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ABSTRACT

As cities continue to expand, the issues of flood control and urban water quality have
risen to the forefront of modern sustainability challenges. Green infrastructure— the use of
nature-based solutions to target, treat, and store stormwater at its source— has emerged as
a possible solution. While green infrastructure does offer multiple benefits for urban users,
its performance is also highly variable. This dissertation addresses a key gap in the literature
by explicitly addressing how uncertainty in environmental and anthropogenic factors affects
green infrastructure performance at modular, systemic, and policy levels.

Three primary contributions are made by this research, using an underlying fragility func-
tion methodology. Firstly, an analysis of the impact of temporal and spatial variability on
modular rain garden performance offers insights into challenges commonly faced by green
infrastructure: clogging and maintenance, back-to-back rainfall, and variable urban soils.
Building on these findings, the second contribution is the use of fragility functions to char-
acterize green infrastructure performance within the context of an existing separated storm
sewer network. A case study approach is used to analyze the effect of green infrastructure
implementation at multiple spatial scales and configurations. Finally, an in-depth policy
analysis incorporating game theory, environmental psychology, and environmental law eval-
uates how and why green infrastructure should be integrated into the existing urban policy
landscape.

This research fills an important gap in the literature by offering a new perspective on
green infrastructure performance, using an interdisciplinary, risk-based approach to analyze

how green infrastructure can be better integrated into the urban landscape.

i



ACKNOWLEDGMENTS

I would like to thank my advisor, Ashlynn Stillwell, for her guidance and help throughout
the course of my degree program. I would also like to thank my committee members —
Art Schmidt, Paolo Gardoni, Praveen Kumar, and Bryan Endres — for encouraging me,
challenging me, and allowing me to broaden my intellectual horizons.

Many thanks to Mark Shen, Mary Pat McGuire, Andrew Phillips, David Grimley, and the
rest of the team working on the Calumet Corridor project for their hard work and assistance
with data processing and soil mapping.

A heart-felt thanks to all the members of the Stillwell Research Group — past and present.
You have been wonderfully supportive of all my efforts, and have always encouraged me to
do my best work.

Last, but certainly not least, thank you to my wonderful family, including my parents and
my husband Kevin for helping me to remember why I love what I do.

This work was supported by a CEE Distinguished Fellowship from the Department of
Civil and Environmental Engineering, a Mavis Future Faculty Fellowship from the College
of Engineering, and a PEO Scholars Fellowship. This work was also supported in part by
the Illinois-Indiana Sea Grant College Program, grant number NA18OAR4170082, and the
[linois Water Resources Center. DHI provided additional support through free access to
their MIKE URBAN modeling software. The Baltimore City Department of Public Works

provided GIS data for the Baltimore sewer network.

iii



TABLE OF CONTENTS

LIST OF ABBREVIATIONS . . . . . . . e
CHAPTER 1 INTRODUCTION . . . . ... e
CHAPTER 2 BACKGROUND . . .. .. .. .
CHAPTER 3 MODEL DEVELOPMENT . . . ... ... ... ... ........

CHAPTER 4 UNDERSTANDING MODULAR GREEN INFRASTRUCTURE
PERFORMANCE UNDER SPATIAL AND TEMPORAL VARIABILITY

CHAPTER 5 NETWORK-SCALE RELIABILITY ANALYSIS OF GREEN IN-
FRASTRUCTURE IMPLEMENTATION . . . ... .. .. ... .. .......

CHAPTER 6 THE POLICY AND LEGAL IMPLICATIONS OF GREEN IN-
FRASTRUCTURE INTEGRATION INTO THE BUILT ENVIRONMENT . . . .

CHAPTER 7 CONCLUSION . . . . .. . e
REFERENCES . . . . . e

APPENDIX A BEST FIT REGRESSIONS . . . . ... ... ... . .....

v



LIST OF ABBREVIATIONS

AMC Antecedent moisture content
BAU Business as usual
CDF Cumulative Density Function
CWA Clean Water Act

EPA/USEPA U.S. Environmental Protection Agency

GSI Green stormwater infrastructure

LA Load Allocation

LID Low impact development

MS4 Municipal separated stormsewer system
NPDES National Pollutant Discharge Elimination System
NRCS Natural Resources Conservation Services
NSQD National Stormwater Quality Database
PDF Probability Density Function

POTW Publicly owned treatment works

SCM Stormwater control measure

SDT Self Determination Theory

SLCA Stochastic life cycle analysis

SSURGO Soil Survey Geographic Database
SWIP State Watershed Implementation Plan

TMDL Total Maximum Daily Load



TSS
USGS
WLA

Total suspended sediments
U.S. Geological Survey

Waste Load Allocation

vi



CHAPTER 1

INTRODUCTION

More than half of the global population lives in cites; consequently, the management of
urban areas has been heralded as one of the most important development challenges of the
21st century [1]. As the size and density of urban areas increase, the growth of paved areas
has led to a sharp rise in issues of degraded water quality and localized flooding. The U.S.
Environmental Protection Agency (EPA) reports that urban runoff is a leading source of
pollutants causing water quality impairment related to human activities in ocean shoreline
waters. Overall, the impairment of U.S. waters by urban runoff constitutes nearly 5,000
square miles of estuaries, 1.4 million acres of lakes, and 30,000 miles of rivers across the
country [2]. In some watersheds, the impact of urban runoff can be even more concentrated.
For example, urban runoff constitutes nearly 15% of the nitrogen entering the Chesapeake
Bay watershed, and is the only source that is still increasing [3].

To address some of these challenges, many urban areas are turning to green infrastruc-
ture, a low-cost, distributed, flexible alternative to traditional (grey) infrastructure. Green
stormwater infrastructure (GSI) is the use of natural processes to filter, capture, treat, and
store storm runoff at its source [4]. However, many green infrastructure benefits are also
highly variable. For example, Jennings [5] points out that the effectiveness of comparable
rain gardens varies from 51 to 100% across the contiguous United States. The efficiency of
green infrastructure in reducing runoff is contingent on a variety of different factors. Green
infrastructure typically shows the greatest mitigating ability for smaller storms with shorter
return periods [6-9]. However, green infrastructure capabilities are greatly reduced during
high intensity events. Storm size continues to be a good predictor of GSI performance at the
catchment scale [10]. Antecedent soil moisture conditions and interstorm duration also play

an important role in green infrastructure runoff reduction [11, 12]. Other factors that af-



fect green infrastructure efficiency include soil texture, media depth or pavement thickness,
drought stress, and vegetation type [13-18]. Finally, infrastructure age and maintenance
play a crucial role in determining GSI efficiency [19, 20].

Because of this inherent uncertainty, reliability analysis is a useful tool to analyze GSI
performance. This dissertation approaches the modeling of GSI implementation through
the lens of reliability analysis to answer the following motivating question: How does in-
corporating uncertainty into the impacts of green infrastructure implementation affect the
performance of an ewisting system, from engineering and policy perspectives? The explicit
incorporation of uncertainty and system reliability into the modeling of catchment-scale GSI
implementation has little precedent, and provides a unique perspective as to when and where
the implementation of green infrastructure is effective. This overarching goal is addressed
using three research objectives. Figure 1.1 diagrammatically presents an overview of this

research.
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Figure 1.1: The overarching research question can be further divided into three objectives.
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Objective 1: Characterize GSI modular variability

In order to understand how green infrastructure implementation affects network-scale system



reliability, a determination of how a single green infrastructure installation performs under
varying weather, maintenance, and soil regimes is needed. In this objective, an EPA-SWMM
model of a test rain garden is calibrated and validated using data collected from a USGS
site in Madison, WI, to understand how green infrastructure fragility functions are affected
by common challenges to their performance. Perturbing the rain garden in this fashion
allows the evaluation of how it responds to variability in both time and space. Objective 1
is subdivided into the following three tasks:

Task 1 (O1T1): Evaluate performance changes due to clogging
A stochastic life-cycle analysis (SLCA) approach is adopted to evaluate how rain garden
performance changes over time when exposed to different levels of clogging fine sediments.
This approach is used to make recommendations for appropriate maintenance ‘windows’ to
avoid rain garden failure.

Task 2 (01T2): Evaluate the impact of back-to-back rainfall events
A similar SLCA approach is used to evaluate how rain gardens respond to antecedent mois-
ture conditions in both the short and the long terms.

Task 3 (01T3): Evaluate performance changes due to spatial location
Finally, rain garden performance is evaluated under different loading ratios and native soil
conditions typically found in two cities within the Calumet River Corridor in Northern
[linois.

Objective 2: Simulate GSI network performance at the catchment scale
In Objective 2, the fragility curves developed in Objective 1 are used to analyze the impact
of green infrastructure placement on network performance. A combination of software tools
is used to develop a network model of a separated stormwater sewer system in the Gwynn’s
Run watershed located in west Baltimore, MD, as a representative case study. The effects
of clustered and randomized distributions of green infrastructure are compared for varying
levels of spatial coverage at the block and watershed scales.

Objective 3: Evaluate the policy implications of GSI implementation
The success of green infrastructure implementation at a city scale is contingent on a well-
thought-out approach to public-private partnerships. Objective 3 evaluates how green in-

frastructure can be integrated into the built environment from a policy perspective. This
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over-arching objective can be divided into three sub-tasks:

Task 1 (0O3T1): FEvaluate current municipal incentives policies for green infrastructure
implementation
A collaborative game theory framework is used to study four policies commonly used by
municipalities to incentivize private green infrastructure installation. The findings are used
to evaluate implications for environmental justice with regards to green infrastructure im-
plementation.

Task 2 (03T2): Consider green infrastructure integration through an environmental psy-
chology lens
Although game theory provides a useful framework to understand user behavior, it is limited
by its assumption that all agents are rational and selfish. This section explores the implica-
tions of literature from environmental psychology on green infrastructure implementation,
and uses them to make recommendations for practical next steps.

Task 3 (03T3): Understand the implications of green infrastructure implementation within
the framework of current U.S. law
Lastly, the framework of the U.S. Clean Water Act is used to better understand green infras-
tructure policy. The implications of using a point source framework for a non-point source
problem, as well as the current deterministic framing of green infrastructure solutions, are
studied. Potential paths forward are proposed, including new paradigms for municipal sepa-
rated stormsewer (MS4) monitoring and maintenance, as well as a potential legal regime that
offers a more holistic perspective on green infrastructure, and on watershed-scale challenges

as a whole.



CHAPTER 2

BACKGROUND

2.1 GSI Benefits

Many types of green infrastructure incur multiple benefits. Green infrastructure helps
to mitigate urban runoff by both attenuating stormwater volume and by reducing and de-
laying peak flows [15, 21, 22]. A combination of different types of GSI at the catchment
scale can lead to substantial reductions in runoff volume in dense, highly built-up envi-
ronments [23, 24]. In many instances, green infrastructure presents a viable alternative to
traditional grey infrastructure. Lucas and Sample [25] showed that during years with high
rainfall, green infrastructure with outlet controls is equivalent to or exceeds grey infrastruc-
ture performance. Green infrastructure and green-grey hybrid infrastructure has also been
shown to be cost-effective [26]. The relative cost of green infrastructure compared to grey
infrastructure has decreased substantially as population density continues to increase [27].

Multiple studies have shown that green infrastructure can be used to remove heavy metals,
sediment, nutrients, and other contaminants of interest from urban runoff [28-34]. In partic-
ular, infiltration-based, vegetated GSI has multiple mechanisms for pollutant mitigation. For
example, Leroy et al. [34] showed that vegetated swales with deep plant root systems help to
physically slow down water, allowing greater retention of total suspended sediments. At the
same time, Roy-Poirier et al. [35] showcased multiple chemical and biological mechanisms
that bioretention systems use to influence phosphorus, pH, and heavy metal uptake.

In addition to its water quality and flood mitigation benefits, urban green infrastructure
has multiple other co-benefits, including mitigation of the urban heat island effect and as-
sociated improved air quality [36, 37]. Studies have shown that green roof or green wall

implementation can substantially decrease ambient air temperature around buildings, lead-



ing to reduced energy loads for building cooling and improved overall quality of life [38, 39].
A recent modeling study by Kong et al. [40] showed that increasing urban green space could
reduce maximum air temperatures by over 3°C. Field experiments corroborate this finding,
showing that the implementation of a green wall can reduce maximum air temperatures by
around 6°C [41].

Other green infrastructure benefits are less tangible. Urban green space has been associ-
ated with multiple benefits for mental and physical health, including decreased stress and a
decrease in sympathetic nervous activity, which can promote healing [42]. Similarly, studies
have found that the effect of green space on the attention spans of children with ADHD
is comparable to those achieved with recent formulations of methylphenidate drugs [43].
Green spaces have also been shown to reduce aggression and enhance pro-social behavior,
thus leading to significant reductions in violent crime [44, 45]. As a result, access to green

space is implicitly tied to issues of social and environmental equity [46].

2.2 GSI Challenges

Despite these benefits, green infrastructure continues to be viewed as a “risky” investment
[47]. Part of this perception of risk stems from the high variability in green infrastructure
performance [48]. In general, there is a lack of data regarding environmental factors that can
be used to quantify variability in green infrastructure performance [49]. However, previous
research has shown that soil type and condition, land use, vegetation type, and existing soil
moisture and water table height can all affect the runoff reduction performance of green
infrastructure [50]. At the network scale, the placement and configuration of green infras-
tructure makes a significant difference in its ability to reduce runoff from impervious areas
[51]. Rainfall distribution also plays a significant role in runoff mitigation ability, with green
infrastructure generally performing better for smaller storms than larger ones [6-8]. For
example, rain gardens are least effective in the Atlantic and Gulf Coast states due to the
prevalence of high intensity rainfall events; rain gardens in regions with more temporally
dispersed rainfall tend to perform better overall [5]. The combination of these environmen-

tal uncertainties leads to significant variability in performance, especially at the watershed
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scale [50].

A probabilistic approach to quantifying green infrastructure performance is both feasible
and necessary. Policy has begun to shift towards a framing of infrastructure benefits in
terms of urban resilience, reliability, and risk [52]. The non-stationarity created as a result
of land use changes and climate change necessitates a risk-based evaluation of flood and
water quality infrastructure [53]. Multiple studies highlight that effectively communicating
uncertainty is a useful tool in communicating with the general public [54, 55]. This paradigm
shift is particularly relevant for green infrastructure implementation and uptake [56]. As
Livesley et al. [57] state, with a growing awareness of the multiple benefits of urban green
infrastructure comes a need “to answer the questions of ‘how beneficial’ and ‘under what
circumstance’.” Because of the high variability in performance between green infrastructure
installations across both space and time, optimal performance cannot be assumed, making
the use of green infrastructure to address regulatory challenges much more difficult [48].

The research presented in this dissertation provides a framework that quantifies green
infrastructure performance uncertainty, and uses that framework to answer questions about
how performance varies under different spatial and temporal configurations. In doing so, this
work provides helpful tools that can allow green infrastructure users to better understand
when and where green infrastructure can be most effective in the urban environment. The
background and methodology behind the creation of these tools is explored in the next

section.

2.3 Reliability Analysis and Fragility Functions

Reliability is defined as the probability that capacity is greater than demand for a given
component or system, to determine whether or not they are in failure [58]. One approach
to quantifying performance reliability is through the use of fragility functions. Fragility
is defined as the conditional probability of attaining or exceeding a specified standard of
performance conditioned on different demand variables (i.e., loading intensity measures).
Originally developed in the field of earthquake engineering [59, 60], fragility functions have

been used in multiple other applications [61, 62]. A similar framework has been adopted by
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water resources engineers in modeling flood risks in urban environments [63]. In particular,
Sayers et al. [64] highlighted the importance of using a reliability-based approach to charac-
terize an adaptive decision-making process, and presented metrics for calculating risk based
on different failure modes.

Failure for GSI can be defined in terms of different hydrologic or environmental standards
and targets. In this paper, failure is defined as the inability of the green infrastructure
to reduce runoff volume below a specified percentage of the efluent from a similarly-sized
paved area. Following the conventional notation in reliability analysis [61, 65], Equation 2.1
mathematically defines the conditional probability of failure F for a given rainfall magnitude

r

F = P([aVpavea(x, 1) — Vasi(x,7)] <O0|R =) (2.1)

where « is a specified fractional “reduction standard”, x is a vector of state variables that
define the state of the paved area and the GSI, r is the rainfall magnitude, Vj4yeq is the runoff
volume from the paved area, and Vg is the runoff volume from the GSI. In the context of
reliability analysis, aVaped(X, 1) represents the capacity of the GSI and Vis;(x, ) represents
the demand the GSI is subject to for a given rainfall of magnitude r.

The general methodology for creating fragility functions for as-built green infrastructure
performance is discussed in detail in William and Stillwell [15]. In brief, fragility functions

are generated in a three-step process:

1. Hydrologic model of GSI. Design storms are passed through a calibrated green
infrastructure model (executed in the EPA stormwater management model (EPA-
SWMM), MIKE SHE, or another model with GSI capabilities), generating output
hydrographs for different randomized scenarios created by varying selected model pa-

rameters.

2. Regression analysis to represent demand. The output hydrographs are then used
to generate regressions relating runoff peak, volume, and peak delay to the different

variables under consideration for each storm. These relationships define the demand



for the purposes of the reliability analysis.

3. Reliability analysis. The demand function, capacity, and random variable distri-
butions are input to the MATLAB-based reliability analysis program Finite Element
Reliability Using MATLAB (FERUM) [66] to calculate the probability of failure using

Monte Carlo simulation.

This dissertation builds on previous studies of reliability analysis to create tools that can
be used to evaluate how green infrastructure evolves in time and space, and how it can be

effectively incorporated into the urban environment.

2.4 Stochastic Life-Cycle Analysis (SLCA)

In contrast to traditional, deterministic life-cycle analysis, stochastic life-cycle analysis
(SLCA) [58, 67, 68] evaluates costs and benefits over the lifetime of a project from a proba-
bilistic perspective. SLCA uses fragility functions and probability distributions of different
deterioration and recovery mechanisms to account for the effects of degradation on systems
over time. SLCA describes the deterioration and restoration of a system as either gradual
over a span of time, or as a series of instantaneous shocks. The SLCA model makes use
of two components in calculating the change in system fragility over time: 1) the distri-
bution of the intensity of the shocks and recovery over time; and 2) an understanding of
how the disruption to the system affects the state variables. Figure 2.1 shows a diagram of
how deterioration and recovery can be modeled within the context of existing fragility func-
tions. SLCA has been applied in modeling the cost of structural damage caused by hazards
such as earthquakes over a project’s lifetime [69]. Other potential applications include flood
mitigation [64], and market and inventory analysis [70].

To quantify the effects of shock deterioration on future infrastructure performance, Jia
et al. [58] used a metric called “instantaneous reliability”. Instantaneous reliability (Q)

(given in Equation 2.2) is defined as:

Q=1-Pit)=1- / Flr(t)]lr(t)]dr (2.2)
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Figure 2.1: SLCA is based on a modeling of deterioration and recovery processes over time.

where Py is the probability of failure at a future time ¢ defined as the integral of F' (defined
in Equation 2.1) at time ¢ multiplied by the probability density function (PDF) of r(t)
also at time t, f[r(¢)]. Instantaneous reliability is a metric for system functionality, since
it allows the quantification of future performance over the entire fragility curve based on
current deterioration. While the SLCA framework is used extensively in both Section 4.2 and

Section 4.3, instantaneous reliability primarily plays a role in the study of green infrastructure

clogging, a shock deterioration process.
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CHAPTER 3

MODEL DEVELOPMENT

3.1 SWMM Rain Garden Model

Rain gardens, planted areas designed to collect and infiltrate stormwater runoff, are a form
of GSI commonly used in urban areas [16]. A model “test” rain garden is developed using
the EPA Stormwater Management Model (EPA-SWMM), and calibrated and validated using
data provided by the U.S. Geological Survey (USGS) for a rain garden field site in Madison,
WI (William Selbig, personal communication, July 13th 2016). The Madison rain garden
was constructed in 2003, and is around 9.3 m? (100 ft?) in area, draining a 46-m? (500-ft?)
asphalt shingle roof. The native surrounding soil is a clay loam; the rain garden itself is filled
with a sandy loam mixed with screened compost. Hydrological and climate measurements
(including rainfall, relative humidity (RH), net radiation, wind speed, temperature, soil
moisture, ponding depth, and runoff volume) were taken over the course of five years. In
this analysis, data from summer 2006 are used in calibration and validation as an example
of a particularly wet season with multiple different-sized rainfall events.

EPA-SWMM has been used in multiple studies modeling urban flooding and drainage
networks [71]. SWMM’s low impact development (LID) management modules have been
used to model the catchment-wide impacts of implementing a wide variety of types of green
infrastructure in urban environments [9, 17, 18, 72]. While SWMM is a lumped model rather
than a distributed model, fine-scale spatial resolution SWMM models with adequate land use
data can reach high predictive performances [71]. The SWMM test rain garden is modeled
as two subcatchments: one representing the roof, and the other the rain garden. The second
subcatchment (representing the rain garden) contains a ‘bioretention cell’” LID module to

better capture the differences between the sandy soil in the rain garden and the clayey native
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soil. Because the model is designed to represent a rain garden with no underdrain or extra
storage, the thickness of the storage layer module is decreased while retaining the seepage
rate functionality. The drain functionality is removed from the model. Figure 2 shows a

schematic diagram of the setup of the rain garden in SWMM.

Influent Effluent

Surface

Soil:
Saturated hydraulic conductivity,
thickness, porosity, soil moisture fraction

Storage:
Seepage

Figure 3.1: The bioretention cell module within EPA-SWMM was used to model a test
rain garden. Five variables were modified to represent variability under different soil and
climate conditions.

To test the ability of the model to respond accurately to multiple storm events, the model
calibration encompasses a 16-day period from July 12 to July 28. A warm-up time of one
month of rainfall data is used. Calibration parameters are mainly chosen from the soil layer
of the model, although the seepage rate is also a significant calibration parameter. Using the
calibrated parameters shown in Table 3.1, the calculated Nash-Sutcliffe Efficiency (NSE) for
this time period is 0.76, within the bounds of effectiveness set by Moriasi et al. [73]. The
chosen parameter values are reasonable based upon literature values taken from the SWMM
User Manual. A shorter validation period was chosen on August 24 to test the ability of the
model to respond to single, larger storm events. The NSE calculated for this event is 0.71.
The SWMM model was thus considered an appropriate representation of the hydrologic

responses of the system under real conditions.
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Table 3.1: Calibrated model parameters

Parameter ‘ Calibrated value

Thickness 483 mm
Porosity 0.44
Conductivity 115 mm/hr
Seepage rate 8 mm/hr

Void Ratio 0.1

Five random variables outside of precipitation magnitude were identified as impacting
runoff volume: saturated hydraulic conductivity, thickness, porosity, initial soil moisture
fraction, and seepage. The probability distributions of each of these variables were based on
the calibration or on literature, as listed in Table 3.2. Note that the standard deviation for
the sat.frac was based on the sensitivity of a standard soil moisture probe that would be
used to take the measurement, rather than the overall range of initial saturated fraction over
the course of the summer. Thirty-five scenarios randomly sampled from the distributions of

the five variables were batch processed in SWMM.

Table 3.2: Random variable distribution type, mean, and standard deviation

Random Distribution Standard .
. Mean e Citation
variable type deviation
ksat Lognormal 11.7 cm/hr | 7.6 cm/hr (74, 75]
seepage Lognormal 0.76 cm/hr | 0.08 cm/hr (74, 75]
porosity Lognormal 0.44 0.047 [76, 77]
thickness Lognormal 48.3 cm 7.6 cm [15]
sat. frac Lognormal 50 1.33 [78]

3.2 Regression Analysis

A combination of logistic and linear regressions was used to determine how the rain gar-
den responded hydrologically to different storm conditions. These regressions comprise the
demand (Vgsr(z,7)) used in later reliability calculations. Regressions are divided into three
sections based on the quantity of runoff generated for storms within that section. Section 1

contains storms that produce no efluent in most random variable permutations, and thus
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have very low probabilities of failure. Section 2 contains storms that produce a combination
of effluent and no effluent, depending on the values of the input variables. The regressions
for Section 2 storms follow a two-stage process: a logistic regression to separate outputs into
storms producing effluent versus those not producing effluent, followed by a linear regres-
sion. Section 3 contains storms that always produce effluent, regardless of the combination
of input variables used.

Rosner tests are used as appropriate to remove outlier points, while backwards stepwise
regression is used to reduce the number of variables and simplify the model. All of the model
coefficients are statistically significant (p < 0.05). Table 3.3 includes model form, coefficient
values, and R-squared for 2-hour duration design storms (used in Section 4.2), while Table
3.4 presents these values for the 24-hour duration design storms (used in 4.3). Regression

best-fit curves are presented in Appendix A.
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Table 3.3: Model form, coefficient values and R-squared for the 2-hour duration storm.

qT

Section Model form Coeflicient Mo.d el
values Fit
Section 1
(r < 30 mm) V=0 N/A N/A
1 0y | -19.3
Section 2 h = 1 + ¢25.1-0.43ksat+19.8porosity—1.05r 0, | -7.02 Accur2acy = 0.96
(30 mm < 7 <48 mm) V' = 0y + thporosity + Orksat + Osr, h > 0.5 0 | -5.62 R*=0.83
03 | 0.46
0y | -133
6, | 2.45
(r > 48 mm) V =6y + O1seepage + Oyporosity + Osksat + 041 0y | -5.23 R?=0.97
03 | -1.90
04| 5.19




91

Table 3.4: Model form, coefficient values and R-squared for the 24-hour duration storm.

Section Model form Coeflicient Mo.del
values Fit
Section 1
(r <5.3 cm) V=0 N/A N/A
X 6, | -22.7
Section 2 h = 1 4 ¢b1.3—0.21sat. frac+34.0seepage—9.95r 61 0.088 ACCUI‘?CY = 0.96
(5.3em <r < 7.1 cm) V =0y + 0ysat. frac 4 Oyseepage + Osr, h > 0.5 Oy | -16.1 R*=0.94
05 | 4.65
0y | -20.7
6, | 0.11
(r > 7.1 cm) V =60y + 01sat. frac + Oyseepage + O3porosity + O4r 0y | -19.26 R%2=0.98
05 | -11.6
6y | 5.10




To calculate the capacity (aVpaped(z,7)), @ new SWMM model was created by removing
the bioretention LID module and increasing the impervious fraction of the subcatchment to
100%, effectively ‘paving over’ the rain garden surface. The relationship between precipita-
tion (in mm) and effluent depth (mm) for a paved surface is linear, as shown in Equation

3.1.

V = (1+1/LR) x (r — initial abstractions) (3.1)

3.3 Probability Distribution of Storm Magnitude and Interstorm
Duration

Many of the analyses in the following chapter are dependent on the temporal variability
of both rainfall magnitude and interstorm duration. The distribution of storm events and
magnitudes can be modeled as a homogenous spiked Poisson distribution. The distribution
is assumed to be homogenous since there is no seasonality associated with the interstorm
durations for the temperate, humid climate found in Urbana, IL. To determine the effect
of a typical midwest climate on our test rain garden, storm magnitude is modeled based
on 50 years of daily precipitation data (1977-2017) taken from the National Oceanic and
Atmospheric Administration (NOAA) gage in northwest Urbana, IL. The best fit distribution
of storm magnitude is defined by a gamma distribution with a shape parameter o =0.52
and rate parameter [ =1.54. The length of the interstorm duration is modeled based on
5 years (2000-2005) of 15-minute increment precipitation data taken from the NOAA gage
in west Champaign, IL. Data from this gage were used for the interstorm duration analysis
because they were available at finer temporal resolution than the data at the Urbana, IL gage
(Champaign, IL and Urbana, IL are adjacent). An interstorm period is defined as a period
of at least 6 hours between measurable rainfall events, as per Wadzuk et al. [102]. The best
fit distribution of interstorm duration is defined as an exponential distribution with a rate
parameter A =0.011. A Lilliefors-corrected Kolmogorov-Smirnov test was used to ascertain
that an exponential distribution was a good fit for the data. Plots of the histogram and the
best fit distributions can be found in Figure 3.2.
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CHAPTER 4

UNDERSTANDING MODULAR GREEN
INFRASTRUCTURE PERFORMANCE UNDER
SPATIAL AND TEMPORAL VARIABILITY

4.1 Overview

Modular “as-built” fragility curves from individual GSI installations can be used as a start-
ing point to evaluate the variability of green infrastructure performance in time and space.
They can also be ‘scaled up’ to determine the effectiveness of using GSI to reduce urban
watershed pollution at the network scale. In this chapter, the test-case of a common form of
residential green infrastructure, a rain garden, is used to evaluate the impact of three differ-
ent phenomena on performance reliability. Firstly, the impact of long-term clogging on rain
garden stormwater volumetric reduction is evaluated using the stochastic life-cycle analysis
(SLCA) methodology developed by Jia et al. [58]. The clogging analysis assumes deterio-
ration with no recovery, thus simplifying the modeling process, as described in Section 4.2.
The second phenomenon involves modeling the impact of back-to-back rainfall events on rain
garden performance. Again, the general framework from Jia et al. [58] is adopted, utilizing
mechanisms to describe both deterioration and recovery (i.e., the processes of increasing soil
moisture content during storms and decreasing soil moisture between storms, respectively).
More detailed methodology for this second task can be found in Section 4.3. Finally, the
impact of location on green infrastructure performance is simulated by changing the seepage
rate within the model to simulate placing the rain garden in different surrounding soils. In
this section, the effect of loading ratio on rain garden reliability is also investigated. This
analysis provides the logical framework for the network-scale analysis conducted in Chapter

D.
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4.2 A reliability-based approach to investigating long-term
clogging in green stormwater infrastructure!

Multiple green infrastructure field studies highlight the issue of clogging [20, 79]. Clogging
is often the result of the physical buildup of fines and other debris carried by influent water
and deposited in the pores of the planting medium. A 1992 field study found that after
four years of operation, many infiltration systems were found to be either not functioning
as designed, or not meeting current design guidelines with respect to hydraulic conductivity
[20]. In controlled column tests, Le Coustumer et al. [80] found that saturated hydraulic
conductivity decreased substantially over time if the system was loaded with influent con-
taining total suspended sediments (TSS) of mean concentration 120 mg/L. However, certain
system characteristics can help mitigate or reduce the likelihood of clogging. The presence of
plants, particularly those with coarser root systems, helps stabilize the saturated hydraulic
conductivity [79-81]. In addition, the initial choice of soil greatly impacts clogging processes,
since saturated hydraulic conductivity is primarily controlled by the top layer of soil [79].
Finally, lab studies indicate that an asymptotic value of saturated hydraulic conductivity is
reached with increasing loading of pollutants, including T'SS [80, 82].

In this section, a SLCA framework is used to assess the reliability of GSI considering the
effects of clogging and different maintenance strategies. Specifically, a probabilistic method
is developed to determine optimal maintenance timeframes to mitigate GSI performance
degradation from clogging, demonstrated for a model rain garden. This work asks and
answers the motivating question, “How often should infiltration-based green infrastructure

be maintained to prevent clogging?”, thereby filling an important gap in the literature.

4.2.1 General Modeling Setup

The methodology used to determine the time taken to clog a GSI follows two main steps, as

shown in Figure 4.1. Step 1, shown in black boxes, involves changing the saturated hydraulic

!The content of this section is published as William, R., Gardoni, P.,and Stillwell, A.S. (2018). A
reliability-based approach to investigating long-term clogging in green stormwater infrastructure. Journal
of Sustainable Water in the Built Environment, 5(1), 04018015.
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conductivity (ksat) to examine how it affects the resulting fragility curves; calculating the
instantaneous reliability (Q) for each fragility curve; defining a relationship between @ and
ksat; and using this relationship to find the acceptable value ksat,.. corresponding to a given
acceptable value of (... Step 2, shown in grey boxes, is an iterative while loop. Firstly, the
distribution f[r(¢)] is used to determine whether a storm happens in a given month, and if
so, how many storms occur, and how large they are. These results are used to determine the
influent volume and the new ksat. Mathematical descriptions of these processes are detailed
in the following sections. The results from Step 1 are then used to determine how the green
infrastructure responds to a given storm, and to ascertain whether or not ksat,.. has been
reached. If it has, the value of the time step is output. If not, the cycle is repeated. This
process is repeated 450 times to create a probability distribution of the time to clogging

(tfinar) for different influent TSS concentrations.

<~\No

\tt+1

instantaneous
probability of
failure (Pf)

What is the Foragiven Q

relationship Ld__>
Comesponding

between
ksat and Pf? ksat (ksat, )

How does
changing ksat

affect fragility curve?

Figure 4.1: The general methodology for determining the probability distribution of the
mean time to clogging is a two-stage process. In this diagram, Step 1 is colored black, and
Step 2 (inside a while loop) is colored grey. The process is repeated 450 times to determine
the probability distribution for the time to clogging.

4.2.2 Modeling the Clogging Process

Based on reporting from the SWMM User Manual as well as literature [82], saturated
hydraulic conductivity (ksat) was identified as the primary random variable affected by pro-
gressive clogging. While clogging can be based on biochemical as well as physical processes

[82], this study’s modeling of clogging is based on sediment deposition, a physical process.
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Total suspended sediments (TSS) are a major source of clogging impairment in bioretention
cells and rain gardens, particularly for those without pre-treatment.

In modeling clogging, SWMM uses an empirical ‘clogging factor’ to decrease ksat pro-
portional to the volume of water influent into the bioretention cell. Rather than using this
approach, this model follows the more precise logistic regression proposed by Viviani and
lIovino [82]. The logistic regression model was chosen because of its mathematical simplic-
ity, but also because it captures the ksat asymptotic decay observed in many field studies
of green infrastructure [7, 80, 83]. The relationship between ksat and the TSS cumula-
tive loading density Lrgs (the influent loading in terms of depth multiplied by the influent
concentration) can be described as shown in Equation 4.1, where a and b are empirical pa-
rameters dependent on the type of soil in question, and ksat(7;) is the saturated hydraulic
conductivity at time 7;. In this analysis, a is 0.02 m?/g and b is 0.513 based on Vivani and
Iovino’s [82] calculated values for a loam soil loaded with artificial wastewater (containing
only suspended solids and no organic matter).

ksat()

ksat(ry) = —————— (4.1)
1+ aLl:’FSS

4.2.3 Results

The fragility curve of the as-built GSI, shown in Figure 4.2, highlights the three distinct
regions used in the regression analysis. The 4o uncertainty bounds are created using the
methodology described in Gardoni et al. [59] to capture the epistemic uncertainty in the
model parameters. Storms below 48 mm (1.9 in) of precipitation (Sections 1 and 2) have
negligible probabilities of failure. These low values are unsurprising, given than many rain
garden design standards specify a minimum volumetric retention depth on the order of 25
mm (1 in) of runoff. Storms above 48 mm show a rapid increase in the probability of failure.

Figure 4.3 plots the fragility curves for the rain garden after clogging (i.e., at reduced
levels of ksat). The impact of ksat on rain garden failure is significant, particularly for
larger storms. As the garden becomes increasingly clogged, the curves shift up and to the

left: smaller storms begin to generate effluent. The overall shape of the curve also changes,
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Figure 4.2: The as-built fragility curve for 80% volume reduction for a two-hour duration
storm is divided into three distinct sections. The blue shaded area corresponds to the
1-sigma error bounds on the fragility curve.

with clogged curves showing steeper slopes in the early portion of the graph compared to the
as-built curve. The graphs’ curvatures also change as the system becomes more clogged. The
unclogged, as-built system is concave, with a large increase in the conditional probability of
failure for storms above a certain threshold. At lower ksat, the fragility curves tend towards
a convex shape, reaching an asymptotic maximum failure at much smaller storm magnitudes.

The rapid increase in the conditional probability of failure as a result of decreasing ksat
leads to larger instantaneous probability of failure, and thus lower instantaneous reliability.
As shown in Figure 4.4, instantaneous reliability decreases rapidly over time. Each “step”
in the graph represents a storm or series of storms that has taken place in a given month.
Months without a decrease in reliability indicate no precipitation. Importantly, because of
the probability distribution of the rainfall magnitudes, a large jump in the graph is most
likely due to several smaller storms rather than one large storm. As the simulation pro-

gresses, reliability asymptotically approaches the limit set by the chosen Q4. (0.9, or a rain
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Figure 4.3: Changing the ksat via clogging significantly alters the shape of the fragility
curve.

garden that performs as expected in nine storm events out of ten). This asymptotic decrease
is reflective of the logistic regression used to recursively calculate the ksat. The asymptotic
decrease in the instantaneous reliability also implies that the rain garden continues to func-
tion fairly well, even at low levels of ksat.

Finally, Figure 4.5 shows the change in the cumulative distribution function (CDF) of the
time to clogged for different influent concentrations of T'SS. The three influent concentrations
are chosen as representative of runoff effluent from a roof gutter system (10 mg/L), runoff
influent to a typical rain garden with some pre-treatment (40 mg/L), and runoff from a
parking lot without pre-treatment (297 mg/L) [84, 85]. The 40 mg/L curve has a mean
time to clogged of approximately 34 months, in contrast to approximately 66 months for 10
mg/L and approximately 15 months for 297 mg/L. Intuitively, these values make sense, since
higher loadings of suspended sediments would tend to clog the system more quickly; many
existing rain garden systems use pre-treatment for this reason. Interestingly, the general

slope of the CDF decreases with decreasing T'SS concentrations: the 10 mg/L CDF has an
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Figure 4.4: The instantaneous reliability (Q) shows an asymptotic decay towards the
chosen threshold reliability (0.90) over time.

estimated standard deviation of 7 months, while the 40 mg/L CDF has a standard deviation
of 5 months, and the 297 mg/L CDF has a standard deviation of 3 months. The reason for
this trend is that the lower concentration CDF is more sensitive to the random distribution
of rainfall events; a cluster of large storms tends to clog the system more quickly. In the
case of the high concentration CDF, this effect is less pronounced, since every storm already
carries a high sediment loading regardless of its size. The error bounds on the CDFs also
increase with decreasing TSS concentration, illustrating that the effects of uncertainty in

the model parameters are also more pronounced.

4.2.4 Discussion

The reliability analysis of rain garden clogging suggests that in a humid continental cli-
mate, monitoring and maintenance should ideally be conducted on average every 3 years

(based on model results of 34 months to clogged conditions) to ensure optimal performance.
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Figure 4.5: Changing the influent total suspended sediment concentration alters the
cumulative probability density (CDF) of the time to clogged. The shaded areas correspond
to the error bounds on the CDF. The CDF is given both is terms of time to clogged
(bottom axis) and the corresponding mean cumulative precipitation (top axis).

Because clogging is highly determined by climate, these results will change depending on
local rainfall distributions. Importantly, this analysis assumes a high performance standard
for the considered rain garden since the garden was designed to retain and infiltrate the
majority of the stormwater that fell on the property. Using a lower performance standard
would help to increase the time window for maintenance.

Rain garden volumetric retention is greatly decreased for larger storm events, which re-
duces its overall future performance ability. Moreover, clogging increases the probability
that smaller storms will begin to generate runoff. As expected, mean clogging time de-
creases with increasing influent TSS concentration. However, the standard deviation also
decreases, implying that while rain garden pre-treatment does improve long-term perfor-
mance, it also produces high performance variability due to the sensitivity of performance
on rainfall distribution. Some examples of suggested stormwater pre-treatment include the

use of forebays and drain inlet inserts to allow for the trapping of gross pollutants [86].
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While ksat does significantly impact rain garden reliability, many of the effects are con-
centrated in larger storms. A large decrease in ksat thus does not necessarily translate into a
large decrease in instantaneous reliability. Consequently, monitoring should comprise a holis-
tic evaluation of the desired performance parameter rather than a single factor such as ksat.
Performance parameters that might be relevant to effective monitoring and maintenance
schedules could include volumetric runoff reduction, efluent turbidity, and the presence of
long-standing ponded water. Many utilities already use some of these parameters in their
maintenance regimes [87].

Although the model described here presents a first attempt at using a reliability-based
approach to evaluate the performance of a rain garden over time, it is still highly simplified.
The model assumes a uniform effect of clogging throughout the soil thickness, while literature
suggests that clogging typically manifests in the top few inches of the bioretention column
[82]. In addition, many other factors impact the change in ksat other than influent TSS. For
instance, Le Coustumer et al. [80] indicate that the presence of coarse-root vegetation in the
bioretention cell can help decrease the likelihood of clogging. Other studies [81] also show
that while ksat decreases rapidly in bioretention cells within the first six months of planting,
cells recovered functionality due to plant macropore processes. In addition, Mehring and
Levin [88] suggest that rain garden ecology and a flourishing macrofauna can have important
impacts on maintaining infiltration capacity. Earthworm burrows can increase infiltration
rates by factors of 2 to 15 in terrestrial systems. In addition, their burrows create preferential
flow paths under wet conditions. Other burrowing invertebrates such as termites and ants
can also have the same effect [88]. While rain garden sizing can also be used to mitigate
potential clogging [80], field inspections of bioretention cells in North Carolina revealed that
over half of the bioretention cells were undersized [89].

Another factor that was not considered was the buildup of sediment in the upstream
treated area between storm events, which could alter influent concentrations. The phe-
nomenon of a greater proportion of pollutant loads being washed off surfaces early on in
the storm, leading to variable influent concentrations, is known as ‘first flush’. However,
previous research has found that no correlation exists between first flush and antecedent dry

weather period [90]. This study evaluates the effects of long-term clogging on rain garden
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performance, and so excludes the first flush effect, instead assuming constant concentrations

based on average reported concentrations from rainfall collected over several sizes of storms.

4.2.5 Implications for GSI Maintenance

The mean time to clogging is 34 months for a 9.3-m? (100 ft?) sandy loam rain garden
with 40 mg/L total suspended sediment loading, and a mean annual cumulative rainfall of
around 1000 mm (40 in). The findings illustrate that T'SS influent concentrations affect the
mean and standard deviation of the time to clogging. Increasing the influent concentration
decreases a rain garden’s long-term performance, making a strong case for pre-treatment.
However, results show that rain gardens with pre-treated influent runoff are more sensitive
to the distribution of incoming rainfall, increasing uncertainty around the elapsed time to
clogged conditions.

Many public utilities identify the significant build-up of sediments and debris along with
long-term ponding as a cause for concern and immediate remedial maintenance [91]. Possible
repairs to systems that are already clogged include the removal of the top layer of soil;
because clogging tends to happen in the upper layer of soil, removing this upper layer
immediately renews performance capacity. Another suggestion is to dig small pits within
the garden to remove the soil, and naturally letting them fill in over time [92]. However,
this restorative maintenance can be expensive [93, 94]. To avoid these high costs, some
utilities suggest a routine maintenance schedule. If sediments are detected before they
become a significant issue, then simply clearing out the excess debris and aerating the soil
with a garden rake will avoid the need for restorative maintenance as a result of clogging.
The University of New Hampshire Stormwater Center suggests checking for standing water
biannually after the first year. Additionally, they suggest a biannual inspection to check for
accumulated material in the filter bed [87]. Other organizations suggest annual inspections
for accumulated sediment or debris [92, 95]. The Rutgers University rain garden maintenance
manual suggests checking the rain garden for sediment accumulation after each major storm
event [96]. These routine maintenance schedules are helpful, but remain ad-hoc and without

a quantifiable reasoning for their suggested timings. This study presents a quantitative
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metric that can be used to specifically highlight unique maintenance “windows” for which
maintenance is most appropriate for a given location.

This study’s findings are important because they present a first attempt at using a
reliability-based approach to evaluate green infrastructure maintenance requirements. This
analysis allows utilities to focus their efforts on the time period before the mean predicted
time to clogging, and to take a proactive approach to long-term performance while avoid-
ing excess expenses. Based on these findings, saturated hydraulic conductivity alone is not
the only parameter that should be used to assess rain garden performance. Other possible
indicators of rain garden performance could include a visual inspection for standing ponded
water or for unexpected overflows during smaller rainfall events to determine whether the
rain garden is draining adequately. A reliability-based approach with final performance met-
rics for the rain garden (e.g., volumetric retention) is a more holistic method that can be
used to model and monitor long-term rain garden performance. Importantly, modeling rain
garden maintenance using a probabilistic approach also allows for schedule customization to

the design needs and unique soil characteristics for each rain garden location.

4.3 Predicting Green Infrastructure Performance Under
Antecedent Moisture Conditions using SCLA?

Understanding the impact of antecedent soil moisture on hydrological performance metrics
is another challenge for scientists studying green infrastructure. In their study of green roof
hydrological performance, Locatelli et al. [97] highlighted that variables such as antecedent
moisture and rainfall patterns make runoff analysis uncertain for single events. Other stud-
ies show that soil storage and antecedent moisture both play a role in the ability of rain
gardens and other types of green infrastructure to reduce runoff [50, 98]. Brander et al. [99]
indicated that both groundwater depth and soil type significantly impact the effectiveness
of infiltration basins in highly urbanized environments. Apart from its impacts on runoff
quantity, subsurface antecedent moisture also impacts water quality. The creation of a deep

internal water storage zone can be helpful in stimulating denitrification processes within

2The content of this section is in revision for Sustainable and Resilient Infrastructure.
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the green infrastructure, leading to the removal of nitrates [100]. Pearson et al. [101] used
experimental evidence to confirm that antecedent moisture content significantly affects both
runoff quantity and quality. Because antecedent soil moisture has a significant impact on
performance, timing and inter-storm duration for smaller events can also be important met-
rics for assessing performance [102]. In other words, green infrastructure can underperform
even for small storms if there is a short enough interstorm duration.

This study addresses the need for a probabilistic understanding and quantification of
green infrastructure performance under back-to-back rainfall events. A stochastic life-cycle
analysis framework is used to evaluate the extent to which interstorm duration impacts the
ability of green infrastructure to reduce runoff both in short and long terms. The results
are presented in two different forms. Wireframe fragility surface plots illustrate how the
conditional probability of failure changes with interstorm duration and storm magnitude.
Two fragility surfaces are presented, for small and large antecedent storms. To illustrate
how antecedent moisture conditions affect rain garden performance over longer periods of
time, the long-term changes in the probability of failure are plotted for time periods ranging

from 1 to 24 months.

4.3.1 General Modeling Setup

Fragility surfaces for two different initial storm magnitudes (Sk_1, and Si_1;) are generated
for a test rain garden. The fragility surface is a 3D plot that depicts the probability of failure
of the rain garden after different interstorm duration and under different second storm (Sy)
magnitudes following a given storm Sy_;. Figure 4.6 illustrates the method used to create
these fragility surfaces. Further details of the mathematical modeling used in each step are
detailed later in this section, as shown in Figure 4.6.

To evaluate the long-term impacts of antecedent moisture on rain garden performance,
changes in the probability of failure of the system over time are tracked. Figure 4.7 diagram-
matically illustrates the methodology. To calculate the new antecedent moisture, random
selections are made from the probability distributions of the storm magnitude and the in-

terstorm duration. Using these values, relationships are developed between precipitation,
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Figure 4.6: The fragility surface is created based on fragility curves representing the change
in antecedent moisture content (AMC) and the change in the soil moisture over time.

interstorm duration, and antecedent moisture. After calculating the soil moisture content,
the probability of failure is calculated using the preset fragility curves. A ‘weighted coin flip’
is conducted based on the calculated probability of failure, to determine whether or not the
rain garden is in failure. The process is repeated until the given time period is completed,
with all of the determined failures being summed. The probability of failure for the time
period is the number of failures divided by the number of storm events. The process is
repeated using a convergence criteria of coefficient of variance (COV) less than 0.05 for time
periods ranging from 1 to 24 months to determine the mean and standard deviation of the

probability of failure for each time period.

4.3.2 Temporal Changes in Soil Moisture Content

To understand how antecedent moisture and interstorm duration affect green infrastruc-
ture performance, it is important to understand how soil moisture changes over time. Be-
cause the seepage out of the rain garden into the surrounding aquifer is much lower than the

infiltration rate into the rain garden, the runoff efluent from the rain garden is caused by
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Figure 4.7: Several steps go into calculating the long-term probability of failure, as detailed
in later sections, including the calculation of how changing precipitation and interstorm
duration (ISD) affects the soil moisture content (SMC). The dashed line represents the
algorithm inside the while loop for a given time period.

saturation excess runoff rather than infiltration excess runoff. In other words, runoff only
starts happening when the soil pores in the rain garden are completely filled with water (i.e.,
the soil is saturated).

After the storm has passed, there are two possible cases:

1. There is no water ponded on the surface after the storm has passed. After the storm
has passed there is no inflow into the mass balance, only outflow through drainage.
At the interstorm duration timescales considered (i.e., <48 hours), losses through

evapotranspiration are assumed to be negligible.

2. There is some ponded depth (H) at the ground surface after the storm is over. This

ponded water needs to be removed before the soil can begin to drain.

The controlling factor in how fast the water is removed from the system is the seepage
rate. The time taken to drain the ponded water can be defined as t;. The soil moisture
content a time ¢ after the storm has passed (SMC(t)) is given in Equation 4.2, based on
a mass balance. Note that when no water is ponded on the surface, t; =0 in Equation
4.2. From the calculated SMC, the initial saturated fraction (sat.frac) is calculated
as required by SWMM, as shown in Equation 4.3, where n is the porosity, and WP is
the wilting point.
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seepage X (t —tq)

SMC(t) = SMCy — (4.2)

thickness

100 _100><WP
n— WP n— WP

sat. frac = SMC x (4.3)

Based on the SWMM outputs, a relationship between the magnitude of the storm (r), t4,
and SMCj (the soil moisture content at the beginning of the interstorm period) is developed
as shown in Table 4.1. There are four potential outcomes in calculating SMC" 1) the soil
does not become fully saturated; 2) the soil is fully saturated, but there is no ponding such
that t;=0; 3) there is some ponding, but no runoff effluent from the top of the berm; and
4) there is both ponding and runoff. Plots of the best fit curves for these regressions can be

found in Appendix A.
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Table 4.1: Soil moisture content as a function of initial saturation (sat.frac) and precipitation (ry_1) (in cm)

Case

Model

RZ

Range
! 118.1 — sat. frac
SMCy = —0.0029 + 0.0036sat. frac + 0.143r,_1 | 0.96 37 7
Tk—1
Not saturated
2 SMCy=n 118.1 ;;gt.frac <
N/A T’kil <
37.2 — 0.097sat.
Saturated, no ponding t; =0 = 7SCL frac
3 SMCy=n 37.2 — O.lO;;sat.frac <
0.99 rey <
i —47.9+ 0.097sat. frac
Ponding, no runoff tg = —13.2+0.097sat. frac+ 13.7r,_1 — 24 095~ 157
4 SMCy=n N
0.99 Th=1 =

Ponding, runoff

tqg =0.95r,1 +34.7 — 24

—47.9 + 0.097sat. frac

(0.95 —13.7)



4.3.3 Results

Figure 4.8 shows the resulting 24-hour duration as-built fragility curve, along with the
1-sigma error bounds. Fragility remains fairly low for the smallest storms, showing a rapid
increase in the probability of failure after about 7.4 cm of precipitation to an asymptotic
value. Although the error bounds remain fairly small, there is a slight increase in the error
with higher rainfall. Overlaying the PDF of rainfall magnitude on top of this fragility curve

showcases the ability of the rain garden to effectively deal with the vast magnitude of storms

in this particular climate.
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Figure 4.8: The as-built fragility curve for the rain garden shows that the garden is reliable

over a wide range of storms. The dashed line represents the PDF of rainfall magnitudes for
a temperate, humid climate.

To evaluate how sat. frac affects the probability of failure for different storms, a family of
fragility curves are created by changing the sat. frac mean input into FERUM while keeping
all other inputs constant. Figure 4.9 shows the family of curves, ranging from 40% initial
saturation to 100% initial saturation. Although the overall shape of the curve stays the same,

the curve shifts to the left with increasing initial saturation, indicating higher probabilities
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of failure for smaller storms as the soil gets increasingly saturated. However, even when
the soil is completely saturated, storms below 6.1 cm of precipitation still fail to produce
significant quantities of runoff. This limited runoff is a result of ponding within the rain as
a result of its built-in 6 inch berm. This finding is consistent with reported values from the
USGS field site, which showed little to no runoff for the entire duration of its monitoring

lifetime [103].
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Figure 4.9: Increasing the initial saturation shifts the fragility curve to the left; the overall
shape of the curve stays the same.

Figure 4.10 presents a 3D wireframe plot of the conditional probability of failure for the
rain garden under storms with different magnitudes (Sx) and different interstorm durations,
for a 2.5-cm magnitude preceding storm Si_;. Interstorm durations were modeled up to 48
hours after the storm had subsided, and the soil initial saturation fraction before S;_; was
assumed to be 50%. As with the fragility curves in Figures 4.8 and 4.9, the probability of
failure is generally very low for smaller magnitude storms. The probability of failure begins
to significantly increase for very large storms. Increasing the interstorm duration decreases

the magnitude of the probability of failure at the inflection point, and also slightly increases
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the magnitude of the Sy required to increase the probability of failure above near-zero.
The probability of failure for the largest magnitude storm also decreases with increasing

interstorm duration.
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Figure 4.10: The fragility surface for a small magnitude Sy_; shows us that increasing the
interstorm duration very slightly decreases the probability of failure.

Compare these results from Figure 4.10 with those presented in Figure 4.11, illustrating
the results for a 7.6-cm magnitude preceding storm S;_;. While the curvature of Figure 4.10
is less steep, Figure 4.11 reaches an asymptotic value more rapidly. In Figure 4.11, there is
also little change in the probability of failure at different interstorm durations for the largest
magnitude storms. Together, the two plots indicate that the probability of failure does not

change dramatically over the time of the interstorm duration. The high volumes of water
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required to increase the probability of failure also suggest that saturation excess processes
are responsible for much of the runoff generation for long duration storms. In addition,
the largest change in the probability of failure occurs during larger storms. In other words,
he rain garden is most likely to fail if there are two large storms (> 6.5 cm) in succession
with a small interstorm duration (< 24 hr), which is unlikely for the observed patterns of
precipitation. This finding reflects other studies that show very few recorded rain garden

failures for back-to-back rainfall events [102].
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Figure 4.11: The fragility surface for a large magnitude S;_; is much steeper than the
fragility surface for a small magnitude Sy_1.

Figure 4.12 shows the change in the mean probability of failure (i.e., the total number
of failures divided by the total number of storms within a given timestep, averaged over
the number of iterations required to achieve COV< 0.05 over time; the shaded area shows

the standard deviation of the probability of failure. In the long term, the probability of
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failure decreases from 7.8% to an asymptotic value of 4.1%, around which it continues to
fluctuate over time. The asymptotic decrease in the probability of failure indicates that
if interstorm duration is incorporated into the analysis of rain garden performance, the
model reaches equilibrium at a time scale of around one year of simulation. In other words,
the approximate spin-up time for a rain garden model incorporating antecedent moisture

conditions should be around one year.
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Figure 4.12: The spin-up time for a rain garden model incorporating back-to-back rainfall
events is approximately one year.

4.3.4 Discussion

The 48-cm soil media depth selected in the initial model represents not only the rain
garden medium (rototilled mulch and compost), but also a sandy layer surrounded by much
more clayey soil. In practice, a 48-cm medium depth is much deeper than what is observed
in a typical rain garden. It was possible that the highly reliable performance indicated by

the initial rain garden fragility curve might be a result of the deep, sandy soil media. To
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test this hypothesis, the same fragility curve analysis was conducted using a mean thickness
of 23 c¢m, keeping all other variable parameters constant. The resulting fragility curve for
a 50% initial saturated fraction is shown in Figure 4.13. The shape and position of this
curve is similar to the 80% initial saturation fragility curve plotted in Figure 4.9. This result
is expected since runoff is saturation excess driven: the amount of soil storage available
with 23 cm of soil instead of 48 cm of soil is approximately half. Even at this lesser depth,
the rain garden still shows high reliability under the smallest, most frequent storm events.
Importantly, this analysis was conducted using a test rain garden with a fairly low loading
ratio (1:5 ratio of rain garden to upstream impervious area). Because of the smaller influent
volume into the rain garden, much better performance is observed than might otherwise be
expected. However, many design guides for homeowners in similar climates suggest loading
ratios in the same range as the one used for the Madison, WI rain garden. The University
of Connecticut extension program suggests a 1:6 loading ratio despite their comparatively

wetter climate [104].
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Figure 4.13: The shape and position of the half-thickness media fragility curve is similar to
the 80% initial saturation fragility curve.

Despite these limitations, this analysis indicates that infiltration-based green infrastruc-
ture can be functional, even in clayey native soil. Other studies similarly find that biore-

tention installations in native soils with fairly low saturated hydraulic conductivity can lead
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to large reductions in annual runoff, as long as the bioretention cell is properly designed
[105]. In addition, the storage depth of the planting medium has been shown to have a much
larger effect on bioretention flood reduction than the hydraulic conductivity of the native
soils [9]. Because the as-built fragility curve shows very low probabilities of failure for small-
to medium-sized storms, well-designed rain gardens have high performance reliability under
the most frequently occurring storm events. Choosing to increase the planting media depth
of a rain garden in less well-drained soils can be an effective technique in volumetric runoff
reduction.

The results show that rain gardens can perform reliably in a variety of situations, in-
cluding back-to-back rainfall events. While antecedent moisture does have some effect on
performance, this effect is only visible for large storms, based on the shape of the fragility
surface with increasing interstorm duration. In other words, only two large rainfall events
in close temporal proximity can easily trigger a failure of the rain garden. Due to the prob-
ability distributions of both rainfall magnitude and interstorm duration, the likelihood of
two large rainfall events occurring within a short period of time is unlikely. During the most
likely scenarios, the rain garden shows little change in reliability during a two-day interstorm
period.

The ability of rain gardens to cope with antecedent moisture both in back-to-back events
and in the longterm has important implications for their design and relative importance
in managing stormwater within a green-grey infrastructure network. Previous modeling
studies suggest that antecedent moisture plays a major