion of many SRAM structures is significantly smaller (Table 4.6). Second, the clock tree

network’s footprint is only half that of a 2D design. Finally, they execute faster saving leak-

age energy on top of the previous reductions. As a result of these different factors, M3D-Iso

design consumes 41% lower energy than the Base design.

A simple M3D-HetNaive design has a similar power consumption as the M3D-Iso design,

but executes longer. Therefore, the energy consumed is 3 percentage points higher. The
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Figure 4.9: Peak Temperature of different CPU designs.

performance oriented design decisions made for M3D-Het increase the power consumption

of several structures. However, the power consumption increases only in the top layer and

only due to larger transistors. Further, it executes faster than M3D-HetNaive. As a result,

the total energy consumption decreases slightly when compared to M3D-HetNaive and is 2

percentage points higher than iso-layer M3D-Iso design. When compared to the 2D Base

design, the overall energy is reduced by 39%. The more aggressive M3D-HetAgg executes

faster and lowers the energy consumption further by 2 percentage points bringing the total

energy savings to 41%.

In comparison, energy reductions from TSV3D are smaller at 24%. Similar to M3D

designs, the energy savings in TSV3D design are due to the reductions in SRAM arrays and

clock tree power. However, the magnitude of array savings is smaller (Table 4.6).

Hetero-layers using LP Process for Top layer As we discussed in Section 4.5.2, when

it is feasible to manufacture M3D chips with iso-performance in both layers, we can utilize

our techniques to reduce energy consumption by having the top layer in LP process and the

bottom layer in HP process. Such a design will have the same performance as M3D-Het.

We evaluate that this design reduces the energy further by 9 percentage points over the

M3D-Het design. Therefore, if the manufacturing process doesn’t pose any limitations on

top layer performance, the techniques we described can be used to obtain additional power

savings.

Thermal Behavior To study the thermal behavior of M3D designs, we measure the max-

imum temperature reached by each design using the hotspot tool as discussed in Section 4.6.

The average power consumption across all applications in Base is 6.4W for a single core

excluding the L2/L3 caches. The floorplan our chip is based on AMD Ryzen [78]. We

conservatively assume 50% footprint reduction only for calculating the peak temperature.

Figure 4.9 shows the peak temperature reached within the core across all the applications

for Base, M3D-Het and TSV3D designs. The values for other M3D designs are very similar.
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The hottest point in the core varies across applications. For example, the hottest point is in

Issue Queue for dealII, whereas, it is in FPU for gems. The peak temperature in M3D-Het

is on average 5◦C higher than Base. The maximum increase across any application is 10◦C,

and is observed in the Issue Queue for Gamess. These are considerably smaller than the

30◦C average temperature increase observed for TSV3D. In fact, TSV3D gets extremely hot

exceeding Tjmax for a few applications. The high temperatures in TSV3D are due to the

thermal conduction bottlenecks [107, 105].

The temperature increases in M3D-Het are small due to two reasons. First, as we discussed

in Section 4.2, the vertical thermal conduction across the layers is very high. Second, in M3D-

Het, we observe that some of the hotspots such as IQ, RAT, RF have relatively larger power

reductions. For example, IQ consumes 34% less power in M3D-Het, which is higher than the

24% power reduction for the whole core. Therefore, even though the overall power density

of M3D increases by up to 52%, the increase in power density of hotter regions is smaller

(32% in this example). Overall, M3D design is thermally much more efficient than TSV3D.

4.7.2 Multicore Design Choices

In this section, we explore different multicore designs enabled by M3D, as we discussed in

Sections 4.3, 4.5.1 and 4.6 using parallel applications. These are (i) M3D-Het with shared

L2 cache/NoC router stop, (ii) M3D-Het with wider issue cores and (iii) Operating more

cores at iso-frequency and power. The bars M3D-Het, M3D-Het-W and M3D-Het-2X in

Figures 4.10 and 4.11 represent these configurations respectively. The speedup and energy

consumption are normalized to the Base. We also show TSV3D for comparison.

Multicore M3D and Wider Issue M3D M3D-Het design provides a speedup of 26%

while reducing energy consumption by 33% over the Base. The performance gains include the

benefits of a shared L2 and NoC router on top of the gains seen in single core environment.

With respect to the energy, we observe a slight reduction in dynamic power due to the

reduction in the network traffic in addition to the energy saving factors discussed previously.

The bars titled M3D-Het-W in Figures 4.10 and 4.11 show the speedup and energy con-

sumption of a core whose issue width is increased from 6 to 8 while operating at the same

frequency as the Base (Section 4.6.1). Overall, the average speedup and the reduction in

energy consumption are 25% and 27% respectively. These are lower than M3D-Het which

simply increases the frequency.
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Figure 4.10: Speedup of MultiCore CPU designs, over the Base (2D).
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Figure 4.11: Energy of MultiCore CPU designs, normalized to Base (2D).

Iso Power Environment The M3D-Het-2X configuration builds upon M3D-Het design.

Instead of increasing the frequency or making the core wider, M3D-Het-2X operates at iso-

frequency at a reduced voltage. At this lower voltage and power, it can operate more cores

within the same power budget and power density. In particular, we find that M3D-Het can

operate ≈ 2X as many cores as Base for the same power. The design is shown in Figures 4.10

and 4.11 as M3D-Het-2X. The speedup of the parallel applications employing twice as many

cores in M3D-Het-2X is 92% over the Base. At the same time, it consumes 39% lower energy.

Overall, the power consumption is higher than the Base at 13%. Note that these results

are for the hetero-layer design that includes the slowdown of the top layer with conservative

assumptions. In the absence of this degradation, a similar M3D-Iso-2X design consumes 4%

percentage points lower energy than the Base and consumes only 5% more power than the

Base, while operating twice as many cores.

Overall, M3D integration presents exciting opportunities for core partitioning and design.

Of the several design choices that we evaluated for a multicore environment, M3D-Het-2X,

operating twice as many cores under the same power budget and at the same frequency as

Base, provides the best energy efficiency as well as speedup.

4.8 SUMMARY

In this work, we analyzed Monolithic3D, a promising 3D integration technology, that has

area, latency, power and thermal benefits over die stacking with TSVs. This is the first work
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to partition a processor for M3D. We partitioned logic and storage structures into two layers,

taking into account that the top layer has lower-performance transistors. For logic structures,

we place the critical paths in the bottom layer. For storage structures, we asymmetrically

partition them, assigning to the top layer fewer ports with larger access transistors, or a

shorter bitcell subarray with larger bitcells. With very conservative assumptions on M3D

technology, the M3D core executed applications on average 25% faster than a 2D core while

consuming 39% less energy. The aggressive design was 38% faster while consuming 41%

lower energy than a 2D core. Moreover, under a similar power budget, an M3D multicore

could use twice as many cores as one with 2D cores, effectively executing applications on

average 92% faster with 39% less energy. Finally, the M3D core was thermally efficient,

with the peak temperatures marginally higher than a 2D core and substantially lower than

TSV3D design.
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CHAPTER 5: RELATED WORK

5.1 BUILDING VOLTAGE SCALABLE CORES

The prior work related to ScalCore can be divided into two broad categories for compar-

ison. The first category summarizes designs using variable latency and resizing techniques

while the other one summarizes designs focused on scaling cores to the NTV domain.

There are several prior works on variable-latency pipelines within a core. For example,

when process variation makes a pipeline stage too slow, ReCycle [134] uses cycle-time stealing

between stages, and ReVIVaL [139] makes a transparent latch opaque. On the other hand,

Collapsible Pipelines [49] dynamically make a latch transparent when there is a bubble in

the pipeline. Pipeline Stage Unification [50] combines every two or every four pipeline stages

when the frequency is low. In this work, we focus only on combining storage-intensive stages

under dual-Vdd pipelines. Another variable latency pipeline technique is GALS [140, 141].

GALS operates different stages at different f, while we keep the same f for all stages.

Many works propose reconfigurable architectures that adapt to resource occupancy (e.g., [142,

143, 144]). The goal is to improve either performance or power efficiency. While these ideas

are similar to ours, we apply the changes only to adapt to a low-Vdd mode, and have only

two settings. In general, these techniques and our work are complementary.

There is past work on dual-Vdd architectures. Dreslinski et al. [37] apply a different

Vdd to the core and to the caches. The same approach is followed in the Intel Claremont

prototype [25, 26]. A detailed comparison to Claremont is provided in Section 2.5.3. Miller

et al. [145, 146] provide two Vdd rails and allow a core to dynamically switch between them.

In the presence of process variation, this technique hides speed heterogeneity and tolerates

slow functional units. Our work is different in that different stages of the same pipeline have

different Vdds. In addition, pipeline stages do not switch between Vdd rails; ScalCore merely

changes the rails’ Vdd.

5.2 BUILDING CORES USING CMOS-TFET DEVICES

We classify the prior work related to HetCore into (i) heterogeneous systems that utilize

CMOS and TFET cores and (ii) techniques that exploit the combination of fast and slow

units. HetCore employs several techniques of the second kind that have been well studied

in prior work and adapts them to design a core that is better than a baseline hetero-device

core, BaseHet resulting in AdvHet.
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Prior work has studied the integration of some TFET cores and some CMOS cores in the

same chip [69], as well as in a 3D-stack [68]. HetCore pushes device heterogeneity inside

the core for a more energy-efficient design. In [70], the authors proposed a barrier-aware

thread migration scheme to move threads from a TFET core to a CMOS core and vice-versa

to minimize the ED. We performed an iso-area comparison with such barrier-aware thread

migration scheme. It can be shown that AdvHet provides, on average, higher performance

while consuming lower energy. This is because, in [70], the threads on the TFET cores

slow down the program, while the threads on the CMOS cores consume more power than in

AdvHet.

Several researchers (e.g., [85, 86, 87, 12, 63]) have developed TFET or mixed TFET-CMOS

circuits, including SRAM cells, that lay the groundwork for building TFET-CMOS hybrid

cores. We discussed such work in Sections 3.2 and 3.3. HetCore builds upon such work by

proposing CPU and GPU designs that use CMOS- and TFET-based units inside a single

core to obtain a high performance core that also has high energy efficiency. In addition, one

can envision a heterogeneous chip that consists of a mix of TFET cores and HetCores that

can take advantage of the prior work.

The architectural techniques employed by AdvHet to alleviate the performance penalties

present in BaseHet have been proposed and studied in prior work in other contexts. Such

techniques include designs similar to the asymmetric data cache [92, 93, 94], dual-speed

clusters as a mechanism to reduce power consumption [96, 97, 98], and register file caches

for GPUs [91]. In this work, we adapt them to the context of heterogeneous-device cores.

As an alternative to using a register file cache, a partitioned register file for GPUs is

proposed in [147]. It consists of a fast partition operating at nominal voltage and a slow

partition operating at near-threshold voltage. Such a design can readily be adapted to

AdvHet, by implementing the slow partition in TFET and the fast one in CMOS. Similar

complementary optimizations can indeed be applied to AdvHet resulting in even better

energy efficiency.

5.3 3D PARTITIONING OF CORES

Prior architectural work on partitioning for TSV3D has examined placing cores on top of

cores [16], block level partitioning [15], and intra-block partitioning [105, 125, 111, 124]. We

discussed such work on intra-block 3D partitioning of core in Section 4.2.3.

In addition to the TSV based intra-block 3D partitioning , prior work has also considered

partitioning the core at a block-level granularity using TSVs. Black et al. [15] study the

benefits of such core partitioning as well as benefits of placing DRAM/SRAM on top of a
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core. They observe that 3D core can reduce some of the critical paths with in the core such

as load-to-use delay and branch misprediction delay. DRAM on top of the core can reduce

the power requirements of memory and provide higher bandwidth. They also note that a

TSV3D based core can have thermal challenges. We compared the M3D partitioned core

against a finer partitioned TSV3D core which in turn has more benefits than a block level

partitioned core.

Emma et al. [16] limit themselves to a core level partitioning across the different layers

and share the different resources such as caches, NoC etc. They focus on the impact of

3D partitioning from a thermal and yield perspective and discuss the tradeoffs between the

power and performance in 3D setting. Our analysis of M3D core design is at a much finer

granularity and within the core.
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CHAPTER 6: CONCLUSION

In this thesis, we presented the design of energy efficient cores that are suited for the

upcoming process technology trends. The designs took advantage of process technologies

that are currently available as well as ones that would be feasible in the medium to long

term.

In the first part of thesis, we presented the design of a voltage scalable core — namely, one

that can work in high-performance mode (HPMode) at nominal Vdd, and in a very energy-

efficient mode (EEMode) at low Vdd. ScalCore introduced two ideas to operate energy-

efficiently in EEMode. First, it applied two low Vdds to the pipeline: one to the logic

stages (Vlogic) and a higher one to the storage-intensive stages. Second, it increased the low

Vdd of the storage-intensive stages (Vop) even further and exploited the speed differential

to the logic ones by either fusing storage-intensive pipeline stages or increasing the size

of storage structures in the pipeline. Simulations of 16 cores showed that a design with

ScalCores in EEMode is much more energy-efficient than one with conventional cores and

aggressive DVFS: for approximately the same power consumption, ScalCores reduced the

average execution time of programs by 31%, the energy consumed by 48%, and the ED

product by 60%. In addition, dynamically switching between EEMode and HPMode is very

effective: it reduced the average execution time and ED product by an additional 28% and

15%, respectively, over running in EEMode all the time.

In the next part, we considered another upcoming technology i.e. TFETs. While TFETs

are much more energy efficient than CMOS, they are not competitive in terms of the per-

formance. Ideally, we desire CPU and GPU cores that operate as energy-efficiently as a

TFET core, while providing the performance of a CMOS core. To this end, we proposed the

HetCore architecture, which judiciously integrates both TFET and CMOS units in a single

core, creating a hetero-device core. Our results show that such a design is very promising,

even with conservative assumptions. An AdvHet CPU consumes on average 39% less energy

than a CMOS CPU, while delivering a performance that is within 10% of the CMOS CPU.

In addition, under a fixed power budget, a multicore with AdvHet CPUs attains average

performance gains of 32% over a multicore with CMOS CPUs, while reducing ED2 by 68%.

Similarly, an AdvHet GPU consumes on average 40% less energy and performs within 20% of

a CMOS GPU. Under a fixed power budget, an AdvHet GPU with twice as many compute

units as a CMOS GPU improves average performance by 30% while lowering ED2 by 60%.

Finally, we analyzed Monolithic3D technology, that is by a broad consensus considered the

most promising approach to continue increasing transistor integration. We presented the first
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analysis of the architecture implications of using Monolithic3D, and showed how to partition

a processor for M3D. We partitioned logic and storage structures into two layers, taking into

account that the top layer has lower-performance transistors. For logic structures, we placed

the critical paths in the bottom layer. For storage structures, we asymmetrically partitioned

them, assigning to the top layer fewer ports with larger access transistors, or a shorter bitcell

subarray with larger bitcells. With very conservative assumptions on M3D technology, the

M3D core executed applications on average 25% faster than a 2D core while consuming 39%

less energy. The aggressive design was 38% faster while consuming 41% lower energy than a

2D core. Moreover, under a fixed power budget, an M3D multicore could use twice as many

cores as one with 2D cores, effectively executing applications on average 92% faster with

39% less energy. Finally, the M3D core was thermally efficient with the peak temperatures

marginally higher than a 2D core and substantially lower than TSV3D design.

In summary, we presented the design of cores for three upcoming process technology

trends. The process trends that we considered span a range of timelines, beginning with the

most current one i.e. voltage scalable cores. We later considered TFETs that are expected to

supplement the current CMOS devices in the near future. Finally, we studied Monolithic3D

integration technology which is necessary to continue integrating more transistors on a chip.

This is expected to be realized at a slightly farther point in time. For each of the technologies,

we studied the properties in detail, analyzed the implications on architecture and proposed

a core design that maximizes the energy efficiency. We further evaluated all these designs

based on conservative assumptions on the technology parameters. In particular, we showed

that all of our proposed designs excel in an environment with a fixed power budget. Across

all our designs, we were able to operate twice as many cores in the same power budget as an

existing baseline design, while consuming lower energy at the same time. Our results show

that fine tuning core architectures to specific technology is very beneficial and can provide

significantly more energy efficient cores. We believe that our work will lay the foundation

for more exciting work in this domain and serve as a stepping stone in our quest to build

ever more energy efficient cores without compromising the performance.
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