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Abstract 

Atmospheric gravity waves (GWs) play an important role in the transport of energy and momentum 

throughout the Earth’s atmosphere. GW effects couple the lower regions of the atmosphere with the 

middle and upper regions of the atmosphere and the neutral atmosphere with the ionosphere. The effects 

are particularly strong in the mesosphere and lower thermosphere (MLT), where upward-propagating 

GWs tend to deposit momentum and energy flux via breaking, viscous dissipation, or other processes. The 

resulting net drag, heating, and cooling impact the global circulation of the mean atmospheric flow. 

Consequently, the parameterization of GWs in global climate models is a key focus of contemporary 

research on the MLT region. The physical processes associated with GWs must be understood in addition 

to their statistical characteristics in order to better parameterize their effects on the atmosphere. Ducting 

is a process that can occur when a GW becomes trapped between two evanescent regions in the 

atmosphere. According to the linear GW theory, a fully ducted wave has zero vertical momentum flux, so 

the ducting process must also be understood in order to improve our parameterization of GWs in global 

climate models. In this thesis, correlative lidar and airglow observations of a highly resonant ducting event, 

which occurred on the night of January 18, 2015, above the Andes Lidar Observatory (ALO) on Cerro 

Pachón, Chile (30.0° S, 70.0° W), are presented and analyzed. A ducted quasi-monochromatic GW with 

large associated temperature (T’) and vertical wind (w’) perturbations was observed in the mesopause 

region. A coherent phase relationship, consistent with the linear GW theory, between the temperature 

and vertical wind perturbations associated with the GW was found. The results also appear to show the 

generation of a secondary upward-propagating wave above the primary duct.   
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1. Introduction 

1.1 Background 
 

The mesosphere and lower thermosphere (MLT), which together constitute a significant part of the 

middle region of Earth’s atmosphere, lie above the uppermost vertical reaches of aircraft or common 

radiosondes and below the orbital altitude of satellites. Consequently, observations of the MLT region of 

the atmosphere rely primarily on remote sensing techniques or in-situ measurements by rocket-borne 

instruments. These measurements generally have limited temporal or spatial breadth, and as a result, the 

MLT region is one of the least understood regions of Earth’s atmosphere. The mesopause region at 

roughly 85–100 km [Xu et al., 2007] is of contemporary interest because it serves as a transition region 

between the neutral atmosphere and the ionosphere.  

In general, the Earth’s atmosphere is a stably stratified fluid in which wave motion is supported 

[Nappo, 2012]. A vertically perturbed parcel of fluid in the Earth’s atmosphere will have restorative forces 

acting on it due to the Earth’s gravitational field and buoyancy arising from the negative atmospheric 

density gradient with altitude. The resulting oscillation, known as a gravity wave (GW), can propagate 

through the atmosphere. In the mesopause region, upward-propagating GWs have been observed to 

deposit significant momentum and energy to the mean flow by several different mechanisms, including 

dissipation and breaking induced by wave interactions with the mean flow [Fritts and Rastogi, 1985; 

Franke and Robinson, 1999] and viscous dissipation at higher altitudes in the lower thermosphere [Liu et 

al., 2013]. The momentum and energy fluxes associated with GWs have been observed to profoundly 

influence the atmosphere on a global scale. For example, GWs are an important driver of the Brewer-

Dobson circulation of meridional winds [Cohen et al., 2014] and the quasi-biennial and semi-annual 

oscillations of stratospheric zonal winds [Ern et al., 2014; Ern et al., 2015]. Wave-induced diffusion and 
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energy flux affect the vertical transport of atmospheric constituents such as atomic oxygen (O), meteoric 

iron (Fe), and meteoric sodium (Na) in the mesopause region [Gardner, 2018]. GWs also influence 

processes which occur on smaller scales, such as turbulent mixing and the formation of instabilities [Liu 

et al., 2004; Guo et al., 2017; Fritts et al., 2013]. Atmospheric GWs are typically generated in the lower 

atmosphere and propagate upwards, though a relatively small fraction of GWs propagate downwards 

[Shimizu and Tsuda, 1997]. In the lower atmosphere, the primary GW generation mechanisms are 

orography, convection, and geostrophic adjustment [Fritts and Alexander, 2003, and references therein]. 

Model studies have shown that GW breaking can generate secondary waves [Vadas et al., 2003; Liu et al., 

1999] and observations have been made in the MLT that suggest the occurrence of secondary wave 

generation through wave breaking [Vargas et al., 2016; Bossert et al., 2017]. The transfer of energy and 

momentum associated with all of these GW processes couples the lower atmosphere with the middle and 

upper atmosphere. Furthermore, the thermal balance of the middle atmosphere is altered by GW 

momentum and energy flux such that the equilibrium state is dynamical, rather than radiative [Gierasch 

et al., 1970; Andrews et al., 1987; Liou, 2002]. Therefore, we must understand the generation and 

dissipation mechanisms and propagation characteristics of GWs in order to better understand the 

weather and climate of the whole atmosphere. 

An abundance of atmospheric waves including GWs, planetary waves, and tides are present in the 

MLT region. The interactions between waves, the mean flow, and other waves complicate the dynamical 

processes which couple the MLT and other atmospheric regions. In order to study these processes, we 

must make temporally and spatially resolved measurements of atmospheric properties such as 

temperature, density, and wind speed vectors. Fortunately, the MLT region contains metal and airglow 

layers which can be used to measure atmospheric properties by remote sensing methods [Khomich et al., 

2008]. Two particularly useful airglow sources are the hydroxyl (OH) Meinel band emission, which emits 

over a wide spectral range (0.7–4.0 μm), and the neutral atomic oxygen (OI) visible green line (557.7 nm). 
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The OH and OI airglow emissions will be discussed in more detail in Section 2.1.2. A persistent global 

sodium layer also exists near an altitude of 92 km, which is produced primarily by the ablation of dust 

entering Earth’s atmosphere from the interplanetary medium [Plane et al., 2015]. The Na layer has been 

used extensively to measure temperature and wind velocities in the mesopause region through 

resonance-fluorescence lidar observations at the 589.158 nm Na D2a transition [e.g., Bossert et al., 2014; 

Guo et al., 2017]. The resonance-fluorescence lidar technique will be discussed in more detail in Section 

2.1.1. 

1.2 Linear Gravity Wave Theory 
 

1.2.1 Development of the Linear Gravity Wave Theory 
 

The linear theory of gravity waves is the basis for many theoretical studies of propagating GWs. Consider 

a set of fundamental variables 

 𝑞𝑞 = (𝑝𝑝,𝜌𝜌,𝑢𝑢, 𝑣𝑣,𝑤𝑤),  (1.1) 
  
where p, 𝜌𝜌, u, v, and w are the pressure, density, zonal wind, meridional wind, and vertical wind 

respectively. In general, GWs are governed by the Euler equations for the set q. Under the linear theory, 

we can expand each variable q into the sum of a background state 𝑞𝑞� and a small perturbation 𝑞𝑞′. We may 

assume that the background state is steady or sufficiently slowly varying and horizontally uniform, with 

variations only in the vertical direction. We also assume that q’ is independent of 𝑞𝑞� and much smaller than 

𝑞𝑞�. The process of linearizing the Euler equations from this point depends on what further assumptions are 

made, but the result is a standard wave equation in the vertical direction of the form 

 
𝑑𝑑2𝜙𝜙(𝑧𝑧)
𝑑𝑑𝑧𝑧2

+ 𝑚𝑚2𝜙𝜙(𝑧𝑧) = 0. 

 

(1.2) 
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The GW dispersion relation relates the vertical wavenumber m to the horizontal wavenumber k and the 

background state 𝑞𝑞�. The full GW dispersion relation is derived from the 3-D Euler equations for a 

compressible and irrotational atmosphere in the presence of vertically varying temperature and winds 

and is shown as equation (9) of Zhou and Morton [2007].  

A particularly useful form of the 2-D Euler equation under the Boussinesq approximation in an 

isothermal and continuous shear flow was derived independently by Taylor [1931] and Goldstein [1931]. 

The equation, known as the Taylor-Goldstein equation [Nappo, 2012], can be used (see Appendix B) to 

derive a reduced form of the GW dispersion relation: 

𝑚𝑚2 =
𝑁𝑁2

(𝑐𝑐 − 𝑢𝑢�)2 − 𝑘𝑘2 −
1

4𝐻𝐻𝑠𝑠2
+

1
(𝑐𝑐 − 𝑢𝑢�)

𝑑𝑑2𝑢𝑢�
𝑑𝑑𝑧𝑧2

−
1

𝐻𝐻𝑠𝑠(𝑐𝑐 − 𝑢𝑢�)
𝑑𝑑𝑢𝑢�
𝑑𝑑𝑑𝑑

, 
(1.3) 

  
where 𝑁𝑁2 is the squared buoyancy frequency, 𝐻𝐻𝑠𝑠 is the pressure scale height of the atmosphere, c is the 

observed horizontal phase speed, 𝑢𝑢�  is the background wind speed in the direction of wave propagation, 

and the quantity (𝑐𝑐 − 𝑢𝑢�) is the intrinsic horizontal phase speed of the wave. If the last two terms of 

Equation (1.3) relating to wind shear are ignored, then the dispersion relation reduces to the form 

originally derived by Hines [1960] 

𝑚𝑚2 =
𝑁𝑁2

(𝑐𝑐 − 𝑢𝑢�)2 − 𝑘𝑘2 −
1

4𝐻𝐻𝑠𝑠2
. 

(1.4) 

  
 The solution to Equation (1.2) for 𝑚𝑚2 > 0 has the form 𝜙𝜙(𝑧𝑧) = 𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, in which the amplitude of 

𝜙𝜙 has a sinusoidal variation in altitude with vertical wavelength λ𝑧𝑧 = 2𝜋𝜋
𝑚𝑚

. Such waves are known as 

propagating or internal waves. For the opposite case of 𝑚𝑚2 < 0, i.e., 𝑚𝑚 = 𝑖𝑖𝑚𝑚�𝐼𝐼𝐼𝐼, the form of the solution 

is the decaying exponential 𝜙𝜙(𝑧𝑧) = 𝐴𝐴𝑒𝑒−𝑖𝑖𝑚𝑚�𝐼𝐼𝐼𝐼𝑧𝑧. The coefficient A is an arbitrary amplitude. The amplitude 

of such waves decays exponentially with altitude and they are referred to as evanescent or external 

waves. It is clear from Equation (1.3) that the value of 𝑚𝑚2 is dependent on the intrinsic horizontal phase 
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speed of the wave and the background atmosphere. The solutions to Equation (1.2) require that m is 

independent of altitude, which is generally not the case since the background temperature and winds 

typically vary with altitude. The solutions are still valid if we apply the Wentzel-Kramers-Brillouin (WKB) 

approximation that the background temperature and winds vary slowly within a vertical wavelength.  

 The dispersion relation (1.3) can be used to characterize the capability of a measured or 

parameterized vertical atmospheric profile to support wave propagation. Evanescent regions can cause 

partial or total reflection of GWs. Two parallel horizontal evanescent layers can therefore confine the 

propagation of a GW. This process is known as ducting and will be discussed in more detail in Section 

1.2.2. Furthermore, when a GW propagates to an altitude where the horizontal phase speed of the wave 

matches the background wind speed in the wave propagation direction (i.e., (𝑐𝑐 − 𝑢𝑢�) = 0), the intrinsic 

frequency of the wave goes to zero and the wave will break and transfer momentum to the background 

atmosphere. This process, which occurs continually in the MLT region, is known as critical-layer filtering 

[Fritts and Alexander, 2003]. 

 Polarization relations that relate the phase and amplitude of various wave quantities can also be 

derived from the linearized wave equations. For example, it can be shown [e.g., Vadas, 2013] that the 

polarization relation between the complex wave amplitudes of the relative temperature perturbation 𝑇𝑇� =

𝑇𝑇′

𝑇𝑇�
 and the vertical wind perturbation 𝑤𝑤�  is given by 

𝑇𝑇�
𝑤𝑤�

=
𝑁𝑁2 �𝑖𝑖𝑖𝑖 + 1

2𝐻𝐻𝑠𝑠
� − 𝜔𝜔�2

γ𝐻𝐻𝑠𝑠
(γ − 1)

𝑔𝑔𝜔𝜔� �−𝑚𝑚 − 𝑖𝑖
2𝐻𝐻𝑠𝑠

+ 𝑖𝑖
γ𝐻𝐻𝑠𝑠

�
, 

(1.5) 

  
where 𝜔𝜔� is the intrinsic wave frequency and γ ≈ 1.4 is the ratio of the specific heats at constant pressure 

and volume, whose values are given in Table 1.1. In the Boussinesq limit, Equation (1.5) reduces to 
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𝑇𝑇�
𝑤𝑤�

=
𝑖𝑖𝑁𝑁2

𝑔𝑔𝜔𝜔�
. 

(1.6) 

  
The polarization relation (1.6) indicates that for an internal GW, the temperature and vertical wind 

perturbations are out of phase by 90°. In general, a significant deviation in observed phases or amplitudes 

from the theoretical predictions of the polarization relations indicates wave dissipation, or saturation. 

Table 1.1: Physical parameters and constants used in this thesis, specified for the neutral atmosphere in 
the 85–110 km altitude range. 

Variable Name Value 

𝑐𝑐𝑝𝑝 

𝑐𝑐𝑣𝑣 

𝑅𝑅 

𝑅𝑅𝐸𝐸 

𝐺𝐺 

𝑀𝑀𝐸𝐸 

𝑔𝑔 =
𝐺𝐺𝑀𝑀𝐸𝐸

(𝑅𝑅𝐸𝐸 +  𝑧𝑧)2 

𝐻𝐻𝑠𝑠 =
𝑅𝑅𝑇𝑇�
𝑔𝑔

 

Specific heat at constant pressure 

Specific heat at constant volume 

Ideal gas constant for a dry atmosphere 

Radius of Earth 

Gravitational constant 

Mass of Earth 

Gravitational acceleration 

Pressure scale height 

1004 JK-1kg-1 

717 JK-1kg-1 

287 JK-1kg-1 

6371 km 

6.67408 × 10-11 m3kg-1s-2 

5.972 × 1024 kg 

≈9.5 ms-2 

∼6 km 

 

1.2.2 Gravity Wave Ducting 
 

Internal gravity waves between evanescent layers in the MLT can become vertically trapped with 

sustained horizontal propagation. Two distinct ducting mechanisms, thermal ducts and Doppler ducts, 

have been identified [e.g., Friedman, 1966; Chimonas and Hines, 1986]. Thermal ducts are layers in which 

a wave becomes trapped due to variations of the buoyancy frequency N in the background atmosphere. 

The squared buoyancy frequency can be written as  
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𝑁𝑁2 =
𝑔𝑔
𝑇𝑇 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑔𝑔
𝑐𝑐𝑝𝑝
�, 

(1.7) 

  
where T is the temperature of the background atmosphere and the quantity g/cp ≈ 9.5 K km-1 is the dry 

adiabatic lapse rate. Regions where N2 is less than zero, i.e., the negative temperature gradient is larger 

than the dry adiabatic lapse rate, are indicative of static or convective instability. Consideration of 

Equation (1.7) in the simplified dispersion relation (1.4) indicates that a temperature inversion inside a 

region with an otherwise negative temperature gradient can potentially be a thermal duct. Since the 

mesopause region is the coldest part of the atmosphere, temperature inversions that form in this region 

can therefore be thermal ducts. Likewise, analysis of the dispersion relation (1.3) suggests that ducting 

can also occur in regions where there exists a distinct maximum or minimum in the horizontal winds. This 

type of ducting is called Doppler ducting and occurs independently of thermal ducting. The effects of 

Doppler ducting are maximized when the horizontal winds are along the direction of wave propagation 

[Chimonas and Hines, 1986]. Numerical simulations also indicate that thermal and Doppler ducting can 

occur simultaneously in the mesopause region [Walterscheid and Hickey, 2009]. 

A fully ducted wave, or a wave which propagates along the duct with no loss of energy, is 

necessarily a resonant wave which satisfies the kinematic and dynamic continuity conditions at the 

boundaries of the duct. Waves which do not match the resonance conditions of the duct cannot freely 

propagate along the duct and will decay in the absence of external forcing. In order to understand the 

basic mechanism behind the ducting process, we may consider a simplified three-layer model with 

constant m in each layer. In the middle layer, denoted layer 2, we set 𝑚𝑚2 > 0, and in the two surrounding 

layers, denoted layers 1 and 3, we set 𝑚𝑚2 < 0. For a model atmosphere with constant horizontal winds 

and temperature in each layer, then the vertical wavenumber 𝑚𝑚𝑘𝑘 is constant within each layer k = 1, 2, 3. 

If we set z = 0 as the center of the inversion, the solution of Equation (1.2) in layer 2 has the form  



8 
 

𝜙𝜙2(𝑧𝑧) =  𝐴𝐴2𝑒𝑒𝑖𝑖𝑚𝑚2𝑧𝑧 +  𝐵𝐵2𝑒𝑒−𝑖𝑖𝑚𝑚2𝑧𝑧, (1.8) 

  
and in layers 1 and 3 it has the form 

𝜙𝜙𝑘𝑘(𝑧𝑧) =  𝐴𝐴𝑘𝑘𝑒𝑒±𝑚𝑚�𝑘𝑘𝑧𝑧    (𝑘𝑘 = 1, 3), (1.9) 

  
where 𝑚𝑚�𝑘𝑘𝑖𝑖2 = −𝑚𝑚𝑘𝑘

2. The plus sign in Equation (1.9) applies in layer 1 and the minus sign applies in layer 

3. The forms of the solutions in Equation (1.9) ensure that the vertically integrated kinetic energy density 

remains finite. We may obtain a characteristic equation by subjecting Equations (1.8) and (1.9) to the 

kinematic and dynamic continuity conditions at the interfaces between layers. The equation must be 

numerically solved for its eigenvalues for a given middle layer thickness D, wave horizontal phase speed, 

and horizontal wind speed in the middle layer, but the eigenfunctions which satisfy the boundary and 

continuity conditions have the form [Walterscheid and Hickey, 2009] 

𝜙𝜙2(𝑧𝑧) =  𝐴𝐴 �cos �𝑚𝑚2 �𝑧𝑧 +
𝐷𝐷
2
�� + 𝐾𝐾�12 sin �𝑚𝑚2 �𝑧𝑧 +

𝐷𝐷
2
���  (1.10) 

  
in the middle layer, and 

𝜙𝜙𝑘𝑘(𝑧𝑧) =  𝐴𝐴𝑒𝑒�−𝑚𝑚�𝑘𝑘�z ± 𝐷𝐷2��    (𝑘𝑘 = 1, 3) (1.11) 

  
in layers 1 and 3, where A is an arbitrary amplification factor. In Equation (1.8), 𝐾𝐾�12 is a complex coefficient 

related to the value of m1 and m2, the choices of horizontal wind speeds in layers 1 and 2, and the 

horizontal phase speed of the wave. In Equation (1.11), the sign convention is the same as in Equation 

(1.9). For an internal GW, we can assume a general 2-D waveform solution of the form 

𝛷𝛷(𝑥𝑥, 𝑧𝑧) =  𝜙𝜙𝑘𝑘(𝑧𝑧)𝜌̅𝜌−
1
2𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔)   (𝑘𝑘 = 1, 2, 3), (1.12) 
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where x and z are, respectively, the horizontal and vertical coordinates, 𝜌̅𝜌 is the mean basic-state density, 

and t is time. Equation (1.12) indicates that a fully ducted wave propagates horizontally in the middle layer 

with no leakage of wave energy from the duct.  

 The three-layer model is an idealized case that does not allow for partially ducted waves, or waves 

which propagate along the duct while leaking wave energy into the surrounding layers. A full-wave model 

[e.g., Walterscheid and Hickey, 2009] which numerically solves the coupled second-order differential 

(Navier-Stokes) continuity equations is required to describe the propagation of GWs through a more 

realistic atmosphere. Walterscheid and Hickey [2009] implemented the full wave model for a viscous 

atmosphere with temperature and mean wind profiles which contain altitude variations. The model was 

run using modified versions of two climatological models, the Mass Spectrometer Incoherent Scatter 

(MSIS) model [Hedin, 1991] and Horizontal Wind Model (HWM) [Hedin et al., 1996], which were modified 

to include the presence of a mesospheric temperature inversion (INV) and/or lower thermospheric duct 

(LTD). The modified runs were compared to reference runs which used unmodified versions of the 

climatological models. Some of the runs also included modifications to the atmospheric profiles based on 

conditions present during the GW ducting events observed by Smith et al. [2003, 2005]. The results of the 

simulations show that the amplification factors A relative to the reference runs are increased, sometimes 

significantly, for certain wave modes when the INV, LTD, and horizontal wind gradients, or combinations 

thereof, are present. This indicates that both thermal and Doppler ducting can occur simultaneously if the 

horizontal wavelength and phase speed of the wave have values falling in ranges which depend on the 

state of the background atmosphere. Furthermore, the results also indicate that the upward extensions 

of waves ducted in the INV can propagate up to and become ducted in the LTD, which is always present 

in the lower thermosphere due to the mean temperature structure with altitude in the MLT.  
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1.2.3 Gravity Wave Observations and Parameterization  

Contemporary GW research can generally be divided into two distinct but related categories. The first 

category is research which seeks to further our understanding of GW generation, dissipation, and 

propagation processes. The second is research which aims to develop parameterizations which represent 

the physical effects of GWs in the atmosphere in order to improve global climate models such as the 

Whole Atmosphere Community Climate Model (WACCM) [Liu et al., 2018]. A great deal of progress on 

both perspectives has been made in the last few decades. Scientists have published significant results in 

observational, theoretical, and numerical studies. 

 Numerous techniques for in-situ and remote measurements have been or are currently used to 

observe the effects and characteristics of gravity waves in the MLT and other regions of the atmosphere. 

In general, all observation techniques excel in some respects and fall short in others. For example, while 

rocket-borne instruments can make high-resolution measurements in the MLT and other atmospheric 

regions, the cost of each mission is relatively high, and measurements are limited to very short temporal 

scales. Active ground-based remote sensing instruments such as lidars or radars have good temporal 

coverage, but they can only resolve vertical structures. Similarly, passive remote sensing instruments such 

as ground-based or satellite-based airglow imagers have the best temporal coverage, but stationary 

imagers can only resolve horizontal structures and satellites are typically limited to observations of waves 

within a limited range of vertical wavelengths [Fritts and Alexander, 2003]. The GW polarization and 

dispersion relations may be used in some cases to estimate missing horizontal or vertical information [e.g., 

Hu et al., 2002; Lu et al., 2015]. However, in order to obtain the most accurate estimates of wave 

propagation and dissipation characteristics, we must observe GWs in 3-D space. In practice, the 3-D 

structure of GWs is usually measured with correlative observations from two or more complementary 

instruments. 
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 Correlative measurements from lidar and airglow imagers are commonly used to study GWs in 

the MLT [e.g., Hu et al., 2002; Swenson et al., 2003; Bossert et al., 2014]. Lidar measurements provide 

vertical profiles of temperature and vertical, zonal, and meridional winds at a single location at high 

resolution, but the horizontal structure of a wave generally cannot be resolved by lidar observations 

alone. However, airglow imagers can passively capture 2-D vertically integrated images of airglow 

emission. Since most airglow layers within the MLT have full width at half maximum (FWHM) thicknesses 

of around 6-10 km [Khomich et al., 2008], airglow imagers only resolve horizontal information in a small 

vertical layer of MLT. A complementary set of observations from a collocated lidar and airglow imager can 

therefore be used to investigate the 3-D structure and properties of GWs in the MLT.  

 It is important to understand the transport of momentum and heat throughout the atmosphere 

by GW propagation and dissipation in order to better parameterize GW effects in global climate models. 

The vertical momentum flux 𝐹⃗𝐹𝑚𝑚 and vertical heat flux 𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒 by a GW are proportional to the covariances 

of the GW vertical wind perturbation w’ with itself and with u’, v’, and T’ [Cao, 2017]: 

𝐹⃗𝐹𝑚𝑚 =  −𝜌̅𝜌(𝑢𝑢′𝑤𝑤′������,𝑣𝑣′𝑤𝑤′������,𝑤𝑤′𝑤𝑤′�������) 
 

𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =  −𝜌̅𝜌𝑤𝑤′𝑇𝑇′������. 
(1.13) 

  
In Equation (1.13), u’, v’, and T’ are the GW perturbations to the zonal wind, meridional wind, and 

temperature, respectively. The time-dependent drag and cooling or heating constitute the GW effects on 

the mean flow and are defined, respectively, as the divergence of the momentum and heat fluxes [Fritts 

and Alexander, 2003; Walterscheid, 1981]: 

�
𝑑𝑑𝑢𝑢�
𝑑𝑑𝑑𝑑

,
𝑑𝑑𝑣̅𝑣
𝑑𝑑𝑑𝑑

,
𝑑𝑑𝑤𝑤�
𝑑𝑑𝑑𝑑
� = −

1
𝜌̅𝜌
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐹⃗𝐹𝑚𝑚  

 
𝑑𝑑𝑇𝑇�
𝑑𝑑𝑑𝑑

=  −
1
𝜌̅𝜌
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑤𝑤′𝑇𝑇′������. 

(1.14) 
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Equations (1.13) and (1.14) indicate that if the momentum or heat flux is constant with altitude, then the 

drag or the heating, respectively, is zero. Therefore, since the momentum and heat flux are constant for 

an internal GW under the linear theory, there can only be significant acceleration, heating, or cooling of 

the background flow if a GW is dissipating or breaking. An important consequence of this result is that 

fully ducted waves do not deposit momentum or heat flux to the background atmosphere. Since 

computational limits prevent the inclusion of the effects of individually resolved GW events on the mean 

circulation in global climate models, the parameterization of GW effects in such models must account for 

ducted waves. We must therefore seek to understand the processes by which waves become ducted in 

the MLT region.  
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2. Instrumentation and Methodology 

2.1 Instruments 

Ground-based remote sensing instruments are powerful tools for observing the characteristics of the 

atmosphere in the MLT region at high temporal and spatial resolution within a localized area. In the 

following subsections, the instruments used to obtain the data used in this thesis will be introduced and 

discussed. 

2.1.1 Sodium Lidar 

Sodium (Na) resonance-fluorescence lidars are active remote sensing instruments which can measure the 

vertical structure of key atmospheric properties in the 80–105 km MLT region, including temperature, 

vertical winds, and horizontal winds. The large effective backscattering cross-section of sodium and 

relative abundance of sodium atoms in the MLT due to the persistent global sodium layer near ∼92 km 

make sodium a very useful tracer for resonance-fluorescence lidars deployed all over the planet.  

 The primary instrument used to acquire the data used in this thesis is a narrow-band sodium lidar 

operated by the University of Illinois at Urbana-Champaign (UIUC) at the Andes Lidar Observatory (ALO) 

on Cerro Pachón, Chile (30.0° S, 70.0° W). At ALO, a pulsed frequency-doubled neodymium-doped yttrium-

aluminum garnet (Nd:YAG) seed laser beam is passed through a pulsed dye laser amplifier before it is 

transmitted into the night sky. The lidar is tuned to the sodium D2a transition at 589.158 nm using a sodium 

vapor cell, and an acousto-optic modulator continually adjusts the frequency between the line center and 

two frequencies which are offset from the line center by ±630 MHz. The beam of photons is partially 

backscattered by resonant fluorescence processes in the sodium layer, and the backscattered photons 

are collected by four telescopes with diameters of 75 cm. The telescopes are pointed in fixed directions, 

with each telescope pointing at the zenith, and 20° off zenith in the south (S), east (E), and west (W) 

directions. The configuration allows the measurement of atmospheric temperature and line-of-sight (LOS) 



14 
 

winds through a three-frequency technique which determines the shape of the absorption spectrum [She 

and Yu, 1994]. The principle behind the technique is an inverse parameter extraction based on the thermal 

Doppler broadening of the sodium D2a line shape resulting from the atmospheric temperature and the 

Doppler shift of the line center resulting from the mean LOS winds. In general, the zonal and meridional 

wind measurements are decomposed from the off-zenith wind measurements using simple trigonometry, 

but on the night of January 18, 2015 (20150118), analyzed in this thesis, the lidar was operated in zenith-

only mode. As a result, only temperature, vertical wind, and sodium density profiles were measured. The 

raw data were gridded into 6 minute temporal bins and 500 m spatial bins to reduce measurement 

inaccuracy while maintaining reasonably high temporal and spatial resolution. The temperature and 

vertical wind data were used in Section 3.1 to calculate spatial and temporal profiles of the background 

atmosphere and to extract GW perturbations for the ducted wave event discussed in Section 3.2. 

2.1.2 All-Sky Airglow Imager 

Airglow emissions in the upper atmosphere are the result of chemiluminescent processes occurring inside 

layers of constituents such as neutral atomic oxygen (OI) and hydroxyl (OH) radicals. There are two major 

airglow emissions which originate in the mesopause region. The brightest emission comes from the OH 

Meinel band radiation in the near-infrared (0.7–4.0 μm) centered at an altitude of ∼87 km. The OI green 

line at 557.7 nm near ∼96 km is also useful for GW observations, though the noise level is typically higher 

than for the OH emissions. Variations in the emission intensity of both lines have been used to infer GW 

properties in the MLT region [e.g., Ejiri et al., 2003].  

 At ALO, the airglow imager uses a fish-eye lens with a field-of-view (FOV) of ∼160° to measure 

the emission from the whole sky. The emissions are focused down onto a cooled charge-coupled focal-

plane array (CCD). Two filters are used to alternately capture the OH and OI emissions on nights during 

low moon periods year-round. The size of the CCD is 1024 x 1024, but each image was binned down to a 
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512 x 512 array in order to increase the signal-to-noise ratio (SNR). Differences between successive images 

were then taken to obtain difference images in which the GW activity can be clearly seen. The images 

were also compressed down to 341 x 341 in order to reduce the file size of movies made from the series 

of still images. The compression was acceptable because, in Section 3.1.4, the images were used only to 

observe the horizontal propagation of the wave qualitatively and to estimate approximate horizontal 

characteristics for the wave. In general, however, detailed analysis of airglow images relies on the well-

defined physical connection between the image pixels and sky position. The connection is not necessarily 

maintained in a one-to-one fashion when the images are compressed. 

Since the airglow images are distorted due to the fish-eye lens, the difference images were 

cropped into square 200 × 200 arrays centered on the zenith in order to observe only the portion of the 

image with relatively small distortion. The number of degrees in the FOV spanned by each pixel is 

constant, so distortion was accounted for in the measurements using simple trigonometry. The altitude 

of ALO is roughly 2.5 km, so the distances to the OH and OI layers are approximately 84.5 km and 93.5 

km, respectively. The corresponding approximate horizontal scales spanned by the OH and OI images in 

Section 3.1.4 are 180 km × 180 km and 200 km × 200 km. A time series of the cropped OH difference 

images was used in Section 3.1.4 to obtain approximate horizontal information for the ducted wave event, 

including the horizontal wavelength and extrinsic (observed) phase speed. 

2.2 Methods 

Gravity wave perturbation profiles, in general, cannot always be resolved from unfiltered T and w profiles 

measured by the ALO lidar. The data set must be carefully analyzed and processed to obtain the 

perturbation profiles with minimal distortion and without loss of information. The mathematical methods 

used to obtain the GW perturbations in Section 3.1 are described in this section. Error considerations for 

the T, w, and derived parameters are also discussed. 
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2.2.1 Lomb-Scargle Periodogram 

In an unfiltered temperature or vertical wind profile measured by the sodium lidar, the total signal profile 

in the frequency domain is composed of many different signals which, in general, have varying spectral 

amplitudes and phases. There is also always noise present at most or all frequencies since the 

measurements themselves have noise. For a given time series signal, the distribution of signal power over 

the frequency domain is known as the power spectrum, or power spectral density. In this definition, we 

refer to power as the generalized squared amplitude of an abstract signal (e.g., temperature or wind 

speed). In Chapter 1, we established that the perturbations associated with propagating GWs in the linear 

theory are sinusoidal. The power spectrum of a perfect sinusoid is a Dirac delta function at the frequency 

of the sinusoid. In the real atmosphere, however, observed GWs generally do not behave perfectly 

sinusoidally. A quasi-monochromatic GW is one which has a power spectrum dominated by a single, 

relatively isolated frequency peak with a sufficiently small FWHM. Consequently, when a quasi-

monochromatic GW with a sufficiently large perturbation amplitude is present in an observation window, 

the power spectrum of the signal will exhibit a peak centered on the frequency of the GW.  

 Lomb-Scargle periodograms are a useful tool for power spectral density estimation. Consider a 

set of N observations, 𝑥𝑥𝑘𝑘, which are taken at the time series 𝑡𝑡𝑘𝑘, where 𝑘𝑘 = 1, 2, … ,𝑁𝑁. The Lomb-Scargle 

periodogram is defined by [Lomb, 1976] 

𝑃𝑃𝐿𝐿𝐿𝐿(𝑓𝑓) =
1

2𝜎𝜎2 �
�∑ (𝑥𝑥𝑘𝑘 − 𝑥̅𝑥) cos�𝜔𝜔(𝑡𝑡𝑘𝑘 − 𝜏𝜏)�𝑁𝑁

𝑘𝑘=1 �2

∑ cos�𝜔𝜔(𝑡𝑡𝑘𝑘 − 𝜏𝜏)�𝑁𝑁
𝑘𝑘=1

+
�∑ (𝑥𝑥𝑘𝑘 − 𝑥̅𝑥) sin�𝜔𝜔(𝑡𝑡𝑘𝑘 − 𝜏𝜏)�𝑁𝑁

𝑘𝑘=1 �2

∑ sin�𝜔𝜔(𝑡𝑡𝑘𝑘 − 𝜏𝜏)�𝑁𝑁
𝑘𝑘=1

� , 
(2.1) 

  
where 𝜔𝜔 is the angular frequency, 𝑥̅𝑥 and 𝜎𝜎2 are respectively the mean and variance of the set of 

observations, and 𝜏𝜏 is a time offset chosen such that the resulting power spectrum is time-invariant: 

𝜏𝜏 =
1

2𝜔𝜔
tan−1 �

∑ sin(2𝜔𝜔𝑡𝑡𝑘𝑘)𝑁𝑁
𝑘𝑘=1

∑ cos(2𝜔𝜔𝑡𝑡𝑘𝑘)𝑁𝑁
𝑘𝑘=1

�. 
(2.2) 
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Lomb-Scargle periodograms are useful because they can be used to test an evenly or unevenly sampled 

time series for the presence of sinusoidal signals. A Lomb-Scargle periodogram was used in Section 3.1.3 

to identify the power spectral density signature of a strong quasi-monochromatic GW in both temperature 

and vertical wind lidar observations from ALO early in the night of 20150118.  

2.2.2 Zero-Phase Bandpass Filter 

Digital bandpass filters can be used to extract spectral information in a given frequency window from a 

time series signal. Once a GW has been identified in a given lidar or airglow data set through a frequency-

domain analysis of lidar or airglow data, the perturbations must be extracted from the data using a 

bandpass filter. The choices of filter and method of filtering are important since certain filters and filtering 

methods have a more desirable amplitude or phase response in the pass-band than others. Chebyshev 

Type-II bandpass filters can be designed to have steep roll-off at the pass-band edges and flat pass-bands. 

The trade-off is that there are ripples in the stop-band, but since a properly designed bandpass filter may 

have attenuation of 10-3 or more in the stop-band, this is typically not an issue. The frequency-dependent 

gain of a Chebyshev Type-II high-pass or low-pass filter may be written as [Parks and Burrus, 1987] 

𝐺𝐺𝑛𝑛(𝜔𝜔,𝜔𝜔0) =
1

�1 + 1
𝜀𝜀2𝑇𝑇𝑛𝑛2 �

𝜔𝜔
𝜔𝜔0
�

 , (2.3) 

  
where 𝜀𝜀 is the ripple factor, 𝜔𝜔0 is the cutoff frequency, and 𝑇𝑇𝑛𝑛 is an nth order Chebyshev polynomial. A 

Chebyshev Type-II bandpass filter can be made by combining a high-pass and low-pass filter designed 

using Equation (2.3).  

 A temporal comparison of an unfiltered time series with a filtered time series may be misleading 

if the phase response of the filter, which may cause features to shift temporally in the filtered data, is not 

accounted for. For this reason, a filter with zero phase response is desirable since the temporal position 

of features in the data will remain unchanged after the filter is applied. A zero-phase filter can be 
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implemented practically by filtering the signal, reversing the filtered signal, passing the reversed filtered 

signal back through the filter, and then reversing that signal. To understand why this algorithm results in 

a zero-phase filter, consider a real-valued digital filter with an impulse response ℎ[𝑡𝑡𝑘𝑘] and a set of 

observations 𝑥𝑥[𝑡𝑡𝑘𝑘], where 𝑡𝑡𝑘𝑘 is the same time series described in Section 2.2.1. The Fourier transforms of 

ℎ[𝑡𝑡𝑘𝑘] and 𝑥𝑥[𝑡𝑡𝑘𝑘] are respectively given by 𝐻𝐻�𝑒𝑒𝑖𝑖𝜔𝜔� and 𝑋𝑋�𝑒𝑒𝑖𝑖𝜔𝜔�. The result of the first filter pass is 

𝑋𝑋�𝑒𝑒𝑖𝑖𝜔𝜔�𝐻𝐻�𝑒𝑒𝑖𝑖𝜔𝜔�. In the frequency domain, time reversal is equivalent to replacing 𝜔𝜔 with −𝜔𝜔, and the 

result becomes 𝑋𝑋�𝑒𝑒−𝑖𝑖𝜔𝜔�𝐻𝐻�𝑒𝑒−𝑖𝑖𝜔𝜔�. The next filter pass is another multiplication by 𝐻𝐻�𝑒𝑒𝑖𝑖𝜔𝜔�, so the result 

becomes 𝑋𝑋�𝑒𝑒−𝑖𝑖𝜔𝜔�𝐻𝐻�𝑒𝑒−𝑖𝑖𝜔𝜔�𝐻𝐻�𝑒𝑒𝑖𝑖𝜔𝜔�. Finally, the second time reversal gives the output  

𝑌𝑌�𝑒𝑒𝑖𝑖𝜔𝜔� =  𝑋𝑋�𝑒𝑒𝑖𝑖𝜔𝜔�𝐻𝐻�𝑒𝑒𝑖𝑖𝜔𝜔�𝐻𝐻�𝑒𝑒−𝑖𝑖𝜔𝜔� = 𝑋𝑋�𝑒𝑒𝑖𝑖𝜔𝜔��𝐻𝐻�𝑒𝑒𝑖𝑖𝜔𝜔��2 (2.4) 

  
since 𝐻𝐻�𝑒𝑒−𝑖𝑖𝜔𝜔� is the complex conjugate of 𝐻𝐻�𝑒𝑒𝑖𝑖𝜔𝜔� for real-valued filter coefficients. Equation (2.4) 

indicates that the algorithm is equivalent to a filter with a frequency response of �𝐻𝐻�𝑒𝑒𝑖𝑖𝜔𝜔��2. Thus, the 

new transfer function is purely real-valued (zero-phase) with an amplitude equal to the squared 

magnitude of the original filter. The effective filter order is also twice the original filter order. 

 A zero-phase Chebyshev Type-II bandpass filter was applied in the time domain to extract the GW 

perturbations from ALO temperature and vertical wind lidar measurements. The base filter was a digital 

7th order Chebyshev Type-II bandpass filter and the bandstops were placed at 27 min and 54 min with a 

minimum stop-band attenuation of 10-3. The corresponding effective transfer function for the zero-phase 

filter, which has 80% cutoff frequencies at 31 min and 46 min, a minimum stop-band attenuation of 10-6, 

and a flat passband, is shown in Figure 2.1. 
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Figure 2.1 Effective normalized linear-scale (top) and logarithmic-scale (bottom) zero-phase bandpass filter response 
vs. frequency normalized to the Nyquist rate. The Nyquist rate for the ALO lidar data, which was sampled at 6 min 
intervals, is 0.0014 Hz. The vertical dashed red lines indicate the 80% cutoff frequencies of 31 min and 46 min. 
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2.2.3 Error and Error Propagation 

There are various sources of error associated with any measurement. These errors must be considered 

when using data to derive parameters using a forward or inverse model. The errors associated with lidar 

temperature and wind measurements are dominated by shot noise resulting from the Poisson-distributed 

arrival of photons at the detector. If N photons arrive at the detector in one measurement interval, the 

corresponding standard Poisson measurement error is √𝑁𝑁. The temperature and vertical wind 

uncertainties for the lidar measurements were derived based on the standard Poisson error and other 

sources of uncertainty such as laser tuning errors and laser linewidth fluctuations [Chu et al., 2002]. The 

uncertainties for the temperature and vertical wind data analyzed Chapter 3 are plotted in Figures 3.4 and 

3.5. Quantities which are derived from measured quantities, such as the squared buoyancy frequency N2 

defined in Equation (1.7), will also have uncertainties associated with them which can be derived through 

an error propagation analysis. For an evenly sampled altitude grid, the uncertainty for N2 is given by 

[Bossert et al., 2014] 

Δ𝑁𝑁2 = 𝑁𝑁2��
1

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 𝑔𝑔

𝑐𝑐𝑝𝑝

�

2

�
√2ΔT
𝑑𝑑𝑑𝑑 �
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Δ𝑇𝑇
𝑇𝑇�
�
2

, (2.5) 

  
where 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 is the temperature gradient with altitude, 𝑑𝑑𝑑𝑑 is the altitude spacing, Δ𝑇𝑇 is the temperature 

uncertainty, and 𝑇𝑇�  is a suitable rolling-averaged temperature. In Section 3.1.2, N2 was calculated based 

on the observed vertical temperature profile measured by the ALO lidar. The rolling altitude average used 

extended to one data point on each side of the temperature data point. The corresponding uncertainty 

Δ𝑁𝑁2 is plotted in Figure 3.8. 
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3. Analysis of a Ducted Wave Event 

3.1 Data 

In this section, lidar and airglow observations made at Andes Lidar Observatory (ALO) on Cerro Pachón, 

Chile (30.0° S, 70.0° W), on the night of January 18, 2015, are presented. The data are also processed using 

the methods described in Chapter 2 to extract GW parameters for the ducted wave event. 

3.1.1 Lidar Measurements 

On the night of January 18, 2015 (20150118), the ALO lidar was operated in zenith mode between 0.8 

Universal Time (UT) and approximately 9.0 UT. Vertical profiles of sodium density, atmospheric 

temperature, and mean vertical wind were acquired over an altitude range of approximately 85–110 km. 

The spatial and temporal sampling rates for the data are respectively 500 m and 6 minutes. Since the 

number of backscattered photons from a particular altitude window is proportional to the number of 

sodium atoms at that altitude, a vertical profile of the sodium density is shown in Figure 3.1 to provide an 

indication of the altitude range over which the lidar signal is particularly strong. The temperature and 

vertical wind profiles are respectively shown in Figures 3.2 and 3.3, and their corresponding uncertainties 

are shown in Figures 3.4 and 3.5. In each figure, the starting and ending times of the displayed observation 

window are 0.8 UT and 3.5 UT, which respectively correspond to the beginning of the observations for the 

night and the approximate end of the ducted GW event discussed in Section 3.2. The perturbations 

associated with the ducted GW are clearly visible in the unfiltered vertical wind data in Figure 3.3, though 

the perturbations are not visually resolved in the unfiltered temperature data in Figure 3.2. 
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Figure 3.1 Lidar-measured sodium density contours for the observation window of 85–109 km and UT 0.8–3.5 on 
the night of 20150118. The peak of the layer near 98 km is high compared to the typical peak of ∼92 km and the 
layer is relatively diffuse. The result is a good signal over an altitude range of approximately 85–105 km. 

 

Figure 3.2 Same as Figure 3.1, but with temperature contours. The GW perturbations are too small to be resolved 
visually (without the aid of a filter) in the temperature profile. Note the large temperature change around 95–100 
km towards the end of the observation window shown. 
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Figure 3.3 Same as Figure 3.1, but with vertical wind contours. The GW perturbations are large enough to be visually 
resolved in the unfiltered vertical wind data at ∼1–2 UT near 90–95 km.  

 

Figure 3.4 Measured temperature uncertainties in the observation window considered in Figure 3.1–3.3. The 
temperature uncertainty remains below 1 K for altitudes of roughly 85–103 km. 
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Figure 3.5 Same as Figure 3.4, but with measured vertical wind uncertainties. The vertical wind uncertainties remain 
below 1 m/s for most of the observation window below 105 km. 

 

3.1.2 Background Atmosphere Characteristics 

Case studies of individual GW events must take the background atmosphere, through which the wave 

propagates, into consideration. Two parameters which can be used to characterize the background 

atmosphere are the mean temperature profile in altitude, shown in Figure 3.6, and the N2 profile over the 

observation window. The N2 profile was calculated using Equation (1.7) and is shown in Figure 3.7. A 

profile of its corresponding uncertainty |Δ𝑁𝑁2| was calculated using Equation (2.5) and is shown in Figure 

3.8. In the first portion of the observation window (0.8–2.0 UT), there are two distinct temperature 

inversions below the omnipresent lower thermospheric inversion (LTD). In the latter portion of the 

observation window (2.1–3.5 UT), there is only a single additional inversion. All the inversions correlate 

well with regions of high static stability (𝑁𝑁2 ≫ 0) in Figure 3.7.  
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Figure 3.6 Time-averaged temperature profiles in the observation window. The mean temperatures were calculated 
separately for two time ranges in the observation window: 0.8–2.0 UT (solid curve), and 2.1–3.5 UT (dashed curve). 
The solid and dashed horizontal lines, which correspond to the same time ranges as the solid and dashed curves 
respectively, represent the approximate vertical extent of the GW w’ perturbations shown in Figure 3.12. 

 

Figure 3.7 N2 contours for the observation window calculated using Equation (1.7). Regions where N2 is less than 
zero (inside white contours) are indicative of static instability. The observation window is relatively unstable, 
although there are regions of high stability at altitudes which correlate well with the inversions in Figure 3.6. 
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Figure 3.8 Contour plot of the corresponding uncertainty in the N2 profile, calculated using Equation (2.5). The 
uncertainty in N2 below approximately 105 km is acceptably low. 

 

3.1.3 Gravity Wave Perturbations 

In order to design the bandpass filter used to extract the GW perturbations from the temperature and 

vertical wind profiles shown in Figures 3.2 and 3.3, a Lomb-Scargle analysis of the power spectrum of each 

profile was carried out. A Lomb-Scargle periodogram defined by Equations (2.1) and (2.2) was applied to 

the time series data in the whole observation window (0.8–3.5 UT) at each altitude. The results of the 

Lomb-Scargle analysis are shown in Figures 3.9 and 3.10. The signature of a quasi-monochromatic GW 

was observed in the temperature spectrum and especially the vertical wind spectrum with a period of 

around 40 minutes. The zero-phase bandpass filter used to extract the GW perturbations, which is shown 

in Figure 2.1, was designed to extract most of the power associated with the GW perturbations while 

ensuring that longer-period noise sources were sufficiently attenuated by the filter. The loss in signal 

power resulting from the filter mismatch at periods near 50 minutes is acceptable since the perturbation 

magnitudes associated with the ducted GW event are large. 
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Figure 3.9 Contour plot of the Lomb-Scargle temperature power spectral density calculations for the observation 
window. The units are arbitrary but normalized to twice the variance of the signal. Only the subset of the data 
containing the GW peak is shown. The large amplitude in the 60–80 minute band near 98 km is an artefact resulting 
from the large temperature change towards the end of the observation window in Figure 3.2. 

 

Figure 3.10 Same as Figure 3.9, but for the vertical wind power spectrum. The 40-minute peak is more prominent in 
the vertical wind spectrum and is consistent with the presence of a quasi-monochromatic GW signature. 
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The GW perturbations extracted from the temperature and vertical wind data are shown in 

Figures 3.11 and 3.12. The perturbation amplitudes are very large; the maximum temperature 

perturbation (T’) is approximately 8 K and the maximum vertical wind perturbation (w’) is nearly 7 m/s. 

The perturbations exhibit coherent phase characteristics, and all the observations, which are discussed in 

detail in Section 3.2, suggest that a ducted wave event with unique characteristics has been identified. 

Combined plots of the temperature and vertical wind perturbations for each altitude are provided for 

reference in Appendix A since the phase and amplitude relationships between the T’ and w’ perturbations 

are more easily observed at each individual altitude in the observation window. 

 

Figure 3.11 Contour plot of the T’ perturbations associated with the GW ducting event. The magnitudes of the T’ 
perturbations are large above approximately 90 km from 0.8 to 2.0 UT, and the approximately vertical phase 
structure at 91–97 km in the same time range suggests that the wave is at least partially ducted. The large-amplitude 
feature near 96–98 km towards the end of the observation window is most likely an artefact of the large temperature 
swing in the same region shown in Figure 3.2. 
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Figure 3.12 Same as Figure 3.11, but for the w’ perturbations. The general structure of the w’ perturbations is similar 
to the structure of the T’ perturbations in Figure 3.11. The phase structure is nearly vertical in the same region as 
the T’ perturbations.  

 

3.1.4 Horizontal Wave Characteristics 

Horizontal information about the GW ducting event was obtained through simultaneous airglow 

observations from the all-sky camera at ALO. The OH and OI difference images used to estimate the 

horizontal wavelength and extrinsic phase speed are shown in series in Figures 3.13 and 3.14. In both sets 

of images, the wave front was observed propagating directly southwest (SW). The horizontal wavelength 

was estimated from the OH image series to be ∼40 km by measuring the pixel location of the back of 

successive wave fronts and calculating the physical distance on the image plane. The image distortion, 

which causes pixels near the center of the image to represent a smaller length than pixels near the edge, 

was accounted for by measuring the pixels relative to the zenith pixel of the image and using simple 
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trigonometry. The altitude of the OH layer in the images was estimated to be 88.5 km above the altitude 

of ALO since the T’ perturbations in Figure 3.11 only have significant magnitude above 91 km. The extrinsic 

phase speed of the wave was estimated similarly using the time difference between successive passages 

of the wave front past the zenith pixel and the result was ∼90 m/s in the SW direction.  

 

Figure 3.13 Series of OH airglow images taken concurrently with the lidar observations. Images were taken 
approximately 90 seconds apart and the zenith is located at the center pixel. N and E directions are at the top and 
right side of the images respectively. The total physical image size is approximately 180 km × 180 km. 

1.333 UT 1.360 UT 1.383 UT 

1.410 UT 1.434 UT 1.461 UT

 

1.484 UT 1.511 UT 1.534 UT 
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Figure 3.14 Same as Figure 3.13, but with OI airglow images. The wave front can also be seen propagating in the SW 
direction, though the wave fronts are less defined because the OI signal was lower than the OH signal. Since the 
altitude of the OI layer is approximately 96 km, the total physical image size is approximately 200 km × 200 km. 

 

 Since the lidar was operated in zenith mode during the observation window, horizontal wind 

measurements are unfortunately unavailable. In order to estimate the intrinsic phase speed of the GW, 

the latest Horizontal Wind Model (HWM14) [Drob et al., 2015] was used to approximate the mean 
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background zonal and meridional winds during the observation window. The results of the model are 

shown in Figures 3.15 and 3.16. However, the HWM14 model is a climatological model, so the predictions 

should in no way be taken as absolute since the real winds could differ significantly from the model for 

events occurring on the scale of a few hours. 

 

Figure 3.15 HWM14 zonal wind predictions for the night of 20150118. The HWM14 winds were time-averaged over 
the whole observation window (0.8–3.5 UT). The zonal wind speed is defined to be positive when the winds are 
blowing from the west. 

 

Figure 3.16 Same as Figure 3.15, but for the meridional wind predictions. The meridional wind speed is defined to 
be positive when the winds are blowing from the south.  
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3.2 Discussion 

In this section, the GW perturbations and horizontal characteristics obtained in Section 3.1 are analyzed 

in the context of the background atmosphere in the observation window. The results strongly suggest that 

a ducted GW event occurred on the night of 20150118 at approximately 0.8–2.0 UT. The strongest 

evidence of GW ducting in this case is that both the T’ and w’ perturbations (Figures 3.11 and 3.12) in that 

time range were strong and aligned with each other nearly vertically within the 90–96 km altitude range. 

Since a significant temperature inversion was present at the same altitude range in the mean temperature 

profile (Figure 3.6) at 0.8–2.0 UT, we may conclude that thermal ducting processes were a major 

contributor to the ducting of the observed wave. The strong unstable layer near 96 km at 0.8–2.0 UT (see 

Figure 3.7) was the top edge of the thermal duct. There was also a layer of relatively low stability at the 

bottom of the observation window near 86 km which was most likely the bottom edge of the thermal 

duct. However, the ducted perturbation amplitudes began to decay after approximately 2.0 UT. The 

inversion and stability structures in Figures 3.6 and 3.7 changed significantly after that time, which implies 

that the resonant ducting conditions were no longer met, and the wave could not freely propagate. The 

perturbation amplitudes decayed greatly from their original magnitude by 3.5 UT. The results indicate 

that the ducting structure changed significantly on a timescale of one hour. 

 Comparison of the relative phase of the T’ and w’ perturbations in Figures 3.11 and 3.12 (see 

Appendix A) for the ducted GW indicates a phase relationship between the perturbations which is largely 

consistent with the linear gravity wave theory. The ducted GW perturbations are approximately 90° out 

of phase with each other at 91–95 km and the perturbations begin to pull back into phase at 96 km. The 

phase relationships indicate that the wave is effectively freely propagating at 91–95 km and dissipation 

occurs in the highly unstable layer at 96 km. Furthermore, the perturbations in the 91–95 km altitude 

range after 2.0 UT are also in phase, which is consistent with the observed off-resonance dissipation of 

the wave. We may also consider the phase relationship between T’ and w’ above the highly unstable layer 
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at 96 km. The downward phase progression of both the T’ and w’ perturbations at 98–101 km indicates 

that some wave energy leaked out of the duct in the form of an upward-propagating wave. The phase 

difference between the perturbations is again approximately 90° in that altitude range, which is consistent 

with a freely propagating GW. However, above 102 km there was another highly unstable layer and the 

wave may have become ducted again until approximately 2.0 UT. The overall ducting structure for the 

observed event is highly complex and numerical modeling is necessary to provide further insight into the 

processes occurring in the event. It is also presently unclear whether or not the LTD played a role in the 

excitation of the resonant ducted GW. However, it appears that a secondary wave was generated by 

energy leakage from the primary duct, which suggests that a strong resonant GW ducting event can 

indirectly contribute a change to the total vertical momentum flux through secondary wave generation. 

 It is unclear whether the horizontal structure of the observed primary ducted GW is consistent 

with the linear GW theory. GWs, in the linear theory, have dispersion-imposed limits on their intrinsic 

phase speeds [Swenson et al., 2000]. The extrinsic phase speed of ∼90 m/s is fast enough that the intrinsic 

phase speed could be outside the dispersion-imposed limit depending on the real horizontal wind vector. 

The HWM14 wind predictions at 91 km are opposed to the propagation direction of the ducted GW with 

a total magnitude of ∼20 m/s. The resulting intrinsic phase speed of the ducted GW would be ∼110 m/s, 

which is outside the dispersion-imposed limit for a GW with horizontal wavelength of ∼40 km. Non-linear 

effects would have to be considered to explain such a large phase speed. However, if we instead assume 

no winds or winds opposite to the HWM14 winds, the intrinsic phase speed would respectively be at the 

edge of the dispersion-imposed limit or well within the limit. The squared vertical wavenumber m2 

associated with the GW as calculated by Equation (1.4) goes to zero in these cases, which would be 

consistent with a ducted GW in the linear theory. Thus, we cannot make any further conclusions about 

the consistency of the event with the linear GW theory without observations of the horizontal winds. 

However, the presence of both maxima and minima in the HWM14 wind profiles shown in Figures 3.15 
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and 3.16 indicates generally that there is a possibility that Doppler ducting also contributed to the 

observed GW ducting event. A comprehensive numerical modeling-based analysis of this event should 

therefore include the effects of Doppler ducting from multiple potential horizontal wind profiles in order 

to fully investigate the observed phenomenon. Future observations of similar events will benefit greatly 

from correlative lidar measurements of the vertical structure in the horizontal winds. 
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4. Conclusions 

We have observed a highly resonant GW ducting event in the mesopause region above the Andes Lidar 

Observatory on the night of January 18, 2015, through correlative lidar and airglow observations. The 

analysis of the evolution of the T’ and w’ perturbations associated with the ducted wave provides insight 

into the resonant ducting of GWs in the MLT. The observed GW had a horizontal wavelength of ∼40 km 

and an extrinsic phase speed of ∼90 m/s. The data show that complex resonant thermal ducting structures 

associated with unstable layers in the atmosphere can dissipate on timescales on the order of one hour. 

The observed phase relationship between the T’ and w’ perturbations is largely consistent with the linear 

GW theory. Furthermore, evidence of the generation of a secondary upward-propagating GW was also 

found. The implication of this result is that the parameterization of GW effects in global climate models 

should ideally consider statistically both the ducted waves themselves as well secondary waves that may 

be generated. Further observations and modeling of similar GW ducting events are needed to better 

understand the processes involved. While thermal ducting was certainly a major contributor to the 

observed event, the lack of lidar-measured horizontal wind profiles for this event prevent drawing any 

conclusions about possible contributions by Doppler ducting. Off-zenith lidar measurements of the 

vertical structure of horizontal winds are therefore crucial to the further study of similar events. 

Additionally, numerical modeling-based analyses attempting to recreate the observed event should 

include horizontal wind profiles to understand the contribution of Doppler ducting to the event. 
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Appendix A: Temperature and Vertical Wind Perturbations with Altitude  

  
Figure A.1 Individual T’ and w’ profiles from Figures 3.11 and 3.12 for the altitude range 100–103 km. 
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Figure A.2 Same as Figure A.1, but for the altitude range 96.5–99.5 km. 
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Figure A.3 Same as Figure A.1, but for the altitude range 93–96 km. 



44 
 

  
Figure A.4 Same as Figure A.1, but for the altitude range 89.5–92.5 km. 
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Figure A.5 Same as Figure A.1, but for the altitude range 86–89 km. 
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Appendix B: Linearization of the Incompressible Euler Equations 

The linearization of the Euler equations for the set of fundamental variables q defined in Equation (1.1) is 

developed following Cao [2017]. The atmosphere is assumed to be inviscid, irrotational (i.e., ignoring the 

effects of Earth’s rotation), and, initially, compressible. The atmosphere is also assumed to have vertical 

variations in the background temperature and winds, but without variation in the horizontal plane. We 

first consider a 2-D reference plane in the horizontal (x) and vertical (z) directions. For a 2-D wind vector 

𝑈𝑈��⃗ = (𝑢𝑢,𝑤𝑤), the material derivative operator is given by 

𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈��⃗ ⋅ ∇, (B.1) 

  
where 𝜕𝜕

𝜕𝜕𝜕𝜕
 is the local derivative relative to a fixed point and 𝑈𝑈��⃗ ⋅ ∇ is the convective derivative. The 

corresponding Euler continuity equations for the momentum, thermal energy, and mass are given by [Cao, 

2017] 

𝜕𝜕𝑈𝑈��⃗
𝜕𝜕𝜕𝜕

+ 𝑈𝑈��⃗ ⋅ ∇𝑈𝑈��⃗ =  −
1
𝜌𝜌
∇𝑝𝑝 + g�⃗  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈��⃗ ⋅ ∇𝑝𝑝 = 𝑐𝑐𝑠𝑠2 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈��⃗ ⋅ ∇𝜌𝜌� 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ⋅ �𝜌𝜌𝑈𝑈��⃗ � = 0,   

(B.2) 

  
where 𝜌𝜌 is the atmospheric density, p is the atmospheric pressure, g�⃗  is the gravitational acceleration 

vector due to Earth’s gravitational field, and 𝑐𝑐𝑠𝑠 is the speed of sound in the atmosphere. In the limit where 

the Boussinesq approximation that the pressure and density changes are separable is valid, we consider 

only the density perturbations which occur along with the gravitational acceleration g. Consequently, the 

atmosphere is now assumed to be incompressible. The Euler equations (B.2) become 

 



47 
 

𝜕𝜕𝑈𝑈��⃗
𝜕𝜕𝜕𝜕

+ 𝑈𝑈��⃗ ⋅ ∇𝑈𝑈��⃗ =  −
1
𝜌̅𝜌
∇𝑝𝑝 + g�⃗  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈��⃗ ⋅ ∇𝜌𝜌 = 0 

∇ ⋅ 𝑈𝑈��⃗ = 0,   

(B.3) 

  
which are the Taylor-Goldstein equations. Using the 2-D reference plane, we may write the scalar forms 

of Equations (B.3) as  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  −
1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑔𝑔 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0.   

(B.4) 

  
We now expand each variable in the set q into the sum of a slowly varying background state 𝑞𝑞�, which 

depends only on the altitude, and a small first-order perturbation q’ as 

𝑞𝑞(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑞𝑞�(𝑧𝑧) + 𝑞𝑞′(𝑥𝑥, 𝑧𝑧, 𝑡𝑡). (B.5) 
  
Equation (B.4) then becomes 

𝜕𝜕𝑢𝑢′

𝜕𝜕𝜕𝜕
+ 𝑢𝑢�

𝜕𝜕𝑢𝑢′

𝜕𝜕𝜕𝜕
+𝑤𝑤′

𝑑𝑑𝑢𝑢�
𝑑𝑑𝑑𝑑

=  −
1
𝜌̅𝜌
𝜕𝜕𝑝𝑝′

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝑤𝑤′

𝜕𝜕𝜕𝜕
+ 𝑢𝑢�

𝜕𝜕𝑤𝑤′

𝜕𝜕𝜕𝜕
= −

1
𝜌̅𝜌
𝜕𝜕𝑝𝑝′

𝜕𝜕𝜕𝜕
−
𝜌𝜌′

𝜌̅𝜌
𝑔𝑔 

𝜕𝜕𝑢𝑢′

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝑤𝑤′

𝜕𝜕𝜕𝜕
= 0 

𝜕𝜕𝜌𝜌′

𝜕𝜕𝜕𝜕
+ 𝑢𝑢�

𝜕𝜕𝜌𝜌′

𝜕𝜕𝜕𝜕
+ 𝑤𝑤′ 𝑑𝑑𝜌̅𝜌

𝑑𝑑𝑑𝑑
 = 0.   

(B.6) 

  
We now assume waveform solutions of the form  

𝑞𝑞′(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑞𝑞�(𝑧𝑧)𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−ωt), (B.7) 
  
where k is the horizontal wavenumber and 𝜔𝜔 is the extrinsic angular frequency. Equation (B.6) becomes  
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−𝑖𝑖𝜔𝜔𝑢𝑢� + 𝑖𝑖𝑢𝑢�𝑘𝑘𝑢𝑢� + 𝑤𝑤�
𝑑𝑑𝑢𝑢�
𝑑𝑑𝑑𝑑

=  −
𝑖𝑖
𝜌̅𝜌
𝑘𝑘𝜌𝜌� 

−𝑖𝑖𝜔𝜔𝑤𝑤� + 𝑖𝑖𝑢𝑢�𝑘𝑘𝑤𝑤� = −
1
𝜌̅𝜌
𝑑𝑑𝑝𝑝�
𝑑𝑑𝑑𝑑

−
𝜌𝜌�
𝜌̅𝜌
𝑔𝑔 

𝑖𝑖𝑖𝑖𝑢𝑢� +
𝑑𝑑𝑤𝑤�
𝑑𝑑𝑑𝑑

= 0 

−𝑖𝑖𝑖𝑖𝜌𝜌� + i𝑢𝑢�𝑘𝑘𝜌𝜌� + 𝑤𝑤�
𝜕𝜕𝜌̅𝜌
𝜕𝜕𝜕𝜕

= 0.   

(B.8) 

  
We now define the intrinsic angular wave frequency 𝜔𝜔�, or the frequency of the wave in a reference frame 

moving at the speed of the mean background flow 𝑢𝑢�, as  

𝜔𝜔� = 𝜔𝜔 − 𝑢𝑢�𝑘𝑘. (B.9) 
  
We also define the potential temperature 𝜃𝜃, or the temperature (T) change which a parcel of fluid would 

undergo in an adiabatic shift from its pressure p to a standard reference pressure p0, as  

θ = 𝑇𝑇 �
𝑝𝑝0
𝑝𝑝
�
𝑅𝑅
𝑐𝑐𝑝𝑝 =

𝑝𝑝
𝜌𝜌𝜌𝜌

�
𝑝𝑝0
𝑝𝑝
�
𝑅𝑅
𝑐𝑐𝑝𝑝  

(B.10) 

  
such that the buoyancy frequency N2 can be written as  

𝑁𝑁2 =
𝑔𝑔
𝜃̅𝜃
𝜕𝜕𝜃̅𝜃
𝜕𝜕𝜕𝜕

=  −
𝑔𝑔
𝜌̅𝜌
𝜕𝜕𝜌̅𝜌
𝜕𝜕𝜕𝜕

 .  
(B.11) 

  
In an atmosphere with horizontally uniform temperature, the vertical variation in the atmospheric density 

is  

𝜌̅𝜌 = 𝜌𝜌0𝑒𝑒
− 𝑧𝑧
𝐻𝐻𝑠𝑠  ,  (B.12) 

  
where 𝜌𝜌0 is the ground-level atmospheric density. The solution for 𝑤𝑤�  in Equation (B.8) is  

𝑑𝑑2𝑤𝑤�
𝑑𝑑𝑧𝑧2

−
1
𝐻𝐻𝑠𝑠
𝑑𝑑𝑤𝑤�
𝑑𝑑𝑑𝑑

+ �
𝑘𝑘2𝑁𝑁2

𝜔𝜔�2
+
𝑘𝑘
𝜔𝜔�
𝑑𝑑2𝑢𝑢�
𝑑𝑑𝑧𝑧2

−
𝑘𝑘
𝜔𝜔�𝐻𝐻𝑠𝑠

𝑑𝑑𝑢𝑢�
𝑑𝑑𝑑𝑑

− 𝑘𝑘2�𝑤𝑤� = 0,      
(B.13) 

  
where we have used the definitions in Equations (B.9), (B.11), and (B.12) to simplify the result. We may 

also define a new variable 𝑞𝑞� as  
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𝑞𝑞� = 𝑒𝑒−�
𝑧𝑧
2𝐻𝐻𝑠𝑠

�𝑞𝑞� . (B.14) 

  
Using the definition of the extrinsic horizontal phase speed c, we have 

𝑐𝑐 =
𝜔𝜔
𝑘𝑘

=  
𝜔𝜔� +  𝑘𝑘𝑢𝑢�

𝑘𝑘
=
𝜔𝜔
𝑘𝑘
�

+ 𝑢𝑢� ,  (B.15) 

  
which can be rearranged as 

𝑐𝑐 − 𝑢𝑢� =
𝜔𝜔
𝑘𝑘
�

,  (B.16) 

  
where the quantity 𝑐𝑐 − 𝑢𝑢�  is the intrinsic horizontal phase speed of the wave. Using Equations (B.14) and 

(B.16), we may finally rewrite the Taylor-Goldstein equation in the form 

𝑑𝑑2𝑤𝑤�
𝑑𝑑𝑧𝑧2

+ �
𝑁𝑁2

(𝑐𝑐 − 𝑢𝑢�)2 − 𝑘𝑘2 −
1

4𝐻𝐻𝑠𝑠2
+

1
(𝑐𝑐 − 𝑢𝑢�)

𝑑𝑑2𝑢𝑢�
𝑑𝑑𝑧𝑧2

−
1

𝐻𝐻𝑠𝑠(𝑐𝑐 − 𝑢𝑢�)
𝑑𝑑𝑢𝑢�
𝑑𝑑𝑑𝑑�

𝑤𝑤� = 0, 
(B.15) 

  
which implies the relation in Equation (1.3). 
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