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Abstract

This dissertation presents a hierarchical control framework for vehicle energy management.

As a result of increasing electrification, legacy integration and control approaches for vehicle

energy systems have become limiting factors of performance and cannot accommodate the

requirements of next-generation systems. Addressing this requires control frameworks that

coordinate dynamics across multiple physical domains and timescales, enabling transforma-

tive improvements in capability, efficiency, and safety.

To capture multi-domain storage and exchange of energy, a graph-based dynamic mod-

eling approach is proposed and experimentally validated. This modeling approach is then

leveraged for model-based control, in which the complex task of energy management is de-

composed into a hierarchical network of model predictive controllers that coordinate decision-

making across subsystems, physical domains, and timescales. The controllers govern both

continuous and switched dynamic behaviors, addressing the hybrid nature of modern vehicle

energy systems.

The proposed hierarchical control framework is evaluated in application to a hardware-in-

the-loop electro-thermal testbed representative of a scaled aircraft energy system, where it

achieves significantly improved capability, efficiency, and safety as compared to legacy con-

trol approaches. Next, the structural information embedded in the graph-based modeling

approach is shown to facilitate analysis. Closed-loop stability of decentralized MPC frame-

works is guaranteed by analyzing the passivity of switched nonlinear graph-based systems

and augmenting their controllers with a local passivity-based constraint. Lastly, a hierarchi-

cal control formulation guaranteeing satisfaction of state and input constraints for a class of

switched graph-based systems is presented. This formulation is demonstrated in application

to thermal management using both simulation and experimental implementation.
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Chapter 1

Introduction

1.1 Motivation and Background

1.1.1 Vehicle Electrification

Modern vehicles are complex machines consisting of interconnected subsystems that interact

in multiple physical domains across a variety of dynamic timescales. A ubiquitous and

longstanding megatrend in the design of these “systems of systems” is their electrification.

For example, Fig. 1.1 depicts the exponential increase in on-board electrical power of military

and commercial aircraft [1, 2]. Beyond electrification within conventional platforms and

powertrains, many new electrified vehicle classes are undergoing rapid development. These

include automotive electric vehicles [3], all-electric passenger aircraft [4], electric-drive off-

road vehicles [5], and electric-drive naval ships [6].

The replacement of traditional mechanical, hydraulic, and pneumatic components of vehi-

cles by electrical systems provides many benefits, including advanced capability [7], enhanced

safety [8], improved efficiency [2], reduced mass and volume [9], decreased lifetime costs

[10], smaller carbon footprint [9], and greater ability to leverage renewable energy sources.

However, electrification is accompanied by increased thermal loading due to inefficiencies

of electrical components. This places additional burden on thermal management systems

responsible for transferring, storing, and rejecting thermal energy to maintain temperature

constraints throughout the vehicle [2, 7, 11]. This challenge is compounded by the continual

desire to reduce the size and weight of thermal management systems. It is further exacer-

bated in aviation by a decreased ability to reject thermal energy due to the use of composite

skin materials with high thermal resistance and reduction in ram air heat exchanger cross
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Figure 1.1: Electrification in aviation: Historical and projected trends [1].

sections [12]. The difficulties of sufficiently extracting thermal energy from electronic sys-

tems is exemplified by the attribution of greater than 50% of failures in military electronics

to insufficient thermal management, with similar issues occurring in commercial systems

[13, 14].

1.1.2 Multi-Domain Coupling and Switching

Vehicle energy systems are composed of subsystems and components that interact with each

other in multiple physical domains, including the mechanical, electrical, thermal, hydraulic,

and pneumatic domains. The associated dynamic timescales rage across orders of mag-

nitude, from sub-milliseconds for electrical states [15] to minutes for thermal states [12].

This coupling across domains can play a strong role in key figures of merit associated with

capability, safety, and efficiency.

Of particular relevance to this dissertation are the energy interactions within and between

electrical and thermal systems. In many vehicle powertrains, electrical energy is generated by

extracting mechanical power from one or more engines. This extraction affects the efficiency

and performance of the propulsion system, and must be constrained to ensure that high
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mechanical stress, torque ripple, and speed transients do not cause events such as compressor

stall [16]. Electrical energy is stored in batteries and capacitors, passed through transformers

and converters, and used to power electrical and mechanical devices. Electrical energy is

also converted to thermal energy as a result of inefficiencies in solid state electronics, motors,

and other equipment.

The efficiency of electrical systems can depend strongly on their operating temperature

[17]. Reliability and degradation can also be strongly temperature-dependent [14, 18]. There-

fore, thermal management systems are tasked with transporting thermal energy away from

electrical components to maintain constraints on their operating temperature. As an inter-

mediate step before its rejection to the environment, thermal energy can be stored in the

thermal capacitances of metal cold plates, air volumes, liquid tanks, and tanks of phase-

change material. Air, single-phase liquid, or phase-change refrigerant are often used as

a thermal transport medium. The resulting fluid-based thermal management systems, or

“fluid-thermal systems,” are therefore governed by both conservation of energy and con-

servation of mass of the working fluid. The fluid is circulated by actuators such as fans,

pumps, and compressors, which are often driven electrically. As a result, increasing power

to actuators of the thermal management system can result in additional inefficiencies in the

electrical system, generating more thermal energy. Actuators of the thermal management

system may also produce thermal energy more directly, for example by friction heating in

pumps [19].

The above discussion highlights the bidirectional coupling between electrical and thermal

systems in vehicles. The efficiency and degradation of electrical systems depends on their

thermal state, while thermal systems operate subject to the thermal energy generated by

electrical systems and themselves consume electrical energy. While traditional analyses have

often treated this coupling as quasi-steady-state, it is becoming increasingly transient in

nature [11], in large part due to the integration of electrical devices characterized by high

ratios of peak to average power that may only be active during particular mission segments

(e.g., takeoff or landing) or are operated by pulsed power [20].

Both stationary and mobile energy systems are governed by both continuous behavior

and discrete switching events. Examples of switching include the turning on and off of
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solenoid valves in fluid-thermal systems, reconfiguration of multi-evaporator vapor compres-

sion systems [21], addition and removal of suppliers or consumers in an electric grid [22],

switching of electrical buses and cooling modes in advanced vehicles [23–25], and switching

between charging, discharging, and idle modes of a battery. This switching necessitates spe-

cial attention in modeling and control design. Modeling approaches must accurately capture

switching dynamics, while control designs must perform decision-making for both continuous

and switched actuators. The presence of switching has significant implications to theoretical

analysis as well. For example, even when it can be proved that each mode of a switched

system is stable in independence, this alone does not guarantee that the system will remain

stable under switching [26].

1.1.3 Traditional and Emerging Practices

1.1.3.1 Dynamic Modeling and Analysis

In response to the shifting paradigms of vehicle energy systems, a variety of complimentary

efforts have focused on employing transient analyses to improve upon traditional steady-state

methods. For advanced aircraft, these include integrated “tip-to-tail” dynamic modeling

[12, 27, 28], characterization of component performance under transient operation [29, 30],

design optimization [31–33], improved architectures for thermal management [19, 34], and

enhanced mission planning [35]. A particularly strong trend has been the development

of simulation-based toolboxes for the dynamic modeling of energy systems. In addition

to facilitating system design, these can serve as a simulated plant on which to evaluate

candidate control strategies. Examples of such toolboxes for the dynamic modeling of air-

conditioning and refrigeration systems in buildings and aircraft include Thermosys [36] and

the AFRL Transient Thermal Modeling and Optimization (ATTMO) [37] toolbox. The

Thermal Management System (TMS) [38] toolbox includes dynamic models for a variety of

aircraft thermal systems and components, while the PowerFlow [39] and Aerospace Power

System (APS) [1] toolboxes include models spanning the electrical, thermal, mechanical,

hydraulic, and pneumatic domains of aircraft energy systems.
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Each of the above toolboxes consists of individual component models (e.g., a library of

MATLAB/Simulink blocks) that can be interconnected to form complete systems. This

modularity facilitates the sizing and validation of individual components within candidate

architectures and permits a wide range of configurations and system scales to be imple-

mented in simulation. However, extracting the underlying model equations and structure

of coupling for implementation in model-based control can be an arduous task. Black box

system identification techniques are often applied for these purposes, however these may not

preserve the physical interpretation of the system states and must be repeated each time

a change is made to the system architecture or any component parameter. This motivates

the need for modeling approaches that retain the modularity of the above toolboxes, but

also directly produce a system of equations (e.g., a state space representation) that can be

readily employed in model-based control frameworks.

1.1.3.2 Conventional Control Approaches

Accounting for dynamic coupling within vehicle energy systems is a particularly exigent chal-

lenge in the field of controls. The complexity, scale, and multi-timescale nature of vehicle

energy systems often render centralized control intractable due to computational limitations

and communication bandwidth requirements [40]. Historically, decentralized, or “siloed,”

system design and control approaches have been employed to decompose the overall energy

management problem into more manageable sub-problems, with limited consideration of the

dynamic interactions between systems [1, 11, 41, 42]. Single-input, single-output (SISO) con-

trol approaches provide regulation about predetermined steady-state operating conditions,

while logic-based decision trees govern switching and address potential fault scenarios. Cou-

pling between subsystems, components, or domains is treated as a disturbance to which

controllers and setpoints are made robust through extensive tuning to ensure constraint sat-

isfaction. This practice necessitates conservative designs and can be time consuming and

expensive to verify and validate, as well as significantly sub-optimal due to a lack of overall

coordination in decision-making across the vehicle. Consequently, legacy system integration

and control design methods have increasingly become the limiting factors of energy sys-
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tem capability as electrification accelerates, and cannot accommodate the requirements of

next-generation systems [11, 41]. Therefore, approaches must be developed that more closely

integrate the operation of propulsion, power, and thermal management systems.

1.1.3.3 Model Predictive Control of Vehicle Energy Systems

Model Predictive Control (MPC) can explicitly consider constraints on both actuator in-

puts and states, allowing operational limits to be directly considered in optimizing system

performance. In contrast to regulation-based control approaches that would seek to track

a reference value, MPC can freely operate within constraints in minimizing an objective

function. Furthermore, by continually evaluating over a time horizon into the future, MPC

can leverage preview of upcoming disturbances and operational requirements to improve

performance. For example, this allows thermal storage elements to be pre-cooled in advance

of large heat loads, peak-shaving thermal transients and reducing violations of upper bounds

on temperatures [43]. In the predictive control of aircraft energy systems, this preview in-

formation can be extracted from weather data and knowledge of the mission or flight plan.

The emergence of connected and autonomous technologies for other vehicle classes will allow

traffic conditions and path planning to also be leveraged as preview information in predictive

energy management strategies [44].

Centralized MPC has been implemented throughout the literature for the control of specific

subsystems and/or physical domains of vehicle energy systems. Examples include hybrid

hydraulic and hybrid electric automotive powertrains [45, 46], vapor compression systems

[47], aircraft fuel thermal management systems [48, 49], aircraft propulsion and electrical

power systems [50–52], and all-electric ship propulsion and electrical power systems [53].

1.1.3.4 Hierarchical MPC of Vehicle Energy Systems

Centralized MPC is generally not tractable for control over all aspects of a vehicle energy

system due to the problem scale and limited on-board computational power. Furthermore,

leveraging the predictive capabilities of MPC to optimize slow dynamics becomes more

computationally expensive as the range of dynamic timescales present in the system widens.
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This is because control of the fast dynamic states requires a fast update rate, necessitating

that the prediction horizon consist of many steps to extend long enough into the future to

capture slow transients.

The shortcomings of conventional control approaches and intractability of centralized MPC

has motivated the development of decentralized, distributed, and hierarchical MPC frame-

works for a variety of large scale applications. These include building thermal systems

[54], water distribution networks [55, 56], chemical process networks [57], smart grids and

microgrids [58–60], and aircraft electrical and propulsion systems [61]. While this disserta-

tion focuses specifically on hierarchical MPC of vehicle energy systems, broader reviews are

available in the literature, including [40, 62].

Hierarchical MPC frameworks are particularly suited to systems characterized by dynam-

ics spanning a wide range of timescales (e.g., time constants spanning multiple orders of

magnitude), as is the case for multi-domain vehicle energy systems. Figure 1.2 provides a

notional example of a hierarchical control framework. A single control formulation in the

“vehicle level” at the top of the hierarchy is responsible for coordinating overall behavior at

a relatively slow update rate, with a time horizon sufficiently long to optimize slow tran-

sients. However, the slow update rate prohibits this level from governing faster dynamics,

compensating for faster timescale model error and disturbances, or leveraging inter-sample

updates to preview information. Attempting to correct this by increasing the update rate

of the vehicle level controller while maintaining the same time horizon may not be com-

putationally tractable, as this would increase the number of prediction steps to be solved

by the optimization program while decreasing the duration between consecutive updates in

which the program must be solved for real-time implementation. Therefore, the vehicle level

instead sends objectives and preview information to the “system level” below, where the

overall control problem is decomposed into multiple sub-problems and solved with a faster

update rate, allowing faster dynamic behavior to be governed. This communication and

decomposition continues in the formation of additional levels below, with controllers at each

level governing smaller portions of the system at faster update rates than in the level above.

Controllers at the lower levels of the hierarchy interface directly with the plant to issue input

commands. In addition to this downward flow of information, output feedback from sensors
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Figure 1.2: Notional hierarchical control framework with sample controller update intervals
for each level. Modified from [63].

throughout the system is communicated up the hierarchy. While the notional example in

Fig. 1.2 has five levels, in general it is possible for hierarchies to have more or fewer levels,

as well as different numbers of controllers within each level from the second level down.

A defining feature of the hierarchical structure is that controllers at the same level do

not directly exchange information with each other. This greatly reduces the communication

requirements of the hierarchy and precludes the use of the iterative or cascaded methods

from distributed control approaches that can be computationally expensive or inhibit paral-

lelization [55, 62]. However, accounting for coupling within each level is necessary to achieve

effective coordination of the system and avoid the conservatism inherent in many decentral-

ized control approaches [40]. Therefore, in lieu of direct communication within each level,

coordination among each level’s controllers is achieved using communication from the levels

above, as discussed further in later chapters of this dissertation.

The ability of hierarchical control to coordinate multi-timescale coupling throughout a

system has inspired its application to vehicle energy systems, especially for advanced aircraft.

8



The majority of these efforts have focused on the control of a single physical domain, such as

the thermal domain [25, 63, 64] or electrical domain [23]. Multi-domain efforts such as [1, 65,

66] have been implemented in simulation only. This motivates the experimental application

in Chapter 3 of this dissertation, which evaluates the effectiveness of hierarchical control

subject to the model error, communication delays, computational limitations, and other

phenomena that can occur in experimental implementation.

A significant absence in the efforts referenced above is the development of a generalizable

hierarchical control framework for vehicle energy management that can govern both con-

tinuous and switched behavior. Switching decisions are often restricted to the top level of

the hierarchy, as in [23], or integrated ad hoc into a framework constructed primarily to

govern continuous behavior. Therefore, a focus of this dissertation is the formulation and

demonstration of a switched hierarchical MPC framework for vehicle energy management.

This includes both experimental application and the development of approaches for ensur-

ing stability and robustness under switching. For further literature review associated with

the specific contributions of this dissertation, readers are referred to the relevant discussion

within each chapter.

1.1.4 Experimental Testbeds

This dissertation balances analysis with implementation. To do so successfully, it is key

that experimental application be used to evaluate the validity of assumptions in analytical

constructions. Where assumptions are found to be limiting, the analysis can be augmented

to better support the target applications.

To validate both modeling and control approaches for energy systems, laboratory-scale

experimental testbeds have been developed across a range of application areas. Examples

include the vapor compression refrigeration testbeds of [21, 36, 67], the hydraulic hybrid

vehicle testbed of [68], the aircraft fuel thermal management system (FTMS) testbeds of

[43, 69], the shipboard chilled water and electrical power distribution testbed of [70], and

the shipboard electric propulsion and thermal management testbed of [71]. For convenience,

cost, or safety, these testbeds are often not constructed at full scale, and may take further
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departures from their real-world equivalents. For example, the FTMS testbed in [43, 49] was

constructed at approximately 1/12th scale and uses deionized water as a working fluid rather

than jet fuel. However, by including the same physical domains and dynamic interactions

as their target applications, these testbeds play a crucial role in demonstrating the efficacy

of candidate modeling approaches and control frameworks for real-world implementation.

This is especially true when the modeling and control methods are rooted in first-principles

analysis that can be applied regardless of the system scale or specific architecture, as is the

case in this dissertation.

1.2 Research Objectives

1.2.1 Desired Capabilities

To facilitate continued electrification, control frameworks for vehicle energy systems must

adopt a more holistic approach, communicating within a network to coordinate energy man-

agement decisions across subsystems, components, timescales, and physical domains. This

decision-making must extended to systems governed by both continuous and switched be-

havior. Theoretical tools must be developed to ensure the stability and robustness of these

frameworks, while experimental validation bridges the gap between theory and practice, cer-

tifying their applicability as enabling technology for the continued electrification of vehicles.

With these needs established, the primary objective of this dissertation is the development

and demonstration of model-based control strategies for vehicle energy systems that exhibit

the following capabilities:

• Applicable to the energy systems of a wide range of vehicle classes and architectures

by employing generalizable modeling and analysis approaches.

• Scalable to systems with many components, actuators, and dynamic states by using

modular modeling approaches and control frameworks, as well as computationally

efficient and parallelizable algorithms.

10



• Hybrid in the sense that actuators and system representations characterized by both

continuous and switched behavior are supported.

• High performance by explicitly leveraging knowledge of system mission, constraints on

inputs and states, and coupling within and between physical domains.

1.2.2 Dissertation Scope

To achieve the capabilities described above, this dissertation provides contributions in the

following areas:

1. Formulation and validation of a modular, first-principles, and control-oriented model-

ing approach that captures continuous and switched dynamics of energy systems across

multiple physical domains.

2. Development of a switched hierarchical MPC framework that coordinates among sub-

systems, timescales, and physical domains of energy systems, improving their overall

capability, safety, and efficiency as compared to traditional approaches.

3. Demonstration of the hierarchical control framework on an experimental testbed rep-

resentative of vehicle energy systems, highlighting improvements in key figures of merit

as compared to traditional control approaches.

4. Derivation and application of approaches for ensuring the stability and robustness of

the switched hierarchical control framework.

Figure 1.3 provides a visual outline of the relationships between these contributions and

indicates the chapters of this dissertation in which each can be found.

1.3 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents a dynamic

graph-based modeling approach that inherently captures the structure of coupling within
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Figure 1.3: Outline of dissertation contributions and relevant chapters.

an energy system. Derived from first, principles, this approach can be applied to capture

interactions within and between multiple physical domains. To demonstrate the application

of the approach, hydraulic and thermal graph-based models for components of a single phase

fluid-thermal system are presented and validated using an experimental testbed.

Chapter 3 demonstrates the efficacy of switched hierarchical MPC frameworks for vehicle

energy systems. A hierarchical control framework is constructed and applied to a hardware-

in-the-loop experimental testbed representative of a scaled aircraft electro-thermal system.

In comparison to a baseline controller consisting of traditional SISO loops and logic-based

decision trees, the hierarchical control framework is shown to achieve significantly greater

thermal and electrical performance in key figures of merit associated with capability, effi-

ciency, and safety.

Chapter 4 proposes a passivity-based approach to guaranteeing stability of switched graph-

based systems governed by decentralized, distributed, or hierarchical MPC frameworks. This

is achieved by augmenting controllers of a framework with a local, passivity-based constraint.

A numerical example demonstrates the efficacy of the proposed approach on a fluid tank

system controlled by a hierarchical framework.

Chapter 5 presents a two-level switched hierarchical control framework that leverages

properties of cooperative systems to guarantee satisfaction of state and input constraints for

a class of graph-based dynamic models. The overall objective of the control design is to track

a reference trajectory for the energy transferred to a system, subject to bounded uncertainty
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in the exogenous disturbances associated with its ability to dissipate energy to sinks. The

proposed approach is demonstrated in both simulation and experimental application using a

fluid-thermal system with dynamic behavior representative of a scaled aircraft fuel thermal

management system.

Lastly, Chapter 6 concludes this dissertation by summarizing key contributions and sug-

gesting future research directions.

1.4 Notation

The symbol R denotes the set of real numbers, and R+ denotes the set of non-negative real

numbers. The set of all integers in the range of N to P is written as [N :P ]. The notation [xi]

indicates a vector x ∈ RN of elements xi, i ∈ [1:N ]. Similarly, the notation [mij] indicates a

matrix M ∈ RN×P of elements mij, i ∈ [1:N ], j ∈ [1:P ]. Lower case superscripts are used

throughout this dissertation in the naming of variables, while upper case text or numbers in

superscripts indicate mathematical functions, such as a transpose or exponent. For example,

xt is the vector of sink states of a graph-based model, while MT is the transpose of a matrix

M . The eigenvalues of a square matrix A ∈ RN×N are written as λi (A), i ∈ [1:N ]. The real

components of these eigenvalues are denoted as Re (λi (A)). For a function f(x) : RN → R,

the zero set of f (x) is denoted as N (f (x)) ≡ {x|f (x) = 0}. Lastly, ‖x‖Q ≡ xTQx for a

vector x ∈ RN and positive semi-definite matrix Q ∈ RN×N .
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Chapter 2

Graph-Based Modeling

2.1 Motivation and Background

2.1.1 Desired Model Features

Regardless of the physical domains governing their dynamics, many complex systems are fun-

damentally characterized by the storage, transport, and conversion of conserved quantities

such as mass and energy. In this dissertation, such systems are termed “power flow systems.”

Examples in the literature include building thermal systems [54, 72, 73], water distribution

networks [55, 56, 74], chemical process networks [57, 75], electrical power grids [22, 76], and

energy systems in land, sea, and air vehicles [20, 45, 66, 71, 77]. As discussed in Section 1.1.2,

the capability, safety, and efficiency of these systems can be strongly dependent on dynamic

interactions both within and between physical domains. Furthermore, these interactions can

occur across a wide range of timescales and be governed by both continuous and switched

behaviors. As a result, control-oriented modeling approaches for these systems must include

the following features to successfully facilitate model-based control design:

• Modular: Complete system models should be formed by interconnecting models of indi-

vidual components and subsystems. This greatly reduces the time required to generate

and validate system models, and permits models for a wide range of configurations and

system scales to be readily formulated.

• Physical domain and timescale agnostic: Dynamic interactions within and between all

relevant physical domains and timescales should be captured within a unified modeling

framework.
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• Structure-preserving: In addition to capturing coupling within the system, the mod-

eling approach should make explicit the underlying structure of that coupling. The

utility of this feature for system analysis and control design is a recurring theme of

this dissertation, particularly in Section 2.5 and Chapters 4-5.

• Hybrid: The modeling approach must capture both continuous and switched behavior.

• Flexible in representation: The required model fidelity may vary with application

and computational resources. As such, the modeling approach must be flexible to

accommodate various level of complexity in representation. This includes allowing the

number of dynamic states used to model a given component or subsystem to be varied,

and allowing the assumed form of model equations (linear, bilinear, nonlinear, etc.) to

be adjusted.

2.1.2 Modeling Approaches

As discussed in Section 1.1.3.1, recent approaches for the multi-domain dynamic model-

ing of vehicle energy systems have focused largely on the development of simulation-based

toolboxes, and do not directly provide a system of equations that can be readily employed

for model-based control. An alternative and powerful tool for deriving the governing equa-

tions of multi-domain systems is bond graph modeling [78], in which bonds represent power

as a function of generalized effort and flow variables. Within each physical domain, these

variables are associated with specific properties. For example, in the mechanical domain,

the flow variable is velocity and the effort variable is force. In the electrical domain, the

flow variable is current and the effort variable is voltage. While bond graph modeling is a

valuable tool for simulation and representation, a shortcoming of this approach is that the

assembly of component and subsystem models to form system models can result in exces-

sively complex structures [79]. In addition, bond graph models do not explicitly convey the

underlying structure of coupling within the system, and as a result are not often used to

support analysis of the model for tasks such as model reduction and clustering. As shown in
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Section 2.5 and Chapters 4-5, capturing this structure explicitly can be valuable to system

analysis and control design for energy systems.

In this dissertation, a dynamic graph-based modeling approach derived from conservation

equations is employed to achieve the desired features of Section 2.1.1. Graph-based ap-

proaches have been shown to facilitate the control-oriented dynamic modeling and analysis

of power flow systems in a number of applications, including chemical plants [80–82], build-

ing thermal systems [83, 84], fluid flow and data transmission networks [85], and information

flow in power electronics [86]. The specific approach in this dissertation has been applied

to model vehicle energy systems across the hydraulic, electrical, thermal, and mechanical

domains [64, 66, 69, 77].

The remainder of this chapter is organized as follows. Section 2.2 describes the generic

graph-based modeling approach employed throughout this dissertation. Section 2.3 demon-

strates the application of this approach by presenting both nonlinear and linearized models

of the hydraulic and thermal domains of fluid-thermal components. Section 2.4 describes

a fluid-thermal testbed and demonstrates with experimental validation that graph-based

models of individual components can be combined to accurately represent complete systems.

While the primary use of graph-based modeling in this dissertation is for model-based hi-

erarchical control and supporting analysis, Section 2.5 briefly discusses further applications

to model decomposition and system design optimization. Section 2.6 revisits the desired

model features of Section 2.1.1 to explain how the examples in this chapter demonstrate

achievement of these goals. Section 2.7 provides a concluding summary of the chapter.

2.2 Generic Approach

In this dissertation, the structure of interconnections of a system under study is described

by the oriented graph G = (v, e) of order Nv with vertices v = [vi], i ∈ [1:Nv], and size Ne

with edges e = [ej], j ∈ [1:Ne]. As shown in the notional graph example of Fig. 2.1, each

edge ej is incident to two vertices and indicates directionality from its tail vertex vtailj to its

head vertex vheadj . The set of edges directed into vertex vi is given by eheadi = {ej|vheadj = vi},

while the set of edges directed out of vertex vi is given by etaili = {ej|vtailj = vi} [87].
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Figure 2.1: Notional example to demonstrate key features of the graph-based modeling
approach. Dashes indicate states and power flows that are exogenous to system S. Here,
Nv = 7, Ne = 7, Ns = 2, and Nt = 2. Modified from [64, 69].

The dynamic model S resulting from graph G is derived from application of conservation

equations. Each vertex vi is assigned a assigned dynamic state xi associated with storage

of a conserved quantity of interest. Similarly, each edge ej is assigned a value Pj describing

the rate of transfer of the conserved quantity between adjacent vertices. Adopting the

terminology used when conservation of energy is applied, these edge transfer rates will often

be referred to as “power” or “power flow” in this dissertation. The orientation of each edge

indicates the convention assigned to positive power flow, from vtailj to vheadj . Therefore, the

dynamics of each state of S satisfy the conservation equation:

Ciẋi (t) =
∑

{j|ej∈eheadi }

Pj (t)−
∑

{j|ej∈etaili }

Pj (t) , (2.1)

where Ci > 0 is the storage capacitance of the vertex. Physically, (2.1) states that the rate

of storage in the vertex is equal to the total power flow into the vertex minus the total power

flow out of the vertex.

The power flow associated with each edge of graph G is a function of the states of the

two vertices to which it is incident and may also be a function of an input signal uj. In this

dissertation, this is represented using a generic function fj of three arguments:

Pj = fj
(
xtailj , xheadj , uj

)
. (2.2)
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Fig. 2.1 includes examples of (2.1)-(2.2) as applied to the example graph.

In addition to capturing the exchange of a conserved quantity within the system under

study, the modeling approach must account for exchange with entities external to the system.

Sources to graph G are modeled by source edges es = [esj ], j ∈ [1:Ns] with associated power

flows P s = [P s
j ], which are treated as disturbances to the system that may come from

neighboring systems or the environment. Therefore, edges belonging to es are not counted

among the edges e of graph G, and transfer rates in P s are not counted among the internal

transfer rates P of system S. The vector of all vertices of G that are incident to a source

edge is denoted as vs, with xs as the corresponding states of S.

Sinks of graph G are modeled by sink vertices vt = [vtj], j ∈ [1, Nt] with associated states

xt = [xtj]. The sink vertices are counted among the vertices v of graph G, but the sink states

xt are not included in the state vector x of system S. Instead, the sink states xt are treated

as disturbances to the system associated with neighboring systems or the environment. Each

edge may be incident to at most one sink vertex.

To describe the structure of edge and vertex interconnections of a graph, the incidence

matrix M = [mij] ∈ RNv×Ne is defined as:

mij =


1 if vi is the tail of ej,

−1 if vi is the head of ej,

0 else.

(2.3)

M can be partitioned as:

M =

M̄
¯
M

 with M̄ ∈ R(Nv−Nt)×Ne , (2.4)

where the indexing of edges is ordered such that M̄ is a structural mapping from power flows

P to states x, and
¯
M is a structural mapping from P to sink states xt.
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The structural mapping from source power flows P s to x is similarly given by D = [dij] ∈

R(Nv−Nt)×Ns , where:

dij =

1 if vi is the head of esj ,

0 else.

(2.5)

For example, M and D for the graph in Fig. 2.1 are given by:

M =



1 0 0 0 0 0 0

0 1 1 0 0 0 0

−1 −1 0 1 0 0 0

0 0 −1 0 1 0 1

0 0 0 −1 −1 1 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1


, D =



1 0

0 1

0 0

0 0

0 0


, (2.6)

where M̄ is given by the top five rows of M , and
¯
M is given by the bottom two rows of M .

Following from the conservation equation for each vertex (2.1) and the above definitions

of M̄ and D, the dynamics of system S are given by:

S : Cẋ (t) = −M̄P (t) +DP s (t) , (2.7)

where C = diag ([Ci]) is a diagonal matrix of the capacitances of the states in S.

Following from (2.2), the vector of all power flows P in S is given by

P = F
(
x, xt, u

)
= [fj

(
xtailj , xheadj , uj

)
]. (2.8)

2.3 Domain-Specific Modeling

The generic graph-based modeling approach of Section 2.2 has been successfully applied to

represent dynamics of a wide range of physical domains. Hydraulic and thermal modeling of

single phase fluid-thermal components is found in [69], which includes detailed derivations
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and experimental validation of graph-based models for a fluid reservoir (also referred to as

a fluid tank in this dissertation), flow split/junction, pump, pipe, cold plate, and liquid-to-

liquid brazed plate heat exchanger. Further validation of these components is found in [64].

A graph-based model capturing temperatures throughout a multi-level DC/AC inverter is

presented and experimentally validated in [88]. Graph-based models for turbomachinery

and electrical devices are found in [77], which includes an air cycle machine (ACM), elec-

trical generator, bus, constant power load, constant current load, and constant impedance

load. Electrical and mechanical graph-based models for components of a hybrid unmanned

aerial vehicle are found in [89], including a battery, DC and AC electric machines, DC/DC

converter, electrical bus, and vehicle dynamics. Graph-based models for components of

an electric automotive powertrain are found in [66], which includes a battery, DC electric

machine, DC/DC converter, vapor compression system (VCS), and cabin thermal model.

While a complete exposition of all the components listed above falls outside the scope of

this dissertation, the hydraulic and thermal models for the fluid-thermal components of [69]

are summarized below to demonstrate the practical application of the modeling approach

and provide context for the experimental validation that follows in Section 2.4. Beyond the

focus on heat and mass transfer in this chapter, Section 3.3.2 provides further details on

graph-based modeling in the electrical domain.

Fig. 2.2 shows the hydraulic (left) and thermal (right) graphs for key components of single-

phase fluid-thermal systems. Assemblies of these component graphs can be used to represent

thermal management systems for applications including aircraft Fuel Thermal Management

Systems (FTMSs), liquid-cooled automotive powertrains, and server farms [19, 33, 48]. The

hydraulic graphs are derived from application of conservation of fluid mass, while the ther-

mal graphs are derived from application of conservation of thermal energy. Dashes indicate

sources or sinks of each component, representing signals originating from neighboring com-

ponents or disturbances. For hydraulic graphs, vertices represent dynamic states of pressure,

while edges represent the rate of mass transfer between vertices. For thermal graphs, ver-

tices represent dynamic states of temperature, while edges represent thermal power flow

between vertices due to convection in heat exchangers or fluid transport. Table 2.1 sum-

marizes the quantities associated with each element of the graph-based approach, including
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Figure 2.2: Hydraulic and thermal graphs for fluid-thermal component models. Modified
from [64, 69].

in the generic sense of Section 2.2 and in the specific hydraulic and thermal domains of

Sections 2.3.1 and 2.3.2, respectively.

2.3.1 Hydraulic Modeling

For notational clarity, a superscript m denotes some capacitances, functions, matrices, and

inputs associated with hydraulic graphs. The reader is referred to [69] for a detailed deriva-

tion of the model equations that follow.

For all hydraulic vertices except those of a reservoir, the hydraulic capacitance is given by

Cm
i = Viρ/E, where Vi is the fluid volume in the component and both the fluid density ρ

21



Table 2.1: Summary of quantities in graph-based models of fluid-thermal components.

Generic graph, G Hydraulic graph, Gm Thermal graph, Gr

Conserved quantity Fluid mass Thermal energy
Vertex storage state, x Pressure, p Temperature, T
Edge transfer rate, P Fluid mass flow rate, ṁ Thermal power flow, P r

Edge input, u Actuator effort, um Fluid mass flow rate, ṁr

and the bulk modulus E are assumed to be constant across all components. For reservoirs,

Cm
i = Ac,i/g, where Ac,i is the reservoir cross sectional area and g is the gravitational

constant.

Following from (2.2), the fluid mass flow rate of each edge of the graph is given generically

by ṁj = fmj
(
ptailj , pheadj , umj

)
. For all hydraulic edges except those of a pump, the fluid mass

flow rate ṁj is given specifically by:

ṁj = ρAc,j

√√√√2
(
ptailj − pheadj + ρg∆hj

)
ρ
(
kj

Lj
Dj

+KL,j

) , (2.9)

where Lj, Dj, and Ac,j are the fluid flow length, diameter, and cross sectional area of the

component, respectively, ∆hj is the height difference between the inlet and outlet flow, kj

is the friction factor, and KL,j is the minor loss coefficient. For pumps, the fluid mass flow

rate is given by:

ṁj = ρAc,j

√√√√2g

(
Hj −

pheadj − ptailj

ρg

)
. (2.10)

Here, the pump head Hj is determined using an empirical map as a linear function of pump

effort umj and the pressure differential across the pump:

Hj = α1,j + α2,j

(
pheadj − ptailj

)
+ α3,ju

m
j , (2.11)

where α1,j, α2,j, and α3,j are constants. The pump effort may correspond to, for example,

the percent duty cycle of pulse width modulation (PWM) of the power supply to an electric

pump.
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When hydraulic graphs of multiple components are interconnected to represent a system,

the hydrodynamics can be represented in the form of (2.7)-(2.8). The fluid system configura-

tion used for demonstration in Section 2.4 consists of closed loops such that fluid mass does

not enter or exit the system. Therefore there are no source edges, and so in the notation of

the hydraulic graph variables, (2.7) reduces to:

Cmṗ = −M̄mṁ, (2.12)

while (2.8) is given by:

ṁ = Fm (p, um) = [fmj
(
ptailj , pheadj , umj

)
]. (2.13)

Among the component models in Fig. 2.2, only edges corresponding to pumps require edge

inputs. However, note that the pipe model can be modified to represent an on/off solenoid

valve by multiplying its mass flow rate in (2.9) by an edge input umj , where umj = 0 when

the valve is closed, and umj = 1 when the valve is open.

2.3.2 Thermal Modeling

For notational clarity, a superscript r denotes some capacitances, functions, matrices, and

inputs associated with thermal graphs. The reader is referred to [69] for a detailed derivation

of the model equations that follow. Note that all the thermal component models in Fig. 2.2

except the reservoir assume that the mass of fluid stored in the component remains constant.

However, this assumption can easily be removed by the addition of an edge that captures

the thermal energy lost or gained due to a change in stored fluid mass, as shown for the

reservoir.

For all vertices associated with a fluid temperature, the thermal capacitance is given by

Cr
i = ρVicp, where the specific heat capacitance of the fluid cp is assumed to be constant

across all components. If the mass of fluid stored in the component is time-varying, as may

be the case for a reservoir, then the volume used in calculating this thermal capacitance

is also time-varying. For all vertices associated with heat exchanger wall temperatures,
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Cr
i = Mw,icp,w,i, where Mw,i is the mass of the wall and cp,w,i is the specific heat capacitance

of the wall material.

Following from (2.2), the thermal power flow of each edge of the graph is given generically

by P r
j = f rj

(
T tailj , T headj , ṁr

j

)
. For advective thermal power flow due to fluid transport, this

is given by:

P r
j = ṁr

jcpT
tail
j . (2.14)

When fluid flows in a loop between two thermal elements, the advective power flow in each

direction can be combined into a single “bidirectional advection” power flow, given by:

P r
j = ṁr

jcp
(
T tailj − T headj

)
. (2.15)

Convective power flow between fluid and the wall of heat exchangers is given by:

P r
j = hjAs,j

(
T tailj − T headj

)
. (2.16)

Here, As,j is the convective surface area and hj is the heat transfer coefficient, which is

typically an empirically-derived function [90, 91]. As in [64, 69], in this dissertation this

function is assumed to be of the form:

hj = β1,j + β2,jṁ
r
jT

head
j , (2.17)

where β1,j and β2,j are constants.

When thermal graphs of multiple components are interconnected to represent a system,

the thermodynamics can be represented in the form of (2.7)-(2.8). In the notation of the

thermal graph variables, (2.7) is given by:

CrṪ = −M̄ rP r +DrP s,r, (2.18)

while (2.8) is given by:

P r = F r
(
T, T t, ṁr

)
= [f rj

(
T tailj , T headj , ṁr

j

)
]. (2.19)
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2.3.3 Multi-Graph System Representation

The combined hydraulic and thermal dynamics of a system can be simultaneously modeled

using two coupled graphs. As shown in Fig. 2.3, the mass flow rates calculated for edges

of the hydraulic graph serve as inputs to the equations governing thermal power flow along

edges of the thermal graph. The edges in Gm may not map one-to-one to the edges in Gr.

For example, a single mass flow rate may affect multiple edges of the thermal graph. It

is also possible that some mass flow rate inputs to the thermal system are exogenous, and

not modeled within the hydraulic graph. For example, this could include mass flow rates

on the secondary side of heat exchangers by which thermal energy is transferred to and

from neighboring systems. These external mass flow rates are denoted by ṁext = [ṁext
i ], i ∈

[1:Next] and treated as disturbances to the thermal model. The mapping from ṁext and the

mass flow rates calculated within the hydraulic graph ṁ to the mass flow rate inputs to the

thermal graph ṁr can be represented as:

ṁr = Z

 ṁ

ṁext

 , (2.20)

where Z ∈ {0, 1}Nr
e×(Nm

e +Next).

To capture the dynamics of pumps, including rate limits and time delays between each

pump command upi , i ∈ [1:Np] and the actual pump effort umi input to the hydraulic graph,

each umi is paired with a single-input-single-output (SISO) system Spi as shown in Fig. 2.3.

Each Spi models the dynamic effort state of the ith pump umi as a function of its commanded

value upi .

In this dissertation, pump states and inputs are expressed in units of percent duty cycle of

PWM. The dynamic of each pump is modeled as a first-order response with time constant

τ pi and delay ξpi , given as a transfer function by:

umi (s) =
e−ξ

p
i s

τ pi s+ 1
upi (s) . (2.21)
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Figure 2.3: Interconnection between a hydraulic graph (middle) and a thermal graph (top),
with pump dynamics (bottom) input to the hydraulic graph [64].

2.3.4 Hydraulic Linearization

In general, the graph-based models have a nonlinear form but satisfy the generic relationships

of (2.1) and (2.2) for each vertex and edge. For control design, it is often useful to use a

linear representation of the system dynamics. A benefit of the graph-based approach is

that a linear model of the full system can be generated by individual linearization of each

edge relationship, as shown for hydraulic graphs in this section and for thermal graphs in

Section 2.3.5.

From (2.9)-(2.10), the nonlinear hydraulic mass flow rate equations for all components

follow the general form:

ṁj = c1,j

√
c2,j + c3,j

(
ptailj − pheadj

)
+ c4,jumj , (2.22)

where the coefficients ci,j are constant for each i, j. Linearizing this expression about an

equilibrium operating condition using a first-order Taylor Series gives linear mass flow rate
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equations of the form:

∆ṁj = amj
(
∆ptailj −∆pheadj

)
+ bmj ∆umj , (2.23)

where aj, bj are constant coefficients and for a generic signal y (t), ∆y (t) ≡ y (t) − y0 with

y0 as the equilibrium value of y about which the linearization is performed.

Following substitution into (2.12), the linear equations for a hydraulic system model are

given by:

ṗ = Am∆p+Bm∆um, (2.24)

where

Am = − (Cm)−1 M̄mdiag
(
[amj ]

) (
M̄m

)T
,

Bm = − (Cm)−1 ˜̄Mm

diag
(

[b̃mk ]
)
.

(2.25)

Here, ˜̄Mm

represents the sub-matrix of columns of M̄m corresponding to edges associated

with pumps, and [b̃mk ] is the vector of input coefficients for edges associated with pumps (i.e.,

edges k for which c4,k 6= 0 in (2.22)).

The mass flow rates of the linearized hydraulic model are given by:

∆ṁ = V m
1 ∆p+ V m

2 ∆um, (2.26)

where

V m
1 = diag

(
[amj ]

) (
M̄m

)T
,

V m
2 = [vmjk] ∈ RNm

e ×Np ,
(2.27)

and

vmjk =

b
m
j if ej is associated with pump k,

0 else.

(2.28)
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2.3.5 Thermal Linearization

From the power flow equations of (2.14)-(2.16) and the assumed expression for the heat

transfer coefficient of (2.17), the nonlinear power flow flow equations for all components

follow the general form:

Pj = c1,jT
tail
j + c2,jT

head
j + c3,jT

tail
j ṁr

j + c4,jT
head
j ṁr

j + c5,j

(
T tailj − T headj

)
T headj ṁr

j , (2.29)

where the coefficients ci,j are constant for each i, j. Linearizing this expression about an

equilibrium operating condition using a first-order Taylor Series gives linear power flow

equations of the form:

∆P r
j = ar1,j∆T

tail
j + ar2,j∆T

head
j + brj∆ṁ

r
j , (2.30)

where ar1,j, a
r
2,j, and brj are constant coefficients. Following substitution into (2.18), the linear

equations for a thermal system model are given by:

Ṫ = Ar∆T +Br
1∆T out +Br

2∆ṁr +Br
3∆P s,r, (2.31)

where

Ar = − (Cr)−1 M̄ r
(
M̄ r

a

)T
,

Br
1 = − (Cr)−1 M̄ r (

¯
M r

a)T ,

Br
2 = − (Cr)−1 diag

(
[brj ]
)
,

Br
3 = − (Cr)−1Dr,

(2.32)

and M r
a = [mij] ∈ RNr

v×Nr
e is a weighted incidence matrix for the thermal graph, with

mij =


ar1,j if vi is the tail of ej,

ar2,j if vi is the head of ej,

0 else.

(2.33)
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(a)
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(d) (e)(c)(b)

Figure 2.4: Individual components as labeled in Table 2.2, pictured with a 6” ruler for
scale. Of the two types of temperature sensors, a fluid temperature sensor is pictured in (i).
Modified from [64, 69].

2.4 Modeling Example and Validation

This section demonstrates how the graph-based models of fluid-thermal components in Sec-

tion 2.3 can be assembled to represent a complete fluid-thermal system. This is supported

by model validation with the experimental testbed described below.

2.4.1 Experimental Testbed Overview

This experimental testbed was developed to capture the key features of fluid-based thermal

management systems on a laboratory scale. The use of flexible tubing and a slatted mounting

stand allows the system architecture to be easily reconfigured to match a given application.

Table 2.2 and Fig. 2.4 contain specifications and images of the components and sensors

currently included in the testbed. The working fluid is an equal parts mixture of propylene

glycol and water.

Centrifugal pumps are the primary fluid movers in the system. Speed is controlled via a

PWM percent duty cycle, with less than 20% corresponding to a constant 1300 RPM, 65%

and above corresponding to 4500 RPM, and a linear trend between. Peak power consump-

tion of the pumps is 20 W with a peak efficiency of 35%. In addition to these centrifugal

pumps, positive displacement pumps are used to drain fluid from the system. This emu-
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lates behaviors like decreasing stored fuel mass in aircraft tanks due to fuel burn in engines.

Solenoid valves are used to exert switched (on/off) flow control in fluid lines.

Table 2.2: Testbed component descriptions.

Component Specifications No. supported

(a) Centrifugal pump

· Swiftech MCP35X
· 12 VDC, 1.5 A max, PWM controlled
· 4.4 m max head
· 17.5 LPM max flow
· SparkFun ACS712 low current sensor

8

(b) Positive
displacement pump

· Gikfun peristaltic pump
· 12V DC, PWM controlled
· 0.1 LPM max flow

2

(c) Solenoid valve
· WIC Valve 2SCW Series
· Vacuum to 150 PSI operating pressure

8

(d) Heat exchanger

· Koolance HXP-193
· 12 plates
· 4.0 kW at 5 LPM and 20◦C inlet

temperature difference

-

(e) Cold plate

· Wakefield-Vette 6-pass, 6” cold plate
· Vishay LPS1100H47R0JB resistors,

47 Ω, 1100 W max power each
· Crydom 10PCV2415 solid state relay
· Echun Electronic Co. ECS1030-L72

non-invasive current sensor

4

(f) Pipe
· Koolance HOS-13CL
· Clear PVC

-

(g) Reservoir
· Koolance 80x240mm
· Acrylic
· 8” eTape liquid level sensor

4

(h) Chiller
· Polyscience 6000 Series
· Up to 2900 W at 20◦C
· -10◦C to +70◦C

2

(i) Temp. sensor
· Koolance SEN-AP008B (fluid)
· Koolance SEN-AP007P (surface)
· 10 KΩ thermistor

16

(j) Pressure sensor
· Measurement Specialties US300
· Up to 310 kPa gauge

7

(k) Flow rate sensor
· Aqua Computer High Flow
· 0.5 to 25 LPM

8
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Liquid-to-liquid brazed plate heat exchangers (HXs) transfer thermal energy between fluid

loops in either a parallel-flow or counter-flow configuration.

Each cold plate (CP) consists of an aluminum plate with copper tubing passing through.

Several 47 Ω resistive heaters are mounted to each CP and wired to a solid state relay

actuating the heater power output. Up to four heaters can be mounted to each CP, however

in this dissertation just two are used, allowing a maximum heat load of 1.7 kW to be applied

to each CP.

The reservoirs act as thermal storage elements. A liquid level sensor inside each reservoir

is used to calculate its liquid volume, which in turn can be used to calculate its thermal

capacitance.

Two 1.5 HP (1.12 kW) industrial chillers act as thermal energy sinks. With variable

temperature control from −10◦C to 70◦C, the chillers can emulate a wide range of sink

conditions.

Infrared cameras were used to identify locations on the the HX and CP walls that closely

represent the average wall temperature, at which surface temperature sensors are affixed.

The infrared image in Fig. 2.5 shows CP1 and reservoir 1 of the example testbed configuration

in Fig. 2.6. The cable for the CP1 wall temperature sensor leads from the center of the plate

across its left side.

Sensors and actuators are connected to a National Instruments CompactDAQ, exchanging

sensor measurements and actuator commands with National Instruments LabVIEW software

on a desktop computer at a rate of 10 Hz. signals can be exchanged between LabVIEW and

MATLAB/Simulink either by running the two programs simultaneously and communicating

via the User Datagram Protocol (UDP), or by embedding MATLAB code in LabVIEW using

a MATLAB script node.

2.4.2 Example Configuration Description

The testbed is pictured in Fig. 2.6 in an example configuration used for demonstration in this

chapter. The corresponding schematic is shown in Fig 2.7. This configuration is notionally

representative of a simplified aircraft fuel thermal management system (FTMS) into which
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Figure 2.5: Infrared image of CP 1 and reservoir 1 from the example testbed configuration
in Fig. 2.6 [64].

thermal energy from actuators, generators, engine oil, and other transient loads is absorbed,

stored in liquid fuel, and rejected through transfer to neighboring systems or the environment

[28].

The example configuration has eight pumps arranged in four sets of two. The ‘a’ and

‘b’ pumps of each set receive the same commands. Therefore, for notational convenience

the two pumps in each set are referred to collectively. For example, pumps 1a and 1b are

collectively termed “pump 1.”

The secondary loop (identified as the left half of the system in Fig. 2.7) absorbs thermal

energy from the heaters mounted to CP1, through which fluid is driven by pump 1. This loop

has dedicated thermal storage available in reservoir 1, and the ability to exchange thermal

energy across HX1 with fluid driven by pump 2.

The primary loop (identified as the right half of the system in Fig. 2.7), includes two

parallel fluid flow paths out of reservoir 2. The path driven by pump 3 passes through HX1,

exchanging thermal energy with the secondary loop. The path driven by pump 4 passes

through CP2 and CP3, absorbing thermal energy produced by their their heaters. The two

flow paths then junction and pass through HX2, by which thermal energy is transferred out

of the system to the thermal sink.
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Figure 2.6: Example thermal-fluid testbed configuration for experimental validation [64].
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Figure 2.7: Schematic of example testbed configuration [64].

2.4.3 Graph-Based Representation of Example Configuration

The hydrodynamics of the example testbed configuration in Fig. 2.7 are represented by

the system graph shown in Fig. 2.8, formed by interconnection of the individual hydraulic

component graphs from Fig. 2.2. This hydraulic graph consists of 32 vertices and 34 edges,

which in turn set the number of pressure states and mass flow rates in the corresponding

graph-based hydraulic model.

Figure 2.9 shows the thermal graph for the example testbed configuration, formed by

interconnection of the individual thermal component graphs from Fig. 2.2. The edges exiting

the three leftmost dashed vertices indicate heat transfer from the resistive heaters to the CPs,

treated as disturbances to the system. The right side of the graph includes a source power
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Figure 2.8: Hydraulic graph for example testbed configuration [64].
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Figure 2.9: Thermal graph for example testbed configuration [64].

flow and sink state to capture the flow from and to the chiller, respectively. Thus in (2.18),

P s,r =
[
Q1 Q2 Q3 ṁextcpTc

]T
(2.34)

where each Q is the heat load to the corresponding CP, ṁext is the mass flow rate of chilled

fluid through the right side of HX2, and Tc is the temperature of the fluid exiting the chiller

and entering the right side of HX2. The thermal graph consists of 39 vertices (one of which

is a sink vertex), 41 edges, and 4 source edges. This results in a corresponding graph-based

thermal model with 38 temperature states and 41 thermal power flows.
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Figure 2.10: Inputs and disturbances used for model validation [64].

2.4.4 Validation of Fluid-Thermal Models

Figure 2.10 shows the commands and disturbances applied to the experimental system and

models for validation. The linearization point used for the linear models is the steady-state

operating condition of the nonlinear models subject to commands and disturbances that

fall approximately in the middle of the operating range. To demonstrate the repeatability

of the system across multiple runs, five experimental trials were conducted with the same

commanded sequence. The traces for the chiller outlet temperature of Fig. 2.10 show the

envelope between the maximum and minimum value measured at each time among the five

trials.

The heat loads plotted in Fig. 2.10 are translated into a reference current for each CP’s

resistive heaters using an empirical map between the applied electrical current and the
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Figure 2.11: Selected signals for hydraulic validation of experimental data with nonlinear
and linear graph-based models [64].

achieved heat load. Each reference current is tracked by proportional-integral (PI) control

of the corresponding solid state relay.

The chiller is set to track a temperature set point of 20◦C. Fig. 2.10 shows that deviation

from this set point of about 0.5◦C on average is present due to measurement and tracking

error within the chiller’s internal controller.

Figures 2.11-2.12 show a selection of hydraulic and thermal signals, respectively, that result

from applying the inputs and disturbances of Fig. 2.10. All experimental traces plotted show

the envelope between the maximum and minimum value measured at each time among five
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Figure 2.12: Selected signals for thermal validation of experimental data with nonlinear and
linear graph-based models [64].
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Figure 2.13: Closer view of several signals from Figs. 2.11-2.12. All experimental traces show
the envelope between the maximum and minimum value measured at each time among five
experimental trials [64].

experimental trials. To make the width of these envelopes more clear, a closer view of several

signals is provided in Fig. 2.13, which demonstrates that the testbed exhibits a high degree

of repeatability.

Figure 2.11 demonstrates a close matching between the experimental data and the hy-

draulic graph-based models. While offset occurs at times between the models and data, this

is generally small relative to the magnitude of the gains when commands change. Where

differences exist between the two models, especially in the traces for the pump 2b and 3b

mass flow rates, the nonlinear model is more accurate than the linear model. This is due to

the error incurred by linearization of the terms under the square root in (2.9) and (2.10).

Figure 2.12 similarly demonstrates a high degree of accuracy in the nonlinear thermal

graph-based model. The discrepancies that occur can be attributed to unmodeled friction

and thermal energy losses to ambient air, as well as errors in the heat transfer coefficient

correlations. In the interval from 750-850 s, significant error occurs in signals of the linear

model pertaining to CPs of the primary loop. This is largely due to the combination of a
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low mass flow rate in pump 3 and a high mass flow rate in pump 4, which falls far from

the linearization conditions. Linearization of the bilinear fluid thermal power flow equation

(2.14) decouples the relationship between mass flow rates and temperatures, and this can

result in large error under some operating conditions. However, the linear thermal model

still preserves the correct signs in the gains during this time interval, as is critical to the

design of stabilizing model-based controllers. The accuracy of the linear model at most other

times across the 1000 s mission is close to that of the nonlinear model. While the hydraulic

and thermal models could be made more accurate at the cost of increased complexity, the

accuracy demonstrated here is sufficient for their intended use in model-based closed-loop

control.

2.4.5 Hydraulic Coupling Constraints

As discussed in Chapter 3, successful control of the fluid-thermal system requires knowledge

of the bounds on the achievable and/or allowable mass flow rates. From the perspective of

the thermal graph-based models, this can be viewed as constraints on the edge inputs ṁr.

For system architectures involving splits and/or junctions, the mass flow rate constraints

associated with the fluid lines may be strongly coupled to each other. For example, in Fig. 2.7

the split in the primary loop results in coupling between the mass flow rates through pump 3

and pump 4. To determine these coupling constraints, the nonlinear hydraulic graph-based

model is simulated to steady-state at all combinations of pump speeds in the range of 20-65%

PWM in increments of 0.25%.

Fluid flow reversal (i.e., flow in the opposite direction from the arrows in Fig. 2.7) can be

captured in the hydraulic graph-based modeling framework by including an absolute value

under the square root in (2.9)-(2.10) and multiplying the full expression by a signum function

of the pressure differential. When this is done, mass flow rates in the reverse direction from

the edge orientation of the hydraulic graph are assigned a negative sign. Flow reversal is

typically an undesirable behavior in fluid-based thermal management systems. Therefore,

as a safety margin against flow reversal, any input combinations resulting in a mass flow

rate less than 0.03 kg/s are excluded from the allowable hydraulic operating conditions. The
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(a) Envelope of mass flow rates above 0.03 kg/s. (b) Pump commands generating mass flow rates in
Fig. 2.14(a).

Figure 2.14: Hydraulic coupling in Pumps 3 and 4 [64].

resulting envelope of allowable and achievable mass flow rates through pumps 3 and 4 is

shown in Fig. 2.14(a). Figure 2.14(b) shows the corresponding envelope of pump commands

generating mass flow rates in the envelope of Fig. 2.14(a). Combinations of commands

involving a relatively high speed in one pump and a relatively low speed in the other pump

are seen to be excluded from the envelope because they can result in flow reversal.

The envelopes in Figs. 2.14(a)-2.14(b) can be accurately represented as polytopes with a

relatively small number of vertices. For example, eight vertices are sufficient to define the

envelope in Fig. 2.14(a), as indicated by the circled points. The half-space representation,

or “H-representation,” defining this polytope is given by the linear inequality:

Epri = {ṁpri | Hpriṁpri ≤ zpri}, (2.35)

where Hpri is a matrix and zpri is a vector of appropriate dimensions, and

ṁpri =
[
ṁpump 3 ṁpump 4

]T
. (2.36)

40



2.5 Utility for Energy Systems

The graph structure underlying the graph-based modeling approach facilitates the modular

assembly of multi-domain system models from component and subsystem models. This

structural information is found, for example, in the incidence matrix M̄ that serves as a

map from power flows P to states x and appears directly in the system dynamics of (2.7).

In addition to supporting modularity in model formulation, the graph-theoretic nature of

the approach has been shown to be valuable for model-based hierarchical control, model

decomposition, and system design optimization. The first of these is an area of focus in

this dissertation. As shown in Chapters 4-5, graph-theoretic notions such as paths and

connectivity can be employed for analysis of the stability and robustness of hierarchical

control frameworks. While model decomposition and design optimization are not areas of

focus in this dissertation, a brief discussion of recent results for each is included below to

illustrate the broad utility of the graph-based modeling approach.

2.5.1 Model Decomposition

A feature of graph-based models that makes them attractive for model-based hierarchical

control is that a system model can easily be decomposed into sub-models by partitioning

its graph into sub-graphs based on an analysis of the edges and vertices. Edges that are

cut as a result of this partitioning represent coupling terms between the sub-models, for

which controllers of the hierarchy can account by exchanging information. While the spe-

cific partitioning applied can be determined by engineering intuition, separation of physical

domains, spatial configuration within the system, or other means, a key consideration must

be to preserve the most significant state coupling terms within each sub-model.

A system decomposition that quantitatively takes this coupling into consideration can be

achieved using tools from graph theory. In [66, 92], an impulse disturbance is injected into

the input of a graph-based model. The resulting power flow along the edges is integrated in

time to produce an energy-based measure of the strength of coupling between all adjacent

vertices, which is in turn used as a distance metric within an agglomerative hierarchical
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clustering algorithm. The resulting dendrogram informs on how to cluster vertices, and

their associated dynamic states, into sub-models within each level of a hierarchical control

framework such that the strength of coupling along cut edges is minimized. In [66], this

method is demonstrated in application to electro-thermal hierarchical control of a simulated

automotive electric vehicle powertrain.

2.5.2 Design Optimization

The graph-based modeling approach has also been demonstrated in application to system

design optimization. From a library of component graphs and knowledge of their possi-

ble interconnections, graph-theoretic techniques can be leveraged to generate all possible

graphs within a class of system architectures. The corresponding dynamic models can then

be programmatically generated, optimized, and compared to reveal the highest performing

architectures.

In [33, 93], this process is performed for a class of single-phase fluid-thermal systems con-

sisting of cold plates (CPs) in series and/or parallel flow with a single junction and split, as

shown in Fig. 2.15. For a given number of CPs, all candidate graph-based models within

the class of architectures can be programatically generated using enumeration methods for

rooted tree graphs [94, 95]. An optimization program is solved for each candidate to de-

termine the time-varying valve commands that maximize its thermal endurance, defined as

the duration until any temperature constraint in the system is violated. All candidates are

ranked by their thermal endurance, revealing the best designs under this figure of merit. In

[33, 93], this process is performed for architectures with up to six CPs, for which there are

4051 unique candidates within the considered class.

2.6 Review of Features

Section 2.1.1 establishes five desired features that control-oriented modeling approaches

should include to facilitate model-based control design for complex energy systems. These
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Figure 2.15: Class of fluid-thermal architectures considered for design study [33].

features are next revisited, using examples from this chapter to explain how they are achieved

by graph-based modeling and how they support the objectives of this dissertation.

2.6.1 Modular

As shown in Sections 2.3-2.4, graph-based models of systems can be formed by intercon-

necting graphs of their constituent components and subsystems. Unlike simulation-based

toolboxes as discussed in Section 1.1.3.1, this modularity is achieved while preserving access

to the dynamic equations governing the system behavior. Furthermore, unlike bond graph

models as discussed in Section 2.1.2, the assembly of component or subsystem models does

not result in excessively complex structures necessitating further simplification.

Modularity is useful not only in constructing system models, but also in decomposing

models for hierarchical model-based control. Any desired decomposition can be performed,

regardless of which components or subsystems the vertices were associated with when the

model was composed. A quantitative decomposition approach is discussed in Section 2.5.1,

where the graph structure of the models facilitates the application of a clustering algorithm

together with an energy-based distance metric that measures the strength of coupling be-

tween adjacent vertices of the graph.
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2.6.2 Physical Domain and Timescale Agnostic

In the generic graph-based modeling approach of Section 2.2, vertices are associated with the

storage of a conserved quantity, regardless of its physical domain. Edges represent the paths

for exchange of that quantity between vertices. Section 2.3 demonstrates how the generic

approach can be applied to capture the hydraulic and thermal domains of fluid-thermal

components. The system used to demonstrate hierarchical control in Chapter 3 includes

graph-based models of the electrical domain. Further graph-based models and experimental

validation for electrical, thermal, and mechanical components of aircraft, hybrid unmanned

aerial vehicles, and electric automotive vehicles are found in [66, 77, 88, 89, 92, 96]. In each

case, the modeling approach is shown to capture dynamic behavior with sufficient accuracy

for the intended use in model-based closed-loop control. Coupling between domains can be

represented using the multi-graph approach in Section 2.3.3 or within a single graph, as in

Chapter 3 and [66, 77, 89, 92]. This illustrates how the modeling approach serves as a unified

framework by which to capture dynamic interactions within and between physical domains

at their relevant timescales.

2.6.3 Structure-Preserving

In the graph-based system dynamics of (2.7), the incidence matrix M̄ serves as a map of the

underlying structure of coupling among the states. Chapters 4-5 illustrate how this knowl-

edge of the coupling structure can support analysis of stability and robustness. This is also

leveraged in the model decomposition approach discussed in Section 2.5.1, which provides

a metric by which to evaluate the strength of each coupling term and informs on how to

decompose a graph-based system into sub-models within a hierarchical control framework.

As discussed in Section 2.5.2, the dynamic model of a candidate system architecture can be

programatically generated from the structural information of its graph representation. This

allows architecture exploration to be performed without requiring the model for each candi-

date architecture to be manually generated, which would be prohibitively time consuming

in cases where there are hundreds or thousands of unique candidates to evaluate.
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2.6.4 Hybrid

As discussed in Section 1.2.1, many energy systems are governed by both continuous and

switched behavior. While this chapter focuses on continuous dynamics, later chapters include

extensions to capture switched behavior. Two methods for this are employed, both of which

involve modifying edge relationships.

The first method is to restrict the edge inputs u of (2.8) to fall within one of a collection of

constraint sets Ui, i ∈ [1:Nm]. The active constraint set at each time is selected by a switching

signal σ(t) : [0,∞) → [1:Nm], with u (t) ∈ Uσ(t). When each Ui is singleton, this can be

equivalently represented using a unique switching signal for each edge σj(t) : [0, inf) →

[1:Nm,j], selecting from among a finite set of values Vj = [uj,1:uj,Nm,j ] such that uj (t) =

uj,σj(t). Another equivalent representation when each Ui is singleton is to eliminate the edge

inputs entirely and instead consider switching of the functions governing the edge power

flows directly, such that (2.2) becomes Pj,σj = fj,σj
(
xtailj , xheadj

)
.

The second method allows edges internal and external (i.e., source edges) to the graph to

be switched independently from the action of the edge inputs. This is done by first defining

indicator matrices Φσ = diag ([φj])σ , φj ∈ {0, 1}, j ∈ [1:Ne] and Γσ = diag ([γj])σ , γj ∈

{0, 1}, j ∈ [1:Ns]. These indicator matrices are then incorporated into (2.7) to obtain the

switched system:

Sσ : Cẋ = −M̄ΦσP +DΓσP
s. (2.37)

More details on switched graph-based models and illustrative examples are provided in later

chapters where applicable.

2.6.5 Flexible in Representation

While the dynamics of (2.7) are linear with respect to the power flows, the functions govern-

ing the power flows in (2.2) are nonlinear in general. However, as shown in Sections 2.3-2.4,

linearization of these functions can be performed to generate linear graph-based models, at

the cost of increased model error at some operating conditions. In later chapters, assump-
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tions imposed on the form of the power flow functions are shown to facilitate analysis of

stability and robustness.

In addition to the flexibility of the edge equations, the graph-based approach can have

flexibility in the number of vertices used to capture the dynamics of specific components,

systems, or subsystems. For example, while the wall of the thermal cold plate model in

Fig. 2.2 is represented by a single lumped temperature, it could instead be represented

using multiple coupled states to capture the spatial variation in temperature across the wall.

In this way, more detailed and potentially more accurate models can be derived, at the

cost of increased computational complexity due to the increased number of power flows and

state equations. Conversely, the model complexity can be reduced by removing or combining

vertices or edges of the graph, at the cost of loss of detail and potentially decreased accuracy.

2.7 Chapter Summary

This chapter motivates, presents, and experimentally validates a dynamic graph-based mod-

eling approach for power flow systems. Derived from first principles, this approach can be

applied to capture interactions within and between multiple physical domains and dynamic

timescales. Modularity allows component and subsystem models to be generated indepen-

dently and then interconnected to form system models. The governing equations of the

model make explicit its underlying structure of state coupling. This can be leveraged in

system analysis, model decomposition, design optimization, and hierarchical control. The

approach can be extended to capture switched behavior and is highly flexible in representa-

tion, for example by admitting nonlinear or linearized governing equations. To demonstrate

the graph-based modeling approach, hydraulic and thermal models of fluid-thermal compo-

nents are presented and validated using an experimental testbed.
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Chapter 3

Hierarchical Control of Aircraft
Electro-Thermal Systems

3.1 Motivation and Background

As discussed in Chapter 1, hierarchical control frameworks represent a promising technology

for addressing the exigent challenges of vehicle energy management. These frameworks

supplant traditional decentralized control approaches with a paradigm that coordinates both

continuous and switched dynamics across subsystems, components, timescales, and physical

domains. To highlight the value of this coordination, this chapter serves as a case study

in the construction and experimental application of a hierarchical MPC framework. This is

performed for a hardware-in-the-loop (HIL) experimental testbed representative of a scaled

aircraft electro-thermal system.

Many advanced controllers for vehicle energy systems have been proposed in the literature

and demonstrated in simulation, including [1, 19, 23, 24, 44, 50–53, 61, 65, 66, 97–100]. These

often take a centralized approach [19, 24, 50–53, 98], while decentralized approaches are typ-

ically limited to a two-level inner/outer loop structure with a single control formulation in

each level [23, 44], limiting extensibility to more general distributed frameworks that can

accommodate additional timescales and dynamic complexity. Furthermore, relatively few of

these strategies have been implemented experimentally, where model error, communication

delays, computational limitations, and other phenomena can result in significantly reduced

performance from that achieved in simulation. The experimental demonstration that has

been performed in the literature is typically limited to a single physical domain, such as the

control approaches for thermal management in [48, 64, 71]. Therefore, a key contribution

of this chapter is to demonstrate that the high performance of hierarchical MPC for multi-
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domain coordination of energy systems, which has been previously been exhibited only in

simulation, is also realizable in practice.

The goals of any controller for aircraft energy management are to 1) maximize the capabil-

ity of the aircraft by achieving the desired operation of mission- and flight-critical hardware,

2) satisfy various system constraints for safe and reliable operation, and 3) minimize fuel

consumption. In general, the sheer complexity of aircraft energy systems, high degree of cou-

pling among their constituent elements, and wide range in dynamic timescales can present

barriers to the simultaneous consideration of these goals during real time operation.

In this chapter, load shedding is adopted as a metric for comparing the electrical capability

achieved under different control strategies, quantifying the first goal above. This mirrors the

optimal electric power distribution and load management strategies of [23, 24], in which

non flight-critical loading is reduced to prevent overloading of the electrical system. In

this chapter, controllers that shed less of a desired load profile are said to provide greater

capability to achieve a desired mission or flight plan. Performance in this figure of merit is

considered together with additional figures of merit quantifying the second and third goals

identified above.

Figure 3.1 shows a candidate hierarchical framework for aircraft energy management. To

achieve coordination across fast and slow dynamics, relatively long timescale behavior is

managed with long update intervals (and therefore long time horizons when MPC is used)

by a controller at the top level of the hierarchy, while shorter timescales are managed by

faster-updating controllers at lower levels. Within each level, decision-making can be dis-

tributed among multiple controllers governing partitions of the full system dynamics. As

enclosed by the green triangle in Fig. 3.1, the case study in this chapter focuses on the vehicle-

, system-, and subsystem-level coordination of electrical and thermal systems. Therefore,

faster timescale component-level aspects such as voltage regulation of power electronic de-

vices, cell balancing within batteries, and motor control of pumps lie beyond the present

scope. However, the methodology presented here will permit these aspects to be incorpo-

rated in future work.

In an electro-thermal hierarchical control framework, coordination between controllers can

account for coupling between the electrical and thermal domains to ensure that electrical
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Figure 3.1: Candidate hierarchical framework for aircraft energy management. The green
triangle designates the focus of this case study [101].

operation falls within the ability of thermal management to provide adequate cooling. At

the top of the hierarchy, objectives and constraints across the entire vehicle including all

relevant physical domains can be considered together. Using preview of the mission or

flight profile and knowledge of anticipated environmental conditions, proactive action can

be taken to prepare the thermal system in advance of large loads (known as pre-cooling)

and strategically throttle or reschedule the operation of non-critical electrical systems if

necessary to remain within electrical and thermal constraints. These coordinated decisions

from high-level controllers are communicated down the hierarchy as references for lower-level

controllers managing specific partitions of the system at faster timescales.

This hierarchical decomposition of the complete energy management task into multiple

communicating controllers provides significant computational benefits over the use of a sin-

gle, centralized control formulation. This allows both long-term planning and fast distur-

bance rejection to be performed in real time despite limited availability of computational

resources. This is particularly important for aircraft, where on-board computational re-

sources may be constrained by size, weight, cost, power consumption, or limitations of

legacy hardware.
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The proposed hierarchical MPC framework in this chapter is demonstrated on a scaled

HIL testbed representative of an aircraft electro-thermal system. As shown on the right in

Fig. 3.2, the testbed consists of a simulated air and electrical system coupled to the fluid-

thermal testbed described in Section 2.4.1. The electrical system, simulated in real time,

consists of a generator, converter bank, battery, and three loads. The waste thermal energy

generated by the converters and batteries is transferred to the electronics bay. Heat loads

from other electrical components and the bay are physically imposed on the experimental

fuel thermal management system (FTMS) consisting of heat exchangers, tanks, pumps,

valves, and a thermal sink. The measured temperatures of these physical components are

communicated to the simulated electrical system, where they affect the efficiency of electrical

components.

The graph-based modeling approach of Chapter 2 captures coupling within and between

the thermal and electrical domains using a common model formulation. The model of the

complete system can readily be constructed by assembling component-wise graphs. The

graph of the complete system can then be decomposed into sub-graphs to produce models

for controllers throughout a hierarchical framework. Given a predefined mission profile

and state feedback from both systems, a desktop computer executes the hierarchical MPC

framework in real time, issuing actuator commands to both the simulated and experimental

plants.

3.1.1 Advantages of Hierarchical MPC

Hierarchical MPC frameworks provide significant advantages over centralized MPC in ap-

plication to multi-timescale systems such as aircraft energy systems. A centralized MPC

controller has a fixed update interval ∆T , and number of steps in the prediction horizon N .

To execute the controller in real time, the choice of ∆T and N must be coordinated such

that the time required to solve the optimization program given the available computational

resources is less than ∆T . In general, a sufficiently long time horizon, ∆T ·N , enables antici-

patory action by the controller, allowing it to leverage preview of upcoming disturbances and

operational requirements to improve performance. Additionally, decreasing ∆T improves the
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Figure 3.2: Schematic of the key elements of the HIL testbed used to represent an aircraft
electro-thermal system [101].

bandwidth of the closed-loop system, improving its ability to perform disturbance rejection

and compensate for model error. However, achieving a long time horizon with a small update

interval requires a large N , which is constrained by the available computational power. As

a result, the design of a centralized control approach must balance between the benefits of

governing long timescale behavior and governing short timescale behavior in the selection of

a single value for ∆T . By comparison, decomposition of the control problem into multiple

levels of a hierarchical MPC framework provides more degrees of freedom in the control

design. High level controllers can achieve long time horizons by using a large ∆T , while low

level controllers can achieve high bandwidth by using a small ∆T . With communication

between controllers enabling their coordination across timescales, the prediction horizon N

for each controller can be relatively small, enabling high performance and real time imple-

mentation under computational limitations for which a centralized MPC controller would

be ineffective.

The remainder of this chapter is organized as follows. Section 3.2 discusses the candidate

electro-thermal system and HIL configuration used in this case study. Section 3.3 details

the graph-based modeling of thermal and electrical components of the candidate system.

Section 3.4 presents the hierarchical control formulation, while Section 3.5 presents a baseline
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Table 3.1: Aircraft components associated with fundamental power and energy mechanisms
in the electrical and thermal domains.

Mechanism Electrical domain Thermal domain

Generation Generators
Electronics, passengers, hydraulics,
engines, aerodynamic heating

Transport Buses, switches, wires Pipes, heat exchangers

Conversion Converters, transformers
Air cycle machines, vapor compres-
sion cycles

Storage Batteries, capacitors
Fuel tanks, phase change materials,
cabins, bays

Utilization/
dissipation

Avionics, motors, anti-icing,
environmental control systems

Air (ambient, engine bypass, ram,
third stream)

control approach used for comparison. The controllers are implemented experimentally and

compared in Section 3.6. Lastly, Section 3.7 provides a concluding summary of the chapter.

3.2 Candidate Electro-Thermal System

The architecture, components, and sizing of aircraft electro-thermal systems can vary signif-

icantly across vehicle classes and platforms. However, despite this variation, most modern

systems reflect the same fundamental power and energy mechanisms, and include the same

general component types, as summarized in Table 3.1. The candidate electro-thermal system

used for demonstration this chapter, while not intended to emulate any specific platform,

includes these key mechanisms and captures coupling between components in the electrical

and thermal domains. In accordance with the discussion of Section 1.1.4, a simplified and

reduced-scale experimental testbed achieves these features at an economical and laboratory-

safe power level.

Figure 3.3 diagrams the system architecture used in this chapter. The electrical system,

boxed in green, consists of an AC generator, an AC/DC converter bank with three parallel

converters, a battery, and three types of loads. The AC loads and Advanced Electrical
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Figure 3.3: Schematic of the electro-thermal system architecture used to demonstrate the
proposed hierarchical control framework. Components are color-coded to highlight the cou-
pling created by thermal energy generation in the electrical system [101].

Equipment (AEE) are powered directly from the AC bus. The DC loads are powered from

the DC bus, which is supplied by the converter bank and the battery.

While thermal energy generation by the AC and DC loads is assumed to be negligible,

the generator, AEE, converters, and battery generate thermal energy in accordance with

their electrical efficiencies. In this case study, the generator is assumed to have a constant

electrical efficiency, while the AEE and battery electrical efficiencies are functions of their

operating temperature, as detailed in Section 3.3.2. The electrical efficiency of each converter

is assumed to be a function of its current. Each converter may be switched on or off, therefore

the overall efficiency of the converter bank also depends on the number of active converters,

as shown in Fig. 3.4. Note that these efficiency curves are notional and, while similar to

those of commercial devices, are not intended to represent any specific commercial device or

manufacturer specification. For simplicity in this example, the time-varying efficiencies are

assumed to be a function of either temperature or current. In practice, efficiency can be a

function of both of these variables, as well as other factors. The general methodology of this

chapter does not preclude a more complex treatment of component efficiencies.
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The three converters and battery are housed in an electronics bay, boxed in blue in Fig. 3.3.

Each of these components has a heat sink (HS) and a variable-speed fan to transfer thermal

energy from the component to air in the bay. The bay air is cooled by the FTMS using an

additional variable speed fan and an air-to-liquid heat exchanger (HX), labeled as HX1 in

Fig. 3.3.

Thermal energy from the generator, AEE, and electronics bay is transferred to the FTMS,

outlined in red in Fig. 3.3, consisting of main and auxiliary fluid tanks, cold plate (CP) and

liquid-to-liquid heat exchangers, pipes, splits, junctions, variable-speed pumps, and on/off

solenoid valves. The AEE cold plate is cooled by fluid from the auxiliary tank. By controlling

valves V1 and V3, the inlet fluid to the right side of HX2 can be sourced from either or both

of the tanks. Similarly, valves V2 and V4 can be used to return fluid to either or both tanks.

After passing through HX2, the fluid passes through the generator cold plate. The drain

pump then allows fluid to be removed from the system, analogous to the burning of fuel in

an aircraft engine. This fluid drain also results in a continual decrease of the total thermal

energy storage capacity of the system.

Thermal energy is removed from the FTMS by a liquid-to-liquid heat exchanger, labeled

as HX3 in Fig. 3.3, which is cooled by a vapor compression-based chiller. The Sink Loop

emulates the thermal sinks available to aircraft. With the chiller set to a fixed temperature

set point, pump P4 and a resistive heater attached to CP3 are used to control the thermal

sink fluid mass flow rate and temperature, respectively, which are treated as exogenous

disturbances to the FTMS. By closing valve V6 and opening valve V5, the sink loop can be
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Figure 3.5: Experimental testbed configured to represent the FTMS [101].

bypassed. In practice, this should be commanded by a controller if the temperature of the

thermal sink exceeds that of the fluid in the FTMS.

The experimental testbed from Section 2.4.1 has been configured to match the topology

of the candidate FTMS, as shown in Fig. 3.5. The electrical system and electronics bay are

modeled in MATLAB/Simulink using the Aerospace Power Systems (APS) toolbox detailed

in [1], and deployed for real time HIL simulation to a dSPACE DS1005 processor board.

The physical FTMS and the simulated electrical system and bay are bidirectionally coupled

in real time. The measured temperatures of the CP1, CP2, and HX1 walls of the physical

FTMS are communicated to the simulated electrical system, where they affect the efficiency

of electrical components. The simulated electrical system in turn calculates a heat load to be

applied to each of the three walls based on these efficiencies and other states of the simulated

electrical system and bay. These heat loads are physically imposed by actuating resistive

heaters attached to the walls of CP1, CP2, and HX1 in Fig. 3.5. Note that while HX1 is

modeled as an air-to-liquid heat exchanger between the bay and FTMS, the liquid-side and

heat exchanger wall are represented in the physical system by a cold plate heat exchanger,

while the air-side of the heat exchanger is represented in the simulated bay model.
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Figure 3.6: Graph-based model of the electro-thermal system in Fig. 3.3. Modified from
[101].

3.3 Graph-Based System Modeling

This section applies the graph-based modeling approach of Chapter 2 to capture the dy-

namics of energy storage and power flow throughout the multi-domain system. As detailed

in Chapter 2, vertices of the thermal domain represent thermal capacitances with dynamic

states of temperature, while edges represent thermal power flow. In this chapter, graph-

based modeling of the electrical domain is introduced. In this case, vertices either represent

energy storage, as in a battery or capacitor, or an algebraic junction satisfying conserva-

tion of electrical power. To distinguish between thermal and electrical power flows, thermal

power flows are denoted by Q, while electrical power flows are denoted by P . Figure 3.6

shows the electro-thermal graph corresponding to the system architecture from Fig. 3.3.

3.3.1 FTMS and Bay Model

The FTMS and bay are modeled using the thermal graph-based component models of Sec-

tion 2.3.2. The graph of the FTMS is shown on the right in Fig. 3.6. Thermal energy is

transferred to the FTMS from the AEE (via CP1), the generator (via CP2) and the bay (via
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HX1). The vertex labeled as the “Tank Sink” captures the energy gained or lost due to a

change in the fluid mass stored in either tank, as discussed in Section 2.3.2.

The switching of valves can be captured by the first method described in Section 2.6.4.

A switching signal σv selects from among constraint sets for the edge inputs ṁ, associated

with different combinations of valve positions (i.e., valve modes). Within each set, edges j

in line with a closed valve are constrained such that ṁj = 0. The remaining mass flow rates

are constrained to fall within a mode-dependent envelope of achievable values, found using

the method described in Section 2.4.5. In the notation of that section, this can be expressed

as:

σv = i → ṁ ∈ Ei, (3.1)

Where Ei is the envelope corresponding to the ith valve mode.

The FTMS model is parameterized in accordance with the specifications of the testbed

components detailed in Section 2.4.1. Open-loop validation with the testbed configuration

in this chapter achieved similar accuracy as the graph-based model validated with a differ-

ent configuration in Section 2.4.4, with errors typically less than 2◦C. This validation was

performed assuming constant heat transfer coefficients, with β2,j = 0 in (2.17). As a result,

c5,j = 0 in (2.29). The remaining terms in (2.29) are either linear functions of temperature

or bilinear functions between temperatures and mass flow rates serving as edge inputs ṁ.

Therefore, the vector of thermal edge power flows, excluding the waste heat edges treated

in the next section, can be written as:

QT = FT (ṁ)

T
T t

 , (3.2)

where FT is linear in ṁ.

The graph of the bay consists of vertices for the wall of each heat sink and the HX1

wall, vertices for the air flow across these walls, and a vertex for the thermal capacitance

of the air in the bay. Using appropriate material properties for air, the vertex for the air

in the bay is modeled identically to a reservoir in Section 2.3.2, while the vertices for air

flow are modeled identically to pipes. The bay is parameterized to match the scale of the

57



fluid-thermal testbed, with an air volume of approximately 9.5 m3, with heat sinks of mass

1 kg.

3.3.2 Electrical System Model

As indicated by the green triangle in Fig. 3.1, the fast dynamics associated with some

control tasks in the electrical domain, such as voltage regulation and motor control, fall

outside the scope of the case study in this chapter. Instead, the focus here is on high-level

decision-making to coordinate electrical and thermal dynamics. Therefore, the only dynamic

vertex in the graph-based electrical system model is that of the battery, with CSOC as the

energy capacity of the battery and xSOC (t) as the battery state-of-charge (SOC). These are

associated with the vertex labeled as “SOC” in Fig. 3.6. All other vertices of the electrical

domain are modeled as algebraic, with Ciẋi = 0.

Validation of similar graph-based electrical system models has been presented in [1, 77],

where simulations of graph-based models are compared to simulations using the higher fi-

delity PowerFlow toolbox [39]. The graph-based approach is shown to accurately match the

PowerFlow models for a system consisting of a generator, AC and DC buses, and a set of

constant impedance, power, and current loads. Specifically focusing on electro-thermal sys-

tems, the graph-based modeling of a multi-level DC/AC inverter is experimentally validated

in [88]. The graph-based model matches transient temperature measurements to within 3◦C,

subject to conductive heat transfer through a multi-layered printed circuit board with ther-

mal energy generated by inefficiencies in 12 gallium nitride (GaN) transistors. While a more

thorough treatment of the fast electrical dynamics governed in the bottom level of Fig. 3.1

falls beyond the scope of this case study, it should be noted that these can be captured using

the graph-based modeling approach, as detailed in [66, 89, 92].

Edges in the electrical domain (the purple edges in Fig. 3.6) represent the flow of electri-

cal power between vertices. The electrical domain graph consists of 15 edges representing

electrical power and one source power flow representing the power extracted from the engine

by the generator, P s
Eng. While source power flows are typically treated as exogenous signals

in the graph-based approach, P s
Eng is calculated within the model in this case study. Due
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Figure 3.7: Edge equations governing the AEE.

to the algebraic relationships imposed by the graph-based modeling framework for each of

the nine algebraic vertices, specifying power flows for seven of the 16 total edges is sufficient

to fully define them all. The electrical power edges labeled with signal names in Fig. 3.6

indicate the particular selection for these seven power flows used in this case study. These

power flows are considered the controllable inputs to the electrical system. The vector of

these inputs is denoted as Pu, while the vector of the remaining nine electrical power flows

is denoted as Palg. Note that this does not preclude imposing constraints or objectives on

Palg in closed-loop control, as they are still modeled within the graph-based framework. For

example, bounds or rate limits on the power extracted from the engine by the generator can

still be applied.

A portion of the electrical power through the generator, AEE, battery, and converters goes

to waste heat as a function of each component’s calculated efficiency. Figure 3.7 exemplifies

this for the AEE, where a portion of the source power flow P s
AEE results in thermal energy

generation QAEE = (1− ηAEE)P s
AEE, where ηAEE ∈ [0, 1] is the electrical efficiency of the

component. The remaining source power goes to the AEE load, PAEE = ηAEEP
s
AEE. These

equations are expressed as a function of PAEE in Fig. 3.7, reflecting the choice of this signal

as the associated controllable input in Pu.

As shown in Fig. 3.6, unique edges represent the charging (labeled as Pc) and discharging

(labeled as Pd) of the battery, which are treated as distinct operating modes. Unique edges

also represent the thermal energy generated in each mode. Figure 3.8 shows which edges

are active in each mode, as well as the edge equations used to calculate the thermal energy

generation in each case. When discharging, the power flow associated with the edge between

the DC bus and battery is assigned a negative sign, indicating power flow in the opposite
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direction of the orientation of the edge, such that the battery is supplying power to the DC

bus.

The inactive edges in each mode are zeroed by setting Pd = 0 when charging and Pc = 0

when discharging. In addition, the battery can be put in an idle mode by setting Pc = Pd = 0.

Switching of the battery mode can therefore be captured by the first method described in

Section 2.6.4. A switching signal σBatt selects from among three constraint sets for the

electrical system inputs, given by:

σBatt = 1 → {Pu | Pc > 0, Pd = 0}, (Charging)

σBatt = 2 → {Pu | Pc = 0, Pd > 0}, (Discharging)

σBatt = 3 → {Pu | Pc = Pd = 0}. (Idle)

(3.3)

As discussed in Section 3.2, component efficiencies are modeled as either constant, tem-

perature dependent, or current dependent. While this is done to simplify exposition in this

example, the general methodology does not preclude a more complex treatment. The gener-

ator is assumed to have a constant efficiency. The AEE and battery efficiencies are a function

of their heat sink wall temperatures. These efficiencies are modeled as a quadratic function

of temperature, ηj (Tj) = c1,j + c2,jTj + c3,jT
2
j , where the coefficients ci,j are constant for

each i, j. Similarly, the efficiency of each converter is modeled as a quadratic function of its

current output to the DC bus. Each current is calculated as a function of the edge power

flow assuming a constant voltage, Vj. Therefore, each current is given by ij (t) = Pj (t) /Vj.

As shown in Fig. 3.4, the overall efficiency of the converter bank depends on the number

of active converters, which are assumed to share the load current evenly. Switching of the
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number of active converters can be captured by the first method described in Section 2.6.4.

A switching signal σConv selects from among three constraint sets for the electrical system

inputs, given by:

σConv = 1 → {Pu | PConv,1 ≥ 0, PConv,2 = PConv,3 = 0}, (One active converter)

σConv = 2 → {Pu | PConv,1 = PConv,2 ≥ 0, PConv,3 = 0}, (Two active converters)

σConv = 3 → {Pu | PConv,1 = PConv,2 = PConv,3 ≥ 0}. (Three active converters)

(3.4)

As exemplified in Figs. 3.7-3.8, the vector of thermal edge power flows due to waste heat

generated by electronics can be written as:

Qw = Fw (η)Pu, (3.5)

where Fw is linear in the vector of component efficiencies η. However, the efficiencies them-

selves are in general given by nonlinear functions of electrical power flows or temperature

states.

The electrical system is parameterized to match the scale of the fluid-thermal testbed and

air bay, such that the DC bus operates at 48 V and the battery has a capacity of 5.8 A·h.

3.3.3 Model Summary and Timescale Analysis

The following summarizes the graph-based modeling effort and resulting system model used

to develop the hierarchical control formulation in Section 3.4.

In a similar form as (2.7), the dynamics of the complete electro-thermal system model can

be represented as: 
CT Ṫ

CSOC ẋSOC

0

 = −M̄


QT

Qw

Pu

Palg

+DP s. (3.6)

On the left in (3.6), CT is the diagonal matrix of capacitances of thermal vertices, T is vector

of temperature states of the system, CSOC is the storage capacitance of the battery with

61



state-of-charge xSOC , and the bottom entry is a vector of zeros representing the nine algebraic

electrical vertices. On the right in (3.6), M̄ is the upper block of the system incidence matrix

defined in (2.3)-(2.4), QT is the vector of thermal power flows within the FTMS and bay

given by (3.2), Qw is the vector of waste heat generated by electronics given by (3.5), Pu is

the vector of controlled electrical power flows, and Palg is the vector of remaining electrical

power flows, which are fully defined by solution of the algebraic rows of (3.6), as discussed

in Section 3.3.2. Lastly, D is the mapping defined in (2.5) and P s = P s
Eng is the lone source

power flow to the graph. Switching of the valves, battery, and converters is captured by

switching signals σv, σBatt, and σConv that select among constraint sets for ṁ and Pu.

To put the model equations in a more conventional form, (3.2) and (3.5) can be substituted

into (3.6) and the dynamics can be reformulated into an equivalent nonlinear state space

representation:

ẋ = A (u)x+B (x, u)u+ V (u) d. (3.7)

Here, x, u, and d are the states, inputs, and disturbances, respectively, with

x =

 T

xSOC

 , u =

ṁ
Pu

 , d = T t. (3.8)

The dependence of A and V on u arises from (3.2), in which power flows are a function of

ṁ while linear and separable in x and d. The dependence of B on x and u arises from (3.5),

in which efficiencies η can be nonlinear functions of T and Pu.

In addition to the dynamics of (3.7), the algebraic rows of (3.6) giving Palg can be refor-

mulated as the equality:

Palg = Z (x, u)u, (3.9)

where the nonlinearities in Z also arise from the nonlinear dependence of η in (3.5) on T

and Pu.

The vertex capacitances CT in the nonlinear graph-based model (3.6) can be used to

categorize the timescale of the associated thermal states. These capacitances are plotted

in Fig. 3.9. Vertices associated with large capacitances, such as those of the tanks and
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electronics bay, evolve over slow timescales. Vertices associated with small capacitances,

such as those of the air across the heat sinks, evolve over fast timescales. This timescale

separation can be verified by analyzing the eigenvalues of A in (3.7) under nominal operating

conditions. The magnitudes of these eigenvalues range from approximately 10−4 to 102.

In addition to governing continuous dynamics across this wide range in timescales, con-

trollers for this system must also select modes of operation for the valves, converters, and

battery while maintaining constraints on both inputs and states. Therefore, implementing a

centralized MPC design would require formulating and solving a mixed-integer constrained

optimization program with a small time step to capture the fast dynamics and a long pre-

diction horizon to capture the slow dynamics. The large computational cost associated

with directly solving such programs and the limited computing power on board aircraft may

render real time implementation of a centralized controller intractable.

A detailed comparison of the control performance achieved by decentralized PI, centralized

MPC, and hierarchical MPC was performed in [64]. This used an alternative topology

of the experimental testbed and considers the thermal domain only. With no switching

decisions and fewer states and control inputs than the electro-thermal system considered in

this chapter, a centralized MPC could be solved in real time. A relatively large 80 second

time step was used for the centralized MPC to demonstrate the negative impact of achieving
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long time horizons at the cost of requiring large time steps, resulting in poor regulation

and disturbance rejection. In accordance with the discussion in Section 3.1.1, hierarchical

MPC was shown to be better suited to the control of the multi-timescale fluid-thermal

system. By maintaining a long time horizon in the highest level controller and including

faster regulation in the lower level controllers, the hierarchical MPC achieved superior closed-

loop performance as compared to the decentralized and centralized approaches, with fewer

and smaller temperature constraint violations and improved overall system efficiency.

Motivated by the results of [64], the following section provides a hierarchical decomposition

of the electro-thermal energy management task such that the resulting control formulations

are either quadratic programs (QPs) or mixed-integer quadratic programs (MIQPs) that can

be solved in real time. For the particular system and hierarchical control implementation in

this case study, the controller update rates and prediction horizons are chosen based on the

dynamic timescales observed in [64].

3.4 Hierarchical Control Formulation

3.4.1 Proposed Hierarchical Control Structure

Figure 3.10 shows the three-level hierarchical control structure implemented in this case

study. In the “Upper Level” at the top of the hierarchy, a single MPC controller is responsible

for coordinating overall vehicle energy management. This controller is designed with a large

(∆T = 60 seconds) time step and a long (N = 10 steps) prediction horizon, resulting in the

ability to plan electrical and thermal switching, state trajectories, and load shedding over a

10 minute prediction horizon into the future. The planned trajectories are communicated

down the hierarchy as references to be tracked.

Below the Upper Level, the “Lower Level” has one controller governing the FTMS, and

a second controller governing the electrical system and air bay. This particular choice of

decomposition mirrors that in the simulation study of [1], and preserves the strong coupling

within the FTMS and between the electrical system and the air bay. While a more thorough

treatment of hierarchical model decomposition falls outside the scope of this example, note
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Figure 3.10: Three-level hierarchical control structure implemented in this case study [101].

that an agglomerative hierarchical clustering approach for decomposing graph-based models

has been proposed in [92] and subsequently demonstrated in application to hierarchical

control of a simulated automotive electric vehicle in [66], as discussed in Section 2.5.1.

Figure 3.11 shows the sub-graphs used to generate a model for each controller of the Lower

Level. As indicated in Fig. 3.11, the temperatures of the CP1, CP2, and HX1 walls become

sink states of the sub-graph for the electronics and bay, while the heat loads applied to each

of these walls become source power flows to the sub-graph of the FTMS. In a decentralized

control framework, each Lower Level controller may have to treat these coupling terms

as unknown disturbances, incurring significant conservatism. However, in the hierarchical

control framework, predicted values for these coupling terms over the time horizon of the

Lower Level are included in the information passed from the Upper Level. The resulting

mutual knowledge of coupling between the Lower Level controllers is a key enabler of the

reduced conservatism and improved performance of the hierarchical framework.

These Lower Level controllers are designed with a smaller (∆T = 5 s) time step and a

shorter (N = 5 steps) prediction horizon than the Upper Level, providing improved band-

width and the ability to compensate for model and signal uncertainty while operating within

computational limits [64]. Subject to the valve, battery, and converter mode switching de-
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cisions made in the Upper Level, the Lower Level controllers make continuous decisions for

desired mass flow rates of the pumps and fans, and for the rate of battery charge/discharge.

This level can also perform additional load shedding as required to satisfy state constraints.

At the bottom of the hierarchy, the “Tracking Level” consists of decentralized PI and logic-

based controllers that determine the pump and fan speeds required to track the desired mass

flow rates communicated from the level above, as well as implement the valve, converter,

battery, and load control decisions.

The following sections detail the formulations for the Upper Level and Lower Level MPC,

including modification of the model in Section 3.3.3 to represent the system dynamics within

an MIQP in the Upper Level and QPs in the Lower Level.

3.4.2 Upper Level MPC

3.4.2.1 Switched Linear Representation

While the nonlinear dynamics of (3.7) and algebraic relationships of (3.9) could be discretized

and embedded in a nonlinear MPC formulation, solving the resulting optimization program
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would incur significant computational cost as compared to that of solving an MIQP or QP

of the same order. This would severely limit the update rate and/or prediction horizon that

could be used in real time implementation. Therefore, for the Upper Level MPC, (3.7) and

(3.9) are approximated by switched linear forms that can be discretized, embedded in an

MIQP, and solved in real time with an appropriate update rate and prediction horizon for

achieving long-term electro-thermal coordination of continuous and switched behavior.

A primary role of the Upper Level controller is to select modes of operation for the valves,

converters, and battery over the prediction horizon. Therefore, it is essential that the model

used in this level accurately captures the dynamics of each possible mode. While linearizing

about a single operating condition or desired equilibrium is a standard practice in developing

MPC controllers for nonlinear systems, the bilinear relationship between temperatures and

mass flow rates in the thermal dynamics (e.g., in (2.14)-(2.17)) indicates that this could

introduce significant model error. For example, if the mass flow rate in (2.14) is in line

with a valve, then closing the valve will zero the mass flow rate, and therefore appropriately

zero the associated edge power flows of the nonlinear model. However, if the power flow

linearization of (2.30) is performed about an operating condition with the valve open, then

zeroing the mass flow rate does not necessarily zero the associated edge power flow of the

linear model, as only the third term on the right in (2.30) depends on the mass flow rate.

Even in absence of discrete switching of valves, the validation in Section 2.4.4 shows that use

of a single linearized model can incur significant error when pump commands are sufficiently

far from the values used for linearization.

As a less computationally expensive alternative to using nonlinear optimization in the

Upper Level MPC to accurately capture the nonlinear thermal dynamics, this behavior is

instead captured by treating the mass flow rate as a switched input. By assuming a fixed

nominal command to each pump, A(u) and V (u) in (3.7) are restricted to belong to a finite

set of constant matrices {Ai, Vi} at each time, where each i corresponds to a given mode of

the valves. The active mode is selected by the switching signal for the valves, σv. The Upper

Level MPC then performs the task of selecting among the valve modes, while the Lower

Level MPC performs continuous control of the pumps, subject to the valve topology chosen

by the Upper Level. This decomposition of decision-making in the FTMS is supported in the
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literature, as optimal decisions for valves are generally governed by long timescale behavior

associated with overall vehicle mission segments [19]. For example, heat exchangers between

the FTMS of an aircraft and ambient air should be bypassed during the ground hold phase

of a flight plan if the ambient temperature on the tarmac exceeds the temperature of the fuel

in the tanks. On the timescale of faster thermal dynamics, the continuous range in speeds of

pumps and fans can be leveraged to compensate for model and disturbance error, balancing

between preventing temperature constraint violations and minimizing the energy consumed

to operate these actuators [64].

The remaining nonlinearities in the system model are those inB of (3.7) and Z of (3.9), due

in both cases to the nonlinear dependence of the electrical system efficiencies on temperature

and current. The dependence on temperature relates specifically to that of the battery HS

wall and CP1 wall, which evolve on relatively slow timescales. Therefore, each time the

Upper Level MPC is to be solved, the temperature-dependent efficiencies can be calculated

using the most recent temperature measurements and assumed with relatively small error

to remain constant over the prediction horizon. This strategy aligns with the linear time-

varying (LTV) MPC approaches of [46, 102].

While the strategy above provides an appropriate linear approximation of temperature-

dependent efficiencies, it is not appropriate for the current-dependent efficiencies of the

converters. This is because the converter load currents and number of active converters are

control decisions that can change instantaneously, leading to the potential for significant

variation in current-dependent efficiencies across the Upper Level MPC prediction horizon.

Therefore, for each mode of the converter bank (i.e., for each possible number of active con-

verters), the efficiency is approximated as a piecewise constant function of the load current,

as plotted for the mode with one active converter in Fig. 3.4. Similar to the valve modes, this

can be represented in the model as a family of matrices {Bi, Zi}, where each i corresponds

to a given mode of the converter bank σConv and range in the commanded Converter 1 load

current PConv,1.
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Applying the assumptions above, (3.7) and (3.9) can be approximated by the following

switched linear dynamic system and switched linear algebraic expression:

ẋ = Aoσ(t)x+Bo
σ(t)u+ V o

σ(t)d, (3.10a)

Palg = Zo
σ(t)u, (3.10b)

where for simplicity in notation, all switching signals have been coalesced into a single

switching variable σ(t). The continuous system in (3.10a) can then be discretized with time

step ∆T and time index k, yielding the discrete switched linear system:

xk+1 = Adσkxk +Bd
σk
uk + V d

σk
dk. (3.11)

A zero-order hold is used in discretizing the thermal dynamics, such that the discrete states of

(3.11) exactly match the continuous states of (3.10a) at the update times if the disturbances

and inputs are constant between updates.
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3.4.2.2 Optimization Program

The Upper Level vehicle energy management MPC controller is formulated using the follow-

ing MIQP:

J∗ (xk) = min
σk,uk,sk

N−1∑
j=0

Jk, (3.12a)

subject to, ∀j ∈ [0:N − 1] ,

xk+j+1|k = Adσk+j|k
xk+j|k +Bd

σk+j|k
uk+j|k + V d

σk+j|k
dk+j|k, (3.12b)

Palg,k+j+1|k = Zo
σk+j+1|k

uk+j+1|k, (3.12c)

¯
x− ε− sk+j|k ≤ xk+j+1|k ≤ x̄+ ε+ sk+j|k, sk+j|k ≥ 0, (3.12d)

¯
xSOC ≤ xSOC,k+j+1|k ≤ x̄SOC , (3.12e)

Hu
σk+j+1|k

uk+j+1|k ≤ zuσk+j+1|k
, (3.12f)

Halg
σk+j+1|k

Palg,k+j+1|k ≤ zalgσk+j+1|k
, (3.12g)

uk+i+1|k = uk+Mu|k, ∀i ∈ [Mu, N − 1], (3.12h)

σk+i+1|k = σk+Mσ |k, ∀i ∈ [Mσ, N − 1], (3.12i)

xk|k = xk, (3.12j)

uk|k = uk|k−1, (3.12k)

σk|k = σk|k−1. (3.12l)

The decision variables of this program are the mode sequence σk = [σk, ..., σk+Mσ ], input

trajectory uk = [uk, ..., uk+Mu ] and slack variables sk = [sk, ..., sk+N−1] of the N -step predic-

tion horizon. At each time index k, the cost function Jk is a sum of quadratic terms, given

by:

Jk = ‖sk+j|k‖2
Λs + ‖xk+j|k − rxk+j|k‖2

Λx

+ ‖uk+j+1|k − ruk+j|k‖2
Λu + ‖Palg,k+j+1|k − ralgk+j|k‖

2
ΛP

+ ‖uk+j+1|k − uk+j|k‖2
Λ∆u

+ ‖σk+j+1|k − σk+j|k‖2
Λ∆σ

.

(3.13)

The first term on the right of this cost function minimizes the non-negative slack variables

sk+j|k, which ensure feasibility of the state constraints in (3.12d). The second, third, and
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fourth terms minimize deviations of states, inputs, and algebraic power flows from desired

references rxk+j|k, r
u
k+j|k, and ralgk+j|k, respectively. These references are exogenous to the

controller and reflect the desired operation of the system. In particular, time-varying input

references are provided for the desired electrical power to the AC, DC, and AEE loads in

accordance with the vehicle’s mission or flight plan. The controller may reduce the actual

power to these loads from the desired value via load shedding as necessary to decrease

thermal energy generation and satisfy temperature constraints. However, the power to these

loads must remain above a minimum, flight-critical value defined in (3.12f), even at the cost

of temperature constraint violation. A reference of zero can be provided for some signals

to incentivize efficient operation. For example, this can be done for P s
Eng to penalize power

extraction from the engine by the generator. The fifth term of (3.13) serves to smooth the

input trajectory, penalizing the change in the inputs between consecutive steps to reduce

wear on continuously variable actuators. The sixth term performs a similar role for switching,

ensuring that switched actuators only change modes when doing so significantly improves

the closed-loop performance.

Equation (3.12b) imposes the switched linear system dynamics from (3.11), while (3.12c)

imposes the linear algebraic power flows of the electrical system from (3.10b). Equation

(3.12d) imposes softened box constraints on the system states, with lower bound
¯
x and

upper bound x̄, where ε represents a constraint tightening term to help ensure constraint

satisfaction in the presence of model and disturbance uncertainty. For the experimental

results in Section 3.6, ε = 2◦C is used to tighten constraints on temperature states, approxi-

mately matching the typical open loop model error observed experimentally in Section 2.4.4.

Equation (3.12e) imposes a hard constraint on the battery SOC, with lower bound
¯
xSOC and

upper bound x̄SOC . It can be confirmed that this hard constraint cannot render the opti-

mization program infeasible by ensuring that the flight-critical loads can always be provided

with the battery idle, even under worst-case efficiencies.

Equation (3.12f) constrains the mass flow rate inputs and controllable electrical power

flows to fall within their admissible envelopes for each mode. This includes constraints es-

tablishing the achievable mass flow rates for each mode of the valves in (3.1). Note that

under the assumption that the pumps operate with a fixed nominal command used to lin-
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earize the model for the Upper Level MPC in Section 3.4.2.1, each Ei in (3.1) is singleton.

Equation (3.12f) also includes the mode-dependent battery and converter constraint sets of

(3.3) and (3.4), respectively. Lastly, (3.12f) includes box constraints on the power flows Pu,

representing bounds on the power or current allowable through electrical components, as

well as the minimum flight-critical power to the AC, DC, and AEE loads. Equation (3.12g)

applies similar box constraints to the algebraic power flows Palg.

To reduce computational cost and enable real time implementation, control horizons

Mu,Mσ < N are introduced in (3.12h) and (3.12i) to perform move blocking [103]. The

inputs and mode selection are held constant after the control horizon, reducing the number

of decision variables of the program. For the experimental results in Section 3.6, the Upper

Level MPC uses Mσ = 3 and Mu = 9.

To enable real time implementation, a one-step delay is imposed to account for the com-

putation time of the controller and the time taken to communicate its solution to the Lower

Level controllers. Equation (3.12j) sets the initial state at time k equal to the measured

state at time k, but the optimizer is given until time k + 1 to compute a solution to the

MIQP. To compensate for this delay, (3.12k)-(3.12l) set the initial input and mode equal to

those of the second step in the optimal trajectory determined at time k − 1.

3.4.3 Lower Level MPC

In general, the MPC formulation for the Lower Level controllers is very similar to (3.12)-

(3.13). However, the Lower Level controllers are constrained to implement the mode selected

by the Upper Level MPC. Thus, σk is not a decision variable, allowing the Lower Level

controllers to be formulated as QPs. As discussed above, the input and state references

to the Lower Level controllers are composed of decision variables and interpolated state

predictions from the Upper Level. This coordinates the individual actions of the Lower

Level controllers such that their behaviors align with the interests of optimizing the entire

system. The vertices and edges used to generate the graph-based model for each Lower Level

controller correspond to those in the sub-graphs of Fig. 3.11.
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For the Upper Level MPC formulation, the nonlinear thermal dynamics of the graph-based

model are approximated as a switched linear system by assuming nominal commands for

pumps and fans, and associating modes with different valve positions. With the valve mode

selected by the Upper Level, the responsibilities of the Lower Level include determining

desired mass flow rates for the continuous operation of the pumps and fans. Therefore,

the assumption of fixed nominal mass flow rates is removed, and A(u) and V (u) of (3.7)

are instead linearized about the current operating condition and selected mode prior to

discretization. This results in a model for the Lower Level MPC controllers of the form:

xk+j+1|k − xk|k = Ak|k
(
xk+j|k − xk|k

)
+Bk|k

(
uk+j|k − uk|k

)
+ Vk|k

(
dk+j|k − dk|k

)
. (3.14)

Note that the inputs at time k are known as a result of the one-step delay imposed to account

for the computation time of the Lower Level controllers, similar to (3.12k) in the formulation

for the Upper Level controller.

3.5 Baseline Control Formulation

The baseline controller is representative of the decentralized, reactive control strategies

currently implemented in practice for aircraft energy management, as discussed in Sec-

tion 1.1.3.2. This controller consists of 11 proportional-integral (PI) loops for output regula-

tion, three purely logic-based controllers for mode selection, and a controller regulating the

battery charge and discharge that incorporates both logic-based switching and a PI loop.

Each PI controller is saturated with anti-windup using upper and lower bounds specific to

its actuator. Table 3.2 shows the actuator and measurement pairings for each controller.

The specified setpoints and thresholds were designed by iteration in simulation to satisfy all

constraints under the nominal load profile in Section 3.6.
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The logic-based controllers, in which switching decisions are updated every 60 s, are

summarized as follows.

• Valve switching for tanks:

– If initially closed, V1 and V2 are opened if the Auxiliary Tank temperature ex-

ceeds 35◦C.

– If initially open, V1 and V2 are closed if the Auxiliary Tank temperature is less

than 30◦C.

– V3 and V4 are always open, allowing fluid flow to and from the Main Tank.

• Valve switching for Sink Loop bypass:

– If V5 is initially closed and V6 is initially open, their positions are reversed if the

Sink Loop temperature exceeds the tank return temperature. This bypasses HX3

to prevent thermal energy from entering the system via the Sink Loop.

– If V5 is initially open and V6 is initially closed, their positions are reversed if the

tank return temperature exceeds the Sink Loop temperature by more than 2◦C.

This allows thermal energy to leave the system via the Sink Loop.

• Converter selection:

– The load current is divided equally among all active converters.

– When all active converter temperatures are below 55◦C, the number of active

converters is selected to maximize the converter bank efficiency, per Fig. 3.4.

– An additional converter is activated if any active converter temperature exceeds

55◦C, unless all converters are already active.

• Battery charge, discharge, or idle:

– The battery cannot be charged beyond an upper bound on its SOC, or discharged

below a lower bound on its SOC.

74



– The battery is charged or discharged, within its rate limits and SOC bounds, to

maximize the efficiency of the converter bank. This is consistent with the behavior

observed of hierarchical MPC in [1].

– To prevent the battery from overheating, its maximum charge and discharge rate

limits are scaled linearly between 1 and 0 as a function of temperature when

operating between 55◦C and 60◦C.

Table 3.2: PI and logic-based control loops of the baseline controller.

Actuator
Measurement
(temps. unless otherwise specified)

Type
Setpoint/
threshold

P1 - AEE pump CP1 - AEE wall PI 40◦C

P2 - Bay HX pump HX1 - Bay HX wall PI 30◦C

P3 - Main pump CP2 - Generator wall PI 35◦C

F1 - Conv. 1 fan HS1 - Conv. 1 heat sink PI 40◦C

F2 - Conv. 2 fan HS2 - Conv. 2 heat sink PI 40◦C

F3 - Conv. 3 fan HS3 - Conv. 3 heat sink PI 40◦C

F4 - Battery fan HS4 - Battery heat sink PI 40◦C

F5 - Bay HX fan Bay air PI 30◦C

V1-4 - Tank valves Main and Aux. tank Logic 35◦C

V5-6 - Sink valves ∆T across HX3 inlet flows Logic 2◦C

No. of active conv. Converter currents and temps. Logic
17Amps,
55◦C

Battery power
Battery SOC,
HS4 - Battery heat sink temp.,
Conv. 1 current

Logic/PI
[0,1],
[55,60]◦C,
17Amps

AC load shedding Main Tank PI 38◦C

AEE load shedding Aux. Tank PI 38◦C

DC load shedding HS1 - Conv. 1 heat sink PI 58◦C
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3.6 Experimental Results

3.6.1 Testing Scenario

For clarity of exposition, the performance of the hierarchical and baseline controllers is

compared for a 30 minute mission segment consisting of sheddable and flight-critical (i.e.,

non-sheddable) profiles for the AC, AEE, and DC loads, as shown in Fig. 3.12. This is

intended to represent only a portion of a complete flight profile of an aircraft energy system,

such as that simulated in [1].

The loads in Fig. 3.12 represent a nominal load profile. To compare the capability of

the hierarchical control framework and baseline controller to achieve higher loading, each

approach is applied for five scaled load profiles, where the magnitudes of the nominal shed-

dable loads are scaled by 1, 1.5, 2, 2.5, and 3, while the flight-critical loads are left unscaled.

In accordance with the HIL testbed schematic of Fig. 3.2, these load profiles represent the

mission of the electro-thermal energy management system.

Each optimization program within the hierarchical MPC framework is solved in real time

with the update interval indicated in Fig. 3.10 and Table 3.3. All programs were formulated

using the YALMIP toolbox [104] and solved with the Gurobi optimization suite [105] using

a desktop computer with a 3.40 GHz Intel i7 processor and 16 GB of RAM. The top-down

structure of communication within the hierarchy allows controllers of the framework to be

solved in parallel. Table 3.3 also provides the average and peak computation times of the

Upper Level and Lower Level controllers from the implementation in this section. With

a maximum computation time of 50.4 s, the Upper Level can require the majority of its

60 s update interval to solve the MIQP. As discussed in Section 3.4.2.1, approximation of

the nonlinear system dynamics by a switched linear system proved to be a key enabler of

real time implementation, as solving a nonlinear program of the same order with the same

hardware would likely require longer than the update interval. Similarly, as discussed in

Section 3.3.3, a centralized MPC approach would not be able to simultaneously achieve the

10 minute time horizon of the Upper Level and 5 s update interval of the Lower Level while

solving in real time on the same hardware. Compromising on either of these these parameters
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Figure 3.12: Nominal sheddable and flight critical load profiles for the AC, AEE, and DC
loads [101].

to enable real time solution would significantly degrade the controller performance. While

the modern desktop computer used in this demonstration has greater computational power

than what is available on board many legacy aircraft, future research efforts will include

the development of design methods for hierarchical MPC that account for the available

computational resources in selecting update rates and prediction horizons throughout the

hierarchy.

Table 3.3: Update intervals and computation times for all controllers of the hierarchical
MPC framework.

Level Controller
Update
interval (s)

Average (s) Maximum (s)

Upper (MIQP) Vehicle Energy Mgmt. 60 28.1 50.4

Lower (QP) FTMS 5 0.03 0.07

Lower (QP) Electrical and Air Bay 5 0.03 0.09
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3.6.2 Performance Comparison

This section provides an overall comparison of the performance of the hierarchical and base-

line controllers across the five scaled sheddable load profiles. A more detailed discussion

of the behavior of each controller at the largest scale factor is provided for the baseline

controller in Section 3.6.3, and for the hierarchical controller in Section 3.6.4.

As defined in Section 3.1, three high-level control objectives for aircraft energy manage-

ment are to maximize capability, satisfy constraints, and minimize fuel consumption. To

evaluate the relative performance of the hierarchical and baseline controllers, these objec-

tives have been translated into four quantitative figures of merit (FoM). In this case study,

maximizing capability corresponds to minimizing load shedding of the AC, AEE, and DC

loads over the flight segment. Therefore, the first FoM is quantified as the percentage:

FoM1 = 100

∫
t
Achieved Sheddable Load Power dt∫
t
Desired Sheddable Load Power dt

. (3.15)

The second and third FoM quantify the ability to satisfy thermal constraints. The second

FoM is calculated as:

FoM2 =
∑

i∈[1:Nv,temp]

∫
t

max (0, xi(t)− x̄i) dt, (3.16)

and measures the integral of all temperature constraint violations over the mission. The

third FoM equals the sum of the peak violations of all constrained temperatures:

FoM3 =
∑

i∈[1:Nv,temp]

max
t

(max(0, xi(t)− x̄i)) . (3.17)

Lastly, as engine modeling falls outside the scope of this case study, the objective of min-

imizing fuel consumption for efficiency is instead quantified by the total energy extracted

from the engine by the generator over the mission:

FoM4 =

∫
t

P s
Eng(t)dt. (3.18)
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(a) Baseline
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(b) Hierarchical

Figure 3.13: Comparison of the four FoM used to evaluate the performance of the baseline
and hierarchical controllers across five sheddable load scale factors. At high scale factors, the
hierarchical controller exhibits significantly reduced load shedding, violates fewer constraints,
and extracts slightly less energy from the engine using the generator [101].

Figure 3.13 compares these four FoM for the baseline and hierarchical controllers over

the five scaled sheddable load profiles. The first row of subplots shows that the hierarchical

approach sheds much less of the loads at high sheddable load scale factors. Note that the

small degree of load shedding by the hierarchical controller at low scale factors occurs because

load shedding is part of a weighted cost function in (3.13). Despite highly weighted penalties

on load shedding, the controller may choose to shed loads to help minimize other terms in

the cost function. If desired, the MPC formulations can be modified to prevent this behavior

by associating load shedding with a binary decision variable, as in [23].

The second and third rows of subplots in Fig. 3.13 show the FoM corresponding to inte-

grated and peak temperature constraint violations, respectively. As mentioned previously
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for the baseline controller in Section 3.5, both controllers are designed to satisfy constraints

under the nominal sheddable load profile. However, at higher sheddable load scale factors,

the baseline controller violates temperature constraints significantly in several components.

By comparison, the hierarchical controller maintains all but one of the temperature con-

straints by strategically shedding some of the sheddable loads and by better coordinating

the conversion, storage, and transport of energy throughout the electro-thermal system. The

lone constraint violation under the hierarchical controller occurs in the temperature of the

Auxiliary Tank. This can again be attributed to the competing objectives between cost

function terms, as well as error in the linearized models used by the controllers, and remains

relatively small across all the power levels. For many components, small and short duration

temperature constraint violations may impact the longevity and reliability of the component

but do not necessarily cause immediate failure. For critical components that cannot toler-

ate even minor constraint violations, additional constraint tightening could be employed to

prevent these, at the cost of increased conservatism.

Lastly, the fourth row of subplots in Fig. 3.13 shows the total energy extracted from the

engine by the generator. At all power levels, the hierarchical controller extracts slightly less

energy than the baseline controller. At high sheddable load scale factors, this occurs despite

the hierarchical controller providing much more of the desired the sheddable load power,

highlighting the ability of the hierarchical framework to greatly improve the overall system

efficiency.

The comparison of the four FoM between the two controllers for the sheddable load scale

factor of three is summarized by the radar chart shown in Fig. 3.14. Each axis is normal-

ized by the value for the baseline controller, and closer proximity of each axis to the origin

represents improved performance. With similar generator energy consumption, the hier-

archical controller sheds only 69% of what the baseline sheds while simultaneously having

integrated and peak temperature violations of 13% and 23% those of the baseline controller,

respectively.

In summary, the comparison of controllers in this section demonstrates the ability of coor-

dinated, model-based control of electrical and thermal systems to improve energy manage-

ment as compared to traditional approaches. While the setpoints for the PI and logic-based
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Figure 3.14: Radar chart showing the relative performance of the proposed hierarchical
controller as compared to the baseline controller for a sheddable load scale factor of three
[101].

controllers of the baseline approach were effective at nominal power levels, this approach

became inefficient and ineffective at more taxing, off-nominal operating conditions. In com-

parison, the model-based hierarchical controller is less sensitive to the particular operating

condition and is able to achieve superior performance under both nominal and off-nominal

operation. In this way, hierarchical control can facilitate the accelerating electrification of

vehicle energy systems, as discussed in Section 1.1.1, allowing energy density and power

density to be increased.

3.6.3 Baseline Controller Results

This section provides a more detailed discussion of the performance of the baseline controller

for the sheddable load scale factor of three. Figure 3.15(a) shows the thermal actuator

commands of the baseline controller, consisting of the valve, pump, and fan commands.

Figure 3.15(b) shows a selection of the electrical actuator commands associated with the

converter bank and battery. Figure 3.16(a) shows a selection of temperatures under the

baseline controller, and Fig. 3.16(b) shows the sheddable, flight critical, and applied loads.
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(b) Selected electrical actuator commands

Figure 3.15: Selected actuator commands under the baseline controller for a sheddable load
scale factor of three.

The top subplot of Fig. 3.15(a) shows that the valve allowing thermal energy exchange

with the Sink Loop is opened early in the profile, as the fluid in the Sink Loop is colder

than that in the return line to the Main Tank. Similarly, once the Auxiliary Tank begins

to increase in temperature due to an increase in the AEE load, the valves allowing fluid

from the Auxiliary Tank to mix with fluid in the Main Tank are opened. This occurs after

the fluid in the Auxiliary Tank is hotter than that in the Main Tank, as shown in the top

subplot of Fig. 3.16(a). The middle and bottom subplots of Fig. 3.15(a) show that the AEE

pump generally runs high when the AEE load is high, while the Bay HX pump and all

fans saturate after the DC load increases and causes the battery, converters, and bay air to
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(b) Sheddable, flight critical, and applied loads

Figure 3.16: Selected temperatures and loads under the baseline controller for a sheddable
load scale factor of three.

increase in temperature, as shown in the bottom two subplots of Fig. 3.16(a). Note that the

oscillations in the Main pump could be reduced by using a less aggressive tuning in the PI

controller for this actuator.

The top subplot of Fig. 3.15(b) shows that additional converters are activated with time

to reduce the load current on active converters as they approach their temperature limits.

This results in the cascading temperature increases in the bottom subplot of Fig. 3.16(a).

The middle subplot of Fig. 3.15(b) shows that the converter bank current is high during the

step in the DC load. The converter bank generally achieves its peak efficiency of 80% for the

first two-thirds of the profile, aided by supplemental charging or discharging of the battery,
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as shown in the bottom subplot of Fig. 3.15(b). However, the converter bank efficiency

decreases to approximately 70% by 1200 s, when three converters must be active due to

their high operating temperature and the battery is unable to significantly help bring the

converters to a more efficient current due to being thermally limited as well.

Figure 3.16(a) shows that the most significant temperature violation occurs in the Aux-

iliary Tank, which violates its constraint by approximately 5◦C. This constraint violation

occurs 10 s after load shedding begins in the AEE and 10 s before the conclusion of the

step in the sheddable AEE load, but continues to grow even after the step in sheddable

load has concluded as the AEE CP wall transfers thermal energy to the Auxiliary Tank.

This illustrates the drawback of a purely reactive control approach, in which waiting to take

corrective action until a constraint violation is imminent may not afford enough time to

avoid detrimental behavior. At the end of the profile, all three converter HSs exceed their

temperature constraints by more than 1◦C, and the extent of this violation is increasing even

though all thermal actuators of the bay and the Main pump are saturated at their upper

limits and there is no sheddable DC load applied. Therefore, continued operation of the

system beyond this point would lead to even more significant violations of these constraints.

Lastly, Figure 3.16(b) shows that the most significant shedding occurs in the second half

of the step in the DC sheddable load, when the converters and battery are thermally limited

beyond their ability to achieve the desired load profile. A significant portion of the second

step in the AEE sheddable load is also shed in the last 100 s of the profile.

3.6.4 Hierarchical Controller Results

This section provides a more detailed discussion of the performance of the hierarchical con-

troller for the sheddable load scale factor of three. Figure 3.17(a) shows the thermal actuator

commands of the hierarchical controller, consisting of the valve, pump, and fan commands.

Figure 3.17(b) shows a selection of the electrical actuator commands associated with the

converter bank and battery. Figure 3.18(a) shows a selection of temperatures under the

hierarchical controller, and Fig. 3.18(b) shows the sheddable, flight critical, and applied

loads.
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(b) Selected electrical actuator commands

Figure 3.17: Selected actuator commands under the hierarchical controller for a sheddable
load scale factor of three.

Modulo a differing initial choice for the valves associated with the Auxiliary Tank, the

hierarchical controller makes similar decisions for the valves as the baseline controller, as

shown in the top subplot of Fig. 3.17(a). However, prediction in the hierarchical MPC

allows the spike in the Auxiliary Tank temperature that occurs with the first step in the

sheddable AEE load to be mitigated. The valves allowing fluid from the Auxiliary Tank to

mix with fluid in the Main Tank are opened more than 100 s earlier than under the baseline

controller. This, together with a lower fluid temperature in the Main Tank, results in a

peak violation of the Auxiliary Tank temperature constraint that is approximately 40% of

that under the baseline controller, as shown in the top subplot of Fig. 3.18(a). The extent

85



0 300 600 900 1200 1500 1800

20

25

30

35

40

45
T

an
k

 a
n

d
 D

ra
in

 T
em

p
.

[C
]

Hierarchical

Main Tank

Aux. Tank

Constraint

0 300 600 900 1200 1500 1800

20

30

40

50

60

70

G
en

. 
&

 A
E

E
 T

em
p

.

[C
]

Gen. CP Wall

AEE CP Wall

Constraint

0 300 600 900 1200 1500 1800

20

30

40

50

60

70

B
ay

 a
n

d
 B

at
te

ry
 T

em
p

.

[C
]

Bay Air

Batt. HS

Constraint

0 300 600 900 1200 1500 1800

Time [s]

20

30

40

50

60

70

C
o

n
v

er
te

r 
T

em
p

.

[C
]

Conv. 1 HS

Conv. 2 HS

Conv. 3 HS

Constraint

(a) Selected temperatures

0 300 600 900 1200 1500 1800
0

2

4

6

8

A
C

 L
o
ad

[k
W

]

Hierarchical

Sheddable

Flight Critical

Applied

0 300 600 900 1200 1500 1800
0

2

4

6

8

A
E

E
 L

o
ad

[k
W

]

0 300 600 900 1200 1500 1800

Time [s]

0

1

2

3

D
C

 L
o
ad

[k
W

]

(b) Sheddable, flight critical, and applied loads

Figure 3.18: Selected temperatures and loads under the hierarchical controller for a sheddable
load scale factor of three.

of this violation could be decreased further by performing additional constraint tightening

to compensate for model error or by increasing the weighting on the corresponding slack

variables of the MPC formulations.

As shown in the middle subplot Fig. 3.17(a), the AEE pump behaves similar in the hierar-

chical controller as for the baseline controller. However, while the other pumps and fans are

more active early in the profile than for the baseline controller, they generally are operated

at much lower values throughout the final two-thirds of the profile. This is especially true

for the Bay HX fan. While minimizing energy consumption by these actuators was not a

focus of this case study, these results suggest that the hierarchical controller could do so sig-
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nificantly better than the baseline controller, indicating additional advantages in efficiency

beyond those discussed in Section 3.6.2. The oscillations in the Main pump, which also

occurred under the baseline controller, could be reduced by using a less aggressive tuning

for the corresponding PI loop in the Tracking Level of the hierarchy.

The top subplot of Fig. 3.17(b) shows that the hierarchical controller switches the number

of active converters more frequently than the baseline controller near the end of the profile.

As shown in the middle subplot of Fig. 3.17(b) and bottom subplot of Fig. 3.18(a), this

switching strikes a balance between operating the converter bank efficiently and reducing

the load current on individual converters for the purposes of thermal management. The

converter bank operates at peak efficiency of 80% when under high current due to the step

in the sheddable DC load. Lower efficiencies only occur when the bank current is small.

For example, this happens in the first third of the profile, during which the battery is

discharged to provide much of the power to the flight critical DC load, as shown in the

bottom subplot of Fig. 3.17(b). The battery is discharged occasionally later in the profile to

supplement the power of the converters, improving their efficiency or reducing their current

to reduce the heat load on their HSs. Due to the hierarchical controller’s more effective

leveraging of the energy stored in the battery, the SOC of the battery at the end of the

profile under the hierarchical controller is about a third of that under the baseline controller.

In performing energy management for a complete flight plan, the objective functions of the

MPC formulations for the hierarchical controller could be augmented to encourage charging

of the battery when loading elsewhere is relatively small so that the battery has sufficient

charge to provide supplementary power when most effective throughout the flight.

Figure 3.18(a) shows that all temperatures except that of the Auxiliary Tank are main-

tained within their constraints, and that the Auxiliary Tank has peak and integrated con-

straint violations much smaller than under the baseline controller. The thermal state of

the system at the end of the profile is improved as compared to that under the baseline

controller, with the converter HSs well under their constraints.

Figure 3.18(b) shows that the hierarchical controller performs significant shedding of the

second step in the sheddable AE load and the step in the sheddable DC load, as also done

by the baseline controller. However, while the baseline controller tends to supply the full
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sheddable load early in the steps and is later forced by thermal limitations to taper this to

zero, the hierarchical controller performs shedding earlier in the steps and does not have to

perform as significant tapering later on. A slight tapering does occur towards the end of

the step in the sheddable DC load, likely because the duration of the step is longer than

the prediction horizon of the Upper Level MPC. However, much more of the total sheddable

power is still provided under the hierarchical controller than under the baseline controller.

Furthermore, the ability to use prediction to provide more consistent shedding across the

duration of steps is an important feature of the hierarchical controller. For some systems,

load shedding may not be a continuous decision, but instead a discrete decision in which

either no power or the full desired power must be provided. In such cases, the prediction in

the hierarchical controller can provide an assessment of whether providing the full desired

power will fall within the predicted electrical and thermal capabilities of the vehicle over the

duration of the load.

3.7 Chapter Summary

This chapter presents and experimentally demonstrates a switched hierarchical control frame-

work for vehicle energy management. The candidate system for this demonstration consists

of an HIL experimental testbed that embodies key dynamic characteristics of aircraft electro-

thermal systems. The graph-based modeling approach of Chapter 2 allows complex dynamics

in both the thermal and electrical domains to be represented using a common framework,

and captures the coupling between these domains. The resulting switched nonlinear model is

then approximated using a switched linear representation. This enables real time implemen-

tation of the MPC controllers of the hierarchy, formulated as MIQPs or QPs. As compared

to a baseline controller representative of the traditional control approaches discussed in Sec-

tion 1.1.3.2, the hierarchical controller achieves improved performance in figures of merit

quantifying the capability, safety, and efficiency of the closed-loop system. While the case

study used for demonstration in this chapter focuses on a specific candidate electro-thermal

system and hierarchical control architecture, the underlying methodology is generalizable.

Application to other architectures, vehicle classes, and physical domains is a focus of ongo-
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ing and future research. For example, application to an automotive electric vehicle energy

system has been performed in simulation in [66].
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Chapter 4

Passivity-Based Stability Under Switching

4.1 Motivation

The case study in Chapter 3 demonstrates that hierarchical MPC frameworks can increase

the capability, safety, and efficiency of vehicle energy systems as compared to traditional

approaches. While the aggressive decision-making of hierarchical MPC frameworks enables

high performance, this also brings a need for formal analysis guaranteeing closed-loop sta-

bility in safety-critical applications. The necessity of accounting for potentially destabilizing

interactions among controllers of the hierarchy and sub-models of the plant can make this

a challenging task [40]. While MPC enables significant performance benefits, its lack of

a closed-form solution results in further challenges to analysis. The presence of switching

brings a third complication. Even when the continuous dynamics under each mode of opera-

tion can be proven stable under closed-loop control, this does not guarantee that the overall

switched system is stable [26]. In this chapter, the structural information embedded in the

graph-based modeling approach of Chapter 2 is shown to facilitate stability analysis of in-

terconnected switched nonlinear systems and their closed-loop control under decentralized,

distributed, or hierarchical switched MPC frameworks. This is achieved by analyzing the

passivity of graph-based systems and augmenting their controllers with a local passivity-

based constraint.

4.2 Background

The nonlinear graph-based modeling approach of Chapter 2 is derived by applying conserva-

tion equations to a dynamic system. As a result, this modeling approach naturally pairs with
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analysis tools from dissipativity theory, which was developed to characterize the storage of

energy in a system as a function of its inputs and outputs, and can be used to investigate the

Lyapunov stability of nonlinear systems [106–111]. Passivity, as a special case of dissipativ-

ity, has been applied to support the analysis and control of many energy systems. Examples

include building thermal systems [84, 112], liquid level systems [113, 114], electrical power

systems [60, 115], biochemical reaction networks [116], and mechanical systems [117].

Passive behavior under closed-loop control can be ensured using Model Predictive Control

(MPC), as has been done with centralized approaches in [118–122] and distributed ap-

proaches in [57, 123]. However, these distributed approaches, as in the analysis of [116, 124],

require satisfaction of global condition on the structure and gain of couplings among sub-

systems to ensure stability. This is not required in the decentralized MPC approach for

passive graph-based models of [125], which shows that the interconnection of subsystems in

this class forms negative feedback loops, preserving passivity under this coupling.

Passivity-based analysis and control has also been investigated for switched systems, and

can be broadly classified by the use of a common storage function [126–128] or multiple

storage functions [129–132]. While the latter approach can be employed in cases where all

modes in a family of switched systems do not share a common storage function, this can

introduce additional complexity to the analysis, such as the cross-supply rates of [130] that

characterize the change in energy of inactive modes under the trajectory governed by the

active mode. As shown in this chapter, the use of a common storage function is sufficient

to prove the passivity of a class of switched graph-based systems. While the literature

cited above indicates that distributed passivity-based MPC and passivity under switching

have been studied independently, this chapter presents a unique result that contributes to

both these areas, including a passivity-based guarantee of stability for switched systems

controlled by decentralized MPC. As achieved in the absence of switching in [125], no global

constraints are required. Instead, a local passivity-based constraint within each controller is

proven sufficient to guarantee closed-loop stability.

The remainder of this chapter is organized as follows. Section 4.3 describes the switched

graph-based modeling approach. Section 4.4 proves that a common storage function can

be employed to certify passivity under switching for this class of systems, shows that pas-
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sivity holds under the interconnection of multiple graph-based subsystems, and presents a

decentralized MPC formulation that stabilizes the closed-loop system without requiring any

global analysis of passivity to be performed. Section 4.5 demonstrates the proposed approach

in simulation on a fluid tank system similar to that introduced in Chapter 2. Section 4.6

provides a concluding summary of the chapter.

4.3 Class of Systems

4.3.1 Nominal (Non-Switched) Graph-Based Systems

Consistent with the graph-based model formulation introduced in Chapter 2, the dynamic

associated with each vertex of a graph is governed by the conservation equation:

Ciẋi =
∑

{j|ej∈eheadi }

Pj −
∑

{j|ej∈etaili }

Pj, (4.1)

where Ci > 0 is the storage capacitance of the vertex and each Pj is the power flow associated

with an edge incident to the vertex.

Also as in Chapter 2, the dynamics of the complete system S can be written as:

S : Cẋ = −M̄P +DP s, (4.2)

where C = diag ([Ci]), M̄ is a partition of the incidence matrix of the graph, P s is the vector

of source power flows, and D is a mapping from the source edges to the vertices to which

they are incident.

In a slight departure from the graph-based model formulation of Chapter 2, a more re-

stricted form of the edge power flow equation (2.2) is employed in this chapter. Specifically,

each power flow is assumed to follow the input-affine form below.
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Assumption 4.1:

For all power flows of S, the power flow Pj along edge ej is given by:

Pj = fj
(
xheadj , xtailj

)
+ gj

(
xheadj , xtailj

)
uj, (4.3)

where fj, gj : R × R → R,
(
xtailj , xheadj

)
are the states associated with the vertices to which

ej is incident, and uj is an associated actuator input.

The following continuity assumptions are made to formalize the analysis. For simplicity

of exposition, the dynamics are also assumed to have an equilibrium at the origin.

Assumption 4.2:

For all j, fj is twice continuously differentiable (and therefore locally Lipschitz [110]) with

fj (0, 0) = 0, and gj is continuous with gj (0, 0) = 0.

Following from (4.3), the vector of power flows P in S is given by:

P = F
(
x, xt

)
+G

(
x, xt

)
u, (4.4)

where F (x, xt) = [fj
(
xtailj , xheadj

)
], G (x, xt) = diag

(
[gj
(
xtailj , xheadj

)
]
)
, and u = [uj].

4.3.2 Switched Graph-Based Systems

This section extends the above modeling approach to a switched system in which edges

internal and external to the graph are rendered active or inactive by switching. To describe

this switching, indicator matrices Φ = diag ([φj]) , j ∈ [1:Ne] and Γ = diag ([γj]) , j ∈ [1:Ns]

are defined by:

φj =

1 if ej is active,

0 if ej is inactive,

(4.5a)

γj =

1 if esj is active,

0 if esj is inactive.

(4.5b)
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The switching signal σ(t) : [0,∞)→ [1:Nw] selects from among a set of Nw possible indi-

cator matrices {Φn,Γn}, n ∈ [1:Nw]. The system corresponding to the nth set of indicator

matrices is said to be in the nth mode. This mode is said to be active at times when σ(t) = n,

and inactive at times when σ(t) 6= n. Note that an equivalent representation could employ a

unique switching signal for each of the indicator matrices. However, for simplicity of notation

in this chapter, a common switching signal is assigned to both.

Incorporating the indicator matrices into the nominal system of (4.2), the switched system

under switching signal σ(t) is given by:

Sσ : Cẋ = −M̄ΦσP +DΓσP
s, (4.6)

where P is given by (4.4).

For a given Φn, ΦnF (x, xt) and ΦnG (x, xt) retain the properties assumed of F (x, xt)

and G (x, xt) in Assumption 4.2. However, the following additional assumption on the au-

tonomous dynamics of each mode will be necessary to Theorem 4.1. First, note that because

F (0, 0) = 0 by Assumption 4.2, for each Φn the autonomous dynamics given by:

C 0

0 I

 ˙̄x = −MΦnF (x̄) , x̄ =

x
xt

 (4.7)

admit the equilibrium x̄∗ = 0, where the argument (x, xt) of F in (4.4) has been replaced

with the equivalent argument x̄.

Assumption 4.3:

For each Φn, the Jacobian matrix:

AΦn = −∂MΦnF (x̄)

∂x̄

∣∣∣∣
x̄=0

(4.8)

has eigenvalues λi such that Re (λi (AΦn)) < 0, ∀i.

In accordance with Lyapunov’s indirect method, Assumption 4.3 ensures that (4.7) is

asymptotically stable within a neighborhood of the origin. Alternatively, if Re (λi (AΦn)) = 0
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for any i, then a center manifold analysis [110] can be used to check this stability require-

ment, facilitated by the requirement in Assumption 4.2 that each fj is twice continuously

differentiable.

4.4 Main Results

4.4.1 Passivity Under Switching

The classical notion of passivity is presented in Definition 4.1 below. This is extended to

the case of switched systems in Definition 4.2.

Definition 4.1: Passivity [110]

Consider a system H given by ẋ = f(x, u) and y = h(x, u). Let f : Rn×Rp → Rn be locally

Lipschitz, h : Rn×Rp → Rp be continuous, f(0, 0) = 0, and h(0, 0) = 0. H is passive if there

exists a continuously differentiable positive semidefinite function V (x) such that:

uTy ≥ V̇ =
∂V

∂x
f(x, u), ∀(x, u). (4.9)

H is locally passive if (4.9) holds in a neighborhood of the origin.

In (4.9), V is called the storage function and s(u, y) = uTy is called the supply rate.

In extending Lyapunov stability to switched systems, it is typical to employ a common

Lyapunov function that decreases along the solutions of all modes [26]. Passivity can be

extended to switched systems by a similar approach, employing a common storage function

whose rate of decrease along the solutions of all modes is upper bounded by the supply rate

[128, 133]. Performing this modification to Definition 4.1 leads to the following.

Definition 4.2: Passivity of Switched Systems

Consider a switched system Hσ given by ẋ = fσ (x, u), y = hσ (x, u), and σ(t) : [0,∞) →

[1:Nw], where each mode satisfies the requirements in Definition 4.1. Hσ is passive if there

exists a continuously differentiable positive semidefinite function V (x) such that:

uTy ≥ V̇ =
∂V

∂x
fσ(x, u), ∀(x, u, σ). (4.10)
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Hσ is locally passive if (4.10) holds in a neighborhood of the origin.

Existence of the common storage function for all modes in Definition 4.2 ensures passivity

of the switched system under arbitrary switching [128]. It is next demonstrated that such a

common storage function exists for the switched graph-based system Sσ.

Theorem 4.1: Passivity of Switched Graph-Based Systems

The system Sσ given by (4.6) is locally passive from inputs ū to outputs ȳ with:

ū =


ΓσP

s

u

−xt

 , ȳ =


xs

y

Φ2,2P
t

 . (4.11)

Here, Φ2,2 = diag
(
[φ(Nv−Nt+1), ..., φNv ]σ

)
is the lower right block of Φσ indicating the switch-

ing of P t and

y = −G(x̄)ΦσM
T x̄, (4.12)

where x̄ is as defined in (4.7).

Proof: Consider the storage function V = 1
2
xTCx, which satisfies the requirements of Defi-

nition 4.2. Taking the derivative and substituting in (4.6) gives:

V̇ = xTCẋ = −xTM̄ΦσP + xTDΓσP
s. (4.13)

Noting that xs = DTx, (4.13) can be written as:

V̇ = −xTM̄ΦσP + (xs)TΓσP
s. (4.14)

Adding and subtracting (xt)TΦ2,2P
t and substituting Φ2,2P

t = −
¯
MΦσP into the added term

gives:

V̇ = −xTM̄ΦσP − (xt)T
¯
MΦσP + (xs)TΓσP

s − (xt)TΦ2,2P
t. (4.15)
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Noting that xTM̄ + (xt)T
¯
M = x̄TM and substituting in the right side of (4.4) for P gives:

V̇ = −x̄TMΦσF (x̄)− x̄TMΦσG(x̄)u+ (xs)TΓσP
s − (xt)TΦ2,2P

t. (4.16)

Note that the argument (x, xt) of F and G in (4.4) has been replaced in (4.16) with the

equivalent argument x̄ as defined in (4.7). Noting also that G = GT and Φσ = ΦT
σ , the

second term of (4.16) equals uTy, with y as defined in (4.12). Equation (4.16) can therefore

be written as:

V̇ = −x̄TMΦσF (x̄) + ūT ȳ, (4.17)

with ū and ȳ as defined in (4.11). By Assumption 4.3 and following similar steps as the

proof of Lyapunov’s indirect method in Theorem 4.7 of [110], it can be shown that within a

neighborhood of the origin there exists a negative semidefinite matrix ÃΦn for each Φn such

that:

− x̄TMΦnF (x̄) ≤ x̄T ÃΦnx̄ ≤ 0. (4.18)

Therefore, V̇ ≤ ūT ȳ, completing the proof. �

4.4.2 Zero-State Detectability

The following definition is found in [109] for non-switched systems and extended to the case

of switched systems in [128].

Definition 4.3: Zero-State Detectability and Observability [128]

Consider a switched system Hσ with zero input, given by ẋ = fσ(x, 0), y = hσ(x, 0), σ(t) ∈

[1:Nw], and let Z ⊂ Rn be the largest positively invariant set contained in
Nw⋂
i=1

{x ∈ Rn|yi = 0}.

Then Hσ is zero-state detectable (ZSD) if x = 0 is asymptotically stable conditionally to Z.

If Z = 0, then Hσ is zero-state observable (ZSO).

To guarantee that the system of switched graph-based models is ZSD, the following as-

sumption is required.
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Assumption 4.4:

For each Φn, the intersection of the zero sets of φjgj,∀j ∈ [1:Ne] is the origin, i.e.,

⋂
j

N
(
φjgj

(
xtailj , xheadj

) )
= {0}. (4.19)

Lemma 4.1:

The system Sσ given by (4.6) is ZSO with respect to the outputs ȳ as defined in (4.11).

Therefore it is also ZSD.

Proof: ZSO can be interpreted as a requirement that when ū = 0, x̄ = 0 if ȳ = 0. This can

in turn be ensured by proving that y 6= 0 if x 6= 0 and ū = 0. From the definition of M in

(2.3), the vector y in (4.12) is given by:

y = [yj] = −[φjgj
(
xtailj , xheadj

) (
xtailj − xheadj

)
]. (4.20)

By Assumption 4.4, there exists j such that φjgj
(
xtailj , xheadj

)
6= 0 if

(
xtailj , xheadj

)
6= 0.

Furthermore, xtailj − xheadj = 0 ∀j only at the equilibrium x̄∗ = 0. This is true because ū = 0

implies that xt = 0, and xt is a component of x̄. Therefore, y 6= 0 if x 6= 0 and ū = 0 as

required, completing the proof. �

4.4.3 Passivity of Interconnected Subsystems

In this section it is demonstrated that passivity is preserved under the interconnection of

multiple graph-based subsystems that are each passive under switching. The kth subsystem,

subject to its switching signal σk(t), is denoted as Sk,σk . This subsystem’s associated signals

are similarly identified by the subscript k, for example, P s
k,1 is the first power flow source of

subsystem Sk,σk .

Figure 4.1 shows a notional interconnection of subsystem Sk,σk with upstream subsystem

Sk−1,σk−1
and downstream subsystem Sk+1,σk+1

. Note that (Φ2,2P
t)k−1 = (ΓσP

s)k and xtk−1 =

xsk, where source states xsk are the states internal to Sk,σk incident to a source edge of the

system’s graph. This interconnection can be seen as a negative feedback connection of
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Figure 4.1: Notional interconnection of three subsystems [134].

Figure 4.2: Block diagram representation of subsystems from Fig. 4.1 [134].

subsystems, as shown in Fig. 4.2, where the inputs and outputs of the kth subsystem are ūk

and ȳk, respectively, as defined in (4.11).

The overall system given by an interconnection of K subsystems is denoted as S̃σ, with

ũ = [uk] and ỹ = [yk], k ∈ [1:K]. Furthermore, P̃ s, P̃ t, x̃s, and x̃t denote the source

power flows, sink power flows, source states, and sink states, respectively, of the overall

system. Similarly, Γ̃σ and Φ̃2,2 indicate switching of the source and sink power flows of

the overall system. For example, in the interconnection of Fig. 4.2, Γ̃σP̃
s = (ΓσP

t)k−1,

Φ̃2,2P̃
t = (Φ2,2P

t)k+1, x̃s = xsk−1, and x̃t = xtk+1.

Note that a cascaded structure of subsystems is shown in Figs. 4.1 and 4.2 to clearly

demonstrate the nature of the interconnections, but the forthcoming results of this section

are not limited to a cascaded structure, and instead apply to any subsystem interconnection

structure satisfying the following assumption.
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Definition 4.4:

A vi, vj–path on a graph G is a sequence of edges (regardless of orientation) connecting two

distinct vertices vi, vj ∈ v, not including any sink vertices as intermediate vertices. G is

connected if it has a vi, vj–path for each vi, vj ∈ v.

Assumption 4.5:

The overall graph given by an interconnection of subsystem graphs is connected for all

allowable modes of all subsystems.

The above assumption can be seen as a constraint on both the nominal topology of in-

terconnections of subsystems and on the allowable switching modes. The role of Assump-

tion 4.5 is to ensure that there always exists at least one edge along which power can flow

between neighboring subsystems, forming a negative feedback connection. A classical result

in passivity theory is that a system formed by negative feedback connection of two pas-

sive subsystems is itself passive [110]. This leads to Theorem 4.2 below, proved in [125] by

induction on the number of subsystems. While relaxations of Assumption 4.5 fall outside

the scope of this dissertation, future work could explore a weak connectivity assumption

[135], requiring connectivity to hold only over the union of active edges over sufficiently long

time intervals. Alternately, when the graph is not connected, it is possible to analyze the

decoupled components independently.

Theorem 4.2: Passivity Under Interconnection [125]

Consider a set of K subsystems, each given by (4.6) and locally passive in accordance with

Theorem 4.1. Let S̃σ be a system given by the interconnection of these subsystems satisfying

Assumption 4.5. Then S̃σ is locally passive from inputs ū to outputs ȳ with:

ū =


Γ̃σP̃

s

ũ

−x̃t

 , ȳ =


x̃s

ỹ

Φ̃2,2P̃
t

 . (4.21)

where ũ = [uk] and ỹ = [yk], k ∈ [1:K].
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Figure 4.3: Block diagram showing negative feedback connection between subsystem Sk,σk
and its controller Ck. The additional controllers Ck−1 and Ck+1 for subsystems Sk−1,σk−1

and Sk+1,σk+1
are not depicted.

4.4.4 Stabilization by Decentralized MPC

This section presents the design of decentralized MPC controllers that stabilize the closed-

loop dynamics of an interconnection of switched graph-based models. Switching occurrences

are assumed to be known to these controllers at the switching instant. It is also assumed that

the discretization of continuous dynamics performed to implement MPC preserves passivity

and stability. While not guaranteed in all cases [136], this is a common assumption in the

analysis of nonlinear MPC that can be relaxed by explicit consideration of the sampled-data

nature of implementation [137, 138].

The controller for the kth subsystem, denoted as Ck, is inserted between the signals uk

and yk of that subsystem, as shown in Fig. 4.3. Just as with the interconnection among

subsystems, the connection of each subsystem to its controller can be viewed as a negative

feedback connection. Therefore, passivity of the closed-loop system is achieved by ensuring

that each controller is passive.
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Each controller Ck solves the following nonlinear MPC optimization problem:

min
uk,sk

∫ T

0

` (xk(τ), uk(τ), rk(τ), sk(τ)) dτ (4.22a)

subject to Ckẋk = −M̄kΦk,σkPk +DkΓk,σkP
s
k , (4.22b)

Pk = Fk (x̄k) +Gk (x̄k)uk, (4.22c)

yk = −Gk (x̄k) Φk,σkM
T
k x̄k (4.22d)

xmink − sk(τ) ≤ xk(τ) ≤ xmaxk + sk(τ), sk(τ) ≥ 0, (4.22e)

uk(τ) ∈ Uk, (4.22f)

żk = uTk yk, zk(τ) ≤ βk, (4.22g)

τ ∈ [0, T ], (4.22h)

xk(0) = xk,init, zk(0) = zk,init, (4.22i)

where the stage cost `(·) is a positive definite function, rk(τ) is a set of references to be

tracked, sk(τ) is a slack variable ensuring feasibility of the state constraints as defined in

(4.22e), and Uk = {uk|umink,j ≤ uk,j ≤ umaxk,j , ∀j} with umink,j < 0 < umaxk,j ,∀j.

Equation (4.22g) enforces a passivity-based constraint, where zk ∈ R represents the ac-

cumulation of passivity and is used to reduce the conservatism associated with more con-

ventional passivity-based MPC, such as [120]. Similar to [118], when uTk yk < 0, the excess

passivity is stored by decreasing zk. This stored passivity gives the controller the flexibility

to operate the system non-passively for a finite amount of time in minimizing the integrated

stage cost, until zk = βk, where βk is a predetermined constant for each subsystem. When

zk = βk, the controller must operate the system passively. The following theorem proves

that this passivity constraint guarantees stability of the closed-loop system.

Theorem 4.3: Closed-Loop Stability

Let S̃σ be a switched system formed by the interconnection of switched subsystems, each

given by (4.6), satisfying Assumptions 4.1-4.5. If each subsystem is paired with an MPC

controller of the form (4.22), then the overall closed-loop system is stable.
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Proof: It is first shown that the optimization problem (4.22) is recursively feasible. With

feasibility established, closed-loop stability can then be proved. Feasibility: As proved for

non-switched systems in [109] and extended to the case of switched systems in [128], a

subsystem Sk,σk meeting the assumptions in this chapter is asymptotically stable about the

origin under any control law of the form uk = −Kk(yk), whereKk(yk) is a continuous function

such that Kk(0) = 0 and yTkKk(yk) > 0, ∀yk 6= 0. A requirement for this to hold is ZSD,

which has already been established in Lemma 4.1. Because Uk contains a neighborhood

of the origin, for any yk there exists αk > 0 such that uk = −αkyk ∈ Uk. Under this αk,

żk = uTk yk = −αyTk yk ≤ 0. Therefore, if zk(0) ≤ βk and xk(0) is sufficiently close to the

origin, the optimization problem (4.22) is recursively feasible.

Stability: As in [118], let VCk(zk) = −zk + βk be a storage function for the controller

Ck. Then the closed-loop subsystem formed by Sk and Ck has a storage function given by

Vk + VCk with:

V̇k + V̇Ck ≤ ūTk ȳk − żk,

≤ ūTk ȳk − uTk yk,

≤
[
(ΓσP

s)Tk −(xtk)
T

] xsk

(Φ(2,2)P
t)k

 .
(4.23)

The above proves that the closed-loop subsystem is passive with respect to its intercon-

nections to neighboring subsystems, while Theorem 4.2 proves that these interconnections

preserve passivity. Lemma 4.1 establishes that each subsystem is ZSD, and a passive ZSD

system is stable [128]. Therefore, the closed-loop system is stable. �

This result differs from many approaches in the literature that require satisfaction of

a global condition on the structure and gain of couplings among subsystems to guarantee

stability [57, 116, 123]. By comparison, the result here is achieved using local analysis of each

subsystem and a local passivity-based constraint within each controller. This is enabled by

the structure with which the graph-based models interconnect.
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Figure 4.4: Graph with four subsystems for the example fluid tank system [134].

4.5 Simulation Example

This section presents a simulation example to demonstrate the efficacy of the passivity-based

control approach. Figure 4.4 shows the graph of a fluid tank system, which has the same

structure as the example system from [139]. Each vertex vi corresponds to a fluid tank and

has a state xi representing the deviation in height of fluid in the tank, in meters, from an

equilibrium value. In the graph-based model of this hydraulic system, the dynamics of (4.1)

correspond to the conservation of fluid mass for each tank:

ρAiẋi =
∑

{j|ej∈eheadi }

ṁj −
∑

{j|ej∈etaili }

ṁj, (4.24)

where ρ = 1000 kg/m3 is the density of the fluid and Ai = πd2
i /4 is the cross-sectional area

of the tank, with diameter di = 0.1 m, ∀i. In this example, the states are initialized using a

pseudorandom uniform distribution centered at the origin.

The power flows from (4.3) correspond to mass flow rates between the tanks, which are

each assumed to be controlled by either a pump or a variable aperture valve. For flows

controlled by pumps, the mass flow rate along edge ej is given by:

ṁj = Disp · ωj − kleak
(
xheadj − xtailj

)
, (4.25)
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Figure 4.5: Decomposition of the example system graph into four subsystem graphs, used
to develop four decentralized MPC controllers [134].

where Disp = 1 kg/rev is the displacement of the pump, ωj is the variable pump speed

in revolutions per second, and kleak = 0.005 kg/(m · s) is the leakage coefficient. For flows

controlled by valves, the mass flow rate along edge ej is given by:

ṁj = Cmax
D

(
xtailj − xheadj

)
aj, (4.26)

where Cmax
D = 0.05 kg/(m · s ·%) is the maximum discharge coefficient and aj is the variable

aperture by which the valve is controlled, in % open. These equations for the mass flow rate

along each edge can be shown to satisfy the conditions in Assumptions 4.1-4.2.

The overall system is composed of four dynamically coupled subsystems, as indicated in

Fig. 4.4. The four subsystem graphs are shown in Fig. 4.5. Under the assumption that some

edges may be switched on or off, the corresponding switched subsystem dynamics of (4.6)

can be derived from the graphs of Fig. 4.5 and (4.24)-(4.26). Additionally, the passivity

outputs yk for each subsystem can be determined from (4.12). For a pump edge ek,j in

subsystem Sk, the corresponding passivity output is given by:

yk,j = −φk,jDisp ·
(
xtailk,j − xheadk,j

)
. (4.27)
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Similarly, for a valve edge, the corresponding passivity output is given by:

yk,j = −φk,jCmax
D

(
xtailk,j − xheadk,j

)2
. (4.28)

It can be shown that each nominal (non-switched) subsystem is stable in open loop. For

simplicity of exposition in this example, only one edge is switched. This is edge e4 of

subsystem S3 in Fig. 4.5, which can equivalently be referred to as edge e17 of the overall

system in Fig. 4.4. Subsystem S3 can be shown to be stable in open loop with this edge

removed. Therefore, Assumption 4.3 is satisfied. Assumptions 4.4 and 4.5 can be easily

verified to hold as well. In this example, both the source flows and sink states of the overall

system are set to zero, and the control task is to stabilize the system from its initial condition

to equilibrium (i.e., the origin).

For each subsystem Sk, an MPC-based controller Ck is designed based on the optimization

problem from (4.22) with:

` (xk(τ), uk(τ), rk(τ)) = ‖xk − rk‖2
2 + 0.01‖uk‖2

2. (4.29)

In this example, T = 2 s, Uk = {uk|uk,j ∈ R, ∀j}, and βk = 0. The optimization problem is

discretized and solved with an update rate of 1 Hz, which in this case is sufficiently fast to

render the model error due to discretization negligible. YALMIP [104] and IPOPT [140] are

used to formulate and solve the optimization problem for each controller.

The local nature of the guarantee in Theorem 4.3 allows the subsystem controllers to en-

sure stability while operating in a purely decentralized fashion, or to improve performance

they can be coordinated within a distributed or hierarchical control framework by receiv-

ing references communicated from each other or additional controllers. In this example, a

hierarchical framework is employed to demonstrate the ability of the subsystem controllers

to form a supervisory stability assurance layer at the bottom of a hierarchical framework,

similar to that in [141]. The role of this layer is to ensure that decisions made above in the

hierarchy, including switching commands, do not destabilize the plant.
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Figure 4.6: Control hierarchy for the example system, where C1−4 are passivity-based de-
centralized MPC controllers and C0 is a centralized reference generator [134].

The two-level hierarchy used for this example is shown in Fig. 4.6. Upper-level controller

C0 sends references rk to be tracked by each subsystem, with the goal of coordinating their

actions. This controller was designed using a linearization of the system about the initial

state x(0) and has the form C0 : r = −Zx. This reference generator is used for both the

nominal (non-switched) system and the system under switching.

To demonstrate the stabilizing effect of the decentralized passivity-based constraints, edge

e17 is periodically switched on and off as shown in Fig. 4.7. Without the passivity-based

constraint (4.22g) in each controller, this switching has a destabilizing effect on the system,

despite the individual stability of each mode. Figure 4.8 shows the closed-loop state tra-

jectory for vertex v2 of subsystem S1 both with and without the passivity-based constraint

under non-switched and switched conditions. As shown by the red trace of Fig. 4.8a, without

the passivity-based constraint and with no switching, the system is stabilized to the origin,

although this is not guaranteed in general. However, when switching occurs in subsystem

S3, this results in highly oscillatory behavior in subsystem S1 that goes unstable just before

900 seconds, as shown by the blue trace of Fig. 4.8a. This instability is captured by the
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Figure 4.7: On-off switching signal for edge e17 [134].

increasing stored passivity z1 for subsystem S1, as shown in Fig. 4.9a. By comparison, when

the passivity-based constraint is included in the subsystem control formulations, the system

is stabilized to the origin regardless of the switching, as shown in Fig. 4.8b.

In the passivity-constrained cases, βk = 0, which necessitates that zk ≤ 0 as shown in

Fig. 4.9b. However, for MPC without the passivity constraint and without switching, the

stable system response is not instantaneously passive, with ż1 > 0 for the initial transient,

as shown by the red trace of Fig. 4.9a. This highlights the potential conservatism associated

with a passivity-based stability approach. This conservatism can be reduced by increasing

the value of βk and allowing the system to act non-passivity temporarily. In practice, βk

should be designed based on the application-specific tradeoff between the benefit of aggressive

control and the cost of potentially, yet temporarily, following an unstable trajectory.

4.6 Chapter Summary

This chapter presents a decentralized approach to certifying closed-loop passivity for a class

of nonlinear graph-based dynamic models in which paths of power flow are switched on

and off. A common storage function is shown to guarantee passivity of graph-based models

under arbitrary switching. Passivity is then shown to be preserved under the intercon-

nection of multiple graph-based systems, allowing for the formation of passive “systems of

systems.” Decentralized Model Predictive Controllers paired with each system can then be

formulated with a local passivity-preserving constraint to ensure closed-loop stability. This
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allows complex energy systems to be stabilized with decentralized, distributed, or hierarchi-

cal control architectures where centralized control may not be possible due to the inherent

computational complexity or communication bandwidth limitations. An simulation example

demonstrates the efficacy of the proposed approach on a fluid tank system controlled by a

hierarchical framework.
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Chapter 5

Cooperativity-Based Hierarchical MPC for
State-Constrained Switched Systems

5.1 Motivation

While the passivity-based approach in Chapter 4 can ensure the stability of a switched

energy system about an equilibrium, no claim is made about the ability of the closed-

loop system to satisfy hard constraints on states. Instead, the slack variable in (4.22e)

imposes soft constraints on states, with constraint violations penalized in the cost function

to avoid their occurrence. Softened state constraints are also used in the experimental case

study of Chapter 3, where state constraint violations occurred under the hierarchical control

framework despite a tightening of constraints by 2◦C in MPC formulations to account for

errors in the disturbance preview and model. While the constraint violations in this case were

small relative to those under the baseline controller and within acceptable margins for many

applications, some applications may require more strict enforcement. For example, laser

diode arrays must be thermally managed within strict temperature limits to prevent excessive

wavelength shift and spectral broadening [142]. This motivates the need for theoretical

methods applicable to energy systems that guarantee the satisfaction of hard constraints on

states. These methods must be robust in the sense that guarantees hold under the presence

of bounded uncertainties in disturbances, and must also support systems governed by both

continuous and switched behavior.

This chapter presents a two-level switched hierarchical control framework that guaran-

tees satisfaction of state and input constraints for a class of graph-based dynamic systems.

Conditions are provided under which switched energy systems belong to this class, in which

each mode is a cooperative system. These conditions relate to physical phenomena such

as satisfaction of conservation equations, and therefore are inherently met by many of the
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energy systems within the scope of this dissertation. The overall objective of the control

design is to track a reference trajectory for the rate of energy transfer to a system, subject to

bounded uncertainty in the exogenous disturbances associated with its ability to dissipate

energy to sinks. The hierarchical framework manages slow system dynamics over a long

time horizon in the upper level while simultaneously leveraging fast dynamics in the lower

level to improve performance and reject disturbances. The applicability of this approach is

demonstrated in both simulation and experimental application using a fluid-thermal system

with dynamic behavior representative of aircraft fuel thermal management systems. Note

that the results in this chapter extend the previous work in [143] by permitting multiple

controllers within the lower level of the hierarchical framework and including experimental

demonstration.

5.2 Background

Monotone systems preserve partial orderings on their state trajectories, as explored in de-

tail for autonomous dynamics in [144] and controlled systems in [145]. They appear in

applications including molecular biology [146], traffic flow models [147], data transmission

systems [85], building thermal dynamics [148, 149], and fluid-thermal management systems,

as demonstrated in this chapter. Cooperative systems are a subclass of monotone systems

in which the ordering on the states is specified as elementwise inequalities. In this chapter,

as in [85], cooperativity is ensured by conditions on the structure of a graph representing

a dynamic system. However, inputs enter additively in the models of [85], whereas in this

chapter inputs affect the coupling between dynamic states through multiplicative nonlinear

functions, allowing a different set of physical systems and energy domains to be represented.

This chapter also considers systems that may be affected by coupling to multiple environ-

mental disturbances or exogenous neighboring systems, whereas the networks in [85] are

assumed to be coupled to a single external node.

Monotone systems exhibit several properties that can be exploited in control design. This

includes the aforementioned ordering of state trajectories, which allows state trajectories

to be bounded by their solutions under maximal and minimal disturbances. In addition,
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robust positively invariant (RPI) sets can be generated from equilibrium values [150]. In

[85, 148], decentralized linear feedback control laws with saturation are applied to achieve

asymptotic stability and robustness of cooperative systems. In [149], a finite-state abstrac-

tion is performed and a receding-horizon controller that can be computed offline is applied.

The separability of Lyapunov functions for monotone systems has been an area of focus in

their study, including in [151–154]. Analysis and control design tools for the related class

of positive systems, the linear counterpart of cooperative systems, are also relevant. These

often seek to reveal or leverage computational advantages of control synthesis for positive

systems as compared to linear systems in general. For example, [155] proves that stabilizing

distributed state feedback controllers for positive systems can be synthesized using linear

programming. Motivated by these results in distributed stability, this chapter demonstrates

that the task of operating a cooperative system within hard constraints can be distributed

as well.

A robust hierarchical control approach for graph-based systems has been proposed in [63,

156], where feedback integralization ensures that states do not violate constraints between

updates of the controllers at each level of the hierarchy. This approach is is applicable to

hierarchical frameworks with any number of levels, but requires that known disturbances

only change at the rate of the slowest controller of the hierarchy and does not consider

switching. The results in this chapter address switched systems and allow disturbances to

change at the rate of the fastest controller of the hierarchy. While the focus here is on

two-level hierarchies, extension to an arbitrary number of levels is a topic of ongoing study.

The remainder of this chapter is organized as follows. Section 5.3 describes the class of

switched graph-based systems used in this chapter. Section 5.4 proves that, under appropri-

ate assumptions, each mode is a stable cooperative system. This section also formulates a

two-level switched hierarchical MPC framework that ensures satisfaction of state constraints

subject to bounded uncertainties in disturbances. Section 5.5 demonstrates the applicability

and efficacy of the approach using a simulation example. The demonstration is extended

to experimental application in Section 5.6 using the fluid-thermal testbed described in Sec-

tion 2.4.1. Section 5.7 provides a concluding summary of the chapter.
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5.3 Class of Systems

5.3.1 Graph-Based System

Consistent with the graph-based model formulation introduced in Chapter 2, the dynamic

associated with each vertex of a graph G is governed by the conservation equation:

Ciẋi =
∑

{j|ej∈eheadi }

Pj −
∑

{j|ej∈etaili }

Pj, (5.1)

where Ci > 0 is the storage capacitance of the vertex and each Pj is the power flow associated

with an edge incident to the vertex.

Also as in Chapter 2, the dynamics of the complete system S can be written as:

S : Cẋ = −M̄P +DP s, (5.2)

where C = diag ([Ci]), M̄ is a partition of the incidence matrix of the graph, P s is the vector

of source power flows, and D is a mapping from the source edges to the vertices to which

they are incident.

In this Chapter, stability analysis is facilitated by the assumption of a state-affine form

for the edge power flow equations, as stated next. This represents a key point of departure

from the passivity-based analysis in Chapter 4, in which the edge power flow equations are

restricted to an input-affine form.

Assumption 5.1:

For all power flows of S, the power flow Pj along edge ej is given by:

Pj = f tailj (uj)x
tail
j − fheadj (uj)x

head
j , (5.3)

where xtailj and xheadj are the states associated with the vertices to which ej is incident, and

uj is an associated actuator input to the scalar functions fheadj , f tailj : R→ R+.
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Remark 5.1:

Assumption 5.1 restricts the class of power flows to those affine in the state and restricts

the signs of the coefficients on these states. For many energy systems, this assumption is

inherently satisfied. For example, thermal power flow due to advection is modeled in (2.14)

as P (t) = ṁ(t)cpT
tail(t), where cp is the specific heat capacitance of the fluid, ṁ is the

fluid mass flow rate input, and T tail is the upstream fluid temperature state. In this case,

f tail (ṁ(t)) = ṁ(t)cp and fhead (ṁ(t)) = 0. This is similar to the ‘h-type’ flows used to model

compartmental flow systems in [85]. In (2.17), the heat transfer coefficient associated with

convective heat transfer is a function of both mass flow rate and temperature. However,

assumption of constant heat transfer coefficients in the case study of Chapter 3 did not

significantly degrade the model accuracy, suggesting that this may not be necessary in all

cases. If the heat transfer coefficient is assumed to be a function of mass flow rate only,

the thermal power flow due to convective heat transfer in a heat exchanger from (2.16) can

be written as P (t) = h (ṁ(t))As
(
T tail(t)− T head(t)

)
, where h (ṁ(t)) is the heat transfer

coefficient, As is the convective surface area, and T tail(t) − T head(t) is the temperature

gradient. In this case, f tail (ṁ(t)) = fhead(ṁ(t)) = h (ṁ(t))As. This is similar to the

‘g-type’ flows in [85].

Assumption 5.2:

For all vertices i of graph G and all t,

∑
{j|ej∈etaili }

(
f tailj (uj(t))− fheadj (uj(t))

)
−

∑
{j|ej∈eheadi }

(
f tailj (uj(t))− fheadj (uj(t))

)
= 0. (5.4)

Remark 5.2:

As with Assumption 5.1, Assumption 5.2 has physical relevance. For example, in modeling

the temperature of a fluid junction or split, Assumption 5.2 requires that a steady-state

form of conservation of mass holds among the associated advective power flows. This is

exemplified in Fig. 5.1, where for constant cp, Assumption 5.1 is equivalent to the requirement

that ṁ1(t) = ṁ2(t) + ṁ3(t), ∀t;
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Figure 5.1: Adjective heat transfer at a fluid split, where steady-state conservation of mass
necessitates that ṁ1(t) = ṁ2(t) + ṁ3(t).

5.3.2 State Space Representation

From the state-affine equation for each power flow in (5.3), it is clear that the vector of

power flows P = [Pj] in S can be written as:

P = F (u)

x
xt

 , (5.5)

where F (u) = [f(uj)ij] ∈ RNe×Nv such that:

f(uj)ji =


f tailj (uj) if vi is the tail of ej,

−fheadj (uj) if vi is the head of ej,

0 else.

(5.6)

Modulo the transposition of its indices, (5.6) bears strong resemblance to the weighted

incidence matrix of (2.33) that results from linearization of the thermal graph-based model

in Section 2.3.5. However, as a result of Assumption 5.1, the linear representation in this

case is exact rather than approximate. Note also that F (u) has at least the same sparsity as

MT , possibly with additional entries equal to zero, which will be of relevance to Lemma 5.1.

A partition similar to that used for M in (2.4) can be applied to F (u), yielding:

F (u) =
[
F̄ (u)

¯
F (u)

]
with F̄ (u) ∈ RNe×(Nv−Nt). (5.7)
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Substituting (5.5) and (5.7) into (5.2), the dynamics of system S can be written as:

S : ẋ = A(u)x+BP s + E(u)xt, (5.8)

where:

A(u) = −C−1M̄F̄ (u), (5.9a)

B = C−1D, (5.9b)

E(u) = −C−1M̄
¯
F (u). (5.9c)

5.3.3 Switched Linear System Representation

As exemplified by the case study in Chapter 3, many energy systems are governed by discrete

actuators, such as solenoid valves and electrical switches. To capture switching with a

representation that supports predictive control under limited computational resources, the

following assumption transforms the nonlinear system (5.8) into a switched linear system.

When both continuously variable and switched actuators are present, it is well known that

nonlinear systems can be approximated arbitrarily well by switched linear systems using a

sufficient number of modes [157, 158].

Assumption 5.3:

The vector of system inputs u is restricted to a finite set of values U = {un}, un ∈ RNe ,

n ∈ [1:Nm] such that u(t) ∈ U, ∀t.

The system under input un is said to be in the nth mode. The active mode at each

time is selected by a switching signal σ(t) : [0,∞) → [1:Nm], with u(t) = uσ(t). Under

Assumption 5.3, (5.8) can be written as:

Sσ : ẋ = Aσ(t)x+BP s + Eσ(t)x
t, (5.10)
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where:

Aσ(t) = A(uσ(t)),

Eσ(t) = E(uσ(t)).
(5.11)

5.4 Main Results

5.4.1 Stability Conditions

This section proves that Aσ is Hurwitz in each mode under appropriate assumptions on the

system graph structure.

Definition 5.1:

A vi, vj–path on a graph G is a sequence of edges (regardless of orientation) connecting two

distinct vertices vi, vj ∈ v. An admissible path is a path such that f tailk (uk) > 0 for each edge

k such that the path enters the tail of the edge, and fheadk (uk) > 0 for each edge k such that

the path enters the head of the edge. G is strongly connected if it has a vi, vj–admissible

path for each vi, vj ∈ v\vt. G is externally connected if at least one vertex in vt is the tail

of at least one edge k such that f tailk (uk) > 0, or is the head of at least one edge k such that

fheadk (uk) > 0.

Assumption 5.4:

For each mode of system Sσ, the associated graph Gσ is strongly connected and externally

connected.

Remark 5.3:

Assumption 5.4 performs a similar role as the analogous conditions in [85]. Specifically,

this ensures that no subset of the states are decoupled from the others and ensures that

there is coupling to at least one of the exogenous sink states. It is possible for the power

flow along individual edges to necessarily equal zero in some modes (i.e., for rows of F (uσ)

to have all zero entries in some modes), provided that the overall graph structure satisfies

Assumption 5.4. For example, the power flow along an edge could equal zero in a mode where
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a fluid valve is completely closed or an electrical switch is opened, removing the mechanism

for power to flow directly between the incident energy storage elements.

Definition 5.2: Diagonal Dominance [150]

A square matrix H = [hij] is weakly row-diagonally dominant if

|hii| ≥
∑
j 6=i

|hij|, ∀i. (5.12)

H is strictly row-diagonally dominant for at least one row if it is weakly row-diagonally

dominant and

∃i s.t. |hii| >
∑
j 6=i

|hij|. (5.13)

Lemma 5.1:

The following hold for each mode n of the system matrices in (5.10):

(a) An is weakly row-diagonally dominant.

(b) An is strictly row-diagonally dominant for at least one row.

(c) An has only strictly negative diagonal entries and only non-negative off-diagonal entries.

(d) B and En have only non-negative entries.

Proof: (a) The left side of (5.4) includes all nonzero terms in the ith row of MF (u). Therefore

by Assumption 5.2, MF (u) has a row sum of zero for all rows at all times. From (2.4) and

(5.7):

MF (u) =

M̄F̄ (u) M̄
¯
F (u)

¯
MF̄ (u)

¯
M

¯
F (u)

 , (5.14)

with M̄F̄ (u) ∈ R(Nv−Nt)×(Nv−Nt) and M̄
¯
F (u) ∈ R(Nv−Nt)×Nt . In forming A(u) in (5.9a), only

the M̄F̄ (u) block of MF (u) is used. Deleting the Nt columns of the block to the right can

only reduce the sum of the absolute value of the off-diagonal entries in each row, while the

diagonal entries remain unchanged. Therefore, M̄F̄ (u) is weakly row-diagonally dominant.

This property is preserved under multiplication by the diagonal matrix −C−1 in (5.9a).
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(b) Under the external connectivity of Assumption 5.4, at least one entry of M̄
¯
F (u) must

be nonzero. MF (u) has a row sum of zero for all its rows as established above, therefore

deleting the columns of M̄
¯
F (u) necessitates that M̄F̄ (u) is strictly row-diagonally dominant

for at least one row. This property is again preserved under multiplication by the diagonal

matrix −C−1 in (5.9a).

(c) As noted following (5.6), F (u) has at least the same sparsity as MT . The entries also

have matching signs, in the sense that mij = 1 ⇐⇒ fji(uj) ≥ 0, mij = −1 ⇐⇒ fji(u) ≤ 0,

and mij = 0 ⇐⇒ fji(u) = 0. By matrix multiplication,

(MF (u))ij =
[
Mi1 Mi2 · · · MiNe

]
·
[
F1j(u) F2j(u) · · · FNej(u)

]
. (5.15)

For diagonal entries of MF (u), where i = j, any negative entry on the left of the dot

product is multiplied by a non-positive entry on the right, while any positive entry on the

left of the dot product is multiplied by a non-negative entry on the right. Furthermore, by

Assumption 5.4 at least one of the entries on the right of the dot product must be nonzero,

otherwise vertex j cannot be a member of any admissible path. As a result, the diagonal

entries in MF (u) must be strictly positive. For the off-diagonal entries, note that each

column of M has one positive entry, one negative entry, and zeros elsewhere. Similarly, each

row of F (u) has at most one positive and one negative entry. For off-diagonal entries of

MF (u), where i 6= j in the dot product above, any positive entry on the left of the dot

product must be multiplied by a non-positive entry on the right, while any negative entry

on the left of the dot product must be multiplied by a non-negative entry on the right. As a

result, the off-diagonal entries of MF (u) must be non-positive. Multiplication of the M̄F̄ (u)

block of MF (u) by the diagonal matrix −C−1 to form A(u) in (5.9a) reverses the signs of

all entries.

(d) From (2.5), D clearly has non-negative entries, and this is preserved under multipli-

cation by C−1 in (5.9b). From (5.9c), E(u) consists of a subset of the off-diagonal entries

of MF (u), which are non-positive as stated above. Multiplication by the diagonal matrix

−C−1 in (5.9c) reverses these signs. �
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Definition 5.3: Irreducible Matrix [150]

A square matrix H is irreducible if there does not exist a variable permutation such that the

corresponding matrix H̃ has the form:

H̃ =

H̃11 H̃12

0 H̃22

 , (5.16)

where H̃11 and H̃22 are square matrices.

Lemma 5.2:

An is irreducible for each n.

Proof: If An were not irreducible for some n, then for that mode there would not exist an

admissible path from any vertices associated with the states in the lower right block of its

upper triangular permutation to any of the remaining vertices, contradicting the assumption

of strong connectivity for all modes [85]. �

Theorem 5.1:

Each An is Hurwitz, i.e, Re(λj(An)) < 0, ∀j ∈ [1:(Nv −Nt)] and ∀n ∈ [1:Nm].

Proof: By Theorem 4.60 in [150], if a square matrix (1) is weakly row-diagonally dominant,

(2) is strictly row-diagonally dominant for at least one row, (3) has only strictly negative

diagonal entries, and (4) is irreducible, then it is Hurwitz. The first three of these conditions

are established by Lemma 5.1, and the fourth is established by Lemma 5.2. Note that this

is not sufficient to guarantee stability of the switched system. In general, switching between

stable modes can result in unstable dynamics [26]. �

5.4.2 Cooperative System

This section proves that each mode of system Sσ is cooperative and specifies several of the

properties of cooperative systems that will be leveraged for control design.

Definition 5.4: Metzler Matrix and Metzler System [145, 150]

A matrix H = [hij] is a Metzler matrix if hij ≥ 0, ∀i 6= j. A linear dynamic system is a
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Metzler system if the state matrix is a Metzler matrix and the remaining matrices (input,

disturbance, etc.) have only non-negative entries. Metzler systems are often called positive

systems when the state matrices are continuous or constant, named in reference to the fact

that the positive orthant is forward invariant for positive input signals [145, 159].

Definition 5.5: Cooperative System [145]

Consider a dynamic system given by ẋ(t) = g(x(t), w(t)) subject to the continuity assump-

tions in [145], and let ϕ(t, x0, w(t)) be its solution at time t with initial state x0 at time

t0 ≤ t and disturbance w(t). The system is cooperative if

xa ≤ xb and wa(t) ≤ wb(t) =⇒ ϕ(t, xa, wa(t)) ≤ ϕ(t, xb, wb(t)), ∀t ≥ t0, (5.17)

where the inequalities are applied elementwise at each t.

Theorem 5.2:

Each mode of system Sσ is cooperative.

Proof: From (c) and (d) of Lemma 5.1, each mode of system Sσ is a Metzler system. As

proved in [145], an LTI Metzler system is cooperative. �

Definition 5.6:

Consider a dynamic system given by ẋ(t) = g(x(t), w(t)) and let ϕ(t, x0, w(t)) be its solution

at time t with initial state x0 at time t0 ≤ t and disturbance w(t) ∈W. A set S is a robust

positively invariant (RPI) set if

x0 ∈ S, w(t) ∈W =⇒ x(t) ∈ S, ∀t ≥ t0. (5.18)

The following theorem is a direct consequence of the definition of a cooperative system.

Theorem 5.3: RPI Sets for Cooperative Systems [150]

Let ẋ(t) = g(x(t), w(t)) be a cooperative system subject to the continuity assumptions in

[145]. Let
¯
xe and x̄e be equilibrium points corresponding to disturbances

¯
we and w̄e (i.e.

0 = g(
¯
xe,

¯
we) = g(x̄e, w̄e)) such that

¯
we ≤ w̄e elementwise. Then the set S = {x :

¯
xe ≤
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x ≤ x̄e} is RPI ∀w(t) s.t.
¯
we ≤ w(t) ≤ w̄e. In this chapter, such sets are referred to as

equilibrium-based RPI sets.

Remark 5.4:

A key feature of the equilibrium-based RPI sets above is that they are axis-aligned boxes in

the state space, termed box invariant sets in [160]. Box invariant sets can be defined by 2N

inequality constraints, where N is the state dimension. By comparison, the complexity of

representation of general polyhedral RPI sets is not fixed by the state dimension [150]. In

addition, because the equilibrium points are necessarily reachable, this approach yields the

minimal robust invariant interval with respect to the disturbances [161]. Minimal RPI sets

are desirable in many robust MPC techniques, but in general cannot be computed exactly,

and are often instead approximated using iterative methods [162]. In this chapter, solving for

two equilibrium points provides a computationally convenient method for calculating RPI

sets online within control formulations, improving the scalability of the proposed approach.

Theorem 5.4:

Consider a Metzler system ẋ = Ax+Ew composed of N subsystems. The system dynamics

can be written as a function of the subsystem state vectors xi ∈ RMi , i ∈ [1:N ] as:


ẋ1

ẋ2

...

ẋN


︸ ︷︷ ︸
ẋ

=


A11 A12 · · · A1N

A21 A22

...
. . .

AN1 ANN


︸ ︷︷ ︸

A


x1

x2

...

xN


︸ ︷︷ ︸
x

+


E11 E12 · · · E1N

E21 E22

...
. . .

EN1 ENN


︸ ︷︷ ︸

E


w1

w2

...

wN


︸ ︷︷ ︸
w

. (5.19)

Note that the dynamics for the ith subsystem can be written as:

ẋi = Aiixi +
∑
j 6=i

Aijxj +
∑
j

Eijwj. (5.20)

Let S be the RPI set defined by equilibrium points
¯
xe, x̄e with respect to disturbance

bounds
¯
we, w̄e, and let Si be the projection of S onto the subspace corresponding to the
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ith subsystem. Then Si is an RPI set for the ith subsystem with respect to disturbances

¯
we ≤ w(t) ≤ w̄e and

¯
xe,j ≤ xj(t) ≤ x̄e,j, j 6= i.

Proof: In (5.20), each Aii must be a Metzler matrix because it is a sub-matrix from the block

diagonal of Metzler matrix A. Similarly, each Aij, j 6= i is an off-diagonal block of A, and

therefore must have non-negative entries. Each Eij must also have non-negative entries, as a

block of the disturbance matrix of a Metzler system. Therefore, each subsystem is a Metzler

system, and as stated in the proof of Theorem 5.2, an LTI Metzler system is cooperative.

�

Remark 5.5:

Theorem 5.4 is leveraged in Level 2 of the hierarchical control formulation in this chapter

to distribute the task of operating the overall system within an RPI set among multiple

controllers, without requiring them to directly exchange information. Note that, if Aij = 0

for some j in (5.20), then xi will still remain within Si even if the inequality
¯
xe,j ≤ xj(t) ≤ x̄e,j

does not hold for that j but does hold over all j for which Aij 6= 0. In the next section,

similar sparsity in the coupling between subsystems will be leveraged to allow controllers of

a hierarchy the flexibility to govern a subset of states beyond their local RPI sets, while still

ensuring robustness of the overall system.

The open-loop system analysis in this chapter concludes with with a final observation,

leading to a relaxation of Assumption 5.4. Rather than requiring the entire system graph

to be strongly and externally connected, it is sufficient for the graph to consist of multiple

disconnected components, provided that each component is itself strongly and externally

connected. Clearly, the analyses above can be applied individually to each component to

reach the same conclusions about the properties of the full system. Therefore, the relaxation

of Assumption 5.4 is as follows:

Assumption 5.5:

For each mode of system Sσ, the associated graph Gσ is composed exclusively of components

that are both strongly connected and externally connected.
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5.4.3 Hierarchical Control

The overall design of the hierarchical control framework proposed in this chapter draws from

the goals in Chapter 3 of achieving high capability, efficiency, and safety of vehicle energy

systems. Capability is represented as the objective of achieving a desired source power flow

P s,des associated with the desired operation of mission- and flight-critical hardware. The

controller has authority over the source power flows P s, and must ensure that a minimum

value for the source power flows
¯
P s can always be applied, similar to the flight-critical

loads in Chapter 3. When the desired source power flow exceeds the flight-critical loads,

the controller can choose to perform load shedding of the excess as necessary to ensure

satisfaction of constraints, at the cost of reducing the capability of the system to achieve its

mission.

The controller is also subject to an upper bound on the source power flows P̄ s. In some

applications, the objective associated with a subset of the source power flows could be to

minimize their values rather than to achieve a desired value. For example, an objective of

thermal management for an automotive electric vehicle in a cold climate could be to minimize

the power output to a resistive heater aiding in thermal management of the battery. This

would be weighed against additional objectives associated with the temperature-dependent

efficiency and life cycle of the battery. Source power flow minimization objectives can be

included by setting P s,des = 0 for the corresponding signals.

The goal of efficiency is captured by minimizing costs of operation associated with mode

selection. As discussed in Section 5.3.3, different modes of the switched systems in this

chapter correspond to dynamics of graph-based models under different values of the edge

inputs u, which are typically associated with continuously-variable and discrete actuators of

the system. For example, in the thermal modeling of Sections 2.3.2 and 3.3.1, these inputs

correspond to the mass flow rates achieved by pumps, valves, and fans. The efficiency

of pumps and fans is proportional to their mass flow rate [1], while the electrical energy

consumption of solenoid valves depends on whether they are open or closed. The specific

solenoid valve listed in Table 2.2(c) is closed when unpowered, and requires power supply to

lift its plunger.

125



Level 2

Level 1

Plant

All 
Subsystems

Subsystem 1 Subsystem 2 Subsystem N...

Figure 5.2: Two-level hierarchical control framework used in this chapter.

Safety is captured by enforcing hard box constraints on system states,
¯
x ≤ xk ≤ x̄, where

the subscript k denotes the time steps of a discretized dynamic system. This is performed

subject to uncertainty in the sink states, which are treated as exogenous disturbances also

bounded by box constraints,
¯
xt ≤ xtk ≤ x̄t.

The proposed hierarchical control framework consists of two levels, as shown in Fig. 5.2.

The Level 1 controller operates on a relatively slow timescale and long prediction horizon,

overseeing the operation of all subsystems. This level is responsible for governing slow

timescale behavior of the system, taking proactive action as necessary to achieve long-term

coordination among the subsystems. Equilibrium-based RPI sets are also generated at this

level, which are associated with conservative bounds on the capability achievable within

state constraints. In Level 2 of the hierarchy, multiple controllers corresponding to specific

subsystems each operate on a relatively fast timescale and short prediction horizon, leverag-

ing the fast dynamics of the plant to improve capability and compensate for disturbances.

These controllers have the authority to drive states beyond the RPI sets generated in the

level above, provided that they can ensure recovery to within the sets by the next update

of the Level 1 controller. This significantly reduces the conservatism of the framework as

compared to what would occur if only the Level 1 controller were present.
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5.4.3.1 Discretization

To implement MPC, a discrete representation of the continuous dynamics for each mode of

system Sσ is required. This discretization is performed by assuming a zero-order hold for

P s, xt, and σ. The resulting discrete system is given by:

Sdσ : xk+1 = Adσkxk +Bd
σk
P s
k + Ed

σk
xtk, (5.21)

where for each i,

Adi = exp(Aiτ
d),

Bd
i = A−1

i (Adi − I)B,

Ed
i = A−1

i (Adi − I)Ei,

(5.22)

and τ d is the sample time in seconds. Note that each Ai is invertible by Theorem 5.1. When

the zero-order hold assumption is correct, the discrete states exactly match the continu-

ous dynamics at the sample times. Therefore, the discrete system adheres to the discrete

equivalents of the cooperativity and stability properties established previously.

The guarantee of closed-loop state constraint satisfaction in this chapter is made with re-

spect to the discretized dynamics at the update rate of the fastest controller of the hierarchy.

In many applications, this update rate can be chosen fast enough such that the error from

the continuous evolution of the states is negligible. However, future work will seek to extend

the guarantee to encompass the continuous dynamics as well.

5.4.3.2 Level 1 Controller

The Level 1 controller updates every τ d1 seconds with a prediction horizon of N1 steps. The

subscript k denotes steps of this prediction horizon, while the subscript h will denote steps

of the faster-timescale prediction horizon of the Level 2 controllers, described in the next

section. The Level 1 controller receives the current states of the plant xk and a profile of the

desired source power flows over its horizon, denoted as P s,des
k+j|k, j ∈ [0:N1 − 1]. This profile

does not have to be exact, but instead represents a “best guess” of the upcoming desired
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source power flows, sampled at the update rate of the Level 1 controller. For example, in

thermal management of a connected or autonomous vehicle as discussed in Section 1.1.3.3,

the desired source power flows could be the thermal energy generation associated with antici-

pated operation of electrical and/or mechanical components. Without loss of generality, it is

also assumed that predicted (but possibly inaccurate) preview of the sink states is available

for each step in the horizon, denoted as x̂tk+j|k, j ∈ [0:N1 − 1], falling within the box con-

straints on the sink states
¯
xt, x̄t. For example, in a vehicle thermal management system, the

sink state preview information could be the ambient temperature predicted using weather

data. In absence of the availability of sink state preview, the midpoints of the corresponding

box constraints can be used instead.

Theorem 5.3 states that an RPI set can be found for a cooperative system by solving for

two equilibrium points. As noted in Remark 5.4, this provides a computationally convenient

method for calculating RPI sets online in the Level 1 control formulation. Such sets are

found for the first M1 steps of the horizon, where 1 ≤ M1 ≤ N1. The set corresponding

to the kth step is denoted as: Sk = {x |
¯
yk ≤ x ≤ ȳk}, where the equilibrium points

¯
yk, ȳk

defining the bounds of the set must fall within the state constraints, i.e.,
¯
x ≤

¯
yk ≤ ȳk ≤ x̄.

While the bounds on the sink states are fixed in computing these sets, there is freedom in

the mode of operation σk and source power flows
¯
P s,y
k , P̄ s,y

k used to compute the equilibrium

points at each time step, subject to bounds
¯
P s ≤

¯
P s,y
k ≤ P̄ s,y

k ≤ P̄ s.

As shown in Figure 5.3, the first RPI set of the horizon Sk|k is defined by equilibrium

points
¯
yk|k, ȳk|k. This set must contain the corresponding state x̂k|k, and by definition of an

RPI set (Definition 5.6) will contain the next predicted state x̂k+1|k, provided that the sink

states obey their constraints and the applied source power flows fall between
¯
P s,y
k and P̄ s,y

k .

The second RPI set Sk+1|k is defined by equilibrium points
¯
yk+1|k, ȳk+1|k, and so on.
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Figure 5.3: Sample predicted trajectory for a state xi of the Level 1 controller, showing the
state constraints and equilibrium-based RPI set bounds.

The Level 1 MPC controller is formulated using the following MIQP:

J∗ (xk) = min
P s

k ,σk

N1−1∑
j=0

`1

(
P s,des
k+j|k, P

s
k+j|k,mk+j|k

)
, (5.23a)

subject to, ∀j ∈ [0:N1 − 1] ,

x̂k+j+1|k = Ad1
σk+j|k

x̂k+j|k +Bd1
σk+j|k

P s
k+j|k + Ed1

σk+j|k
x̂tk+j|k, (5.23b)

mi,k+j|k =

1 if σk+j|k = i,

0 else,

(5.23c)

∀j ∈ [0:M1 − 1] ,

¯
yk+j|k = (I − Ad1

σk+j|k
)−1(Bd1

σk+j|k¯
P s,y
k+j|k + Ed1

σk+j|k¯
xt), (5.23d)

ȳk+j|k = (I − Ad1
σk+j|k

)−1(Bd1
σk+j|k

P̄ s,y
k+j|k + Ed1

σk+j|k
x̄t), (5.23e)

¯
x ≤

¯
yk+j|k ≤ x̂k+j|k ≤ ȳk+j|k ≤ x̄, (5.23f)

¯
P s ≤

¯
P s,y
k+j|k ≤ P s

k+j|k ≤ P̄ s,y
k+j|k ≤ P̄ s, (5.23g)

∀j ∈ [M1:N1 − 1] ,

¯
x ≤ x̂k+j+1|k ≤ x̄, (5.23h)

¯
P s ≤ P s

k+j|k ≤ P̄ s, (5.23i)

x̂k|k = xk. (5.23j)

Equation (5.23a) defines the objective function of the controller, for which the stage cost

`1(·) is a quadratic function. This will typically include a term penalizing errors in the
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tracking of P s,des by P s, given by ‖P s,des
k+j|k − P s

k+j|k‖2
ΛP

. The third argument of `1(·) allows

costs associated with mode selection to be applied, where (5.23c) defines m = [mi] for each

j as a vector of binary variables, with unity in the row corresponding to the index of the

active mode and zeros elsewhere.

Equation (5.23b) defines the predicted system dynamics at the update rate of the Level 1

controller, subject to the nominal source power flow P s and predicted sink state x̂t. Equa-

tions (5.23d)-(5.23e) solve for the equilibrium points used to generate RPI sets. Note that

existence of the inverse in these equations follows from the Schur stability of each Ad1
i [155].

Equation (5.23f) constrains the predicted state to be within the equilibrium points, which

must in turn be within the state constraints. Similarly, (5.23g) constrains the nominal source

power flows to be within the equilibrium source power flows, which in turn must be within

the source power flow constraints. Equations (5.23h) and (5.23i) constrain the predicted

states and source power flows of steps for which equilibrium-based RPI sets are not com-

puted. Lastly, Equation (3.12j) sets the initial state of the horizon equal to the current state

of the system.

As an intermediate step in proving recursive feasibility and constraint enforcement of the

proposed two-level hierarchical control framework, the following Lemma establishes these

properties for the Level 1 controller in direct feedback connection with the plant (i.e., in

absence of Level 2 in Fig. 5.2).

Lemma 5.3: Recursive Feasibility of Level 1 Controller

Consider the feedback connection of the Level 1 controller (5.23) to the discrete system

(5.21), both updating every τ d1 seconds. Between step k and step k + 1, the applied source

power flows P s,app(t) are bounded as
¯
P s,y
k ≤ P s,app(t) ≤ P̄ s,y

k , and the sink state disturbances

xt(t) obey their assumed bounds,
¯
xt ≤ xt(t) ≤ x̄t. If the controller has a feasible solution

upon initialization, then it is recursively feasible. Specifically, this implies that the state

trajectories always satisfy their their constraints.

Proof: Feasibility upon initialization of the controller at step k = 0 requires that there

exists an equilibrium-based RPI set S0|0 containing the initial states. If this is the case, by

Definition 5.6 the system can remain within an RPI set for all future steps of the horizon
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and therefore has a feasible solution for all future iterations of the controller. Note that this

does not require that the sink states xt or applied source power flows P s,app remain constant

between updates, as equilibrium-based RPI sets hold regardless of whether a continuous or

discrete representation of the system model is used because the equilibrium points do not

change with the representation. �

Remark 5.6:

Many MPC implementations, especially those for non-switched systems, require that the

states enter an invariant set by the end of the prediction horizon. By comparison, the Level 1

control formulation presented here could potentially be conservative and limit the domain

of the controller. However, it will be shown that the Level 2 controllers can reduce the

conservatism of the overall framework, operating outside the RPI sets by applying different

source power flow than that determined by the Level 1 controller. In addition, the RPI sets

used by the Level 1 control formulation are computed online, and can therefore be sized to

facilitate minimization of the objective function by selecting the mode of operation and/or

adjusting
¯
P s,y and P̄ s,y to allow P s to better track P s,des over the horizon. This is enabled

by the computational benefits of using equilibrium-based RPI sets as compared to general

RPI sets, discussed in Remark 5.5, and differs from many robust MPC approaches in which

RPI sets are computed a priori and do not change during closed-loop operation.

5.4.3.3 Level 2 Controllers

The Level 2 controllers update every τ d2 seconds with a prediction horizon of N2 = τ d1/τ d2

steps, where it is assumed that τ d1 and τ d2 are designed such that N2 is an integer. The

time horizon of the Level 2 controllers is therefore equal to the update interval of the Level 1

controller. At instances when both the Level 1 and Level 2 controllers are due to update,

it is assumed that Level 1 updates first and passes its decision variables to Level 2. Known

delays can be built into the control formulations to account for computation times, as done

in the case study of Chapter 3. However, doing so falls beyond the scope of the theoretical

results in this chapter.
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Similar to the Level 1 controller, each Level 2 controller receives a profile of the desired

source power flows over its horizon, denoted as P des
h+j|h, j ∈ [0:N2 − 1]. However, in this case

the profile is provided at the fast update rate and short horizon of the Level 2 controller,

and therefore represents more refined short-term desired behavior of the system rather than

the downsampled long-term estimate sent to Level 1.

System Decomposition:

In forming Level 2 of the hierarchical framework, the graph of the full system is first de-

composed into sub-graphs corresponding to subsystems, and each subsystem is paired with

its own controller. As discussed in Section 1.1.3.4, controllers within the same level of the

hierarchical framework do not directly exchange information with each other. This greatly

reduces the communication requirements of the hierarchy and precludes the use of the iter-

ative or cascaded methods from distributed control approaches that can be computationally

expensive or inhibit parallelization. While it falls beyond the scope of this dissertation to

examine the design considerations involved in selection of a specific system decomposition,

note that an agglomerative hierarchical clustering approach for decomposing graph-based

models has been proposed in [92] and subsequently demonstrated in application to hierar-

chical control of a simulated automotive electric vehicle in [66], as discussed in Section 2.5.1.

Subsystem Coupling and Sink State Bounds:

The sink states of each sub-graph represent either coupling to exogenous disturbances of

the overall system or coupling to states of adjacent subsystems along edges that were cut to

decompose the system graph into sub-graphs. For example, one possible decomposition of

the notional graph example from Fig. 2.1 is shown in Fig. 5.4. Sub-graph G2 has four sink

vertices. Two of these are also sink vertices of the system graph G, denoted as vt2,1, v
t
2,2 in

G2 and corresponding to vt1, v
t
2 of G. The remaining two sinks of G2 represent the coupling

to sub-graph G1. Denoted as vt2,3, v
t
2,4 in G2, these correspond to v2, v3 of G, or equivalently,

v1,2, v1,3 of G1. Similarly, G1 has two sink vertices, both of which represent its coupling to

G2.
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Figure 5.4: Example decomposition of a system graph G into two sub-graphs, G1 and G2.

At the faster timescale and shorter prediction horizon of the Level 2 controllers, it is likely

that more refined bounds than the constant box constraints used in the Level 1 controller

could be available for sink states that are exogenous to the overall system. For example,

in a thermal management system, it might be possible to bound the ambient temperature

over a short prediction horizon by measuring the current value and assuming a rate limit

on its short-term evolution. To support this, bounds on sink states in the Level 2 control

formulation can vary across steps of the prediction horizon, provided that they always fall

within their corresponding box constraints in Level 1. In the Level 2 control formulation,

sink state bounds are only required for steps of the prediction horizon prior to the next

update of the Level 1 controller. Therefore, the bounds on the Level 2 sink state trajectories

are denoted as
¯
xth+j|h, x̄

t
h+j|h, ∀j ∈ [0:N2 − nh|k − 1], where nh|k ∈ [0:N2 − 1] is the number

of times the Level 2 controller has updated since the last update of the Level 1 controller.

While uncertainties in sink states of subsystems that are also sink states of the overall

system can be treated as described above, the bounds on sink states associated with states of

adjacent subsystems are held constant over the prediction horizon of each Level 2 controller.

These bound are given by the corresponding elements of
¯
yk|k, ȳk|k from the most recent update

of the Level 1 controller. For example, let G in Fig. 5.4 be the graph used for a Level 1

controller, and G2 in Fig. 5.4 be the graph used for a controller of Level 2. The constant
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bounds on the sink states associated with vt2,3, v
t
2,4 over the Level 2 prediction horizon then

correspond to the elements of
¯
yk|k and ȳk|k communicated from the Level 1 controller for

the states associated with v4 and v5 of G. By comparison, the sink states associated with

vt2,1, v
t
2,2 can have bounds that vary over the prediction horizon of Level 2, subject to the

box constraints
¯
xt1 ≤ ¯

xt2,1,h+j|h ≤ x̄t2,1,h+j|h ≤ x̄t1 and
¯
xt2 ≤ ¯

xt2,2,h+j|h ≤ x̄t2,2,h+j|h ≤ x̄t2,

∀j ∈ [1:N2−nh|k−1]. For simplicity of notation in this chapter, the Level 2 sink state bounds

are in general denoted as time-varying over the prediction horizon, where it is understood

that the value of some of these signals may be constant over j.

Let xcouh+j|h, ∀j ∈ [1:N2 − nh|k − 1] represent the subset of a subsystem’s states xh+j|h that

correspond to sink states of any other subsystem, and let
¯
ycouk|k , ȳ

cou
k|k represent the correspond-

ing elements of the RPI set bounds from Level 1. Here, “cou” stands for “coupled” to

indicate that these states are coupled to states of other subsystems. For example, xcouh+j|h of

G2 in Fig. 5.4 would consist of the states associated with v2,1, v2,2, as they correspond to

sinks vt1,1 and vt1,2 of G1. If G were used as the graph of the Level 1 controller, then
¯
ycouk|k , ȳ

cou
k|k

of G2 would be the elements of
¯
yk|k, ȳk|k corresponding to the states associated with v4

and v5 of G. As aligns with Theorem 5.4 and Remark 5.5, if each subsystem ensures that

¯
ycouk|k ≤ xcouh+j|h ≤ ȳcouk|k locally, then all subsystems can remain within their local subspace of

the RPI set, and therefore the overall system can remain within the RPI set. Of importance

to the result in this chapter is that only xcouh+j|h of each subsystem is necessarily required to

remain within the RPI set bounds between updates of the Level 1 controller.

Subsystem Modes:

Each subsystem model used for the Level 2 controllers is assumed to contain at least the

same modes associated with its edge inputs as are included for the corresponding edges of

the system model used for the Level 1 controller. The Level 2 controllers may also have

access to additional modes. For example, at Level 1, the modes of operation included for a

fluid pump might consist of only its maximum and minimum speeds, as may be sufficient

for coordinating the slow timescale and long-term behavior of the overall system. However,

under the subsystem-specific and faster timescale governance of the Level 2 controllers,
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additional modes corresponding to multiple intermediate pump speeds can be included as

well. This allows the Level 2 controllers to perform refinement of the high-level decisions

above.

Let ecou,sub denote the subset of edges of a sub-graph by which it is coupled to any other

sub-graph, and let ecou,sys be the corresponding edges of the system graph. For example,

ecou,sub of G1 in Fig. 5.4 consists of e1,3 and e1,4, and the corresponding ecou,sys consists of

e3 and e4. Let ucou,subσ denote the inputs associated with edges ecou,sub in a given Level 2

controller, as a function of its switching decision variable σsub. Similarly, let ucou,sysσ denote

the inputs associated with the corresponding edges in the Level 1 controller, as a function

of its switching decision variable σsys. The Level 1 controller is responsible for determining

the switching of inputs associated with edges ecou,sys, coordinating the exchange of energy

between subsystems. Therefore, the mode selection in each Level 2 controller is constrained

as follows:

σsubh+j|h ∈ {σsub | u
sub,cou
σsub

= usys,cou
σsys
k|k
}, ∀j ∈ [0:N2 − 1]. (5.24)

This ensures that the Level 2 controllers are consistent in their knowledge of the edge inputs

by which subsystems are coupled, without needing to be in direct communication with each

other.

An implication of the above is that the subset of subsystem states included in xcouh+j|h,
¯
ycouk|k ,

and ȳcouk|k can be mode-dependent. For example, in the demonstration in Sections 5.5 and

5.6, subsystems can be coupled or decoupled from each other by opening or closing solenoid

valves. To indicate their dependence on σ, these signals will hereafter be denoted as xcou,σh+j|h,

¯
ycou,σk|k , and ȳcou,σk|k .

Additional constraints may be required on the modes available to the Level 1 and Level 2

controllers as necessary to ensure satisfaction of Assumption 5.5. These constraints can be

found a priori for each mode of the Level 1 controller by enumerating all combinations of

modes of the Level 2 controllers satisfying (5.24) and removing those for which the overall

system graph does not satisfy Assumption 5.5.
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State Trajectories:

Three state trajectories are computed by each Level 2 controller, as exemplified on the lower

axes of Fig. 5.5 for the case when nh|k = 0 (i.e., the case when the Level 2 controllers have

yet to be updated since the last update of the Level 1 controller). The middle trajectory,

plotted in purple, represents a predicted state x̂h+j|h, ∀j ∈ [0:N2]. This is based on the

predicted sink states x̂th+j|h, ∀j ∈ [0:N2−1] and nominal source power flow decision variables

P s
h+j|h, ∀j ∈ [0:N2−1]. The remaining two trajectories, plotted in black, represent lower and

upper bounds on the true state trajectory until the next update of the Level 1 controller,

and are denoted as
¯
zh+j|h, z̄h+j|h, ∀j ∈ [0:N2 − nh|k]. The lower bound

¯
zh+j|h is calculated

using the lower bounds on the sink states
¯
xth+j|j and an associated source power flow signal

¯
P s,z
h+j|h, which is a decision variable of the controller. Similarly, the upper bound z̄h+j|h is

calculated using the upper bounds on the sink states x̄th+j|j and an associated source power

flow signal P̄ s,z
h+j|h. By definition of a discrete-time cooperative system (i.e., the discrete-time

equivalent of Definition 5.5), the true state trajectory will be bounded as
¯
zh+j|h ≤ xh+j|h ≤

z̄h+j|h, ∀j ∈ [0:N2 − nh|k], provided that the sink states obey they their constraints and the

applied source power flow falls between
¯
P s,z
h+j|h and P̄ s,z

h+j|h.

Leveraging the trajectory bounding property of cooperative systems is key to achieving

less conservative operation under the Level 2 controllers than that planned by the Level 1

controller. The Level 2 controllers are given the flexibility to guide their states outside of the

RPI set bounds calculated by the Level 1 controller, provided that they can ensure recovery

to within the RPI set bounds by the next update of the Level 1 controller. This is depicted

in Fig. 5.5, as both the predicted state trajectory and the maximal state trajectory leave

the blue shaded area representing the RPI set, but return within it by step k + 1|k, when

the Level 1 controller is next due to update.

Figure 5.6 shows an example of a state trajectory computed by a Level 2 controller for

the case when nh|k = 1. The predicted state x̂h+j|h is still calculated over a horizon of N2

steps, however the state trajectory bounds are now one step shorter than in Fig. 5.5, still

concluding on the step at which the Level 1 controller is next due to update.
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Figure 5.5: Sample predicted trajectory for a state xi of a Level 2 controller for nh|k = 0,
showing the state constraints and equilibrium-based RPI set bounds.
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Figure 5.6: Sample predicted trajectory for a state xi of a Level 2 controller for nh|k = 1.

137



Each Level 2 MPC controller is formulated using the following MIQP:

J∗ (xh) = min
P s

h ,σh

N2−1∑
j=0

`2

(
P s,des
h+j|h, P

s
h+j|h,mh+j|h

)
, (5.25a)

subject to, ∀j ∈ [0:N2 − 1] ,

x̂h+j+1|h = Ad2
σh+j|h

x̂h+j|h +Bd2
σh+j|h

P s
h+j|h + Ed2

σh+j|h
x̂th+j|h, (5.25b)

mi,h+j|h =

1 if σh+j|h = i,

0 else,

(5.25c)

σh+j|h ∈ {σ | ucouσ = usys,cou
σsys
k|k

and Assumption 5.5 is satisfied}, (5.25d)

∀j ∈
[
0:N2 − nh|k − 1

]
,

¯
zh+j+1|h = Ad2

σh+j|h¯
zh+j|h +Bd2

σh+j|h¯
P s,z
h+j|h + Ed2

σh+j|h¯
xth+j|h, (5.25e)

z̄h+j+1|h = Ad2
σh+j|h

z̄h+j|h +Bd2
σh+j|h

P̄ s,z
h+j|h + Ed2

σh+j|h
x̄th+j|h, (5.25f)

¯
x ≤

¯
zh+1|h ≤ z̄h+1|h ≤ x̄, (5.25g)

¯
P s ≤

¯
P s,z
h+j|h ≤ P s

h+j|h ≤ P̄ s,z
h+j|h ≤ P̄ s, (5.25h)

¯
ycou,σk|k ≤

¯
zcou,σh+1|h ≤ z̄cou,σh+1|h ≤ ȳcou,σk|k , (5.25i)

if nh|k ≥ 1, ∀j ∈
[
N2 − nh|k:N2 − 1

]
,

¯
x ≤ x̂h+j+1|h ≤ x̄, (5.25j)

¯
P s ≤ P s

h+j|h ≤ P̄ s, (5.25k)

¯
yk|k ≤

¯
zN2−nh|k|h ≤ z̄N2−nh|k|h ≤ ȳk|k, (5.25l)

x̂h|h =
¯
zh|h = z̄h|h = xh. (5.25m)

Equation (5.25a) defines the objective function of the controller, for which the stage cost

`2(·) is a quadratic function. This will typically include a term penalizing errors in the

tracking of P s,des by P s, given by ‖P s,des
h+j|h − P s

h+j|h‖2
ΛP

. As in (5.23a), the third argument of

`2(·) allows costs associated with mode selection to be applied, where (5.25c) performs the

same function as (5.23c) of the Level 1 controller formulation.
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Equation (5.25b) defines the predicted subsystem dynamics at the update rate of the

Level 2 controllers, subject to the nominal source power flow P s and predicted sink state

x̂t. Equation (5.25d) applies the mode selection constraints from (5.24), as well as any

additional mode selection constraints required to ensure satisfaction of Assumption 5.5, as

previously discussed. Equations (5.25e)-(5.25f) solve for the state trajectory bounds until the

next update of the Level 1 controller. Equation (5.25g) requires that the trajectory bounds

fall within the state constraints, while (5.25h) requires that the nominal source power flow

falls between the source power flows used to compute the trajectory bounds, which in turn

fall within the source power flow constraints. Equation (5.25i) requires that the trajectory

bounds on any states of the subsystem corresponding to sink states of other subsystems in

the current mode remain within their RPI set bounds computed by the Level 1 controller.

This ensures that all other subsystem states can remain within their RPI set bounds.

Equations (5.25j) and (5.25k) constrain the predicted states and source power flows of

steps following the next update of the Level 1 controller. These constraints are not explicitly

necessary to the forthcoming proof, but are useful for bringing the Level 2 controllers to plan

reasonable operation beyond the next update of the Level 1 controller.

Equation (5.25l) requires that the trajectory bounds fall within the RPI set constraints

in the step corresponding to the next update of the Level 1 controller. This guarantees

recursive feasibility of the Level 1 controller by ensuring that its initial state is within an

RPI set. Lastly, (5.25m) sets the initial values of the predicted state and trajectory bounds

equal to the current state of the subsystem.

Theorem 5.5: Recursive Feasibility of Hierarchical Control Framework

Consider the hierarchical control framework shown in Fig. 5.2. Between step h and step

h + 1 of the Level 2 controllers, the applied source power flows P s,app
i,h of the ith subsystem

are constant and bounded as
¯
P s,z
i,h ≤ P s,app

i,h ≤ P̄ s,z
i,h , and the sink state disturbances are

constant and obey their assumed bounds,
¯
xti,h ≤ xti,h ≤ x̄ti,h. If the Level 1 controller has a

feasible solution upon initialization, then all Level 2 controllers have a feasible solution and

all controllers of the hierarchical framework are recursively feasible. Specifically, this implies

that the discretized state trajectories always satisfy their their constraints.
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Proof: Feasibility of the Level 1 controller upon initialization guarantees feasibility of all

Level 2 controllers, as they can apply the same modes and source power flows as selected

in the Level 1 controller and maintain all of their states within the RPI set bounds, in

alignment with Theorem 5.4 and Remark 5.5. However, each Level 2 controller can also

choose to apply different modes and/or govern its states outside the bounds of the RPI set

if two two conditions are met. First, all states must remain within their constraints
¯
x, x̄ and

recover to within the RPI set by the next update of the Level 1 controller. This is ensured by

leveraging the properties of cooperative systems to directly calculate maximal and minimal

state trajectories until the next update of the Level 1 controller in (5.25e)-(5.25f), and then

imposing appropriate constraints on these trajectories in (5.25g) and (5.25l). The second

condition is that any states that are sink states of other subsystems under the current mode

always remain within their RPI set bounds, as imposed by (5.25i). This ensures that adjacent

subsystems are able to maintain their states within their RPI set bounds if necessary.

The above ensures recursive feasibility of the Level 1 controller, as the RPI set and associ-

ated mode determined in the previous iteration can always be used for the current iteration.

Feasibility of the Level 1 controller again guarantees feasibility of all Level 2 controllers,

resulting in recursive feasibility of the hierarchical framework as a whole. �

5.5 Simulation Example

The efficacy of the proposed control approach is demonstrated with the following numerical

example, which is extended to experimental application in the next section. Figure 5.7

shows a candidate fluid-thermal system architecture, consisting of components modeled in

Chapter 2. Thermal energy is transferred to the system via heat loads applied to the four cold

plate walls. In a thermal management system, these heat loads correspond to thermal energy

generation due to inefficiencies in electrical equipment, such as the battery and converters

of Chapter 3, or other components that generate thermal energy. Thermal energy can be

removed from the fluid-thermal system by heat transfer to two sinks representing the ambient

environment or other thermal storage and transport systems, such as vapor compression

systems or air cycle machines. In this example, the temperatures of these sinks are treated
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Figure 5.7: Schematic of the fluid-thermal system architecture used to demonstrate the
proposed control approach.

as bounded exogenous disturbances for which nominal (but possibly inaccurate) preview is

available.

Figure 5.8 shows the graph-based model corresponding to the schematic in Fig. 5.7. The

model is parameterized in accordance with the specifications of the testbed components

detailed in Section 2.4.1. The 39 states x of the model represent the temperatures of fluids,

heat exchanger walls, and cold plate walls throughout the system. The three sink states xt

represent the fluid drain and the fluid temperatures of flow from the thermal sinks. The 47

power flows P capture the transfer of thermal energy among states and sinks of the system.

Four source power flows P s represent the heat loads applied to the walls of the four cold

plates. The 12 inputs u are the unique fluid mass flow rates through the system. These

are a function of the commanded inputs to the nine pumps (including the drain pump) and

six valves. When the graph-based system model is represented in the switched linear form

of (5.10), each mode corresponds to a particular set of these inputs. For the purposes of

the demonstration in this chapter, the drain pump is not powered. While the remaining
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Figure 5.8: Graph-based for model of the fluid-thermal system in Fig. 5.7.

eight pumps of the system can have any number of modes corresponding to different speed

commands, the valves can only be fully open or fully closed. Similar to the case study in

Chapter 3, valves can be closed to decouple otherwise adjacent subsystems or bypass thermal

sinks.

The goals of achieving high capability, efficiency, and safety that motivate the design of

the hierarchical control framework in Section 5.4.3 apply directly to the context of thermal

management in this example. Capability is represented as an objective of tracking refer-

ences for the heat load applied to each cold plate. These references represent thermal energy

generation associated with the desired operation of electrical or mechanical systems. Dis-

crepancies between the desired and allowable heat loads are communicated to the systems

generating the loads, which throttle down their operation as necessary to operate within

their thermal budget. The scope of the current example focuses exclusively on the thermal
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management aspect, controlling the fluid-thermal system to absorb as much of the desired

thermal loading as possible over a mission while ensuring that at least minimum flight-critical

loads can always be absorbed without violating temperature constraints. Satisfying these

constraints can be essential to ensuring safe and reliable operation of both flight-critical and

mission-critical equipment. Therefore, safety is captured by enforcing hard box constraints

on the temperature states of the system. The goal of efficient operation is represented in

the objective function by penalizing each mode of operation in proportion to the electrical

energy consumption by the actuators of the thermal management system under that mode.

In this example, the stage costs `1(·) and `2(·) of the Level 1 and Level 2 control formu-

lations, respectively, are defined as follows:

`1

(
P s,des
k+j|k, P

s
k+j|k,mk+j|k

)
= ‖P s,des

k+j|k − P
s
k+j|k‖2

ΛP
+ ‖mk+j|k‖2

Λu , (5.26a)

`2

(
P s,des
h+j|h, P

s
h+j|h,mh+j|h

)
= ‖P s,des

h+j|h − P
s
h+j|h‖2

ΛP
+ ‖mh+j|h‖2

Λu

+ ‖P s
h+j|h − P s

h+j−1|h‖2
Λ∆P

+ ‖mh+j|h −mh+j−1|h‖2
Λ∆u

.

(5.26b)

The first term on the right in (5.26a) represents costs associated with load shedding by

penalizing deviations from the desired source power flows by the nominal source power flow

decision variable P s. The second term applies costs associated with mode selection, where

(5.23c) defines mk+j|k as a vector of binary variables for each j, with unity in the row

corresponding to the index of the active mode and zeros elsewhere. In addition to the two

terms in (5.26a), (5.26b) includes additional terms to smooth the nominal source power flow

trajectory and penalize mode switching to reduce actuator wear, where P s
h−1|h = P s

h−1|h−1

and mh−1|h = mh−1|h−1.

Figure 5.9 shows the specific hierarchical control framework used for this example. All four

subsystems (SSs) are included in the Level 1 controller. Two controllers are used in Level 2.

One of these governs SS1 and SS4, while the other governs SS2 and SS3. The reason for

this grouping of subsystems in Level 2 will become clear in the experimental demonstration

of the next section. The Level 1 controller updates every τ d1 = 60 seconds with a horizon
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Figure 5.9: Hierarchical control framework for the simulation example.

of N1 = 5 steps. This allows it to capture the slow dynamics of the system and optimize

behavior over a five-minute prediction horizon. Each of the Level 2 controllers update every

τ d2 = 10 seconds with a horizon of N2 = 6 steps, allowing them to govern faster dynamics

of the system.

Figure 5.10 shows the desired heat loads and sink states for the this example. The flight-

critical loads are given by
¯
P s =

[
0.75 0.3 0 0.5

]T
kW. The sheddable load profiles consist

of low-frequency steps associated with the nominal operating state of heat-generating com-

ponents, to which higher frequency variability is added, representing finer adjustments in

operation made to achieve electrical and mechanical objectives, such as reference tracking

and disturbance rejection. The profile for Heat Load 3 is designed to be characteristic of

systems with high ratios of peak to average power, which are of particular interest in some

vehicle energy system applications [20]. While the Level 2 controllers receive the profile of

the sheddable loads over their prediction horizon, the Level 1 controller receives a nominal,

downsampled representation of the sheddable loads over its prediction horizon, as shown

by the dashed blue traces. This reflects the notion that more refined knowledge of the de-

sired operation of the system may be available over the short time horizon of the Level 2

controllers than over the long time horizon of the Level 1 controller.

Excluding the sink state of the drain, which has no effect on the system in this example,

the sink states are bounded as
¯
xt =

[
15 15

]T
◦C, x̄t =

[
35 35

]T
◦C. The Level 1 controller

receives these constant bounds and the nominal trajectories shown by the dashed blue traces
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Figure 5.10: Desired source power flows and sink state disturbances of the simulation exam-
ple.

in the bottom two subplots of Fig. 5.10. Over the short prediction horizon of the Level 2

controllers, less uncertainty is present in the sink states. These controllers receive the bounds

defining the red envelopes in the bottom two subplots of Fig. 5.10, as well as nominal

trajectories shown by the red traces. The actual sink states applied to the system are shown

by the green traces. These deviate significantly from the nominal trajectories provided to

each controller, but still satisfy the bounds assumed in Level 1 and Level 2. The hierarchical

framework is robust in the sense that it guarantees state constraint satisfaction despite this

presence of bounded uncertainties in the sink states.
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Figure 5.11: Desired and achieved source power flows of the simulation example.

The lower constraint on all temperature states is 15◦C. The upper constraints are 40◦C

for fluids and 45◦C for cold plate and heat exchanger walls, similar to those in the case study

of Chapter 3.

While Theorem 5.5 guarantees recursive feasilbility and state constraint satisfaction sub-

ject to any applied power flows P s,app
h falling within the bounds

¯
P s,z
h ≤ P s,app

h ≤ P̄ s,z
h , in this

example the nominal source power flow decision variables P s
h are applied to the system to

demonstrate the capability achieved when the controller has full authority over the source

power flows. As shown in Figure 5.11, the hierarchical controller successfully achieves the

flight critical loads and much of the sheddable loads, but does perform shedding as necessary

to satisfy constraints and ensure recursive feasibility. The dashed blue traces in Figure 5.11

show the nominal source power flow decision variables of the Level 1 controller at each time

step. In light of the much larger source power flows achieved by the Level 2 controllers, the

equilibrium-based RPI sets calculated by the Level 1 controller clearly represent conserva-

tive bounds on the capability achievable by the system within its constraints. The Level 2
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Figure 5.12: Selected states of the simulation example.

controllers significantly reduce this conservatism by bounding operation based on transient

behavior rather than steady-state behavior.

Figure 5.12 shows the wall and outlet fluid temperatures of each cold plate, which are

typically the highest temperatures of the system. As shown by the black traces, these

always remain within their constraints. These states are also confirmed to be bounded by

the trajectories
¯
zh, z̄h determined by the Level 2 controllers, as shown by the red traces.

Consistent with the goal of maximizing the capability of the system, the states often operate

close to their upper trajectory bounds. This is particularly true of the CP1 wall, for which

the trace for the state covers the trace for its upper bound. Figure 5.12 also shows the
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Figure 5.13: Closer view of the CP1 wall temperature between 360 and 600 s.

equilibrium-based RPI set bounds computed by the Level 1 controller for each state. Under

the pulsed loading applied to the CP3 wall, the temperature of this wall is shown to exceed

its RPI set bounds by up to 5◦C at times. However, this state always recovers to within the

RPI set bounds by the next update of the Level 1 controller (every 60 s), ensuring recursive

feasibility. On several occasions, the system states or their trajectory bounds achieve their

upper constraints x̄. This is exemplified by Fig. 5.13, which shows a closer view of the CP1

wall temperature for a portion of the profile.

Figure 5.14 shows the mass flow rates applied to the system as a result of mode selection

in the Level 1 and Level 2 controllers. When mass flow rates fall to exactly zero in the

bottom three subplots, this indicates that a valve has been closed, decoupling two otherwise

adjacent subsystems. In applications where less frequent switching is desirable to prevent

actuator wear, the penalty on switching, given by Λ∆u in (5.26b), could be increased.

All MPC optimization problems of the simulation example were formulated with YALMIP

[104] and solved with CPLEX [163] using a desktop computer with a 3.40 GHz Intel i7

processor and 16 GB of RAM. Computation times for all controllers were within their update

intervals, as detailed in Table 5.1. This table also includes computation times for controllers

of the experimental demonstration in the next section.
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Figure 5.14: Mass flow rates of the simulation example.

Table 5.1: Number of modes, update intervals, and computation times of all controllers of
the hierarchical MPC framework for the simulation example (sim) and experimental demon-
stration (exp).

Level Controller
No. of
modes

Update
interval (s)

Avg. (s)
(sim)

Avg. (s)
(exp)

Max (s)
(sim)

Max (s)
(exp)

1 All Subsystems 12 60 49.0 43.0 57.2 57.2

2 SS1 & SS4 18 10 1.2 5.4 3.7 9.7

2 SS2 & SS3 16 10 1.8 5.8 4.1 9.7

3 SS1 N/A 2 N/A 0.14 N/A 0.78

3 SS2 N/A 2 N/A 0.13 N/A 0.66

3 SS3 N/A 2 N/A 0.14 N/A 0.75

3 SS4 N/A 2 N/A 0.13 N/A 0.59
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Figure 5.15: Fluid-thermal testbed configured to match the architecture in Fig. 5.7

5.6 Experimental Demonstration

To evaluate the ability of the control design in this chapter to translate from simulation to

experimental application, the fluid-thermal testbed described in Section 2.4.1 was configured

to match the architecture in Fig. 5.7 and used to further demonstrate the proposed hierar-

chical control approach. Fig. 5.15 shows the testbed in this configuration, while Fig. 5.16

shows the same image with fluid loops identified and component names labeled as defined

in Fig. 5.7.

While the guarantee of hard state constraint satisfaction in Theorem 5.5 is a key contri-

bution of this chapter, experimental application necessitates softening of these constraints

to prevent model error, measurement and estimation error, and unknown disturbances from

rendering controllers infeasible. Therefore, the control formulations in Section 5.4.3 are

modified with slack variables on state constraints, similar to (3.12d) in the case study of

Chapter 3. This is a standard practice in applied MPC as performed, for example, in [21].

The control formulations are also modified with known delays equal to their update intervals

to account for computation times, similar to (3.12k)-(3.12l) in Chapter 3.
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Figure 5.16: Reproduction of Fig. 5.15 with fluid loops identified and component names
labeled as defined in Fig. 5.7.

While the hierarchical control framework studied in the theoretical results of this chapter

consists of two levels, under the softening of constraints described above it is possible to

include additional levels. To demonstrate this, the four-level hierarchical control framework

in Fig. 5.17 is used in the following closed-loop experiments. In addition to the Level 1 and

Level 2 controllers, a third level is added with controllers corresponding to each subsystem.

These Level 3 controllers update every τ d3 = 2 seconds with a horizon of N3 = 5 steps. These

use the same general control formulation as in Level 2, with the exception that they are con-

strained to implement the modes selected in Level 2. The role of the Level 3 controllers in

this case is to perform fast-timescale control of the applied source power flows, primarily

compensating for model error in seeking to maintain the states within their softened con-

straints. Below Level 3, a tracking level similar to that used in Chapter 3 is included. This

consists of SISO controllers that command pump speeds and valve positions to track the

desired mass flow rates communicated from above.
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Figure 5.17: Hierarchical control framework for the experimental demonstration.

Fourteen of the 39 states of the system model are measured on the testbed. Estimates

of the unmeasured states are made using an Extended Kalman Filter linearized about the

current mode of operation at each update of the Level 3 controllers. The temperatures

of both chiller sink states are also measured. Based on the current measurements and an

empirically derived rate limit on the sink states, bounds on the sink state temperatures

across the prediction horizon of the Level 3 controllers can be calculated. The midpoints of

these bounds are used as the predicted sink states for the Level 3 controllers.

For the experimental demonstration, all MPC optimization problems were again formu-

lated with YALMIP [104] and solved with CPLEX [163] using a desktop computer with the

same specifications as in the simulation example. In this case, the MPC controllers of the

hierarchy were solved in parallel to enable real time implementation. Computation times

for all controllers were within their update intervals, as detailed in Table 5.1. However, the

Level 2 controllers did generally take longer to solve in the experiment than in the simu-
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Figure 5.18: Desired source power flows and sink state disturbances of the experimental
demonstration.

lation. This is likely due to a greater number of decision variables included in the control

formulations for the experiment to soften state constraints.

Figure 5.18 shows the desired heat loads, measured sink states, and sink state bounds of

the experimental demonstration. These are similar to those for the simulation example, with

the exceptions that the sheddable load profiles evolve at the update rate of Level 3, and sink

state bounds and predictions are included for Level 3.

Figure 5.19 shows the source power flows applied by the Level 3 controllers, as well as the

corresponding nominal source power flow decision variables from the Level 1 and Level 2
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Figure 5.19: Desired and achieved source power flows of the experimental demonstration.

controllers. In general, similar capability is achieved as for the simulation example. Note

that slightly different behavior is to be expected, as the sink states in the simulation differ

from those measured in the experiment.

Figure 5.20 shows the measured wall and outlet fluid temperatures of each cold plate.

Again, there is strong similarity to the simulation example. States such as the CP4 wall

temperature are operated close to their constraints without violations. However, small tem-

perature constraint violations do occur in the CP2 and CP3 fluid states. This is likely due

to measurement and model errors, as well as reference tracking error in the Tracking Level

responsible for achieving the fluid mass flow rates expected by the levels above. However,

the state constraint violations in this case are smaller than in Chapter 3, even though the

control formulations in Chapter 3 included artificial constraint tightening of 2◦C. The state

constraint violations are also smaller than the hierarchical MPC implementation for the

same testbed in [64]. This suggests that accounting for sink state uncertainty throughout

the hierarchical controller can improve its ability to respect state constraints in experimental

application.
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Figure 5.20: Selected state measurements of the experimental demonstration.

Figure 5.21 shows the desired mass flow rates sent to the Tracking Level a result of mode

selection throughout the hierarchical framework. Again, the results are similar to those for

the simulation example. If desired, the penalty on switching could again be increased to

cause the Level 2 controllers to switch less frequently.

5.7 Chapter Summary

This chapter presents a two-level switched hierarchical control framework that guarantees

satisfaction of state and input constraints for a class of graph-based dynamic systems. Each
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Figure 5.21: Mass flow rate references sent to the Tracking Level of the experimental demon-
stration.

mode in this class is a cooperative system, and can be proven open-loop stable under appro-

priate conditions on the connectivity of the graph and form of the equations governing power

flow along its edges. The two-level hierarchical control framework is designed to achieve high

capability, efficiency, and safety of switched energy systems, subject to bounded uncertainty

in exogenous disturbances associated with the ability to dissipate energy to sinks. At the top

level of the hierarchy, a slowly-updating controller plans operation over a long time horizon

and performs online computation of RPI sets, leveraging the existence of equilibrium-based

box-invariant sets for cooperative systems. At the second level of the hierarchy, multiple

controllers corresponding to specific subsystems operate at a faster timescale. These con-
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trollers have the flexibility to drive states beyond the RPI sets received from the level above,

provided that they can guarantee recovery to within the sets by the next update of the level

above. This guarantee is made by leveraging trajectory bounding properties of cooperative

systems. Under the proposed MPC formulations, recursive feasibility and satisfaction of

hard constraints on states is guaranteed. This is achieved without requiring the controllers

at the second level to directly exchange information with each other.

The applicability of this approach is demonstrated in both simulation and experimental

application using a fluid-thermal system. The thermal management objectives are to achieve

high capability of the system to absorb heat loads, while also operating with high efficiency

and maintaining all temperature states within specified constraints. The simulation example

shows that the theoretical guarantee of recursive feasibility and constraint satisfaction holds.

The experimental demonstration extends this theoretical result to real-world application by

softening state constraints and extending the hierarchical framework to include additional

levels. The experimental results agree closely with the simulation results. While small state

constraint violations do occur, they are smaller than under previous control designs applied

to the same testbed (e.g., that in Chapter 3 and [64]), despite the fact that no artificial

tightening of constraints is performed in this case, as has been done previously.
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Chapter 6

Conclusion

6.1 Summary of Research Contributions

As a result of the increasing electrification and complexity of vehicle energy systems, legacy

integration and control approaches have become limiting factors of performance and cannot

accommodate the requirements of next-generation systems. Addressing this requires control

frameworks that coordinate dynamics across multiple physical domains and timescales of

these systems, and govern both continuous and switched behavior. This dissertation presents

such a framework, with the goal of enabling new paradigms in the capability, efficiency, and

safety of vehicle energy systems.

Chapter 2 motivates, derives, and experimentally validates a dynamic graph-based mod-

eling approach for power flow systems. Rooted in conservation of mass and energy, this

approach can be applied to capture interactions within and between systems characterized

by multiple physical domains and dynamic timescales. Both continuous and switched be-

haviors of energy systems can also be captured. The governing equations of graph-based

models make explicit the underlying structure of coupling within the system under study.

This structural knowledge is leveraged throughout the dissertation for analysis and control

design.

Chapter 3 presents and experimentally demonstrates a switched hierarchical control frame-

work for vehicle energy management. The candidate system for this demonstration consists

of a hardware-in-the-loop experimental testbed that embodies key dynamic characteristics

of aircraft electro-thermal systems. As compared to a baseline controller representative of

conventional control approaches, the hierarchical controller achieves improved performance

in figures of merit quantifying the capability, safety, and efficiency of the closed-loop system.
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Chapter 4 presents a decentralized approach to certifying closed-loop passivity of a class

of switched, nonlinear graph-based dynamic models. A common storage function is ap-

plied to guarantee open-loop passivity of individual switched subsystems. Passivity is then

shown to be preserved under the interconnection of multiple graph-based subsystems. De-

centralized Model Predictive Controllers paired with each subsystem are formulated with a

local passivity-preserving constraint to ensure closed-loop stability. A simulation example

demonstrates the efficacy of the proposed approach on a fluid tank system controlled by a

hierarchical framework.

Chapter 5 presents a two-level switched hierarchical MPC framework that guarantees sat-

isfaction of state and input constraints for a class of switched graph-based dynamic systems.

The proposed framework is robust in the sense that constraint satisfaction and recursive

feasibility are guaranteed subject to bounded uncertainty in the exogenous disturbances as-

sociated with the ability of the system to dissipate energy to sinks. The applicability of this

approach is demonstrated in both simulation and experimental application using a fluid-

thermal system. The simulation study confirms that the proposed hierarchical framework

enforces hard constraints on states, and shows how the goals of achieving high capability,

efficiency, and safety are reflected in the control design. The experimental demonstration

bridges from theoretical results to real-world application by softening state constraints and

extending the hierarchical framework to include additional levels.

6.2 Future Work

This dissertation represents an initial contribution towards the objectives of achieving high-

performing, stable, and robust vehicle energy management. Future work will build on this

foundation with advances in both theory and application, as well as the development of

supporting design and estimation techniques.
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6.2.1 Theory

1. Passivity-based MPC under discretization: Analysis of the passivity-based MPC

formulation in Chapter 4 is performed using a continuous-time representation of the

system dynamics. However, this formulation must be discretized for implementation.

Future work should address the implications of this discretization to analysis via ex-

plicit consideration of the sampled-data nature of MPC implementation, similar to

[137, 138].

2. Cooperativity-based hierarchical control: While the cooperativity-based hier-

archical control framework in Chapter 5 consists of two levels, its extension to an

arbitrary number of levels is a topic of ongoing study. This will greatly extend its ap-

plicability to complex systems with dynamic timescales ranging across multiple orders

of magnitude. The guarantee of closed-loop state constraint satisfaction in Chapter 5

is made with respect to the discretized dynamics at the rate of the fastest controller

of the hierarchy. In many applications, this update rate can be chosen fast enough

such that the error from the continuous evolution of the states is negligible. However,

the guarantee could be extended to encompass the continuous dynamics as well. In

addition, future work will seek to increase the domain of the controller and reduce

conservatism by removing the requirement that the system is within an RPI set at

each update of the Level 1 controller, instead requiring only that an RPI set can be

reached by the end of this controller’s horizon. Lastly, while Chapter 5 focuses on state

constraint satisfaction rather than stability about an equilibrium, future work could

seek to design the stage and terminal costs of the objective function to achieve stability

as well. As in [164], this modification would be enabled by the fact that the current

guarantee of state constraint satisfaction is achieved without imposing restrictions on

objective functions, leaving them available to be used in achieving additional proper-

ties. An alternate path to guaranteeing stability could be to impose a dwell time or

average dwell time on switching [26].
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6.2.2 Application

1. Hierarchical control of additional physical systems and vehicle classes: While

the hardware-in-the-loop case study in Chapter 3 includes a physical fluid-thermal

system, the electrical system is simulated. Therefore, future work should extend the

electro-thermal demonstration to feature physical electrical systems as well. Lower

levels can be included in the hierarchical control framework to govern faster timescale

electrical operation, such as voltage regulation of power electronic devices. Future work

should also include experimental demonstration of hierarchical control on testbeds with

mechanical components and propulsion systems. While aircraft energy systems are the

application of focus in this dissertation, the proposed methods are appropriate for any

complex vehicle energy system. Demonstration to other vehicle classes is a topic of

ongoing and future research. For example, application of hierarchical control to an

automotive electric vehicle energy system has been performed in simulation in [66].

2. Experimental application of passivity-based MPC: To bridge the contribution

of Chapter 3 from theory to practice, the proposed passivity-based MPC approach

should be demonstrated in experimental application on an appropriate testbed, such

as the fluid-thermal testbed used throughout this dissertation.

6.2.3 Supporting Tools

1. Computational considerations: While the experimental demonstrations in this dis-

sertation exhibit the ability of the proposed control approaches to be implemented in

real time, controllers were solved on desktop computers that may have significantly

greater computational power than the embedded hardware on board some vehicle

energy systems. Therefore, future research should explore tradeoffs between compu-

tational cost and performance, as a function of update rates and prediction horizons

throughout a hierarchical control framework.

2. Controller parameterization: Hierarchical control frameworks can have many more

design parameters than centralized controllers. These include the number of levels and
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partitioning of the system model within each level, the update rates and prediction

horizons of each level, and the design and weightings of objective functions. The devel-

opment of tools that can aid in selection of these controller parameters will significantly

decrease the time required to tune controllers and may improve the performance of the

final design. For thermal systems governed within hierarchical frameworks, objective

function designs based on analysis of exergy destruction [98] could be particularly

promising.

3. Model reduction: It may not be necessary to include the full-order system model in

the upper levels of a hierarchical control framework. Instead, model reduction can be

performed to develop a lower-order representation of the system that captures the most

salient behavior at the timescale of a given level and requires much less computational

power to optimize than the full-order model. However, care must be taken to ensure

that this reduction does not introduce significant model mismatch between levels of the

hierarchy that could degrade performance or result in destabilization. Future work will

develop tools for performing reduction of the graph-based modeling approach utilized

throughout this dissertation, and will leverage these reduced models for hierarchical

control.

4. Hierarchical estimation: Just as centralized control may not be feasible for many

complex vehicle energy systems, communication bandwidth limitations may present

barriers to centralized state estimation. As such, recent work has begun to study

the pairing of hierarchical control frameworks with hierarchical estimation frameworks

[165]. Future work will continue to develop these estimation frameworks, in particular

by extending them to achieve accurate estimation under switched behavior of vehicle

energy systems.

5. Fault detection and response: While this dissertation explores the performance

benefits of hierarchical control frameworks when the systems they control operate as

intended, it remains to develop tools for detecting and accounting for system faults,

sudden changes to the desired vehicle task, and unanticipated environmental condi-
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tions. Future research can address this need by augmenting the low-level, fast-updating

controllers of a hierarchical framework to detect undesirable operation and trigger ap-

propriate corrective actions throughout the system.

6. Design optimization: Recent work has explored the utilization of the graph-based

modeling approach for design optimization, where graph-theoretic techniques aid in

the programmatic generation and evaluation of large numbers of candidate energy

system architectures within a class [33, 93]. Ongoing and future work will perform

architecture design and component sizing in tandem with control design, optimizing

the system dynamics to best be leveraged in advanced control.
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