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Abstract

Efficient electrical control of magnetic moments is essential for future spintronics appli-

cations, in which the intrinsic spin of the electron is utilized in addition to the electron

charge for data processing and storage. Spin-orbit-interaction-induced phenomena, includ-

ing the spin Hall effect, Rashba-Edelstein effect and the resultant spin-orbit torques (SOTs),

have fueled the development of spintronics for more than a decade thanks to their promis-

ing magnetization-switching efficiencies. This dissertation presents experimental studies of

current-induced novel phenomena arising from the spin-orbit interaction in magnetic mate-

rials. We first develop a highly-sensitive SOT magnetometer system based on the magneto-

optic Kerr effect (MOKE). With the help of this sensitive system, we find an anomalous

spin-orbit torque (ASOT) at the surfaces of single-layer magnetic thin films. Following the

insight provided by the single-layer findings, we further demonstrate self-spin-orbit torque

(SSOT) in multilayer systems lacking traditional nonmagnetic spin-source materials.

A simple and accurate SOT characterization approach is important not only for scientific

research, but also for industrial product development. We develop a SOT magnetometer sys-

tem employing MOKE and lock-in detection for high-sensitivity spin-orbit torque measure-

ments. By controlling the incident light polarization in the normal-incidence configuration,

polar- and quadratic-MOKE are used to measure out-of-plane and in-plane SOT-induced

magnetization reorientation, respectively. Thanks to its simplicity and high sensitivity (< 70

nrad/
√

Hz polarization rotation resolution), our SOT magnetometer system enables us to

perform a variety of experiments for discovery of new phenomena.

A well-known spin-orbit-interaction-induced phenomenon in magnetic materials is the

ii



anomalous Hall effect (AHE). In this dissertation, we report the observation of a counterpart

of the AHE that we term the ASOT, wherein an electric current parallel to the magneti-

zation generates opposite spin-orbit torques on the surfaces of the magnetic film. After a

series of thickness-dependent and interface-varying experiments on different magnetic ma-

terials, we interpret the observed ASOT as due to a spin-Hall-like current generated with a

high efficiency. This work leads to the conclusion that a single-layer ferromagnet can gen-

erate SOTs on its own surfaces, which introduces a new route for electrically manipulating

magnetization in magnetic nanodevices.

Current-induced SOTs in multilayer structures consisting of a ferromagnetic metal (FM)

and a nonmagnetic spin-source material (SSM) can efficiently manipulate the magnetization

and magnetic textures of the FM. The origin of the SOT is often attributed to the spin

current generated by the nonmagnetic SSM, which generates a spin transfer torque on the

FM. In light of our study of ASOT in single-layer magnetic films, we examine the effects of

an FM-originated spin current in multilayer structures. It turns out that such spin current

leads to large SOTs on the FM itself. We refer to this long-overlooked SOT as the self-

spin-orbit torque (SSOT). The discovery of SSOT provides a new method for manipulating

magnetization by using magnetic materials that work with nonmagnetic SSMs constructively.
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to serve as my dissertation committee members.

Last but not least, thank you to my parents, Xingmeng Wang and Yong Liu, and my

wife, Evelyn Johnson, for their love and support.

vi



Table of Contents

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Spintronics and Magnetoresistive Random Access Memory . . . . . . . . . . 1
1.2 Spin-Orbitronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Magneto-Optic Kerr Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Dissertation Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Device Fabrication and Characterization Techniques . . . . . 17
2.1 Device Fabrication Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Device Characterization Techniques . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 3 Magneto-Optic Kerr Effect Based Spin-Orbit Torque Magne-
tometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 SOT-Induced Magnetization Reorientation . . . . . . . . . . . . . . . . . . . 31
3.2 Polar and Quadratic MOKE in the Normal-Incidence Configuration . . . . . 33
3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Calibration Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Comparison with the Spin-Torque Ferromagnetic Resonance (ST-FMR) Results 45
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 4 Enhanced Signal-to-Noise Ratio in an Unbalanced MOKE Sys-
tem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 System Noise Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Unbalanced Optical Bridge Method . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Experimental Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Using the Unbalanced Method to Measure a Pattern-Free Sample . . . . . . 58
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 5 Anomalous Spin-Orbit Torques in Magnetic Single-Layer Films 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Symmetry Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Simulation and Observation of ASOT-Induced Magnetization Distribution . 65
5.4 Thickness-Dependent Study: Model and Results . . . . . . . . . . . . . . . . 74

vii



5.5 Interface Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6 First-Principles Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 6 Self-Generated Spin-Orbit Torques in Magnetic Multilayers . 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Observation of the SSOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Discussion of Spin-Orbit Torques in a Spin-Valve Structure . . . . . . . . . . 92
6.4 Separating MOKE Signals from Two FM Layers . . . . . . . . . . . . . . . . 94
6.5 Quantitative Analysis of the SSOT . . . . . . . . . . . . . . . . . . . . . . . 98
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Appendix A Jones Calculus Derivations . . . . . . . . . . . . . . . . . . . 115
A.1 Overview of Jones Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 Derivation of MOKE Signal for Circular Polarization . . . . . . . . . . . . . 118
A.3 Derivation of MOKE Signal for Linear Polarization . . . . . . . . . . . . . . 119
A.4 Derivation of MOKE Signal for the Magnetometer Setup . . . . . . . . . . . 120

Appendix B MATLAB Code for Simulations . . . . . . . . . . . . . . . . 123
B.1 Signal-to-Noise Enhancement for Imperfect Linear Polarization . . . . . . . . 123
B.2 ASOT- and Calibration-Field-Induced Magnetization Distribution and MOKE

Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

viii



List of Abbreviations

GMR Giant magnetoresistance.

FM Ferromagnetic metal.

NM Non-magnetic metal.

TMR Tunneling magnetoresistance.

MTJ Magnetic tunnel junction.

MRAM Magnetoresistive random access memory.

STT Spin transfer torque.

SOI Spin-orbit interaction.

SOE Spin-orbit effect.

SHE Spin Hall effect.

SOT Spin-orbit torque.

DL Damping-like.

FL Field-like.

MOKE Magneto-optic Kerr effect.

PR Photoresist.

XRD X-ray diffraction.

HWP Half wave plate.

QWP Quarter wave plate.

S/N Signal-to-noise.

AHE Anomalous Hall effect.

ix



ASOT Anomalous-spin-orbit torque.

SSOT Self-spin-orbit torque.

SSM Spin-source material.

x



Chapter 1

Introduction

1.1 Spintronics and Magnetoresistive Random Access

Memory

1.1.1 Giant Magnetoresistance

Spin electronics, or Spintronics, is a research field with the focus of understanding and

utilizing the spin degree of freedom of electrons for next-generation data computing and

storage. In addition to the electron charge, which fuels the development and success of

modern electronics, electron spin is useful in efficient information storage and transport.

One of the most important milestones in the development of spintronics is the discovery of

giant magnetoresistance (GMR) by Albert Fert and Peter Grunberg in 1988 [1, 2]. They

were later awarded the Nobel Prize in Physics in 2007 for their research and its practical

significance. Phenomenologically, GMR can be described as an electrical resistance change

of magnetic multilayer structures depending on the relative magnetization orientation of

adjacent magnetic layers. For instance, as shown in Fig. 1.1, GMR is often studied or

used in a sandwich structure of a ferromagnetic metal (FM)/ non-magnetic metal (NM)/

ferromagnetic metal (FM) stack, which is referred to as a spin-valve [3]. Due to spin-

dependent electron scattering [4, 5], the “spin-up” and “spin-down” electrons experience

different scattering rates in the FM layer. Namely, electrons with spin polarization parallel

(anti-parallel) with the magnetization yield low (high) scattering rates. Therefore, when the

two FM layers are magnetized in parallel, the resistance of the spin valve is lower than in
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the anti-parallel case.

Figure 1.1: Illustration of the spin valve structure and GMR effect. The resistance of the
spin valve is relatively low (high) when the two magnetizations are parallel (anti-parallel).
The black arrows represent the magnetization directions in the ferromagnetic material (FM).
NM: non-magnetic material.

Mathematically, the GMR can be expressed as GMR =
R↑↓−R↑↑
R↑↑

, in which the normalized

value of the resistance difference between the parallel (R↑↑) and anti-parallel (R↑↓) states is

used to quantitatively characterize the strength of GMR. By proper choice of the materials

and design of the spin valve structure, GMR of a few percent can be easily achieved [6].

Various applications based on the GMR principle, including magnetic field sensors and hard-

disk drives (HDDs), have significantly benefited our daily lives [6, 7].

Similar to GMR, tunneling magnetoresistance (TMR) describes the same resistance

change phenomenon in magnetic tunnel junctions (MTJs), where a thin insulator film (nor-

mally Al2O3 or MgO) is used to replace the conductive non-magnetic layer in spin valves

[8–11]. Despite the similarity, the fundamental mechanism of TMR is quite different from

that of GMR. Since a tunneling current through the insulator is forbidden by classical

physics, this phenomenon can only be explained with quantum mechanics [12]. Compared

to the GMR in spin valves, TMR in MTJs can reach a much higher value, up to 604% [13].

This advantage makes MTJs with high TMR a promising candidate for reliable memory

applications such as magnetoresistive random access memory.
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1.1.2 Magnetoresistive Random Access Memory

Magnetoresistive random access memory (MRAM) is a non-volatile memory with low power

consumption and fast writing speed [14]. Because of its compatibility with the current

CMOS technology and potential of realizing ultrahigh density, some researchers consider

MRAM a strong candidate to replace static random access memory (SRAM) and dynamic

random access memory (DRAM) as technology progresses. As a memory device, MRAM

must possess three key components: (1) a unit/bit to store information, (2) a method to

read/retrieve the information and (3) a method to write new information. The first two

key components have actually already been discussed in the previous section. As shown in

Fig. 1.2, the core units in MRAM for information storage are MTJs. The stable low (parallel)

and high (anti-parallel) resistance states of an MTJ device represent “0” and “1” in a binary

information system, respectively. The read mechanism is based on the magnetoresistance,

for which a small current is applied from the source line to bit line to retrieve the stored

information.

Figure 1.2: Illustration of the architecture of a field-switching MRAM. Information is stored
in the MTJ structure by different resistance states. Reading is achieved by applying current
through the source line and bit line to read the device resistance. Writing is realized by a
pair of magnetic fields caused by currents through the bit line and word line. This figure is
reproduced from Ref. [14].

As for the writing mechanism, multiple techniques have been implemented or proposed
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so far. As illustrated in Fig. 1.2, the conventional way is to use a pair of current-induced

orthogonal magnetic fields to switch the magnetization in the free layer of the MTJ, so

that new information is written into the bit. This conventional design has been extensively

studied and realized. However, this design requires the magnetization to lie in the plane

of the magnetic thin films. This limits further scaling of the memory bits due to shape

anisotropy. Moreover, the current needed to switch the magnetization via fields is also very

high [15]. Therefore, a new write mechanism based on spin-transfer torque was put forward

about two decades ago.

1.1.3 Spin Current and Spin Transfer Torque

In analogy with electric current, which is a flow of electron charge, spin current is a flow of

electron spin. In non-magnetic metals, such as gold and copper, electrons with opposite spin

polarization are equally populated and evenly distributed. Therefore, when an electric cur-

rent flows through non-magnetic materials, “spin-up” and “spin-down” electrons have equal

probability of transmission, resulting in no net spin current. However, if an unpolarized elec-

tric current is applied through a magnetic material, electrons with different spin polarization

are subject to different scattering rates [16]. As a result, the output current yields a net spin

polarization. This is called the spin filtering effect. In other words, magnetic materials can

transform a pure charge current into a spin current.

Figure 1.3: Illustration of the spin transfer torque. This figure is from Ref. [17].

When a spin current reaches another magnetic layer, if the spin polarization of the spin
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current is not perfectly parallel with the local magnetization, the spin current can transfer

its angular momentum and exert a torque on the local magnetization. This torque is the

so-called spin transfer torque (STT). It was first predicted by Slonczewski [18] and Berger

[19] in 1996. When the geometry is properly chosen, STT can overcome the damping of the

magnetic material, which in turn leads to the switching of the magnetization. A simplified

illustration of STT-induced magnetization switching is shown in Fig. 1.3. A spin current

is first prepared by a reference magnetic layer via the spin filtering effect. Then, at the

second magnetic layer, angular momentum is transferred from the spin current to the local

magnetization by the STT, which can switch the magnetization if the spin current is strong

enough [20–23].

Figure 1.4: Illustration of the architecture of an STT-MRAM. The structure is less complex
than the field MRAM. This figure is reproduced from Ref. [14].

Thanks to the discovery of STT, electrical manipulation of magnetic moments becomes

possible. As a direct application, STT was proposed as another writing mechanism shortly

after its discovery. As shown in Fig. 1.4, STT-MRAM does not require any external mag-

netic field. Instead, an electric current is sent through the MTJ to switch the bit. This

advantage significantly simplifies the fabrication process. Furthermore, switching by current

is also more scalable. In fact, shrinking bits to smaller sizes helps reduce the critical current

amplitude for switching. Therefore, STT-MRAM is much more energy-efficient than field-
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switching MRAM. In light of these advantages, companies like Everspin, Samsung and IBM

are all working on bringing out the newest STT-MRAM product. As of today, the largest

volume STT-MRAM chip is 256 MB from Everspin Technologies [24].

Regardless of the previously mentioned advantages, STT-MRAM does have a few draw-

backs as well. First of all, even though the writing current of STT-MRAM is lower than in

many other memory technologies, it is still quite high, which means high energy consumption

and potential heating problems [25]. In addition, the mechanism of STT-MRAM requires

the writing and reading circuits to share the same path [25]. This limitation significantly

increases the error rate and breakdown probability. A trade-off between thermal stability

and barrier oxide breakdown current needs to be carefully made. On the one hand, if the

thermal stability factor is too low, a small read current may accidentally switch the bit, lead-

ing to an error. On the other hand, if the thermal stability factor is too high, high current

is necessary to write information, which may cause barrier oxide breakdown. Therefore, due

to these shortcomings, alternative mechanisms are extensively being explored to replace the

STT.

1.2 Spin-Orbitronics

In the last decade or so, a sub-field of spintronics called spin-orbitronics developed rapidly

because of its promising potential to replace STT-based technologies. Spin-orbitronics is

based on the spin orbit interaction (SOI) in materials. The related effects are referred to as

the spin-orbit effects (SOEs).

1.2.1 Spin Hall Effect

One of the best well-known SOEs is the spin Hall effect (SHE). The SHE is a phenomenon in

materials exhibiting strong SOI wherein an electric current produces a spin current transverse

to the electric current direction. The spin current, in turn, results in a spin accumulation
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at the surfaces of the material. The SHE arises from the SOI, which leads to deflection of

electrons with opposite spin polarization in opposite directions. An illustration of the SHE

is shown in Fig. 1.5. This phenomenon was first discussed by Dyakonov in 1971 [26], and

revived by Hirsch in 1999 [27].

Figure 1.5: Illustration of the spin Hall effect. Purple dots represents electrons. Red arrows
are spin polarizations. Black dashed arrows simulate the electron deflection trajectories.

Mathematically, the SHE can be described by

Qσ =
~
2e
θSHjc × σ, (1.1)

where Qσ is the spin current density, ~ is the reduced Planck’s constant, e is the electron

charge, jc is the electric current density, σ is the spin polarization unit vector, and θSH

is a dimensionless value representing the charge-to-spin-current conversion efficiency, which

is often referred to as the spin Hall angle or spin Hall efficiency. Based on Eq. 1.1, the

charge current direction, spin current direction and spin polarization should be orthogonal

to each other. There are two mechanisms associated with the SHE: one is the intrinsic SHE,

which is related to the band structure of the crystaline solid [28]; the other is the extrinsic

SHE, which is due to impurity-induced scattering, including skew-scattering and side-jump

effect[27].

The SHE provides a new way of generating pure spin current without a magnetic layer.

And, if a magnetic layer is deposited on top of a strong spin Hall material, the SHE-generated

spin current can exert an STT-like torque on the local magnetic moment. Thanks to the
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large spin Hall angle of some materials, such as Pt [29], β-Ta [30] and β-W [31], SHE-induced

torque is a promising candidate for more energy-efficient control of magnetism.

1.2.2 Rashba-Edelstein Effect

Another example of SOEs is the Rashba-Edelstein effect, or simply Rashba effect [32]. It

also originates from spin-orbit coupling, but, compared to the SHE, which is a bulk effect,

the Rashba effect only appears at the interface. In principle, the broken inversion symmetry

at the interface creates an effective electric field normal to the interface. This additional field

leads to one extra SOI term. The Rashba-induced SOI term causes a wavevector-dependent

spin splitting in the electron band structure. At equilibrium, when no electric current is

applied, the “spin-up” and “spin-down” states are equally populated. However, when an

electric current is applied in the plane of the interface, the electrons experience an effective

magnetic field that is in-plane and perpendicular to the charge current. As a result, net spin

accumulation occurs at the interface [33, 34].

Figure 1.6: Illustration of Rashba-induced spin accumulation at the interface. Ez is the
effective electric field due to inversion symmetry breaking. BRy is the effective Rashba
magnetic field. Red arrow represents the electric current direction. Dots and arrows in the
interface layer represent the spin accumulation. This figure is reproduced from Ref. [34].
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If one of the materials comprising the Rashba interface is magnetic, due to exchange

coupling, the interfacial spin accumulation can exert torques that are very similar to those

from the SHE on the adjacent magnetic layer.

1.2.3 Spin-Orbit Torques

As discussed in the previous two subsections, both the SHE and the Rashba effect can

generate non-equilibrium spin angular momentum and exert torques on adjacent magnetic

layers. Despite their quite different mechanisms, the resultant torques have very similar

forms. Given their common origin of spin-orbit coupling, the SHE- or Rashba-induced

torques are all referred to as spin-orbit torques (SOTs). Generally speaking, there are two

forms of SOT: damping-like torque (DL-SOT) and field-like torque (FL-SOT). The effect of

the two torques on magnetic moment dynamics can be expressed by the Landau-Lifshitz-

Gilbert-Slonczewski (LLGS) equation [35]:

dm

dt
= −µ0γm×Heff + αm× dm

dt
+ τDLm× (σ ×m) + τFL(σ ×m), (1.2)

where m is the magnetic moment unit vector, µ0 is the vacuum permeability, γ is the

gyromagentic ratio, Heff represents the effective magnetic field, α is the damping coefficient,

and τDL and τFL are the DL-SOT and FL-SOT parameters, respectively. The LLGS equation

describes SOT-related magnetic moment dynamics. Similar to the STT, DL-SOT arises from

the angular momentum transfer between spin current and the local magnetic moment. It

yields a form similar to the damping term in the LLGS equation. Therefore, by properly

arrange the system geometry, DL-SOT can be used to cancel out the intrinsic damping in

the magnetic material, leading to magnetic moment switching. The origin of the FL-SOT

has been attributed to the Rashba-induced spin accumulation at the interface and exchange

coupling with the magnetic moment. However, several researchers have reported results

indicating FL-SOT can also arise from the SHE spin current [36, 37]. Regardless of the
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mechanism, FL-SOT indeed affects the magnetic moment dynamics. A phenomenological

diagram of the SOT-induced magnetic moment dynamic processes is displayed in Fig. 1.7.

Figure 1.7: Illustration of the SOT-induced magnetic moment dynamics. The green arrow
illustrates the magnetic damping that tends to move the magnetization toward the effective
field direction. The red arrow is the DL-torque and the light-blue arrow is the FL-torque
with an electron spin polarization collinear with the effective field. This figure is modified
from Ref. [38].

On the other hand, in a quasi-static situation, SOTs also lead to magnetization reorien-

tation. If we ignore the time-dependent terms in the LLGS equation, the two SOTs can be

approximately considered as two effective fields, namely, a DL-field, hDL ∝m × σ, and an

FL-field, hFL ∝ σ [38]. A detailed discussion of SOT-induced magnetization reorientation

is presented in Chap. 3. By measuring the amplitude and direction of the SOT-induced

magnetization reorientation, some key characteristics of the SOTs can be quantitatively

determined. This is important for a better understanding of the SOTs.

Because of the low critical current in SOT-switching, SOT-based MRAM has been ex-

tensively studied and proposed as a promising candidate to replace STT-MRAM. The first
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experimental attempt at using SOT in MRAM was done by Liu et al. in 2012 with β-Ta

[30]. In their experiments, SOT-induced magnetization switching was demonstrated in both

in-plane and perpendicular anisotropy MTJs. Later simulation and experiments also sug-

gest that SOT-MRAM have better critical current density, write delay and retention failure

rate than STT-MRAM [14, 39]. As shown in Fig. 1.8, SOT-MRAM has separate write and

read paths. The information is read by sending a small current from bit line to source line,

while the write process relies on a larger current from the word line to the source line. SOT

makes lower power consumption and faster writing speed possible. And, the separate read

and write paths eliminate the trade-off between thermal stability and barrier oxide break-

down current as in STT-MRAM. However, as mentioned earlier, some fundamental questions

about SOTs such as the bulk/interface origin and contribution of the magnetic materials

are still unsolved and commercial applications require more research to find novel spin-orbit

mechanisms for optimal write currents. Therefore, I devote my dissertation research to the

field of spin-orbitronics.

Figure 1.8: Illustration of the architecture of an SOT-MRAM. The three-terminal design
significantly improves the error rate. This figure is reproduced from Ref. [14].
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1.3 Magneto-Optic Kerr Effect

To study SOI-induced effects on magnetization, we develop an SOT magnetometer based on

the magneto-optic Kerr effect (MOKE). Compare to the common electric techniques used to

measure magnetic transport signals, MOKE-based SOT magnetometers have the following

advantages: (1) compatibility with magnetic materials exhibiting both in-plane and out-of-

plane anisotropies, (2) independence on the applied current frequency, (3) ability to measure

very thin magnetic films, and (4) simplicity in implementation. A more detailed description

of our SOT magnetometer is provided in Chap. 3.

MOKE describes the change of light polarization upon reflection from a magnetized

surface. This phenomenon was first discovered by John Kerr in 1877 [40], shortly after the

discovery of another magneto-optic effect, the Faraday effect, in 1845 [41]. The Kerr effect

is just the reflection-configuration counterpart of the Faraday effect, which applies in the

transmission configuration. The change of light polarization due to MOKE is demonstrated

in Fig. 1.9. For light initially with linear polarization, after reflecting from a magnetic

surface, its polarization becomes elliptical. Quantitatively, this change can be characterized

by a rotation of polarization direction, called the Kerr rotation θK , and a term describing

the ellipticity of the reflected light, the Kerr ellipticity εK . Consequently, the polarization

change Ψ(m) can be written as

Ψ(m) = θK + iεK . (1.3)

In principle, MOKE arises from the non-zero off-diagonal components in the permittivity

tensor, ε. Since the permittivity tensor can be expressed as a Taylor series in different compo-

nents of the magnetization unit vector, the corresponding MOKE response should also have

multiple orders of magnetization-dependence: εij(m) = ε
(0)
ij +

∑
k ε

(1)
ijkmk+

∑
k,l ε

(2)
ijklmkml+...,

where i, j, k, l = x, y, z [42]. In most cases, the first-order (linear) MOKE dominates the

polarization response. Under the first-order approximation, the magnetization-dependent
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Figure 1.9: Illustration of the magneto-optic Kerr effect.

off-diagonal components create an anisotropic permittivity:

ε = ε0


1 −iQmz iQmy

iQmz 1 −iQmx

−iQmy iQmx 1

 ,

where Q is the magneto-optic coefficient [43]. Since the absorption and speed of light in mate-

rials are determined by the permittivity, the different polarization components of the incident

light experience different absorption and index of refraction as they propagate through the

material, resulting in an overall polarization change.

Higher-order MOKEs are also useful in certain applications. The second-order (quadratic)

MOKE becomes significant in materials yeilding weak linear MOKE response. For example,

large quadratic MOKE has also been observed in antiferromagnets [44] and Heusler alloys

[45, 46]. Quadratic MOKE is also important in certain detection geometries, where the

capability of linear MOKE is limited. In my dissertation study, both linear and quadratic

MOKE are studied and implemented experimentally. More details are discussed in Chap. 3.
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1.3.1 Geometries of First-Order MOKE

For first-order MOKE, depending on the relation between the magnetization direction and

the plane of light incidence, there are three typical geometries: polar MOKE, longitudinal

MOKE and transverse MOKE. As shown in Fig. 1.10(a), polar MOKE describes the change

of light polarization due to the magnetization component that is normal to the sample surface

and parallel to the plane of incidence. When the light is normally-incident, the first-order

MOKE signal is only sensitive to the polar MOKE response. On the other hand, as shown

in Fig. 1.10(b), longitudinal MOKE accounts for the polarization change resulting from the

magnetization component that is in both the sample plane and plane of incidence. Transverse

MOKE, which describes a reflectivity change, rather than a polarization change, of the light

due to the magnetization component that is in the sample plane and perpendicular to the

plane of incidence, is illustrated in Fig. 1.10(c). In all three geometries, the MOKE response

is linearly proportional to the magnetization strength. Polar MOKE is most widely used

thanks to its simplicity in implementation and analysis.

Figure 1.10: Illustration of the geometries of (a) polar MOKE, (b) longitudinal MOKE and
(c) transverse MOKE. Red arrows represent the incident and reflected light; blue line is the
material surface normal; black arrows are directions of the magnetization, M.

On the application side, MOKE has served as a powerful tool in magnetism research

for a long time. For example, MOKE microscopy is very convenient and accurate for mag-

netic domain structure characterization. With the development of ultrafast laser technology,

MOKE also plays an critical role in time-domain studies of dynamic processes. In this work,
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a polar MOKE configuration with normally-incident light is developed and used for SOT

studies.

1.3.2 Jones Calculus

In MOKE-related experiments, it is essential to have a method of simulation for better

understanding of the observed signal. Since MOKE mostly results in a change of light

polarization, Jones calculus is often used to calculate the resultant polarization state. Jones

calculus was first demonstrated by R. C. Jones in 1941 [47]. It provides a vector/matrix

formulation of polarized light and linear optics, in which polarized light is represented by

2×1 Jones vector and linear optical elements are represented by 2×2 Jones matrices. In this

dissertation study, Jones calculus is applied on multiple occasions including MOKE signal

analysis and signal-to-noise ratio characterization. An overview of Jones calculus is provided

in Appendix.A. A more detailed implementation of Jones calculus for our MOKE-based SOT

magnetometer system is discussed in Chap. 3.

1.4 Dissertation Layout

In this dissertation, I experimentally investigate current-induced SOEs and the resultant

SOTs in magnetic systems, with a focus on the SOEs originating from metallic magnetic

materials. By measuring SOT-induced magnetization reorientation using an optical magne-

tometer based on MOKE, I not only reveal novel phenomena that may impact the current

understanding of physics in such systems, but also provide a tool for efficient device charac-

terization.

This dissertation is organized as follows:

In Chapter 2, I summarize the sample fabrication and characterization methods that I

utilize for my dissertation research. The basic principles of magnetron sputtering, argon ion

milling, photolithography, ellipsometry and X-ray diffraction are reviewed. Key experimental
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parameters are also listed for future reference.

In Chapter 3, I introduce a highly sensitive optical SOT magnetometer system based on

MOKE that I built for this dissertation study. First, I discuss the SOT-induced magneti-

zation reorientation and its connection to polar and quadratic MOKE. Second, I describe

the experimental system and calibration methods for accurate SOT measurement. Lastly,

the accuracy and precision of the system is demonstrated via a series of experiments and

comparison with the results of other methods.

In Chapter 4, I describe a modified SOT magnetometer setup that achieves more than

3 times signal-to-noise ratio improvement. A system noise analysis is first presented to

support our assumptions for the method. Theoretical and experimental results are then

used to demonstrate the capability and reliability of the new method.

In Chapter 5, I explain our discovery of a novel SOT in single-layer magnetic materials.

I present our experimental observation of the SOT and numerically simulate the resulting

MOKE signal. Based on measurements of multiple magnetic materials and first-principles

calculations, we conclude this novel SOT arises from the intrinsic properties of the magnetic

materials.

In Chapter 6, I describe a self-induced SOT in magnetic materials caused by the exit of

spin current generated from the same magnetic material. Experimental results in a spin-valve

structure are discussed to demonstrate the self-SOT. A new technique is also introduced for

separation of MOKE responses from different magnetic layers.

In Chapter 7, I summarize the key findings of this dissertation and possible future research

directions.
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Chapter 2

Device Fabrication and
Characterization Techniques

2.1 Device Fabrication Techniques

In the study of current-induced spin-orbit effects, researchers typically need the current

density to be 1× 106 A/m2 or higher. To realize such a high current density while keeping

the sample heating low, small feature size is necessary. Therefore, micro/nano-fabrication

techniques are often used in the sample preparation process. In my dissertation work, I used

magnetron sputtering for thin film depositions. Photolithography and ion mill etching were

used to further pattern the sample/device into the desired shape and size.

2.1.1 Thin Film Deposition: Magnetron Sputtering

Magnetron sputtering is one of the most widely used thin-film deposition methods [48].

By the nature of its mechanism, magnetron sputtering is categorized as a physical vapor

deposition (PVD) technique, which is in contrast to the chemical vapor deposition (CVD)

techniques, such as atomic layer deposition. This technique has the advantages of system

simplicity, fast deposition rate as well as versatility in material choices.

A typical sputtering process needs to be in a high-vacuum environment with a base

pressure < 1 × 10−7 Torr. The goal is to minimize the background gases and potential

contaminants. After the base pressure is reached, Ar-gas is flowed into the chamber and

the chamber pressure is maintained at a stable level (normally, a few mTorr). A plasma is

then generated by applying a high electric potential difference between the material target
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(cathode) and the substrate (anode). Under this high voltage, the neutral Ar atoms are

ionized into positive Ar ions and free electrons. The generated free electrons further interact

with other neutral atoms to continue the ionization process, while the positive Ar ions are

accelerated towards the cathode and bombard the surface of the target material. Upon

these collisions, the kinetic energy of the Ar ions is transferred to the target material and

the target atoms are ejected into the vacuum environment with enough energy to reach the

substrate, e.g. a Si wafer (See Fig. 2.1(a)).

Magnetron sputtering improves the performance of the above mentioned process by using

a magnetic field to confine the free electrons near the target. As illustrated in Fig. 2.1(b),

with the additional magnetic fields, free electrons are “trapped” in the space where the

magnetic field is strong due to the Lorentz force. A higher free electron density results in a

higher plasma density. Therefore, the deposition rate is significantly enhanced. In addition,

better confinement of the free electrons reduces the damage to the substrate and deposited

thin film.

Figure 2.1: Illustration of (a) the general sputtering process, where target atoms are “sput-
tered” off the target surface by the accelerated argon ions in a plasma; (b) the magnetron
sputtering process, where free electrons are well-confined by the magnetic field. A much
higher density of plasma can be reached near the target surface, which in turn leads to a
faster deposition rate. This figure is reproduced from Ref. [49].

As mentioned in the beginning paragraph, magnetron sputtering is suitable for various

materials. There are different power source selections for different target materials. For con-
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ductive targets, such as metals, DC magnetron sputtering is sufficient, because the positive

charges from the Ar ions can be conducted away. Therefore, the electric potential between

the target and substrate can be sustained. However, if the target material is insulating, such

as oxides, positive charges will accumulate on the target and eventually generate a positive

electric field, preventing the Ar ions from reaching the target. To overcome this issue, we

can use radio frequency (RF) magnetron sputtering, in which an alternating electric field

makes the positive ions and free electrons alternately bombard the target to neutralize the

accumulated charges [50, 51].

For the thin films included in this dissertation, namely, Pt, Cu, Ni80Fe20, Al, Ti, Au and

IrMn, we deposit via DC magnetron sputtering. Oxide layers, such as SiO2, are deposited

via RF magnetron sputtering. Samples studied in this Chap. 5 and Chap. 6 are fabricated

by our collaborators in University of Delaware.

2.1.2 Photolithography

Photolithography is a technique widely used in microelectronic device fabrication processes

[52]. It utilizes a combination of UV-light-sensitive chemical “photoresist” (PR) and pho-

tomasks that have user-defined geometric patterns. By shining UV-light through a pho-

tomask onto different types of PR, users can transfer a pattern from the photomask to the

PR on top of the substrate, which enables them to either deposit new materials in a cer-

tain pattern or remove old materials from certain parts. Photolithography is the standard

method of printed circuit board (PCB) and microprocessor fabrication.

A typical photolithography process involves various steps depending on the process pur-

pose. But, these steps normally happen in a certain sequence, which can be categorized

as: cleaning and preparation, PR application (spin coating), exposure and development,

deposition/etching and PR removal [53].

Cleaning and preparation: The goal of this step is to remove all the organic and

inorganic contamination on the substrate surface so that the substrate is ready for the PR
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applications. In the process that I used for my samples, I apply acetone, isopropyl alcohol

(IPA) and distilled water in sequence to clean the substrate. An ultrasonic bath is suggested

if the substrate is really dirty. Then, I bake the substrate on a hotplate at 110°C for 2

minutes to get rid of the moisture on the wafer surface.

Figure 2.2: Illustration of the spin coating process. High speed rotation produces a PR layer
with a uniform thickness.

PR application (spin coating): Spin coating is a technique used to provide uniformly

distributed PR on the substrate surface. As illustrated in Fig. 2.2, the viscous, liquid PR

is dispensed and spun on top of the substrate surface. Due to the spinning nature of this

method, circular substrates are always recommended for spin coating. In the case of my

work, I use a speed of 4000 rpm for 45 seconds to realize a PR thickness of 1.4 microns [54].

After the PR application, a prebake at 110°C for 75 seconds is normally performed to drive

off excess PR solvent on the substrate.
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Figure 2.3: Illustration of the PR types. The mask is used to transfer the pattern to the
PR. It’s normally made of glass and patterned with chrome. The black part is opaque and
the white area is transparent. After the exposure and development, positive PR keeps the
exact same pattern as the mask. (Exposed PR is removed) On the other hand, negative PR
shows opposite phenomenon, where the unexposed PR is removed.

Exposure and development: After the prebaking, the PR is exposed to a pattern

of UV light on a mask-aligner. There are two kinds of PR: positive PR and negative PR.

For positive PR, the exposed part can react with the developer and be dissolved, with the

unexposed part staying on the substrate. In contrast, negative PR does not react with

the developer if it is exposed, so the exposed pattern persists on the substrate (Fig. 2.3).

Each PR has its applications. For example, in my work, positive PR is used to pattern the

deposited thin films followed by ion mill etching to remove the exposed materials. Negative

PR is useful in the electrode deposition process. In a process called “lift-off”, the negative

PR is first coated and patterned before the deposition of electrode materials. Then, upon

removal of the PR, the materials on top of the PR are washed away together with the PR

(Fig. 2.4). This is a more efficient technique for thick pattern depositions. In my work, I

used AZ-5214E PR [54], which can be used as both positive and negative PR. The AZ-917

MIF developer is a good match to AZ-5214E. The normal development time is between 30

and 40 seconds.
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Figure 2.4: Illustration of the “lift-off” process. The undercut PR profile is critical for a
successful “lift-off” process. So, precise control of exposure dose is important. This figure is
reproduced from Ref. [55].

Deposition and etching: This step is performed after the PR profile is defined. Based

on the PR types used in the previous process, ion mill etching (for positive PR), explained

in the next section, or magnetron sputtering deposition (for negative PR) can be used.

PR removal: After the deposition/etching step, PR needs to be removed so that the

sample can be ready for measurements or further processes. There is a wide choice of PR

removers suitable for different PRs. For AZ-5214E, acetone is a good solvent to remove it.

Typically, the sample need to be soaked in acetone for over half an hour. Heating and an

ultrasonic bath are also often used to speed up the process. A simplified process flow chart

is shown in Fig. 2.5.
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Figure 2.5: Fabrication process flow chart for a typical current-induced spin-orbit torque
device. The steps are: (1) Deposit the magnetic multilayer thin film for current-induced
spin-orbit effect studies, (2) apply the positive PR for the etching pattern, (3) expose the
sample on a mask-aligner, (4) develop the PR and define the PR profile, (5) pattern the
magnetic heterostructure with ion mill etching, (6) remove the positive PR residue, (7) coat
the substrate with negative PR for the electrode, (8) exposure, (9) develop the negative PR
to produce the undercut profile for “Lift-off” [55], (10) deposit the electrode materials via
magnetron sputtering, (11) PR removal and postbake at 110°C for 3 minutes.
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2.1.3 Ion Mill Etching

As mentioned in the previous section, ion mill etching is often used following photolithogra-

phy to remove excess material so that a specific pattern can be achieved. Ion mill etching

is a pure physical process, in which high energy heavy ions (e.g. Ar+) bombard the surface

of a PR-patterned substrate in a vacuum chamber. While the whole substrate is etched by

the ion beam, the PR protects the underlying materials during the process. In addition, the

PR’s etching rate is much lower than that of the material to be removed. Therefore, when

the etching process is completed, the remaining material defines the desired small feature

size.

Figure 2.6: Schematic diagram of a typical Ar ion mill. This figure is reproduced from
Ref. [56].

Fig. 2.6 shows a simplified diagram of an ion mill etching machine. Argon ions are

generated by discharge ionization in the discard chamber. While the plasma is completely

contained in the discard chamber, the argon ions are accelerated by a pair of optically aligned

grids and ejected into the vacuum work chamber. The work chamber pressure should be

at moderate vacuum (< 1 × 10−4 Torr) so that the mean free path is longer than the

distance between ion source and substrate. The neutralizer beam prevents positive charge

accumulation on the substrate, which may significantly affect the etching rate. To achieve

the optimal etching uniformity and rate, the substrate is often attached to a water/liquid
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nitrogen-cooled tilted rotation plate. Since argon ions carry a great amount of energy, it is

important to make sure the substrate is not overheated. An overheated substrate not only

becomes more fragile, but also changes the properties of the PR on top, which makes the

PR difficult to remove. The tilted plate is to avoid the scattered particles interacting with

the incoming ions. A constant speed rotation helps with the uniformity of the etching.

For the etching performed for this dissertation, base pressure is normally below 2 ×

10−6 Torr and Ar pressure is controlled between 2 × 10−4 Torr and 5 × 10−4 Torr. Other

specifications include: Ar flow rate = 3 sccm; beam voltage = 250 V; beam current = 50

mA; accelerate voltage = 30 V; neutralizer current = 60 mA. To avoid overheating, liquid

nitrogen cooling is used.

2.2 Device Characterization Techniques

In the study of the current-induced spin-orbit effects, to quantitatively determine the strength

of the spin-orbit torques, we characterize key parameters of the deposited thin films and fab-

ricated devices. For instance, we measure resistivity of the investigated spin-orbit devices

with the four-point probe method and the refractive indices of materials with ellipsometry

analysis. Furthermore, X-ray diffraction (XRD) techniques are used to determine material

properties like crystalline structure and thickness of the thin films.

2.2.1 Four-Point Resistivity Measurement

The four-point probe method is a widely used technique in measuring small resistance with

high accuracy. Compared to the two-point probe method, whose accuracy is significantly

affected by the contact and spreading resistances associated with the probes, the four-point

method mostly eliminates the contributions from contact and spreading resistances by sep-

arating the detecting probes from the voltage source probes. Thus, one can obtain a fairly

accurate reading of the resistivity [57].

25



The basic principle of the four-point probe technique is shown in Fig. 2.7. As a constant

current I runs through the Hall bar, the electric potential between two points along the

longitudinal wire is nonzero. By measuring the voltage difference, the sheet resistance Rs of

the material can be calculated with

Rs =
∆V

I

L

W
, (2.1)

where Rs is the sheet resistance with units of Ω/�, which can be interpreted as the resistivity

of a uniform film with unit thickness; I is the current through the longitudinal wire; L is the

distance between the two voltage terminals; and W is the width of the longitudinal wire.

Once the sheet resistance is extracted, the material resistivity can be computed as: ρ = Rst,

where t is the thickness of the film.

Figure 2.7: Illustration of the principle of the four-point probe method. A Hall bar structure
is usually used for such measurements. A bias voltage V is applied between the two “edge”
pads, which generates a current I in the wire. The potential difference between the two
middle voltage terminals, ∆V = V2 − V1, is measured to calculate the sheet resistance.
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2.2.2 Ellipsometry

Ellipsometry is an optical technique for investigating dielectric properties such as the com-

plex refractive index of thin films [58]. It measures the polarization change upon reflection

from a material and extracts the property information by comparing the result to a model.

Within the framework of this dissertation work, a spectroscopic ellipsometer is used to

measure the complex refractive indices of materials for the propagation matrix numerical

simulation in Chap. 5. However, ellipsometry can also be applied in the characterization of

film composition, surface roughness, thickness, crystalline nature and many other material

properties [59].

Figure 2.8: Illustration of an ellipsometry system [60].

The basic principle of ellipsometry is to measure the complex polarization change as

determined by the properties of the material of interest. As illustrated in Fig. 2.8, the ex-

perimental setup consists of a light source, a detector, a polarizer and an analyzer. The

incident beam and reflected beam construct the plane of incidence. Any arbitrary polariza-

tion can be decomposed into two components: the s-component (perpendicular to the plane

of incidence) and p-component (parallel to the plane of incidence). Ellipsometry measures

27



the complex reflectance ratio ρ, which is defined as

ρ =
rp
rs

= tan(Ψ)ei∆, (2.2)

where rs and rp are the normalized reflected s-component and p-component amplitudes,

respectively; tan(Ψ) is the amplitude ratio upon reflection; and ∆ represents the phase

difference. Ellipsometry results are normally presented as Ψ and ∆. In most cases, Ψ and

∆ cannot be directly converted to optical properties. Model analysis must be performed

to fit the experimental data so that the property parameters can be extracted. However,

for the characterization of refractive index of isotropic and homogeneous materials, direct

conversion of Ψ and ∆ is usually possible with thick “opaque” single-material films. All the

refractive indices in this work are measured directly with thick single-material films prepared

via magnetron sputtering on oxidized Si wafer.

2.2.3 X-ray Diffraction

X-ray diffraction (XRD) is a widely-used non-destructive technique for crystalline structure

characterization. The principle of XRD is to enable the elastic scattering of x-rays from the

periodic lattice of a crystalline material, and measure the resultant constructive interference

of the reflected wave [61]. X-rays with wavelengths close to 0.1 nm are often used in XRD

applications. The similarity between the x-ray wavelength and atomic spacing in the crystal

makes scattering and interference significant, which helps reveal structural information.

As illustrated in Fig. 2.9, an intuitive model of XRD is the well-known Bragg’s law [62],

which states that constructive interference of reflected x-rays occurs under the condition

2d sin θ = nλ, (2.3)

where d is the distance between adjacent lattice planes, θ is the incident angle of the x-ray, λ

is the x-ray wavelength, and n is an integer number. Constructive interference only happens
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when the distance traveled by two adjacent reflected rays differ by an integer number of the

x-ray wavelength. By varying the incident angle θ, the interference condition gets satisfied

for different lattice spacings. Therefore, the interference peak positions reveal structural

information such as the lattice constant, crystal structure, and chemical composition. When

the x-rays are incident at a small angle (< 10◦), the diffraction pattern can be used to

determine thin flim thicknesses. This technique is called x-ray reflectivity (XRR). In this

dissertation, XRD is used to characterize the crystal structure of the magnetic materials, e.g.

Fe, Co, and Ni studied in Chap. 5; and XRR is used to calibrate the sputtering deposition

rate in the thin film preparation process.

Figure 2.9: Illustration of Bragg diffraction. This figure is reproduced from Ref. [63].
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Chapter 3

Magneto-Optic Kerr Effect Based
Spin-Orbit Torque Magnetometer

Part of this chapter was published in “All-optical vector measurement of spin-orbit-induced

torques using both polar and quadratic magneto-optic Kerr effects,” by Xin Fan, Alex R.

Mellnik, Wenrui Wang, Neal Reynolds, Tao Wang, Halise Celik, Virginia O. Lorenz, Daniel

C. Ralph, and John Q. Xiao, Appl. Phys. Lett. 109, 122406 (2016). In this work, Dr.

Xin Fan conceived the idea and oversaw the whole project. Alex Mellnik performed the

spin-torque ferromagnetic resonance (ST-FMR) measurement. Wenrui Wang conducted all

the MOKE measurements and majority of the data analysis.

As discussed in the introducton, spin-orbit torques (SOTs) are promising candidates for

realizing efficient electrical manipulation of magnetism [20, 30, 64–69], which may lead to

new technologies for magnetic memory and logic devices [6, 70]. Recently, SOT-induced

magnetic-moment manipulation was observed in both heavy metal/ferromagnet bilayers

[30, 68, 71, 72] and topological insulator/ferromagnet bilayers [73, 74]. Exploration in this

field, both for fundamental understanding and practical applications, requires a convenient

method to quantitatively measure the amplitude and direction of the SOTs. To date, the

workhorse methods for measuring such torques are based on using magneto-transport sig-

nals for detecting magnetic reorientations in response to an applied current. For example,

second-harmonic Hall effect measurements work well for measuring torques acting on a metal-

lic magnetic layer with perpendicular magnetic anisotropy, but for magnets with in-plane

anisotropy, the need to separate out thermally-induced signals makes this technique more

difficult to apply [71, 75, 76]. Spin-torque ferromagnetic resonance (ST-FMR) [30] can be

30



used for metallic magnets with either perpendicular or in-plane anisotropy, but for very thin

magnetic layers an artifact caused by spin pumping and the inverse spin Hall effect could

in principle interfere with this method [77]. Here, I introduce a simple all-optical technique

based on the polar and quadratic magneto-optic Kerr effect (MOKE) for current-induced

SOT characterization. The method has a sensitivity comparable to the techniques based on

magneto-transport detection, but with fewer artifacts and applicability to a very wide range

of magnetic materials.

In this chapter, I first explain the connection between the MOKE response and magneti-

zation components in the normal incidence configuration. Then, I describe the experimental

system and how we quantitatively calibrate the strength of the SOTs. Lastly, compari-

son between MOKE and ST-FMR results is presented to demonstrate the accuracy of the

technique.

3.1 SOT-Induced Magnetization Reorientation

Figure 3.1: Illustration of the SOT-induced magnetization reorientation. For a magnetiza-
tion initially aligned in the x-direction, an in-plane spin polarization σ in the y-direction
leads to a DL-SOT effective field hDL in the z-direction and a FL-SOT effective field hFL in
the y-direction. hDL and hDL cause out-of-plane and in-plane magnetization tilt, respectively.

As discussed in Chap. 1, when a spin current is absorbed by a magnetic material, it

31



exerts two kinds of SOT: (anti-)damping-like SOT (DL-SOT) and field-like SOT (FL-SOT).

DL-SOT has the form of ~m× (~m× ~σ), while FL-SOT has the form of ~m× ~σ. The effect of

such torques on the magnetization can be equivalently expressed as effective magnetic fields:

hDL ∝ ~m× ~σ and hFL ∝ ~σ, respectively. As illustrated in Fig. 3.1, a spin current with spin

polarization σ in the y-direction results in magnetization reorientation in both the xz- and

yz-plane. Namely, DL-SOT causes the magnetization to tilt out of plane, while FL-SOT

rotates the magnetization in plane.

Figure 3.2: Illustration of the major fields that influence the magnetization reorientation in
the (a) xy-plane and (b) xz-plane.

For an in-plane magnetized thin film, under the first-order approximation, the magne-

tization change under the effective SOT magnetic fields can be calculated. As shown in

Fig. 3.2(a), assuming an external field in the x-direction and an effective field hy in the

y-direction, the in-plane magnetization rotation ∆φM can be expressed as

∆φM =
hy
Hex

, (3.1)

where hy = hFL + hOerstedIn is the superposition of the effective field of the FL-SOT and the

in-plane current-induced Oersted field hOerstedIn, and Hex is the external magnetic field.

On the other hand, as shown in the diagram of Fig. 3.2(b), the effect of an out-of-plane
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effective field hz is significantly suppressed by the demagnetizing effect, which results in an

out-of-plane magnetization tilt ∆θM that is not as sensitive to the external field Hex:

∆θM =
hz

|Hex|+Meff

, (3.2)

where hz = hDL +hOerstedOut represents the combination of hDL and the out-of plane current-

induced Oersted field hOerstedOut; Meff = Ms−Hanis⊥ is a term arising from demagnetization

and surface anisotropy, which is normally much larger than Hex, where Ms is the saturation

magnetization and Hanis⊥ is the out-of-plane anisotropy field.

3.2 Polar and Quadratic MOKE in the

Normal-Incidence Configuration

As introduced in Chap. 1, MOKE describes the change of light polarization upon reflec-

tion from a magnetized surface. In principle, MOKE can be described as arising from a

magnetization-dependent permittivity tensor, which can be expressed as a Taylor series in

the components of the magnetization unit vector m [42]:

εij(m) = ε
(0)
ij +

∑
k

ε
(1)
ijkmk +

∑
k,l

ε
(2)
ijklmkml + ..., (3.3)

where i, j, k, l = x, y, z. When light interacts with a magnetic material, the light polarization

changes depending on the magnetization orientation. The second term on the right side of

Eq. 3.3 generates the first-order MOKE, which includes the well-known polar, longitudinal,

and transverse MOKE [78]. The third term on the right in Eq. 3.3 leads to the second-

order MOKE, which is often referred as quadratic MOKE [79]. This term is in general not

negligible.

For the case of normally-incident light with linear polarization, the change of the polar-

ization angle due to the magnetization can be written as [80]
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Figure 3.3: Illustration of the θM , φM and φpol in Eq. 3.5.

Φ(m) = αPolarmz + βQuadraticmxmy..., (3.4)

where the z-direction is perpendicular to the magnetic film plane, the x-direction is parallel

to the plane of the incident polarization, and αPolar and βQuadratic are the coefficients for

the polar MOKE and quadratic MOKE responses, respectively. One way to distinguish the

polar MOKE and quadratic MOKE responses is by tuning the polarization of the incident

light. If we define θM and φM as the polar and azimuthal angles of the magnetization, and

φpol as the angle of the polarization, as illustrated in Fig. 3.3, Eq. 3.4 can be rewritten (still

assuming normally-incident light with linear polarization) as

Φlinear(m) = αPolar cos θM +
1

2
βQuadratic sin2 θM sin[2(φM − φpol)] + .... (3.5)

As a result, the polar MOKE response does not depend on the polarization direction,

while the quadratic MOKE depends on the polarization angle as ∝ sin[2(φM − φpol)].

Alternatively, if circularly-polarized incident light is used, the polar MOKE component

yields no polarization change, while quadratic MOKE changes the polarization from circular

to slightly elliptical. Using Jones matrices to calculate the change in polarization due to each

optical element (a detailed derivation is given in Appendix.A2), the expected current-induced

change in the polarization is
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Φcircular(m) = −βQuadratic∆φM . (3.6)

Therefore, by controlling the polarization of the incident light, one can conveniently

separate the two MOKE signals that are proportional to mz and mxmy, and thus measure

current-induced magnetization rotation that results in changes to any of the magnetization

components.

3.3 Experimental Setup

Our MOKE system is an optical bridge apparatus using lock-in detection. The light source is

a mode-locked Ti:Sapphire laser with a center wavelength of 780 nm. As shown in Fig. 3.4, a

Glan-Thompson polarizer is used to prepare linear polarization at the beginning. The initial

polarization is set along the x-direction. After a 50/50 beam splitter, a half (quarter) wave

plate is used to further tune the laser polarization for polar (quadratic) MOKE measurement.

The magnetization in the sample is altered by the applied current at a frequency of 20.15 kHz.

After the laser is reflected from the sample, it is redirected by the 50/50 beam splitter towards

the detector direction. Changes in the MOKE signal due to magnetization reorientation are

analyzed by using a Wollaston prism to separate the s- and p-component of the light and

then measuring the power difference with a balanced detector. SOT-induced changes in

the MOKE signal, ∆Φ(m), are recorded by a lock-in amplifier locked to the frequency

of the applied current. (A Jones matrix calculation of the MOKE signal is included in

Appendix.A4)
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Figure 3.4: Experimental setup for the optical detection of SOTs. To detect the SOT-
induced out-of-plane magnetization tilt, we use a half wave plate (HWP) before the sample.
The half wave plate is replaced by a quarter wave plate (QWP) for measuring the in-plane
magnetization rotation. The half wave plate before the Wollaston prism is initially set so
that the s- and p-component of the polarization is balanced. Red arrows and dots in front
of the balanced detector represent the light polarization direction.

Since we study small current-induced perturbations of the magnetization about an initial

state at φM = 0, θM = π
2
, by differentiation of Eq. 3.5, the expected change in the MOKE

signal is (see Appendix.A3)

−∆Φ(m) = −αPolar∆θM + βQuadratic cos 2φpol∆φM . (3.7)

Combining Eq. 3.7 with Eqs. 3.1 and 3.2, we obtain an expression that relates the SOT-
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induced magnetization reorientation to the detected MOKE signal. In the actual experi-

ments, I extract the polar MOKE response by measuring the average of the signals at 45◦

and 135◦ incident polarization:

∆ΦPolar =
∆Φ(φpol = 45◦) + ∆Φ(φpol = 135◦)

2
= αPolar∆θM .

The purpose of measuring two polarization angles that are exactly 90 degrees apart is to

minimize any residual quadratic MOKE signal due to small misalignment. Similarly, for the

quadratic MOKE component, I measure the signal at 0◦ and 90◦ polarization angle and take

half the difference as the result:

∆ΦQuadratic =
∆Φ(φpol = 0◦)−∆Φ(φpol = 90◦)

2
= βQuadratic∆φM .

Thanks to the low sensitivity of cosine function to angular misalignment at 0 and 90 degrees,

this method is a good alternative to the quadratic MOKE method using circularly-polarized

light, which contains no polar signal.

3.4 Calibration Method

We use calibration magnetic fields to quantitatively determine the strength of the SOTs

from the measured MOKE signals. For the DL-SOT calculation, we use an out-of-plane

calibration field, while an in-plane calibration field is utilized for extracting the FL-SOT.

The out-of plane calibration field is generated by a specially designed calibration wire,

shown in Fig. 3.5(a). Given all the dimensions of the calibration wire, the generated cal-

ibration field hCal due to a certain calibration current can be calculated. Recalling the

magnetization reorientation expression in Eq. 3.2, we can write down the MOKE signal due

to the out-of-plane magnetization tilt caused by hCal as
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Figure 3.5: (a) Diagram of the designed calibration wire for out-of-plane calibration field.
Calibration current is applied from the left to the right. (b) Generated out-of-plane Oersted
field distribution for a calibration current of 400 mA. The 50 µm × 50 µm area is indicated
by the red dot in (a). The values on the legend bar are in Oe.

∆VCal = αPolar∆θM =
hCal

|Hex|+Meff

. (3.8)

Since the DL-SOT effective field, hDL ∝ ~m × ~σ, linearly depends on the magnetization, it

changes sign when the external magnetic field Hex reverses. Given hz = hDL +hOerstedOut and

the Oersted field is independent of Hex, the hDL-caused magnetization tilt can be calculated

as: ∆θhDL
=

∆θhz (+Hex)−∆θhz (−Hex)

2
. Therefore, the MOKE signal generated by the DL-SOT

can be expressed as

∆VDL = αPolar∆θhDL
=

∆V (+Hex)−∆V (−Hex)

2
=

hDL

|Hex|+Meff

. (3.9)

From Eqs. 3.8 and 3.9, we derive the final equation to calculate the effective magnetic

field due to the DL-SOT as

hDL =
∆VDL

∆VCal

hCal. (3.10)
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Figure 3.6: Illustration of the DL-SOT calibration process. (a) The hDL-induced MOKE
signal. The signal has a step-like shape because of the change of sign of hDL on magnetization
reversal, as described by Eq. 3.9. (b) the MOKE signal due to the calibration field. The
symmetric tilted shape is described by Eq. 3.8. (c) The signals used to extract hDL via a
line-scan method, for comparison.

We verified the accuracy of this method by comparing its result with the result of a

line-scan method [81]. The line-scan method utilizes the different symmetries of hDL and

hOerstedOut. By measuring the overall MOKE signal across the sample width under positive

and negative external magnetic fields, signals due to hDL and hOerstedOut are extracted through

simple addition and subtraction. Since the current-induced Oersted field can be readily

calculated with Ampere’s law, we can calibrate the amplitude of hDL through fittings of

the SOT and Oersted curves, shown in Fig. 3.6(c). Although the line-scan method is self-

calibrated, which means no extra calibration field is needed, it is also more time-consuming.

Therefore, we replace the line-scan method in our experiments. A sample with the structure,

39



substrate/Py(20)/Pt(3), was used in the comparison experiment, where the values in the

parenthesis are in nanometers. Fig. 3.6(a) and (b) show the polar MOKE signal of the

DL-SOT measurement and the calibration measurement, respectively. The MOKE signal

due to the DL-SOT, ∆VDL ≈ −30 µV, is extracted from Fig. 3.6(a) by taking half the

difference between the positive field and the negative field signals. And, the calibration

signal, ∆VCal ≈ −220 µV, is the zero-field reading in Fig. 3.6(b). Since the calibration

current is 400 mA, which corresponds to a calibration field hCal = 9.6 Oe, the DL-SOT-

induced effective field can then be computed using Eq. 3.10 to be hDL = 1.3± 0.2 Oe. This

result is in good agreement with the self-calibrated line-scan result, hDL = 1.1±0.2 Oe, that

is extracted from Fig. 3.6(c).

Applying the same methodology, we use an in-plane calibration field for the FL-SOT

measurements. The in-plane field is generated by a 2 mm wide straight wire on a PCB board,

that we attach underneath the sample with the wire parallel with the current direction (x-

direction). The wide width of the wire ensures a relatively uniform in-plane (y-direction)

Oersted field across the sample area. Since both the FL-SOT effective field hFL and in-plane

calibration field hCalIn rotate the magnetization in the xy-plane, from Eqs. 3.1 and 3.7, we

can write the quadratic MOKE signal due to hFL and hCalIn as

∆VFL = βQuadratic∆φhFL
=
hFL + hOerstedIn

Hex

, (3.11)

∆VhCalIn
= βQuadratic∆φhCalIn

=
hCalIn

Hex

, (3.12)

where hOerstedIn is the Oersted field generated by the current that generates the SOTs.

As shown in Fig. 3.7(a) and (b), both the FL-SOT and calibration quadratic MOKE

signals yield nice 1/Hex dependence as predicted by Eqs. 3.11 and 3.12. By replotting the

FL-SOT result as a function of the calibration values and performing a linear regression

fitting (Fig. 3.7(c)), we extract a slope value, which is equal to the ratio of hFL+hOerstedIn

hCalIn
.
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Since hCalIn and hOerstedIn can be calculated with Ampere’s law, the strength of the FL-SOT

effective field can be quantitatively determined as

hFL = slope× hCalIn − hOerstedIn. (3.13)

Figure 3.7: Illustration of the FL-SOT calibration process. (a) Quadratic MOKE signal of
the FL-SOT. The signal includes contributions from the current-induced FL-SOT and the
in-plane Oersted field generated by the same current. (b) The quadratic MOKE signal of the
in-plane calibration field. Both (a) and (b) follow a clear 1/Hex dependence. (c) Plot of the
FL-SOT MOKE signal as a function of the calibration-field-induced signal. The slope of the
linear fit can be used to extract the amplitude of the effective field of FL-SOT. The negative
sign before the field value indicates the direction of the hFL is opposite to the calibration
field direction.
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3.5 Results

We demonstrate the current-induced SOT measurement using polar and quadratic MOKE

with a Py/Pt bilayer sample. The sample has the structure: substrate/Pt(6)/Py(8)/AlOx(3),

where values in the parenthesis are in nanometers. We measure the MOKE response as a

function of external magnetic field Hex for different incident polarizations. As shown in

Fig. 3.8(a), for φpol = 45◦, we observe a simple hysteresis-like change in the signal near zero

field with the signal approximately independent of Hex on either side of the step. This re-

sult agrees with the expectation from Eq. 3.7, in which the contribution from the quadratic

MOKE is zero. This is also the behavior expected from the polar Kerr signal, with the

step near Hex = 0 due to reversal of the magnetization, and with the weak magnetic-field

dependence away from the step consistent with Eq. 3.2 for Hex � Ms. As the polarization

angle is rotated so that φpol differs from 45◦, the form of the magnetic-field dependence of

the current-induced MOKE signal changes dramatically, evolving from a simple step to the

superposition of a step with an additional component that is approximately inversely pro-

portional to Hex. This is the signature of a significant quadratic MOKE signal in addition to

the polar MOKE response, with current-induced magnetization rotation within the sample

plane providing the 1/Hex dependence according to Eq. 3.1.

An out-of-plane effective field of µ0hDL = 0.068 ± 0.010 mT at a 10 mA current bias is

extracted from the calibration, based on which we extract the polar MOKE coefficient αPolar

to be (5.8 ± 0.8) × 10−3. Using a simple parallel circuit model to account for the different

resistivities of Pt and Py, we estimate that approximately 42% of the current flows through

the Pt, yielding a current density in the Pt of jPt = 1.4 × 1010 A/m2. If we assume all of

the DL-SOT is due to the spin Hall effect in the Pt layer, we determine a spin Hall angle

ΘPt = (2e/~)µ0hDLMsdPy/jPt = 0.082 ± 0.012 [29]. This is consistent with the spin-Hall

angle of Pt extracted using other torque-based measurement techniques [29, 77].

On the other hand, we show circularly polarized light is only sensitive to the quadratic
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Figure 3.8: (a) Current-induced polar MOKE response with three different incident linear
polarization angles. (b) Current-induced MOKE response with circularly polarized light
and 0◦ linearly polarized light. The former only contains quadratic MOKE response (1/Hex-
like) while the latter is a superposition of a quadratic MOKE response and a polar MOKE
response (which has a step-like dependence on Hex).

MOKE term in Fig. 3.8(b). Compared to the MOKE response for linear polarization at

φpol = 0◦, the MOKE signal for circular polarization yields no hysteresis-like polar MOKE

contribution, while the 1/Hex quadratic MOKE component is retained. This result is con-

sistent with our expectation based on Eq. 3.6. From the calibration method introduced

in the previous section, for a 10 mA current bias, the effective field due to FL-SOT is

found to be µ0hFL = 0.500 ± 0.005 mT, which gives a quadratic MOKE coefficient of

βQuadratic = (1.1± 0.1)× 10−4. The uncertainty arises mainly from the inaccuracy of calcu-

lating the calibration field amplitude.

We also determine how the Kerr coefficients in Eq. 3.7 depend on the polarization angle.

Within the linear response regime, the current-induced MOKE signal in general should be

described as

∆Φ(m) = a(φpol)∆θM + b(φpol)∆φM , (3.14)

where a(φpol) and b(φpol) are the MOKE coefficients that may depend on the polarization

angle while ∆θM and ∆φM are the current-induced polar and azimuthal magnetization
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Figure 3.9: MOKE coefficients plotted as a function of laser polarization. The red curve in
the bottom panel is a sinusoidal fit to cos(2φpol).

change, which are independent of the polarization. Based on Eq. 3.7, a(φpol) is independent

of polarization angle, while b(φpol) is proportional to cos(2φpol). As shown in Fig. 3.9, the

extracted MOKE coefficients confirm the prediction in Eq. 3.7.

It is worth mentioning that the magnitude of αPolar is almost two orders of magnitude

greater than βQuadratic, which is perhaps not surprising given that polar MOKE is a first-

order process and quadratic MOKE is second-order. Nevertheless, because the out-of-plane

magnetization reorientation ∆θM is strongly suppressed by the demagnetization effect, the

measured quadratic MOKE signal can still exceed the polar MOKE response in our thin-film

bilayer samples.
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3.6 Comparison with the Spin-Torque Ferromagnetic

Resonance (ST-FMR) Results

To further verify the accuracy of our MOKE-based spin-orbit torque magnetometer, we

measured samples with varying Py thickness: wafer/Pt(6)/Py(dPy)/AlOx, with dPy = 2−10

(values in parenthesis are in nanometers), and compared the results to ST-FMR performed on

the same samples. We perform ST-FMR following the procedures described in Ref. [74]: we

apply a microwave current to the sample through a coplanar waveguide structure and detect

a magnetic resonance signal via a rectified dc voltage. The magnitude of the symmetric part

of the resonance allows a determination of the damping-like torque, and the anti-symmetric

part yields the in-plane effective-field component. The microwave current flowing through

the sample is calibrated from a microwave reflection measurement; we do not assume as in

Ref. [29] that the effective field component of the current-induced torque is due entirely to

the Oersted field. We plot in Fig. 3.10(a) the measured current-induced equivalent fields hDL

(antidamping component) and hFL (effective-field component) determined by both MOKE

and ST-FMR as a function of dPy. These measured fields are normalized by the total

surface current density (Itot/w), where w is the width of the sample. The two measurement

techniques are in excellent quantitative agreement for both components. The strengths

of both components of the equivalent field decrease as a function of increasing dPy in part

because this corresponds to a decrease in the current density flowing in the Pt layer. However,

the dependences on dPy are different for the two components. This is as expected due to the

physical differences between the antidamping spin Hall torque that acts at the interface of

the magnetic layer and the in-plane Oersted field that acts throughout the thickness of the

magnetic layer.

In Fig. 3.10(b), we take the measurements of the antidamping component from Fig. 3.10(a)

and replot them in the form of a surface torque normalized by the current density flowing

just in the Pt layer, τDL = hDLµ0MsdPy, where τDL is the surface damping-like torque, and
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Figure 3.10: (a) The equivalent current-generated fields corresponding to the damping-like
component hDL and the in-plane effective-field-like component hFL normalized by the total
current Itot per unit lateral width w in the bilayer, as a function of Py thickness dPy. The
uncertainties for the MOKE technique mostly arise from the fitting, while the uncertainties
for the ST-FMR are mainly due to the determination of the microwave current. Excellent
agreement is found between the MOKE and ST-FMR techniques. Lines are guides for eyes.
(b) The damping-like torque τDL normalized by the estimated current per unit sample width
w in the Pt layer. (c) The in-plane equivalent field hFL normalized by the estimated current
per unit sample width IPy/w in the Pt layer.

µ0Ms = 1.0 T is the saturation magnetization of Py. The current density in the Pt layer

is estimated from the measured resistivities of Pt and Py films, assuming the Pt and Py

films are two resistors in parallel. Over most of the range of Py thickness the torque is

independent of dPy, as expected for the surface torque due to the spin Hall effect arising

from the Pt layer. The corresponding averarge spin Hall angle is 0.075± 0.010. There may

be a small decrease in the strength of the torque for the 2 nm Pt layer, which is interesting

in that it could hint at a decreased efficiency in the absorption of the incoming spin current

for a very thin Py layer.

In Fig. 3.10(c), we replot the data for the in-plane effective field hFL taken from Fig. 3.10(a),

but normalized versus the estimated current per unit lateral sample width w flowing just in

the Pt layer rather than the total current. For a pure Oersted field, the value should be 0.5

(hOerstedIn = I
2w

from Ampere’s law), independent of Py thickness. We find that the mea-

sured equivalent field is indeed independent of dPy, but the magnitude is somewhat larger

than expected from a pure Oersted field. This discrepancy could be due to an inaccuracy
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in our simple parallel circuit model for estimating the current in the Pt (we neglect surface

scattering, for example) or to the existence of a spin-orbit-induced effective field with an

unexpected dependence on dPy.

3.7 Conclusion

In conclusion, we have demonstrated a convenient all-optical technique that can separately

measure the antidamping-like and effective-field-like components of current-induced spin-

orbit torque via polar MOKE and quadratic MOKE, respectively, with both measurements

performed using normally-incident light. Excellent agreement between the results of this

technique and that of ST-FMR measurements for a series of Pt/Py bilayers with different

Py thicknesses verifies the validity of this method. We anticipate that MOKE magnetometry

will be useful for rapid characterization of current-induced torques acting on a very wide

range of materials. In particular, this method can be applied to magnetic bilayers with

perpendicular magnetization. Being able to separately detect the out-of-plane and in-plane

magnetization tilt, MOKE magnetometry may simplify the extraction of spin-orbit torques

compared to second-order harmonics technique, which is complicated by the coexistence of

the planar Hall, anomalous Hall, and thermal effects [82]. Due to these above mentioned

advantages, I use this technique throughout my dissertation research.
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Chapter 4

Enhanced Signal-to-Noise Ratio in an
Unbalanced MOKE System

The previous chapter demonstrated that MOKE-based SOT magnetometry is a convenient

and sensitive tool in current-induced spin-orbit effect studies. The relatively high (tens

of nrad) sensitivity is sufficient for most of the SOT measurements involving ferromagnetic

materials. However, in some fundamental experiments, such as detecting the current-induced

spin accumulation in heavy metals [83–86] and topological insulators [87, 88], where the

weak signal is comparable to the system noise floor, a better signal-to-noise (S/N) ratio is

highly desired. In this chapter, I first carry out a systematic noise analysis for our SOT

magnetometer. Based on the finding that the detector shot noise is the dominating noise

source in our system, I propose an “unbalanced detection” method to enhanced the S/N

ratio. Experimental demonstrations with a Pt/Py bilayer sample is presented to verify the

validity of the technique. Lastly, I discuss how imperfect linear polarization can significantly

attenuate the S/N enhancement.

4.1 System Noise Calibration

Thanks to the lock-in detection technique we use in our system, most of the environmental

noise and thermal artifacts are filtered out. One possible noise source is the optical power

variation due to the instability of the laser. However, at the power level (mW) and wave-

length (780 nm) we normally use, the power variation is below 1%, which is at least one order

of magnitude smaller than the detected noise level. Therefore, the main noise contributors

are the output noise (thermal noise) of the balanced detector, the electron shot noise in the
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detector and the lock-in amplifier noise:

Total Noise ' Detector White Noise + Shot Noise + Lock-in Noise.

Among these three sources, within the lock-in sensitivity range (below 50 µm) we normally

use, the lock-in noise is dominated by the input noise (thermal noise), which is only 6

nV/
√

Hz [89] at 20 kHz. For a equivalent noise bandwidth (ENBW) of 0.81 Hz, this noise

is negligible in this analysis. The detector thermal noise should be a constant at different

powers of the incident light. And, the electron shot noise should have a
√

power dependence

[90].

I conduct an optical power-dependent noise analysis to find the main source of the system

noise. I take advantage of the “X Noise” function [89] in the SR-830 lock-in amplifier to

measure the signal noise at 20 kHz as a function of incident light power at the balanced

detector. As shown in the Fig. 4.1, the system noise has a very nice
√

power dependence,

which suggests that shot noise may be the dominant noise source. The y-intercept of the

fitting line should be the detector white noise value.

To verify this hypothesis, I estimate the detector white noise and shot noise based on the

device specifications. According to manual of the Nirvana model 2007 detector, the detector

white noise is lower than 3 pW/
√

Hz [91]. Given the detector DC conversion gain is 0.1×106

V/W, I calculate the upper bound of the detector white noise as

NDetector < 3 pW/
√

Hz × 105 V/W = 0.3 µV/
√

Hz, (4.1)

where NDetector is the detector white noise. This result is slightly larger than the measured

value (0.22 µV/
√

Hz), which is reasonable because the calculated result is the upper bound.

One the other hand, the electron shot noise originates from the uneven statistical distri-

bution of electrons in the current. It increases linearly with the square root of the current

amplitude as
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Figure 4.1: Illustration of the system noise as a function of the square root of the incident
light power. Here, voltage is the corresponding DC voltage output of the balanced detector
due to the incident light. The conversion relation is 1 mW = 10 V.

NShot = (2qI× ENBW)1/2 A/
√

Hz, (4.2)

where q is the electron charge. Given the detector’s transimpedance gain is 105 V/A, the

light-induced electric current in the detector can be calculated as I = xV
1×105V/A

= 10x µA,

where x is the DC voltage output from one photodiode caused by the light. Therefore, based

on Eq. 4.2, the shot noise due to optical power that is equivalent to x volts DC voltage can

be estimated as

NShot = (2qI× ENBW)1/2 A/
√

Hz = 0.509
√
xµV/

√
Hz. (4.3)

The calculated slope matches the one extracted from experiment very well, which con-

firms the electron shot noise is the predominant noise source.
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Figure 4.2: System noise as a function of lock-in modulation frequency.

In addition to the power-dependent study, I also measure the system noise as a function

of the modulation frequency. As shown in Fig. 4.2, for all the three incident powers, the

system noise doesn’t change significantly with the modulation frequency after about 3 kHz.

Therefore, my result at 20 kHz is reliable. However, special attention is needed with the

huge spikes in the low frequency region. My suggestion is that only a modulation frequency

higher than 5 kHz should be used.

Since MOKE is a linear effect, the MOKE signal should increase linearly with the optical

power. On the other hand, as discussed above, the system noise is dominated by the electron

shot noise, which follows a
√

power dependence. Therefore, the S/N ratio of the system

should be proportional to
√

power. Intuitively speaking, we can simply reach the optimal S/N

ratio by increasing the optical power as much as possible. However, the balanced detector

can only take a maximum power of 1 mW before it saturates. Thus, further enhancement of

the S/N ratio is mainly limited by the highest optical power that the detector can handle.

51



Alternatively, we can also increase the detector gain to improve the shot-noise-related

S/N ratio. The power to voltage conversion gain can be calculated as

ConversionGain(V/W) = Responsivity(A/W)× TransimpedanceGain(V/A).

If we increase the transimpedance gain by 16 times, we only need 1
16

optical power to get

the same signal. As for the noise, due to the same responsivity, the current in the circuit

will be 1
16

, which leads to only a quarter of the initial noise. Therefore, we can improve

the S/N ratio by a factor of 4. However, by increasing the gain of the detector, we will

also amplify other noise such as the thermal noise from the input. Therefore, the optimal

choice of the balanced detector depends on a trade-off between the shot noise and other

current-independent noise sources.

4.2 Unbalanced Optical Bridge Method

To make more S/N ratio enhancement possible, we propose an “unbalanced” optical bridge

technique to get around the power limitation of the detector. The basic idea of this method

is to increase the incident power at the sample, while keeping the light reaching the balanced

detector constant. As a result, the MOKE signal can be enhanced by the increased power

on the sample, but the noise stays the same due to the constant power at the detector. The

modified system is illustrated in Fig. 4.3. The setup should always be initially balanced so

that the initial power at the sample and its corresponding voltage output from the detector

can be recorded. Then, instead of fixing the half-wave-plate fast axis at 22.5◦ as in the

balanced system shown in Fig. 3.4, we tune it to a new angle so that the voltage output

(power) stays the same at one arm of the detector as we increase the optical power on the

sample. The extra power distributed to the other arm is then attenuated by an variable

neutral density (ND) filter before it goes to the detector. Therefore, the two arms can still
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be balanced for measurement.

Figure 4.3: Illustration of the unbalanced optical bridge system. P is the initial optical
power for the balanced system; A is the power amplification factor; θ represents the angle
between the fast axis of half wave plate and vertical (s-polarization) direction. Red arrows
and dots in front of the balanced detector represent the light polarization directions.

Here, I use Jones matrix calculus to derive the relation between the S/N improvement

and the power amplification. Following a similar procedure as used in Appendix.A, the

polarization states at each stage of the “unbalanced” system can be calculated as

(1) : P1 =

 1

0

 ,
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Figure 4.4: Illustration of the light polarization state at each stage through the unbalanced
optical bridge system. Red dashed line indicates the fast axis direction of the wave-plates,
which is at θ degrees.

(2) : P2 =

 cos ∆θK

sin ∆θK

 ,

(3) : P3 =

 cos(2θ + ∆θK)

− sin(2θ + ∆θK)

 ,
where the indices indicate the stage number as illustrated in Fig. 4.4. Assuming the power

amplification factor is A and the attenuation factor due to the ND factor is B, the final

re-balanced system with the same noise level requires the following relations (assuming ∆θK

is small compare to θ):

√
A sin 2θ =

√
2

2
, (4.4)

√
AB cos 2θ =

√
2

2
. (4.5)

Using Eq. 4.4 and 4.5, the MOKE signal from the unbalanced system can be simplified

as

Output′ = |
√
A sin(2θ + ∆θK)|2 − |

√
AB cos(2θ + ∆θK)|2 ' A(1 +B)(sin 4θ)∆θK . (4.6)
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Recalling the MOKE signal in the balanced system is 2∆θK , we get the signal enhance-

ment from using the unbalanced optical bridge technique:

Output′

Output
= A(1 +B)(sin 4θ)/2 =

√
2A

2
(1 +B) cos 2θ. (4.7)

In most cases, for a significant signal enhancement, we need A to be large. Therefore, we

have cos 2θ → 1 and B → 0, which leads to a final expression of the signal enhancement of

Output′

Output
→
√

2A

2
. (4.8)

Since the system noise stays the same as in the balanced system, the S/N ratio improve-

ment is also
√

2A
2

, which is significant. I would like to point out that this enhancement

factor from the unbalanced method is still smaller than
√
A, which is the enhancement from

directly increasing the optical power in the balanced system. Thus, for the best S/N ratio

performance, we should always first increase the power until the detector is nearly saturated,

then implement the “unbalanced” technique.

4.3 Experimental Demonstration

To demonstrate the proposed S/N ratio enhancement, I conduct a power-dependent study

on a Py(5nm)/Pt(6nm) sample using the unbalanced optical bridge technique. For this

experiment, a Ti:Sapphire mode-locked laser with a center wavelength of 780 nm is used.

The laser light is focused onto the 50 µm × 50 µm patterned sample. A 20 mA electrical

current is applied to drive the spin-orbit torques (SOTs). The SOT-induced magnetization

reorientation leads to the polarization change of the reflected light, which can be detected

by the optical bridge system. First of all, as shown in Fig. 4.5(a), the system noise is

independent of the power amplification. This result agrees well with the noise analysis

conclusion that electron shot noise in the detector is the main noise source. Thus, when
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the light power at the detector stays constant, the noise is also unchanged. This noise is

equivalent to a polarization rotation of ∼ 80 nrad/
√

Hz. This noise level can still be improved

by averaging. The real sensitivity of the system is ultimately limited by the thermal noise

from the detectors and lock-in amplifier, which cannot be reduced through sample averaging.

Figure 4.5: Results of the power-dependent study for the unbalanced optical bridge tech-
nique. (a) System noise as function of optical power amplification A. (b) Signal enhancement
as a function of square root of the power amplification. The “Ideal Model” fitting line is set
to have a slope of

√
2

2
and zero intercept.

On the other hand, the signal enhancement behavior is slightly different from what I

expected. As shown in Fig. 4.5(b), albeit the first few points match the proposed
√

2A
2

fitting

line, the experimental data starts to deviate from the ideal model after A = 16. The reason

for this discrepancy turns out to be the imperfect linear polarization state. Recall at the first

stage in Fig. 4.4, I assumed a perfectly linear polarization as the initial polarization state.

However, after a simple characterization, I find that the extinction ratio of the polarization

is only 400 : 1 due to the birefringence of the optics. That is equivalent to a 20 : 1 ratio of

the s- and p-electric field components. Therefore, for a more realistic simulation, the initial

polarization state needs to be changed as shown in Fig. 4.6. Then, the final polarization

state before the detector can be numerically simulated with:
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PFinal = HWP× Sample×

 bi

a

 , (4.9)

where

Sample =

 cos ∆θk sin ∆θk

− sin ∆θk cos ∆θk


and

HWP =

 cos 2θk sin 2θk

− sin 2θk cos 2θk


are the Jones matrices for the sample and a half-wave-plate with fast axis at θ degrees,

respectively.

Figure 4.6: Modified initial polarization state due to the birefringence of optics. Here,
a : b = 20 : 1.

The modified simulation of the signal enhancement as a function of power amplification

can then be calculated as

Signal Enhancement =
Signal(A)

Signal(A = 1)
=
|P s

Final|2 − |P
p
Final|2

Signal(A = 1)
,

where Signal(A = 1) represents the signal of the balanced system, P s
Final and P p

Final are the s-

and p-components of the final polarization, respectively. As shown in Fig. 4.7, the modified

model fits the experimental result much better. More than 3 times S/N ratio improvement

is achieved by implementing the unbalanced optical bridge method.
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Figure 4.7: Modified simulation curve (blue dashed line) for signal enhancement as a function
of square root of the power amplification.

4.4 Using the Unbalanced Method to Measure a

Pattern-Free Sample

To further confirm the accuracy as well as the ultrahigh sensitivity of this method, we carry

out the SOT measurement on an non-lithographically-processed (unpatterned) sample. The

unpatterned sample has the same structure as the patterned one used in the previous power-

dependent study. As shown in Fig. 4.8(a), the sample is cut into a rectangular piece with

a width of 2 mm. Two copper wires are attached to the surface of the film by indium. An

electric current of 100 mA is applied to provide a current density that is only 1
8

of the one

in the patterned sample. Thanks to the much larger sample area, no objective/lens is used,

which drastically increases the optical power can be used before thermal effects becomes

significant. A comparison between the MOKE signal before and after implementing the

unbalanced optical bridge technique is shown in Fig. 4.8(b). An incident power of 4.4 mW

is applied for the balanced optical bridge measurement. For the unbalanced measurement,

70.4 mW is used, which is 16 times the balanced setting. The laser beam without focusing
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has a diameter of 2.5 mm. Compared to the 4 µm spot size after a 10× objective, the energy

per unit area due to the 70.4 mW laser beam is equivalent to less than 1 µW in the focused

situation. Thus, laser-induced sample heating is not an issue.

Figure 4.8: (a) Photo of the unpatterned sample with two wires attached to it. (b) SOT-
induced MOKE signal of the unpatterned sample for the balanced optical bridge setting
(red) and the unbalanced setting (black) with 16 times power amplification.

As a result, thanks to the ultrahigh sensitivity of our system, the MOKE signal is quite

large even in the balanced optical bridge setting. The signal of the unbalanced measurement

is about 3 times larger than the balanced result, which agrees well with the simulation.

I then compare the extracted signal for the unpatterned and patterned sample. Under a

current density of 1 × 106 A/m2, the unpatterned sample has a signal of 0.34 ± 0.03 µrad,

which is reasonably consistent with the patterned result of 0.32 ± 0.01 µrad. The error in

the unpatterned result is mainly from the imperfect estimate of the sample width.

4.5 Conclusion

In conclusion, I demonstrate the main noise source of our MOKE-based SOT magnetometry

system is the electron shot noise in the balanced detector. Based on that finding, I propose
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an unbalanced optical bridge method to enhance the signal-to-noise ratio and experimentally

achieve a S/N improvement of a factor of 3. Better performance is theoretically possible if

the light polarization quality is improved. And, reliable SOT measurements are carried out

on an unpatterned sample, which dramatically simplifies the sample preparation process and

makes high speed and precise SOT characterization possible.
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Chapter 5

Anomalous Spin-Orbit Torques in
Magnetic Single-Layer Films

Part of this chapter will be published in “Anomalous Spin-Orbit Torques in Magnetic Single-

Layer Films,” by Wenrui Wang*, Tao Wang*, Vivek P. Amin, Yang Wang, Anil Radhakr-

ishnan, Angie Davidson, Shane R. Allen, T. J. Silva, Hendrik Ohldag, Davor Balzar, Barry

L. Zink, Paul M. Haney, John Q. Xiao, David G. Cahill, Virginia O. Lorenz, and Xin Fan,

submitted for Publication (*Contributed equally).

5.1 Introduction

As discussed in Chap. 1, spin-orbit interaction (SOI) couples charge and spin transport

[27, 92, 93], enabling electrical control of magnetization, the foundation of next-generation

spintronic devices [30, 67–69, 94]. SOI can convert a charge current into a flow of spin

angular momentum (spin current) with spin polarization orthogonal to both the charge and

spin currents [95]. One of its manifestations in a magnetic conductor is the anomalous

Hall effect (AHE) [96, 97], illustrated in Fig. 5.1(a). Due to the imbalance of electrons

with spins parallel and antiparallel to the magnetization, the flow of spin current results in

charge accumulation on the top and bottom surfaces [98]. In this chapter, we apply similar

considerations to propose the existance of what we call the anomalous spin-orbit torque

(ASOT). The geometry of ASOT is illustrated in Fig. 5.1(b), in which an electric current

is parallel to the magnetization. Based on symmetry, which will be discussed in the next

section, SOI should give rise to a spin current flowing between the top and bottom surfaces
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of the magnetic conductor with electron spin polarization transverse to the magnetization.

The transverse spins will precess rapidly about the magnetization direction and exert torques

on the magnetization as they dephase, in analogy with spin transfer torque [99]; this results

in net ASOTs in the y-direction on the top and bottom surfaces, but no bulk spin torque

due to symmetry. Under the assumption that ASOT results in a small perturbation to the

magnetization, the ASOTs are equivalent to effective magnetic fields in the z-direction [81]

that tilt the magnetization out of plane, as illustrated in Fig. 5.1(b). Like the AHE, ASOT

is a fundamental property of all magnetic conductors (those with broken bulk inversion

symmetry have been shown to exhibit a non-zero bulk spin-orbit torque [100, 101]).

Figure 5.1: Illustrations of the anomalous Hall effect and anomalous spin-orbit torque. (a)
In the anomalous Hall effect (AHE), a charge current I (black arrow) perpendicular to the
magnetization m (yellow arrows) generates a flow of spin current (grey arrows) in the z-
direction. Here blue arrows on purple spheres represent spin directions of electrons. Due
to the imbalance of majority and minority electrons, the flow of spin current results in spin
and charge accumulation on the top and bottom surfaces. (b) When a charge current is
applied parallel with the magnetization, the AHE vanishes, but we predict and show that
spin-orbit coupling generates anomalous spin-orbit torque (ASOT). The ASOTs (red arrows)
are equivalent to out-of-plane fields (green arrows) that tilt the magnetization out of plane.
τASOT

T (τASOT
B ) and hT

eff (hB
eff) are the ASOTs and equivalent fields at the top (bottom)

surfaces, respectively.

In this chapter, I first discuss the fundamental possibility of ASOT from a symmetry
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perspective. In Section 5.3, an analytic derivation of the ASOT-induced magnetization tilt

and its experimental demonstration on a single layer Ni80Fe20(Py) film are shown. In Section

5.4, I establish a numerical model to fit the experimental data as a function of the magnetic

film thickness. Important parameters of the ASOT, such as the amplitude and direction,

can be extracted from the fitting. In Section 5.5, measurements of a series of single-layer

magnetic films with different interfaces are carried out to rule out interface contributions to

the observed ASOT. Lastly, similar effects are also observed in other common ferromagnetic

metals, including Co, Ni, and Fe and first principles calculations corroborate the order of

magnitude of the measured values.

5.2 Symmetry Argument

Curie’s principle [102] states that the symmetry of an effect must follow the symmetry of the

cause. This heuristic argument provides guidance in searching for new physical phenomena.

Here we show how symmetry leads to the types of surface spin and charge accumulation

observed in the spin Hall effect, anomalous Hall effect and anomalous spin-orbit torque.

In polycrystalline, amorphous or crystalline thin films with high symmetry, the struc-

ture of the thin film is invariant under several symmetry operations, including (1) mirror

symmetry operations: σxy, σxz, and σyz, where the subscript denotes the mirror plane, (2)

two-fold rotational symmetry operations: Cx
2 , Cy

2 and Cz
2 , where the superscript denotes the

rotational axis, and (3) center inversion symmetry: i, where the inversion center is any point

of the material.

When an electric current is applied through a nonmagnetic thin film along the x-direction,

as shown in Fig. 5.2(a), mirror symmetry σyz, rotational symmetries Cy
2 and Cz

2 , and inversion

symmetry i are broken. However, the system still retains the symmetries σxy, σxz, and Cx
2 .

Therefore, on the top and bottom surfaces in the xy plane, there cannot be any net charge

accumulation, which would violate symmetries σxy and Cx
2 . However, spin accumulation
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with a certain spin polarization is allowed by symmetry. Spin polarizations in the x- and

z-directions are forbidden, as both violate symmetry σxz. Spin polarization in the y-direction

is allowed, given that the spins are polarized in opposite directions on the top and bottom

surfaces to satisfy the symmetries σxy and Cx
2 . These symmetry conditions characterize what

is known as the spin Hall effect in nonmagnetic materials.

Figure 5.2: Symmetry-based analysis of the current-induced charge/spin accumulations at
the top and bottom surfaces of (a) a nonmagnetic film, (b) a magnetic film with magne-
tization m along the y-direction and (c) a magnetic film with magnetization m along the
x-direction.

In a magnetic film, where the existence of magnetization breaks more symmetries, more

complicated surface phenomena are expected. As shown in Fig. 5.2(b), the magnetization

along the y-direction breaks the mirror symmetry σxy, σyz and rotational symmetries Cx
2

and Cz
2 , leaving the magnetic film only carrying the mirror symmetry σxz. As a result,

charge accumulation as well as spin accumulation with spins in the y-direction on the top

and bottom surfaces are allowed by symmetry; these symmetry conditions characterize the

anomalous Hall effect. On the other hand, in a magnetic film with magnetization along the

x-direction, as shown in Fig. 5.2(c), the system only carries the Cx
2 rotational symmetry and

breaks all mirror symmetries. Under such symmetry, spin polarizations in both the y- and

z- directions are allowed on the top and bottom surfaces. Due to spin dephasing, the spin

accumulations give rise to spin torques in the y- and z- directions, which obey the same

symmetry constraints. The symmetry conditions for the case of y-polarization characterizes

damping-like anomalous spin-orbit torque, which is the focus of this work. The symmetry

condition for z-polarization characterizes a field-like torque, the effect of which is very similar
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to that of a current-induced Oersted field. It is challenging to distinguish the field-like torque

and the Oersted field, the latter of which is likely to dominate the former. Therefore, the

field-like torque is not studied in this paper.

It is worth pointing out that although spin polarization in the z-direction is allowed by

symmetry, it would be independent of the current direction, as can be seen by applying

the mirror symmetry operator σyz. This symmetry condition characterizes the situation in

which the magnetic film is heated up by a current. When the film dissipates heat via the top

and bottom surfaces, it induces spin accumulation with spin polarized along the m direction

via the spin Seebeck effect. This second-order effect, however, is not relevant to what we

aim to study here.

5.3 Simulation and Observation of ASOT-Induced

Magnetization Distribution

5.3.1 Analytic Derivation of the ASOT-Induced Magnetization

Distribution In a Single-Layer Magnetic Film

A phenomenological model of the ASOT is shown in Fig. 5.3. In a magnetic material with

bulk inversion symmetry, the SOI gives rise to a separation of spins. The spins are transverse

to the magnetization and thus will be quickly absorbed. The absorption of transverse spins

should yield no net spin torque in the bulk due to the bulk inversion symmetry. However, at

the top and bottom surfaces, where inversion symmetry is broken, we expect non-zero and

opposite damping-like ASOTs that tilts the magnetization out of plane.

Assuming the ASOT is a purely interfacial spin torque and neglecting surface anisotropy,

it is convenient to discretize the FM into a multilayer system (shown in Fig. 5.4), with the

layers labeled 1 through n, where each layer has its own magnetization. The influence of

ASOT can be written as an effective field hiz for the ith layer. Within such a system, the
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Figure 5.3: Phenomenological model of the ASOT. The spin-orbit interaction from the lattice
separates electrons with opposite spins. The spin angular momentum is quickly absorbed
by the magnetization. Due to bulk inversion symmetry, the only net angular momentum
absorption occurs at the surface, leading to ASOT.

ASOTs only affect the two surface layers:

h1
z =

τASOT
T

µ0Msa
= −hnz = − τ

ASOT
B

µ0Msa
, (5.1)

and

h2
z = h3

z = ... = hn−1
z = 0, (5.2)

where τASOT
T (τASOT

B ) is the ASOT at the top (bottom) surface, a is the lattice constant, and

Ms is the saturation magnetization.

In addition to ASOT, interlayer exchange coupling significantly affects the behavior of

the local magnetization. The interlayer exchange energy per unit area is described as [103]

E = −Jmi ·mi+1, (5.3)

where mi and m(i+1) are the unit magnetization vectors of nearest neighbor FM layers i
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and i+ 1, and J is the interface exchange strength. For a uniform magnetic layer, J can be

calculated as J = 2Aex

a
, where Aex is the exchange stiffness. Therefore, for magnetic layer i,

the exchange coupling results in an effective field:

Hi = H i
zz +H i

yy =
J(mi−1

z +mi+1
z )

µ0Msa
z +

2J

µ0Msa
y, (5.4)

where mi
z is the z-component of mi.

Figure 5.4: Illustration of the discrete-layer model (left) and effective magnetic fields (right)
applied on the layer i. The ASOT is assumed to only exist in the top and bottom layers
(blue layers). hiz is the effective field due to ASOT, H i

z and H i
y are the effective fields

from nearest-neighbor exchange coupling, Hext is the external magnetic field, and Meff =
(Ms − 2Ka/(µ0Ms)) is the effective field caused by demagnetization, where Ka = 0 for
i = 2, 3, ...n− 1, is the surface anisotropy energy density.

All the magnetic fields on magnetic atomic layer i are depicted in Fig. 5.4. From the

diagram, we can write

hiz +H i
z −Meff sin θ

Hext +H i
y

= sin θ. (5.5)

For the bulk layers, since hiz = 0 and sin θ = mi
z, by plugging Eq. 5.4 into Eq. 5.5, we
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have

mi
z =

J
µ0Msa

(mi−1
z +mi+1

z )−Meffm
i
z

Hext + 2J
µ0Msa

. (5.6)

Knowing a is small and

f
′′
(x) = lim

h→0

f(x+ h)− 2f(x) + f(x− h)

h2
.

Eq. 5.6 can be rewritten as

Ja

µ0Ms

(mi
z)
′′

= (Hext +Meff)mi
z. (5.7)

The solution of Eq. 5.7 should have the form of

mi
z = Ae−z/λ +Be+z/λ, (5.8)

where λ =
√

Ja
µ0Ms(Hext+Meff)

is the exchange length.

On the other hand, for the top layer, we can rewrite Eq. 5.5 as

m1
z =

τASOT
T

µ0Msa
+ J

µ0Msa
m2
z −Meffm

1
z

Hext + J
µ0Msa

. (5.9)

Eq. 5.9 can again be rewritten to

(Hext +Meff)m1
z +

J

µ0Msa
(m1

z −m2
z) =

τASOT
T

µ0Msa
. (5.10)

Since a is small, the first term in Eq. 5.10 is negligible. Therefore, the equation can be

simplified into

(m1
z)
′
= −τ

ASOT
T

Ja
. (5.11)
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Similarly, the bottom layer magnetization yields

(mn
z )
′
= −τ

ASOT
B

Ja
. (5.12)

Using Eq. 5.11 and 5.12 as boundary conditions to solve Eq. 5.8, we get

A =
λ

Ja

τASOT
T − τASOT

B e−d/λ

1− e−2d/λ
, (5.13)

and

B =
λ

Ja

τASOT
T − τASOT

B ed/λ

e2d/λ − 1
, (5.14)

where d is the thickness of the magnetic film.

Figure 5.5: Simulated distribution of the out-of-plane magnetization mASOT
z (z) in a 32 nm

Py film driven by equal and opposite ASOTs on the surfaces, scaled by the maximum value.

Plugging A and B back into Eq. 5.8, we get an analytic solution of the ASOT-induced

magnetization tilt as
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mASOT
z (z) =

τASOT
T cosh d−z

λ
+ τASOT

B cosh z
λ

λ sinh d
λ
(|Hext|+Meff)µ0Ms

mx. (5.15)

Because of the strong exchange interaction, the effects from the two ASOTs will cancel

out if the magnetic film is thin. However, when the magnetic film is much thicker than the

exchange length, the magnetizations at the two surfaces will tilt out of plane in response to

the respective ASOTs. A simulation curve based on Eq. 5.15 is shown in Fig. 5.5.

A more general model involving the surface anisotropy field acting on the two surface

layers can be numerically calculated. By inserting Eqs. 5.1, 5.2 and 5.4 into 5.5, we get

τ iASOT

µ0Msa
= (Hext +Meff +

2J

µ0Msa
)mi

z −
J

µ0Msa
mi−1
z − J

µ0Msa
mi+1
z . (5.16)

The ASOT-induced magnetization tilt can then be calculated by solving the following

equation: 

J + C ′ −J 0 . . . 0

−J 2J + C −J . . . 0

0 −J 2J + C . . . 0

...
...

...
. . .

...

0 0 0 . . . J + C ′





m1
z

...

mi
z

...

mn
z


=



τASOT
T

...

0

...

τASOT
B


, (5.17)

where the surface term C ′ = µ0Msa(Hext + Meff) takes into account the surface anisotropy,

and C = µ0Msa(Hext + Ms) is for the bulk layers. As shown in Fig. 5.6(a), the numerical

result maintains the signature of the analytic result with only a small amplitude difference.

We also verify the sensitivity of the magnetization tilt distribution to the number of layers

exhibiting ASOTs. As shown in Fig. 5.6(b), spreading the ASOT into 5 surface layers does

not affect the simulation result significantly. Therefore, our assumption that the ASOTs

only exist at the top and bottom layers is reasonable.

70



Figure 5.6: (a) Simulated distribution of the out-of-plane magnetization tilt mASOT
z (z) in a 32

nm Py film based on the numerical calculation (black solid line) and the analytic expression
(red dashed line). (b) Simulation results driven by equal and opposite ASOTs on the first
(red dash line) and first five (black solid line) surface layers, scaled by the maximum value.

5.3.2 Experimental Observation of the ASOT-Induced

Magnetization Distribution

To observe the predicted ASOT-induced out-of-plane magnetization tilt, we fabricate a

sample with structure: substrate/AlOx(2)/Py(32)/AlOx(2)/SiO2(3), where the numbers in

parentheses are thicknesses in nanometers; the substrate is fused silica, which allows opti-

cal access to the bottom of the sample. Py is chosen because it is magnetically soft and

widely used for the study of spin-orbit torques. The film is lithographically patterned into

a 50 µm × 50 µm square and connected by gold contact pads, as shown in Fig. 5.7(a).

When an electric current I of 40 mA is applied directly through the sample, ASOTs at

the top (τASOT
T ) and bottom (τASOT

B ) surfaces lead to non-uniform magnetization tilting, as

described by Eq. 5.15. When a calibration current ICal of 400 mA is passed around the

sample, an out-of-plane Oersted field µ0hCal ∼ 0.85 mT is generated that uniformly tilts the

magnetization out of plane, which is used for calibrating the magnitude of the ASOTs:

mCal
z (z) =

hCal

|Hext|+Meff

. (5.18)
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Figure 5.7: Diagrams of the measurement configurations with the laser incident on (a), the
top and (b), the bottom of the sample. The plots below each diagram correspond to signals
measured in that diagram’s configuration. (c, d), The measured Kerr rotation signals for
when current is applied through the sample, which arise from ASOTs. (e, f), The measured
Kerr rotation signals for when the calibration field hCal is applied.

Considering the ASOT-induced magnetization tilt yields no net magnetization change,

common electrical methods are not able to detect it. The penetration depth of a laser at

780 nm in Py is approximately 14 nm, which is less than half the thickness of the 32 nm

Py. Therefore, the MOKE response is more sensitive to the ASOT-induced out-of-plane

magnetization mASOT
z (z) on the surface on which the laser is directly incident. Therefore,

we use the polar MOKE technique discussed in Chapter 3 to detect the magnetization

changes. Both the Kerr rotation θk and ellipticity change εk of the polarization of a linearly

polarized laser reflected from the sample are measured [104, 105].
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The Kerr rotation due to ASOT as a function of the external field (shown in Figs. 5.7(c)

and (d)) resembles a magnetization hysteresis, as can be understood from Eq. 5.15. The

overall offsets of the Kerr rotation signals are due to the out-of-plane current-induced Oersted

field, which does not depend on the in-plane magnetization orientation [81]. In contrast,

when a uniform calibration field hCal is applied, the Kerr rotation is symmetric as a function

of external field Hext (see Fig. 5.7(e) and (f)), consistent with Eq. 5.18. The Kerr rotation

due to ASOT on the top (Fig. 5.7(c)) and bottom (Fig. 5.7(d)) surfaces are the same sign,

in agreement with our phenomenological model (Fig. 5.3), which predicts the bottom ASOT

has similar magnitude but opposite sign as the top ASOT. In contrast, the Kerr rotation

due to the calibration field (Figs. 5.7(e) and (f)) changes sign because hCal is reversed upon

flipping the sample.

Figure 5.8: MOKE signal as a function of (a) current density and (b) the angle between
the current direction and the magnetization direction. Both studies are performed with the
same sample: Si(sub)/SiO2(1000)/AlOx(2)/Py(32)/AlOx(2)/SiO2(3), where the numbers in
parentheses are the thicknesses in nanometers. The current density in the angle dependence
study is 5× 1010 A/m2.

To further confirm the observed MOKE signal is indeed due to the current-induced

ASOTs, we measure the ASOT-induced MOKE signal as a function of current density from

the top surface of a 32 nm Py film on a silicon substrate. As shown in Fig. 5.8(a), up to
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a current density of 5 × 1010 A/m2, the detected signal increases linearly with the current

density. This result rules out contributions from current-induced thermal effects, which

should follow a quadratic dependence on the current. We also measure the MOKE signal

as a function of the angle between the current and the magnetization. As demonstrated in

Fig. 5.8(b), the sinusoidal dependence of the MOKE signal on the angle is consistent with

Eq. 5.15. Both results suggest the observed MOKE signal is indeed a current-induced linear

effect.

5.4 Thickness-Dependent Study: Model and Results

5.4.1 Model

To quantitatively determine the strength of the ASOT, we construct a numerical model

based on the propagation matrix method [43, 104] to fit the measured MOKE results as a

function of magnetic film thickness. In the structural model of Section 5.3, a single FM layer

is treated as a series of ultrathin magnetic layers with different magnetization orientations.

For magnetic layers with thicknesses less than the coherence length of the incident laser,

multiple reflections should be taken into account. Here, we use medium boundary matrices

and medium propagation matrices to treat the multiple reflections. Based on Ref. [43], in

the polar MOKE geometry, medium boundary matrix Aj for the jth layer can be expressed

as:

Aj =



1 0 1 0

0 1 0 −1

− injQjm
j
z

2
−nj injQjm

j
z

2
−nj

nj
injQjm

j
z

2
−nj injQjm

j
z

2


, (5.19)

where nj is the complex refractive index of the jth layer, Qj is the Voigt coefficient of the
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jth layer, and mj
z is the out-of-plane magnetization magnitude of the jth layer, which is

solved for in Sec. 5.3.

The propagation matrix Dj can be written as:

Dj =



U cos δi U sin δi 0 0

−U sin δi U cos δi 0 0

0 0 U−1 cos δr U−1 sin δr

0 0 −U−1 sin δr U−1 cos δr


, (5.20)

where

U = exp(−i2π
λ
njdj),

δi = −πnjQdj
λ

mj
z,

and

δr = −πnjQdj
λ

mj
z,

where dj is the thickness of the jth layer and λ is the wavelength of the probe light.

To obtain the magneto-optical Fresnel reflection matrix

rss rsp

rps rpp

, one computes the

matrix M defined by

M = A−1
0 A1D1A

−1
1 A2 . . . . (5.21)

Then the 4× 4 matrix M can be written in the form of a 2× 2 block matrix as follows:

M =

G H

I J

 , (5.22)
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and the magneto-optical Fresnel reflection coefficients are further solved from

rss rsp

rps rpp

 = IG−1. (5.23)

The complex Kerr angles for s- and p-polarized incident light are:

Θp
k =

rsp
rpp

and

Θs
k =

rps
rss
,

(5.24)

respectively. Here the real part of the Kerr angle is defined as the Kerr rotation, and the

imaginary part of the Kerr angle is the Kerr ellipticity. Since Kerr angle is independent of

the incident polarization in polar MOKE, we use the s-polarization result in our simula-

tion. Following the model described above, the MOKE response for different materials and

structures can be simulated.

5.4.2 Experimental Results

To confirm the validity of our model and quantitatively determine the ASOT, we grow a

series of AlOx(2)/Py(t)/AlOx(2)/SiO2(3) films on silicon substrates with 1 µm thermal oxide,

where t varies from 4 nm to 48 nm. Unlike the current-induced Oersted field that depends on

current amplitude, ASOT should depend on the current density. Therefore, for all samples,

we apply the same current density of 5×1010 A/m2, and measure the ASOT-induced MOKE

signal change.

As presented in Fig. 5.9(a), the validity of the method is first verified by a thickness-

dependent calibration measurement, where a uniform 0.85 mT out-of-plane calibration field

is applied to all samples. The uniform out-of-plane calibration field causes a uniform mag-

netization tilt across the whole magnetic layer. Therefore it is reasonable to treat the entire
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magnetic film as one layer in the simulation procedure described in the previous section. A

structure of Air(∞)/Py(t)/SiO2(1000)/Si(∞) is used for the simulation, where the numbers

in parentheses are in nanometers. The thin SiO2 and AlOx layers are ignored because of their

low absorption coefficients at 780 nm. A few nanometers of dielectric material do not affect

the MOKE response significantly. With the refractive indices measured via ellipsometry, the

resulting simulation curve is in good agreement with the experimental data.

To extract the ASOT amplitude, the top-surface Kerr rotation and the ellipticity change

due to the ASOT is fitted in Fig. 5.9(b). The same model structure and fitting parameters

are used as for the calibration smulation, except for including the ASOT strength τASOT
T =

−τASOT
B and the resulting non-uniform magnetization distribution. Here, we assume the

surface torques are the same for all Py thicknesses under the same current density. By

setting the value of τASOT
T as the only free parameter in our model, we are able to fit the

measured MOKE signals. The good agreement between experiment and simulation supports

the assumption that ASOT depends on current density. The ASOTs are extrapolated to

be τASOT
T = −τASOT

B = −(0.86 ± 0.04) × 10−6 J/m2 from the fitting. The extracted τASOT
T

is then used to calculate the spin-torque efficiency. Relating this torque to a spin current

allows us to find the Spin-Hall-angle-like efficiency of the ASOT ξ =
2eτASOT

B

je~ = 0.053±0.003,

where e is the electron charge, je is the electric current density and ~ is the reduced Planck

constant; this efficiency is comparable with the effective spin Hall angle of Pt (0.056±0.005)

measured in a Pt/Py bilayer [106]. The corresponding ASOT conductivity for 32 nm Py is

calculated as σASOT = 2e
~
τASOT
B

E
= 2300± 115 Ω−1cm−1, where E is the applied electric field.
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Figure 5.9: Extracting the ASOT. Kerr rotation (experimental, black squares; fit, black
solid line) and ellipticity change (experimental, red circles; fit, red dashed line) (a), due to
the calibration field, and (b), due to ASOT.

In Fig. 5.9(b), the deviation of the ASOT-induced change in Kerr ellipticity from the

model for the 4 nm Py sample can be accounted for if a 1% variation between τASOT
T and

τASOT
B is assumed, which may be due to a slight difference in spin relaxation at the two

interfaces. In Fig. 5.10(a), we show a modified fitting curve that assumes a 1% difference

between the top and bottom torques. The modified model only changes the fitting curves

at small thicknesses (< 8 nm), and the modified Kerr ellipticity curve now fits well with the

data point at 4 nm. The modified simulation curve can also be treated as a combination of

the signal for balanced ASOT, τASOT
T = τASOT

B (shown in Fig. 5.10(b)), and the signal for

a 1% net torque originating from the bottom of Py film, τ ∗T = 0, τ ∗B = −0.01τT (shown in

Fig. 5.10(c)). The simulation for balanced ASOT is identical to the one shown in Fig. 5.9(b).

However, as shown in Fig. 5.10(c), even a tiny (1%) total SOT can cause a rather large MOKE

signal at small thicknesses that is comparable to the MOKE signal due to a much larger

surface ASOT at large thicknesses. The large variation of the simulated MOKE signals

when the Py is thin are due to the interference of the laser as it is reflected from the various

interfaces; this effect also appears at small sample thicknesses in the MOKE signal from the

calibration field (Fig. 5.9(a)).
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Figure 5.10: Experimental MOKE rotation and ellipticity signals (squares and circles) and
simulated rotation and ellipticity signals (solid black lines and dashed red lines) for (a)
unbalanced (τB = −1.01τT) ASOT, (b) balanced (τB = −τT) ASOT and (c) a tiny bottom
(total) torque (τ ∗T = 0, τ ∗B = −0.01τT) as a function of Py thickness. The fitting curves in
(a) are equivalently combinations of the curves in (b) and (c), as described in this section.

5.4.3 Alternative Method to Determine τASOT
T and τASOT

B

The thickness-dependent numerical model introduced above is convenient to use in sym-

metric structures, such as AlOx/Py(32)/AlOx, where the assumption that top and bottom

ASOT have very similar amplitudes is reasonable. However, for asymmetric structures, the

ASOT at the top and bottom can be quite different. In this case, the thickness-dependent

fitting method is less effective. Therefore, to compare the top and bottom ASOT strengths

in such cases, it is important to be able to extract the surface torques individually.

As we have shown in Section 5.3, the overall ASOT-induced magnetization tilt distribu-
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tion is a superposition of the magnetization distributions caused by the top surface torque

and bottom surface torque. Similarly, the overall MOKE response can be treated as a com-

bination of the top-surface ASOT-induced response and bottom-surface ASOT-induced re-

sponse. Therefore, in the MOKE response calculation, by setting τASOT
T(B) = 1 and τASOT

B(T) = 0,

we are able to simulate the MOKE responses due to only the top (bottom) ASOT with light

incident from the front (F) and back (B) of the magnetic film. A detailed illustration is

shown in Fig. 5.11.

Figure 5.11: SSOT simulation configurations for extracting MOKE response due to top/bot-
tom surface torques. Here, “TF” means top-surface torque, front incident light; “TB” means
top-surface torque, back incident light; “BF” means bottom-surface torque, front incident
light; “BB” means bottom-surface torque, back incident light.

By experimentally measuring the overall ASOT-induced MOKE response from the front

and back of the magnetic film, we can correlate the experimental results with the calculated

values:
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θτTF θτBF

θτTB θτBB


τASOT

F

τASOT
B

 =

θF

θB

 , (5.25)

where the 2 × 2 matrix on the left side represents the calculated complex MOKE response

for each configuration in Fig. 5.11, θASOT
F(B) are the measured complex MOKE signals from

front (back), and τASOT
T(B) is the relative surface torque strength at top (bottom) surface.

Note that, there is finite reflection at the air/fused silica interface, which causes no

polarization change, but also arrives at the detector. Thus, for the measurements from the

back, we should take into account the attenuation of the MOKE signal caused by this part of

the reflection light. According to the measured refractive indices, 3.1% of the laser power is

reflected at the air/silica interface and 55.73% of the entire power is reflected at the silica/Py

interface and goes back to the detector. Therefore, the measured MOKE response should

be attenuated by a factor of 94.7%, and Eq. 5.25 should be rewritten as

θτTF θτBF

θτTB θτBB


τASOT

F

τASOT
B

 =

 θF

θB/0.947

 . (5.26)

Solving Eq. 5.26 gives the top- and bottom-surface ASOT amplitudes.

We apply this method to the 32 nm film used in Fig. 5.7. With a current density of

5 × 1010 A/m2, we extract τASOT
T = −(0.89 ± 0.01) × 10−6 J/m2 and τASOT

B = (0.87 ±

0.01) × 10−6 J/m2. The error here is estimated based on the ratio of the imaginary and

real parts of the extracted result. These results are in good agreement with those extrap-

olated from the thickness-dependent fitting. Samples with asymmetric structures, such as

AlOx(2)/Py(32)/Cu(3)/SiO2(3) and AlOx(2)/Py(32)/Cu(1.5)/Pt(3)/SiO2(3), are also mea-

sured. However, due to the complexity introduced by the extra layers, the extracted results

yield non-negligible imaginary components, which is a sign of inaccurate estimation. There-

fore, more effort is needed to optimize this method for complex systems.

81



5.5 Interface Contribution

Since ASOT results in magnetization changes near the surface, the extracted ASOT values

may be influenced by spin-orbit interaction at the interface with the capping layer, such as

Rashba-Edelstein spin-orbit coupling [107–110]. To determine the relative contribution of

such interface effects, we compare the ASOT at the top surface of the AlOx(3)/Py(32)/AlOx(3)

sample with the total spin-orbit torque (SOT) in a series of control samples, AlOx(3)/Py(4)/Cap,

where Cap is varied among AlOx(3), AlOy(3, different oxidation time), SiO2(3), Cu(3)/SiO2(3)

and Al(3)/SiO2(3). These capping layer materials are often considered to have weak spin-

orbit interaction due to their being light elements, but they will change the electrostatic

properties of the top interface, thereby changing the interfacial Rashba spin-orbit coupling.

The bottom surface is the same as for the 32 nm sample and thus any interfacial contribu-

tion from the bottom surface should have similar ASOT conductivity. Since Py is only 4 nm

in these control samples (thinner than the exchange length), the magnetization uniformly

responds to the total SOT, which is a sum of the ASOTs at the top and bottom surfaces

τSOT
tot = (τASOT

T + τASOT
B ). Should there be a significant interface-dependence of the ASOT,

a large total SOT will be observed in some of these control samples with asymmetric inter-

faces. As shown in Fig. 5.12, all samples exhibit total SOT conductivities σSOT
tot = 2e

~
τSOT
tot

E
of

at most 4% of the bottom-surface ASOT conductivity of the 32 nm Py sample. This result

suggests that the top-surface ASOT, which varies less than 4% among Py with different

capping layers, does not contain a substantial contribution from the interface of the Py with

the capping layers.
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Figure 5.12: Comparison between total SOT conductivities (σSOT
tot ) measured for 4 nm Py

with different capping layers, and the bottom-surface ASOT conductivity (σASOT) of 32 nm.
Error bars indicate single standard deviation uncertainties. In all the 4 nm Py samples, the
other side of the Py is in contact with AlOx.

5.6 First-Principles Calculation

The insensitivity of ASOT to the interface implies that it arises from the bulk spin-orbit

interaction within the magnetic material. ASOT can be phenomenologically understood as

the result of a flow of transverse spin current, which generates ASOT by transferring spin

angular momentum from one surface to the other. Together with theorist collaborators, we

evaluate the transverse spin current conductivity using density functional theory. We com-

pute the full spin-current conductivity tensor σγαβ using the linear response Kubo formalism

in the clean limit [111]:

σγαβ = 2Im
e2

~

∫
dk

(2π)3

∑
n6=m

fn,k
< ψn|Qαβ|ψm >< ψm|vγ|ψn >

(En − Em)2
, (5.27)

where fn,k is the Fermi factor, vγ is the velocity operator along the γ-direction: vγ = dH/dkγ,

and Qαβ is the spin current corresponding to the α-component spin flowing in the β-direction.

Its operator form is Qαβ = (vαsβ + sαvβ)/2, where sβ is the β-component of the Pauli spin

matrices. The above expression is evaluated within density functional theory. The ground

state is computed with the Quantum Espresso package [112], where we use the experimental
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lattice constants of (0.286, 0.352, 0.2507) nm for Fe (BCC), Ni (FCC), Co (HCP with c-axis

perpendicular to the film plane), respectively. In each case, the plane-wave cutoff energy is

set to 120 Ryd, and a 12 × 12 × 12 uniform k-point grid is used. We use ultrasoft, fully

relativistic pseudopotentials with GGA functional. For Ni, we use the GGA+U method

as described in Ref. [113], with U = 1.9 eV and J = 1.2 eV. To evaluate Eq. 5.15 on a

fine k-point mesh, we perform Wannier interpolation using Wannier90 [114]. The integral

is evaluated with 2003 k-points, and we use an adaptive mesh technique in which k-points

with integrand larger than 0.28 nm2 are evaluated on a refined grid. The reported values are

numerically converged to within 1 %. The magnetization is along the x-direction, consistent

with Fig. 5.1(b). First-principles calculations for Ni, Fe and Co all show significant ASOT

conductivities, summarized in Table 5.1.

Ni Fe Co

Calculation

Structure FCC BCC HCP

AHE Conductivity -1.3 0.72 0.45

ASOT Conductivity 3.8 1.04 -0.24

Experiment

Structure FCC BCC HCP

Conductivity 56 32 46

AHE Conductivity -1.3 0.72 0.45

ASOT Conductivity 3.8 1.04 -0.24

Table 5.1: Measured and calculated electrical, AHE and ASOT conductivities.
All values have units of 103 Ω−1cm−1. All experimental data are extrapolated based on 40
nm sputtered polycrystalline films, sandwiched between two 3 nm AlOx layers. The positive
sign for the ASOT conductivity corresponds to the scenario that if the applied electric field
is in the x-direction, the generated spin current flowing in the z-direction has spin moment
in the -y-direction. Under this choice, the spin Hall conductivity of Pt is positive.

We also measure the ASOT conductivities of these materials experimentally, provided in

Table 5.1. The conductivities are similar in magnitude as those calculated, indicating that

the intrinsic mechanism may significantly contribute to the ASOT. However, the signs for

Fe and Co are opposite between measured and calculated values; this may indicate that the
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intrinsic mechanism is not the sole source for ASOT, and that other mechanisms should be

taken into account. In analogy with the AHE, we expect that extrinsic mechanisms such

as skew scattering [97, 115] could also contribute to generating transverse spin current and

hence ASOT. An illustration of the skew-scattering mechanism is shown in Fig. 5.13.

Figure 5.13: (a) Illustration of a Skew scattering-induced spin torque dipole. As x-polarized
electrons are scattered by an impurity, the spin orbit interaction (SOI) generates an effective
magnetic field Beff ∝ Escatter × v, where Escatter is the electric field due to the impurity and
v is the velocity of the electron. Depending on the scattering trajectory, Beff has opposite
directions above and below the scattering center, which rotates the electron spin toward
the +y and −y directions. The electron spin is soon repolarized to the x-direction due to
dephasing. The additional spin angular momentum gained via the SOI is transferred into
the magnetization, which leads to an effective spin torque dipole separated by a distance on
the order of the spin dephasing length. (b) A collection of spin torque dipoles in a uniform
magnetic film gives rise to identical amplitude but opposite direction of ASOTs at the two
surfaces, shown in Fig. 5.1(b).
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5.7 Conclusion

In conclusion, our results unambiguously reveal a bulk spin-orbit effect of transverse spins in

magnetic metals that is closely related to the well-known anomalous Hall effect. This work

sheds light on recently reported nontrivial interconversion between charge and transverse

spins in magnetic multilayers [110, 116–118], for which the origin remained unclear. More

generally, this work challenges the fundamental understanding of SOT in magnetic mul-

tilayer experiments in which transverse spins arising in the magnetic materials have been

overlooked. For example, current-induced SOT in magnetic/nonmagnetic bilayers has been

widely attributed to the spin Hall effect in the nonmagnetic film and the Rashba effect at

the interface. The existence of a large ASOT suggests that the spin-orbit coupling of the

magnetic film can also have non-negligible contributions to the SOT in magnetic/nonmag-

netic bilayers. Proper design of the magnetic film to enable strong charge-to-transverse-spin

conversion can enhance SOT toward efficient electrical control of magnetism. The possibility

of this application is explored in the next chapter.
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Chapter 6

Self-Generated Spin-Orbit Torques in
Magnetic Multilayers

Part of this chapter will be published in “Self-Spin-Orbit Torques in Magnetic Multilayers,”

by Tao Wang*, Wenrui Wang*, Angie Davidson, Yang Wang, Shane R. Allen, David G.

Cahill, Virginia O. Lorenz, John Q. Xiao, and Xin Fan, manuscript in preparation (*Con-

tribute equally).

6.1 Introduction

Current-induced SOTs in magnetic multilayers can enable efficient manipulation of mag-

netization and magnetic textures. Typical structures in SOT studies involve bilayers of

ferromagnetic metal (FM) and spin-source metal (SSM) [30, 68, 73, 74, 119]. The SSMs

are often materials exhibiting strong spin-orbit coupling, such as Pt, β-Ta, and topological

insulators. Researchers have tended to believe the origin of SOTs in such bilayer systems is

solely the spin-orbit effects in the SSM. As shown in Fig. 6.1(a), a spin current generated

either in the bulk of the SSM or at the SSM/Cu interface propagates through the Cu spacer

layer and reaches the FM, thanks to copper’s long spin diffusion length. This leads to SOTs

on the FM by spin momentum transfer from the transverse spins to the local magnetization.

Because of the weak spin-orbit coupling in Cu, contributions from the FM side have been

mostly neglected. However, according to our results in Chapter 5 and several other recent

reports [110, 116–118], an electrical current may also generate a spin current in the FM or at

the FM/Cu interface due to the spin-orbit coupling of the FM. As illustrated in Fig. 6.1(b),
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if a spin current carrying transverse spin is generated from the FM and “absorbed” by the

SSM, due to momentum conservation, it should exert SOTs back onto the FM. Since these

torques arise from the FM itself, we name them self-spin-orbit torques (SSOT).

Figure 6.1: Illustration of the conventional SOT and the SSOT. (a) Illustration of
the SOT that was conventionally thought to be caused by the spin current generated from
the bulk SSM or the SSM/Cu interface. The spin current flowing through Cu is a pure
spin current composed of equal and opposite spin species flowing in opposite directions. (b)
Illustration of the SSOT due to spin current generated from the FM or the FM/Cu interface,
which is then dissipated by spin scattering in the bulk of the SSM or by spin relaxation at
the SSM/Cu interface.

In this chapter, we first demonstrate SSOT in a FM1/Cu/FM2 spin-valve structure with

MOKE magnetometry. To quantitatively characterize the SSOT, we develop and apply a

new calibration method to separately analyze the MOKE signals from the two FM layers.

The effective SSOT conductivity of Ni80Fe20 (Py) is found to be 17% of the total SOT

conductivity in a Py/Cu/Pt trilayer, which is too significant to be ignored. These results

are consistent with our prediction that there is a spin current generated by the FM spin-orbit

effect, which, in turn, leads to SSOT on the FM itself.
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Figure 6.2: Illustration of (a) the test sample and (b) control sample structures.

6.2 Observation of the SSOT

To experimentally demonstrate the SSOT, we measure the SOT-induced magnetization tilt-

ing in a test sample with spin-valve structure:

substrate/Py(3)/Cu(6)/Py(3)/IrMn(15)/SiO2(5) (see Fig. 6.2(a)), where the values in paren-

theses are in nanometers. In this experiment, the substrate is a silicon wafer with 1 µm

thermal oxide; the first Py is a free magnetic layer; the magnetization of the second Py

layer is pinned by the antiferromagnetic IrMn layer, giving rise to a shifted magnetization

hysteresis; the Cu layer is a spacer layer that decouples the magnetization between the two

Py layers, while still allowing the flow of spin current; the SiO2 is a capping layer. The

sample is patterned to a 50 µm × 50 µm square. For comparison, a control sample is also

prepared with structure: substrate/Py(3)/Cu(3)/AlOx(3)/Cu(3)/Py(3)/IrMn(15)/SiO2(5)

(see Fig. 6.2(b)), where the additional AlOx is an insulating layer that blocks the spin cur-

rents flowing between the two Py layers. As shown in Fig. 6.4(a-b), this spin current “cut-off”

is confirmed via giant magnetoresistance (GMR) measurements. The test sample exhibits

≈ 1.2% GMR, while the GMR in the control sample is significantly suppressed by the AlOx

layer.
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Figure 6.3: Diagram of current-induced spin currents and SSOT in a Py/Cu/Py/IrMn spin
valve structure. The SSOT acting on the Py free-layer should only arise from the spin current
generated by both Py layers. Moreover, the SSOT can be decomposed into DL-SSOT and
FL-SSOT.

We then measure the SSOT using the MOKE-based SOT magnetometer introduced

in Chapter 3. As we predicted in the last section, an electrical current parallel with the

magnetization can generate a transverse spin current flowing out of the FM layers. Therefore,

within such a spin-valve structure, there should be two transverse spin currents flowing

between the two Py layers, as illustrated in Fig. 6.3. These spin currents lead to SOTs on

both Py layers. Like normal SOTs, SSOT has damping-like (DL) and field-like (FL) terms.

In this specific sample structure, DL-SSOT tilts the magnetization of both Py layers out

of plane, which can be measured by the polar MOKE. A more detailed SSOT analysis is

discussed in the next section; here we briefly present the main result. In the first experiment,

we measure the SOT-induced polar MOKE signal in the control sample. The MOKE signal
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Figure 6.4: GMR and MOKE results of the test and control samples. (a, b)
Magnetoresistance measured via the four-point-probe method. The test sample exhibits
1.2% GMR, while no noticeable GMR is measured in the control sample. (c, d) SOT-induced
out-of-plane magnetization tilting measured by the MOKE-base SOT magnetometer. In the
test sample, there is a strong SOT acting on the Py free-layer, while in the control sample,
the SOT on the Py free-layer is negligible. The y = 0 dashed line indicates that there is no
observable mfree hysteresis. In addition, the sign of the SOT acting on the Py pinned layer
is reversed between the test and control samples.

due to a DL-SOT should resemble a magnetization hysteresis. As shown in Fig. 6.4(d),

the pinned Py layer exhibits a clear hysteresis-like MOKE signal, suggesting a net SOT

on the pinned Py layer originating in the AlOx/Cu/Py/IrMn multilayer, consistent with

previous reports [119]. However, there is nearly zero SOT on the free Py layer in the

SiO2/Py/Cu/AlOx multilayer, because of the weak spin-orbit coupling in Cu. On the other

hand, in the test sample signal shown in Fig. 6.4(c), there is a significant net SOT acting

on the free Py layer. Moreover, the net SOT acting on the pinned Py layer is reversed from

that in the control sample. These results unambiguously confirm our prediction that there

is a spin current flowing between the two Py layers in the test sample. Such a transverse
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spin current transfers spin angular momentum from one Py layer to the other, resulting in

SSOT on both Py layers with equal magnitude and opposite directions. The reversal of the

MOKE signal for the pinned layer indicates the SSOT from the Py layer is even greater than

the SOT arising from the Py/IrMn interface.

6.3 Discussion of Spin-Orbit Torques in a Spin-Valve

Structure

As discussed in the previous section, both FM layers in the spin-valve can generate spin

currents that flow through the Cu spacer layer and lead to SOTs. Therefore, for both

qualitative and quantitative analysis purposes, it is necessary to understand the effects of

the possible SOTs on each FM layer. In this section, we summarize the possible SOTs in a

FM1/Cu/FM2 trilayer and their symmetries.

Generally speaking, a spin current Qs with spin polarization s can exert two types of

SOTs on a magnetization m: a damping-like torque in the direction of m × (m × s) and

a field-like torque in the direction of m × s. The damping-like torque is equivalent to an

effective field in the direction of m× s, and the field-like torque is equivalent to an effective

field in the direction of s. Normally, when an electric current is applied parallel to the

magnetization of a magnetic film, it generates a spin current with spin polarization s that

is in the film plane and transverse to the current (magnetization). This spin current yields

the same symmetry as that of the spin Hall effect and is thus referred to as the conventional

spin-Hall-like current in this chapter. Moreover, according to two recent papers [110, 118],

the current-induced spin current in a magnetic material also possesses spin polarization

components in the s’ = m × s direction. Since s’ is essentially a 90 degree rotation of s

around the magnetization m, we name this spin current component as the spin rotation

current. As a result, the transversely flowing spin current in the magnetic film can be

decomposed into two components: (1) conventional spin-Hall-like component QC
s with spin
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Figure 6.5: The spin current generated from the FM or the FM/Cu interface can be de-
composed into a spin current with conventional spin Hall symmetry QC

s , and a spin current
with spin rotation symmetry QR

s′ . s and s′ represent the spin polarization of the conven-
tional and spin rotation currents, respectively. E is the applied electric field and M is the
magnetization of the magnetic layer.

polarization s following s||je×QC
s , and spin rotation component QR

s′ with spin polarization

following s’||m× s. An illustration of the two spin current components is shown in Fig. 6.5.

In a spin-valve structure FM1/Cu/FM2, each of the two FM layers generates spin current

carrying two spin polarizations. Therefore, for each FM layer, there are 8 possible SOTs

acting on the magnetization. In Table 6.1, we summarize the symmetries of the effective

magnetic fields due to the SOTs on FM1 magnetization m1. Similarly, the effective fields of

SOTs acting on the magnetization of FM2 are summarized in Table 6.2.

In our sample structure, FM1 is the free Py layer and FM2 is the pinned Py layer. Since

polar MOKE is only sensitive to the out-of-plane magnetization component, the detected
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Spin current from FM1 Spin current from FM2

QC
s QR

m1×s QC
s QR

m2×s

Field-like s m1 × s s m2 × s

Damping-like m1 × s s m1 × s m1 × (m2 × s)

Table 6.1: Summary of the effective field directions caused by the SOTs on FM1 magneti-
zation m1. Here, s is the spin polarization direction of the conventional spin current; m1

and m2 are the magnetization vectors of FM1 and FM2, respectively.

Spin current from FM1 Spin current from FM2

QC
s QR

m1×s QC
s QR

m2×s

Field-like s m1 × s s m2 × s

Damping-like m2 × s m2 × (m1 × s) m2 × s s)

Table 6.2: Summary of the effective field directions caused by the SOTs on FM2 magneti-
zation m2.

MOKE signal should be from the SOTs providing out-of-plane effective fields. Specifically,

the SOTs yielding effective fields in the m1 × s direction should be responsible for the

MOKE signal resembles a m1 hysteresis. All the SOTs that lead to effective fields with

m1× s direction are highlighted in Table 6.1 and 6.2, including damping-like torques on m1

due to conventional spin currents generated by both free and pinned layers, and field-like

torques on m1 and m2 due to spin rotation current generated by the free-layer. Based on

this result, the detected free-layer MOKE signal in Fig. 6.4(c) actually has contributions

from both the free and pinned layers. Therefore, it is necessary to separate the MOKE

signals of free and pinned layers for accurate quantitative SSOT analysis.

6.4 Separating MOKE Signals from Two FM Layers

To separate the MOKE signal from free and pinned Py layers in the test sample, we perform

a comprehensive calibration process. In general, the MOKE signal is determined by the

Kerr coefficients and magnetization. The Kerr coefficients depend on the light scattering
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path. Therefore, even for two magnetic layers that are made of the same material, their

Kerr coefficients can be drastically different. Mathematically, polar MOKE signals due to

an out-of-plane magnetization component mz can be expressed as

Ψk + iΩk = (θk + iεk)mz, (6.1)

where Ψk and Ωk are the Kerr rotation and ellipticity angle, respectively, and θk and εk are

the corresponding Kerr rotation and ellipticity coefficients, respectively. Applying Eq. 6.1

to the spin valve systems shown in Fig. 6.2, the overall polar MOKE signal can be written

as

Ψk + iΩk = (θfree
k + iεfree

k )mfree
z + (θpin

k + iεpin
k )mpin

z , (6.2)

where superscripts “free” and “pin” denote the magnetizations and coefficients of the cor-

responding Py layers. To determine the Kerr coefficients of the free and pinned layers, we

applied an external calibration magnetic field hCal. Under this calibration field, the out-of-

plane magnetization tilting of free and pinned layers can be calculated as

mfree
z =

hCal

M free
eff + |Hext|

, (6.3)

and

mpin
z =

hCal

Mpin
eff + |Hext +Hbias|

, (6.4)

where M free
eff and Mpin

eff are the effective demagnetizing field for free and pinned layers, re-

spectively, Hext is the external magnetic field, and Hbias is the exchange bias field applied on

the pinned layer due to the antiferromagnetic IrMn. The Kerr rotation and ellipticity signal

due to these magnetization tilts can then be described by

Ψk = θfree
k

hCal

M free
eff + |Hext|

+ θpin
k

hCal

Mpin
eff + |Hext +Hbias|

, (6.5)
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and

Ωk = εfree
k

hCal

M free
eff + |Hext|

+ εpin
k

hCal

Mpin
eff + |Hext +Hbias|

. (6.6)

We measure the Kerr rotation and ellipticity signal due to the calibration field as a func-

tion of external magnetic field Hext. We also characterize the effective demagnetizing fields

M free
eff and Mpin

eff through ferromagnetic resonance (FMR) measurements and Hbias with mag-

netometry measurements. Therefore, the Kerr coefficients of both free and pinned layers

can be extracted by fitting the Kerr rotation and ellipticity data with Eq. 6.5 and Eq. 6.6,

respectively.

Figure 6.6: Illustration of the Kerr coefficient calibration fitting of (a) Kerr rotation and (b)
Kerr ellipticity. Black squares are the experimental data. Red curves are the fitting curves
based on Eq. 6.5 and Eq. 6.6. Constant parameters used in this fitting are: M free

eff = 7136
Oe, Mpin

eff = 4012 Oe, Hbias = −250 Oe, and hCal = −9.70 Oe.

As long as we know all the Kerr coefficients, we can then measure the SOT-induced Kerr

rotation ΨSOT
k and ellipticity ΩSOT

k and extract the corresponding magnetization tilting in

the two Py layers with

mfree
z =

εpin
k ΨSOT

k − θpin
k ΩSOT

k

εpin
k θfree

k − εfree
k θpin

k

, (6.7)
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and

mpin
z =

εfree
k ΨSOT

k − θfree
k ΩSOT

k

εfree
k θpin

k − ε
pin
k θfree

k

. (6.8)

We demonstrate this fitting method with the control sample. As shown in Fig. 6.6,

the calibration fitting curves match the experimental data very well. The extracted Kerr

coefficients are: θfree
k = (1.69±0.02)×10−4, θpin

k = (2.90±0.02)×10−4, εfree
k = (2.15±0.01)×

10−4, θfree
k = (2.49± 0.01)× 10−4 (uncertainties are the fitting errors).

Using the extracted Kerr coefficients, we disentangle the SOT-induced MOKE signal

from the two Py layers using Eq. 6.7 and Eq. 6.8. The extracted out-of-plane magnetization

tilting of the free and pinned layers are shown in Fig. 6.7. In Fig. 6.7(a), the free layer yields

no significant magnetization tilting, because the AlOx blocks all the spin currents. On the

other hand, as shown in Fig. 6.7(b), the pinned-layer magnetization tilting resembles a mpin

hysteresis, a signature of the SOTs generated at the Py/IrMn interface.

Figure 6.7: Extracted SOT-induced magnetization tilting of (a) the free Py layer, (b) the
pinned Py layer in the control sample. The y = 0 dashed line indicates that there is no
observable mfree hysteresis.

As a result, the separated magnetization tilting successfully reflects the predicted SOTs

in the control sample. This result verifies our MOKE calibration method is reliable in

separating MOKE response from two magnetic layers. The separated results make individual

97



analysis of the free layer possible, which significantly benefits the SSOT-analysis process.

6.5 Quantitative Analysis of the SSOT

In this section, we quantitatively analyze the strength of the SSOT in Py. Applying the

calibration method discussed in the last section to the test sample, we extract the SOT-

induced magnetization tilting in the free and pinned layers, as shown in Fig. 6.8.

Figure 6.8: Extracted SOT-induced magnetization tilting of (a) the free Py layer, (b) the
pinned Py layer in the test sample.

As summarized in Tables 6.1 and 6.2, there are three SOT-induced mfree × s-symmetry

effective fields on the free layer and one on the pinned layer. These fields are responsible for

the mfree-hysteresis-like out-of-plane magnetization tilting observed in Fig. 6.8. The polar

MOKE signal can be expressed as

(Ψk + iΩk)|mfree
=(θfree

k + iεfree
k )

hfree
C−DL + hpin

C−DL + hfree
SR−FL

M free
eff + |Hext|

+ (θpin
k + iεpin

k )
−hfree

SR−FL

Mpin
eff + |Hext +Hbias|

,

(6.9)

where the first and second terms correspond to the polar MOKE response from the free
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layer (Fig. 6.8(a)) and pinned layer (Fig. 6.8(b)), respectively, horigin
SOT−type is the effective field

exhibiting mfree× s-symmetry, and C−DL and SR− FL stand for “conventional-damping-

like” and “spin-rotation-field-like”, respectively. From Fig. 6.8(b), we can extract hfree
C−DL by

analyzing the magnetization tilting change at zero field. Based on the second term in Eq. 6.9,

we get hfree
SR−fL = (0.45± 0.06) Oe. Since the hfree

SR−FL acting on the two layers are counter to

each other and hfree
C−DL = hpin

C−DL, we can then solve hfree
C−DL = hfree

C−DL = −(0.97± 0.12) Oe by

analyzing the zero-field tilting change in the free-layer. Here, hfree
C−DL is the caused by SSOT.

Therefore, using these results, we derive the SSOTs arising from the Py to be τDL−SSOT
Py =

hfree
C−DLµ0Msd = (0.23± 0.03)× 10−6 J/m2 and τFL−SSOT

Py = hfree
SR−FLµ0Msd = −(0.11± 0.02)×

10−6 J/m2, where µ0Ms = 1 T is the saturation magnetization, and d = 3 nm is the thickness

of the free Py layer (signs here follow the convention that Pt has a positive spin-torque

conductivity). Since the test sample is a multilayer structure, it is difficult to accurately

characterize the current density in the Py layers. Thus, we calculate the corresponding

spin-Hall-like SSOT conductivities for Py as σDL−SSOT
Py = 2e

~
τDL−SSOT
Py

E
= (554± 60) Ω−1cm−1

and σFL−SSOT
Py = 2e

~
τFL−SSOT
Py

E
= −(253 ± 50) Ω−1cm−1, where E is the applied electric field.

These values are close to the total spin-torque conductivity in Py/IrMn, (592±30) Ω−1cm−1,

which is extracted from Fig. 6.7(b). The extracted σDL−SSOT
Py is only about 24% of that from

the single-layer Py study in Chap. 5. This result indicates that the spin transparency of

the interfaces through which spin current is injected may play an important role in the

spin-torque efficiency.

For a quantitative comparison, we also measure the SOTs in a second control sample (Pt-

Control): substrate/Py(3)/Cu(3)/Pt(3)/AlOx(3)/Cu(3)/Py(3)/IrMn(15)/SiO2(5), in which

the free Py layer experiences a net SOT due to the additional Pt. This net SOT is measured

by Kerr rotation and ellipticity measurements, shown in Fig. 6.9(a, b). In addition to the

pinned-layer signal, which we observed in the control sample, there is a large free-layer signal

resembling mfree-symmetry. The extracted magnetization tilting in the free and pinned

layers are shown in Fig. 6.9(c, d). As expected, the pinned-layer tilting is very similar to
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that observed in Fig. 6.7(b). From Fig. 6.9(c), we extract the total spin-torque conductivity

in the Py/Cu/Pt to be σSOT = (1778± 50) Ω−1cm−1.

Figure 6.9: (a) Kerr rotation and (b) Kerr ellipticity data, and the extracted SOT-induced
magnetization tilting of (c) the free Py layer, (d) the pinned Py layer in the Pt-Control
sample.

Since the total SOTs in the Py/Cu/Pt include the SSOT from Py and SOTs from

Pt, we can express the total spin torque conductivity as σSOT
Py/Cu/Pt = σSOT

Pt + σDL−SSOT
Py +

σDL−SSOT
Py . Assuming the effective spin torque conductivity of Py is the same in Py/Cu/Py

and Py/Cu/Pt, we can estimate the SSOT conductivity as σDL−SSOT
Py +σFL−SSOT

Py = (301±78)

Ω−1cm−1, providing 17% of the total spin torque conductivity in the Py/Cu/Pt trilayer. Con-

sidering its universality and large amplitude, the SSOT contribution is too significant to be

neglected.
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6.6 Conclusion

In recent years, a great amount of effort has been devoted to searching for new SSMs that

can generate an efficient total SOT to manipulate magnetizations, with the assumption

that the total SOT solely arises from the SSM. Our results show that the FM itself can

contribute a considerable amount of SSOT in a FM/SSM system. The SSOT should be take

into consideration for extracting the spin torque conductivity of the SSM. Beyond this, the

SSOT due to the spin-orbit coupling in the FM is universal in these devices and can itself

be harnessed as an additional source for efficient manipulation of the magnetization.
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Chapter 7

Conclusions

In this dissertation, I explored current-induced spin-orbit effects and spin-orbit torques

specifically originating in magnetic materials. I showed that magneto-optic Kerr effect,

a well-known characterization tool in magnetism studies, can also be implemented in spin-

orbit effect research. Thanks to the high sensitivity and resolution of the MOKE-based

system, I discovered some significant yet long-overlooked spin-orbit phenomena in magnetic

systems.

First, I developed and optimized an optical system based on the magneto-optic Kerr

effect to realize high-precision spin-orbit torque measurements. Damping-like and field-like

spin-orbit torques can both be measured in one normally-incident configuration via polar

and quadratic MOKE. Without any averaging, our system yields a ∼ 70 nrad polarization

rotation sensitivity, which is mainly limited by the electron shot noise in the balanced detec-

tor. Based on this fact, I further improved the performance of our system by implementing

an “unbalanced-optical-bridge” technique, which can provide a factor of 3 enhancement of

the signal-to-noise ratio. As a result, our MOKE-based spin-orbit torque magentometer is

a powerful tool for fast and accurate spin-orbit torque characterization. Its high sensitivity

enabled us to accomplish the following discoveries in magnetic thin film structures.

With the help of our MOKE system, I observed an anomalous spin-orbit torque at the

surfaces of single-layer magnetic thin films when an electrical current is applied parallel with

the magnetization. This anomalous spin-orbit torque is very difficult to measure with elec-

trical methods because it leads to a net zero magnetization distribution across the entire

magnetic film. The extracted spin-Hall-like efficiency of Ni80Fe20 is comparable to the effi-
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ciency of Pt, which suggests its great potential in spin-orbitronics applications. After a series

of interface-dependent experiments, I speculated the observed torque is caused fundamen-

tally by a spin current generated in the magnetic material with spin polarization transverse

to the magnetization direction. Our similar observations and first-principles calculations

in other common magnetic materials also suggest this phenomenon is due to an intrinsic

and universal spin-orbit effect that exists in all magnetic materials. Therefore, by reveal-

ing this long-overlooked spin-orbit effect, we point out a new configuration for spin-orbit

effect research in magnetic materials, in which current is parallel to the magnetization (as

opposed to perpendicular as in the anomalous Hall effect), opening up more possibilities in

spin-orbitronics studies.

As a follow-up study of the new spin-orbit effect, I also studied its related phenomenon,

namely, the self-spin-orbit torques, in more complex magnetic multilayer structures. In a

spin-valve system, I demonstrated that an electrical current parallel with the magnetization

can indeed generate a transverse spin current flowing out of the magnetic material. Moreover,

if this spin current is “absorbed” by another material, it will exert spin-orbit torques back on

the magnetization. The amplitudes of the spin-orbit torques induced by a spin current from

Ni80Fe20 are very close to those caused by a Ni80Fe20/IrMn interface. This result challenges

the current understanding of spin-orbit torques in ferromagnet/non-magnetic spin source

metal bilayers, because contributions from the ferromagnet are often ignored. It also opens

a new route to realizing efficient electrical control of magnetic moment by wisely engineering

magnetic materials so that self-spin-orbit torques work constructively with non-magnetic

spin source materials.

The dissertation work was partially supported by the DOE center under Award Number

DE-FG02-07ER46374 and the NSF MRSEC under Award Number DMR-1505192.
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magnetization permittivity and conductivity tensor in cubic crystals. physica status
solidi (b), 250(10):2194–2205, 2013. ISSN 0370-1972. doi: 10.1002/pssb.201349031.
URL https://doi.org/10.1002/pssb.201349031.

[43] Chun-Yeol You and Sung-Chul Shin. Generalized analytic formulae for magneto-optical
kerr effects. Journal of Applied Physics, 84(1):541–546, 1998. doi: 10.1063/1.368058.
URL https://doi.org/10.1063/1.368058.

[44] Tomoya Higo, Huiyuan Man, Daniel B Gopman, Liang Wu, Takashi Koretsune,
Olaf MJ van’t Erve, Yury P Kabanov, Dylan Rees, Yufan Li, Michi-To Suzuki, et al.
Large magneto-optical kerr effect and imaging of magnetic octupole domains in an
antiferromagnetic metal. Nature photonics, 12(2):73, 2018.

[45] J Hamrle, S Blomeier, O Gaier, B Hillebrands, H Schneider, G Jakob, K Postava, and
C Felser. Huge quadratic magneto-optical kerr effect and magnetization reversal in the
co2 fesi heusler compound. Journal of Physics D: Applied Physics, 40(6):1563, 2007.

[46] P K Muduli, W C Rice, L He, B A Collins, Y S Chu, and F Tsui. Study of magnetic
anisotropy and magnetization reversal using the quadratic magnetooptical effect in
epitaxial cox mny gez (111) films. Journal of Physics: Condensed Matter, 21(29):
296005, 2009.

[47] R. Clark Jones. A new calculus for the treatment of optical systems: Description
and discussion of the calculus. J. Opt. Soc. Am., 31(7):488–493, Jul 1941. doi:
10.1364/JOSA.31.000488.

[48] Peter J Kelly and R Derek Arnell. Magnetron sputtering: a review of recent develop-
ments and applications. Vacuum, 56(3):159–172, 2000.

[49] Denton Vaccum. Magnetron sputtering solutions. URL
https://www.dentonvacuum.com/products-technologies/magnetron-sputtering.

[50] Tadatsugu Minami, Hidehito Nanto, and Shinzo Takata. Highly conductive and trans-
parent aluminum doped zinc oxide thin films prepared by rf magnetron sputtering.
Japanese Journal of Applied Physics, 23(5A):L280, 1984.

[51] Tadatsugu Minami, Hirotoshi Sato, Hidehito Nanto, and Shinzo Takata. Group iii
impurity doped zinc oxide thin films prepared by rf magnetron sputtering. Japanese
journal of applied physics, 24(10A):L781, 1985.

[52] DAH Hanaor, G Triani, and CC Sorrell. Morphology and photocatalytic activity
of highly oriented mixed phase titanium dioxide thin films. Surface and Coatings
Technology, 205(12):3658–3664, 2011.

108



[53] Wikipedia. Photolithography. .

[54] Product Data Sheet. Az 5214 e image reversal photoresist. AZ Electronic Materials,
70.

[55] Rabih Zaouk, Benjamin Y Park, and Marc J Madou. Introduction to microfabrication
techniques. In Microfluidic Techniques, pages 5–15. Springer, 2006.

[56] INC. Ion Beam Milling. Ion milling process. URL
http://www.ionbeammilling.com/about-the-ion-milling-process.

[57] FM Smits. Measurement of sheet resistivities with the four-point probe. Bell System
Technical Journal, 37(3):711–718, 1958.

[58] NM Bashara. Ellipsometry and polarized light. North Holland, 1987.

[59] Hiroyuki Fujiwara. Spectroscopic ellipsometry: principles and applications. John Wiley
Sons, 2007.

[60] Wikipedia. Ellipsometry. .

[61] Bertram Eugene Warren. X-ray Diffraction. Courier Corporation, 1990.

[62] John Brian Pendry. Low energy electron diffraction. Academic Press London, 1974.

[63] Wikipedia. X-ray diffraction. .

[64] Martin Weisheit, Sebastian Fähler, Alain Marty, Yves Souche, Chris-
tiane Poinsignon, and Dominique Givord. Electric field-induced mod-
ification of magnetism in thin-film ferromagnets. Science, 315(5810):
349–351, 2007. ISSN 0036-8075. doi: 10.1126/science.1136629. URL
http://science.sciencemag.org/content/315/5810/349.

[65] Ying-Hao Chu, Lane W. Martin, Mikel B. Holcomb, Martin Gajek, Shu-Jen
Han, Qing He, Nina Balke, Chan-Ho Yang, Donkoun Lee, Wei Hu, Qian Zhan,
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Appendix A

Jones Calculus Derivations

A.1 Overview of Jones Calculus

The polarization of light, which is fundamentally a transverse electromagnetic wave, is de-

fined based on the electric field components of the light. Therefore, in Jones calculus,

polarization states are expressed by electric field vectors:

E =

 E0xexp(iφx)

E0yexp(iφy)

 =

 E0x

E0yexp(−iφ)

 exp(iφx), (A.1)

where E is the complex electric field vector, E0x and E0y are the amplitudes of the electric

field in x- and y-directions, and φx and φy contain the phase information. The light de-

scribed by Eq. A.1 is propagating in the z-direction. The phase difference between the two

components, φ = φx − φy, determines the nature of the polarization state. For instance, if

there is no phase difference between the two components, φ = 0, the polarization state is

linear. However, if the phase difference is 180 degrees (φ = π
2
), the resultant polarization

state is circular. All the other phase differences result in elliptical polarization states.

Some typical polarization states are listed below:

Linear Horizontal Polarization (LHP) :

 1

0

 ,
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Linear Vertical Polarization (LVP) :

 0

1

 ,

Linear Polarization at 45 degrees (L45P) :

√
2

2

 1

1

 ,

Left Circular Polarization (LCP) :

√
2

2

 1

−i

 ,

Right Circular Polarization (RCP) :

√
2

2

 1

i

 .

For simplification, the intensity of the light |E|2 is normalized to 1. The superposition

of two beams can be calculated by directly adding the Jones vectors together. For example,

we know linear polarization can be decomposed into a combination of LCP and RCP. This

relation can be demonstrated with Jones vectors:

√
2

2

 1

i

 +

√
2

2

 1

−i

 =
√

2

 1

0

 . (A.2)

The effect of linear optical elements on a given polarization state is addressed by applying

2 × 2 Jones matrix operators to the Jones vectors, P ′ = Mn · · ·M1 · P . Common optics,

such as mirrors, polarizers, wave-plates, beam-splitters, electro-optic modulators and even

magnetic thin films, can all be expressed in the form of matrices. For the MOKE calculations

in this dissertation, polarizer and half/quarter-wave-plate are most frequently used. A linear

polarier can be generalized as [120]

MPol =

 px 0

0 Py

 , 0 ≥ px, py ≤ 1, (A.3)

where the relative amplitudes of px and py depend on the angle between the polarizer axis
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and the x-direction. For example, the Jones matrix for a linear polarizer with axis parallel

to x- and y-direction can be written as [120]

Mx =

 1 0

0 0

 ,My =

 0 0

0 1

 . (A.4)

Wave-plates, on the other hand, are phase retarders. In the simplest situation, in which

the fast- and slow-axis of the wave plate is aligned with x- and y-direction, respectively, the

Jones matrix for such a wave plate (WP) can be expressed as [120]

MWP =

 1 0

0 eiφ

 , (A.5)

where φ is the phase delay between the fast- and slow-axis of the wave plate. As an example,

half-wave-plates (HWP) have φ = π and quarter-wave-plates (QWP) have φ = π
2
, leading

to the Jones matrices for half- and quarter-wave-plate as [120]

MHWP =

 1 0

0 −1

 ,MQWP =

 1 0

0 −i

 . (A.6)

In addition, for more general situations, where the principle axis of an optical element is at

an angle θ with respect to the x-direction, the corresponding Jones matrix is calculated by

applying the rotation operator matrix, R(θ) =

 cos θ sin θ

− sin θ cos θ

, to the special matrices

shown in Eq. A.4 and A.6. For instance, the Jones matrix for a half-wave-plate with its fast

axis at θ degree is calculated as

MHWP(θ) = R(−θ)MHWPR(θ) =

 cos 2θ sin 2θ

sin 2θ − cos 2θ

 . (A.7)

Lastly, Jones matrix containing polar and quadratic MOKE information for a magnetic
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sample can be written as

Magnetic Sample : MSample = ξ

 1 +
βQuadratic

2
−αPolarmz

αPolarmz 1 +
βQuadratic

2

 .
Factor ξ captures the reflection loss, which does not affect the polarization change. MSample

is derived based on the fact that polar MOKE is only sensitive to the out-of-plane magnetiza-

tion component and Quadratic MOKE yields no polarization change when the polarization

direction is in parallel or perpendicular to the in-plane magnetization directions.

By applying the vectors/matrices discussed above, the polarization states at each point

of a linear optical system can be calculated.

A.2 Derivation of MOKE Signal for Circular

Polarization

In this section, I use Jones calculus to derive Eq. 3.6 in Chap. 3. Following the Jones

matrix formalism presented in Appendix.A1, for incident light with circular polarization,

the polarization states at each stage in Fig. 3.4 can be calculated as (see Fig. A.1 for an

illustration of the polarization at each stage)

(1) : P1 =

 1

0

 ,

(2) : P2 = R[φπ/4]MQWR[−φπ/4]P1 =
1− i

2

 1

i

 ,

(3) : P3 = R[φM ]MSampleR[−φM ]P2 =
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Figure A.1: Illustration of the light polarization state at each stage in Fig. 3.4. Red dashed
line indicates the fast axis direction of the wave plates.

1− i
2

ξ

(1− iαPolarmz)

 1

i

 +
βQuadratic(cosφM + i sinφM)2

2

 1

−i


 ,

(4) : P4 = R[φπ/4]MQWR[−φπ/4]P3 = ξ


 0

1

 +

 βQuadratic
sin 2φM−i cos 2φM

2

iαPolarmz


 .

Thus, the total polarization change is π
2
− βQuadratic

sin 2φM−i cos 2φM
2

. Differentiating this ex-

pression near φM = 0 gives Eq. 3.6.

A.3 Derivation of MOKE Signal for Linear

Polarization

In this section, I use Jones calculus to derive Eq. 3.7 in Chap. 3. Using the same procedures

as in the previous section, for light with linear polarization, the polarization at each stage

in Fig. 3.4 cane be calculated as (see Fig. A.1 for an illustration of the polarization at each

stage)
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(1) : P1 =

 1

0

 ,

(2) : P2 = R[φHW]MHWR[−φHW]P1 =

 cos 2φHW

sin 2φHW

 ,

(3) : P3 = R[φM]MSampleR[−φM]P2 =

ξ


 cos 2φHW

sin 2φHW

 + αPolarmz

 − sin(2φHW)

cos 2φHW

 +
βQuadratic

2

 cos(2φM − 2φHW)

sin(2φM − 2φHW)


 ,

(4) : P4 = R[φHW]MHWR[−φHW]P3 =

ξ


 1

0

 +

 βQuadratic

2
cos(4φHW − 2φM)

−αPolarmz +
βQuadratic

2
sin(4φHW − 2φM)


 ,

where φHW = 1
2
φpol is the angle between x-direction and the principle axis of the half-wave-

plate. Therefore, the total polarization rotation is −αPolarmz +
βQuadratic

2
sin(4φHW − 2φM).

By differentiating this angle rotation near φM = 0, we get Eq. 3.7.

A.4 Derivation of MOKE Signal for the

Magnetometer Setup

As discussed in Chap.3, the light polarization change due to polar and/or quadratic MOKE

can be measured with the lock-in balanced detection technique shown in Fig. 3.4. For the

real part of the polarization change, Kerr rotation, a half-wave-plate is used before the

Wollaston prism. The half-wave-plate is set to 22.5◦ so that the s- and p-components of the

polarization are initially balanced. Assume the Kerr rotation from polar and/or quadratic
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MOKE is θK , the balanced detector output can be derived as (indices in this derivation

indicate the steps as shown in Fig. A.2):

Figure A.2: Illustration of the light polarization state at each stage through the optical
bridge system. Red dashed line indicates the fast axis of the wave-plates, which is at 22.5
degrees.

(1) : P1 =

 1

0

 ,

(2) : P2 =

 cos ∆θK

sin ∆θK

 ,

(3) : P3 =

 cos(45◦ + ∆θK)

− sin(45◦ + ∆θK)

 .
Since the balanced detector measures the optical power difference between the two compo-

nents. Under first-order approximation, we have

Vlockin ∝ | cos(45◦ + ∆θK)|2 − | − sin(45◦ + ∆θK)|2 = cos(2∆θK + 90◦) = sin 2∆θK ' 2∆θK .

Therefore, if the DC output from one of the ports on the balanced detector is VDC and the

ratio of the AC and DC gain factors of the balanced detector is G, the Kerr rotation change

∆θK can be calculated with
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∆θK =
Vlockin

4GVDC

. (A.8)

On the other hand, the imaginary part of the MOKE signal, Kerr ellipticity, can be measured

with an additional quarter-wave-plate in front of the half-wave-plate and the Wollaston

prism. The principle is easy to understand. When the fast axis of the quarter wave plate

is parallel to the incoming nearly-linear polarization direction, it transfers the imaginary

part of the polarization change into a real part. Therefore, it can then be measured by the

above-discussed system.
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Appendix B

MATLAB Code for Simulations

B.1 Signal-to-Noise Enhancement for Imperfect

Linear Polarization

In this section, I attach the MATLAB code used to generate the modified S/N enhancement

simulation curve in Fig. 4.7:

1 c l e a r a l l

2

3 theta K = 1e−6; %Kerr r o t a t i o n due to sample

4 PtoS = 18 ; %Ext inc t i on r a t i o ( f i e l d r a t i o )

5

6 %determine the s t r ength o f S and P components

7 b = s q r t ( 1 / (1 + PtoS ˆ2) ) ;

8 a = s q r t (1 − bˆ2) ;

9

10 I n i = [ 1 i *b ; a ] ; %i n i t i a l s t a t e o f p o l a r z a t i o n

11 SAM = [ cos ( theta K ) s i n ( theta K ) ; −s i n ( theta K ) cos ( theta K ) ] ; %

Jone matrix o f the sample

12 i = 1 ;

13

14 f o r A = 1 : 0 . 1 : 1 0 0
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15

16 s i n 2 t he ta ( i ) = s q r t ( (1/(2*A)−bˆ2) / ( aˆ2−bˆ2) ) ;

17 cos2 the ta ( i ) = s q r t (1 − s i n 2 t he ta ( i ) ˆ2) ;

18 B( i ) = 1 / (2*A*( aˆ2* cos2 theta ( i ) ˆ2 + bˆ2* s i n 2 t he ta ( i ) ˆ2) ) ; %

at tenuat ion f a c t o r due to the ND f i l t e r

19

20 WP = [ cos2the ta ( i ) s i n 2 t h e t a ( i ) ; s i n2 th e t a ( i ) −cos2 the ta ( i ) ] ;

% ha l f−wave−p l a t e

21

22 %c a l c u l a t e the r e s u l t i n g Jones vec to r

23 Output Pol = WP*SAM* I n i ;

24

25 %c a l c u l a t e the balanced de t e c t o r output

26 output ( i ) = abs ( s q r t (A) * Output Pol (1 ) ) ˆ2 − abs ( s q r t (A) *

s q r t (B( i ) ) * Output Pol (2 ) ) ˆ2 ;

27

28 i = i + 1 ;

29 end

30

31 %% Plot ing Sec t i on

32 AA= 1 : 0 . 1 : 1 0 0 ;

33

34 Experimental A = [ 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 1 0 0 ] ; %

exper i ementa l t h i c k n e s s po in t s

35 Ampl i f i c a t i on = [ 1 , 1 . 39 , 1 . 96 , 2 . 48 , 2 . 92 , 3 . 35 , 3 . 64 , 3 . 75 ,

3 . 80 , 3 . 7 2 ] ;

36
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37 data = [AA; output / output (1 ) ] ;

38 f i l e I D = fopen ( ’ P o l a r i z a t i o n Imper f e c t i on Simulat ion . txt ’ , ’w ’ ) ;

39 f p r i n t f ( f i l e I D , ’%f %e\n ’ , data ) ;

40 f c l o s e ( f i l e I D ) ;

41

42 %data2 = [TT/1e−9; imag ( Phi S ’ ) *1 e6 ] ;

43 %f i l e I D 2 = fopen ( ’ t h i c k n e s s c a l i b r a t i o n e l l i p t i c i t y . txt ’ , ’w’ ) ;

44 %f p r i n t f ( f i l e I D 2 , ’% f %e\n ’ , data2 ) ;

45 %f c l o s e ( f i l e I D 2 ) ;

46

47 f i g u r e (1 )

48 p lo t ( s q r t (AA) , output /( output (1 ) ) , ’−r ’ , ’ l i n ew id th ’ , 4 ) ;

49 hold on

50 s c a t t e r ( s q r t ( Experimental A ) , Ampl i f i ca t ion , ’b ’ , ’ l i n ew id th ’ , 4) ;

51 x l a b e l ( ’ In c id en t power a m p l i f i c a t i o n ’ ) ;

52 y l a b e l ( ’ Enhancement ’ ) ;

53 t i t l e ( ’ Power enhancement A vs . s i g n a l enhancement ’ ) ;

54 %a x i s ( [ 1 10 0 4 5 ] )

B.2 ASOT- and Calibration-Field-Induced

Magnetization Distribution and MOKE Response

In this section, I summarize the MATLAB code that I used for the simulations in Chap. 5.

First of all, “GetMagDist2” function is used to generate the ASOT-induced magnetization

distribution shown in Fig. 5.5. The “MOKEMLmodelSUB3” function can take in a ran-

dom magnetization distribution and calculate the corresponding MOKE response. There-

125



fore, I got the ASOT-induced MOKE response by applying the “MOKEMLmodelSUB3”

function to the previous calculated ASOT-induced magnetization distribution. Similarly,

the MOKE response due to a uniform calibration field was calculated by applying the

“MOKEMLmodelSUB3” function to an uniformly-tilted magnetization distribution.

B.2.1 ASOT-Induced Magnetization Distribution

Fig. 5.5 is produced by “GetMagDist2” function:

1 %Input the ASOT at the top and bottom s u r f a c e s ; output the ASOT−

induced magnet izat ion d i s t r i b u t i o n in a s inga l−l a y e r FM

2 f unc t i on m1 = GetMagDist 2 ( H ex , M s , H a , n , a , J ex , tau T ,

tau B , mu)

3

4 M eff = M s − H a ; %Calcu la te the e f f e c t i v e f i e l d from

demagnet izazt ion and s u r f a c e an i so t ropy

5

6 % cons t ruc t the matrix

7 A i i = ( H ex + M s) *mu*a*M s + 2* J ex ; %c r e a t e the d iagona l

element ( I n s i d e l a y e r s are not a f f e c t e d by the s u r f a c e

an i so t ropy )

8 Diag = l i n s p a c e ( A i i , A i i , n ) ; %c r e a t e the vec to r f o r matrix

d iagona l

9 subDiag 1 = l i n s p a c e (−J ex , −J ex , n−1) ;%c r e a t e the subdiagona l

v e c t o r s

10 subDiag 2 = l i n s p a c e (−J ex , −J ex , n−1) ;

11

12 %Calcu la te the e f f e c t i v e f i e l d caused by sp in cur rent
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13 f o r i = 1 : 1 : n

14 tau ( i ) = 0 ; %Calcu la te the sp in cur rent l o s s in each l a y e r s (

t o t a l n l aye r s , compared to n+1 i n t e r f a c e s )

15 %dJs z ( i ) = Js z ( i )−J s z ( i +1) ;

16 end

17 tau (1 ) = tau T ;

18 tau (n) = tau B ;

19

20 M = diag ( Diag ) + diag ( subDiag 1 , 1) + diag ( subDiag 2 , −1) ; %

cons t ruc t the Matrix in euqat ion 5

21 M(1 ,1 ) = ( H ex + M eff ) *mu*a*M s + J ex ;

22 M(n , n) = ( H ex + M eff ) *mu*a*M s + J ex ;

23 % c a l c u l a t e magnet izat ion d i s t r i b u t i o n

24 m1 = M\ tau . ’ ;

B.2.2 MOKE Response of a certain Magnetization Distribution

“MOKEMLmodelSUB3” function:

1 % Input a magnet izat ion d i s t r i b u t i o n and c a l c u l a t e s po la r complex

Kerr ang le ( i n c i d e n t ang le i s 0 degree )

2 % Uses formal ism in 1998 You JAP

3

4 f unc t i on [ Re f l ec tance , Phi S , Phi P ] = MOKE MLmodel SUB3( lambda , h ,

n ,Q,mz)

5

6
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7 Af = [ 1 0 1

0 ; . . .

8 0 1 0

−1 ; . . .

9 −1 i *n( end ) *Q( end ) *mz( end ) /2 −n( end ) 1 i *n( end )

*Q( end ) *mz( end ) /2 −n( end ) ; . . .

10 n( end ) 1 i *n( end ) *Q( end ) *mz( end ) /2 −n( end

) 1 i *n( end ) *Q( end ) *mz( end ) / 2 ] ; %The

subst rate ’ s boundary matrix

11

12 Told = Af ;%Put the subst rate ’ s the matrix as the l a s t term

13

14 f o r j = length (mz)−1:−1:2 %c a l c u l a t e the boundary matices f o r

magnetic l a y e r s ( t o t a l i s n−2 l a y e r s )

15 A = [ 1 0 1

0 ; . . .

16 0 1 0

−1 ; . . .

17 −1 i *n( j ) *Q( j ) *mz( j ) /2 −n( j ) 1 i *n( j ) *

Q( j ) *mz( j ) /2 −n( j ) ; . . .

18 n( j ) 1 i *n( j ) *Q( j ) *mz( j ) /2 −n( j )

1 i *n( j ) *Q( j ) *mz( j ) / 2 ] ;

19

20 U = exp(−1 i *2* pi /lambda*n( j ) *h( j ) ) ;

21 d e l t a i = −pi *n( j ) *Q( j ) *h( j ) *mz( j ) /lambda ;

22 d e l t a r = d e l t a i ; %i d e n t i c a l

23
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24 D = [U* cos ( d e l t a i ) U* s i n ( d e l t a i ) 0 0 ; . . .

25 −U* s i n ( d e l t a i ) U* cos ( d e l t a i ) 0 0 ; . . .

26 0 0 cos ( d e l t a r ) /U s i n ( d e l t a r )

/U ; . . .

27 0 0 −s i n ( d e l t a r ) /U cos ( d e l t a r

) /U ] ;

28

29 Tnew = A*D*Aˆ(−1)*Told ; %mult ip ly one l a y e r per i t e r a t i o n

30 Told = Tnew ;

31 end

32

33 j = 1 ;

34 Ai = [ 1 0 1

0 ; . . .

35 0 1 0

−1 ; . . .

36 −1 i *n( j ) *Q( j ) *mz( j ) /2 −n( j ) 1 i *n( j ) *Q

( j ) *mz( j ) /2 −n( j ) ; . . .

37 n( j ) 1 i *n( j ) *Q( j ) *mz( j ) /2 −n( j )

1 i *n( j ) *Q( j ) *mz( j ) / 2 ] ;%Ca lcu la te the

boundary matrix o f a i r

38

39 T = Aiˆ(−1)*Told ;

40

41 G = [T(1 , 1 ) T(1 , 2 ) ; T(2 , 1 ) T(2 , 2 ) ] ;

42 I = [T(3 , 1 ) T(3 , 2 ) ; T(4 , 1 ) T(4 , 2 ) ] ;

43
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44 R = I /G;

45

46 Ref l e c tance = abs (R(1 , 1 ) ) ˆ2 + abs (R(2 , 1 ) ) ˆ2 ;

47 Phi S = R(2 , 1 ) /R(1 , 1 ) ;

48 Phi P = R(1 ,2 ) /R(2 , 2 ) ;

B.2.3 ASOT-Induced MOKE Response

Code used to generate the fitting curves in Fig. 5.9(b):

1 % Calcu la te ASOT−induced MOKE response o f a s i n g a l l a y e r FM

2

3 c l e a r a l l

4

5 % Def ine a l l the parameters and constant

6 %Parameters f o r s tep one

7 tau T = −1.8e−6; %ASOT at the top s u r f a c e ( J /(mˆ2) )

8 tau B = −tau T ; %ASOT at the bottom s u r f a c e ( J /(mˆ2) )

9 J e = 1e +11; %charge cur r ent dens i ty (A/mˆ2)

10 %sigma = 9.43 e+6; %e l e c t r i c a l conduc t i v i t y (S/m) Pt

11 l e x = 4e−9; %exchange length , due to exchange coupl ing , approx 4

nm; (m)

12 a = 4e−10; %l a t t i c e constant−−t h i c k n e s s o f each sub laye r (m)

13

14 mu = 4* pi *1e−7; %permeab i l i t y (N/Aˆ2)

15 h bar = 1.0546 e−34; %planck constant ( J* s )

16 e = 1 .6 e−19; % e l e c t r o n charge (C)
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17 M s = 1.09/mu; %s a t u r a t i o n magnet izat ion (A/m) ( from mu*Ms = 1.09T

)

18 H a = 79.77*27074/2/( a/1e−9) ; %s u r f a c e an i so t ropy e f f e c t i v e f i e l d

(A/m)

19 J ex = 0 .64*2*19 .1 e−12/a ; %i n t e r l a y e r exchange s t r ength ( J/mˆ2)

%0.64 i s from the s c a l i n g o f t h i c k n e s s f a c t o r 0 . 8

20

21 %Parameters f o r MOKE response c a l c u l a t i o n

22 lambda = 780e−9; % wavelength (m)

23 r e f r a c l a y e r = 2.38+1 i *4 . 3 6 ; %r e f r a c t i v e index o f the FM l a y e r ( f o r

Py,2 .2+1 i *4 . 2 ) (14 . 78nm pene t ra t i on depth )

24 r e f r a c S i = 3.7+1 i *0 . 0 0 8 ; %r e f r a c t i v e index o f the sub s t r a t e ( S i )

3.7+1 i *0 .007

25 r e f r a c S iO2 = 1.47+1 i * 0 . 0 ; %r e f r a c t i v e index o f the ox ida t i on (

SiO2 ) 1.47+1 i *0

26 r e f r a c P t = 2.73+1 i *6 . 0 4 ; %r e f r a c t i v e index o f the ( Pt )

27 r e f rac Cu = 0.153 + 1 i *4 . 8 4 ; %r e f r a c t i v e index o f copper 0 .153 + 1

i *4 .84

28 Q FM = 0.0036−1 i *0 . 0 1 1 ; % magneto−op t i c c o e f f i c i e n t o f Co (0.043+1

i *0 .007)

29 T max = 60e−9; %The maximum t h i c k n e s s o f the s imu la t i on (m)

30

31

32 i = 1 ;

33 Ref l e c tance = ze ro s ( round (T max/a ) ,1 ) ;

34 Phi S = ze ro s ( round (T max/a ) ,1 ) ;

35 Phi P = ze ro s ( round (T max/a ) ,1 ) ;
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36 f o r T = a : a : T max %FM l a y e r t o t a l t h i c k n e s s in (m)

37

38 n = round (T/a ) ; %i t e r a t i o n number ( number o f sub layer s , not the

number o f i n t e r f a c e s )

39

40 % Calcu la te ASOT−induced magnet izat ion d i s t r i b u t i o n

41

42 m1 = GetMagDist 2 ( H ex , M s , H a , n , a , J ex , tau T , tau B , mu) ; %

m1 i s the magnet izat ion t i l t caused by the ASOT

43

44 % sample l a y e r ( f i r s t i s a i r , l a s t i s subs t ra te , t h i c k n e s s o f both

do not matter )

45 r e f rac temp = l i n s p a c e ( r e f r a c l a y e r , r e f r a c l a y e r , n ) ; % Make a

r e f r a c t i v e index vec to r f o r a l l the sub l aye r s

46 r e f r a c = [ 1 re f rac temp re f r a c S iO2 r e f r a c S i ] ; % Construct

the t o t a l r e f r a c t i v e index vec to r

47 Q temp = l i n s p a c e (Q FM, Q FM, n) ; % Make a Q vecto r f o r a l l the

sub l aye r s

48 Q = [ 0 Q temp 0 0 ] ; % Construct the t o t a l magneto−o p t i c a l

cons tant s vec to r

49 h temp = l i n s p a c e ( a , a , n ) ; % Make a t h i c k n e s s vec to r f o r a l l the

sub l aye r s

50 h = [ i n f h temp 1 .0 e−6 i n f ] ; % Construct the o v e r a l l t h i c k n e s s

vec to r

51 mz = [ 0 m1’ 0 0 ] ; % Construct the o v e r a l l magnet izat ion vec to r

in z−d i r e c t i o n

52
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53

54 [ Re f l e c tance ( i ) , Phi S ( i ) , Phi P ( i ) ] = MOKE MLmodel SUB3( lambda , h

, r e f r a c , Q, mz) ; %Calcu la te the MOKE response f o r one

t h i c k n e s s

55

56

57 i = i + 1 ;

58

59 end

60

61 SHA = 2* e* tau T /( h bar * J e ) ; %Ca lcu la te sp in Hal l ang le

B.2.4 MOKE Response for the Calibration Field

Code used to generate the fitting curves in Fig. 5.9(a):

1 %% MOKE response under a c a l i b r a t i o n f i e l d as a fucn t i on o f FM

t h i c k n e s s

2 c l e a r a l l

3

4 %Parameters f o r Ca l i b r a t i on F i t t i n g

5 a = 0 .4 e−10; %l a t t i c e constant (m)

6 lambda = 780e−9; % wavelength (m)

7 r e f r a c l a y e r = 2.38+1 i *4 . 3 6 ; % r e f r a c t i v e index o f the FM l a y e r

8 %re f rac Cu = 0.2+1 i * 4 . 9 ; % r e f r a c t i v e index o f the Cu l a y e r

9 r e f r a c S i = 3.7+1 i *0 . 0 0 8 ; %r e f r a c t i v e index o f the sub s t r a t e ( S i )

10 r e f r a c S iO2 = 1.43+1 i * 0 . 0 ; %r e f r a c t i v e index o f the ox ida t i on (

SiO2 ) %%%%%%%%%%%%%%%%%%%%%%%%%%%%VERY SENSITIVE
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%%%%%%%%%%%%%%%%

11 %refrac Al2O3 = 1.6716+1 i *0 ; %r e f r a c t i v e index o f the ox ida t i on (

Al2O3)

12 %r e f r a c P t = 2.73+1 i *6 . 0 4 ; %r e f r a c t i v e index o f the ( Pt )

13 %re f rac Cu = 0.153 + 1 i *4 . 8 4 ; %r e f r a c t i v e index o f copper

14 Q FM = 0.0036−1 i *0 . 0 1 1 ; % magneto−op t i c c o e f f i c i e n t o f Py

15 T max = 80e−9; %The maximum t h i c k n e s s o f the s imu la t i on (m)

16 m z = 0.85 e−3; %normal ized magnet izat ion t i l t in z−d i r e c t i o n , i s

a c t u a l l y m z/M s . ( rad ) ( assume mu 0M eff = 1T)

17

18 i = 1 ;

19 Ref l e c tance = ze ro s ( round (T max/a ) ,1 ) ;

20 Phi S = ze ro s ( round (T max/a ) ,1 ) ;

21 Phi P = ze ro s ( round (T max/a ) ,1 ) ;

22 f o r T = a : a : T max %FM l a y e r t o t a l t h i c k n e s s in (m)

23

24 % sample l a y e r ( f i r s t i s a i r , l a s t i s subs t ra te , t h i c k n e s s o f both

do not matter )

25 r e f r a c = [ 1 r e f r a c l a y e r r e f r a c S iO2 r e f r a c S i ] ; % Construct

the t o t a l r e f r a c t i v e index vec to r

26 Q = [ 0 Q FM 0 0 ] ; % Construct the t o t a l magneto−o p t i c a l

cons tant s vec to r ( a i r / Sio2 /Al2O3/Py/Al2O3/SiO2/ Si )

27 h = [ i n f T 1 .0 e−6 i n f ] ; % Construct the o v e r a l l t h i c k n e s s

vec to r ( a i r / Sio2 /Al2O3/Py/Al2O3/SiO2/ Si )

28 mz = [ 0 m z 0 0 ] ; % Construct the o v e r a l l magnet izat ion vec to r

in z−d i r e c t i o n ( a i r / Sio2 /Al2O3/Py/Al2O3/SiO2/ Si )

29
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30

31 [ Re f l e c tance ( i ) , Phi S ( i ) , Phi P ( i ) ] = MOKE MLmodel SUB3( lambda , h

, r e f r a c , Q, mz) ; %Calcu la te the MOKE response f o r one

t h i c k n e s s

32

33

34 i = i + 1 ;

35

36 end

37

38 %%

39 TT = a : a : T max ;

40 Thickness = 0 . 8 * [ 5 , 10 , 15 , 20 , 30 , 40 , 60 , 8 0 ] ; %exper i ementa l

t h i c k n e s s po in t s

41

42 Cal ib = [ 2 . 8 5 * 1 . 6 2 , −28.72*1.24 , −22.88*1.11 , −18.70*1.05 ,

−14.07*1.00 , −10.88*0.99 , −7.01*0.96 , −6 .11*0 .94 ]/5 ; %

c a l i b r a t i o n Kerr r o t a t i o n ( urad )

43 Cal ib2 = [ −8 .7*1 .62 , −5.72*1.24 , −2.59*1.11 , −1.77*1.05 ,

−0.68*1.00 , −0.24*0.99 , 0 . 40*0 . 96 , 1 . 0 9 * 0 . 9 4 ] ; %c a l i b r a t i o n

Kerr e l l i p t i c i t y ( urad )

44

45 %data = [TT/1e−9; r e a l ( Phi S ’ ) *1 e6 ] ;

46 %f i l e I D = fopen ( ’ t h i c k n e s s c a l i b r a t i o n r o t a t i o n . txt ’ , ’w’ ) ;

47 %f p r i n t f ( f i l e I D , ’% f %e\n ’ , data ) ;

48 %f c l o s e ( f i l e I D ) ;

49
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50 %data2 = [TT/1e−9; imag ( Phi S ’ ) *1 e6 ] ;

51 %f i l e I D 2 = fopen ( ’ t h i c k n e s s c a l i b r a t i o n e l l i p t i c i t y . txt ’ , ’w’ ) ;

52 %f p r i n t f ( f i l e I D 2 , ’% f %e\n ’ , data2 ) ;

53 %f c l o s e ( f i l e I D 2 ) ;

54

55 f i g u r e (3 )

56 c l f

57 p lo t (TT/1e−9, r e a l ( Phi S ) *1e9 , ’ r ’ , ’ LineWidth ’ , 4) ;

58 hold on

59 p lo t (TT/1e−9, imag ( Phi S ) *1e9 , ’b ’ , ’ LineWidth ’ , 4) ;

60 hold on

61 s c a t t e r ( Thickness , Cal ib *1000 , ’ k ’ , ’ l i n ew id th ’ , 4) ;

62 hold on

63 s c a t t e r ( Thickness , Cal ib2 *1000 , ’b ’ , ’ l i n ew id th ’ , 4) ;

64 %hold on

65 %er ro rba r ( Thickness , Cal ib *1000 , e r r *1000 , ’ L ineSty le ’ , ’ none ’ ) ;

66 hold o f f

67 y l a b e l ( ’ Kerr r o t a t i o n ( nrad ) ’ )

68 x l a b e l ( ’FM t h i c k n e s s (nm) ’ )

69 t i t l e ( ’ S inga l FM l a y e r c a l i b r a t i o n MOKE s i g n a l at 780 nm

wavelength (Ha = 10k ) ’ )

136


