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ABSTRACT

We present language-independent formal methods that are parameterized by the
operational semantics of languages. We provide the theory, implementation, and extensive
evaluation of the language-parametric formal methods. Specifically, we consider two
formal analyses: program verification and program equivalence.

First, we propose a novel notion of bisimulation, which we call cut-bisimulation, allowing
the two programs to semantically synchronize at relevant “cut” points, but to evolve
independently otherwise. Employing the cut-bisimulation, we develop a language-
independent equivalence checking algorithm, parameterized by the input and output
language semantics, to prove equivalence of programs written in possibly different
languages. We implement the algorithm in the K framework, yielding the first language-
parametric program equivalence checker.

To demonstrate the practical feasibility of the language-parametric formal methods,
we instantiate a language-independent deductive program verifier by plugging-in four
real-world language semantics, C, Java, JavaScript, and Ethereum Virtual Machine (EVM),
and use them to verify full functional correctness of challenging heap-manipulating
programs and high-profile commercial smart contracts. In particular, to the best of our
knowledge, the JavaScript and EVM verifiers are the first deductive program verifier for
these languages.
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CHAPTER 1: INTRODUCTION

Most of the existing formal program analysis tools (e.g., program verifiers) lack reusabil-
ity. They were developed for a fixed target language, and the language semantics is
usually hardcoded within the implementation of their formal analysis algorithm. Due to
their monolithic design nature, retargeting them to another language requires significant
effort. The retargeting requires either to replace the hardcoded language semantics
with the new target language semantics, or to implement a translation from the new
language to the existing language. The replacement of the hardcoded semantics almost
amounts to rewriting the entire codebase, which is not viable in most cases. The language
translation approach could be better than the semantics replacement, requiring affordable
effort in case that the new language is similar to the existing one. However, if the new
language is quite different from the existing language (for example, a register-based
assembly language versus a stack-based one), translation would be at best ineffective if
not infeasible. Moreover, the new language semantics (either defined in hardcoded form
or indirectly defined via translation) may not be reusable for other formal tools. The lack
of reusability leads to fragmentation in the formal tool community.

Language-independent formal methods [1, 2, 3, 4, 5] have been proposed to mitigate
the reusability issue. The idea is to develop universal formal methods and tools that
are parameterized by language semantics, and derive formal analysis tools for each target
language by instantiating the universal ones with plugging-in the target language seman-
tics. Moreover, theories [5, 4, 6] have been established that allow to plug-in operational
language semantics. The underlying theories enable formal reasoning about programs
directly over operational semantics without the burden of having to specify additional
axiomatic semantics and prove its soundness with respect to the operational semantics.
These operational-semantics-based formal methods benefit from the fact that operational
semantics is easier to specify than axiomatic semantics. Indeed, specifying operational
semantics amounts to writing an interpreter for the target language, which is doable even
without extensive logical-theoretical background.

While the underlying theory of the proposed methodology has already been established,
its practicality has not been comprehensively evaluated. Although a proof of concept
implementation and its preliminary evaluation were provided [1], they are rather limited.

In this thesis, we demonstrate and improve the scalability and practicality of the
language-independent formal methods parameterized by operational semantics, which
falls into the following categories:
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• Developing language-independent formal methods.

• Specifying real-world language semantics and measuring the specification effort.

• Instantiating the language-independent formal methods by plugging-in various
real-world programming language semantics.

• Applying the derived formal analysis tools to real-world systems and applications,
demonstrating their practical feasibility both in isolation and by comparison to
state-of-the-art tools specifically crafted for the target languages.

Cross-Language Program Equivalence We have developed a language-independent
equivalence checking algorithm, parameterized by the input and output language se-
mantics, to prove equivalence of programs written in different languages. The algorithm
employs a novel notion of bisimulation, which we call cut-bisimulation, allowing the two
programs to semantically synchronize at relevant “cut” points, but to evolve indepen-
dently otherwise. The program point pairs needed for the proof are provided as an
input to the algorithm, and are called synchronization points. Intuitively, synchronization
points are symbolic descriptions that capture the set of pairs of relevant (concrete) states
of the input and output programs. For example, they include the pairs of (symbolic)
input and output states of the two programs, and the beginnings of the same loop or
cyclic structure of them.

Using the K semantic framework, we have implemented the first language-independent
tool for proving program equivalence, parametric in the formal semantics of the two
languages. The new tool, called Keq, takes two language semantics as input and yields
a checker that takes two programs as input, one in each language, and a (symbolic)
synchronization relation, and checks whether the two programs are indeed equivalent
with the synchronization relation as a witness. Intuitively, Keq symbolically executes the
two programs, each with its respective (symbolic) input state, until it reaches another
pair of states presented in the synchronization points. Then, Keq re-starts the symbolic
execution from the newly reached states until reaching another pair of states. Keq repeats
this process until it reaches the pair of output states, which concludes the equivalence.

Complete Formal Semantics of JavaScript To evaluate the effectiveness of specifying
operational language semantics, as well as to use it for instantiating the universal formal
methods, we have completely specified, in K, an operational semantics of JavaScript [7],
one of the most popular client-side programming languages. The JavaScript semantics,
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called KJS, is the most complete and thoroughly tested formal JavaScript semantics,
specifically of ECMAScript 5.1, the latest language standard at the time of writing
it. It has been tested against the ECMAScript conformance test suite, and passed all
2,782 test programs for the core language. KJS is far more complete than any other
semantics, and even more standards-compliant than production JavaScript engines such
as Safari WebKit and Firefox SpiderMonkey. Despite the complex nature of the language
semantics, the development of KJS took only four months by a single person with no prior
knowledge of JavaScript or of the semantic framework. This result supports the argument
that specifying operational semantics is affordable, and the operational-semantics-based
formal methods benefit from that.

Formal Verification of Ethereum Smart Contracts As a comprehensive evaluation, we
have applied the universal program verifier to Ethereum smart contracts. The Ethereum
smart contract is a safety-critical system whose failures have caused millions of dollars of
lost funds [8], and rigorous formal methods are required to ensure the correctness and
security of contract implementations [9, 10].

We chose the Ethereum Virtual Machine (EVM) bytecode as the verification target
language so that we can directly verify what is actually executed without the need to trust
the correctness of the compiler. To precisely reason about the EVM bytecode without
missing any EVM quirks, we adopted KEVM [11], a complete formal semantics of the
EVM, and instantiated our language-independent deductive program verifier [12] to
generate a correct-by-construction deductive program verifier for the EVM. While it is
sound, the initial out-of-box EVM verifier was relatively slow and failed to prove many
correct programs. We further optimized the verifier by introducing custom abstractions
and lemmas specific to EVM that expedite proof searching in the underlying theorem
prover. Our EVM verifier has been used to verify the full functional correctness of high-
profile smart contracts including various ERC20 token [13], Ethereum’s Casper FFG [14],
DappHub’s MakerDAO [15], and Gnosis Safe [16] contracts.

Formal Verification of Heap Manipulating Programs For more thorough evaluation of
the universal formal methods and performance of their derived formal analysis tools, we
have instantiated our language-independent deductive program verifier [12] by plugging-
in three real-world language semantics, C, Java, and JavaScript, and used them to verify
full functional correctness of challenging heap-manipulating programs such as AVL trees
and red-black trees, written in each different language. Performance of the derived
verifiers is comparable to other state-of-the-art language-specific verifiers. For example,
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VCDryad [17], a separation logic verifier for C built on top of VCC [18], takes 260 seconds
to verify only the balance function in AVL, while it takes our derived C verifier 210
seconds to verify AVL insert (including balance). This result is supporting evidence for
reusability of the universal formal methods.

End-to-End Verification In end-to-end verification, it is common to build a formal
model of a system of interest at a high-level, reason about desirable properties of the
model, generate (either automatically or manually) an implementation from the model
(possibly in multiple steps), and prove that the implementation refines the model. Ideally,
the refinement proof includes reasoning about low-level properties (e.g., memory safety)
of the implementation, and preservation of the high-level properties of the model in the
generated implementation. This verification methodology allows us to reason about each
of the properties at the right level of abstraction.

We have demonstrated that our developed techniques and tools successfully realize the
end-to-end verification methodology. We give an executable formal model of a system as
a set of rewrite rules, and reason about properties of the model using the reachability
logic theorem prover. Then we take an implementation of the system, and prove the
refinement using cut-bisimulation, that is, that the implementation is consistent with
the model. We can also ensure that the properties of the model are preserved in the
implementation by showing that the cut-simulation relation is property-preserving.

Contributions Below are the primary contributions of this thesis:

• We have developed the first cross-language program equivalence checker, based on
a novel notion of cut-bisimulation, and in the process we also significantly improved
the existing language-parametric deductive program verifier.

• We have specified a complete semantics of a high-profile language, JavaScript, and
showed that the specification effort is affordable.

• We have instantiated the universal program verifier with four real-world program-
ming languages, C, Java, JavaScript, and EVM, where both JavaScript and EVM
verifiers are the first deductive program verifiers for these languages, to the best of
our knowledge.

• We have applied the derived program verifiers and program equivalence checkers
to challenging heap manipulation programs and high-profile commercial smart
contracts for end-to-end verification, demonstrating their scalability and practicality.
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CHAPTER 2: BACKGROUND

In this chapter, we provide background on Matching logic reachability and its imple-
mentation in K. We also provide background on Bisimulation and its variants. Much of
the content in this chapter comes from Stefanescu et al. [12] and Sangiorgi [19].

2.1 MATCHING LOGIC REACHABILITY

We present our program verification foundation, which turns an operational semantics
of a language into a sound and relatively complete procedure for proving reachability for
that language. The idea is to treat both the operational semantics rules and the program
correctness specifications as reachability rules between matching logic patterns, and to
use a fixed and language-independent proof system to derive the specifications.

2.1.1 Matching Logic

Matching logic [20] is a logic for specifying and reasoning about structure by means
of patterns and pattern matching. Its sentences, the patterns, are constructed using
variables, symbols, connectives and quantifiers, but no difference is made between function
and predicate symbols. In models, a pattern evaluates into a power-set domain (the set
of values that match it), in contrast to FOL where functions and predicates map into a
regular domain. Matching logic generalizes several logical frameworks important for
program analysis, such as FOL with equality and separation logic. An early variant of
matching logic was presented in [21]; here we use the latest variant in [20].

For a set of sorts S, assume Var is an S-sorted set of variables. We write x : s for x ∈ Vars;
when s is irrelevant, we write x ∈ Var. Let P(M) denote the powerset of M.

Definition 2.1. Let (S, Σ) be a many-sorted signature of symbols. Matching logic (S, Σ)-
formulae, or (S, Σ)-patterns, are inductively defined for all sorts s ∈ S as follows:

ϕs ::= x ∈ Vars | σ(ϕs1 , ..., ϕsn) with σ ∈ Σs1...sn,s

| ¬ϕs | ϕs ∧ ϕs | ∃x.ϕs with x ∈Var
(2.1)

Derived constructs can also be used, e.g., ⊥s for x : s ∧ ¬x : s, ϕ1 → ϕ2 for ¬(ϕ1 ∧ ¬ϕ2),
etc. Compared to FOL, matching logic thus collapses all the operation and predicate
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symbols into just symbols, used to build patterns, which generalize the usual FOL terms
by allowing logical connectives over them.

Definition 2.2. A matching logic (S, Σ)-model M is an S-sorted set {Ms}s∈S and together with
interpretation maps σM : Ms1 × · · · ×Msn → P(Ms) for all symbols σ ∈ Σs1...sn,s.

Usual FOL (S, Σ)-models/algebras are a special case, where |σM(m1, ..., mn)| = 1 for
any m1 ∈ Ms1 , . . . , mn ∈ Msn . Similarly, partial (S, Σ)-algebras also fall as special case,
where |σM(m1, ..., mn)| ≤ 1, since we can capture the undefinedness of σM on m1, . . . , mn

with σM(m1, ..., mn) = ∅.
We tacitly use the same notation σM for its extension P(Ms1)× · · · ×P(Msn)→ P(Ms)

to argument sets, i.e., σM(A1, ..., An) =
⋃{σM(a1, ..., an) | a1 ∈ A1, ..., an ∈ An}, where

A1 ⊆ Ms1 , ..., An ⊆ Msn .

Definition 2.3. Given a model M and a map ρ : Var → M, called an M-valuation, let its
extension ρ : Pattern→ P(M) be inductively defined as follows:

• ρ(x) = {ρ(x)}, for all x ∈ Vars

• ρ(σ(ϕs1 , ..., ϕsn)) = σM(ρ(ϕ1), ...ρ(ϕn))

• ρ(¬ϕs) = Ms \ ρ(ϕs) (“\” is set difference)

• ρ(ϕ1 ∧ ϕ2) = ρ(ϕ1) ∩ ρ(ϕ2)

• ρ(∃x.ϕ) =
⋃{ρ′(ϕ) | ρ′ : Var→ M, ρ′�Var\{x}= ρ�Var\{x}} (“ρ�A” is ρ restricted to A)

The intuition for the elements in ρ(ϕs) is that they match the pattern ϕs, with witness
ρ. For example, suppose that Σ is the signature of Peano natural numbers and M is
the model of natural numbers with 0 and succ interpreted accordingly. Then ρ(succ(x))
is interpreted as the singleton set containing only the successor of ρ(x) in M; that is,
given ρ, the pattern succ(x) is only matched by the successor of ρ(x). Further, the pattern
∃x . succ(x) is matched by all positive numbers, and 0∨ ∃x . succ(x) by all numbers, that
is, it is satisfied by M:

Definition 2.4. We write (γ, ρ) |= ϕs when the particular matching element γ ∈ ρ(ϕs) needs
to be emphasized. M satisfies ϕs, written M |= ϕs, iff ρ(ϕs) = Ms for all ρ : Var → M, iff
(γ, ρ) |= ϕs for all ρ and γ. Pattern ϕ is valid, written |= ϕ, iff M |= ϕ for all M. A matching
logic theory is a triple (S, Σ, F) with F a set of patterns.
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An interesting aspect of matching logic explained in detail in [20] is that, unlike FOL,
it can define equality. With it, we can state that a symbol σ ∈ Σs1...sn,s is interpreted as
a function with the pattern ∃y . σ(x1, ..., xn) = y (free variables are assumed universally
quantified over the entire pattern). Similar patterns can define partial/injective/surjective
functions, total relations, and so on. When a symbol σ ∈ Σs1...sn,s is to be interpreted as a
function, the functional notation σ : s1 × · · · sn → s can be used instead of the equation
above; similarly we use σ : s1 × · · · sn ⇀ s for partial functions. With this, algebraic
specifications and FOL with equality, partial or not, fall as syntactic sugar in matching
logic. For practical reasons and notational convenience, from here on we assume a
pre-defined sort Bool and take the freedom to write Bool patterns in any sort context as a
shorthand for their equality to true. With our Peano numbers above, for example, the
pattern ∃x.(succ(x) ∧ (x > 0)) is a shorthand for ∃x.(succ(x) ∧ (x > 0 = true)) and thus
specifies all the natural numbers strictly larger than 1.

Separation logic (see, e.g., [22]) can be framed as a matching logic theory over a
map model [20]. Indeed, let S = {Nat, Bool, Map} and Σ contain the map symbols
emp : → Map, _ 7→ _ : Nat×Nat ⇀ Map, and _ ∗ _ : Map×Map ⇀ Map. Consider the
canonical model of finite-domain partial maps M, where: MNat = {0, 1, 2, ...}; MMap =

partial maps from natural numbers to natural numbers with finite domains and undefined
in 0, with emp interpreted as the map undefined everywhere, with _ 7→ _ interpreted
as the corresponding one-element partial map except when the first argument is 0 in
which case it is undefined, and with _ ∗ _ interpreted as map merge when the two maps
have disjoint domains, or undefined otherwise. One may want to add pattern axioms
stating that ∗ is associative, commutative and has emp as unit, that 0 7→ a = ⊥Map, that
x 7→ a ∗ x 7→ b = ⊥Map, and so on. With the above, any separation logic formula ϕ can be
regarded, as is, as a matching logic pattern of sort Map, and ϕ is valid in separation logic
if and only if M |= ϕ [20].

Thanks to the result above, we can reuse the vast body of recent separation logic
work on formalizing and reasoning about heap patterns. For example, here is our
matching logic definition of binary trees used in our experiments: a sort Tree with symbols
leaf :→ Tree and node : Nat×Tree×Tree→ Tree to be used as constructors, together with a
symbol tree ∈ ΣNat×Tree, Map constrained by tree(0, leaf ) = emp and tree(x, node(n,t1,t2)) =

∃yz.x 7→ [n,y,z] ∗ tree(y,t1) ∗ tree(z,t2)). The symbol _ 7→ [_] : Nat× Seq ⇀ Map allocating
sequences of numbers (defined using binary associative operation _, _ with identity
ε) at consecutive locations can be defined with pattern equations x 7→ [ε] = emp and
x 7→ [a, S] = x 7→ a ∗ (x + 1) 7→ [S]. Using the sound and complete matching logic proof
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system [20], we can now prove:

1 7→ 3 ∗ 2 7→ 0 ∗ 3 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1 ∗ 9 7→ 0
→ tree(7, node(9, node(3, leaf , leaf ), leaf ))

(2.2)

We can embed such logical reasoning within any structural context, because in matching
logic we can represent arbitrary structure using symbols, like we build terms, this
way easily and naturally globalizing local reasoning. Consider, e.g., the semantics of
C [23, 24], whose configuration has more than 100 semantic cells like the ones in Figure 4.5.
The semantic cells, written using symbols 〈...〉cell, can be nested and their grouping is
associative and commutative. A top cell 〈...〉cfg holds a subcell 〈...〉mem among many
others. We can globalize the local reasoning above to the entire C configuration [20]:

〈〈1 7→3 ∗ 2 7→0 ∗ 3 7→0 ∗ 7 7→9 ∗ 8 7→1 ∗ 9 7→0 ∗m〉mem c〉cfg

→ 〈〈tree(7, node(9, node(3, leaf , leaf ), leaf )) ∗m〉mem c〉cfg

(2.3)

Free variables c : Cfg and m : Map are universally quantified and represent the memory
frame and the configuration frame.

2.1.2 Specifying Reachability

We recall the two types of reachability statements that our proof system in Section 2.1.3
derives: the one-path reachability rule [1], and the all-path reachability rule [5]. These
are pairs of matching logic patterns, in this thesis written ϕ ⇒∃ ϕ′ and, respectively,
ϕ⇒∀ ϕ′ to distinguish them, capturing the partial correctness intuition: for any program
configuration γ that matches ϕ, one path (∃), respectively each path (∀), derived using
the operational semantics from γ either diverges or otherwise reaches a configuration γ′

that matches ϕ′.
Let us fix the following: (1) an algebraic signature Σ, associated to some desired

configuration syntax, with a distinguished sort Cfg, (2) a sort-wise infinite set Var of
variables, and (3) a Σ-algebra T , the configuration model, which may but need not be a
term algebra. As usual, TCfg denotes the elements of T of sort Cfg,

Definition 2.5. [1] A one-path reachability rule is a pair ϕ⇒∃ ϕ′, with ϕ and ϕ′ patterns
(may have free variables). Rule ϕ ⇒∃ ϕ′ is weakly well-defined iff for any γ ∈ TCfg and
ρ : Var→ T with (γ, ρ) |= ϕ, there exists γ′ ∈ TCfg with (γ′, ρ) |= ϕ′. A reachability system
S is a set of reachability rules. S is weakly well-defined iff each rule is weakly well-defined. S
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induces a transition system (T ,⇒TS ) on the configuration model: γ ⇒TS γ′ for γ, γ′ ∈ TCfg

iff there is some rule ϕ ⇒∃ ϕ′ in S and some valuation ρ : Var→ T with (γ, ρ) |= ϕ and
(γ′, ρ) |= ϕ′. A ⇒TS -path is a finite sequence γ0 ⇒TS ... ⇒TS γn with γ0,...,γn ∈ TCfg. A
⇒TS -path is complete iff it is not a strict prefix of any other⇒TS -path.

We assume an operational semantics is a set of reduction rules “l ⇒ r where b”, with l
and r configuration terms and b a boolean side condition constraining the variables of
l, r. Operational semantics styles using only such rules include evaluation contexts [25],
the CHAM [26], and K [27]. Several large languages have been given semantics in such
styles, including the ones used in this thesis: C, Java, JavaScript. The reachability proof
system below works with any set of rules of this form, being agnostic to the particular
semantics style.

A rule “l ⇒ r where b” states that a ground configuration γ which is an instance of l
and satisfies condition b reduces to an instance γ′ of r. Matching logic can express terms
with constraints as particular patterns: l ∧ b is satisfied by exactly such γ. Thus, such a
semantics is a particular weakly well-defined reachability system S with rules of the form
“l ∧ b⇒∃ r”. The weakly well-defined condition on S guarantees that if γ matches the
left-hand-side of a rule in S , then the respective rule induces an outgoing transition from
γ. The transition system induced by S describes precisely the behavior of any program
in any given state. See Section 2.2.1 (and particularly Figure 2.2) for a sample operational
semantics based on evaluation contexts for the IMP language and an example of how we
we view the semantics rules as one-path reachability rules.

Definition 2.6. [1] A one-path reachability rule ϕ⇒∃ ϕ′ is satisfied, S |= ϕ⇒∃ ϕ′, iff for all
γ ∈ TCfg and ρ : Var → T such that (γ, ρ) |= ϕ, there is either a⇒TS -path from γ to some γ′

such that (γ′, ρ) |= ϕ′, or there is a diverging execution γ⇒TS γ1 ⇒TS γ2 ⇒TS · · · from γ.

We next recall the all-path variant from [5].

Definition 2.7. [5] With the notation in Definition 2.5, an all-path reachability rule is a pair
ϕ ⇒∀ ϕ′. Rule ϕ ⇒∀ ϕ′ is satisfied, S |= ϕ⇒∀ ϕ′, iff for all complete ⇒TS -paths τ starting
with γ ∈ TCfg and for all ρ : Var→ T such that (γ, ρ) |= ϕ, there exists some γ′ ∈ τ such that
(γ′, ρ) |= ϕ′.

The semantic validity of reachability rules captures the same intuition of partial
correctness as Hoare logic, but in more general terms of reachability. If the language
defined by S is deterministic, then the notions of one-path and all-path above coincide.
A Hoare triple describes the resulting state after the execution finishes, so it corresponds
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to a reachability rule where the right-hand-side contains no remaining code. However,
reachability rules are strictly more expressive than Hoare triples, as they can also specify
intermediate configurations (the code in the right-hand-side need not be empty). Like
Hoare triples, reachability rules can only specify properties of complete paths (terminating
execution paths). We do not discuss total correctness; however, one can use existing
techniques to break reasoning about a non-terminating program into reasoning about its
terminating components. Crucially, reachability rules provide a unified representation
for both semantic rules and program specifications. This makes them perfectly suitable
for our goal to obtain program verifiers from operational semantics.

The correctness property of a racing increment program in the context of a simple
imperative language can be specified by

〈〈x = x + 1; || x = x + 1;〉code 〈x 7→ m〉state〉cfg

⇒∀ ∃n (〈〈〉code 〈x 7→ n〉state〉cfg

∧ (n = m +Int 1∨ n = m +Int 2)

(2.4)

which states that every terminating execution reaches a state where execution of both
threads is complete and the value of x has increased by 1 or 2 (this code has a race). As
mentioned before, for deterministic programs, the one-path and the all-path reachability
coincide. For example, the correctness property of a program computing the sum of all
the natural numbers strictly less than n would be

〈〈s = 0; while(--n) s = s + n;〉code

〈n 7→ n, s 7→ s〉state〉cfg ∧ n ≥Int 1
⇒∃ 〈〈〉code 〈n 7→ 0, s 7→ n ∗Int (n−Int 1) /Int2〉state〉cfg

(2.5)

See Section 2.2.3 (especially Figure 2.5) for a full reachability logic proof of this rule.

2.1.3 Reachability Proof System

Figure 2.1 shows our proof system for both one-path and all-path reachability, which
we refer to as reachability logic. It combines the one-path reachability proof system in [1]
with the all-path one in [5], taking advantage of recent developments in matching logic
in [20]. The target language is given as a weakly well-defined reachability system S . The
soundness result (Theorem 2.1) guarantees that S |= ϕ⇒Q ϕ′ if S ` ϕ⇒Q ϕ′ is derivable,
where Q ∈ {∀, ∃}. The proof system derives more general sequents “S ,A `C ϕ⇒Q ϕ′”,
where A and C are sets of reachability rules. The rules in A are called axioms and
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Step :
|= ϕ→ ∨

ϕl⇒∃ϕr ∈ S ∃FreeVars(ϕl).ϕl

|= ((ϕ ∧ ϕl) 6= ⊥Cfg) ∧ ϕr → ϕ′ for each ϕl ⇒∃ ϕr ∈ S
S ,A `C ϕ⇒∀ ϕ′

Axiom :
ϕ⇒Q ϕ′ ∈ S ∪A ψ is FOL formula (logical frame)

S ,A `C ϕ ∧ ψ⇒Q ϕ′ ∧ ψ
Reflexivity :

·
S ,A ` ϕ⇒Q ϕ

Transitivity :
S ,A `C ϕ1 ⇒Q ϕ2 S ,A∪ C ` ϕ2 ⇒Q ϕ3

S ,A `C ϕ1 ⇒Q ϕ3
Consequence :
|= ϕ1 → ϕ′1 S ,A `C ϕ′1 ⇒Q ϕ′2 |= ϕ′2 → ϕ2

S ,A `C ϕ1 ⇒Q ϕ2
Case Analysis :
S ,A `C ϕ1 ⇒Q ϕ S ,A `C ϕ2 ⇒Q ϕ

S ,A `C ϕ1 ∨ ϕ2 ⇒Q ϕ

Abstraction :
S ,A `C ϕ⇒Q ϕ′ X ∩ FreeVars(ϕ′) = ∅

S ,A `C ∃X ϕ⇒Q ϕ′

Circularity :
S ,A `C∪{ϕ⇒Q ϕ′} ϕ⇒Q ϕ′

S ,A `C ϕ⇒Q ϕ′

Figure 2.1: Proof system for reachability. We assume the free variables of ϕl ⇒∃ ϕr in
the Step proof rule are fresh (e.g., disjoint from those of ϕ⇒∀ ϕ′). Here Q ∈ {∀, ∃}.

rules in C are called circularities. If A or C does not appear in a sequent, it is empty:
S `C ϕ⇒Q ϕ′ is shorthand for S , ∅ `C ϕ⇒Q ϕ′, and S ,A ` ϕ⇒Q ϕ′ is shorthand for
S ,A `∅ ϕ⇒Q ϕ′. Initially, A and C are empty. Note that “→” in Step and Consequence

denotes implication.
The intuition is that the reachability rules in A can be assumed valid, while those in C

have been postulated but not yet justified. After making progress from ϕ (at least one
derivation by Step or by Axiom), the rules in C become (coinductively) valid and can
be used in derivations by Axiom. During the proof, circularities can be added to C via
Circularity, flushed into A by Transitivity, and used via Axiom. The semantics of
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sequent S ,A `C ϕ⇒Q ϕ′ (read “S with axioms A and circularities C proves ϕ⇒Q ϕ′”)
is: ϕ ⇒Q ϕ′ holds if the rules in A hold and those in C hold after taking at least one
step from ϕ in the transition system (⇒TS , T ). Moreover, if C 6= ∅ then ϕ reaches ϕ′

after at least one step on all complete paths when Q = ∀ and on at least one path when
Q = ∃. As a consequence of this definition, any rule ϕ⇒Q ϕ′ derived by Circularity

has the property that ϕ reaches ϕ′ after at least one step, due to Circularity having a
prerequisite S ,A `C∪{ϕ⇒Q ϕ′} ϕ ⇒Q ϕ′ (with a non-empty set of circularities). We next
discuss the proof rules.

Step derives a sequent where ϕ reaches ϕ′ in one step on all paths. The first premise
ensures any configuration matching ϕ matches the left-hand-side ϕl of some rule in
S and thus, as S is weakly well-defined, can take a step: if (γ, ρ) |= ϕ then there is a
ϕl ⇒∃ ϕr ∈ S and a valuation ρ′ of the free variables of ϕl s.t. (γ, ρ′) |= ϕl, and thus γ

has at least one⇒TS -successor generated by ϕl ⇒∃ ϕr. The second premise ensures that
each⇒TS -successor of a configuration matching ϕ matches ϕ′: if γ⇒TS γ′ and γ matches
ϕ then there is some rule ϕl ⇒∃ ϕr ∈ S and ρ : Var→ T such that (γ, ρ) |= ϕ ∧ ϕl and
(γ′, ρ) |= ϕr; then the second part implies γ′ matches ϕ′.

Axiom applies a trusted rule. Reflexivity and Transitivity capture the closure
properties of the reachability relation. Reflexivity requires C empty to ensure that rules
derived with non-empty C take at least one step. Transitivity enables the circularities as
axioms for the second premise, since if C is not empty, the first premise is guaranteed to
take a step. Consequence, Case Analysis and Abstraction are adapted from Hoare
logic. Ignoring circularities, these seven proof rules are the formal infrastructure for
symbolic execution.

Circularity has a coinductive nature, allowing us to make new circularity claims. We
typically make such claims for code with repetitive behaviors, such as loops, recursive
functions, jumps, etc. If there is a derivation of the claim using itself as a circularity,
then the claim holds. This would obviously be unsound if the new assumption was
available immediately, but requiring progress (taking at least on step before circularities
can be used) ensures that only diverging executions correspond to endless invocation of
a circularity. Formally, we have the following result:

Theorem 2.1. The proof system in Figure 2.1 is sound: if S ` ϕ ⇒Q ϕ′ then S |= ϕ ⇒Q ϕ′

(Q ∈ {∃, ∀}). Under some mild assumptions, it is relatively complete: given an oracle for T , if
S |= ϕ⇒Q ϕ′ then S ` ϕ⇒Q ϕ′.

The proof for the all-path case is available in [5], and for the one-path case in [3]. When
considering the completeness of program verification logics, notice that if the logic for
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Int ::= Arbitrarily large integers
Var ::= Arbitrarily variables (identifiers)
Exp ::= Int | Exp + Exp | Exp - Exp | --Var

Stmt ::= {} | {Stmt} | Var = Exp; | Stmt Stmt
| if(Exp)Stmt else Stmt
| while(Exp)Stmt

C ::= � | C Stmt | Var = C; | C + Exp | Exp + C
| if(C)Stmt else Stmt

〈〈C[X ⇒ I]〉code 〈X 7→ I, σ〉state〉cfg

I1 + I2 ⇒ I1 +Int I2
I1 - I2 ⇒ I1 −Int I2
〈〈C[--X ⇒ I −Int 1]〉code 〈X 7→ (I ⇒ I −Int 1), σ〉state〉cfg

{} S⇒ S
{S}⇒ S
〈〈C[X = I;⇒ {}]〉code 〈X 7→ (I′ ⇒ I), σ〉state〉cfg

if(0) S1 else S2 ⇒ S2
if(I) S1 else S2 ⇒ S1 where I 6=Int 0
while(E) S⇒ if(E){S while(E) S} else {}

Figure 2.2: Reduction semantics of a simple imperative language with auto-decrement.
Configurations have the form 〈〈...〉code 〈...〉state〉cfg. C ranges over evaluation contexts;
X over variables; I, I′, I1, I2 over integers; σ over states; S, S1, S2 over statements; and
E over expressions. Context[t1 ⇒ t′1, ..., tn ⇒ t′n] is shorthand for Context[t1, ..., tn] ⇒
Context[t′1, ..., t′n], and t⇒ t′ is shorthand for 〈〈C[t⇒ t′]〉code 〈σ〉state〉cfg.

specifying state properties (in this case, matching logic) is undecidable, then the entire
program verification logic (in this case, reachability logic) is undecidable. By relative
completeness, we prove the completeness of the proof system in Figure 2.1 assuming we
can decide any matching logic formula in T , which means that any undecidability comes
from T and is unavoidable. This theorem generalizes similar results from Hoare logic,
but in a language-independent setting.

2.2 REACHABILITY LOGIC VS. HOARE LOGIC

Here we briefly compare reachability logic (Section 2.1.3) with Hoare logic by means of
a simple example, aiming to convey the message that verification using reachability logic
is not harder than using Hoare logic, even when done manually.
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{ψ[E/X]} X = E; {ψ} (HL-Asgn)

{ψ1} S1 {ψ2} {ψ2} S2 {ψ3}
{ψ1} S1 S2 {ψ3}

(HL-Seq)

|= ψ′1 → ψ1 {ψ1} S {ψ2} |= ψ2 → ψ′2
{ψ′1} S {ψ′2}

(HL-Cnsq)

{ψinv ∧ E 6=Int 0} S {ψinv}
{ψinv} while(E)S {ψinv ∧ E =Int 0} (HL-While)

Figure 2.3: Part of Hoare logic proof system

2.2.1 The Program and the Language

Consider the following snippet, say SUM, part of a C-like program summing up the
natural numbers smaller than n:

s = 0;

while(--n) s = s + n;

Assume a simplified language whose loops cannot break/return/jump, whose integers
are arbitrarily large, and without local variables (so blocks are used for grouping only).
Figure 2.2 shows a reduction-style executable semantics of the needed language fragment;
with the notation explained in the caption of Figure 2.2, the semantics consists of ten
reduction rules between configuration terms. Each of these rules can be regarded as
a one-path reachability rule, with side conditions as constraints on the left-hand-side
pattern of the rule. For example, the second rule for the conditional statement becomes
the following one-path reachability rule:

〈〈C[if(I) S1 else S2]〉code 〈σ〉state〉cfg ∧ I 6=Int 0
⇒∃ 〈〈C[S1]〉code 〈σ〉state〉cfg

(2.6)

Mathematical domain operations (+Int, etc.) are subscripted with Int to distinguish them
from the language constructs.

2.2.2 Hoare Logic Proof

The Hoare logic precondition ψpre is n =Int n ∧ n ≥Int 1, and the postcondition ψpost is
n =Int 0 ∧ s =Int n ∗Int (n−Int 1) /Int2. The variable n using italic font is introduced to
capture the original value of the program variable n, so that we can use it to express the
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HL-While(7), HL-Cnsq

HL-Seq(8,9)
HL-Asgn {ψ2} s=s+n; {ψ3}

(8) {ψ3} n=n-1; {ψinv}
(9) HL-Asgn, HL-Cnsq

{ψ2} s=s+n;n=n-1; {ψinv}
(7)

{ψinv} LOOP’ {ψpost}
(6)

HL-Cnsq(3)
HL-Seq(4,5)

HL-Asgn {ψpre} s=0; {ψpre ∧ s =Int 0} (4) {ψpre ∧ s =Int 0} n=n-1; {ψ1}
(5) HL-Asgn

{ψpre} s=0;n=n-1; {ψ1}
(3)

{ψpre} s=0;n=n-1; {ψinv}
(2)

HL-Seq(2,6)
{ψpre} s=0;n=n-1; {ψinv} {ψinv} LOOP’ {ψpost}

{ψpre} SUM’ {ψpost}
(1)

(a) Hoare logic proof of SUM’

ψpre ≡ n =Int n ∧ n ≥Int 1
ψpost ≡ n =Int 0 ∧ s =Int n ∗Int (n−Int 1) /Int2
ψ1 ≡ n =Int n−Int 1 ∧ n ≥Int 1 ∧ s =Int 0
Σj

i ≡ (j +Int i) ∗Int (j−Int i +Int 1) /Int2

ψinv ≡ n ≥Int 0 ∧ s =Int Σn−Int1
n+Int1

LOOP’ ≡ while(n){s = s + n; n = n - 1;}

ψ2 ≡ n >Int 0 ∧ s =Int Σn−Int1
n+Int1

ψ3 ≡ n >Int 0 ∧ s =Int Σn−Int1
n

(b) Notations for Hoare logic proof

Figure 2.4: Hoare logic proof of SUM. The numbers appearing in the side of each proof
steps are not part of the proofs, but only references to be used in the explanation of the
proofs in Section 2.2.2.

value of s in the post-condition (the loop changes the value of n). A typical simplification
in hand proofs using Hoare logic is to collapse expression constructs in the language
with operations in the underlying domain, e.g., + with +Int. Tools, however, distinguish
the two and implement translations from the former to the latter; e.g., + may be 32-bit
while +Int may be arbitrary precision, or + may have a concurrent semantics allowing
all the interleavings of its arguments’ behaviors, etc. Since our language is simple, we
do this translation by hand on the fly, but for clarity we use mathematical operations in
formulae.

To derive the Hoare triple {ψpre} SUM {ψpost}, we need to find a loop invariant ψinv and
then use the invariant proof rule as shown in Figure 2.3. The loop condition is inserted
within formulae. Thus, when verifying programs using Hoare logic, expressions cannot
have side effects; programs need to be modified to isolate side effects from computed
values of expressions, which is inherently language-specific.
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Transitivity (11,12)

Axiom
+

...

S , {µ} `∅ ϕ2 ∧ n′>Int 1⇒∃ ϕ3
(11)

S , {µ} `∅ ϕ3 ⇒∃ ϕpost
(12) Axiom(µ)

S , {µ} `∅ ϕ2 ∧ n′>Int 1⇒∃ ϕpost
(9)

Case(9,10)
S , {µ} `∅ ϕ2 ∧ n′>Int 1⇒∃ ϕpost

Axiom
+

...

S , {µ} `∅ ϕ2 ∧ n′≤Int 1⇒∃ ϕpost
(10)

S , {µ} `∅ ϕ2 ⇒∃ ϕpost
(8)

Transitivity (2,3)

Consequence (4)

Axiom

S , ∅ `∅ ϕpre ⇒∃ ϕ1
(4)

S , ∅ `∅ ϕpre ⇒∃ ∃n′.ϕinv
(2)

Transitivity (7,8)

Axiom

S , ∅ `{µ} ϕinv ⇒∃ ϕ2
(7)
S , {µ} `∅ ϕ2 ⇒∃ ϕpost

S , ∅ `{µ} ϕinv ⇒∃ ϕpost
(6)

S , ∅ `∅ ϕinv ⇒∃ ϕpost
(5) Circularity (6)

S , ∅ `∅ ∃n′.ϕinv ⇒∃ ϕpost
(3) Abstraction (5)

S , ∅ `∅ ϕpre ⇒∃ ϕpost
(1)

(a) Reachability logic proof of SUM

ϕpre ≡ 〈〈SUM〉code 〈n 7→ n, s 7→ s〉state〉cfg ∧ n ≥Int 1
ϕpost ≡ 〈〈〉code 〈n 7→ 0, s 7→ n ∗Int (n−Int 1) /Int2〉state〉cfg

ϕinv ≡ 〈〈LOOP〉code 〈n 7→ n′, s 7→ Σn−Int1
n′ 〉state〉cfg ∧ n′ ≥Int 1

µ ≡ ϕinv⇒∃ ϕpost
ϕ1 ≡ 〈〈LOOP〉code 〈n 7→ n, s 7→ 0〉state〉cfg ∧ n ≥Int 1
ϕ2 ≡ 〈〈IF〉code 〈n 7→ n′, s 7→ Σn−Int1

n′ 〉state〉cfg ∧ n′ ≥Int 1
ϕ3 ≡ 〈〈LOOP〉code 〈n 7→n′−Int1, s 7→Σn−Int1

n′−Int1
〉state〉cfg ∧ n′>Int 1

LOOP ≡ while(--n){ s = s + n; }

IF ≡ if(--n){s = s + n; LOOP} else {}

(b) Notations for reachability logic proof

Figure 2.5: Reachability logic proofs of SUM. The numbers appearing in the side of each
proof steps are not part of the proofs, but only references to be used in the explanation of
the proofs in Section 2.2.3.

For example, VCC [18] expands the loop above into one having more than a dozen
statements in its translation to Boogie [28]. To keep it human readable, we manually
modify SUM in a minimal (but adhoc) way to the equivalent SUM’, s = 0; n = n - 1;

while(n) { s = s + n; n = n - 1; }, which can be verified using conventional Hoare
logic. The proof can be derived as shown in Figure 2.4. Step (1) factors the proof using
the loop invariant ψinv. First we show using HL-Asgn twice (4,5) followed by HL-Seq (3)
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that ψ1 is reachable before the loop (3), which implies the invariant holds when the loop
is reached (2). To prove the invariant, we use HL-While at (6), which generates the proof
obligation (7) for the loop body, noticing that ψ2 is logically equivalent to ψinv ∧ n 6=Int 0.
The rest follows by two applications of HL-Asgn at (8,9), followed by an HL-Seq which
concludes.

2.2.3 Reachability Logic Proof

Let us now verify the original program SUM (with --n in the while condition) using
the generic reachability logic instantiated with the executable semantics of the language.
Notice that we only transformed the code in Section 2.2.2 because the Hoare logic proof
rule for while assumes there are no side-effects in the condition.

Let S be the reachability logic system in Figure 2.2, where each rule is regarded as a one-
path rule as explained in Section 2.2.1. The reachability logic rule stating the correctness
of SUM is ϕpre ⇒∃ ϕpost, which can be derived as shown in Figure 2.5. Step (1) factors
the proof using the loop invariant existentially quantified in all its new (mathematical)
variables. To show that the invariant holds when the loop is reached (2), we “execute”
the initial pattern ϕpre with the operational semantics rule of assignment (4), reaching
pattern ϕ1, which implies (in matching logic) the existentially quantified invariant. To
prove the existentially quantified invariant, thanks to Abstraction we first eliminate the
existential quantifier (3) and then, expecting a circular behavior of the loop, we add the
proof obligation as a circularity (5). The rest is just symbolic execution of the loop body
using the executable semantics and giving priority to the circularity when it matches.
Specifically, the loop is unrolled using the executable semantics of while (7), then a case
analysis is initiated on whether the value held by n is larger than 1 or not (8), and ϕpost is
indeed reached on both paths (9,10). The circularity is used on the positive branch only
(12), as expected. In this proof we do not mention the Consequence steps that change a
formula into an equivalent formula (i.e. ϕ2 into ϕ2 ∧ (n′ ≤Int 1∨ n′ >Int 1)).

2.2.4 Discussion

Forty-five years of Hoare logic cannot be taken lightly. We do not expect the reader
to immediately agree with us that the reachability logic proof above is more intuitive
than the Hoare logic proof. We do, however, urge the reader to consider the main
practical benefits of the reachability logic proof: it used the executable semantics of the
programming language unchanged and only a fixed set of language-independent proof
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rules, without requiring any other semantics to be crafted or the program to be modified
in order to be verifiable.

These benefits cannot be taken lightly either, especially when certifiable verification is
a concern. The current state of the art in certifiable verification is to define an alternative
Hoare logic of the language (or a corresponding VC generator) and prove its soundness
w.r.t. the trusted operational semantics; similarly, the transformed program needs to
be in the correct relationship with the original program (the transformed program may
lose behaviors) also using the operational semantics. These tasks are quite tedious when
real-world languages are concerned. Besides, they need to be maintained as the language
evolves, or as bugs are found and fixed in the operational semantics, or even as the
operational semantics is refactored. For example, the semantics of C [24] has over 2,500
rules and according to the repository history it has been updated at a rate of two commits
per day over the last 3 years. In this light, one can regard the reachability logic proof
system as an effective mechanism to turn an operational semantics into a corresponding
axiomatic semantics.

2.3 REACHABILITY LOGIC THEOREM PROVER IN K

We discuss our novel implementation of the K verification infrastructure, depicted
in Figure 4.1, based on the language-independent proof system in Figure 2.1. Our
framework takes an operational semantics defined in K [27] as a parameter and uses it
to automatically derive program correctness properties. In other words, our verification
infrastructure automatically generates a program verifier from the semantics, which is
correct-by-construction w.r.t. the semantics. As discussed in Section 2.1.2, we view a
semantics as a set of reachability rules l ∧ b ⇒∃ r. A major difficulty in a language-
independent setting is that standard language features relevant to verification, like
control flow or memory access, are not explicit, but rather implicit (defined through the
semantics).

The generated program verifier proves a set of user provided reachability rules, repre-
senting the program correctness specifications of the code being verified, typically one
for each recursive function and loop. For the sake of automation, the rules have the
more restrictive form π ∧ ψ⇒∀ π′ ∧ ψ′, with π ∧ ψ and π′ ∧ ψ′ conjunctive patterns. A
conjunctive pattern is a formula π ∧ ψ with π a program configuration term with variables,
and ψ a formula without any configuration terms. We use all-path rules for specifications
to capture some of the local non-determinism (e.g. the non-deterministic C expression
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1 Q := successors(ϕ)
2 if Q is empty and 6|= ϕ→ ϕ′ then fail

3 while Q not empty

4 pop ϕc from Q
5 if |= ϕc → ϕ′ continue
6 else if ∃ σ with |= ϕc → σ(ϕl) for ϕl ⇒∀ ϕr ∈ C
7 add σ(ϕr) ∧ frame(ϕc) to Q
8 else

9 Q′ := successors(ϕc)
10 if Q′ is empty then fail

11 add all Q′ to Q

Figure 2.6: Reachability logic theorem prover algorithm

evaluation order). Section 4.1.1 shows examples of specifications. As discussed there, we
use conventions already supported by K to have more compact specifications.

The generated program verifier is fully automated. The user only provides the program
correctness specifications. The verifier uses the operational semantics for symbolic
execution and performs matching logic reasoning automatically. Specifically, to prove a
set C of rules between conjunctive patterns, it uses the algorithm in Figure 2.6 to derive

S , ∅ `C ϕ⇒∀ ϕ′ (2.7)

for each ϕ⇒∀ ϕ′ ∈ C, where successors(ϕ) returns, as a set, the disjunction of conjunctive
patterns representing the one-step successors of ϕ (see Section 2.3.1), σ is a substitution,
and frame(π ∧ ψ) returns ψ. The algorithm uses a queue Q of conjunctive patterns, which
is initialized with the one-step successors of ϕ (lines 1-2). At each step the main loop
(lines 3-11) processes a conjunctive pattern ϕc from Q. If ϕc implies the postcondition ϕ′

then verification succeeds on this execution path (line 5). If ϕc matches the left-hand-side
of a specification rule in C then the respective rule is used to summarize its corresponding
code (lines 6-7). Finally, if none of the cases above hold, add all one-step successors of ϕc

to Q (lines 9-11). Using a specification is preferred over the operational semantics. If there
are no successors (lines 2 and 10), the verification fails, as some concrete configurations
satisfying the formula may not have a successor (e.g. a dereferenced pointer may be
NULL in C). Our algorithm is incomplete, i.e., fail means that the specification cannot be
verified successfully, not that it is violated by the code. Each pattern is simplified using
function/abstraction definitions and lemmas before being added to Q.

The algorithm automates the proof system in Figure 2.1. Implementing the computation
of multiple steps of symbolic execution across multiple paths with a queue corresponds
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to Transitivity and Reflexivity. Computing successors (line 1 and line 9) corresponds
to Step, and splitting the subsequent disjunction to Case Analysis. Finishing an exe-
cution path (line 5) corresponds to Consequence. Using a specification rule (lines 6-7)
corresponds to Consequence, Abstraction, and Axiom. Since Q is initialized with
the successors of ϕ, a step of Transitivity already moved C to A. Consequence and
Abstraction simplify a pattern before adding it to Q. We use Circularity on the set C
before the beginning of the algorithm. This is sound because in line 1, we compute the
successors of ϕ outside the while loop, which amounts to Step + Transitivity, and then
we use the rules in C with Axiom in the body of the loop in line 6. Thus, we can conclude
that all the rules in C hold.

Our verification infrastructure is implemented in Java, and uses Z3 [29]. It consists of
approximately 30,000 non-blank lines of code, and it took about 2.5 man-years.

2.3.1 Symbolic Execution

Language-independent symbolic execution is complicated by the absence of explicit
control flow statements, which are language specific. We handle control flow statements
by noticing they are generally unifiable with the left-hand-sides of several semantics rules.
Consider the C code “if (b) x = 1; else x = 0;”. It does not match the left-hand-side
of any of the two semantics rules of if (they require the condition to be either the constant
true or the constant false [23]), but it is unifiable with the left-hand-sides of both rules. We
achieve symbolic execution by performing narrowing [30] (i.e., rewriting with unification
instead of matching). When using the semantics rules, taking steps of rewriting on a
ground configuration yields concrete execution, while taking steps of narrowing yields
symbolic execution.

We compute successors(π ∧ ψ) using unification modulo theories. We distinguish several
theories (e.g. booleans, integers, sequences, sets, maps, etc) that the underlying SMT
solver can reason about. Specifically, we unify π ∧ψ with the left-hand-side of a semantics
rule πl ∧ ψl. We begin with the syntactic unification of π and πl. Upon encountering
corresponding subterms (π′ in π and π′l in πl) which are both terms of one of the theories
above, we record an equality π′ = π′l rather than decomposing the subterms further
(if one is in a theory, and the other one is in a different theory or is not in any theory,
unification fails). If this stage is successful, we end up with a conjunction ψu of equalities,
some having a variable in one side and some with both sides in one of the theories. Then
we check the satisfiability of ψ ∧ ψu ∧ ψl using the SMT solver. If it is satisfiable, then
πr ∧ ψ ∧ ψu ∧ ψl ∧ ψr is a successor of π ∧ ψ, where πr ∧ ψr is the right-hand-side of the
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semantics rule. Then successors is the disjunction of ϕr ∧ ψu ∧ ψ ∧ ψl over all rules in S
and all unification solutions ψu. While in general this disjunction may not be finite [5], in
practice it is finite for the examples we considered. Intuitively, “collecting” the constraints
ψu ∧ ψl ∧ ψr is similar to collecting the path constraint in traditional symbolic execution
(but is done in a language-generic manner). For instance, the if case above, results
in collecting the constraints b = true and b = false. Notice that |= ϕ ∧ ϕl 6= ⊥Cfg is
satisfiable iff ϕ and ϕl are unifiable. Thus, we are sound by Step.

Several optimizations improve performance; we mention two. First, as the semantics
of a real-world language consists of thousands of rules, the verifier uses an indexing
algorithm to determine which rules may apply. Second, the verifier caches partial
unification results, e.g., for each semantics rule, the verifier caches pairs of terms (t1, t2)

that fail to unify with t2 a subterm of the left-hand-side of the rule.

2.3.2 Matching Logic Prover

Matching logic reasoning is used in three cases in our algorithm: (1) to finish the proof
(line 5), (2) to use a specification rule to summarize a code fragment (line 6), and (3) to
simplify a pattern (before adding it to Q).

As discussed in Section 2.1.1, we use recursively-defined heap abstractions to specify
the correctness of programs manipulating lists and trees in the heap. Such definitions
exploit the recursive nature of the data-structures , e.g.,

tree(x, node(n, tl, tr)) = ∃yz.x 7→ [n, y, z], tree(y, tl), tree(z, tr)

tree(0, leaf) = emp
(2.8)

There is an extensive literature on such recursive definitions, especially in the context of
separation logic [31, 32, 33].

We employ two heuristics. The first is similar to natural proofs [32, 33]. We unfold a
recursive definition during symbolic execution when we add conjunctive pattern π ∧ ψ

to Q if unfolding does not introduce a disjunction (i.e., ψ guarantee that only one of
the cases in the definition holds). For example, in C, if ψ implies the head pointer p
of a tree is NULL, then we conclude the tree is empty. If ψ implies p is not NULL, then we
conclude p points to an object containing pointers to the left and right subtrees. Successful
unfolding occurs at the start of symbolic execution, after a split (e.g. caused by if), or
after using a specification rule (line 7). Unfolding makes a pattern more concrete, thus
enabling operational semantics rules to apply. We similarly unfold recursive definitions
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on the right-hand-side of an implication. Unfolding is language-independent, as it is not
triggered by memory accesses or other language-specific features.

While the above heuristic works on tree manipulating programs, it fails on list segment
manipulating programs, as a list segment can be unfolded at both ends. We solve this
by adapting the folding axioms proposed in [34] to work with data, and using them as
additional lemmas for list segments on the left-hand-side of an implication, e.g.,

lseg(x, y, α), lseg(y, 0, β) = lseg(x, 0, α · β) (2.9)

Folding and unfolding are implemented by rewriting using the same infrastructure used
for symbolic execution. The recursive definitions and the lemmas are all given as K rules.

As shown in Section 4.1.1, we use equationally constrained function and predicate
symbols (like bst and tree_keys); e.g.,

height(node(_, tl, tr)) = 1 + max(height(tl), height(tr))

height(leaf) = 0
height(_) ≥ 0 = true

(2.10)

The first two define the height of a tree, while the third is a lemma. These equations are
given as K rules, and are used in two ways: to simplify a formula by rewriting (oriented
from left to right), and to be added in Z3 (see Section 2.3.3).

2.3.3 Integration with Z3

We use Z3 [29] to discharge the formulae that arise during matching logic reasoning
(required by Consequence and Step). These formulae involve the following theories:
integer, bitvector, set, sequence, and floating-point. We chose Z3 because of its very good
performance, and because it offers features that are not part of the SMT-LIB standard,
including variables instantiation patterns for universally quantified axioms, and mapping
functions over arrays. While some of the formulae are not in decidable theories, in
practice Z3 successfully checks them.

As discussed in Section 2.3.2, the formulae contain equationally constrained symbols.
We encode these in Z3 as uninterpreted functions combined with assertions of the form
“∀X. t = t′”. Z3 handles such assertions efficiently using E-matching [35]. By default, we
specify the left-hand-side of these equations as the variables instantiation pattern, which
in effect makes the equations only apply from left to right. This heuristic is effective
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in keeping the number of terms small. For a select few equations, like the ones for the
sorted predicate for sequences, we wrote the patterns by hand.

Sets are one of the most important theories that we offer in our verifiers. We handle the
set theory as proposed in [36]. We encode the sets themselves as arrays from the elements
to true or false. Then, we encode the set operations as mapping of boolean functions over
the arrays, and set membership as array lookup. The array map feature is only available
in Z3, and is not part of the SMT-LIB standard. This results in a decidable theory for sets.

Unfortunately, this set encoding does not work well with the encoding of sequence
theory symbols as equationally constrained uninterpreted functions. This case arises
during the verification of the sorting examples. For this reason, we developed an encoding
of sets using uninterpreted functions and universally quantified assertions. This encoding
does not handle the set theory in a decidable way, but in practice it works with the
sequence theory.

JavaScript verification generates floating-point constraints. Z3 has basic support for
floating-point, but it does not integrate well with other theories. For this reason, we
abstracted floating-point values to values in a partial-order relation, when the values only
occur in comparisons and equality/inequality checks. This abstraction is used on the
keys of the search trees or the values in the sorted lists.

For these reasons, we have different SMT encodings for the different programs we are
verifying. We delegate to the user to choose which encodings are best suited for a given
program.

Let us discuss how this algorithm derives the reachability logic proof of the correctness
of the SUM program in Figure 2.5. Note that the algorithm derives the all-path version of
the rule instead of the one-path version derived in Figure 2.5. The two rules specify the
same property, since IMP is deterministic.

In this case, C is the set {ϕpre ⇒∀ ϕpost, ϕinv ⇒∀ ϕpost}. First, let us run the algorithm
on ϕpre ⇒∀ ϕpost. In line 1, successors(ϕpre) returns ϕ1 (corresponding to (4) in Figure 2.5).
Since Q is non-empty, we enter the body of the while loop, and we set ϕc to be ϕ1

(the single element in Q). The check |= ϕ1 → ϕpost in line 5 fails due to the syntactic
differences in the code cell, without calling Z3. Then we continue to line 6, where
the check |= ϕ1 → σ(ϕinv) succeeds for σ = {n′ 7→ n} (proof step (2) in Figure 2.5),
and ϕpost ∧ n ≥Int 1 is added to Q in line 7. In this step we use Z3 to check that
n′ = n → Σn−Int1

n′ = 0 is valid; specifically, Z3 proves that the negation of the formula
is unsatisfiable. We go through the while loop again, and this time the check in line 5
succeeds (without use of Z3), and the algorithm terminates successfully (corresponding
to (1,3) in Figure 2.5).
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Next, we run the algorithm on ϕinv ⇒∀ ϕpost (corresponding to finding the sub-proof
tree rooted at (5) in Figure 2.5). Like before, we compute successors(ϕinv) in line 1, which
returns ϕ2 (corresponding to (7) in Figure 2.5). We enter the while loop, and this time
both the checks in lines 5 and 6 fail, so we proceed to line 9. Here, we compute the
successors(ϕ2), which is

〈〈if(n′ −Int 1){s = s + n; LOOP} else {}〉code

〈n 7→ n′, s 7→ Σn−Int1
n′ 〉state〉cfg ∧ n′ ≥Int 1

(2.11)

At the next iteration of the loop, and we reach line 9 again. This time, a proper step of
narrowing is performed, and we have the following two successors added to Q (roughly
speaking, corresponding to finding the sub-proof trees rooted at (9) and (10), respectively,
in Figure 2.5):

〈〈{s = s + n; LOOP}〉code

〈n 7→ n′, s 7→ Σn−Int1
n′ 〉state〉cfg ∧ n′ ≥Int 1∧ n′ −Int 1 6= 0

(2.12)

and
〈〈{}〉code

〈n 7→ n′, s 7→ Σn−Int1
n′ 〉state〉cfg ∧ n′ ≥Int 1∧ n′ −Int 1 = 0

(2.13)

We continue iterating through the loop in a similar way going through lines 9-11, where
each formula has exactly one successor. Eventually, we reach ϕ3 (corresponding to (11) in
Figure 2.5), at which point we go through lines 6-7 (corresponding to (12) in Figure 2.5).
Finally, we reach twice formulae for which the check in line 5 succeeds, and the algorithm
terminates successfully. The successful checks in lines 5 and 6 make calls to Z3 with
similar formulae as the one shown above.

2.4 BISIMULATION

Here we provide background on bisimulation and its variants. Most of the contents in
this section come from Sangiorgi [19].

There are several notions of behavioral equivalence between transition systems, de-
pending on what kind of behaviors are considered. Notably, we have graph isomorphism,
bisimulation, and trace equivalence. Graph isomorphism is the strongest, since it requires
two transition systems be isomorphic in their graph structures. This requirement is some-
times too strong, especially in the case that only observable behaviors are considered.
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1.3 Equality of behaviours 17
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Fig. 1.2 Non-isomorphic LTSs.

is graph isomorphism. (In mathematics, two structures are isomorphic if a bijection can
be established on their components; on graphs the components are the states and the
transitions.) Is this notion satisfactory for us?

Certainly, if two LTSs are isomorphic then we expect that the corresponding states
give rise to the same interactions and should indeed be regarded as equal. What about
the converse, however? Consider the LTSs in Figure 1.2, and the interactions that are
possible from the initial processes P1 and Q1. Both processes just allow us to repeat the
sequence of interactions a, b, ad infinitum. It is undeniable that the two processes cannot
be distinguished by interactions. However, there is no isomorphism on the two LTSs, as
they have quite different shapes.

We have to conclude that graph isomorphism is too strong as a behavioural equiva-
lence for processes: it prevents us from equating processes like P1 and Q1 that should be
considered equal.

1.3.2 Equality in Automata Theory: trace equivalence

LTSs also remind us of something very important in Computer Science: automata. The
main difference between automata (precisely, we are thinking of non-deterministic automata
here) and LTSs is that an automaton has also a distinguished state designated as initial, and
a set of distinguished states designated as final. Automata Theory is well established in
Computer Science; it is therefore worth pausing on it for a moment, to see how the question
of equality of behaviours is treated there.

Automata are string recognisers. A string, say a1, . . . , an, is accepted by an automaton if
its initial state has a derivative under a1, . . . , an that is among the final states. Two automata
are equal if they accept the same language, i.e., the same set of strings. (See, e.g., [HMU06],
for details on automata theory.)

The analogous equivalence on processes is called trace equivalence. It equates two
processes P and Q if they can perform the same finite sequences of transitions; precisely,
if P has a sequence P

µ1−→ P1 · · · Pn−1
µn−→ Pn then there should be Q1, . . . ,Qn with

Q
µ1−→ Q1 · · ·Qn−1

µn−→ Qn, and the converse on the transitions from Q. Examples of
equivalent automata are given in Figures 1.3 and 1.4, where P1 and Q1 are the initial states,
and for simplicity we assume that all states are final. As processes, P1 and Q1 are indeed
trace equivalent. These equalities are reasonable and natural on automata.
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Fig. 1.7 Examples of non-bisimilar processes.

Exercise 1.4.12 (↪→) Suppose the existential quantifiers in the definition of bisimulation
were replaced by universal quantifiers. For instance, clause (1) would become:

! for all P ′ with P
µ−→ P ′, and for all Q′ such that Q

µ−→ Q′, we have P ′ R Q′;

and similarly for clause (2). Would the process Q2 of Figure 1.7 be bisimilar with itself?
What do you think bisimilarity would become? !
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Figure 2.8: Trace-equivalent, but not bisimilar systems [19]

Figure 2.7 shows as an example two transition systems that are observably equivalent
but not graph-isomorphic. On the other hand, trace equivalence is the weakest, since
it requires only input-output behaviors be the same. This requirement, however, is
sometimes too weak, when intermediate behaviors are considered. Figure 2.8 shows as
an example two transition systems that are trace-equivalent but do not have the same
intermediate behaviors. Bisimulation is located in the middle. It allows to consider
behavioral equivalence rather than structural equivalence, and also takes into account
intermediate behaviors as well as input-output behaviors.

Bisimulation also has variants, namely, strong bisimulation and weak bisimulations.
Strong bisimulation equally considers every behavior (i.e., transition), while weak bisimu-
lation considers only external (i.e., observable) behaviors, ignoring internal behaviors.

2.4.1 Preliminaries

Definition 2.8 (Labelled transition system). A labelled transition system is a triple (S ,L,→
) where S is a set of states, L is a set of labels, and→ ⊆ S ×L×S is a set of labelled transitions.
We write P

µ−→ Q when (P, µ, Q) ∈ →. A labelled transition system is deterministic when for
all P ∈ S and µ ∈ L, P

µ−→ P′ and P
µ−→ P′′ implies P′ = P′′.

Process Calculus The process calculus CCS [19], inspired by Calculus of Communicat-
ing Systems [37], can be used to algebraically represent a labelled transition system.
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P ::= P1|P2 | P1 + P2 | µ.P | 0

3.1 Basic process operators 91

sequentialisation between µ and P . More complex forms of sequentialisation can be
derived, see for instance Exercise 4.5.6. The inference rule for prefixing is actually an
axiom, as the set of premises is empty:

Pre
µ.P

µ−→ P

For instance, the only transition for the process a.b.0 is a.b.0
a−→ b.0, and after this we

have b.0
b−→ 0.

Parallel composition

We have already introduced the operator of parallel composition above. Its behaviour is
described by three inference rules:

ParL
P1

µ−→ P ′
1

P1 | P2
µ−→ P ′

1 | P2

ParR
P2

µ−→ P ′
2

P1 | P2
µ−→ P1 | P ′

2

Com
P1

µ−→ P ′
1 P2

µ−→ P ′
2

P1 | P2
τ−→ P ′

1 | P ′
2

Rules ParL and ParR show that a component can still perform its own transitions, so to
interact with external processes, without affecting the parallel structure of the system. Rule
Com shows that the two components can interact with each other, when they are capable of
performing complementary actions. The notation convention for µ, namely a = a, allows
us to avoid the symmetric rule. Because of ParL and ParR , the interaction in Com is not
forced (but the addition of the operator of restriction can force it, see Exercise 3.3.4).

As an example, the process P
def= (a.0 | b.0) | a.0 has the transitions

P
a−→ (0 | b.0) | a.0,

P
b−→ (a.0 | 0) | a.0,

P
τ−→ (0 | b.0) | 0,

P
a−→ (a.0 | b.0) | 0.

Choice

The binary operator choice (sometimes also called sum), written +, gives us an alternative
between two behaviours. The process P + Q can behave as P or as Q, depending on which
of them performs the first transition. If P goes first, then Q is discarded, and conversely.
This is expressed by the two inference rules for choice:

SumL
P1

µ−→ P ′
1

P1 + P2
µ−→ P ′

1

SumR
P2

µ−→ P ′
2

P1 + P2
µ−→ P ′

2
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Figure 2.9: CCS syntax and semantics

Syntax and semantics of CCS are given in Figure 2.9. CCS supports parallel composi-
tions, choice (i.e., branching), and prefixing (i.e., sequencing) operators. The restriction
operator is omitted for the sake of simplicity. For more details, refer to [19].

2.4.2 Strong Bisimulation

Definition 2.9 (Strong bisimilarity). A relation R is a strong bisimulation if, whenever
P R Q:

1. for all P
µ−→ P′, there exists Q′ such that Q

µ−→ Q′ and P′ R Q′

2. for all Q
µ−→ Q′, there exists P′ such that P

µ−→ P′ and P′ R Q′

Strong bisimilarity, written ∼, is the largest bisimulation (i.e., the union of all bisimulations);
thus P ∼ Q holds if there is a bisimulation R such that P R Q.

Strong bisimulation enjoys a nice property; it is preserved by operators such as parallel
compositions, choice (i.e., branching), and prefixing (i.e., sequencing).

Theorem 2.2 (Congruence). ∼ is an equivalence relation, i.e.,

• P ∼ P (reflexivity)

• P ∼ Q implies Q ∼ P (symmetry)

• P ∼ Q and Q ∼ R imply P ∼ R (transitivity)

Furthermore, it is a congruence relation under CCS, i.e., P ∼ Q implies C[P] ∼ C[Q] for all
contexts C, more specifically,
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• P | R ∼ Q | R

• P + R ∼ Q + R

• µ.P ∼ µ.Q

Definition 2.10 (Similarity). A relation R is a simulation if, whenever P R Q:

1. for all P
µ−→ P′, there exists Q′ such that Q

µ−→ Q′ and P′ R Q′;

Similarity, written ≤, is the largest simulation (i.e., the union of all simulations). We say that Q
simulates P if P ≤ Q.

We give another definition that is useful to prove bisimilarity.

Definition 2.11 (Bisimulation up-to ∼). A relation R is a bisimulation up-to ∼ if, whenever
P R Q:

1. for all P
µ−→ P′, there exists Q′ such that Q

µ−→ Q′ and P′ ∼R∼ Q′

2. for all Q
µ−→ Q′, there exists P′ such that P

µ−→ P′ and P′ ∼R∼ Q′

where P′ ∼R∼ Q′ if there exist P′′ and Q′′ such that P′ ∼ P′′, P′′ R Q′′, and Q′′ ∼ Q′.

Lemma 2.1. If R is a bisimulation up-to ∼, then ∼R∼ is a bisimulation and R ⊆ ∼.

2.4.3 Weak Bisimulation

Weaker notions of behavior equivalence are required when non-observable or internal
transitions in the systems should not be counted in deciding similarity. Suppose the label
τ represents such internal transitions. We first define new relations to specify transitions
involving τ-moves.

Definition 2.12 (Weak transitions). Several weak transitions are defined as follows.

• Relation =⇒ is the reflexive and transitive closure of internal transitions, τ−→. That is,
P =⇒ P′ holds if there exist n ≥ 0 and P1, · · · , Pn such that P τ−→ P1

τ−→ · · · τ−→ Pn =

P′.

• Relation
µ

=⇒ is the composition of =⇒,
µ−→, and =⇒. That is, P

µ
=⇒ P′ holds if there

exist P1 and P2 such that P =⇒ P1
µ−→ P2 =⇒ P′.

27



• Relation
µ̂

=⇒ is defined as


µ

=⇒ if µ 6= τ

=⇒ otherwise

A weaker notion of bisimilarity can be defined by using the weak transition
µ̂

=⇒ instead
of

µ−→ in Definition 2.9.

Definition 2.13 (Weak bisimilarity). A relationR is a weak bisimulation if, whenever PR Q:

1. for all P
µ−→ P′, there exists Q′ such that Q

µ̂
=⇒ Q′ and P′ R Q′

2. for all Q
µ−→ Q′, there exists P′ such that P

µ̂
=⇒ P′ and P′ R Q′

Weak bisimilarity, written ≈, is the largest weak bisimulation (i.e., the union of all weak
bisimulations); thus P ≈ Q holds if there is a weak bisimulation R such that P R Q.

Unlike strong bisimilarity, weak bisimilarity is not a congruence relation; it is not
preserved by choice operators. For example, τ.a ≈ a but τ.a + b 6≈ a + b. However, it is
preserved by guarded forms of choice, i.e., µ1.P1 + · · ·+ µn.Pn, which is most of the use
case in practice.

Lemma 2.2. If P ≈ Q, then for all R and µ, we have:

• P | R ≈ Q | R

• µ.P ≈ µ.Q

• µ.P + R ≈ µ.Q + R

but P + R 6≈ Q + R in general; thus ≈ is not a congruence under CCS.

There is a variant of weak bisimilarity, called rooted weak bisimilarity, written ≈c, that
has additional condition, so called ‘being rooted’, so as to be a congruence under CCS.
Essentially, ≈c is the same with ≈ except what are not preserved by CCS operators. That
is, P ≈c Q iff C[P] ≈ C[Q].

There is another variant of weak bisimilarity, called dynamic bisimilarity, written ≈dyn,
which is a bit stronger than weak bisimilarity, but a congruence under CCS without any
‘rooted’ conditions. Section 2.4.5 highlights differences between these variants. For more
details, refer to [19].
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Fig. 4.4 The bisimulation game in ≈, ≈d, ≈η and ≈br.
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in this section all, or parts of, the moves that abstract from τ -actions are not allowed to
change the bisimilarity class of a process.

We begin with branching bisimulation. It has been proposed by van Glabbeek and
Weijland [GW96, Gla01b]. Their motivating argument is that a bisimulation semantics,
while remaining coarser than graph isomorphism, should faithfully respect the branching
structure in the graph of an LTS, so to precisely take into account when a process has a
choice point among different possible future behaviours. On the basis of examples such as
that of Figure 4.5 discussed above, van Glabbeek and Weijland argue that weak bisimilarity
is not fully ‘branching time’. (In concurrency, the term ‘branching time semantics’ is used
in opposition to ‘linear time’ semantics, where the meaning of a process is determined by
its possible runs, or partial runs.) Branching bisimulation is then put forward as a remedy
for this. Referring to Figure 4.4, branching bisimulation also imposes the relations (2) and
(3). This is sufficient to guarantee that also all possible intermediate states between Q and
Q1 are equivalent to each other, and similarly for the states between Q2 and Q′.

Definition 4.9.1 (Branching bisimilarity) A process relation R is a branching bisimula-
tion if whenever P R Q, for all µ we have:
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(1) (2) (3) (4)
Weak bisimulation ≈ ◦ × × ◦
Delay bisimulation ≈d ◦ × ◦ ◦

η-bisimulation ≈η ◦ ◦ × ◦
Branching bisimulation ≈br ◦ ◦ ◦ ◦

Figure 2.10: Bisimulation game in ≈, ≈d, ≈η, and ≈br [19]

2.4.4 Branching Bisimulation

Ignoring τ-transitions may lead to failure in distinguishing branch structures. For
example, two transition systems shown in Figure 2.11 have different branch structures but
they are still weakly bisimilar. In order to distinguish branch structures in the presence
of τ-transitions, we need to relate nodes over the path through =⇒. Figure 2.10 shows a
local condition of weak bisimulation from P. Weak bisimulation considers the relations
(1) and (4), but not (2) and (3). That means that Q1 and Q2 may be not related to others,
which may lead to branch structures to be indistinguishable. By additionally considering
(2) and/or (3), we have variants of weak bisimulation as follows.

Definition 2.14 (Branching, η-, and delay bisimilarities). A relation R is a branching
bisimulation if, whenever P R Q:

1. for all P
µ−→ P′,

(a) µ = τ and P′ R Q

(b) or, there exists Q1, Q2, Q′ such that Q =⇒ Q1
µ−→ Q2 =⇒ Q′ and

i. P R Q1

ii. P′ R Q2

iii. P′ R Q′

2. converse of (1) from Q

Furthermore, η-bisimulation (resp. delay bisimulation) is defined in the same way above, except
the requirement 1.b.ii (resp. 1.b.i).

Branching (resp. η- and delay) bisimilarity, written ≈br (resp. ≈η and ≈d), is the largest
branching (resp. η- and delay) bisimulation.
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in this section all, or parts of, the moves that abstract from τ -actions are not allowed to
change the bisimilarity class of a process.

We begin with branching bisimulation. It has been proposed by van Glabbeek and
Weijland [GW96, Gla01b]. Their motivating argument is that a bisimulation semantics,
while remaining coarser than graph isomorphism, should faithfully respect the branching
structure in the graph of an LTS, so to precisely take into account when a process has a
choice point among different possible future behaviours. On the basis of examples such as
that of Figure 4.5 discussed above, van Glabbeek and Weijland argue that weak bisimilarity
is not fully ‘branching time’. (In concurrency, the term ‘branching time semantics’ is used
in opposition to ‘linear time’ semantics, where the meaning of a process is determined by
its possible runs, or partial runs.) Branching bisimulation is then put forward as a remedy
for this. Referring to Figure 4.4, branching bisimulation also imposes the relations (2) and
(3). This is sufficient to guarantee that also all possible intermediate states between Q and
Q1 are equivalent to each other, and similarly for the states between Q2 and Q′.

Definition 4.9.1 (Branching bisimilarity) A process relation R is a branching bisimula-
tion if whenever P R Q, for all µ we have:
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Referring again to Figure 4.4, one may also impose, besides (1) and (4), only the relation
(2), or only the relation (3). The resulting bisimulations are called η-bisimulation and delay
bisimulation.

Definition 4.9.4 (η-bisimilarity, delay bisimilarity) η-bisimulation and η-bisimilarity
(written ≈η) are defined as branching bisimulation and branching bisimilarity, in Defini-
tion 4.9.1, except that the requirement P ′ R Q2 is omitted.

Delay bisimulation and delay bisimilarity (written ≈d) are defined as branching bisimu-
lation and branching bisimilarity, in Definition 4.9.1, except that the requirement P R Q1

is omitted. !

The processes in Figure 4.5 are in the relation ≈d, but not in ≈η. On the other hand,
the processes of Figure 4.6 are in the relation ≈η, but not in ≈d. Both pairs of processes in
Figure 4.5 and in Figure 4.6 are in ≈; none of the pairs is in ≈br. The relationship among
these four bisimilarities is as follows, an arrow indicating a strict inclusion:

≈br

$$##
##

##
##

%%$$
$$

$$
$$

≈η

%%%%
%%

%%
%%

≈d

$$&&
&&

&&
&&

≈

The name η for ≈η was coined in [BvG87], where η is a constant used for abstraction
similarly to τ . A form of delay bisimulation, though divergence-sensitive, first appears
in [Mil81] (under a different name, observation equivalence, which later, in the CCS
community, became the predominant name for weak bisimilarity). The name ‘delay’ is
first used in [Wei89], where delay bisimulation stems from a study of translations of
asynchronous into synchronous calculi.

While η-bisimilarity appears to have a limited practical interest, delay bisimilarity may
have a definite appeal, particularly on languages with exchange of values. To see why, we
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(ii) Systems in ≈ and ≈η, but not in ≈d and ≈br

Figure 2.11: Systems in ≈, but not in ≈br [19]

Branching, η-, and delay bisimilarities are not preserved by choice operators, as weak
bisimilarity. They are needed to be ‘rooted’, in the similar way with weak bisimilarity, so
as to be congruence relations under CCS.

Delay bisimilarity is natural in the sense that it can be defined in the same way with
weak bisimilarity, except that τ-moves are not allowed after µ-transition, as shown in
Section 2.4.5.

2.4.5 Comparison of Bisimulation Variants

Strong, weak, dynamic, and delay bisimulations can be defined in the same structure.
They can be presented by instantiating the place-holder ? in the following definition, as
shown in Table 2.1.

Definition 2.15 (?-bisimilarity). A relation R is a ?-bisimulation if, whenever P R Q:

1. for all P
µ−→ P′, there exists Q′ such that Q ?−→ Q′ and P′ R Q′

2. for all Q
µ−→ Q′, there exists P′ such that P ?−→ P′ and P′ R Q′

?-bisimilarity, written ?∼, is the largest ?-bisimulation (i.e., the union of all ?-bisimulations);
thus P ?∼ Q holds if there is a ?-bisimulation R such that P R Q.
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?-bisimulation ?−→ ?∼
Strong bisimulation

µ−→ ∼
Dynamic bisimulation =⇒ µ−→=⇒ ≈dyn

Weak bisimulation
µ̂

=⇒ def
=

{
=⇒ µ−→=⇒ if µ 6= τ

=⇒ otherwise
≈

Delay bisimulation

{
=⇒ µ−→ if µ 6= τ

=⇒ otherwise
≈d

Table 2.1: Instantiations of Definition 2.15116 Processes with internal activities
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Fig. 4.1 Example of weak bisimilarity with divergence.
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Fig. 4.2 Another example of weak bisimilarity with divergence.

The equalities in Exercise 4.3.2 may look surprising at first sight. In the first equality,
for instance, the process a | "τ can diverge – it has a complete run that is only made of
internal work. Furthermore, the divergence is persistent, that is, it remains even after the
action a has been consumed. In contrast, the other process, a.0, can never diverge. Here is
another example of a similar situation.

Exercise 4.3.3 Show that the three states marked ⋆ in Figure 4.2 are all weakly bisimilar.
!

Weak bisimilarity is indeed insensitive to τ -cycles (loops consisting only of τ -
transitions). This aspect of weak bisimilarity can be justified. First, referring again to
Exercise 4.3.2, the two components of the parallel composition a | "τ could be running on
different machines, therefore the existence of a τ -cycle in a process does not prevent the
execution of the other process. Second, even if the two components were running on the
same machine, or the same processor, under a fair implementation of parallel composition,
the right component cannot always prevail. Hence eventually the action a on the left-hand
side will be executed (provided that the environment accepts the interaction at a, of course).
More generally, if a process has a τ -cycle but with the possibility of escaping the cycle,
then weak bisimilarity assumes that indeed the process will eventually escape: it will exe-
cute the loop an arbitrary but finite number of times. This property is sometimes called
‘fair abstraction from divergence’ (it is often mentioned in the literature in connection to
the validity of Koomen’s fair abstraction rule, see the discussion by Baeten, Bergstra and
Klop [BBK87a]). The property is clearly expressed also by the equality in Exercise 4.3.5.
Third, we introduced weak bisimilarity to abstract from internal work. The equality indeed
abstracts from any finite amounts of internal work; as a consequence of this, however, in
some cases, it also abstracts from infinite amounts (i.e., divergences).
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for instance, the process a | "τ can diverge – it has a complete run that is only made of
internal work. Furthermore, the divergence is persistent, that is, it remains even after the
action a has been consumed. In contrast, the other process, a.0, can never diverge. Here is
another example of a similar situation.

Exercise 4.3.3 Show that the three states marked ⋆ in Figure 4.2 are all weakly bisimilar.
!

Weak bisimilarity is indeed insensitive to τ -cycles (loops consisting only of τ -
transitions). This aspect of weak bisimilarity can be justified. First, referring again to
Exercise 4.3.2, the two components of the parallel composition a | "τ could be running on
different machines, therefore the existence of a τ -cycle in a process does not prevent the
execution of the other process. Second, even if the two components were running on the
same machine, or the same processor, under a fair implementation of parallel composition,
the right component cannot always prevail. Hence eventually the action a on the left-hand
side will be executed (provided that the environment accepts the interaction at a, of course).
More generally, if a process has a τ -cycle but with the possibility of escaping the cycle,
then weak bisimilarity assumes that indeed the process will eventually escape: it will exe-
cute the loop an arbitrary but finite number of times. This property is sometimes called
‘fair abstraction from divergence’ (it is often mentioned in the literature in connection to
the validity of Koomen’s fair abstraction rule, see the discussion by Baeten, Bergstra and
Klop [BBK87a]). The property is clearly expressed also by the equality in Exercise 4.3.5.
Third, we introduced weak bisimilarity to abstract from internal work. The equality indeed
abstracts from any finite amounts of internal work; as a consequence of this, however, in
some cases, it also abstracts from infinite amounts (i.e., divergences).
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(ii)

Figure 2.12: Two pairs of systems that are weakly bisimilar in the presence of τ-cycles
[19]

Divergence Weak bisimilarity is insensitive to τ-cycles, that is, a system with τ-cycles
can be weakly bisimilar one without τ-cycles. For example, suppose Ω with a transition
Ω τ−→ Ω, then we have P | Ω ≈ P, as shown in Figure 2.12 (i). For another example,
suppose K with transitions, K τ−→ K and K τ−→ P, then we have K ≈ τ.P, as similarly
shown in Figure 2.12 (ii). This property is useful when one wants to abstract out internal
cycles so that the abstracted system be internal-cycle-free, allowing to focus on only
important transitions.

There is a variant of weak bisimilarity, called prebisimilarity with divergence, written
≤⇑, to distinguish two systems where one has τ-cycles and the other does not. That is,
P ≤⇑ Q means that P may diverge while Q is not. In this case, such bisimilarity becomes
a preorder (i.e., not necessarily symmetric, but only reflexive and transitive), rather than
an equivalence relation. For more details, refer to [19].
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2.5 THE K FRAMEWORK

K [38] (http://kframework.org) is a framework for defining language semantics. Given
a syntax and a semantics of a language, K generates a parser, an interpreter, as well
as formal analysis tools such as model checkers and deductive program verifiers, at no
additional cost. Using the interpreter, one can test their semantics immediately, which
significantly increases the efficiency of semantics developments. Furthermore, the formal
analysis tools facilitate formal reasoning about the given language semantics. This helps
both in terms of applicability of the semantics and in terms of engineering the semantics
itself; for example, the state-space exploration capability helps the language designer
cover all the non-deterministic behaviors of certain constructs or combinations of them in
the language definition.

We briefly describe K here and refer the reader to [38, 27] for more details. In K,
a language syntax is given using conventional Backus-Naur Form (BNF). A language
semantics is given as a transition system, specifically a set of reduction rules over
configurations. A configuration is an algebraic representation of the program code and
state. Intuitively, it is a tuple whose elements (called cells) are labeled and possibly
nested. Each cell represents a semantic component such as stores, environments, and
threads that are used in defining semantics. A special cell, named k, contains a list of
computations to be executed. A computation is essentially a program fragment, while
the original program is flattened into a sequence of computations. A rule describes a
one-step transition relation between configurations, thus giving semantics to language
constructs. Rules are modular; they mention only relevant cells that are needed in each
rule. For example, an object field lookup semantics can be defined as the following K

rule:

〈O[X]

V
···〉k 〈〈O〉oid 〈··· X 7→ V ···〉fields ···〉obj (2.14)

The cells are represented with angle brackets notation. The horizontal line represents a
reduction (i.e., a transition relation). A cell with no horizontal line means that it is read
but not changed by the rule. The rule above mentions two cells: k, and obj. The k cell
contains a list of computations to be executed, and the obj cell represents an object. The
obj cell contains several sub-cells: e.g., the oid cell contains the object identifier and the
fields cell stores a map from field names to values. This rule is applied when the current
computation (top of the k cell) is a field lookup and there exists an obj cell whose oid is
matched with O and fields contains the field name X. This rule resolves the object field
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lookup O[X] to the value V. The “...” is a structural frame, that is, it matches the portions
of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is very rarely the case
that one needs to touch existing rules in order to add a new feature to the language.
This is achieved by structuring the configuration as nested cells and by requiring the
language designer to mention only the cells that are needed in each rule, and only the
needed portions of those cells. For example, the above rule only refers to the k and
obj cells, while the entire configuration may contain many more cells. This modularity
makes for compact and human readable semantics, and also helps with the overall
effectiveness of the semantics development. For example, even if new cells are later
added to configuration, to support new features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-determinism. As K

is based on rewriting logic [39], one can easily define, execute, and reason about non-
deterministic specifications in K. For example, a simplified for-in loop semantics can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·
(2.15)

Suppose that for-in loop non-deterministically iterates through the given elements. In
K, such non-determinism can be easily described by representing the elements as a set
and using set matching, which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be iterated through, where
E refers to an arbitrary element of the set, and Es the remaining elements. The rule in
the left-hand side says that it chooses an arbitrary element E, runs the loop body S with
the element, and proceeds to the next iteration with the remaining elements Es. The
rule in the right-hand side specifies the termination condition of the loop. This way, one
can easily describe and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution traces, in this case all
possible iteration orders.
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CHAPTER 3: CROSS-LANGUAGE PROGRAM EQUIVALENCE

Intuitively, two (possibly non-terminating) programs are equivalent when given the
same input they reach the same relevant states in the same order.

In the formal methods literature, the notion of program (or semantic) equivalence is
usually formalized as a bisimulation relation between pairs of states of the two programs
that are subject to prove equivalence (which in turn are represented as state transition
systems). Reducing program equivalence to proving a relation to be a bisimulation,
allows for a coinductive proof that deals with recursion, loops, and non-termination in a
uniform and elegant way.

Classic notions of bisimulation, however, are too strong for the purposes of program
equivalence. Consider the simple program transformation example shown in Figure 3.1(a).
This transformation is common in compiler optimization (e.g., partial redundancy elim-
ination). The seemingly equivalent two programs, however, are not strongly bisimilar,
mainly because the intermediate states are not “similar”. Weaker variants, such as
stuttering or branching bisimulation, can be used to prove their equivalence, since they
are flexible to admit the irrelevant intermediate states.1 Figure 3.1(b) shows two possible
stuttering bisimulation relations. These relations, however, do not seem to be intuitive,
especially the pairs involving the intermediate states (marked in red). The problem with
these counter-intuitive relations becomes apparent when we consider the witness-based
translation validation approach [40]. In that approach, the relation is generated by the
compiler as a “witness” for the correctness of the transformation, and proving the equiva-
lence is reduced to checking that the generated relation is a (bi)simulation. However, the
counter-intuitive relations (especially the red pairs) are not easy to be generated by the
compiler, as they are not directly related to the internal information that the compiler uses
for the transformation. Thus, the non-intuitive (red) pairs should be inferred separately,
which incurs additional overhead in proving equivalence.2

The counter-intuitive relation issue occurs because the classic variants of bisimulation
necessitate every state being related to another, even for intermediate states that are
not relevant for equivalence. Ideally, we want a bisimulation variant that allows us to
simply relate the states where the two programs actually synchronize, i.e., at the start

1While stuttering bisimulation (and branching bisimulation) is originally defined over Kripke structures
(and labeled transition systems, respectively), we can use them over transition systems by assuming a
single atomic proposition and a single label.

2The time complexity of the best known algorithm for computing stuttering bisimulation is O(m log n)
where m is the number of transitions and n is the number of states [41].
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P: x = 0; if (*) { y = 1; } else { x = 1; }

Q: if (*) { x = 0; y = 1; } else { x = 1; }

(a)

x=0

x=1y=1

x=0

x=1

y=1

x=0

x=1y=1

x=0

x=1

y=1

P Q P Q

(b)

Figure 3.1: Program transformation example (as part of partial redundancy elimination),
and two stuttering bisimulation relations (dotted lines). The if(*) statement denotes the
non-deterministic branching operation.

of corresponding functions or basic blocks, at the loop headers, etc. We also want to
be able to control the granularity of these synchronization points, so that we can adapt
how closely we follow the behavior of the programs depending on the knowledge of the
transformations that can be easily extracted from the compiler.

For these reasons, we introduce a new notion of bisimulation, which we call cut-
bisimulation, between relevant program points in the input and output programs. We call
the relevant program states cut points, and their set simply a cut. The intuition for the
cut of a transition system corresponding to a program is that the states in the cut suffice
as observation points of the program behavior, that is, nothing relevant can happen
which is not witnessed by a cut state. Then we can define bisimulations only between
cut states; hence the name cut bisimulations. For the example in Figure 3.1, simply two
synchronization points (at the beginning and the end of the shown code sequences) are
enough to define a cut-bisimulation relation, allowing us to prove equivalence.

In order for cut bisimulations to correctly capture program equivalence, two conditions
must be satisfied. First, there must be enough cut states in the two transition systems so
that no relevant behavior of one program can pass unsynchronized with a behavior of
the other program. This implies, in particular, that each final state must be in the cut. It
also implies that each infinite execution must contain infinitely many cut states, because
otherwise one of the programs may not terminate while the other terminates.
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Second, any two states related by a cut bisimulation must be compatible. Otherwise,
one can establish a cut bisimulation even for non-equivalent programs.3 One of straight-
forward compatibility relations relates two states when their corresponding variables
have the “same” value. However, what it precisely means for two values in different
languages to be the same is not trivial, due to different representations (e.g., big-endian
vs little-endian, or 32-bits vs 64-bits), different memory layouts (physically same location
may point to different values, or contain garbage that has not been collected yet), etc.
Also, state compatibility may require to check if specific memory locations (in the context
of embedded systems), environment variables, input/output buffers, files, etc., are also
“the same”. Moreover, states corresponding to undefined behaviors (e.g., division by zero)
may or may not be desired to be compatible, depending upon what kind of equivalence is
desired. Thus, we design the notion of cut-bisimulation to be parameterized by a binary
relation on states A, which we call an acceptability (or compatibility or indistinguishability)
relation.

3.1 CUT-BISIMULATION

We present our novel notion of cut bisimulation, which makes it easier to deal with
intermediate states that are not relevant in identifying equivalence of programs written
in potentially different languages.

Given a binary relation R ⊆ S1 × S2, we write a R b to denote (a, b) ∈ R; and
R1 = {a | ∃b . a R b} and R2 = {b | ∃a . a R b} to denote the projections Πi(R) for
i ∈ {1, 2}.

Let S be a set of states (thought of as all possible configurations/states of a language,
over all programs in the language). Let T = (S, ξ,→) be an S-transition system, or just a
transition system when S is understood, that is a triple consisting of: a set of states S ⊆ S ,
an initial state ξ ∈ S, and a (possibly nondeterministic) transition relation→ ⊆ S× S. Let
next(s) denote the set {s′ | s→ s′}. T is finitely branching iff next(s) is finite for each s ∈ S.
Let→∗ be the reflexive and transitive closure of→, and→+ be the transitive closure of
→.

A (possibly infinite) trace τ = s0s1 · · · sn · · · is a sequence of states with si → si+1 for
all i ≥ 0. Let τ[n] be the nth state of τ where the index starts from 0, and let size(τ) be
the length of τ (∞ when τ is infinite). Let first(τ) = τ[0] be the first state of τ, and let

3For any two terminating programs, for example, there always exists a trivial cut bisimulation where
all initial (and final) states are related to each other, respectively, if the compatibility of the states is not
considered.
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s

Figure 3.2: Left: a cut C for state s (each complete s-trace intersects C). Right: a cut C for
a transition system (C contains the initial state and is a cut for itself, i.e., for each state in
C)

final(τ) be the final state of τ when τ is finite. Let traces(s) be the set of all traces starting
with s, also called s-traces, and let traces(S) be

⋃
s∈S traces(s). A complete trace is either an

infinite trace, or a finite trace τ where next(final(τ)) = ∅.

Definition 3.1 (Cut and Cut Transition System). Let T = (S, ξ,→) be a transition system. A
set C ⊆ S is a cut for s ∈ S, iff for any complete trace τ ∈ traces(s), there exists some strictly
positive k > 0 such that τ[k] ∈ C. The set C ⊆ S is a cut for T iff ξ ∈ C and C is a cut for each
s ∈ C, in that case T is called a cut transition system and is written as a quadruple (S, ξ,→, C).
See Figure 3.2.

In a cut transition system, any finite complete trace starting with the initial state
terminates in a cut state, and any infinite trace starting with the initial state goes through
cut states infinitely often:

Lemma 3.1. Let T = (S, ξ,→, C) be a cut transition system. Then for each complete trace
τ ∈ traces(ξ) and each 0 < i < size(τ), there is some j ≥ i such that τ[j] ∈ C.

Proof. Let τ ∈ traces(ξ) be a complete trace. Assume to the contrary that there exists i
such that ∀j ≥ i. τ[j] 6∈ C. Pick such an i. Then we have two cases. When ∀k < i. τ[k] 6∈ C,
we have ∀k > 0. τ[k] 6∈ C, which is a contradiction since C is a cut for ξ = τ[0]. Otherwise,
∃k < i. τ[k] ∈ C, and let k be the largest such number. Then, we have ∀l > k. τ[l] 6∈ C,
which is a contradiction since C is a cut for each s ∈ C, thus a cut for τ[k] ∈ C.

This result is reminiscent of the notion of Büchi acceptance [42]; specifically, if S is
finite and next(s) 6= ∅ for all s ∈ S, then it says that the transition system T regarded as a
Büchi automaton with C as final states, accepts all the infinite traces. This analogy was
not intended and so far played no role in our technical developments.
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Cuts do not need to be minimal in practice, and are not difficult to produce. For exam-
ple, a typical cut includes all the final states (normally terminating states, error/exception
states, etc.) and all the states corresponding to entry points of cyclic constructs in the lan-
guage (loops, recursive functions, etc.). Such cut states can be easily identified statically
using control-flow analysis, or dynamically using a language operational semantics.

Definition 3.2 (Cut-Successor). Let T = (S, ξ,→, C) be a cut transition system. A state s′ is
an (immediate) cut-successor of s, written s ; s′, iff there exists a finite trace ss1 · · · sns′ where
s′ ∈ C and n ≥ 0 and si 6∈ C for all 1 ≤ i ≤ n.

Definition 3.3 (Cut-Bisimilarity). Let Ti = (Si, ξi,→i, Ci) be two cut transition systems
(i ∈ {1, 2}). Relation R ⊆ C1 × C2 is a cut-simulation iff whenever (s1, s2) ∈ R, for all s′1
with s1 ;1 s′1 there is some s′2 such that s2 ;2 s′2 and (s′1, s′2) ∈ R. Let ≤ be the union of all
cut-simulations (also a cut-simulation). Relation R is a cut-bisimulation iff both R and R−1 are
cut-simulations. Let ∼ be the union of all cut-bisimulations (also a cut-bisimulation).

Cut-bisimulation generalizes standard (strong) bisimulation [19]. A cut-bisimulation
on (Si, ξi,→i, Ci) is a bisimulation on (Si, ξi,→i), when Ci = Si. The cuts, however, allow
us to consider only the relevant states when comparing two program executions, and
completely hide the irrelevant intermediate states in each of the two transition systems. As
discussed earlier in this section, in our application domain of cross-language translation-
validation, this hiding of irrelevant states is critical. It is not sufficient to consider them
internal states connected via ε-transitions in the sense of the various weaker notions of
bisimulation [19], simply because the execution of one of the programs may step through
intermediate states which are not observable or related to intermediate states in the
execution of the other program. Nevertheless, cut-bisimulation becomes bisimulation if
we cut-abstract the transition systems:

Definition 3.4 (Cut-Abstract Transition System). Let T be a cut transition system (S, ξ,→, C).
The cut-abstract transition system of T, written T, is the (standard) transition system (C, ξ, ;).

Proposition 3.1. Let Ti = (Si, ξi,→i, Ci) be two cut transition systems (i ∈ {1, 2}). A relation
R ⊆ C1 × C2 is a cut-bisimulation on T1 and T2, iff R is a (standard) bisimulation on T1 and T2.

Corollary 3.1. Let Ti = (Si, ξi,→i, Ci) be two cut transition systems (i ∈ {1, 2}). Let R be
a cut-bisimulation, and (s1, s2) ∈ R. For any state s′1 ∈ C1 with s1 →+

1 s′1, there exists some
s′2 ∈ C2 with s2 →+

2 s′2 such that (s′1, s′2) ∈ R. The converse also holds.

Now we formalize the equivalence of cut transition systems in the presence of a given
acceptability (or compatibility, or indistinguishability) relation A on states.
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Definition 3.5. Let A ⊆ S1×S2, which we call an acceptability relation. Let Ti = (Si, ξi,→i

, Ci) be two cut transition systems (i ∈ {1, 2}). T2 cut-simulates T1 (i.e., T1 cut-refines T2)
w.r.t.A, written T1 ≤A T2, iff there exists a cut-simulation P ⊆ A such that ξ1 P ξ2. Furthermore,
T1 and T2 are cut-bisimilar w.r.t. A, written T1 ∼A T2, iff there exists a cut-bisimulation
P ⊆ A such that ξ1 P ξ2.

Note that if a cut bisimulation P like above exists, then there also exists a largest one;
that’s because the union of cut bisimulations included in A is also a cut bisimulation
included in A. We let the relation ∼A denote that largest cut bisimulation, assuming that
it exists whenever we use the notation (and similarly for ≤A).

Our thesis is that ∼A yields the right notion of program equivalence. That is, that
two programs are equivalent according to a given state acceptability (or compatibility
or indistinguishability) relation A between the states of the respective programming
languages, iff for any input, the cut transition systems T1 and T2 corresponding to the
two program executions satisfy T1 ∼A T2. The following result strengthens our thesis,
stating that cut-bisimilar transitions systems reach compatible states at cut points, and,
furthermore, that they cannot indefinitely avoid the cut points:

Theorem 3.1. If T1 ∼A T2 then for each s1 with ξ1 →+
1 s1 there exists some s2 with ξ2 →+

2 s2,
such that: (1) if s1 ∈ C1 then s1 ∼A s2; and (2) if s1 6∈ C1 then there exists some s′1 ∈ C1 such
that s1 →+ s′1 and s′1 ∼A s2. The converse also holds.

Proof. We only need to show the forward direction, since the backward is dual. First we
have ξ1 ∼ ξ2 by Definition 3.5 and the fact that ∼ is the union of all cut-bisimulations.
Let s1 be a state with ξ1 →+

1 s1. Then we have two cases:

• When s1 ∈ C1. There exists s2 such that ξ2 →+
2 s2 and s1 ∼ s2 by Corollary 3.1.

• When s1 6∈ C1. There exists s′1 such that s1 →+
1 s′1 and s′1 ∈ C1 by Lemma 3.1 and

the fact that C1 is a cut for ξ1 ∈ C1. Then, there exists s2 such that ξ2 →+
2 s2 and

s′1 ∼ s2 by Corollary 3.1.

3.1.1 Property Preservation

Consider two cut transition systems where one cut-simulates another, but not the other
way around. For example, an abstract model cut-simulates its concrete implementation, if
implemented correctly, but the inverse may not hold since the model may omit to specify
some details, leaving as implementation-dependent, for which the implementation can
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freely choose any behavior. In this case, it is not trivial to see whether a property of the
model is also held in the implementation. Intuitively, the set of all reachable cut-states
of the model is a super set of that of the implementation. Thus, if a cut-state is not
reachable in the model, then it is also not reachable in the implementation. This implies
that safety properties of the model are preserved in the implementation, since a safety
property can be represented as “nothing bad happens“, i.e., in other word, “a bad state is
not reachable”. Liveness properties are also preserved, since a liveness property can be
represented as “something good eventually happens”, i.e., “a good state is reachable in
any path”, while there exists a path of the model that appears in the implementation.4 In
general, inductive invariants are preserved in the refined system.

Now we formulate the property preservation of cut-simulation. Let T = (S, ξ,→, C)
be a cut transition system. Let P be a predicate over a domain D, and f : S → D
be a state normalization function. Let Pf be a predicate over S, defined by Pf (s)

def
=

P( f (s)) for some s ∈ S. The predicate Pf is a cut-inductive invariant of T, if Pf (ξ), and
Pf (s) ∧ s ; s′ =⇒ Pf (s′) for any states s, s′ ∈ S. A cut-inductive invariant, thus, holds
for all reachable cut-states. Also, let Ti = (Si, ξi,→i, Ci) be two cut transition systems (for
i ∈ {1, 2}). Suppose T1 ≥ T2, that is, T1 cut-simulates T2, (in other word, T2 cut-refines
T1). We say ≥ is right-total if for all s2 ;2 s′2, there exists s1 ;1 s′1 such that s1 ≥ s2 and
s′1 ≥ s′2.

Theorem 3.2. Suppose T1 ≥ T2. Suppose ≥ is right-total, and ξ1 ≥ ξ2. Suppose Pf1 is a
cut-inductive invariant of T1, and f1(s1) = f2(s2) if s1 ≥ s2. Then, Pf2 is a cut-inductive
invariant of T2.

Proof. Pf2(ξ2) since ξ1 ≥ ξ2 and Pf1(ξ1). Suppose Pf2(s2) and s2 ;2 s′2. Since T1 ≥ T2 and
≥ is right-total, there exists s1 ;1 s′1 such that s1 ≥ s2 and s′1 ≥ s′2. Then, Pf1(s1) since
f1(s1) = f2(s2). Since Pf1 is inductive, Pf1(s

′
1). Thus, Pf2(s

′
2) since f1(s′1) = f2(s′2).

3.2 LANGUAGE-PARAMETRIC PROGRAM EQUIVALENCE CHECKER IN K

We implemented a language-independent equivalence checking tool on top of the K

framework [27] (http://kframework.org). K provides a language for defining operational
semantics of programming languages, and a series of generic tools that take a language

4Indeed, this is true only when two systems are non-terminating. For terminating systems, we need to
add an extra condition to the cut-simulation that prevents the implementation admits only sub-path(s) of
the model. That is, we need a condition that restricts the cut-simulation relation relate an initial state (and
final state) to only another initial state (and final state, respectively) or itself.
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semantics as input and specialize themselves for that language: concrete execution engine
(interpreter), symbolic execution engine, (bounded) model checker, and a deductive
program verifier. The main idea underlying K is that a given language operational
semantics is turned into a transition system generator, one for each program, and a
suite of existing components provide the capability to work with such transition systems
generically, in a language-independent manner. We developed a new such tool, Keq,
which takes two language semantics as input and yields a checker that takes two programs
as input, one in each language, and a (symbolic) synchronization relation, and checks
whether the two programs are indeed equivalent with the synchronization relation as
witness.

Note that checking program equivalence in Turing complete languages is equivalent to
checking the totality of a Turing machine (whether it terminates on all inputs), which is a
known Π0

2-complete problem [43], so strictly harder than recursively or co-recursively
enumerable. It is therefore impossible to find any algorithm that can say whether any
two given programs are equivalent or not. The best we can do is to find techniques and
algorithms that work well enough in practice. Definition 3.5 suggests such a technique:
find a (witness) relation P and show that it is a cut-bisimulation. While finding such a
relation is hard in general, it is relatively easy to check if a given relation, for example
one produced by an instrumented compiler, is a cut-bisimulation.

Our Keq implementation follows the model of the theoretical Algorithm 3.1. Function
main essentially checks whether P is a cut-bisimulation: for each pair (p1, p2) ∈ P, for
each p′1 with p1 ;1 p′1, there exists p′2 with p2 ;2 p′2 such that p′1 P p′2; and the converse.
It first gets the cut-successors of pi (at line 7), and checks whether each pair of the
successors is related in P (line 9). The pairs found to be related in P are marked in
black (line 10), while the others remain in red. If all of the successors are in black, it
returns true (line 12). Note that the algorithm can also be used for checking whether
P is a cut-simulation, by simply considering only N1 in the line 12, i.e., replacing the
if-condition with ∀n ∈ N1. n.color = black.

Due to its concrete (as opposed to symbolic) nature, Algorithm 3.1 may not terminate
in practice, since P could be infinite. Line 2 assumes that P is recursively enumerable, so
iterable. Furthermore, lines 19 and 8 terminate only if Ti is finitely branching. We will
explain how to refine Algorithm 3.1 to be practical shortly; for now we can show that it is
refutation-complete, in the sense that if it does not terminate then the two programs are
equivalent.
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Data: Ti = (Si, ξi,→i, Ci); P ⊆ C1 × C2; // P is r.e.

1 Function main():
2 foreach (p1, p2) ∈ P do // P

3 if check(p1, p2) = false then
4 return false;

5 return true;

6 Function check(p1, p2):
7 N1 ← next1(p1); N2 ← next2(p2);
8 foreach (n1, n2) ∈ N1 × N2 do
9 if (n1, n2) ∈ P then // J(n1, n2)K ⊆ JPK

10 n1.color← black; n2.color← black;

11 if ∀n ∈ N1 ∪ N2. n.color = black then
12 return true;

13 return false

14 // Returns cut-successors of n
15 Function nexti(n):
16 N ← {n}; Ret← ∅;
17 while N is not empty do
18 choose n from N; N ← N \ {n};
19 N′ ← {n′ | n →i n′}; // →i

20 foreach n′ ∈ N′ do

21 if n′ ∈ Ci then // Jn′K ⊆ JCiK
22 n′.color← red;
23 Ret← Ret ∪ {n′};
24 else
25 N ← N ∪ {n′};

26 return Ret;

Algorithm 3.1: Equivalence checking algorithm. For checking cut-simulation, replace
N1 ∪ N2 with N1 at line 11. As given, the algorithm works with concrete data and thus
is not practical. Replace boxed expressions with their grayed variants to the right for a
practical, symbolic algorithm, as implemented in Keq.

Theorem 3.3 (Correctness of Algorithm 3.1). Suppose that cut transition systems Ti =

(Si, ξi,→i, Ci) are finitely branching (i ∈ {1, 2}) and P ⊆ A is recursively enumerable with
(ξ1, ξ2) ∈ P. If Algorithm 3.1 does not terminate with false, then T1 ∼A T2.
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Indeed, suppose that Algorithm 3.1 does not terminate with false. Then none of the
check(p1,p2) calls (line 3) terminates with false (line 13). Since the loop at Line 8 always
terminates (T1 and T2 are finitely branching), it means that all nodes are colored black at
line 11. Therefore, for each (p1, p2) ∈ P, each cut-successor of p1 can be paired in P with
a cut-successor of p2, and vice versa. Then P is a cut-bisimulation (Definition 3.3), that is,
T1 ∼A T2 (Definition 3.5).

Note that Algorithm 3.1 may also terminate with true, namely when P is finite. Un-
fortunately, P is not expected to be finite in practice. For example, P may include all the
synchronization points at the beginning of the main loop in a reactive system implemen-
tation. Nevertheless, in practice it is often the case that we can over-approximate infinite
sets symbolically. For example, we can use a logical formula ϕ to describe a symbolic
state, which denotes a potentially infinite set JϕK of concrete states that satisfy it. Then
we may be able to describe the sets of states Si and Ci of the cut transition systems Ti

(i ∈ {1, 2}) with finite sets Si and Ci, respectively, of symbolic states. Similarly, symbolic
pair (ϕ, ϕ′) can describe infinite sets J(ϕ, ϕ′)K of pairs of states in the two transition
systems, related through free/symbolic variables that ϕ and ϕ′ can share. Then we may
also be able to describe P as a finite set P of pairs of symbolic states. If all these are
possible, then Algorithm 3.1 can be modified by replacing the boxed expressions with
their symbolic variants (grayed); n, n′, n1, n2, p1, p2, etc., are symbolic now.

Once an operational semantics of a programming language is given, K provides us
with an API to calculate symbolic successors of symbolic program configurations. This
allows us to conveniently implement the symbolic→i transitions at line 19. Also, K is
fully integrated with the Z3 solver [29], allowing us to implement the inclusions at lines 9
and 21 by requesting Z3 to solve the implications of the corresponding formulae. It is
clear that the symbolic variant of Algorithm 3.1 terminates provided that Z3 terminates.
Also, working symbolically allows us to usually eliminate the restriction that Ti must
be finitely branching, as infinite branching can often be modeled symbolically (e.g., a
random number generator can be modeled as a fresh symbolic variable).

We implemented the symbolic variant of Algorithm 3.1 in a tool called Keq for checking
language-independent program equivalence.5

To illustrate how Keq works, consider the example in Figure 3.3. At the beginning
of the programs, we have the symbolic synchronization point pinit which is a triple
(spinit , s′pinit , ψpinit), as shown in Figure 3.4. spinit and s′pinit are the symbolic state of the
first and second program, respectively (∗ is a separator for map bindings), and ψpinit is

5Keq also supports program refinement, but for simplicity we only discuss equivalence.
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int foo(unsigned n) {

int i = 0;

while (i < n) {

i = i + 1;

}

return i;

}

int foo(unsigned n) {

int i = 0;

while (i < n) {

i = i + 2;

}

return i;

}

Figure 3.3: Program transformation example. Two programs are equivalent provided that
n is an even natural number.

spinit ≡ i 7→ i ∗ n 7→ n where n mod 2 = 0

s′pinit ≡ i 7→ i′ ∗ n 7→ n′ where n′ mod 2 = 0

ψpinit ≡ n = n′

sploop ≡ i 7→ i ∗ n 7→ n where i mod 2 = 0 ∧ n mod 2 = 0

s′ploop ≡ i 7→ i′ ∗ n 7→ n′ where i′ mod 2 = 0 ∧ n′ mod 2 = 0

ψploop ≡ i = i′ ∧ n = n′

spfinal ≡ i 7→ i ∗ n 7→ n
s′pfinal ≡ i 7→ i′ ∗ n 7→ n′

ψpfinal ≡ i = i′ ∧ n = n′

Figure 3.4: Symbolic synchronization points example

the constraint for spinit and s′pinit to be related, essentially saying that the inputs of the
two programs are the same and they are even. Mathematically, pinit denotes the set of
infinitely many pairs of states {(i 7→ i ∗ n 7→ n, i 7→ i′ ∗ n 7→ n) | i, i′, n ∈N ∧ n is even}.
Also, we have a synchronization point ploop at the beginning of each loop iteration (i.e.,
the loop head), which is a triple (sploop , s′ploop , ψploop), as shown in Figure 3.4. Finally,
we have a synchronization point pfinal at the end of the programs, which is a triple
(spfinal , s′pfinal , ψpfinal). Note that pfinal is relaxed, capturing more states than the reachable
states. This is allowed as long as it is admitted by the acceptability relation (in this
case, equality between the same variables). Indeed, the more synchronization points are
relaxed, the easier the compiler can generate them. Below we will show this relaxed
synchronization point is enough to prove the equivalence.
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int cnt(unsigned n) {

int c = 0;

int i = 0;

while (i < n) {

i = i + 1;

c = c + 1;

}

return c;

}

int cnt(unsigned n) {

int c = 0;

int i = n;

while (i > 0) {

i = i - 1;

c = c + 1;

}

return c;

}

Figure 3.5: Two equivalent programs with the out-of-order loop iteration.

Next we illustrate how Keq symbolically runs Algorithm 3.1. Let P = {pinit, ploop, pfinal}.
First, Keq picks a point (say pinit) from P (line 2 of Algorithm 3.1) and executes the
function check with it. In check, it first symbolically executes each program (lines 7 and
19) until they reach another synchronization point (line 21). In this case they reach states
s1 and s′1 that are matched by sploop and s′ploop respectively, where:

s1 = i 7→ 0 ∗ n 7→ n where n mod 2 = 0 (3.1)

s′1 = i 7→ 0 ∗ n 7→ n′ where n′ mod 2 = 0 (3.2)

Keq checks if (s1, s′1, ψpinit) is matched by ploop (line 9), which is true. Since s1 is the only
pair that reaches ploop, the check function returns true (line 12).

Next, suppose Keq picks ploop (line 2). Symbolic execution starting from ploop yields
two pairs of symbolic traces, that reach synchronization points ploop (through the for-loop
body) and pfinal (escaping the for-loop), respectively. Let us consider the first case. We
have the pair of states s2 and s′2 that are matched by sploop and s′ploop respectively, where:

s2 = i 7→ i + 2 ∗ n 7→ n where i mod 2 = 0 ∧ n mod 2 = 0 (3.3)

s′2 = i 7→ i′ + 2 ∗ n 7→ n′ where i′ mod 2 = 0 ∧ n′ mod 2 = 0 (3.4)

Note that s2 is resulted from executing the loop twice, since the result of the single loop
iteration (i 7→ i + 1 ∗ n 7→ n) is not matched by sploop because (i + 1) mod 2 6= 0, that
is, it is not in the cut (line 21). Keq checks if (s2, s′2, ψploop) is matched by ploop (line 9),
which is true. (Here Keq needs to rename the free variables in ploop to avoid the variable
capture.) The other case is similar and check with ploop eventually returns true. Then,
Keq continues to pick from the remaining synchronization points and execute check with
each of them (loop at lines 2-4), eventually returning true (line 5).
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Figure 3.5 shows an example of equivalent programs with the out-of-order loop. The
first program iterates the loop increasing the loop index i, while the second program
iterates decreasing i. The cut-bisimulation is expressive enough to capture this out-of-
order execution. The following three synchronization points are sufficient for Keq to
prove the equivalence:

• At the beginning: n = n′

• At the loop head: n = n′, i+ i′ = n, and c = c′

• At the end: c = c′

where the primed variables refer to the second program’s variables. Note that the non-
trivial part of the synchronization points is the equality i+ i′ = n, but the compiler
can provide this information that must be known to perform such an out-of-order loop
transformation.

3.3 APPLICATIONS

We present the use of cut-bisimulation and the program equivalence checker in two
applications, translation validation and specification refinement.

3.3.1 Translation Validation

Most, if not all, of the high-profile production compilers do not provide a formal
correctness guarantee of equivalence between the input and output programs. Indeed, the
compiler bugs exist even in widely-used mature compilers [44]. Translation validation [45]
is a compiler verification technique that aims to prove correctness of a single instance of
compilation, by considering only the specific input and output programs and treating the
compiler mostly as a black box. Translation validation is effective for compiler verification
since it can be composed to validate a sequence of compilation steps, it can easily retrofit
to existing high-profile production compilers, it can be maintained independently from
the compiler itself, and it can be fully automated.

The cut-bisimulation based program equivalence checker can be used for translation
validation. Here the compiler generates the synchronization points using the internal
information used in the compilation, similar to the witness-based translation validation
approach [40].
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function transfer(address _to, uint256 _value) public returns (bool) {

require(_value <= balances[msg.sender]);

balances[msg.sender] = balances[msg.sender].sub(_value);

balances[_to] = balances[_to].add(_value);

Transfer(msg.sender, _to, _value);

return true;

}

(a) Solidity ERC20 transfer function

@public

def transfer(_to : address, _value : num256) -> bool:

_sender = msg.sender

self.balances[_sender] = num256_sub(self.balances[_sender], _value)

self.balances[_to] = num256_add(self.balances[_to], _value)

log.Transfer(_sender, _to, _value)

return true

(b) Vyper ERC20 transfer function

Figure 3.6: Two ERC20 transfer functions, one written in Solidity and another in Vyper

We demonstrate its usability for the Ethereum smart contract bytecode. We have
instantiated the language-independent program equivalence checker Keq by plugging-in
the Ethereum Virtual Machine (EVM) [46] semantics, KEVM [11], and derived the EVM
equivalence checker that can be used to check equivalence between two EVM programs
(bytecode). Then, we have applied the EVM equivalence checker to validate compatibility
between two different language implementations of the same smart contract. Specifically,
we took two ERC20 token contracts—one written in Solidity [47], another written in
Vyper [48]—and verified equivalence of their compiler EVM bytecode. Figure 3.6 shows
the code snippet of the Solidity and Vyper ERC20 token contracts, and Figure 3.7 presents
synchronization points of their EVM bytecode. Given the two EVM programs (bytecode)
and the synchronization points, the EVM equivalence checker successfully verifies the
equivalence.

3.3.2 Specification Refinement

When a high-level specification is refined into a low-level one, a refinement relation
between them can be formulated as a cut-simulation. The idea is to consider a specification
as a transition system and establish a cut-simulation relation between them. For example,
a class specification can be seen as a transition system, where a node is a state of the
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<k> K </k> <wordStack> STACK </wordStack>

<schedule> SCHEDULE </schedule> <localMem> MEMORY </localMem>

<output> OUTPUT </output> <pc> PC </pc>

<statusCode> STATUS </statusCode> <gas> GAS </gas>

<callStack> CALL_STACK </callStack> <log> LOG </log>

<id> ACCT_ID </id> <refund> REFUND </refund>

<caller> CALLER_ID </caller> <balance> BALANCE </balance>

<callData> CALL_DATA </callData> <storage> STORAGE </storage>

<callValue> CALL_VALUE </callValue>

(a) Template for synchronization points

At the beginning:

• K = K’ = #execute

• SCHEDULE = SCHEDULE’ = CONSTANTINOPLE

• STACK = STACK’ = .WordStack

• MEMORY = MEMORY’ = .Map

• PC = PC’ = 0

• equalities between other variables

At the end:

• K = K’ = #halt

• OUTPUT = OUTPUT’

• STATUS = STATUS’

• LOG = LOG’

• BALANCE = BALANCE’

• STORAGE ∼ STORAGE’

(b) Synchronization points

Figure 3.7: Synchronization points for two EVM bytecode programs

class, and an edge is a pair of pre-/post-conditions of a method. This way, one can
systematically reason about the soundness of specification refinements.

Moreover, the property preservation of cut-bisimulation enables to prove meta proper-
ties6 of a refined specification by only showing the cut-similarity to the original speci-
fication that holds the meta-properties. This approach has values especially when the
meta-properties are easier to be proved in the original specification than the refined
specification.

We demonstrate the idea using the ERC20 specification. ERC20-K [49] formulates the
ERC20 standard [13] at a high-level, and ERC20-EVM [50] specifies the behavior of its

6Indeed, many of security properties are formulated as meta-properties.
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rule <k> transfer(To, Value) => true ...</k>

<caller> From </caller>

<account>

<id> From </id>

<balance> BalanceFrom => BalanceFrom -Int Value </balance>

</account>

<account>

<id> To </id>

<balance> BalanceTo => BalanceTo +Int Value </balance>

</account>

<log> Log => Log Transfer(From, To, Value) </log>

requires To =/=Int From // sanity check

andBool Value >=Int 0

andBool Value <=Int BalanceFrom

andBool BalanceTo +Int Value <=Int MAXVALUE

(a) ERC20-K transfer specification

[transfer-success]

callData: #abiCallData("transfer", #address(TO), #uint256(VALUE))

statusCode: _ => EVMC_SUCCESS

output: _ => #asByteStackInWidth(1, 32)

log: ... (. => #abiEventLog(FROM, "Transfer",

#indexed(#address(FROM)), #indexed(#address(TO)), #uint256(VALUE))))

storage:

#hashedLocation({BALANCES}, FROM) |-> (BAL_FROM => BAL_FROM -Int VALUE)

#hashedLocation({BALANCES}, TO) |-> (BAL_TO => BAL_TO +Int VALUE)

...

requires:

andBool FROM =/=Int TO

andBool VALUE <=Int BAL_FROM

andBool BAL_TO +Int VALUE <Int (2 ^Int 256)

(b) ERC20-EVM transfer specification

Figure 3.8: Two ERC20 specifications: ERC20-K and ERC20-EVM

EVM bytecode implementation. We prove that ERC20-EVM is a sound refinement of
ERC20-K by showing that ERC20-EVM cut-refines ERC20-K (i.e., ERC20-K cut-simulates
ERC20-EVM). Figure 3.8 shows the snippet of the ERC20-K and ERC20-EVM specifica-
tions, and Figure 3.9 shows a cut-simulation relation between them. Figure 3.9a presents
the configurations of two specifications.7 Since the two configurations are structurally
different, we need to specify when the two configurations are considered “the same”.
We define three notions of state equivalence, ∼k, ∼l, and ∼s, that are used to specify

7For the simplicity of presentation, here we present only relevant part of the whole ERC20-EVM
configuration. The full configuration can be found at [50].
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<caller> CALLER </caller>

<k> K </k>

<log> LOG </log>

<accounts>

ACCOUNTS // id -> balance

</accounts>

<allowances>

ALLOWANCES // (owner * spender) -> amount

</allowances>

<supply> SUPPLY </supply>

<resource> RESOURCE </resource>

<caller> CALLER </caller>

<callData> CALL_DATA </callData>

<statusCode> STATUS </statusCode>

<output> OUTPUT </output>

<log> LOG </log>

<storage> STORAGE </storage>

<gas> GAS </gas>

(a) Configurations of ERC20-K (left) and ERC20-EVM (right)

• CALLER = CALLER′

• K ∼k (CALL_DATA, STATUS, OUTPUT)

• LOG ∼l LOG
′

• (ACCOUNTS, ALLOWANCES, SUPPLY) ∼s STORAGE

• RESOURCE ∼r GAS

(b) Cut-simulation relation

Figure 3.9: Cut-simulation relation of ERC20-K and ERC20-EVM

the cut-simulation in Figure 3.9b. In ERC20-K, we have three data structures, ACCOUNTS,
ALLOWANCES, and SUPPLY, that represent the current status of the ERC20 token, while in
ERC20-EVM, all of the data structures are stored in a single place STORAGE. Thus we define
∼s to relate the three logical data structures to the single storage as follows. For any
ACCOUNTS b, ALLOWANCES a, SUPPLY t, and STORAGE s, we write (b, a, t) ∼s s iff the following
holds:

• s includes b, a, and t: ∀i ∈ dom(b). b(i) = s(hashb(i)), ∀(o, s) ∈ dom(a). a(o, s) =

s(hasha(o, s)), and t = s(hasht).

• s includes only b, a, and t: ∀l. s(l) 6= 0 =⇒ ( ∃i ∈ dom(b). hashb(i) = l ∨ ∃(o, s) ∈
dom(a). hasha(o, s) = l ∨ hasht = l)

• No hash collision: ∀i ∈ dom(b), (o, s) ∈ dom(a). hashb(i) 6= hasha(o, s) 6= hasht 6=
hashb(i).

In ERC20-K, the <k> cell is used to hold both the function call and its return value,
while in ERC20-EVM, they are separated into multiple cells. We define ∼k to relate these
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cells. First, when the <k> cell holds the function call, we relate it to the callData cell. For
example, for the transfer function, ∼k is defined as follows:

∀t, v, s, o. Transfer(t,v) ∼k (#abiCallData("transfer",#address(t),#uint256(v)), s, o)
(3.5)

Second, when the <k> cell holds the return value, we relate it to the statusCode and output

cells, as follows:

∀c. true ∼k (c, EVMC_SUCCESS, #asByteStackInWidth(1, 32)) (3.6)

∀c, o. throw ∼k (c, EVMC_REVERT, o) (3.7)

Similarly, we define ∼l to relate two different forms of logs for each type of events. For
example, for the Transfer event, ∼l is defined as follows:

∀ f , t, v. Transfer( f ,t,v) ∼l #abiEventLog( f ,"Transfer",#indexed(#address( f )),

#indexed(#address(t)),#uint256(v))
(3.8)

We also define ∼r to relate their resources. ERC20-K abstracts the resource, only
specifying the fact that each function execution requires sufficient resources, and the
amount of resources decreases for each function execution even if the execution fails. This
resource requirement and its limited availability ensures to prevent infinite execution. In
ERC20-EVM, however, the resource is realized, consisting of several components, e.g., gas
(an execution fee for every operation made on EVM), and call stack (the stack of nested
function calls). The two forms of resources are related when they are sufficient to execute
the same sequence of functions.

Property Preservation Now we present an example use of the property preservation of
the cut-simulation given in Figure 3.9. First, we lift the cut-simulation ≥ to be right-total
by introducing a bad state of ERC20-K that has no transition, and relating it to all the
invalid states of ERC20-EVM. Then, let total and total′ be a function that returns the
total amount of balances of the ERC20-K and ERC20-EVM states, ERC20-K and ERC20-EVM,
respectively, which can be defined as follows:

total(ERC20-K) = Σ{v | k 7→ v ∈ ERC20-K<accounts>} (3.9)

total′(ERC20-EVM) = Σ{ERC20-EVM<storage>(k′) | ∃k. hashb(k) = k′} (3.10)
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where ERC20-K<accounts> and ERC20-EVM<storage> refer to the content of the <accounts> and
<storage> cells of the ERC20-K and ERC20-EVM configurations, respectively. Similarly,
let supply and supply’ be a function that returns the total supply, defined as follows:

supply(ERC20-K) = ERC20-K<supply> (3.11)

supply′(ERC20-EVM) = ERC20-EVM<storage>(hasht) (3.12)

Now we have:

ERC20-K ≥ ERC20-EVM =⇒ ( total(ERC20-K) = total′(ERC20-EVM) (3.13)

∧ supply(ERC20-K) = supply′(ERC20-EVM) ) (3.14)

Now, let Ptotal,supply and Ptotal′,supply′ be predicates over the ERC20-K and ERC20-EVM
states, respectively, defined as follows:

Ptotal,supply(ERC20-K)
def
= total(ERC20-K) = supply(ERC20-K) (3.15)

Ptotal′,supply′(ERC20-EVM)
def
= total′(ERC20-EVM) = supply′(ERC20-EVM) (3.16)

Then, if Ptotal,supply is inductive, then Ptotal′,supply′ is also inductive, by Theorem 3.2.
This means that we only need to show that Ptotal,supply is an inductive invariant since
Ptotal′,supply′ follows immediately.
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CHAPTER 4: DEDUCTIVE PROGRAM VERIFICATION

As a comprehensive evaluation of the universal formal methods and performance
of their derived formal analysis tools, we have instantiated a language-independent
deductive program verifier [12] by plugging-in four real-world language semantics,
C, Java, JavaScript, and Ethereum Virtual Machine (EVM); and used them to verify
full functional correctness of challenging heap-manipulating programs and high-profile
commercial smart contracts for the end-to-end verification, demonstrating their scalability
and practicality. Both JavaScript and EVM verifiers are the first deductive program verifier
for the languages to the best of our knowledge. Much of the content in this chapter comes
from Park et al. [51] and Stefanescu et al. [12].

4.1 LANGUAGE-PARAMETRIC PROGRAM VERIFIER

We evaluate the language-independent verification framework that can be instantiated
with an operational semantics to automatically generate a program verifier. The frame-
work treats both the operational semantics and the program correctness specifications
as reachability rules between matching logic patterns, and uses the sound and relatively
complete reachability logic proof system to prove the specifications using the semantics.
We instantiate the framework with the semantics of three real-world languages, C, Java,
and JavaScript, developed independently of our verification infrastructure. We evaluate
our approach empirically and show that the generated program verifiers can check au-
tomatically the full functional correctness of challenging heap-manipulating programs
implementing operations on list and tree data structures, like AVL and red-black trees.
This is the first work that turns the operational semantics of real-world languages into
correct-by-construction automatic verifiers.

We build the framework on the theoretical work [5, 4, 2, 1, 3] that proposes a language-
independent proof system which derives program properties directly from an operational
semantics, at the same granularity and compositionality as a language-specific axiomatic
semantics. Specifically, it introduces (one-path) reachability rules, which generalize op-
erational semantics reduction rules, and (all-path) reachability rules, which generalize
Hoare triples. Then, it gives a proof system that derives new reachability rules (program
properties) from a set of given reachability rules (the language semantics).

Figure 4.1 describes the architecture of our verification framework. We developed it
as part of the K framework [27] (http://kframework.org), in which the semantics of the

53



!!!!!!Program!Verifier!

Program!

K!Verifica.on!
Infrastructure!

K!Seman.cs!

JavaScript!

C!

…!

Theorem!
Provers!

Z3!
…!

Specifica.ons!(reachability!rules)!

Java!

Figure 4.1: Architecture of Semantic-Based Verification

above languages were defined. However, the technique applies to any reduction-based
semantics. Our K verification infrastructure takes an operational semantics given in K

and generates queries to a theorem prover (for example, Z3 [29]). The program correctness
properties are given as reachability rules between matching logic patterns [20]. Internally,
the verifier uses the operational semantics to perform symbolic execution. Also, it has an
internal matching logic prover for reasoning about implication between patterns (states),
which reduces to SMT reasoning.

Our hypothesis is that many of the tricky language-specific details (type systems,
scoping, implicit conversions, etc) are orthogonal to features that make program ver-
ification hard (reasoning about heap-allocated mutable data structures, integers/bit-
vectors/floating-point numbers, etc). As such, we propose a methodology to separate the
two: (1) define an operational semantics, and (2) implement reasoning in the language-
independent infrastructure.

To validate our approach, we first developed our verification infrastructure using it
only in connection with KernelC, a small C-like language, during development. Then,
we evaluated it with the operational semantics of C, Java, and JavaScript, checking the
full functional correctness of challenging heap manipulation programs implementing
the same data-structures in C, Java, and JavaScript. The verifiers were successful in
automatically proving all the programs correct, and the verification times are competitive.
The times are dominated by symbolic execution, which reflects the complexity of the
operational semantics (Section 4.1.3). Further, the development time required to write the
specifications, including the semantics-specific details, and to fix bugs in the semantics
was negligible compared to the development time of these semantics (Section 4.1.4).
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1 struct node {
2 int value;
3 struct node *left, *right;
4 };
5
6 struct node* new_node(int v) {
7 struct node *node;
8 node = (struct node *) malloc(sizeof(struct node));
9 node->value = v;

10 node->left = NULL;
11 node->right = NULL;
12 return node;
13 }
14
15 struct node* insert(int v, struct node *t) {
16 if (t == NULL)
17 return new_node(v);
18 if (v < t->value)
19 t->left = insert(v, t->left);
20 else if (v > t->value)
21 t->right = insert(v, t->right);
22 return t;
23 }

Figure 4.2: Binary search tree code snippet in C

The semantics of C, Java, and JavaScript were developed independently from the
verification infrastructure in the sense that they were developed with the goal of giving
a straightforward yet complete operational-style semantics for each of these languages,
without verification in mind. The verification infrastructure was developed without
detailed knowledge of the semantics. This makes us confident that our verification
infrastructure would work with future semantics with only minimal changes.

4.1.1 Illustrating Example

Here we illustrate our approach by checking the correctness of binary search tree (BST)
insertion implemented in C, Java, and JavaScript. A BST is a tree where the value
stored in each node is greater than any value in the left subtree and less than any value
in the right subtree. Insert recursively traverses the tree and adds a new leaf with the
value, if the value is not already in the tree. We use the operational semantics of these
languages for symbolic execution, and delegate reasoning about trees in the heap and
BST invariants to the verification infrastructure. Although the three definitions feature
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1 class Node {
2 int value;
3 Node left, right;
4
5 public Node(int value) {
6 this.value = value;
7 left = right = null;
8 }
9

10 public static Node insert(int v, Node t) {
11 if (t == null)
12 return new Node(v);
13 if (v < t.value)
14 t.left = insert(v, t.left);
15 else if (v > t.value)
16 t.right = insert(v, t.right);
17 return t;
18 }
19 }

Figure 4.3: Binary search tree code snippet in Java

1 function make_node(v) {
2 var node = {
3 value : v,
4 left : null,
5 right : null
6 };
7 return node;
8 }
9

10 function insert(v, t) {
11 if (t === null)
12 return make_node(v);
13 if (v < t.value)
14 t.left = insert(v, t.left);
15 else if (v > t.value)
16 t.right = insert(v, t.right);
17 return t;
18 }

Figure 4.4: Binary search tree code snippet in JavaScript

different language constructs and memory models, the operational semantics successfully
abstracts these details.

Figure 4.2, 4.3, and 4.4 show the implementation in C, Java, and JavaScript. C
uses “struct node” to represent a tree node, while Java uses “class Node”. JavaScript is
a class-free, prototypal language, where objects dynamically inherit from other objects.
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In C, dynamically allocated memory (the “heap”) is untyped; malloc allocates a block
of bytes, which is then associated the effective type struct node. In Java all memory is
typed; new creates an instance of class Node. In JavaScript, objects are modeled in memory
as maps from property names (strings) to values (of any type). Each language has
different memory access mechanisms. The C and Java trees store integers, while the
JavaScript tree stores floats (JavaScript integers are syntactic sugar for floats). Other
language-specific aspects are automatic type conversions and function/method calls.

Before we discuss the correctness specifications, we introduce some useful K con-
ventions. Specifications are reachability rules ϕ ⇒∀ ϕ′, with ϕ and ϕ′ matching logic
patterns (i.e. (symbolic) program configurations with constraints). If ϕ and ϕ′ share
program configuration context, we only mention the context once and distribute “⇒∀”
through the context where the changes take place. Logical variables starting with “?” are
existentially quantified. Rules only mention the parts of the configuration they read or
write; the rest stays unchanged. The “requires” clause is implicitly conjuncted with the
left-hand-side configuration, and “ensures” with the right-hand-side. It is common for
operational semantics to have a preprocessing/initializing phase. C computes structure
and function tables, Java a class table, while JavaScript creates objects and environments
for all functions. A variable with the same name as a cell but with capital letters is a
placeholder for the initial value of that cell after the preprocessing phase, which we
statically compute using the semantics.

Figure 4.5 shows the correctness specifications. We discuss the C one first. The rule
states that the call to insert with value V and pointer L1 returns pointer ?L2. Since C is
typed, each value is tagged with its type, in this case int or pointer to struct node. When
the function is called, the memory contains a binary tree with root L1 storing the algebraic
tree T1. When the function returns, the initial tree is replaced by another tree with root
?L2 storing ?T2. The requires clause states that T1 is a BST and V is in the appropriate
range for signed 32-bit integers. The ensures clause states that T2 is also a BST, and the
value set of ?T2 is the value set of T1 union with V. The “···” in the mem cell stands
for a variable matching the rest of the memory (the heap frame), which stays unchanged.
Similarly, the parts of the program configuration that are not explicitly mentioned (the
configuration frame) do not change. The threads cell contains only one thread and no “···”,
which means this program is verified in a single-threaded environment (the program is
not thread-safe). Variables FUNCTIONS, STRUCTS, and MEM are placeholders for the
tables of function declarations and structure declarations, and the initial memory layout.
Note that here we assume signed integers are represented on 32 bits. The C standard
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C
rule
〈functions〉 FUNCTIONS:Map 〈/functions〉
〈structs〉 STRUCTS:Map 〈/structs〉
〈mem〉...

MEM:Map (tree(L1, T1 :Tree)⇒∀ tree(?L2, ?T2 :Tree))
...〈/mem〉
〈threads〉 〈thread〉... 〈k〉

insert(tv(V:Int, int), tv(L1 :Loc, struct node))
⇒∀ tv(?L2 :Loc, struct node)

...〈/k〉 ...〈/thread〉 〈/threads〉
requires bst(T1) ∧−2147483648 ≤ V∧V ≤ 2147483647
ensures bst(?T2) ∧ tree_keys(?T2) = {V} ∪ tree_keys(T1)

Java

rule
〈classes〉 CLASSES :Bag 〈/classes〉
〈objectStore〉...

tree(R1, T1 :Tree)⇒∀ tree(?R2, ?T2 :Tree)
...〈/objectStore〉
〈threads〉 〈thread〉... 〈k〉

(class Node).insert(
V:Int :: int, R1 :Ref :: class Node)

⇒∀ ?R2 :Ref :: class Node

...〈/k〉 ...〈/thread〉 〈/threads〉
requires bst(T1) ∧−2147483648 ≤ V∧V ≤ 2147483647
ensures bst(?T2) ∧ tree_keys(?T2) = {V} ∪ tree_keys(T1)

JavaScript

rule
〈envs〉... ENVS:Bag (.Bag⇒∀ ?_ :Bag) ...〈/envs〉
〈objs〉...

OBJS :Bag (.Bag⇒∀ ?_ :Bag)
(tree(L1 :Loc, T1 :Tree)⇒∀ tree(?L2 :Loc, ?T2 :Tree))

...〈/objs〉
〈k〉 insert(V:Float, O1 :Object)⇒∀ ?O2 :Object ...〈/k〉

requires bst(T1) ∧ ¬isNaN(V)
ensures bst(?T2) ∧ tree_keys(?T2) = {V} ∪ tree_keys(T1)

Figure 4.5: Binary search tree correctness specifications for C, Java, and JavaScript

allows other choices (e.g., 64 bits), and we can handle those by modifying the require
clause with the appropriate value range.

The Java specification is in many ways similar to the C one, reflecting the similarities
between C and Java. The call to insert uses the fully qualified method name, which
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includes the class name Node. The type of R1 and ?R2 mentioned in the rule is the static
type of these references, class Node. The dynamic type can be any sublcass of class Node.
Variable CLASSES :Bag stands for the statically computed class table.

Finally, we discuss the JavaScript specification. Since JavaScript is untyped, its values
do not carry a type. V is not NaN, since NaN does not respect the order relation on non-NaN
floats, and the code is incorrect if V or the values in T1 were NaN. The JavaScript semantics
creates new environments and objects at function call, which it does not garbage-collect
at return (an artifact of the semantics rather than of the language). The “.Bag⇒∀ ?_ :Bag”
in both the envs and objs cells states that there may be garbage left after the function
returns (“.” is the unit, while “_” is an anonymous variable, here existentially quantified).
JavaScript does not have threads.

The tree heap abstraction is defined in matching logic, and is different for each language,
taking into account the specifics of the memory model of each language. Also bst,
tree_keys, etc., are domain operation symbols in the signature.

At a high level, the three specifications are very similar. The differences are down to
language-specific and semantics-specific details: type systems, name resolution, garbage
collection, or the statically computed information by each semantics. The tree heap ab-
straction hides the differences in memory models. Our generic verification infrastructure
reasons about the tree abstraction and the mathematical properties of BST while deferring
the symbolic execution to the semantics. The verification is fully automated and takes a
few seconds (see Table 4.1 in Section 4.1.3).

It is possible to generate the specification rules automatically from classic verifica-
tion annotations (pre/post conditions, loop invariants, class invariants, etc). This has
been done previously by MatchC [3]. We have not implemented this feature, using
instead a general-purpose notation which is faithful to both reachability logic and our
implementation.

4.1.2 Evaluation

We evaluate the K verification infrastructure by instantiating it with four different
semantics, thus obtaining program verifiers for four different languages: KernelC
(a small C-like language), C, Java, and JavaScript (complex real-world languages).
Our goal is to validate our hypothesis that building program verifiers by using K

operational semantics and its verification infrastructure is effective both in terms of
verification capabilities and tool building effort. To evaluate this hypothesis, first we
implemented all the features required to verify the programs in Table 4.1 with KernelC:

59



symbolic execution, reasoning with heap abstractions, integration with Z3, etc. Then we
instantiated our framework with the off-the-shelf semantics of C11 [23, 24], Java 1.4 [52],
and JavaScript 5.1 [7] to obtain corresponding program verifiers. We evaluated these
verifiers by proving the correctness of the same programs in Table 4.1, but written in C,
Java, and JavaScript. The implementation and the experiments are available as part of
the K framework at http://github.com/kframework/k/wiki/Program-Verification.

The semantics we use are the most complete to date for their languages (see Table 4.2
for their size). As we mentioned before, given the complexity of real-world languages,
we would like to separate the tricky language-specific features that are orthogonal to the
verification process from the language-independent issues that make program verification
hard. We achieve this by deferring to the semantics to handle the language-specific
features (automatic promotions of integers in C, type checking, function call resolution,
etc.). The K verification infrastructure handles the language-independent reasoning
(heap-allocated mutable data structures, integers/bit-vectors/floating-points, etc.).

4.1.3 Verification Result

Here we discuss how effective in terms of proving capabilities it is to build program
verifiers using K operational semantics. To this end, we have verified using our approach
a number of challenging heap manipulating programs implementing the same data
structure operations in KernelC, C, Java, and JavaScript. These programs have been
used before to evaluate verification approaches, e.g., in [3, 17, 53, 31]. Our goal here
is to show that we can also verify such programs at comparable performance, but in a
language-independent setting. We conducted the experiments on a machine with Intel
Core i7-4960X CPU 3.60GHz and DDR3 RAM 64GB.

Our examples fall in two categories. (1) Singly-linked list manipulating programs,
including implementations of common sorting algorithms. For each sorting function, we
prove that the returned sequence is indeed sorted and has exactly the same elements as
the original sequence. (2) Implementations of binary search tree, AVL tree, red-black tree
(RBT), and Treap data-structure operations. For each function, we prove that it maintains
the data-structure invariants and that the set of elements is as expected.

Table 4.1 summarises our experiments. For KernelC, which is idealized for verification,
proving the implications required by Consequence (shown in the Reasoning column)
dominates the total verification time. C, Java, and JavaScript are complex languages, so
the semantics-based symbolic execution (shown in the Execution column) dominates the
verification time. Note that since the programs implement the same data structure opera-
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C Java JavaScript

Semantics development (months) 40 20 4
Semantics size (#rules) 2,572 1,587 1,378
Semantics size (LOC) 17,791 13,417 6,821
Language-specific effort (days) 7 4 5
Semantics changes size (#rules) 63 38 12
Semantics changes size (LOC) 468 95 49
Specifications 36 31 31
Abstractions 6 6 6
Function definitions 14 14 14
Lemmas 7 7 7

Table 4.2: The development costs

tions in different languages, the complexity of implications required by Consequence

tends to be similar. Thus, the complexity of the operational semantics is the most impor-
tant factor contributing to the difference in the verification times reported. As expected,
since C has the most complex operational semantics, the times for C are the largest. The
number of queries of logical reasoning for C and Java is higher than for JavaScript

because of 32-bit integer range constraints, while the time spent on each query is similar
along the different languages, reflecting that the reasoning is language-independent.
Furthermore, each step of symbolic execution for JavaScript is much smaller than for C
and Java, because the JavaScript semantics is more fine-grained.

The AVL and RBT insert and delete programs take considerably longer than the other
programs because some of the auxiliary functions (like balance, rotate, etc) are not given
specifications and thus their bodies are being inlined, resulting in a larger number of
paths to analyze. To put this in perspective, VCDryad [17], a state-of-the-art separation
logic verifier for C build on top of VCC, takes 260s to verify only the balance function in
AVL, while it takes our generic infrastructure instantiated with the C semantics 210s to
verify AVL insert (including balance). In general, we believe Table 4.1 suggests that our
approach is practical and competitive with the state-of-the-art on such data-structures.

4.1.4 Development Cost

We discuss how cost effective in terms of tool development it is to build program
verifiers using K operational semantics and our verification infrastructure. Recall that the
semantics of C, Java, and JavaScript were developed as separate projects, independently
from the verification infrastructure.
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Table 4.2 shows the development effort of our approach. The language-specific effort
consists of familiarizing with the semantics in order to be able to write the correctness
specifications as reachability rules (like the ones in Section 4.1.1), and of making changes to
the semantics. Most of changes to the semantics are bug fixes, but some are performance
improvements or simplifications. The development effort scales with the language
complexity. The effort for C is considerably larger than for Java and JavaScript due to the
low level complexity of C. Overall, the numbers in Table 4.2 validate our hypothesis that
program verification based on operational semantics and the K verification infrastructure
is cost effective in terms of development effort.

For comparison, the state-of-the-art is to define a translator to an intermediate veri-
fication language, like Boogie, or to define a verification condition (VC) generator. For
example, the VCC translator from C to Boogie consists of approximately 5000 lines of
F# [54]. We believe that writing such a translator takes considerably more effort than
we reported for our approach in Table 4.2 (we do not include the time to define the
semantics into this comparison, since we assume the semantics already exist, and they
serve other purposes as well). Moreover, we believe that one would have more confidence
in an operational semantics to handle the tricky details of complex languages than in a
translation or a VC generator, for two reasons. First, an operational semantics is more
amenable to visual inspection, as it is written in a domain-specific language for defining
semantics. Second, an operational semantics is executable and can be thoroughly tested.
While this does not guarantee the absence of bugs, it greatly reduces their occurrence.

Even if a semantics is not already available, we believe that developing an operational
semantics has an important advantage over building a translator or a VC generator: the
semantics is used not only for verification, but for other purposes as well, so overall the
semantics development cost is amortized. For example, the JavaScript semantics was
used for bug finding in browsers [7].

Regarding number of annotations, our approach is comparable to the state-of-the-art
language-specific approaches that do not infer invariants (VCC, Frama-C). The user
provides one specification for each recursive function and loop. The user also provides
the definitions for heap abstractions and auxiliary functions used in specifications. The
user does not provide anything similar to ghost code or hints for the verifier. The user
may need to provide additional lemmas and those lemmas apply to a class of programs
rather than one particular program (e.g., the lemmas for list segments in Section 2.3.2 are
shared by all sorting-related programs in all languages).
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Operational Semantics Bugs We found bugs in all the three operational semantics used
for verification, despite the fact that these semantics are thoroughly tested on thousands
of programs [23, 24, 52, 7].

The main source of bugs is the unintended non-determinism in the semantics. A
semantics models a non-deterministic feature by having multiple rules that can apply
at the same time. Such a feature is the expression evaluation order in C: “f() + g()” may
call f() first and g() second or g() first and f() second. As a result, only a fraction of the
possible behaviors are observed under testing. During symbolic execution, the K verifier
considers all the rules that can apply (according to nextAll in Figure 2.1). This revealed
that each semantics contained unintended non-determinism: pairs of rules where the
semantics developers intended for one rule to always apply before the other, but in fact
both rules can apply simultaneously. Applying the rules in the other order causes an
incorrect result. We also found other kinds of bugs, mostly caused by incorrect side
conditions of the semantics rules, or incorrect assumptions about the configuration.

4.2 END-TO-END VERIFICATION OF ETHEREUM SMART CONTRACTS

Smart contract failures have caused millions of dollars of lost funds [8],and rigorous
formal methods are required to ensure the correctness and security of contract imple-
mentations [9, 10].The smart contract is usually written in a high-level language such as
Solidity [47] or Vyper [48], and then it is compiled down to the Ethereum Virtual Machine
(EVM) bytecode [46] that actually runs on the blockchain.

We present a formal verification tool for the EVM bytecode. We chose the EVM
bytecode as the verification target language so that we can directly verify what is actually
executed without the need to trust the correctness of the compiler. To precisely reason
about the EVM bytecode without missing any EVM quirks, we adopted KEVM [11], a
complete formal semantics of the EVM, and instantiated the K-framework’s reachability
logic theorem prover [12] to generate a correct-by-construction deductive program verifier
for the EVM. While it is sound, the initial out-of-box EVM verifier was relatively slow and
failed to prove many correct programs. We further optimized the verifier by introducing
custom abstractions and lemmas specific to EVM that expedite proof searching in the
underlying theorem prover. Our EVM verifier has been used to verify the full functional
correctness of high-profile smart contracts including various ERC20 token [13], Ethereum’s
Casper FFG [14], DappHub’s MakerDAO [15], and Gnosis Safe [16] contracts. Our
verification tool and artifact is publicly available at [55].
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Our methodology for formal verification of smart contracts is as follows. First, we
formalize the high-level business logic of the smart contracts, based on a typically
informal specification provided by the contract developers, to provide us with a precise
and comprehensive specification of the functional correctness properties of the smart
contracts. This high-level specification needs to be confirmed by the developer, possibly
after several rounds of discussions and changes, to ensure that it correctly captures the
intended behavior of their contracts. Then we refine the specification all the way down to
the Ethereum Virtual Machine (EVM) level, often in multiple steps, to capture the EVM-
specific details. The role of the final EVM-level specification is to ensure that nothing
unexpected happens at the bytecode level, that is, that only what was specified in the
high-level specification will happen when the bytecode is executed. To precisely reason
about the EVM bytecode without missing any EVM quirks, we adopted KEVM [11],
a complete formal semantics of the EVM, and instantiated the language-independent
deductive program verifier [12] to generate a correct-by-construction deductive program
verifier for the EVM. We use the verifier to verify the compiled EVM bytecode of the
smart contract against its EVM-level specification. Note that the compiler of a high-level
contract language (such as Solidity or Vyper) is not part of our trust base, since we
directly verify the compiled EVM bytecode. Therefore, our verification results do not
depend on the correctness of the compilers.

4.2.1 EVM Verification Challenges

Verifying the EVM bytecode is challenging, especially due to the internal byte manipula-
tion operations that require non-linear integer arithmetic reasoning, which is undecidable
in general [56]. Here we provide a few examples of the challenges.

Byte-Manipulation Operations The EVM provides three types of storage structures:
a local memory, a local stack, and the global storage. Of these, only the local memory
is byte-addressable (i.e., represented as an array of bytes), while the others are word-
addressable (i.e., each represented as an array of 32-byte words). Thus, a 32-byte (i.e.,
256-bit) word needs to be split into 32 chunks of bytes to be stored in the local memory,
and those 32 chunks need to be merged back to be loaded in either the local stack or the
global storage. These byte-wise splitting and merging operations can be formalized using
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non-linear integer arithmetic operations, as follows.1 Suppose x is a 256-bit integer. Let
xn be the nth byte of x in its two’s complement representation, where the index 0 refers
to the least significant bit (LSB), defined as follows:

xn
def
= (x/256n) mod 256 (4.1)

Let merge be a function that takes as input a list of bytes and returns the corresponding
integer value under the two’s complement interpretation, recursively defined as:

merge(xi · · · xj+1xj)
def
= merge(xi · · · xj+1) * 256 + xj when i > j

merge(xi)
def
= xi

(4.2)

where * and + are multiplication and addition over words (modulo 2256). If the byte-wise
operations are blindly encoded as SMT theorems, then Z3, a state-of-the-art SMT solver,
times out attempting to prove “x = merge(x31 · · · x0)”. The SMT query can be simplified
to allow Z3 to efficiently terminate, for example, by omitting the modulo reduction for
multiplication and addition in merge with additional reasoning about the soundness
of the omission. Despite these improvements, the merge operation still incurs severe
performance penalties as solving the large formula is required for every load/store into
memory, an extremely common operation.

Arithmetic Overflow Since EVM arithmetic instructions perform modular arithmetic
(i.e., +, −, ∗, / mod 2256), detecting arithmetic overflow is critical for preventing potential
security holes due to an unexpected overflow. Otherwise, for example, increasing a user’s
token balance could trigger an overflow, resulting in loss of the funds as the balance
wraps around to a lower-than-expected value. There is no standard EVM-level overflow
check, so the overflow detection varies across compilers and libraries. For example, the
Vyper compiler inserts the following runtime check for an addition a + b over the 256-bit
unsigned integers a and b, b == 0 || a + b > a, where + represents addition modulo 2256.
It seems straightforward to show that the above formula is equivalent to a+ b < 2256

(where + is the pure addition without modulo reduction), but it is no longer trivial
once the above is compiled down to EVM. The compiled EVM bytecode of the above
conditional expression can be encoded in the SMT-LIB format as follows, (not (= (chop

(+ (bool2int (= b 0)) (bool2int (> (chop (+ a b)) a)))) 0)), where (chop x) denotes
1It is also possible to formalize the byte-manipulation using the bit-vector theory, but the formalization

using the mathematical integer theory has an advantage of the functional specifications being succinct.
Indeed, the KEVM semantics adopted the integer formalization because of the advantage.
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(x mod 2256), and (bool2int x) is defined by (ite x 1 0). However, Z3 fails (timeout) to
prove that the above SMT formula is equivalent to a+ b < 2256.

Hash Collision Precise reasoning about the SHA3 hash2 is critical. Since it is not
practical to consider the hash algorithm details every time the hash function is called in
the EVM bytecode, an abstraction for the hash function is required. Designing a sound but
efficient abstraction is not trivial because while the SHA3 hash is not cryptographically
collision-free, the contract developers assume collisions will not occur during normal
execution of their contracts.3 A naive way of capturing the assumption would be to
simply abstract the SHA3 hash as an injective function. However, it is not sound simply
because of the pigeonhole principle, and thus we need to be careful when abstracting the
hash function.

4.2.2 EVM-Specific Abstractions

K’s reachability logic theorem prover can be seen as a symbolic model checker equipped
with coinductive reasoning about loops and recursions (refer to [12] for details of the
underlying theory and implementation). The prover, in its current form, often delegates
domain reasoning to SMT solvers. The performance of the underlying SMT solvers is
critical for the overall performance. The domain reasoning involved in the EVM bytecode
verification is not tractable in many cases, especially due to non-linear integer arithmetic.
We had to design custom abstractions and lemmas to avoid the non-tractable domain
reasoning and improve the scalability.

Abstraction for Local Memory We present an abstraction for the EVM local memory
to allow word-level reasoning. As mentioned in Section 4.2.1, since the local memory is
byte-addressable, the load and store operations involve the conversion between a word
and a list of bytes, which is not tractable to reason about in general. Our abstraction helps
to make the reasoning easier by abstracting away the byte-manipulation details of the
conversion. Specifically, we introduce uninterpreted function abstractions and lemmas
for word-level reasoning as follows.

The term nthByteOf(v, i, n) represents the ith byte of the two’s complement representa-
tion of v in n bytes (0 being the most significant bit), with discarding high-order bytes

2https://keccak.team/index.html
3The assumption is not unreasonable, as virtually all blockchains rely heavily on the collision-resistance

of hash functions.
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when v does not fit in n bytes. Precisely, it is defined as follows:

nthByteOf(v, i, n) = nthByteOf(bv/256c , i, n− 1) when n > i + 1 (4.3)

nthByteOf(v, i, n) = v mod 256 when n = i + 1 (4.4)

However, we want to keep it uninterpreted (i.e., do not unfold the definition) when the
arguments are symbolic, to avoid the expensive non-linear arithmetic reasoning.

We introduce lemmas over the uninterpreted functional terms. The following lemmas
are used for symbolic reasoning about MLOAD and MSTORE instructions. They capture the
essential mechanisms used by the two instructions: splitting a word into a list of bytes
and merging it back into the word. First, we have the bound of nthByteOf(v, i, n) by
definition: 0 ≤ nthByteOf(v, i, n) < 256. Then we have the following lemma for the
merging operation:

merge(nthByteOf(v, 0, n) · · · nthByteOf(v, n− 1, n)) = v

if 0 ≤ v < 28n and 1 ≤ n ≤ 32 (4.5)

Refer to [55] for the other lemmas of the memory abstraction.

Abstraction for Hash We do not model the hash function as an injective function
simply because it is not true due to the pigeonhole principle. Instead, we abstract it as an
uninterpreted function, hash, that takes as input a list of bytes and returns an (unsigned)
integer: hash : {0, · · · , 255}∗ → N. Note that this abstraction allows the possibility of
hash collision.

However, one can avoid reasoning about the potential collision by assuming all the
hashed values appearing in each execution trace are collision-free. This can be achieved
by instantiating the injectivity property only for the terms appearing in the symbolic
execution, in a way analogous to universal quantifier instantiation.

Arithmetic Simplification Rules We introduce simplification rules, specific to EVM,
that capture arithmetic properties, which reduce a given term into a smaller one. These
rules help to improve the performance of the underlying theorem prover’s symbolic
reasoning. For example, we have the following simplification rule:

(x× y) / y = x if y 6= 0 (4.6)
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where / is the integer division.4 We also have a rule for the masking operation,
0xff · · · f & n, as follows, m & n = n if m + 1 = 21+log m and 0 ≤ n ≤ m, where & is
the bitwise AND operator, and m denotes a bitmask 0xff · · · f. Refer to [55] for other
simplification rules.

4.3 CASE STUDY: ERC20 TOKEN CONTRACT VERIFICATION

We present a case study of completely verifying high-profile, practically deployed
implementations of the ERC20 token contract [13], one of the most popular Ethereum
smart contracts that provides the essential functionality of maintaining and exchanging
tokens.

4.3.1 Formal Specification

The ERC20 standard [13] informally specifies the correctness properties that ERC20
token contracts must satisfy. Unfortunately, however, it leaves several corner cases
unspecified, which makes it less than ideal to use in the formal verification of token
contracts.

We specified ERC20-K [49], a complete formalization of the high-level business logic
of the ERC20 standard, in the K framework. ERC20-K clarifies what data (e.g., balances
and allowances) are handled by the various ERC20 functions and the precise meaning
of those functions on such data. ERC20-K also clarifies the meaning of all the corner
cases that the ERC20 standard omits to discuss, such as transfers to itself or transfers that
result in arithmetic overflows, following the most natural implementations that aim at
minimizing gas consumption. The complete specifications are available at [49].

Figure 4.6, for example, shows part of the (simplified) specification of transfer. It
specifies two possible behaviors: success and failure.5 For each case, it specifies the
function parameters (callData), the return value (output), whether an exception occurred
(statusCode), the log generated (log), the storage update (storage), and the path-condition
(requires). Specifically, the success case (denoted by [transfer-success]) specifies that
the function succeeds in transferring the VALUE tokens from the FROM account to the TO

4Note that Z3 fails to prove this seemingly trivial formula at the time of this writing. Indeed, this issue
has been reported and fixed in the develop branch: https://github.com/Z3Prover/z3/issues/1683

5transfer admits four possible behaviors: success and failure of regular transfer (i.e., FROM 6= TO), and
success and failure of self-transfer (i.e., FROM = TO). Here we omit the self-transfer behaviors due to space
limit. Refer to [49] for the complete specification.
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[transfer-success]
callData: #abiCallData("transfer", #address(TO), #uint256(VALUE))
statusCode: _ => EVMC_SUCCESS
output: _ => #asByteStackInWidth(1, 32)
log: ... (. => #abiEventLog(FROM, "Transfer",

#indexed(#address(FROM)), #indexed(#address(TO)), #uint256(VALUE))))
storage:
#hashedLocation({BALANCES}, FROM) |-> (BAL_FROM => BAL_FROM -Int VALUE)
#hashedLocation({BALANCES}, TO) |-> (BAL_TO => BAL_TO +Int VALUE)
...

requires:
andBool FROM =/=Int TO
andBool VALUE <=Int BAL_FROM
andBool BAL_TO +Int VALUE <Int (2 ^Int 256)

[transfer-failure]
callData: #abiCallData("transfer", #address(TO), #uint256(VALUE))
statusCode: _ => EVMC_REVERT
output: _ => _
log: ...
storage:
#hashedLocation({BALANCES}, FROM) |-> BAL_FROM
#hashedLocation({BALANCES}, TO) |-> BAL_TO
...

requires:
andBool FROM =/=Int TO
andBool ( VALUE >Int BAL_FROM
orBool BAL_TO +Int VALUE >=Int (2 ^Int 256) )

Figure 4.6: Formal specification of transfer function

account, with generating the corresponding log message, and returns 1 (i.e., true), if no
overflow occurs (i.e., the FROM account has a sufficient balance, and the TO account has
enough room to receive the tokens). The failure case ([transfer-failure]) specifies that
the function throws an exception without modifying the account balances, if an overflow
occurs.

4.3.2 Verification Result

For this case study, we consider three ERC20 token implementations: the Vyper ERC20
token6, the HackerGold (HKG) ERC20 token7, and OpenZeppelin’s ERC20 token8. Of
these, the Vyper ERC20 token is written in Vyper, and the others are written in Solidity.

6https://github.com/ethereum/vyper/blob/master/examples/tokens/ERC20_solidity_compatible/ERC20.
vy

7https://github.com/ether-camp/virtual-accelerator/blob/master/contracts/StandardToken.sol
8https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/

StandardToken.sol
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We compiled the source code down to the EVM bytecode using each language compiler,
and executed our verifier to verify that the compiled EVM bytecode satisfies the afore-
mentioned specification. During this verification process, we found divergent behaviors
across these contracts that do not conform to the ERC20 standard. Due to the deviation
from the standard, we could not verify those contracts against the original ERC20-K spec-
ification. In order to show that they are “correct” w.r.t. the original specification modulo
the deviation, we modified the specification to capture the deviation and successfully
verified them against the modified specification. Table 4.3 provides the performance of
the verifier. Below we describe the results.

Vyper ERC20 Token The Vyper ERC20 token is successfully verified against the original
specification, implying its full conformance to the ERC20 standard.

HackerGold (HKG) ERC20 Token In addition to the well-known security vulnerability
of the HKG token,9 we found that the HKG token implementation deviates from our
specification as follows:

• No totalSupply function: No totalSupply function is provided in the HKG token,
which is not compliant to the ERC20 standard.

• Returning false in failure: It returns false instead of throwing an exception in the
failure cases for both transfer and transferFrom. It does not violate the standard, as
throwing an exception is recommended but not mandatory according to the ERC20
standard.

• Rejecting transfers of 0 values: It does not allow transferring 0 values, returning false
immediately without logging any event. It is not compliant to the standard. This is
a potential security vulnerability for any API clients assuming the ERC20-compliant
behavior.

• No overflow protection: It does not check arithmetic overflow, resulting in the re-
ceiver’s balance wrapping around the 256-bit unsigned integer’s maximum value
in case of the overflow. It does not violate the standard, as the standard does not
specify any requirement regarding it. However, it is potentially vulnerable, since
it will result in loss of the funds in case of the overflow as the receiver’s balance
wraps around to a lower-than-expected value.

9https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued Note that the
token contract had been manually audited by Zeppelin, but they failed to find the vulnerability, which
implies the need of the rigorous formal verification.
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Vyper HKG Zeppln. Vyper HKG Zeppln.
totalSupply 36.4 N/A 34.3 approve 33.9 48.4 35.4
balanceOf 33.3 37.3 37.1 transfer 148.5 198.5 219.7
allowance 36.4 42.3 39.6 transferFrom 174.4 257.6 179.2

Table 4.3: Verification time (secs) of ERC20 token contracts

OpenZeppelin ERC20 Token The OpenZeppelin ERC20 token is a high-profile ERC20
token library developed by the security audit consulting firm Zeppelin10. We found that
the OpenZeppelin token deviates from the ERC20-K specification as follows:

• Rejecting transfers to address 0: It does not allow transferring to address 0, throwing
an exception immediately. It does not violate the standard, as the standard does not
specify any requirement regarding it. However, it is questionable since while there
are many other invalid addresses to which a transfer should not be made, it is not
clear how useful rejecting a single invalid address is, at the cost of the additional
gas consumption for every transfer transaction.

4.4 CASE STUDY: BIHU SMART CONTRACT VERIFICATION

We present another case study of the end-to-end verification of the Bihu KEY token
operation contract, a commercially deployed smart contract on Ethereum mainnet.11

Bihu12 is a blockchain-based ID system, and KEY is the utility token for the Bihu ID
system and community. Our formal verification artifact for the Bihu KEY contracts is
publicly available at [57].

4.4.1 Formal Specification and Verification

The target of our formal verification is the collectToken function of the KeyRewardPool

contract. We faithfully formalized the behavior of the function consulting the informal
specification13 provided by the Bihu team.

We adopted the same verification methodology, where we formalized the high-level
business logic of the target smart contract, refined it down to the EVM level, and verified

10https://zeppelin.solutions/security-audits
11https://etherscan.io/address/0x4cd988afbad37289baaf53c13e98e2bd46aaea8c\#code
12https://bihu.com/
13https://docs.google.com/document/d/1-PilHhInQxGod7FZNbtfv2bbgV1045ROT5TO3WLhDOE
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Figure 4.7: Illustration of important variables of collectTokenspec

the contract bytecode against the EVM-level specification. A notable difference from that
of ERC20 token contract verification, however, is that here the refinement was conducted
in multiple steps. Indeed, we defined the following four (refined) specifications, where
each subsequent specification refines the previous one:

1. collectTokenspec: high-level definitional specification

2. collectTokencode: high-level constructive specification

3. collectTokensolidity: Solidity-level functional specification

4. collectTokenevm: EVM-level functional specification

Here, collectTokenspec is the high-level specification written with the purpose of communi-
cation with the client to ensure that it correctly captures the intended behavior of their
contract. While collectTokenspec is rather a mathematical definition, collectTokencode refines
it to make the computation steps explicit, being more constructive. Since collectTokencode
employs simply the real arithmetic for the computation steps, collectTokensolidity refines
it to capture the unsigned integer arithmetic of Solidity (and thus EVM) including round-
ing errors of integer division. Finally, collectTokenevm refines collectTokensolidity further
down to the EVM level to capture EVM-specific details.

Specification refinement is critical for this verification effort because of the inherent gap
between the (high-level) code written by developers and the (low-level) code that actually
runs on the blockchain/EVM. Moreover, we split the refinement process into multiple
small steps, which makes it easier to prove soundness of each refinement step.

High-Level Definitional Specification collectTokenspec is a formal high-level specifica-
tion of the collectTokens function, the main function of the KeyRewardPool contract. We
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derive it from the following informal English specification provided to us by the devel-
oper14.

“KeyRewardPool contract is responsible for releasing key tokens in the reward
pool (initially about 45 billion tokens). The reward pool has a start time. From
the start time, every 365 days, we define it as an annual. In each year, a total
of 10% of the remaining amount is released. In each year, the token is released
linearly.”

Figure 4.7 illustrates the important variables of collectTokenspec. We formalize each English
sentence, starting from the second one.

“The reward pool has a start time.”

Let start denote the start time as shown in Figure 4.7.

“From the start time, every 365 days, we define it as an annual.”

Suppose n full-years (i.e., annuals) have passed since start, where the time periods of each
annual are denoted by 1st, · · · , nth, and (n + 1)th, respectively, in Figure 4.7. Let now be
the time (as seconds since Unix epoch) when the collectToken function is called, and
suppose now is in the middle of the (n + 1)th annual. Let prev (and next) be the time of
the beginning (and the end, respectively) of the current (n + 1)th annual.

“In each year, a total of 10% of the remaining amount is released. In each year,
the token is released linearly.”

Let T be the total number of tokens. If T is fixed over the lifetime of the contract, the
number of tokens to be released each annual can be formalized as follows. After the
first annual has passed, 0.1× T tokens are released and eligible to be collected; after the
second annual, additional 0.1× (0.9× T) tokens are released; after the third annual, yet
another additional 0.1× (0.92 × T) tokens are released. In general, after each nth annual
has passed, 0.1× (0.9n−1 × T) tokens are newly released. Thus, the sum of all of the
released tokens up to the end of the nth annual is:

0.1 · T + 0.1 · (0.9 · T) + 0.1 · (0.92 · T) + · · ·+ 0.1 · (0.9n−1 · T) = T(1− 0.9n) (4.7)

Let X, Y, and Z be the number of tokens that are supposed to be released for each
time period (more precisely, right after the end of the period), respectively, as shown in

14https://docs.google.com/document/d/1-PilHhInQxGod7FZNbtfv2bbgV1045ROT5TO3WLhDOE
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Figure 4.7. Let b be the fraction of the current annual up to now, defined as:

b =
now− prev
next− prev

(4.8)

Now we have the following equalities:

Y = Z× b (4.9)

Z = T × 0.9n × 0.1 (4.10)

X = T(1− 0.9n) (4.11)

X + Z = T(1− 0.9n+1) (4.12)

When the collectToken function is called, it collects all of the tokens that have been
released (but not yet collected) up to that point. Let C be the number of tokens that have
already been collected until now since start. The collectToken function, when being called
at now, collects newly the following amount of tokens:

X + Y− C (4.13)

Let C′ be the number of the collected tokens after this collectToken call. Then we have
C′ = X + Y.

Note that T may change in between calls to the collectToken function. We have two
cases:

• Case 1. If T has increased since the last collectToken call, the number of the newly
collected tokens (more precisely X + Y) will increase as it will collect the new
percentage of tokens that have not been collected in the past.

• Case 2. If T has decreased since the last collectToken call, the number of the newly
collected tokens (more precisely X + Y) will decrease, meaning that more tokens
have already been collected, as a percentage, than previously allowed. In this case,
however, if X + Y < C, do not collect any token, meaning that C′ = C.

Also, note that n and b can be derived directly from start and now, as follows:

n =

⌊
now− start
31536000

⌋
(4.14)

b =
now− prev
31536000

=
now− start mod 31536000

31536000
(4.15)
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/∗ @input: balance // T − C
∗ collectedTokens // C
∗ rewardStartTime // start
∗ now // now
∗
∗ @output: balance ' // T − C′

∗ collectedTokens ' // C′

∗
∗ @pre−condition: now > rewardStartTime
∗/
procedure collectToken () {

total := collectedTokens + balance // T
yearCount := floor (days(now − rewardStartTime) / 365) // n
fractionOfThisYear := (days(now − rewardStartTime) % 365) / 365 // b

remainingTokens := total ∗ (0.9 ^ yearCount)
totalRewardThisYear := remainingTokens ∗ 0.1 // Z
canExtractThisYear := totalRewardThisYear ∗ fractionOfThisYear // Y
canExtract := canExtractThisYear + (total − remainingTokens)

− collectedTokens // Y + X− C

collectedTokens ' := collectedTokens + canExtract // C′

balance ' := balance − canExtract // T − C′

}

Figure 4.8: collectTokencode: All of the arithmetic operations are the purely mathematical
ones, with no overflow nor rounding errors.

where 31,536,000 is the number of seconds in a year (= 365× 24× 3600).

High-Level Constructive Specification We specify collectTokencode, a constructive defi-
nition of collectTokenspec, in a form of pseudo-code, as shown in Figure 4.8. The arithmetic
operations used in collectTokencode are the purely mathematical ones, with no overflow
nor rounding errors.

Lemma 4.1 bridges the gap between collectTokencode and collectTokenspec.

Lemma 4.1. If the inputs of collectToken in Figure 4.8 satisfies the following equations:

balance = T − C (4.16)

collectedTokens = C (4.17)

rewardStartTime = start (4.18)

now = now (4.19)
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then the following holds for the outputs of the function:

balance’ = T − C′ = T − (X + Y)
collectedTokens’ = C′ = X + Y

(4.20)

Proof. Immediate from the following equalities for the intermediate values, by definition
of collectTokenspec and collectTokencode.

total = T
yearCount = n
fractionOfThisYear = b
remainingTokens = total− X
totalRewardThisYear = Z
canExtractThisYear = Y
canExtract = X + Y− C

(4.21)

Solidity-Level Functional Specification Now we convert the high-level specification to
collectTokensolidity by replacing the pure mathematical operations with the unsigned
integer arithmetic operations of Solidity, as shown in Figure 4.9. collectTokensolidity

serves as the functional correctness specification of collectToken. Note that we use
different fonts to distinguish different specification variables: the sans serif font for the
collectTokencode variables, and the teletype font for those of collectTokensolidity.

Note that there is a gap between collectTokencode and collectTokensolidity, especially
due to the integer division rounding errors. We next analyze the rounding errors to
bridge the gap between them.

First, let us define the integer division in terms of the mathematical one with the floor
operation as follows:

x / y def
=

⌊
x
y

⌋
(4.22)

where / is the integer division. Since r− 1 < brc ≤ r (for r ∈ R), we have:

x
y
− 1 < x / y ≤ x

y
(4.23)

Let us introduce the epsilon (ε) notation, a small non-deterministic number within the
range [0, 1), i.e., 0 ≤ ε < 1, so that we can represent the above inequalities in a simpler
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/* @input: uint balance

* unit collectedTokens

* unit rewardStartTime

* unit now

*

* @output: unit balance'

* unit collectedTokens'

*

* @pre-condition: now > rewardStartTime

*/

procedure collectToken() {

unit total := collectedTokens + balance

unit yearCount := days(now - rewardStartTime) / 365

unit fractionOfThisYear365 := days(now - rewardStartTime) % 365

unit remainingTokens := power(total, 90, 100, yearCount)

unit totalRewardThisYear := remainingTokens * 10 / 100

unit canExtractThisYear := totalRewardThisYear

* fractionOfThisYear365 / 365

unit canExtract := canExtractThisYear + (total - remainingTokens)

- collectedTokens

collectedTokens' := collectedTokens + canExtract

balance' := balance - canExtract

}

// return (conceptually): acc * ((base_n / base_d) ^ exp)

function power(acc, base_n, base_d, exp) {

if exp == 0 {

return acc

} else {

return power(acc * base_n / base_d, base_n, base_d, exp - 1)

}

}

Figure 4.9: collectTokensolidity: All of the arithmetic operations are the unsigned integer
arithmetics, where an exception is thrown when an overflow occurs.

form as follows:

x / y =

⌊
x
y

⌋
=

x
y
− ε (4.24)
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We start to analyze the error bound of remainingTokens, which is, power(total,90,100,n)
for n ≥ 0. First, we have:

power(total,90,100,0) = total (4.25)

power(total,90,100,1) = total× 90 / 100 (4.26)

= btotal× 0.9c (4.27)

= total× 0.9− ε1 (4.28)

power(total,90,100,2) = (total× 90 / 100)× 90 / 100 (4.29)

= bbtotal× 0.9c × 0.9c (4.30)

= (total× 0.9− ε1)× 0.9− ε2 (4.31)

= total× 0.92 − ε1 × 0.9− ε2 (4.32)

power(total,90,100,3) = ((total× 90 / 100)× 90 / 100)× 90 / 100 (4.33)

= bbbtotal× 0.9c × 0.9c × 0.9c (4.34)

= (total× 0.92 − ε1 × 0.9− ε2)× 0.9− ε3 (4.35)

= total× 0.93 − ε1 × 0.92 − ε2 × 0.9− ε3 (4.36)

where / is the integer division. Thus, in general, for any n ≥ 0, we have:

power(total,90,100,n) = total× 0.9n − ε1 × 0.9n−1 − · · · − εn−1 × 0.9− εn (4.37)

By the definition of ε, we have:

total× 0.9n ≥ power(total,90,100,n) > total× 0.9n − 0.9n−1 − · · · − 0.9− 1 (4.38)

= total× 0.9n − 1− 0.9n

0.1
(4.39)

> total× 0.9n − 10 (4.40)

Since total = T, we have

T × 0.9n − 10 < remainingTokens = power(total,90,100,n) ≤ T × 0.9n (4.41)
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Next, we analyze the error bound of totalRewardThisYear, which is, remainingTokens×
10 / 100. By the definition of the integer division, we have:

remainingTokens× 0.1− 1 < remainingTokens× 10 / 100 ≤ remainingTokens× 0.1 (4.42)

By the equation 4.41, we have:

totalRewardThisYear = remainingTokens× 10 / 100 ≤ remainingTokens× 0.1 (4.43)

≤ T × 0.9n × 0.1 (4.44)

= Z (4.45)

and

totalRewardThisYear = remainingTokens× 10 / 100 > remainingTokens× 0.1− 1 (4.46)

> (T × 0.9n − 10)× 0.1− 1 (4.47)

= T × 0.9n × 0.1− 2 (4.48)

= Z− 2 (4.49)

That is,
Z− 2 < totalRewardThisYear ≤ Z (4.50)

Similarly, the error bound of canExtractThisYear is analyzed as follows. We have:

totalRewardThisYear× b− 1 < canExtractThisYear ≤ totalRewardThisYear× b (4.51)

By the equation 4.50, we have:

canExtractThisYear ≤ totalRewardThisYear× b ≤ Z× b = Y (4.52)

and

canExtractThisYear > totalRewardThisYear× b− 1 (4.53)

> (Z− 2)× b− 1 (4.54)

= Z× b− 2b− 1 (4.55)

> Z× b− 3 (since 0 ≤ b < 1) (4.56)

= Y− 3 (4.57)
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That is, we have:
Y− 3 < canExtractThisYear ≤ Y (4.58)

Finally, we analyze the error bound of canExtract. By the equations 4.41 and 4.58, we
have:

(Y− 3)−T× 0.9n < canExtractThisYear− remainingTokens < Y− (T× 0.9n− 10) (4.59)

Since

canExtract = canExtractThisYear+ (total− remainingTokens)− collectedTokens

(4.60)

= canExtractThisYear+ (T − remainingTokens)− C (4.61)

we have:
(X + Y− C)− 3 < canExtract < (X + Y− C) + 10 (4.62)

Thus, the number of collected tokens calculated by the collectToken function may be
up to 10 more than, or 3 less than the mathematical definition, due to the integer division
rounding errors. The accumulated rounding error is constant-bounded, thus stable, no
matter how large n is. The following lemma formulates this fact.

Lemma 4.2. If the inputs of collectToken in Figure 4.9 satisfies the following equations:

balance = T − C (4.63)

collectedTokens = C (4.64)

rewardStartTime = start (4.65)

now = now (4.66)

then the following holds for the outputs of the function:

(T − C′)− 10 < balance’ < (T − C′) + 3
C′ − 3 < collectedTokens’ < C′ + 10

(4.67)

Proof. By the equations 4.41, 4.50, 4.58, and 4.62.

Another important property of collectToken is the monotonicity. That is, the number
of collected tokens increases as time goes on. In other words, the following should always

81



hold:

canExtractThisYear+ (total− remainingTokens) ≥ collectedTokens (4.68)

While it is clear that the above holds over the real arithmetic, it is not clear whether the
above holds over the integer arithmetic (due to the rounding errors).

Lemma 4.3. Suppose two collectToken function (as shown in Figure 4.9) calls are made at times
t and t′,respectively, where t < t′. Let r and r′ be the output values of canExtractThisYear+
(total− remainingTokens) for each function call at t and t′, respectively. Assume that total
does not descrese between t and t′. Then, r ≤ r′.

Proof. We only need to show in the case total is fixed, from which it is trivial to show in
the case total increases. Also, if t and t′ are in the same annual, it is trivial to show, since
remainingTokens is fixed and canExtractThisYear is monotone within the annual. Thus,
we only need to show for the case t and t′ are in the different annual. Specifically, it is
sufficient to show when t is the last second of the n + 1th annual, and t′ is the first second
of the n + 2th annual, for arbitrary n ≥ 0. Then, we have:

r = power(T,90,100,n)× 10 / 100× 31535999 / 31536000 + (T − power(T,90,100,n))
(4.69)

< power(T,90,100,n)× 10 / 100 + (T − power(T,90,100,n)) (4.70)

= T − power(T,90,100,n)+ power(T,90,100,n)× 10 / 100 (4.71)

= T − power(T,90,100,n)+ power(T,90,100,n)× 0.1− ε (4.72)

= T − power(T,90,100,n)× 0.9− ε (4.73)

r′ = power(T,90,100,n)× 10 / 100× 0 / 31536000 + (T − power(T,90,100,n + 1))
(4.74)

= T − power(T,90,100,n + 1) (4.75)

= T − power(T,90,100,n)× 90 / 100 (4.76)

= T − (power(T,90,100,n)× 0.9− ε) (4.77)

= T − power(T,90,100,n)× 0.9 + ε (4.78)

By the definition of ε, we conclude: r ≤ r′.

Now we can show that collectToken is monotonic even over the integer arithmetic.
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Corollary 4.1. If balance does not decrease since the last collectToken function call, the follow-
ing always hold:

canExtractThisYear+ (total− remainingTokens) ≥ collectedTokens (4.79)

Proof. By Lemma 4.3, and the fact that collectedTokens’ is set to (less than or) equal to
canExtractThisYear+ (total− remainingTokens).

EVM-Level Functional Specification Now we specify collectTokenevm, a refinement of
collectTokensolidity, that captures EVM-specific details. collectTokensolidity is a Solidity-
level specification, intentionally omitting EVM-specific details such as gas consumption,
data layout in storage, ABI encoding, and byte representation of the program. However,
reasoning about the low-level details is critical because many security vulnerabilities are
related to the EVM quirks.

We refine collectTokensolidity to EVM-level variant collectTokenevm, which captures all
of the detailed behaviors that can happen when the code is compiled and executed at
the EVM level. That includes laying out the contract state variables in the EVM storage,
encoding the program and the call data in bytes, and specifying additional information
such as gas consumption.

We verified a mathematically equivalent variant of the collectToken function, as shown
in Figure 4.10. Due to time constraints (we only had two weeks to complete this verifi-
cation project), we have not verified the external call to key.balanceOf and key.transfer.
The differences are as follows:

• Instead of calling time() to get the current time, now and rewardStartTime are given
as input to the collectToken function.

• We declare balance as a global variable rather than calling key.balanceOf function.
In the end, we directly update balance instead of calling key.transfer function.

• We change:

uint canExtract = canExtractThisYear + total - remainingTokens;

to the following:

uint canExtract = canExtractThisYear + (total - remainingTokens);

in order to avoid potential unnecessary overflow.
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pragma solidity ^0.4.18;

contract KeyRewardPool is DSMath {

uint public collectedTokens;

uint public balance;

uint constant public yearlyRewardPercentage = 10;

// @notice call this method to extract the tokens

function collectToken(uint nowTime, uint rewardStartTime) public returns(bool){

require(nowTime > rewardStartTime);

uint total = add(collectedTokens, balance);

uint remainingTokens = total;

uint yearCount = yearFor(nowTime, rewardStartTime);

for(uint i = 0; i < yearCount; i++) {

remainingTokens = div(mul(remainingTokens, 100 - yearlyRewardPercentage), 100);

}

uint totalRewardThisYear = div(mul(remainingTokens, yearlyRewardPercentage), 100);

// the reward will be increasing linearly in one year.

uint canExtractThisYear =

div(mul(totalRewardThisYear, (nowTime - rewardStartTime) % 365 days), 365 days);

uint canExtract = canExtractThisYear + (total - remainingTokens);

canExtract = sub(canExtract, collectedTokens);

if (canExtract > balance) {

canExtract = balance;

}

collectedTokens = add(collectedTokens, canExtract);

balance = sub(balance, canExtract);

return true;

}

function yearFor(uint nowTime, uint rewardStartTime) public constant returns(uint) {

return nowTime < rewardStartTime

? 0

: sub(nowTime, rewardStartTime) / (365 days);

}

}

Figure 4.10: Modified collectToken source code

• We omit to log the TokensWithdrawn event.
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[topLevel]

k: #execute => (RETURN RET_ADDR:Int 32 ~> _)

output: _

memoryUsed: 0 => _

callData: #abiCallData("collectToken", #uint256(NOW), #uint256(START))

wordStack: .WordStack => _

localMem: .Map => .Map[ RET_ADDR := #asByteStackInWidth(1, 32) ] _:Map

pc: 0 => _

gas: GASCAP => _

log: _

refund: _ => _

storage:

#hashedLocation({COLLECTEDTOKENS}) |-> (COLLECTED => COLLECTED +Int VALUE)

#hashedLocation({BALANCE} ) |-> (BAL => BAL -Int VALUE)

_:Map

requires:

/\ 0 <=Int COLLECTED <Int (2 ^Int 256)

/\ 0 <=Int BAL <Int (2 ^Int 256)

/\ 0 <=Int START <Int (2 ^Int 256)

/\ 0 <=Int (COLLECTED +Int BAL)

/\ (COLLECTED +Int BAL) *Int 3153600 <Int (2 ^Int 256)

/\ 0 <Int (NOW -Int START) <Int (2 ^Int 256)

/\ COLLECTED +Int 3

<Int #accumulatedReleasedTokens(BAL, COLLECTED, START, NOW)

<Int (BAL +Int COLLECTED) -Int 10

/\ GASCAP >=Int (293 *Int ((NOW -Int START) /Int 31536000)) +Int 43000

ensures:

VALUE ==Int @canExtractThisYear(COLLECTED +Int BAL, NOW, START)

+Int BAL

-Int @remainingTokens(COLLECTED +Int BAL, NOW, START)

Figure 4.11: collectTokenevm: top-level specification

In order to verify the collectToken function, we present the top-level spec, together
with the spec for the loop invariant. Specifically, we provide the specification template
parameters from which the full specifications are derived by instantiating the template [58]
and focus on explaining the EVM-specific detailed behaviors. For more details of the
specification template and template parameters, refer to the eDSL [58].

Top-Level Specification Figure 4.11 shows the functional specification at the EVM level,
describing the pre- and post-conditions of the collectToken function. Below we explain
the template parameters of the specification.
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• k specifies that the execution eventually reaches the RETURN instruction, meaning
that the program will successfully terminate.

• memoryUsed specifies that the initial memory consumption is initially 0. During the
execution, collectTokens will write values into the memory. However, the exact
amount of used memory by the end of the execution is irrelevant.

• callData specifies the call data using the #abiCallData eDSL notation [58].

• wordStack specifies that the local stack is initially empty. By the end of the execution,
the stack may not be empty, but that is not relevant.

• localMem specifies that the local memory is empty in the beginning, but in the end,
it will store the return value true, represented as 1.

• pc specifies the program counter starting from 0.

• gas specifies the maximum gas amount, GASCAP, ensuring that the program does
not consume more gas than the limit. Here we give a loose upper bound which is
specified in requires.

• log specifies that no log is generated during the execution.

• refund specifies that a refund may be issued. Note that, however, we have not
specified the refund detail since it is not essential for the functional correctness.

• storage specifies that the value of collectedTokens is COLLECTED and the value of
balance is BAL. Other entries are not relevant (and could be arbitrary values). The
{COLLECTEDTOKENS} and {BALANCE} terms are the eDSL notations (called program-
specific template parameters) that represent the position index of the corresponding
variables.

• requires specifies the pre-conditions of the function.

– The first three lines specify the range of symbolic values based on their types.

– Lines 4–5 specify the range of the total number of tokens. It should be
sufficiently small to avoid multiplication overflow. Note that 3153600 is the
seconds in an year divided by 10, i.e., 365×24×3600

10 .

– Line 6 specifies the total seconds that have passed since rewardStartTime should
be in the proper range of 256-bit unsigned integers.
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– Lines 7–9 specify that #accumulatedReleasedTokens(· · · )15, the accumulated
number of the released token until now since rewardStartTime, should be
marginally greater than collectedTokens and smaller than the total number of
tokens, considering the (bounded) rounding errors due to the integer division
in collectTokencode.

– Line 10 specifies the loose upper bound on the gas cost, which depends on the
input.

• ensures specifies that the number of newly collected token, canExtract, is cor-
rect, i.e., it is the same with that of collectTokensolidity. We use two macros
@canExtractThisYear and @remainingTokens to succinctly specify that, defined as
follows16:

rule @canExtractThisYear(TOTAL, NOW, START)

=> ((#roundpower(TOTAL, 90, 100, (NOW -Int START) /Int 31536000)

*Int 10 /Int 100)

*Int ((NOW -Int START) %Int 31536000)) /Int 31536000 [macro]

rule @remainingTokens(TOTAL, NOW, START)

=> #roundpower(TOTAL, 90, 100, (NOW -Int START) /Int 31536000) [macro]

Loop Invariant Specification Figure 4.12 shows the loop invariant of the for loop inside
the collectTokens function. Below we explain the noteworthy parameters.

• memoryUsed specifies that the local memory is never used (no read/write) inside the
loop. Indeed, the local variables are stored in the stack instead of the memory in
this EVM bytecode.

• wordStack specifies all of the elements in the local stack before and after the execution
of the loop. In the end, the loop index becomes YEARCOUNT, and the remainingTokens’s
value becomes #roundpower(REMAINING, 90, 100, YEARCOUNT -Int INDEX), which is
the most important loop invariant.

• pc specifies the program counters for the loop head and the end of the loop.

• gas specifies the gas consumption which depends on the number of loop iterations.

15#accumulatedReleasedTokens corresponds to X + Y in collectTokenspec
16#roundpower is a macro corresponding to the power in the collectTokensolidity.
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[loopInvariant]

k: #execute => #execute

output: _

memoryUsed: MU

callData: _

wordStack:

CANEXTRACT : CANEXTRACTTHISYEAR : TOTALREWARDTHISYEAR

: INDEX : YEARCOUNT

: REMAINING

: TOTAL : RETURNVAL : START : NOW : RPC : FUNID : .WordStack

=>

CANEXTRACT : CANEXTRACTTHISYEAR : TOTALREWARDTHISYEAR

: YEARCOUNT : YEARCOUNT

: #roundpower(REMAINING, 90, 100, YEARCOUNT -Int INDEX)

: TOTAL : RETURNVAL : START : NOW : RPC : FUNID : .WordStack

localMem: _

pc: 498 => 545

gas: GASCAP => GASCAP -Int (293 *Int (YEARCOUNT -Int INDEX)) -Int 26

log: _

refund: _

storage: _

requires:

/\ 0 <=Int MU /\ MU <Int (2 ^Int 256)

/\ 0 <=Int YEARCOUNT /\ YEARCOUNT <Int (2 ^Int 256)

/\ 0 <=Int REMAINING /\ REMAINING *Int 90 <Int (2 ^Int 256)

/\ 0 <=Int INDEX /\ INDEX <=Int YEARCOUNT

/\ GASCAP >=Int ((293 *Int (YEARCOUNT -Int INDEX)) +Int 26)

Figure 4.12: collectTokenevm: loop invariant specification

• requires specifies the proper range of the symbolic values. Especially, REMAINING
should be sufficiently small to avoid multiplication overflow.

We mechanize Corollary 4.1, which is trusted by the verifier, as follows:

rule @canExtractThisYear(COLLECTED +Int BAL, NOW, START)

+Int ((COLLECTED +Int BAL)

-Int @remainingTokens(COLLECTED +Int BAL, NOW, START)) >=Int COLLECTED

=> true

requires #shouldReleaseSofar(BAL, COLLECTED, START, NOW) >Int COLLECTED +Int 3

We took the modified source code, inlined the DSMath contract and compiled it to the EVM
bytecode using Remix Solidity IDE (of the version soljson-v0.4.20). The verification
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proof of the collectToken function can be reproduced by using the verifier. Refer to [57]
for more details.

Threats to Validity The formal verification results presented in this thesis only show
that the target contract behaviors meet the formal (functional) specifications. Moreover,
the correctness of the generated formal proofs assumes the correctness of the specifications
and their refinement, the correctness of KEVM, the correctness of the K-framework’s
reachability logic theorem prover, and the correctness of the Z3 SMT solver. The presented
result makes no guarantee about properties not specified in the formal specification.
Importantly, the presented formal specification considers only the behaviors within the
EVM, without considering the block/transaction level properties or off-chain behaviors,
meaning that the verification result does not completely rule out the possibility of the
contract being vulnerable to existing and/or unknown attacks.
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CHAPTER 5: COMPLETE FORMAL SEMANTICS OF JAVASCRIPT AND TOOLS

In this chapter, we present a complete formal semantics of JavaScript, evaluating
the effectiveness of specifying operational language semantics, as well as using it for
instantiating the universal formal methods. Much of the content in this chapter comes
from Park et al. [7].

JavaScript is the most popular client-side programming language. Recently, JavaScript
has started to be used in not only client-side, but also server-side programming [59], and
even beyond web applications [60, 61]. Despite its popularity, JavaScript suffers from
several language design inconsistencies [62], which can lead to security vulnerabilities.
Nontransparent behaviors are good targets for attackers [63, 64]. To address the utmost
importance of security in web applications, there have been several formal analysis
studies proposed recently for JavaScript [65, 66, 67, 68, 69], but these address fragments
of the language and are not fully validated with a complete, formal JavaScript semantics.
Guha et al. [70] admit they cannot show their static analysis sound due to the absence of
a complete formal semantics of JavaScript.

A formal semantics should serve as a solid foundation for JavaScript language develop-
ment, so it must be correct and complete (to be trusted and useful), executable (to yield a
reference implementation), and appropriate for program reasoning and verification.

Several efforts to give JavaScript a formal semantics have been made, most notably by
Politz et al. [66] and Bodin et al. [71]. Unfortunately, no existing semantics comes close
to having the desired properties mentioned above. First, as shown in Tables 5.1 and 5.2,
they are incomplete and contain errors. Second, they require different formalizations
for different purposes, e.g., an operational/computational semantics for execution and a
axiomatic/declarative semantics for deductive reasoning. Having to define two or more
different semantics for a real-life language, together with proofs of equivalence, is a huge
burden in itself, not to mention that these all need to be maintained as the language
evolves. Third, due to the functional nature of their interpreters, these semantics cannot
handle the non-determinism of JavaScript well. Finally, their interpreters are not suited
for symbolic execution, and thus for developing program reasoning tools.

For these reasons, we developed yet another JavaScript semantics in order to have a
single, clean-slate semantics that can be used not only as a reference model for JavaScript,
but also to develop formal analysis tools for it. We employed K [38] (http://kframework.
org) as the formalism medium. In K, a language semantics is described as a term
rewriting system. At no additional cost, K provides an execution engine, which yields an
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Figure 5.1: Semantics of Object Property Update: o.x = v;

interpreter for the defined language, as well as a sound and relatively complete deductive
verification system based on symbolic execution, which can be used to reason about
programs.

Challenges in Formalizing JavaScript JavaScript is an unusual language, full of tricky
corner cases. Like HTML, JavaScript programs do not easily fail. Seemingly nonsensical
programs work by design, i.e., they have properly defined semantics according to the
language standard. Completely defining all of the corner cases is highly non-trivial,
especially because the language standard, a 250-page English document, contains various
ambiguities and unspecified behaviors (which have led to divergence between JavaScript
implementations). To handle these difficulties, we decided to make our semantics
executable, so that we can test our semantics incrementally. Incremental testing allowed
us to eliminate ambiguities one by one and to enhance our understanding of JavaScript’s
corner cases.

JavaScript is complex. Beside typical difficulties of scripting languages such as dynamic
(implicit) casting and the eval construct, the standard ECMAScript 5.1 introduced new
features such as the strict mode and explicit getters/setters. The mixed use of the strict
and non-strict modes, and of the data and accessor (getter/setter) properties, makes
it inevitable to have complex case analyses in the semantics. For example, Figure 5.1
describes the “simple” object property update o.x = v semantics at a high-level, showing
how many cases need to be distinguished: o is a normal object or not; o is extensible or
not; x is inherited or not; x is writable or not; x is an accessor property or not; the code
is strict or not. To keep better track of all such special cases, we chose to systematically,
almost mechanically translate the language standard as is into formal semantics (as
opposed to defining what we thought JavaScript ought to be doing).

91



JavaScript is non-deterministic. For example, the for-in construct iterates through all
the enumerable properties of a given object non-deterministically. The enumeration order
is unspecified, implementation-dependent, and may vary for different iterations of a
for-in loop. Formalizing JavaScript’s non-determinism in a semantics that has all the
desirable properties mentioned earlier is non-trivial. A collection semantics defined as an
inductive relation can capture non-determinism easily, but is unsuitable for execution,
while a semantics defined as an eval function is suitable for execution but cannot capture
non-determinism naturally. Rewriting Logic [39] is a sweet spot, as it can effectively
define, execute, and reason about non-deterministic specifications.

Contribution We present KJS, the most complete and thoroughly tested formal seman-
tics of JavaScript to date, specifically of ECMAScript 5.1, the latest language standard at
the time of writing. It has been tested against the ECMAScript conformance test suite,
and passed all 2,782 test programs for the core language. Table 5.1 shows that KJS is
far more complete than any other semantics, and even more standards-compliant than
production JavaScript engines such as Safari WebKit and Firefox SpiderMonkey.

KJS closely resembles the language standard (see Figure 5.2), which facilitates visual
inspection, and allows to measure the semantic coverage of a test suite. We found that
the ECMAScript 5.1 conformance test suite misses several semantic behaviors described
in the language standard. We wrote tests for the uncovered semantics and discovered a
number of bugs both in production JavaScript engines and in existing formal semantics.
Measuring conformance test suite coverage has been considered infeasible in [72, 73, 74],
because JavaScript implementations are highly optimized and do not follow the standard
document line by line. KJS thus paves a way for the JavaScript language standard
committee to systemically measure the semantic coverage of their conformance test suite.

KJS has been defined in a style that is suitable also for reasoning about JavaScript
programs. We have verified several non-trivial programs and demonstrated how KJS can
be used for finding a security vulnerability (Section 5.4).

The complete KJS semantics of JavaScript, as well as all the artifacts discussed in the
chapter are publicly available at [75].

5.1 ECMASCRIPT 5.1

ECMAScript is the official JavaScript language standard. The latest version, at the
time of writing, is ECMAScript 5.1 [76]. Compared to the previous version, ECMAScript
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3,1 ECMAScript 5.1 adds new features for more robust programming such as the strict
mode, better integration with the DOM object such as accessor (getter/setter) properties,
and new APIs such as JSON. The upcoming version ECMAScript 6 [78], under active
development, will add new features such as classes, modules, iterators and collections,
and generators and promises (for asynchronous programming).

ECMAScript 5.1 specifies not only the language core but also standard libraries. It
consists of 16 chapters and 6 appendices, for a total of 258 pages. Chapters 1-5 give an
overview of the language; Chapters 6-7 describe lexing and parsing; Chapter 8 describes
runtime types such as string, number, and object; Chapter 9 discusses type conversions;
Chapter 10 covers environments and execution contexts; Chapters 11-14 and 16 describe
the semantics of language constructs: expressions, statements, functions, programs,
and errors; Chapter 15 presents the standard libraries; Appendix A is dedicated to the
language grammar and Appendix B compatibility.

ECMAScript 5.1 gives algorithmic descriptions for all language constructs, to precisely
specify their behaviors. It also defines various internal semantic functions, called abstract
operations, to effectively describe high-level language constructs. For example, Fig-
ure 5.2(a) presents an abstract operation, [[Get]], which takes an object O and a property
name P, and returns P’s value of O. This property lookup function precisely describes
its behavior by using an informal pseudo-code algorithm. It also interacts with other
internal semantic functions such as [[GetProperty]] and IsDataDescriptor.

5.2 FORMAL SEMANTICS OF JAVASCRIPT IN K

KJS faithfully describes ECMAScript 5.1 in K. It defines the core language semantics,
and also several standard libraries. KJS is systematically derived from, and has a close
correspondence with, the language standard.

5.2.1 Program Configuration

Figure 5.3 shows the KJS configuration, or state, which holds objects, environments,
and the execution context.

Objects An object is a map from property names to values with attributes. Each object
is connected with another object via a [[Prototype]] link. An object inherits other objects

1ECMAScript 4 was abandoned due to fundamental disagreements between the committee members
[77].
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When the [[Get]] internal method of O is called with property name P, the following steps are
taken:

1. Let desc be the result of calling the [[GetProperty]] internal method of O with property
name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true, return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter providing O as the this value
and no arguments.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)

=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then Return Undefined; /* Step 2 */

If IsDataDescriptor($desc) = true then Return $desc."Value"; /* Step 3 */

Let $getter = $desc."Get"; /* Step 4 */

If $getter = Undefined then Return Undefined; /* Step 5 */

Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 5.2: Correspondence between ECMAScript 5 and KJS semantics

along with the prototype chain. In the configuration, an object is represented by an obj
cell. The “*” appearing next to the obj cell name in the configuration tells K that zero,
one or more cells with that name can occur at that position in the configuration. An obj is
identified by oid, and contains two maps: properties and internalProperties. The properties
stores user-level properties, while internalProperties is for internal use only.

Environments An environment is a map from variables to values. Each environment is
created when the program control enters a new scope, and is connected with its outer
scope environment. The environment remains even after the program control exits from
the scope. In the configuration, an environment is represented by the env cell. An env is
identified by eid and contains an outer link and a declEnvRec map. In case of the global
scope and the with block, however, the env has an objEnvRec map instead of declEnvRec.
A “?” appearing next to a cell name tells K that zero or one cells with that name can
appear in the configuration at that position.
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〈

〈K〉k 〈〈〈IDobj〉oid 〈Var 7→ ValProp〉properties 〈Var 7→ ValProp〉internalProperties〉obj∗〉objs
〈〈〈IDenv〉eid 〈IDenv〉outer 〈Bool〉strict 〈Var 7→ ValEnv〉declEnvRec?

〈〈IDobj〉bindingObj 〈Bool〉provideThis〉objEnvRec?
〉env∗〉envs

〈〈〈Listrunning〉activeStack 〈〈IDenv〉lexicalEnv 〈Val〉thisBinding 〉running〉ctx
〈Listctrl〉excStack 〈List〉pseudoStack 〉ctrl

〉T

Figure 5.3: Configuration

Execution context An execution context consists of an environment and the this value.
A new execution context is created whenever the program control enters a function, and
discarded when the function returns. In the configuration, the current execution context
is represented by the running cell. When a new execution context is created, the current
one is pushed into the activeStack cell (structured as a list).

5.2.2 Semantics Description Language

KJS essentially defines two languages: the JavaScript language and its semantics
description language. ECMAScript 5.1 presents semantic behaviors in pseudo-code;
see Figure 5.2. To faithfully describe them, we first formally define this pseudo-code
language, which is a minimal imperative language with let-bindings and branches. It
does not have loops, since iteration can be achieved by recursively applying rules.

5.2.3 Semantics of Language Constructs

We define the semantics of each language construct by systematically translating its
informal algorithmic description in the language standard into formal pseudo-code as
defined in Section 5.2.2. Figure 5.2 shows an example of the translation. Each step of (a)
is translated to its corresponding pseudo-code statement of (b). For example, step 1

Let desc be the result of calling the [[GetProperty]] internal method of O with
property name P.

is translated to the formal definition of (b):

Let $desc = GetProperty(O,P);

This approach not only contributes to the faithfulness of our semantics, but also expedites
the semantics development.

We only describe a few relevant or interesting constructs.
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var base = Object.create(Object.prototype, {

y : {value:0, enumerable:false,configurable:true}

});

var derived = Object.create(base, {

x : {value:1, enumerable:true, configurable:true},

y : {value:2, enumerable:true, configurable:true}

});

var i = 0;

for (var k in derived) {

if (i === 0) delete derived.y;

console.log(k + ":" + derived[k] + ";");

++i;

}

Figure 5.4: Undefined for-in program: Safari WebKit and Chrome V8 output x:1; y:0;,
while Firefox SpiderMonkey outputs x:1;.

The for-in construct, which iterates through all the enumerable properties of a given
object, is non-deterministic. The enumeration order of the properties is not specified, but
implementation-dependent. A loop may have a different iteration order even in the same
program. In order to correctly specify this non-determinism, our semantics employs
the set-theoretical ‘choice’ operation to select each property non-deterministically. K

provides a ‘search’-mode execution feature which explores all possible execution traces,
in this case all possible enumeration orders.

Furthermore, certain semantic behaviors are under-specified in the language standard
[79]. A property is enumerable when its enumerable attribute is true. The iterated
properties include not only the object’s own properties, but also the inherited ones. An
inherited property, however, is excluded when it is shadowed. Also, if a property is
deleted during the iteration before it is visited, the property is skipped. But what if
a property is shadowed and the property causing the shadowing is deleted before its
visit? Is the original property supposed to be visited? The language standard leaves
this behavior unspecified, without even stating if it is implementation-dependent or not.
The consequence is that different JavaScript implementations have different behaviors
in this situation. Figure 5.4 shows a for-in loop on the derived object, which inherits the
base object shadowing the property y. In the loop, the shadowing property derived.y is
deleted before it is visited;2 the shadowed property base.y now becomes visible and can
be considered for enumeration in the next iteration. For this program, Safari WebKit and

2Suppose an iteration order where x is visited first.
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rule try

〈 try S catch (X) S′

S y endtry
y K〉k 〈〈

·
(X, S′, K, C)

_〉excStack C〉ctrl

rule throw

〈 throw Ve y _

let X = Ve in S′ y K
〉k 〈〈

(X, S′, K, C)

·
_〉excStack

_

C
〉ctrl

rule end-try

〈VS y endtry

VS

···〉k 〈〈
(_, _, _, _)

·
_〉excStack _〉ctrl

Figure 5.5: Exception semantics

Chrome V8 output x:1;y:0; since they decided to visit base.y, while Firefox SpiderMonkey
outputs x:1; since it does not visit base.y whose enumerable attribute is false.

KJS makes these unspecified behaviors explicit: it reports an ‘unspecified’ error when a
for-in loop encounters the unspecified situation in Figure 5.4. This feature needs to be
defined in order to have a complete semantics, and can be used to check the portability
of JavaScript programs. Section 5.4.1 discuses this in more detail.

While user-level exceptions (raised with throw) are well described in ECMAScript 5.1,
internal exceptions (e.g., ReferenceError) are not. The described exception propagation
mechanism only applies to the user-level exceptions. To define both user-level and
internal exceptions in a uniform way, KJS employs an exception handling mechanism
that is commonly used by many programming language semantics. Figure 5.5 shows the
essential rules. The rule try starts to execute S, pushing the current execution context in
the excStack cell. If an exception occurs, the rule throw restores the saved context C and
executes the catch block S’. If no exception occurs, the rule end-try discards the saved
execution context and proceeds to the next computation.

JavaScript’s switch has a surprising fall-through semantics: it does not fall through at
default. For example, the following switch statement contains two regular cases and one
default with no break statement.

function foo(n) {

switch(n) { case 1: console.log("case 1;");

default: console.log("default;");

case 2: console.log("case 2;"); } }
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The function call foo(1) outputs “case 1; default; case 2;”, and foo(2) outputs “case 2;”.
However, foo(0) outputs only “default;”, because JavaScript does not allow the fall-
through at default. This behavior is unusual compared to other programming languages
in which foo(0) would output “default; case 2;”.

JavaScript has a strict mode execution feature, which also contains tricky corner cases.
It was newly introduced in the language standard, ECMAScript 5.1, as a workaround for
several design mistakes (e.g., the this resolution). A strict mode execution is only applied
to a strict mode code, indicated by a ‘use strict’ directive. For example, the following is a
strict mode code; its execution throws a ReferenceError exception since the undeclared
variable ‘x’ is not allowed to be used in strict mode:

`use strict';

eval(`x = 1;'); // throws a ReferenceError

However, the following program, which appears to be equivalent to the above, does not
report the exception:

`use strict';

var myeval = eval;

myeval(`x = 1;'); // no ReferenceError

The reason is that an eval code inherits the strict mode only when it appears in a direct
call to eval. In the first program, ‘x = 1;’ is evaluated in strict mode because eval is called
directly on it. However, in the second program, ‘x = 1;’ is evaluated in non-strict mode
because eval is called indirectly, and x is assigned 1 in the global scope.

Function and variable declarations are evaluated before other statements, with function
declarations evaluated before variable declarations. In combination with shadowing
lack of block scoping, unexpected results can occur. The following seemingly equivalent
functions return different values, 2 and 1:

function f1() { function f() { return 1; }

function f() { return 2; }

return f(); } // 2

function f2() { var f = function () { return 1; };

function f() { return 2; }

return f(); } // 1

This is because the first line of f2 is a variable and not a function declaration, so is
evaluated after the function declaration in the next line, overwriting it.
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15.2.3.5 Object.create ( O [, Properties] )

The create function creates a new object with a specified prototype. When the create function is
called, the following steps are taken:

1. If Type(O) is not Object or Null throw a TypeError exception.

2. Let obj be the result of creating a new object as if by the expression new Object() where
Object is the standard built-in constructor with that name

3. Set the [[Prototype]] internal property of obj to O.

4. If the argument Properties is present and not undefined, add own properties to obj as if
by calling the standard built-in function Object.defineProperties with arguments obj and
Properties.

5. Return obj.

(a) ECMAScript 5

Object.create = function (O, Properties) {

if (!(@IsObject(O) || O === null)) throw TypeError("Invalid arguments"); // Step 1

var obj = new Object(); // Step 2

@SetInternalProperty(obj, "Prototype", O); // Step 3

if (Properties !== undefined) Object.defineProperties(obj, Properties); // Step 4

return obj; // Step 5

};

(b) Our semantics, independent of semantic framework

Figure 5.6: Self-hosted standard built-in objects semantics

When a function is called, an arguments object is created holding the function’s
arguments values. Modifying the arguments object is allowed, but it has different
semantics depending on whether we are in a strict mode or not. If non-strict, arguments
is aliased with the formal parameters; if strict, arguments has its own properties, not
affecting the formal parameters. For example, below f(0) returns 1 while g(0) returns 0:

function f(x) { arguments[0] = 1; return x; }

function g(x) { "use strict";

arguments[0] = 1; return x; }

The definition of the eval function is straightforward in KJS: it parses the argument and
then evaluates it in the eval execution mode. Parsing is handled by the ‘#parse’ primitive
of the K framework, which uses a parser automatically generated from the given syntax
declarations.
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5.2.4 Standard Libraries

Although KJS aims at defining the semantics of the core JavaScript language, we
have also given semantics to some essential standard built-in objects. For example,
we completely defined the Object, Function, Boolean, and Error objects, because they
expose internals of the language semantics. Also, we partially defined the Array, String,
Number and Global objects; specifically, all their constructors and only a group of
internal methods, such as Array’s [[DefineOwnProperty]] and String’s [[GetOwnProperty]].
These internal methods are essential because they determine the fundamental behavior
of their corresponding objects, so that the rest of these objects’ behaviors can be defined
entirely in JavaScript invoking these internal methods, as explained shortly. Finally, we
have not given semantics to the Math, Date, RegExp, and JSON objects, because these are
orthogonal to the semantic approach and can be implemented in plain JavaScript [80].

Figure 5.6 shows by means of an example our simple approach to give semantics to
built-in objects based on the already defined internal methods: JavaScript itself. Each
step of (a) is translated to the corresponding JavaScript code of (b); Steps 1 and 3 employ
the internal methods @IsObject and @SetInternalProperty.3 KJS defines dozens of such
internal methods that are difficult or impossible to define in JavaScript. Based on these,
the built-in objects can be completely defined in JavaScript, concisely and independently
from the employed semantic formalism.

5.3 EVALUATION

We evaluate KJS with respect to completeness and development cost.

5.3.1 Completeness

To evaluate the completeness of KJS and to measure the progress during its develop-
ment, like the authors of previous JavaScript semantics [81, 71], we tested our semantics
against the official ECMAScript 5.1 language conformance test suite, test262 [82]. The
test262 consists of 11,578 test programs which are classified according to each of the
chapters of ECMAScript 5.1. Chapters 1-5 have no tests; Chapters 6-7 have 716 tests for
parsing; Chapters 8-14 have 2,782 tests for the language core; and Chapter 15 and Annex

3We employ a different namespace for the internal semantic functions, using names starting with ‘@’
which cannot appear as program variables (since ‘@’ is not an IdentifierStart character [76]). Thus we can
safely introduce internal functions without polluting the global object.
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Formal Semantics Passed Failed % passed
KJS 2,782 0 100.0%

Politz et al. [81]5 2,470 345 87.7%
Bodin et al. [71] 1,796 986 64.6%

JavaScript Engines Passed Failed % passed
Chrome 35.0 (V8 3.25.28) 2,782 0 100.0%

Firefox 30.0 (SpiderMonkey 30) 2,780 2 99.9%
Safari 7.0.4 (WebKit 537.76.4) 2,780 2 99.9%

Table 5.1: Comparison of formal semantics and product engines tested against the
ECMAScript conformance test suite

B have 8,080 tests for standard libraries. Like previous JavaScript semantics efforts, to
keep the project manageable we targeted only the 2,782 tests corresponding to the core
language. As explained in Section 5.2.4, we have also defined some essential standard
built-in objects and internal methods, so that the remaining methods can be implemented
in plain JavaScript. However, providing JavaScript code for the hundreds of standard
library methods is beyond the scope of this thesis.

Table 5.1 shows that KJS is the most complete JavaScript semantics to date, passing all of
the 2,782 ECMAScript 5.1 core tests. It is even more standards-compliant than production
JavaScript engines such as Safari WebKit and Firefox SpiderMonkey. While the 2,782 tests
are supposed to test the language core, several tests use library calls, e.g. to trigonometric
functions. To test such programs modulo the unsupported libraries, we used a feature
of K allowing to employ an external library implementation; specifically, we used the
Node.js implementation of Math.sin, Number.toFixed, and Number.toString.4 Further,
to overcome some current parsing limitations of K (acknowledged by K’s developers
and scheduled for fixing), we pre-process the input JavaScript program using the SAFE
framework [83] for automatic semicolon insertion and the sed utility for translating
unicode characters.

Currently, the K interpreter takes an hour to execute all of 2,782 test programs in a
machine with Intel Core i7-4960X CPU 3.60GHz and DDR3 RAM 64GB 1333MHz. K

development team, however, is currently working on an OCaml backend to compile K

definitions to OCaml programs for faster execution. With that, the execution time is
expected to drop from an hour to minutes.

4Only a dozen of tests depend on this, which is not a significant number.
5Note that S5 was tested against the previous version of the ECMAScript 5 test suite, and the total

number of tests is slightly bigger than the latest one. Also, S5 reported test results for standard libraries,
which is not presented here since we focus on the language core.
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Time #Passed Main Etc Date
0 0 0 Dec 24, 2013
1 Dec 25, 2013
2 Dec 26, 2013
3 Dec 27, 2013
4 Dec 28, 2013
5 Dec 29, 2013
6 Dec 30, 2013
7 Dec 31, 2013
8 Jan 1, 2014
9 Jan 2, 2014

10 Jan 3, 2014
11 Jan 4, 2014
12 Jan 5, 2014
13 Jan 6, 2014
14 Jan 7, 2014
15 Jan 8, 2014
16 Jan 9, 2014
17 Jan 10, 2014
18 Jan 11, 2014
19 Jan 12, 2014
20 Jan 13, 2014
21 Jan 14, 2014
22 50 50 Jan 15, 2014
23 Jan 16, 2014
24 Jan 17, 2014
25 Jan 18, 2014
26 Jan 19, 2014
27 Jan 20, 2014
28 Jan 21, 2014
29 Jan 22, 2014
30 Jan 23, 2014
31 Jan 24, 2014
32 Jan 25, 2014
33 Jan 26, 2014
34 Jan 27, 2014
35 Jan 28, 2014
36 Jan 29, 2014
37 Jan 30, 2014
38 Jan 31, 2014
39 Feb 1, 2014
40 167 167 Feb 2, 2014
41 235 235 Feb 3, 2014
42 Feb 4, 2014
43 375 375 Feb 5, 2014
44 403 403 Feb 6, 2014
45 396 396 Feb 7, 2014
46 511 511 Feb 8, 2014
47  Feb 9, 2014
48 Feb 10, 2014
49 Feb 11, 2014
50 Feb 12, 2014
51 Feb 13, 2014
52 577 577 Feb 14, 2014
53 583 583 Feb 15, 2014
54 630 630 Feb 16, 2014
55 Feb 17, 2014
56 Feb 18, 2014
57 Feb 19, 2014
58 Feb 20, 2014
59 701 701 Feb 21, 2014
60 857 857 Feb 22, 2014
61 Feb 23, 2014
62 984 984 Feb 24, 2014
63 1046 1046 Feb 25, 2014
64 1132 1132 Feb 26, 2014
65 1409 1409 Feb 27, 2014
66 1466 1466 Feb 28, 2014
67 Mar 1, 2014
68 Mar 2, 2014
69 Mar 3, 2014
70 1568 1568 Mar 4, 2014
71 1683 1683 Mar 5, 2014
72 Mar 6, 2014
73 Mar 7, 2014
74 Mar 8, 2014
75 Mar 9, 2014
76 1697 1697 Mar 10, 2014
77 Mar 11, 2014
78 Mar 12, 2014
79 1898 1898 Mar 13, 2014
80 2125 2125 Mar 14, 2014
81 2262 2262 Mar 15, 2014
82 2293 2293 Mar 16, 2014
83 Mar 17, 2014
84 2338 2338 Mar 18, 2014
85 2364 2364 Mar 19, 2014
86 2640 2447 193 Mar 20, 2014
87 Apr 2, 2014
88 Apr 3, 2014
89 Apr 9, 2014
90 Apr 10, 2014
91 Apr 11, 2014
92 Apr 12, 2014
93 Apr 13, 2014
94 Apr 14, 2014
95 2720 2527 193 Apr 23, 2014
96 2727 2534 193 Apr 24, 2014
97 Apr 25, 2014
98 2734 2541 193 Apr 26, 2014
99 Apr 27, 2014

100 Apr 28, 2014
101 2739 2546 193 Apr 29, 2014
102 May 7, 2014
103 May 8, 2014
104 May 9, 2014
105 May 10, 2014
106 May 11, 2014
107 May 12, 2014
108 2732 2539 193 May 13, 2014
109 2743 2550 193 May 14, 2014
110 May 15, 2014
111 Jun 9, 2014
112 Jun 10, 2014
113 Jun 11, 2014
114 Jun 12, 2014
115 2754 2561 193 Jun 19, 2014
116 2782 2586 196 Jun 20, 2014
117
118
119
120

N
um

be
r o

f p
as

se
d 

te
st

s

1000

2000

3000

Days
0 30 60 90 120

Figure 5.7: KJS semantics development progress

5.3.2 Development Cost

The development of KJS took only four months by a first year PhD student, with no
prior knowledge of JavaScript or of the K semantic framework. We believe that this was
possible thanks to the following: (1) K’s executability, allowing us to test and fix the
semantics immediately as inconsistencies were detected; (2) Formalizing the pseudo-code
used in the language standard, which allowed us to easily and systematically formalize the
informal semantics; (3) K’s modularity, allowing us to change the structure of the program
configuration (e.g., to add new features to the language) without having to change the
existing rules (e.g., to add exceptions we had to add new cells to the configuration and
three independent rules, but no other rules had to be touched—Figure 5.5).

A side objective of our effort was to demonstrate that the programming language
semantics field has matured enough that language designers should consider defining a
complete formal semantics to their language as part of the (long) standardization process.
It is no longer true that defining a formal semantics to a language takes too long to be
worthwhile. To bring more evidence in this direction, we measured and logged the KJS
development progress rigorously. Figure 5.7 shows how many tests passed each day
during the project timeframe. In the first month we developed the semantic foundations
such as syntax, program configuration, prototype chains, environments, and execution
contexts. In the next two months, we defined individual language constructs. Due to
the modularity of the employed framework, during this period the number of passed
tests linearly increased as each language construct was defined. In the last month we
finished our semantics by addressing specific details and corner cases revealed by failed
tests, until all of them eventually passed.
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5.4 APPLICATIONS

Here we list a few applications of our semantics, mentioning that these were driven
by our own interests and that they are by no means exhaustive. The message we want
to convey is that a formal semantics can be useful well beyond just giving a reference
model/implementation for the defined language.

5.4.1 Checking Portability

As seen in Section 5.2.3, ECMAScript 5.1 contains unspecified behaviors, e.g., the for-in
loop. Since unspecified behaviors are implementation-dependent, JavaScript programs
may not be portable, working differently with different JavaScript engines in different
web browsers. Detecting unspecified behaviors in JavaScript programs is not trivial.
Simply running the program in different JavaScript engines is not sufficient: even if they
all agree on some unspecified behavior now, this may change in future releases.

KJS can be trivially used to detect unspecified behaviors of JavaScript programs, as it
‘gets stuck’ when no rule matches (i.e., no semantics exist). For the unspecified behavior in
Figure 5.4, e.g., KJS gets stuck when the loop iteration encounters y, after the output x:1;.
Besides unspecified behaviors, we also need to check for non-deterministic behaviors; e.g.,
to ensure that the iteration order of a for-in loop is irrelevant. K provides a ‘search’-mode
execution feature which explores all feasible execution traces.6

5.4.2 Finding Bugs and Improving the Test Suite

The ECMAScript standards committee has made an impressive effort to provide a
conformance test suite that systematically ensures that all the features of ECMAScript
5.1 and their subtle interactions are covered, so that JavaScript engines converge on
a language standard. However, the semantic coverage of the test suite has not been
well-studied, and indeed, some behaviors have escaped untested [72]. Using KJS, we
found that despite the large number of tests, certain semantic behaviors are still not
tested. For example, surprisingly, there is no test for the peculiar fall-though semantics of
the default case for switch (Section 5.2.3). Writing tests to cover the untested behaviors,
we found bugs in all production JavaScript engines and in previous semantics.

6It is also possible to check confluence of unspecified behaviors (i.e., ensuring that unspecified behaviors
are irrelevant) using the ‘search’-mode execution, but developing such a sophisticated portability checker is
an orthogonal problem, which we leave as future work.
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Page # Section # - Step # KJS Po Bo CR FF SF
p35 8.7.1 GetValue (V) - [[Get]], Step 6 # × ⊗ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.a # # ⊗ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.b # ⊗ ⊗ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.a - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.b - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 6.a & 6.b # # ⊗ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 7.a # × # # × #
p40 8.12.4 [[CanPut]] (P) - Step 8.a # ⊗ ⊗ # # #
p53 10.2.1.1.3 SetMutableBinding (N,V,S) - Step 4 # × # × # ×
p53 10.2.1.1.4 GetBindingValue(N,S) - Step 3.a - - - - - -
p53 10.2.1.1.5 DeleteBinding (N) - Step 2 - - - - - -
p54 10.2.1.1.5 DeleteBinding (N) - Step 4 & 5 # ⊗ # # # #
p55 10.2.1.2.4 GetBindingValue(N,S) - Step 4.a - - - - - -
p59 10.5 Declaration Binding - Step 5.e.iii.1 # # # # # #
p59 10.5 Declaration Binding - Step 5.e.iv, 1st # ⊗ ⊗ # # ×
p59 10.5 Declaration Binding - Step 5.e.iv, 2nd # ⊗ ⊗ # # ×
p62 10.6 [[DefineOwnProperty]], Step 4.a, else - - - - - -

#: Passed ×: Failed ⊗: Not applicable (unsupported) -: Infeasible semantic behaviors
Po: Politz et al. [81] Bo: Bodin et al. [71]

CR: Chrome 38.0 (V8 3.28.71) FF: Firefox 32.0 (SpiderMonkey 32) SF: Safari 7.0.4 (WebKit 537.76.4)

Table 5.2: Behaviors not covered by the ECMAScript 5.1 conformance test suite. Manually
written tests exercising these uncovered behaviors revealed bugs in production JavaScript
engines and in previous JavaScript semantics.

How can we measure the semantic coverage of a conformance test suite? One possibility
is to run it through several JavaScript implementations using code coverage tools, and
project the result back to ECMAScript 5.1. However, this is impractical, as it is not viable
to match optimized implementation code to corresponding ECMAScript 5.1 pseudo-code
and filter out implementation-specific code [73].

Due to its one-to-one correspondence with ECMAScript 5.1, KJS provides a direct
semantic coverage measure for a test suite. This way we found that there are exactly
17 semantic rules in the core semantics which are not covered by the test suite, each
corresponding to the language standard as shown in Table 5.2. We succeeded to manually
write test programs that hit 11 out of 17 behaviors, thus improving the overall quality of
the conformance test suite. It took two days to manually write (or show infeasibility of)
the tests for the 17 cases. Finding tests for the semantics is essentially the same as finding
tests for conventional programs. For each uncovered semantic rule, we examine a kind
of a path condition that leads to the rule, and find a solution (i.e., a test program) that
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satisfies the path condition. Automatic test case generation techniques may be used to
mechanize this process, but in this thesis we have done all the work manually.

As seen in Table 5.2, the 11 new tests uncovered bugs in both production JavaScript
engines and in existing semantics. Moreover, the remaining 6 semantic behaviors are
infeasible, that is, they represent flaws in the language standard itself. These bugs were
reported, confirmed, and fixed [84].7 Below we discuss two out of the 11 new tests, and
one of the 6 infeasible behaviors.

Step 5.e.iv of Section 10.5 in the language standard describes how to handle duplicate
global function declarations and is not covered by the test suite. The following program

Object.defineProperty(this, "f", {

"value" : 0, "enumerable" : false,

"writable" : false, "configurable" : false });

eval(" function f() { return 0; } "); // TypeError

is supposed to raise a TypeError exception according to the standard, since the function
f is declared while there already exists another f whose writable, enumerable, and
configurable attributes are all false. Safari WebKit wrongly ignores the duplicate function
declaration, disobeying the standard; Chrome V8 and Firefox SpiderMonkey behave
correctly.

Step 4 of Section 10.2.1.1.3 in the standard describes a case of updating an immutable
variable which is not covered by the test suite either. In the following program

"use strict";

var f = function g() { g = 0; /*TypeError*/ }; f();

g is immutable, but the body attempts to update it. According to the standard, a TypeError
exception must be raised. However, only Firefox SpiderMonkey conforms, while Chrome
V88 and Safari WebKit do not, wrongly ignoring the update statement.

For an example of infeasible semantic behavior, consider Section GetBindingValue(N,S)
in the standard which describes the environment lookup semantics for a given variable N,
and its Step 3.a which discusses the case where N has an uninitialized immutable binding.
However, this case is infeasible. There are only two situations where immutable bindings
can occur, namely in the arguments object in a strict mode function and in the name of a
recursive function expression9 in its function body’s environment. But according to the

7It turned out that two of them had already been reported [85, 86].
8Fixed in Chrome 41.0 (V8 4.1.0).
9Function ‘expression’ and not ‘declaration’, because in the latter the function name is declared in a

global environment and is mutable.
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function mkSend(rawSend) {

var whiteList = { "http://www.trust.com": true,

"http://www.good.com" : true };

function newSend(target, msg) {

if (whiteList[target]) rawSend(target,msg);

else console.error("Rejected."); }

return newSend; }

var send = mkSend(function (target, msg) {

console.info("Sent " + msg + " to " + target);});

Figure 5.8: Secure Message Sending

standard, in both cases the bindings are initialized right after creation, thus there is no
way to have uninitialized immutable bindings.

We also ran the additional 11 tests on the existing semantics, and discovered a number
of bugs, as shown in Table 5.2.

5.4.3 Symbolic Execution

Here and in Section 5.4.4 we illustrate how to derive JavaScript program reasoning
tools from generic tools offered by the employed semantic framework. K allows for terms
it reduces to be symbolic, that is, to contain mathematical variables and constraints on
them. As semantic rules are applied, constraints are accumulated and solved using Z3
[29] (which is incorporated in K). In this section we show how this capability can be
used to find a known security vulnerability, and in the next section how it can be lifted
into a fully-fledged JavaScript program verifier.

Consider the program in Figure 5.8, introduced by Fournet et al. [64], which contains a
secure message sending function. The send method sends messages only to addresses in
the white list. For example, the following should be rejected:

send("http://www.evil.com","msg"); // Rejected

Suspecting a global object poisoning attack [87], we construct a configuration adding
a symbolic property P with symbolic value V in the Object.prototype object, equiv-
alent to executing Object.prototype[P] = V. Then we execute the send request above
using K’s search mode, looking for a state where the message was sent. The symbolic
search execution then returns the constraint, “P = "http://www.evil.com" ∧ (V =

true ∨ V is a non-empty string ∨ V is a non-zero number ∨ V is an object)”, modeling the
instances of the suspected attack model; e.g.,

106



Object.prototype["http://www.evil.com"] = true;

executed before the malicious send call above allows the message to be sent to the
malicious address. That is because Object.prototype is inherited by all objects, so the
if-condition whiteList["http://www.evil.com"] returns true even if the whiteList does not
include the evil address. This problem can be fixed by creating an isolated object for
whiteList using Object.create(null):

var whiteList = Object.create(null);

whiteList["http://www.trust.com"] = true;

whiteList["http://www.good.com" ] = true;

5.4.4 Program Verification

K offers support for program verification based on rule-based semantics, at no ad-
ditional cost (with no need to define another semantics) [3]. Program properties are
specified as reachability rules. K uses a sound and relatively complete proof system for
deriving such rules from the operational semantics rules, which amounts to:

1. Performing symbolic execution of code without repetitive behavior using the se-
mantics rules; and

2. Reasoning about repetitive constructs (loops, recursion).

Like in Hoare logic, all the repetitive constructs need to be annotated with specifications.
The verification is automatic: the user only provides the specifications. The specifications
are given as reachability rules between symbolic configurations with constraints. We keep
the rules compact by:

1. Using the K notations and conventions (as described in Section 2.5) to describe the
symbolic configurations; and

2. Computing the static part of the symbolic configurations (e.g. the builtin-in objects)
using the semantics.

For all practical purposes, the standard pre-/post-conditions can be automatically desug-
ared into reachability rules, although we have not implemented it yet.

To test the viability of using the generic reachability verification infrastructure with the
JavaScript semantics, we verified a few JavaScript programs implementing data-structures
operations. Table 5.3 summarizes our experiments. For each function we verified the

107



Function Size (LOC) Time (s)
List reverse 13 8
List append 12 13
BST find 12 7
BST insert 23 12
BST delete 34 17
AVL find 11 7
AVL insert 87 109
AVL delete 106 174

Table 5.3: Verification Result

full functional correctness. Due to space limitations, we discuss only the AVL insert
function (the code is shown in Figure 5.9). The specification of AVL insert in a form of a
pre-/post-condition that would desugar into our current reachability rule is:

function insert(v, t)

//@requires tree(t)(T) /\ avl(T)

/\ tree_height(T) < INT_MAX

//@ensures tree(t)(T') /\ avl(T')

/\ tree_keys(T') == { v } U tree_keys(T)

/\ | tree_height(T') - tree_height(T) | <= 1

The precondition requires that the function is passed an AVL tree t, and that the height
h of t is small enough such that both h and h + 1 can be represented on a float-point
number without precision loss. The postcondition ensures that the function returns an
AVL tree t′, that the keys of t′ are the keys of t plus the inserted key, and that the height h′

of t′ is either h or h + 1. The bound on h is specific to JavaScript, because JavaScript only
provides floating-point arithmetic. The AVL, keys, and height abstractions are defined
recursively in a standard way.

The overall verification times in Table 5.3 are quite acceptable, considering that our
program verifier is obtained for free from KJS and that, at the best of our knowledge,
there is no other program verifier for JavaScript that can verify such complex programs
to compare with ours. Also, our times are only twice slower on average than those in
[3] for similar properties but for a toy C-like language. The times for AVL insert and
delete are large due to the fact that the helper functions (balance, left_rotate) are not
given specifications, instead they are called using their operational semantics, which
leads to a larger number of paths to analyze. The effort to verify these examples took
approximately one man-week. Most of the work went into finding the JavaScript specific
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function insert(v, t) {

if (t === null) return make_node(v);

if (v < t.value) t.left = insert(v, t.left);

else if (v > t.value) t.right = insert(v, t.right);

else return t;

update_height(t); return balance(t); }

function balance(t) {

if (height(t.left) - height(t.right) > 1) {

if (height(t.left.left) < height(t.left.right))

t.left = left_rotate(t.left);

t = right_rotate(t);

} else if (height(t.left) - height(t.right) < -1) {

if (height(t.right.left) > height(t.right.right))

t.right = right_rotate(t.right);

t = left_rotate(t); }

return t; }

function left_rotate(x) {

var y = x.right; x.right = y.left; y.left = x;

update_height(x); update_height(y); return y; }

function right_rotate(x) { ... }

Figure 5.9: AVL Tree Insertion

part of the specifications (like the bound on the height in the AVL example). We believe
that our preliminary evaluation shows a realistic potential of using the KJS semantics for
JavaScript program verification.

5.4.5 Discussion

Although KJS passes all the tests in the ECMAScript 5.1 conformance test suite for
the core language, which is the reason why we call it a ‘complete semantics’, there is
no guarantee that our semantics is necessarily correct. In the absence of a reference
semantics, we believe that the best we can do to validate our semantics at this stage is to
test it heavily against as many tests as possible, which we did, and to reason with it and
prove certain expected properties of it, which we have not done yet but we plan to do
as soon as a Coq backend becomes available for K. In particular, a formal relationship
between our semantics and that by Bodin et al. [71] can also be shown then using Coq.
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CHAPTER 6: RELATED WORK

This chapter presents related work on program verification, program equivalence, and
language semantics.

6.1 PROGRAM VERIFICATION

The program verification literature is rich. We only discuss work close to ours, omitting
theoretical work that has not been applied to large languages or work on interactive
verification.

A popular approach to building program verifiers for real-world languages is to
translate to an intermediate verification language (IVL) and do verification at the IVL
level. This results in some reusability, as the VC generation and reasoning about state
properties are implemented only once, at the IVL level. However, the development of
translators is both time consuming and susceptible to bugs. Boogie [28] is a popular IVL
integrated with Z3. There are several verifiers built on top of Boogie, including VCC [18],
HAVOC [88], Spec# [89], Dafny [90], and Chalice [91]. VCDrayd [17] is a separation
logic based verifier built on top of VCC. Why3 [92] is another IVL, also integrated with
SMT solvers (and other provers). Tools built on top of Why3 include Frama-C [92] and
Krakatoa [93]. There are many other practical VC generation based tools (with or without
an IVL), including Verifast [94] and jStar [95]. In contrast, we use existing operational
semantics directly for verification, without any translation to IVLs or language-specific
VC generation.

Recent work proposes translating to a set of Horn clauses instead of an IVL [96]. A
semantics based-approach to translation to Horn clauses for a fragment of C is presented
in [97], but it is unclear if the approach is generic enough to scale to the entire C or to
other real-world languages. An approach for using the interpreter source code as a model
of the language in for symbolic execution is proposed in [98], but it is used to generate
tests, not verify programs.

We fully share the goal of the mechanical verification community to reduce the
correctness of program verification to a trusted formal semantics of the target lan-
guage [99, 100, 101, 102, 103], although our methods are different. Instead of a framework
to ease the task of giving multiple semantics of the same language and proving systematic
relationships between them, we advocate developing only one semantics, operational, and
offering an underlying theory and framework with the necessary machinery to achieve
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the benefits of multiple semantics without the costs. Bedrock [104] is a Coq framework
which uses computational higher-order separation logic and supports semi-automated
proofs. It can serve as an IVL, and be the target of translations from other languages
which can be certified in Coq based on their operational semantics. Our approach works
with the operational semantics directly, and thus does not need any such proofs.

Dynamic logic [105] adds modal operators to FOL to embed program fragments
within specifications, but still requires language-specific proof rules (e.g., invariant rules).
KeY [106] offers automatic verification for Java based on dynamic logic. Matching logic
also combines programs and specifications for static properties, but dynamic properties
are expressed in reachability logic which has a language-independent proof system that
works with any operational semantics.

Semantics-Based Verification A first version of a language-independent proof system
for reachability is given in [1], and [2] shows a mechanical translation of Hoare logic
proof derivations for IMP to it. The Circularity proof rule was introduced in [3]. Support
for operational semantics using conditional rules is introduced in [4], and support for
non-determinism in [5]. These previous results are mostly theoretical, with MatchC a
prototype hand-crafted for KernelC mixing language-independent reasoning with the
operational semantics of KernelC.

Smart Contract Verification While there exist several static analysis tools [107, 108, 109,
110] tailored to check certain predefined properties, here we consider only the verification
tools backed by a full-fledged theorem prover that allows to reason about arbitrary (full
functional correctness) properties. Specifically, Bhargavan et al. [111] and Grishchenko
et al. [112] presented a verification tool based on the F* proof assistant, and Amani et
al. [113] presented a tool based on Isabelle/HOL. These tools, however, adopt only a
partial, incomplete semantics of EVM, and thus may miss certain critical corner-case
behaviors of the EVM bytecode, which could undermine the soundness of the verifiers.
Our EVM verifier, on the other hand, is a verification tool derived from a complete and
thoroughly tested formal semantics of EVM [11], for the first time to the best of our
knowledge.
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6.2 PROGRAM EQUIVALENCE

The program equivalence literature is rich, and here we discuss only the formal proof
systems of program equivalence. For the classic bisimulation and its variants, we refer
the reader to Section 2.4.

Namjoshi et al. [40] uses a variant of stuttering-bisimulation with ranking functions,
first introduced in [114]. Informally, the ranking function returns an integer rank for each
pair in the relation which should represent how many times it is allowed for one of the
transition systems to stutter while the other advances before the former has to advance.
This variant requires matching single transitions only, similarly to strong bisimulation and
unlike classic stuttering bisimulation, where a single transition may have to be matched
with a finite but unbounded number of transitions, thus leading to large number of
generated proof requirements. Cut-bisimulation shares the same property of matching
single transitions only and is more appealing for proof automation, since it eliminates
the need for the proof generator to produce ranking functions along with the set of
synchronization points.

Hur et al. [115] presents the relation transition systems (RTS) as a technique for program
equivalence proofs suitable for ML-like languages, that combine features such as higher-
order functions, recursive types, abstract types, and mutable references. Bisimulation
is used as part of the RTS equivalence proof technique. Our notion of cut-bisimulation
is orthogonal to RTS and it can be the notion of bisimulation of choice within an RTS
equivalence proof. More specifically, our notion of acceptability relation A is similar to
the global knowledge relation used in bisimulation proofs within the RTS proof. However,
whereas a global knowledge relation contains a subset relation (named local knowledge)
that should be proven to consist only of equivalent pairs, an acceptability relation is
assumed from the start to only contain equivalent pairs: this is unavoidable when we
want to do an inter-language equivalence proof, since the knowledge of what states are
considered equivalent is indispensable for even to define what it means for two different
language programs to be equivalent. The authors argue that RTS is a promising technique
for inter-language proofs that involve ML-like languages (although they leave the claim as
future work), and we believe that the notion of cut-bisimulation can indeed help towards
enabling RTS-style inter-language equivalence proofs.

Ciobaca et al. [116] proposes the notion of mutual equivalence and presents its proof
system, by which our equivalence checking algorithm was inspired. Instead of a proof
system, here we propose a bisimulation relation and an algorithm based on it and
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symbolic execution, leading to the first language-independent implementation of a
checker for equivalence between programs written in two different languages.

6.3 LANGUAGE SEMANTICS

There is a large body of literature on real-world language semantics, and we only
discuss efforts that directly influenced us: JavaScript semantics and other large semantics
in K.

6.3.1 JavaScript Semantics

We only consider JavaScript semantics attempting to define the full language, not
a subset, i.e., ones which like ours aim at establishing a solid foundation for formal
JavaScript tools.

Herman and Flanagan (2007) [117] gave an executable semantics of ECMAScript 4. As
language standard committee members (Ecma TC39-ECMAScript), their objective was to
specify a definitional interpreter of the language. They used ML as a specification
language, since it is executable, more precise than English prose, and more easily
understandable than mathematical notation. They separately defined the standard
libraries in JavaScript itself, which is also what we did. Their semantics, however, is based
on ECMAScript 4 which was abandoned, never approved as a standard. Furthermore,
unlike ours, their semantics does not facilitate formal reasoning.

Maffeis et al. (2008) [118] defined a small-step semantics of ECMAScript 3 and proved
some basic properties. Their semantics is based on the older ECMAScript 3, and does not
cover the modern JavaScript features such as the strict mode. Also, it is not executable,
and cannot be validated against conformance test suites.

Guha et al. (2010) [119] and Politz et al. (2012) [81] presented a reduced semantics of
JavaScript, based on ECMAScript 3 and 5, respectively. They defined a core language, λJS,
and a translation from JavaScript to λJS together with a (runtime) environment containing
internal semantic functions written in λJS itself. They also implemented an interpreter for
λJS, which, combined with the translator and the runtime environment, allows to execute
and test their semantics. Although the reduced semantics is helpful to understand the
essentials of JavaScript, there is a gap between it and the actual language specification.
Since their semantics does not directly follow the structure of the language specification,
it is difficult to manually/visually inspect it and, indeed, it contains a number of bugs
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(see Table 5.2). We found that the JavaScript language specification, unlike for other
languages, is quite well written, so we decided to follow it faithfully.

Bodin et al. (2014) [71] defined a JavaScript semantics in Coq, which, like KJS, follows
ECMAScript 5.1. To execute and thus test it, they also implemented an interpreter, manu-
ally. Moreover, in order to link it to their semantics, they had to prove their interpreter
correct. This step was inevitable, because their Coq specification is not executable—Coq
can only extract executables from functions or proofs, not from specifications defined as
inductive relations— yet testing is paramount when it gets to large semantics. Defining an
interpreter and proving it correct for a complex language like JavaScript is a huge effort;1

while a laudable and impressive feat in itself, we believe that such heavy approaches may
demotivate language designers, for example the standards committee, to adopt a formal
semantics. Compare that with KJS, where an interpreter is obtained directly from the
semantics at no additional effort, together with other language analysis tools. Moreover,
their semantics is incomplete. They omitted several language components such as the
for-in loop and array manipulations. Table 5.1 shows that their semantics passes only
about 65% of the conformance test suite.

On non-determinism To our knowledge, KJS is the only JavaScript semantics that
captures the non-determinism of the language. For example, for the for-in’s iteration
order, the standard says that the mechanics and order of enumerating the properties
is left to the implementation; so from a semantic perspective, any order is possible.
Without properly capturing the non-determinism of JavaScript, a semantics of it cannot
execute and at the same time formally analyze JavaScript programs (e.g., show that the
enumeration order is irrelevant in a given program). For example, Bodin et al. [71] chose
to not provide a semantics for the for-in construct at all, Maffeis et al. [118] to define
a partial semantics (with a hole for the enumeration order), and Guha et al. [119] and
Politz et al. [81] to only consider a fixed, arbitrary order (given by Haskell’s Hash Tables
or OCaml’s Map iteration order, respectively).

Verification of JavaScript programs While there is much work on finding bugs and se-
curity violations in JavaScript programs, verification of functional correctness of JavaScript
programs is less developed. Gardner et al. [120] propose a (Hoare logic semantics with
state properties specified using) separation logic for a JavaScript fragment. They follow
the standard approach by defining an operational semantics as a model of the language,

1Indeed, Bodin et al. [71] involved 8 people, including domain experts of JavaScript and of Coq, for a
year.
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and then proving the separation logic sound w.r.t. the operational semantics. Like [71],
this has the disadvantage of having to define different semantics of the same language
for different purposes, together with soundness proofs, all huge efforts that require
maintenance as the language evolves. Compare that to KJS, where only the operational
semantics is required, and a deductive program verifier is automatically derived at no
additional effort. Furthermore, their separation logic only supports manual reasoning
and the programs they verified are significantly simpler than the programs in Table 5.3
which were verified automatically by KJS. Nordio et al. [121] present a program verifier
for a JavaScript fragment. Their tool is implemented by translation to Boogie, and thus
lacks a formal basis. Moreover, they can only verify simple properties that can be directly
translated in Boogie.

Semantics for static analysis Other efforts to formally specify JavaScript semantics
for the purpose of static analysis have been made. Lee et al. [83] provides a reduced
semantics (i.e., defining an intermediate language into which the original language is
translated), based on ECMAScript 5. Like Guha et al. [119] and Politz et al. [81], they do
not directly follow the actual language specification, making manual/visual inspection
hard. Kashyap et al. [122] also provides a reduced semantics for the purpose of abstract
interpretation. Their semantics, however, is based on ECMAScript 3, and omitted the
semantics of eval.

6.3.2 Real-World Language Semantics in K

There are four real-world language semantics defined in K so far, which served as a
great source of inspiration for our JavaScript semantics: C [23], PHP [123], Python [124],
and Java [52]. All these semantics are executable and they have been validated by a large
volume of tests, and demonstrated useful through formal analysis tools produced by the
K framework, same like our KJS.

Ellison and Rosu [23] defined a formal semantics of C11, which was extensively tested
against the GCC torture test suite passing 99.2% of the tests, which is more than GCC
and Clang passed. The C semantics was also evaluated by debugging, monitoring, and
(LTL) model checking of example programs using corresponding tools provided by the
K framework. A main application of their C semantics is undefinedness checking, e.g., in
the context of compiler testing, for automatic test-case reduction [125].

Filaretti and Maffeis [123] defined a formal semantics of PHP. Since, unlike for
JavaScript, C and Java, there is no official language standard for PHP, they had to heavily
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rely on testing against the reference implementation. They evaluated their semantics by
model checking certain properties of a web database management tool, phpMyAdmin, and
a cryptographic key generation library, pbkdf2.

Bogdanas and Rosu [52] gave a formal semantics of Java 1.4. To mitigate Java’s
complexity, they split their semantics into two phases: (1) the static semantics enriches
the original program by annotating statically inferred information (e.g., types), and (2)
the dynamic semantics gives the executable semantics. They evaluated the semantics by
model checking multi-threaded programs.

Guth [124] defined a formal semantics of Python 3.3, providing semantics not only for
the language constructs but also for the garbage collection mechanism. Being executable,
it has been thoroughly tested against more than 600 hand-crafted tests. Like KJS, their
semantics covers the core language but only essential parts of the standard libraries.

The most distinguished aspect of our semantics, compared to other language semantics
described in K, is the resemblance to the language standard (Figure 5.2); this facilitates
visual inspection and allows us to measure the semantic coverage of a test suite. We did
it by defining JavaScript on top of a semantics description language (Section 5.2.2), which
was possible thanks to the JavaScript language standard being algorithmically described
(unlike the language standards of other languages defined in K).
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CHAPTER 7: CONCLUSION

We have presented the theory, implementation, and comprehensive evaluation of
the language-independent formal methods parameterized by operational semantics.
We have developed the cross-language program equivalence checker with the novel
property-preserving cut-bisimulation, and also improved the universal deductive program
verifier. To demonstrate the practical feasibility of the language-parametric formal
methods, we have instantiated the language-parametric deductive program verifier
and equivalence checker by plugging-in four real-world language semantics, C, Java,
JavaScript, and Ethereum Virtual Machine; and used them to verify full functional
correctness of challenging heap-manipulating programs and high-profile commercial
smart contracts in an end-to-end manner. We also have specified a complete formal
semantics of a high-profile language JavaScript, showing that the specification effort is
affordable. We believe that this approach will significantly reduce fragmentation in the
verification tool community by eliminating the need to develop a dedicated verifier for
each language.
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