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ABSTRACT

This dissertation presents the development of sensorimotor primitives as a

means of constructing a language-agnostic model of speech communication.

Insights from major theories in speech science and linguistics are used to

develop a conceptual framework for sensorimotor primitives in the context

of control and information theory. Within this conceptual framework, sen-

sorimotor primitives are defined as a system transformation that simplifies

the interface to some high dimensional and/or nonlinear system. In the con-

text of feedback control, sensorimotor primitives take the form of a feedback

transformation. In the context of communication, sensorimotor primitives

are represented as a channel encoder and decoder pair. Using a high fidelity

simulation of articulatory speech synthesis, these realizations of sensorimotor

primitives are respectively applied to feedback control of the articulators, and

communication via the acoustic speech signal. Experimental results demon-

strate the construction of a model of speech communication that is capable

of both transmitting and receiving information, and imitating simple utter-

ances.
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CHAPTER 1

INTRODUCTION

Speech communication is defined as the transmission of information via pro-

duction and reception of the speech signal. Although the speech signal is

heavily studied, the robustness achieved in human speech communication is

not fully understood. This is evidenced by the fact that automatic speech

recognition systems are still outperformed by most humans. In contrast with

traditional research of speech and language, this thesis considers the study of

speech communication from a constructive approach by modeling speech as

a communication system using an articulatory model of speech production.

With this approach, the problem of speech communication can be naturally

addressed by utilizing the principles of both control and information theory.

Throughout this thesis, we will develop the conceptual framework of senso-

rimotor primitives as the building blocks of the speech communication sys-

tem. Using primitives to represent the transmission of information through

speech, we hope to gain deeper insight into the relationship between speech,

language, and intelligence.

This chapter provides background, motivation, and basic principles of the

research presented throughout this thesis. We will first provide motivation

for the study of articulatory speech synthesis and its importance in the de-

velopment of speech primitives as a basis for communication and language.

We will consider major theories of speech communication in order to place

this sensorimotor basis of speech into the greater context of speech science

and linguistics. The general notion of sensorimotor primitives will then be

introduced in the context of these prominent theories.

1



1.1 Motivation

The development and control of an articulatory model of speech synthesis

is most directly motivated by the need for synthesized speech that sounds

more natural than what is achievable using traditional concatenative meth-

ods [1]. In contrast with concatenative methods of speech synthesis, articu-

latory methods are able to leverage the dynamics of speech production as a

means of addressing phenomena such as co-articulation. Given that the spec-

tral features of a phoneme can be significantly different depending on what

it precedes or follows, this approach eliminates the need for an exhaustive

dictionary of multiphonic units. Additionally, even the most state-of-the-

art methods of concatenative speech synthesis still lack the natural flow of

human speech. Although concatenative methods do offer the benefit of com-

putation simplicity, the improvement garnered by increased computational

power appears to yield diminishing returns [2]. With advances in comput-

ing over recent decades, synthesizing speech through a biologically faithful

model of the vocal tract is now possible on a general purpose computer. By

focusing on articulatory speech production, this thesis represents a return to

first principles in speech signal processing.

At a fundamental level, this work is motivated by questions about the

nature of human language and the optimization principles that guide its

development. Speech and language are both unique to humans and funda-

mentally tied to the notion of human intelligence [3]. For the majority of

humans, language and language acquisition are closely tied to the speech sig-

nal, and as a consequence, speech has an intrinsic influence on the structure

of languages. Furthermore, the notion of primitive units of control has been

actively researched in the context of robotics; however, the relation between

such primitive units and language is often neglected. In order to address

this, we seek to introduce a general framework for defining the notion of

these primitive units of control in terms of linguistic structure. With this in

mind, we now consider the significance of language in the study of artificial

intelligence and robotics. From there we will provide more in-depth reason-

ing as to why articulatory speech synthesis is of critical importance to this

investigation of language, communication, and control.
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1.1.1 Language Acquisition and Intelligence

At present, humans are the most comprehensive example of intelligence that

is available for study. One approach to developing a system with intelligence

comparable to humans would be to attempt to directly model the human

brain. In practice, however, direct modeling of the human brain is prohibitive

due to the complexity of the human nervous system and the combinatoric

challenge of modeling the connections between neurons. Historically, the

challenges of modeling the human brain have been circumvented by utilizing

the notion of functional equivalence in the development of intelligent systems

[4][5]. Under this paradigm, we need not concern ourselves with the actual

mechanisms of the human brain but instead focus on developing a mathe-

matical and computational model that exhibits equivalent behavior. With

this notion of functional equivalence, we shift our focus to developing the

fundamental mathematical structures of intelligence by drawing inspiration

from human intelligence.

Although there are many important factors that contribute to human in-

telligence, language is among the most fundamental. The use of language is

ubiquitous in humans and has been shown to be tied directly to the human

ability to problem solve. Evidence for the significance of language in human

intelligence appears in studies of people who, for reasons other than neuro-

logical impairments, never fully acquired use of language and syntax. For

individuals lacking full linguistic ability, cognitive tasks such as planning or

abstraction are difficult or impossible [6][7]. In addition, as children acquire

language their understanding of the surrounding environment reinforces and

is reinforced by the process of language acquisition [8]. With such observa-

tions in mind, we posit that language and the process by which it is acquired

are the critical elements that enable the general purpose intelligence found

in human cognition.

While linguistic structure has been thoroughly studied in the form of for-

mal grammars, such mathematical structures give limited insight into natural

languages used by humans [3]. This is likely due to the fact that such mathe-

matical considerations of language do not provide any insight into the driving

principles that lead to the emergence of language; they only detail the rules

that natural language appears to follow. In essence, such a top-down anal-

ysis of language neglects the more far reaching role that language plays in
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cognition in general. Rather than focus on the structure of language as it ex-

ists, we instead focus our attention on the acquisition process. In particular,

we seek to identify the necessary ingredients for a system to automatically

acquire language in a manner similar to humans.

1.1.2 Language and Embodiment

In Alan Turing’s 1950 paper [5], he presents the notion of functional equiva-

lence as the primary paradigm for the development of an intelligent machine.

Under that paradigm he presented his “imitation game,” which is now com-

monly known as the Turing test. Since this publication, the Turing test has

strongly influenced artificial intelligence research leading to a disproportion-

ate focus on abstracting specific human behaviors. In this same publication,

however, Turing suggested that this approach may not be successful and

presented an alternative approach to developing an intelligent machine. In-

terestingly, Turing’s alternative touches on the significance of language and

language acquisition as fundamental to the development of an intelligent ma-

chine. The following excerpt is taken from the second to last paragraph of

the 1950 paper:

We may hope that machines will eventually compete with men in

all purely intellectual fields. But which are the best ones to start

with? Even this is a difficult decision. Many people think that

a very abstract activity, like the playing of chess, would be best.

It can also be maintained that it is best to provide the machine

with the best sense organs that money can buy, and then teach

it to understand and speak English. This process could follow

the normal teaching of a child. Things would be pointed out and

named, etc. Again I do not know what the right answer is, but I

think both approaches should be tried.

Significantly, Turing’s alternative suggests that a machine would need some

form of embodiment (sensors and actuators) in order to learn and under-

stand language. Since the time of Turing’s writing, experimental studies have

strengthened the hypothesis that language is strongly related with sensory

perception. In particular, the structure of one’s native language has been

shown to directly influence something as simple as the perception of color.
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Specifically, a color that has a definitive name in a person’s native language

is more readily distinguished from other similar colors [9]. This is further

supported by experimental results that show that prelingual children per-

ceive color using a different brain region than adults [10]. In addition, one’s

native language has also been shown to influence more abstract cognitive

processes, such as predicting another person’s behavior [11]. Furthermore, in

children, the ability to categorize objects and abstract concepts is reinforced

by learning the words for describing/naming them [8]. These results lend

credence to Turing’s intuition that motor function and sensory experience

are fundamental and requisite for the acquisition of language.

1.1.3 Linguistic Structure in an Analog World

Linguistic structure may be thought of as a symbolic framework within which

a set of symbols are constructed and related to one another. This structure

is then used to represent information in a manner that can be communicated

from one agent to another. From a more information theoretic perspective,

language serves as a coding scheme that provides redundancies that reduce

the probability of error (i.e. misinterpretation) when communicating over an

unreliable channel. A central problem with this notion of language is that

linguistic structure is inherently symbolic in nature while the world in which

we live is, as far as we know, analog in nature. In order to learn language,

we must first address the problem of mapping from the analog environment

to a symbolic representation. Moreover, the high variability between human

languages and the manner in which languages evolve over time suggest that

such a mapping should be both adaptive and self-organizing in nature [3].

Although there has been extensive research into the problem of learning

a symbolic structure within an analog environment, most existing methods

require some a priori knowledge of the structure of the data. For example,

machine learning techniques have been used to automatically characterize

the probabilistic structure of a set of data in order to automatically generate

meaningful insights about the mechanics by which the data were generated

[12][13][14]. In addition, the problem of one-shot learning such that a ma-

chine might be able to generalize from a single experience (in much the same

way people do) has also seen significant advances [15][16]. While these ad-
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vances are promising, they each require some level of prior knowledge of the

structure to be learned. Although it is possible that the human brain might

be hardwired with some level of prior knowledge about the structure of the

environment, this hardwiring is still the result of genetic adaptation that has

simply been learned on an evolutionary time-scale. With this in mind, we

will consider the problem of learning both the symbolic structure and the

correspondence between the symbols and the environment as starting from

a blank slate. Given the inherent feedback loop between categorization and

language acquisition [8], it seems likely that the mathematics of control the-

ory play a large part in this process. In particular, we will focus our attention

on this problem of mapping the continuous sensory input and motor outputs

onto a symbolic and linguistic framework.

1.1.4 Speech Articulation as a Starting Point

The fundamental premise behind this work is that language is intrinsically

tied to the speech signal. This is not to say that languages cannot take other

forms; in fact, sign language has been observed to emerge in communities

of people born with hearing impairments [17]. Rather, we posit that the

evolution of language occurred through utilization of the speech signal for

communication. As such, the speech signal and the speech production process

are integral to the study of language acquisition. Furthermore, the speech

production process has a strong influence on the structure of the speech signal

and consequently on the structure of natural language.

At a fundamental level, if we consider language as a coding scheme for

the transmission of information, the dynamics of the vocal tract impose fun-

damental restrictions on the structure of this code in much the same way

that bandwidth limitations impose restrictions on coding schemes used for

wireless communication. In particular, the dynamics of the vocal tract limit

the speed at which speech sounds may be produced and the speed at which

speech can transition from one sound to another. In addition, the momentum

of the articulators causes the production of one phoneme to influence the pro-

duction of the following phoneme. These observations are further reinforced

by the fact that production models have proven useful as a structural basis

for speech analysis [18].
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It is with all of this in mind that we focus our attention on the problem

of automatically learning to communicate through speech produced by an

anatomically faithful model of the human vocal apparatus. Fundamental

to developing a means of speech communication is the task of articulator

control and the task of encoding information onto the speech signal. In order

to accomplish this, we will develop the notion of sensorimotor primitives as a

general framework for addressing both challenges. We begin this development

by first considering speech communication from an engineering perspective.

1.2 Speech Communication

In order to appropriately set up the speech communication problem, we will

first consider three prominent theories that each address the question of how

humans transmit information using the speech signal. Specifically, we will

review the acoustic theory of speech production [19], the motor theory of

speech perception [20], and the more recent exemplar theory of speech [21].

By relating these theories to the feedback communication channel frame-

work shown in Figure 1.1, we will draw the necessary insights to develop a

generalized notion of speech primitives.

sn Encoder Speech Channel Decoder ŝn
ut yt

Figure 1.1: A communication channel interpretation of speech production
and perception.

In the system diagram of Figure 1.1, we denote the information-bearing

message as sn, the motor inputs to the vocal apparatus as ut, the propriocep-

tive output of the vocal tract as xt, and the acoustic signal as yt. In general,

we will use the subscript n to indicate a discrete sequence while the subscript

t indicates a continuous sequence. In the following discussion, we will focus

our attention on the implications of each theory on the nature of the encoder

and decoder in this diagram. Using these insights, we will then introduce the

notion of speech primitives in the context of this feedback communication

system.
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1.2.1 The Acoustic Theory of Speech Production

We begin with the acoustic theory of speech production [19], which posits

that the acoustic speech signal is composed of segments that are isomorphic

to an alphabet of symbols. Historically, phonemes have been a favorite candi-

date for such a dictionary of symbols. Under this framework, the transmitted

message is fully represented by the frequency content of the waveform. This

implies that speech production is simply a goal-oriented activity in which the

speaker strives to achieve a given set of acoustic targets. As a consequence,

the articulatory process used to produce an acoustic signal is effectively unim-

portant to the listener.

Notably, the mapping of natural speech segments onto phonemes is often

ambiguous. Furthermore, mistakes commonly occur in the speech production

process, which leads to missing or incorrect phones occurring in the speech

signal. In order to deal with these ambiguities and errors, it is argued that the

listener first infers the utterance that the speaker intended to produce before

mapping the intended utterance onto a symbol sequence. In essence, the

listener performs error correction directly on the signal using some internal

model of speech prior to decoding the message.

Interpreting it in terms of a system diagram, we consider the structure

of the encoder and decoder that this acoustic theory implies. We have that

the encoder maps the message onto a sequence of speech units, ỹn, that is

then produced by the vocal apparatus. The message is then decoded in

two stages: first by estimating the intended speech sequence ŷn, followed by

decoding the message ŝn alphabetically from ŷn. A system diagram of the

transmitter structure is represented in Figure 1.2.

Source
Encoder

Reference
Tracker

Vocal
Tract

sn ỹn ut yt

Controller

Figure 1.2: A communication system interpretation of the acoustic theory of
speech production.

Given that this theory is built on the hypothesis that the speech signal is

alphabetic, then the dynamics of how it was produced are unimportant. In
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essence, we need only to model the signal itself in order to perform recogni-

tion. This ultimately led to the well known source-filter model of the speech

signal shown in Figure 1.3, wherein the speech production process is ab-

stracted away in terms of a time varying linear signal model. By casting

the speech signal in terms of a signal source and a linear time varying filter,

the computational and mathematical challenges of modeling the dynamics

of the vocal tract are bypassed. Historically, much of the research in speech

recognition and speech synthesis has implicitly and explicitly made use of

the source filter model [3][22][23].

White

Noise

•

• •
•
•
•
•
•
•

Periodic •
•
• • •

•
• • •

Impulse

•

•
• • • • • • •

H(z) Speech Signal

Variable Signal Source Time Varying Filter

Figure 1.3: The source filter model of speech.

Although the source filter model of speech enables the use of powerful

mathematical tools for speech processing, such as linear prediction, it does

not naturally address the higher order structure of the speech signal. As

a result, it fails to fully capture phenomena that exist in natural speech,

such as coarticulation and phoneme substitution. Some of these phenomena

can be dealt with by using multiphonic utterances (e.g. diphones, triphones,

words, phrases, etc.) as the building blocks of the speech signal rather than

single phones or phonemes. This approach can be used to address the con-

text sensitivity of phonemes and it enables the traditional mathematics of

speech signal processing such as the hidden Markov model [3]. However,

it also combinatorially increases the amount of training data necessary for

both recognition and synthesis. Although this combinatoric explosion can

typically be dealt with using modern computing technology, it does not seem

likely that the human brain has access to such levels of computing power. In

short, a comprehensive theory of speech communication should solve these

ambiguities using the constraints of the speech production process.
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1.2.2 The Motor Theory of Speech Perception

Converse to the acoustic theory of speech production is the motor theory of

speech perception. As previously noted, mapping the speech signal onto a

sequence of phonemes is often ambiguous. Nevertheless, humans are capable

of robustly performing speech recognition and phoneme identification despite

this ambiguity. In order to address this, the motor theory of speech percep-

tion proposes that humans utilize the acoustic signal in order to infer a set

of invariant neuromotor commands [20][24]. These neuromotor commands

would then map isomorphically onto an alphabet of articulatory phonemes

that represent the symbol sequence of the transmitted message. Under this

paradigm, speech is then perceived by inferring the articulatory gestures of

a speaker based on the observed acoustic signal.

In order to represent the motor theory of speech perception, it is best to

interpret the encoder as a control system. Specifically, we represent speech

production in terms of a reference tracking control system where the refer-

ence signal corresponds to articulator positions or some abstraction of them.

Figure 1.4 is a system diagram of this interpretation of the motor theoretic

notion of speech communication. Here the message is encoded as a sequence

of reference targets x̃n that the articulators are driven toward using a ref-

erence tracking control. Speech is then recognized by estimating this target

sequence using an acoustic observer that mirrors this controller architecture.

Under this paradigm, x̃n represents the set of desired articulatory gestures

that are alphabetic in that each gesture maps to a symbol that is to be

transmitted. Speech communication is then reduced to finding a means of

encoding the message sn as a set of target gestures on x̃n which can be esti-

mated by the acoustic observer. It should be noted that this theory requires

that the articulatory gestures be fully observable (in the control theoretic

sense) based on the acoustic signal yt. In addition, this theory suggests

that an internal model of the speech production process is essential to the

robustness of human speech perception.

Although the motor theory of speech perception presents a potentially

elegant explanation of the robustness of human speech perception, the im-

plementation of a speech recognition system based on this concept has en-

countered significant hurdles. The foremost obstacle to directly applying

such an approach comes from the fact that acoustic to articulatory inver-
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Source
Encoder

Reference
Tracker

Vocal
Tract

sn x̃n ut
yt

xt

Controller

Figure 1.4: Speech production model based on motor theory of speech per-
ception.

sion is a poorly constrained optimization problem. Specifically, there exist

many possible solutions to finding a vocal tract area function that produces a

given speech sound. This ambiguity can be addressed by imposing additional

constraints on the problem, such as minimizing the energy expended or mini-

mizing the total movement of the articulators, though it is unclear what set of

constraints correspond to those implemented within the brain [25]. Despite

such challenges, gesture-based articulatory models have been demonstrated

to account for phenomena such as coarticulation and phoneme substitution

in isolated word recognition [26]. Additionally, the use of articulatory models

has been shown to yield improvements in speech recognition wherein both

audio and articulator data are available during classification and/or during

training [27]. Furthermore, the use of an underlying articulatory model has

been shown to naturally account for the inherent asynchrony between audio

and video features when performing audio visual speech recognition [28].

Recently, studies of speech production have shown that there exists ambi-

guity in speech articulation as it maps to the acoustic waveform, most notably

in the English /r/ [29]. This result suggests that human speech perception

is not performed solely by inferring a set of neuromotor commands; rather,

the acoustic targets themselves play a fundamental role [30]. Although such

a result suggests that a purely motor theoretic model of speech perception

is unlikely, the use of articulatory models in automatic speech recognition

has been demonstrated to improve recognition performance. Interestingly,

an experiment in speech perception in infants with and without a bite-block

suggests that motor function does play role in human speech perception well

before the subjects had learned to speak [31]. Furthermore, a recent survey

of functional magnetic resonance imaging (fMRI) and transcranial magnetic

stimulation (TMS) studies of speech perception indicates that the motor cor-
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tex is relevant to speech perception and comprehension [32]. Although the

motor theory is unlikely to fully explain human speech perception, these lines

of evidence suggest that motor control does play an important role.

1.2.3 Exemplar Theory of Speech

Both the motor and acoustic theories of speech fundamentally assume that

speech is composed of some set of information-bearing units that are used

to construct words and larger utterances; however, this assumption is based

on little more than human intuition. As is a common theme in artificial

intelligence research, such intuitions of the internal functions of the human

brain are often misleading. Exemplar theory essentially rejects intuition that

speech is composed of alphabetic units and instead proposes a more empiri-

cally motivated theory of how speech is stored in the brain for the purpose of

speech recognition and communication. In this section, we will briefly outline

the evidence for the rejection of phonemes in favor of the idea that speech is

recognized using exemplar utterances that are stored in memory [21].

As stated in Section 1.2.2, phonemes generally lack a clean definition in

terms of spectral characteristics. As such, determining phoneme boundaries

or phoneme categorization based on the acoustic spectrum is often poorly

defined. This problem is especially prominent when one examines phonemes

that are co-articulated. One such example is the /d/ phoneme when pro-

nounced in the diphones /di/ and /du/. Perceptually, these two utterances

begin with the same phoneme; however, their spectral features shown in Fig-

ure 1.5 are quite different. Much like the study of the English /r/ phoneme

illustrates a shortcoming in the motor theory of speech perception, this spec-

tral variation in the /d/ phoneme seems to illustrate a similar shortfall in

the acoustic theory of speech production. One possible, and arguably likely,

reason for this problem is that the assumption of the existence of phonemes

is fundamentally incorrect.

If phonemes are an incorrect characterization of speech, why has speech

research been so strongly influenced by intuition that speech is segmental?

In short, this intuition likely stems from the ubiquitous training in reading

and writing an alphabetic orthography, particularly in western cultures and

especially among academics. While training in an alphabetic orthography
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Figure 1.5: A comparison of the spectrograms of [di] and [du], illustrating
the high degree of variance in the definition of the [d] phoneme.

is a powerful tool for logical processing (such as arithmetic), it also biases

our intuition about how our cognitive processes actually work. In essence,

humans generally learn to speak long before we learn an alphabetic written

language, so the assumption that speech is alphabetic requires more justifi-

cation than a strong intuitive feeling [21]. To further bolster the case against

alphabetic speech, it has been shown that training in an alphabetic orthog-

raphy directly influences ones sense of the segmental nature of speech. This

was shown by demonstrating that Chinese individuals who were literate in a

non-alphabetic orthography were unable to perform tasks that demonstrated

basic phoneme awareness that is ubiquitous in individuals who were trained

in an alphabetic orthography [33].

The alternative to the phonetic theory of speech as argued by Port [21]

is that speech is stored in the brain as a trajectory through some high di-

mensional feature space. This rich representation of speech is then used for

speech recognition by performing something akin to nearest neighbor classi-

fication. In effect, he argues that we store utterances in the brain to form

a distribution in this space of trajectories and perform recognition based on

where a new utterance falls in this distribution. The support for such an idea

largely comes from observations showing that human listeners perform better

at recognition tasks when hearing the utterance spoken by the same speaker

each time [34]. In essence, the listener is using features that are specific to

that speaker when performing recognition, even though those features have

no bearing on the meaning conveyed by the utterance.

If speech is not represented as small alphabetic units in the brain, then
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we must consider some alternative means by which it is represented. The

alternative posited by exemplar theory is that speech is presented as a tra-

jectory through some feature space and speech recognition is performed by

matching an utterance up to some exemplar trajectory or distribution of ex-

emplar trajectories. Although the case against the existence of phonemes

is generally compelling, I argue that it is necessary to consider speech pro-

duction and perception in terms of a communication system. As such, the

notion of speech representation suggested in exemplar theory only indirectly

addresses how information is encoded in the speech signal. This fundamental

issue touched upon by Port [21] as an open question that is not yet explained

through exemplar theory:

After all, if memory is very detailed and rich, why would lan-

guages need to have phonologies? Why do they all appear to

build words from a large, but still limited, number of component

fragments (features, segments, onsets, codas, etc.)...

Claude Shannon’s theory of communication necessitates that information

is fundamentally represented as discrete units [35]. As a result, a communi-

cation signal must, at some level, be representable as a finite set of discrete

elements for communication to occur. This would necessitate that the speech

signal be composed of some set of information theoretic units. This notion

is reminiscent of distinctive feature theory that emerged from the Prague

school of linguistics around the same time of Shannon’s original publication.

In its most mature form, the theory effectively argues that the speech sig-

nal is broken down into a set of binary features that differentiate between

speech sounds [36][37][38][39]. It is important to note that the discretization

of speech sounds need not be universal; rather, it only need be consistent

between transmitter and receiver. In the case of two people communicating

through speech, all that matters is that the speaker and listener agree on

this discretization in order for a message to be reliably transmitted between

them. The observations made in exemplar theory suggest somewhat strongly

that any discretization of the speech signal is effectively localized between

agents that regularly interact.
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1.3 Speech Primitives as a Unifying Framework

Each of the prominent theories of speech communication carry important in-

sights that can be used to develop a more universal framework. Ultimately,

all of these theories are built upon assumptions about how and where infor-

mation is encoded in the speech signal, whether it be acoustic or articulatory.

In this work, we strive to construct a model of speech that is free from such

assumptions. Specifically, we seek to model the feature space in which in-

formation is encoded in the speech signal. Furthermore, we seek a method

of automatically identifying this feature space that does not incorporate the

biases of human intuition.

In order to discover such a feature space, we consider the implications of

both the motor and acoustic theories of speech. Specifically, we will explore

the notion of sensorimotor primitives as a set of operators that map between

some space of primitive features and the speech signal in a manner that

fundamentally incorporates both the mechanics of speech production and

acoustic features of the signal itself. We can do this by representing speech

communication in terms of the system diagram shown in Figure 1.6, where

the information-bearing message is encoded on the primitive features denoted

by ft. Our goal is then to develop a model of the primitive controller and

observer that allows us to encode information onto the speech signal, where

both articulatory and acoustic feedback play a central role. It is expected

that such a development will naturally lead to a representation of speech that

will directly address the question of how humans encode information within

the signal.

Primitive
Control

Primitive
Observer

Channel

ft f̂t

Figure 1.6: A system-level diagram showing how speech primitives fit into
the speech communication channel.
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1.4 Contributions of this Thesis

In this thesis, we develop the concept of speech primitives in terms of a

model of speech communication via control of the human vocal apparatus.

Importantly, we utilize the concept of sensorimotor primitives in developing

this model of speech and restrict the development of speech primitives to

unsupervised learning methods. As such, we will construct two models of

primitives based on linear feedback control and the decomposition of non-

linear operators. We will then show their representational power as both an

analytic and generative representation of speech. Finally, we will consider

the application of this framework to address the general question of encoding

information onto the speech signal and postulate future directions for this

research.

The remainder of this thesis is organized as follows. Chapter 2 lays out the

theoretical framework by which we will construct the notion of sensorimotor

primitives. Chapter 3 provides a review of relevant models of speech synthesis

and their relation to this work. Chapter 4 is an overview of the Praat model

of the vocal apparatus that is used for the experiments in this thesis. Chap-

ter 5 applies the notion of sensorimotor primitives to linear feedback control,

and develops an unsupervised method by which they can be learned. Chap-

ter 6 details experimental results in applying linear speech primitives to the

Praat vocal tract model. Chapter 7 develops the application of sensorimotor

primitives to nonlinear communication channels through the decomposition

of nonlinear operators. Chapter 8 details a final set of experimental results

in applying nonlinear speech primitives to the Praat model of the vocal tract.

Finally in Chapter 9, the implications of this work are discussed in relation

to speech communication and language acquisition in general.
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CHAPTER 2

PRIMITIVES: A FUNCTIONAL
DEFINITION

In this chapter we provide a more in depth treatment of the notion of primi-

tives as it pertains to this thesis. In the spirit of Norbert Wiener’s Cybernet-

ics [40], we will approach the process of speech communication in a holistic

manner by considering the speech signal in the context of control and commu-

nication. Specifically, we will draw upon insights that have been developed in

the context of control theory and robotics and extend those ideas in order to

apply them within the domain of articulatory speech production. We begin

by defining sensorimotor primitives as a means of simplifying the interface

to a complicated system that may be high dimensional or nonlinear. We

then apply this framework to both the domains of linear feedback control

systems and nonlinear communication channels and relate these system im-

plementations of sensorimotor primitives to articulatory control and acoustic

communication respectively.

2.1 On the Concept of Primitives

In the context of robotics and control, the notion of movement primitives has

many working definitions, which tend to differ depending on the application

around which they were developed [41]. Central to most of these definitions

is some notion of breaking down the space of control actions into components

such that any general action can be characterized as a composition of these

elements. This decomposition may be applied over the space of control inputs

to achieve some form of coordinative control, or it may be applied over the

time domain in order to find a set of sequential gestures. Implicit in these

notions is the goal of simplifying a complicated control problem. We take this

implicit goal to be the guiding principle in our development of sensorimotor

primitives; however, we will consider a more generalized approach to defining
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primitives as a means of problem simplification.

Among the various definitions of primitives, the manner by which they

are learned varies rather greatly depending on the focus of the research. In

some cases, primitives are assumed to be known a priori and are essen-

tially designed or selected by a human designer [42][16]. In other cases, they

are learned through guided training, such as a teacher guiding the learner

through the swing of a tennis racket [43][44]. In still others, primitives may

be constructed through fully unsupervised means such as Todorov’s devel-

opment of sensorimotor primitives [45][46][47]. In the case of human speech,

we note that humans acquire speech in a manner that is largely unguided,

i.e. much of the learning is conducted through unguided exploration. In

addition, we noted in Chapter 1 that we seek a model of speech that is as

free from the bias of human intuition as possible. As such, we will constrain

our development of speech primitives to methods that are fundamentally

unsupervised.

2.1.1 A Holistic Perspective

We begin our development of sensorimotor primitives by first modeling how

an agent interacts with its environment. In general, an agent interfaces with

the environment by receiving sensory inputs that are dependent on the state

of the environment and producing actuator outputs that influence the state of

the environment. This relationship is graphically shown in Figure 2.1, where

we emphasize that the generation of the speech signal is fundamentally a

means of influencing the state of the environment in a manner that other

agents can detect and interpret. Fundamental to this formulation is the idea

that the agent has an internal state that is influenced by the sensory inputs

it receives. As we proceed with developing speech primitives, we will build

them up from this fundamental notion of mapping from sensory input to

motor control through some internal state space.

Relating back to Figure 1.6, the primitive features are effectively a rep-

resentation of the internal state space, the primitive controller maps from

internal state to motor control, and the primitive observer maps from sen-

sory input to internal state. As we proceed to develop a means of learning

these primitive mappings, it is important to emphasize that all three of these
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Internal State

External Environment

Motor Control Sensory Input

Figure 2.1: A diagram of an agent interacting with the environment through
sensor inputs and motor actuation.

components are fundamentally tied together. In particular, selection of prim-

itive feature space is influenced by the operators that map in and out of it. If

we were to consider only the motor control (as in the motor theory of speech

perception) or only the sensory input (as in the acoustic theory of speech

production), the resulting feature space would not fully represent the agent’s

interaction with the environment. As we develop our notion of speech primi-

tives, we seek a sensorimotor representation such that the sensory input and

motor output are fundamentally built in.

2.1.2 Primitives in Speech

It should be noted that movement primitives have been studied in the context

of speech production. The first instance of primitives being directly used

for speech production can be found in the Task Dynamic model which will

be detailed in Chapter 3; however, the notion of primitives in this case is

in essence fully defined by human designers. As such, the development of

primitives that are used in the Task Dynamic model does not bear much

relevance to our goal of developing primitives in an unsupervised manner.
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More significantly, Ramanarayanan, et al. developed a data driven ap-

proach to the notion of movement primitives of the vocal tract [48][49]. In

their formulation, convolutional nonnegative matrix factorization was applied

under sparseness constraints (cNMFsc) in order to conduct a form of segmen-

tation of speech production data. Interestingly, this approach was applied

to audio visual data consisting of real-time MRI video and recorded audio

as well as data collected from articulatory synthesis software. The resulting

set of movement primitives was then shown to correspond to linguistically

meaningful gestures that represented a means of segmenting the audiovisual

speech data into something analogous to phonetic units. While these results

may be interesting, the use of cNMFsc imposes a great deal of a priori re-

strictions on the nature of the movement primitives that are derived from the

data. In particular, this approach requires that the duration of the primitives

and number of primitives also be chosen a priori. Lastly, the decomposition

method of cNMFsc does not appear to have any principled justification other

than the observation that nonnegative matrix factorization typically decom-

poses data into perceptually relevant components. In this work, however, we

seek to develop a notion of primitives from the first principles of control and

communication theory.

2.2 A Control Theoretic Perspective

We begin our development of speech primitives by drawing insight from the

notion of sensorimotor primitives as developed by Todorov [45][46][47]. In

his development, sensorimotor primitives are defined in terms of a feedback

transformation and the control policy implemented in that space. We define

the dynamical system with internal state zt, control input ut and observable

output yt. The dynamics of the system are then defined in Equation 2.1

where the function f defines the system dynamics and the function g defines

the sensory output mapping.

zt+1 = f(zt, ut)

yt = g(zt, ut)
(2.1)

In the case of the vocal tract, the overall dimensionality of zt is expected

to be large and cannot be directly observed. In order to interface with this
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system, we seek a feedback transformation that utilizes the system dynamics

in order to reach some useful representation. We first consider the state

estimator ẑt(yt−p, . . . , yt, ut−p, . . . , ut), or simply ẑt, which is a function of the

past inputs and outputs of the system. We then define the following feedback

transformation, where ht is the observable state and vt is the control input of

a new dynamic system shown in Equation 2.2, that is coupled to the original

system from Equation 2.1.

ht+1 = f̃ (ht, vt) (2.2)

ht = T (ẑt)

ut = G̃(ẑt, vt) = G(ht, vt)
(2.3)

Sensorimotor primitives are then defined as the feedback transformation

shown in Equation 2.3, where typically the transformation performed by the

operators T and G is chosen such that the task of controlling the system is

simplified in some manner (e.g. linearization and/or dimension reduction).

Given such a feedback transformation, we can then define h to be the prim-

itive feature space, where the primitive controller represented by G and the

primitive observer is represented by T . We can now formulate communi-

cation by selecting control inputs vt that drive toward some target state h̃

that can be observed by an external agent. This formulation is graphically

represented in Figure 2.2 where the high level controller is labeled as an en-

coder in order to emphasize that this formulation is fundamentally one of

communication.

GHigh Level
Control

T

Speech Production

h̃ vt ut yt

ht

Figure 2.2: A schematic representation of speech production based on sen-
sorimotor primitives as an interface to the vocal tract.

This concept of feedback transformation as primitives is particularly pow-
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erful in that it lends itself to being modularized such that disjoint sensory

channels can be incorporated through a cascade of feedback transforms. This

is particularly important in the context of vocal tract control, given that pro-

prioceptive feedback and acoustic feedback both play an important role. In

Chapter 5, we will develop a linear implementation of these sensorimotor

primitives and demonstrate their efficacy in controlling the vocal tract ge-

ometry. Conversely, employing linear sensorimotor primitives to control the

acoustic signal is, as will be shown in Chapter 6, doomed to failure due to the

highly nonlinear relationship between motor inputs and acoustic features. In

order to complete our mapping from the speech signal through some primi-

tive feature space, we must employ a nonlinear approach. Furthermore, the

feedback control framework assumes knowledge of the control inputs in order

to estimate the corresponding internal state. Given that this assumption is

never true in the context of speech perception, we must take a step back and

recast our problem from the perspective of communication theory.

2.3 A Communication Theoretic Perspective

When considering the individual agent controlling the vocal tract, it is rea-

sonable to assume that the agent has knowledge of both the sensory input

and motor outputs. In the case of two agents interacting through the envi-

ronment, one speaking and one listening, the listener only has knowledge of

the speaker’s effect on its sensory inputs. As such, we must find a means of

learning the mapping directly from sensory input onto the internal primitive

features. Relating back to Figure 2.1, we can learn this mapping through an

agent’s own interaction with the environment. Specifically, we consider the

communication channel laid out in Figure 2.3 where the primitive controller

and primitive observer can be thought of as learning an encoder and decoder

for a nonlinear communication channel.

By considering the speech communication channel in this feed-forward

manner, we can employ nonlinear methods of estimating the encoder E and

decoder D in tandem. In particular, Chapter 7 will detail an adaptation of a

general form of neural network architecture that was developed as a means

of accomplishing this goal.
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Figure 2.3: Notional depiction of the speech communication channel that
maps from motor control commands to acoustic features.

2.4 Conclusion

In this chapter, we have developed a general framework of sensorimotor prim-

itives as a means of interfacing between an agent and the environment. We

then applied this framework to both feedback control and communication as

a means of defining specific notions of sensorimotor primitives that can be

used to model speech communication. In both cases, the common thread is

the notion of learning a transform that maps from an agent’s internal state to

the state of the external environment through sensory input to actuator con-

trol. In this thesis, we will consider the problem of vocal tract control with

proprioceptive feedback under the feedback transformation construction. In

addition, we will apply the channel coding framework laid out in Section 2.3

to the problem of communication through the acoustic speech signal.

Our development of speech primitives is fundamentally built around char-

acterizing the dynamics of an agent’s integration with the environment. As

such, it is important that our primitives be learned using a model of the

vocal tract that is as anatomically faithful as possible. In the following two

chapters, we will review several significant articulatory models of speech pro-

duction and the articulatory model developed by Boersma, which is used

extensively in this thesis.
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CHAPTER 3

SIMULATING THE VOCAL TRACT

The central goal of this research is to develop a model of communication

via control of the vocal tract. As a first step toward this goal, this chapter

details the articulatory synthesizer used to implement this speech communi-

cation channel and places it in the context of broader articulatory synthesis

research. Given the rich history of articulatory speech synthesis, focus is

given to existing models of speech production that share a control architec-

ture that is relevant to our development of speech primitives, namely, the

Task Dynamic model [42] and the DIVA model (Directions Into Velocities of

Articulators) [50]. This chapter begins with a review of the anatomy of the

human vocal apparatus, giving special focus to the key anatomical structures

used in speech production. With this basic understanding of the anatomy of

speech production, the Task-Dynamic model and DIVA are reviewed. The

review of each of these models includes a special focus on their models of vo-

cal tract articulation and their relation to historically prominent articulatory

models, specifically the three models developed by Coker and Fujimura [51],

Mermelstein [52], and Maeda [53].

3.1 Anatomy of the Vocal Apparatus

Given that many simulations of human speech production only model key

portions of the corresponding anatomy, we begin by drawing a distinction be-

tween the vocal tract and vocal apparatus. Throughout this chapter, we will

refer to the vocal tract as the set of articulators and tubes that extend from

just above the glottis to lips and nostrils; the vocal apparatus is the larger

system of all articulators and tubes that are involved in speech production

and extends from lungs to lips and nose. In essence, the vocal apparatus

encompasses the entire system of anatomical structures involved in speech
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production while the vocal tract encompasses only a subset of that system.

The anatomy of speech production can be broken down into three major

sections of the vocal apparatus: the lungs, the larynx, and the vocal tract.

Figure 3.1 shows a cross-sectional view of the vocal apparatus labeled with

the key actuators for reference.

nasal cavity
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lips
tongue
body
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glottis

epiglottis

velum
nostril

Figure 3.1: Midsagittal view of the vocal tract anatomy.

At a high level, the speech signal is produced by the vocal apparatus by

forcing air out through the lungs, generating vibrations (typically in the lar-

ynx), and shaping the spectrum of those vibrations using the vocal tract.

The source-filter model of speech is derived from this segmentation of the

vocal apparatus by assuming that all of these three components are indepen-

dent of one another and abstracting them as a power source (lungs), a signal

generator (larynx), and a time varying filter (vocal tract) as depicted in Fig-

ure 3.2. Although the source filter model is a relatively rough approximation

of the speech production process, it serves as a strong mathematical simpli-

fication that has been useful in many speech signal processing applications

such as speech coding and recognition [19][22]. Additionally, the source-filter
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model is a useful abstraction when discussing the process of speech produc-

tion because it clearly highlights the primary function of each component of

the vocal apparatus.
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Figure 3.2: The source filter model of speech.

3.1.1 The Power Source: Lungs

The primary function of the lungs is to metabolize oxygen into the blood-

stream through breathing. Breathing is performed by actuating the di-

aphragm, ribcage, and abdominal muscles to change the volume of the chest

cavity and drive the pressure within the lungs above or below atmospheric

pressure. When inhaling, the chest cavity expands and the pressure in the

lungs drops below atmospheric pressure, causing air to rush into the lungs so

long as a path exists. When exhaling, the chest cavity contracts such that

the pressure in the lungs rises just above atmospheric pressure, forcing air

out of the lungs. It is during exhaling that speech is typically produced.

During speech, the lungs primarily function as a power supply where the

energy of the speech signal is derived from the pressure differential from the

interior of the lungs to the outside of the lips and nostrils. When a person

speaks, air is expelled from the lungs at near constant pressure at just above

atmospheric pressure, and the muscles of the ribcage and diaphragm are

controlled to maintain this near constant pressure throughout the duration

of the utterance [22]. The pressure generated by the lungs corresponds to

the energy available to the speech signal and, as such, the lungs represent a

primary means of volume control for the speech signal.
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Given that the lungs serve a relatively simple function in speech production

and they have little interaction with the rest of the vocal apparatus, the

lungs are often simplified as a constant pressure source in most articulatory

synthesizers. This simplification allows for computational resources to be

focused on the articulations of the vocal tract and aerodynamics of the vocal

folds, both of which have a more direct relationship with the spectrum of

the signal. In contrast, the energy supplied by the lungs plays a significant

role in the volume and prosody of speech. Although these aspects of speech

production are typically considered unimportant in speech recognition, they

are still information-bearing features of the speech signal. As such, a more

faithful simulation of the lungs is an important element for our model of

speech primitives for communication.

3.1.2 The Signal Source: Larynx

The larynx is a system of muscles, cartilage, and ligaments that are used

to control the vocal folds which are illustrated in Figure 3.3. The vocal

folds consist of two masses that stretch across the larynx from front to back.

The slit-like opening between the vocal folds, called the glottis, is used to

modulate a pressure wave onto the air passing through it based on the size of

the opening and tension in the vocal folds. The glottal opening and vocal fold

tension are controlled by the muscles attached to the thyroid and arytenoid

cartilages, as well as the hyoid bone which is shown in Figure 3.1. In the

context of speech production, the larynx has three key modes of operation:

voiced speech, unvoiced speech, and ejectives.

In voiced speech, the vocal folds are to used to generate a semi-periodic

pressure wave in the air passing through the larynx, which is generally re-

ferred to as the glottal wave. By adjusting the spacing and tension of the

vocal folds, they can be made to oscillate as air passes through the glottis.

This oscillation of the vocal folds is due to Bernoulli’s principle [22], which

roughly states that as the velocity of airflow increases, the local pressure de-

creases. When air passes through a constriction of the glottis, the pressure

within the glottis drops causing the vocal folds to be drawn together until the

glottis closes. With enough tension in the vocal folds and pressure building

behind the closed glottis, the vocal folds will spring open and release a puff
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Figure 3.3: Diagram of the vocal folds as viewed from the top down.

of air. This cycle is then repeated such that the output of the glottis consists

of a periodic train of puffs of air. The period of this oscillation is the pitch

period or fundamental frequency of the speech signal. The glottal wave pro-

duced by this process provides the excitation that is used to produce vowel

sounds and some voiced consonants.

In unvoiced speech, the vocal folds do not oscillate but they are less open

and more tense than during breathing. In this state, the air flow within and

just after the glottis becomes turbulent and produces high frequency noise.

Turbulent flow through the glottis is known as aspiration and is used in

whispered speech or certain phonemes such as “h” as in “happy.” Aspiration

can also be performed during voicing (the folds vibrate and produce turbulent

flow) in order to create a ‘breathy’ sounding voice.

Lastly, the glottis can be actuated in order to produce a single puff of air,

rather than a periodic sequence of puffs, which is used in the production of

ejective speech sounds. To do this, the glottis is fully closed allowing pressure

from the lungs to build up before the glottis is opened, releasing a single puff

of air. In this case, the glottis is specifically forced closed and open again by

the muscles of the larynx, not the Bernoulli effect.

In terms of the source-filter model of speech, the three production modes of

the larynx are abstracted as signal sources at the input of the time varying fil-

ter. Voiced speech is represented by a periodic impulse train, unvoiced speech

is represented by Gaussian white noise, and ejective speech is represented by

a single impulse. It should be noted that the vocal folds can be made to move

in other interesting ways that do not fit neatly into the categories of voiced,
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unvoiced, and ejective. In these cases, the vocal folds produce prominent

harmonic vibrations that elicit artifacts in the glottal waveform. Incorpo-

rating these nuanced behaviors into the source-filter representation of speech

would require the inclusion of a complicated set of signal sources. This in-

creased complexity would quickly diminish the inherent value of the source

filter model of speech, namely its simplicity. Alternatively, a model of speech

synthesis that directly simulates aerodynamic and myoelastic behavior of the

air and tissue within the larynx can more elegantly represent a wide range

of pressure waves produced in the larynx. With advances in modern com-

puting, the computational cost of a direct simulation of the larynx no longer

outweighs the benefits, especially in the context of unsupervised learning of

speech primitives for communication.

3.1.3 The Vocal Tract

The vocal tract consists of the oral cavity from the larynx to the lips and

nasal cavity from velum to nostrils. The nasal cavity is coupled to the oral

cavity by opening the velum. The length of the vocal tract, from glottis to

lips, is approximately 17cm on average for adult males and approximately

14cm for females. The shape of the vocal tract varies based on the movement

of the jaw, tongue, lips, and other actuating muscles. Actuation of the vocal

tract serves two primary purposes in speech production: spectral shaping of

the speech signal, and sound generation through turbulent flow and ejectives.

The vocal tract shape, typically represented by the cross sectional area

function measured along the length of the vocal tract, determines the acoustic

resonance frequencies of the vocal tract. These resonance frequencies are

known as formants and are widely considered to be critical information-

bearing features in the speech signal, particularly in western languages. The

term formant is typically used to refer to the spectral contribution of one

such resonant frequency and is represented in terms of both center frequency

and bandwidth. When the vocal tract is excited with a glottal waveform,

the resultant speech waveform will have spectral peaks corresponding roughly

to the formant frequencies of the vocal tract. The spectral distribution of

the speech signal is naturally abstracted as a linear filter where the pole

placement determines the formants. The actuators that play a critical role
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in control of the vocal tract area function, and consequently the formants,

are indicated in Figure 3.1. Notably, the tongue plays a dominant role in

controlling the area function of the vocal tract because it extends along such

a large portion of the vocal tract and is very dexterous. As a result, accurately

modeling the behavior of the tongue is critical in articulatory synthesis.

The nasal cavity is largely immobile and as such can be considered to

have a constant area function. The only actuator that directly affects the

nasal cavity and its interactions with the speech signal is the velum, which

opens and closes a pathway to the oral cavity. When the velum is open, the

airflow through the pharynx and oral cavity is allowed to flow through the

nasal cavity, thus altering the resonance behavior of the vocal tract. If flow

through the mouth is blocked by the lips or tongue, sound is propagated

through the nasal cavity to produce nasal sounds. Since the nasal cavity has

a large volume, the acoustic wave produced through nasal sounds is strongly

dominated by lower formant frequencies. If the velum is open during other

speech sounds, those sounds are nasalized in that airflow through the nasal

passage reduces pressure elsewhere in the tract and the resonances of the

nasal cavity dissipate energy to form an anti-resonance - much like a zero in

a linear filter.

Additionally, the vocal tract can be used as a sound source through either

turbulent flow or an impulsive release of pressure. If a constriction of the

vocal tract is juxtaposed to a relatively unconstricted segment, the change in

air flow velocity will result in turbulent flow and thus generate high frequency

noise. Alternatively, a constriction in the vocal tract momentarily closes off

air flow such that pressure can be built up and quickly released, generating

an ejective sound. In both cases, the shape of the vocal tract still affects the

spectral shape of the noise and the glottis may or may not generate noise

simultaneously.

As with lungs and larynx, abstracting the vocal tract as a time varying

filter sacrifices nuance in order to reduce the computational cost of the model.

While this trade-off is acceptable for many applications, the fidelity of the

speech production model is of utmost importance in our exploration of speech

primitives. As such, a direct simulation of the vocal tract is better suited to

this work. Given the large number of actuators that drive the area function

of the vocal tract, such a model must necessarily deal with the problem of

coordinating various actuators to achieve a specific goal. The two prominent
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models of speech production that achieve this are known as the Task Dynamic

model and the DIVA model. In the following sections, these models will be

examined with special focus given to the control of the vocal tract geometry

and techniques used to synthesize the resultant acoustic waveform.

3.2 The Task Dynamic Model

The Task Dynamic model is an articulatory speech synthesis model that

incorporates a representation of the control hierarchy of human speech pro-

duction [42]. In addition to modeling a set of articulators and their effect on

the vocal tract area function, this model incorporates a set of “coordinative

structures” into the articulator control. These coordinative structures are

represented as movement primitives which drive multiple articulator vari-

ables to produce a desired vocal gesture. A set of these gestural primitives

can then be used to drive a model of the vocal tract to produce a desired

utterance.

3.2.1 The CASY Model

The vocal tract model used in the Task Dynamic model was originally the

articulatory synthesizer (ASY) which was further developed into the config-

urable articulatory synthesizer (CASY) [54]. The geometry used in ASY and

CASY is largely based on the models developed by Coker and Fujimura [51]

and Mermelstein [52]. In particular, CASY effectively incorporates the useful

elements of both the Coker and Mermelstein models as a means of striking

a balance between the benefits and drawbacks to each approach. In order to

better understand this trade space and its role in the design of CASY, we

will begin by briefly outlining and contrasting the Coker and Mermelstein

models.

The model developed by Coker and Fujimura, commonly referred to as

the Coker Model, is among the first computational models of the human

vocal tract in which the area function is used to synthesize speech. The

value of the area function is based on a geometric representation of the vocal

tract articulators. The relationship between area function and articulators

was derived from existing X-ray video of a sagittal view of the vocal tract
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during speech production. Since this representation is only two dimensional,

the area function is determined by assuming that any given cross sectional

area of the vocal tract is rotationally symmetric. In order to represent the

dynamics of the vocal tract, the movement of each articulator is modeled as

an overdamped (or critically damped) mass spring system defined according

to a time constant that is specific to each variable. The choice of articulators

and their effect on the area function are largely dependent on the observation

that the spectrum of the speech signal is strongly related to constrictions of

the vocal tract. In addition, the control variables of the vocal tract were

designed to be as independent as possible, in order to reduce the complexity

of controlling the vocal tract. As a result, the behavior of these articulators is

not biologically representative; however, this does not inhibit Coker model’s

ability to produce a wide range of phonemes.

The vocal tract model developed by Mermelstein also utilizes a geomet-

ric representation of the vocal tract. As with the Coker model, the set of

variables used to describe this model was chosen based on careful analysis

of existing X-ray data containing a sagittal view of the vocal tract during

speech production. In contrast, however, Mermelstein’s model is designed

around a set of variables that are intended to directly correspond to articu-

lators in the human vocal tract [52]. Given the more anatomically relevant

control inputs, the Mermelstein model is more useful in the study of hu-

man speech production. Specifically, the Mermelstein model can be used to

reasonably approximate the trajectories through which humans drive their

articulators as a means of gaining insight into the control strategies used in

human speech.

The ASY vocal tract model represents a synthesis of the Coker and Mer-

melstein models in order to balance the costs and benefits of using articula-

tors that are either independent or anatomically representative. This model

was further improved with the development of CASY, which allowed for the

geometry of the vocal tract to be more easily configured based on variation

between speakers. In addition, the Coker, Mermelstein, and ASY models all

represent the tongue body as the arc of a circle whose center and radius are

variable and treated as control inputs. The CASY model improved on this by

representing the tongue body as a conic arc, which allows for a diverse range

of the tongue geometries and transitions between them. As a result of these

improvements, the CASY model is better able to represent the geometry and
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dynamics of the human vocal tract [54].

In each of these vocal tract models, speech is synthesized based on the area

function. In the original development of the Coker model and in its typical

use, sound was generated using an analog resonance synthesizer to generate

audio based on the formants produced by the model. The formants were

determined by applying the discrete form of the Webster Horn equation for

a hard walled lossless vocal tract and implementing an iterative search to

find the resonant frequencies. Speech synthesis using both the Mermelstein

and CASY models is performed by computing the acoustic transfer function

corresponding to the area function based on the assumption that the walls

of the vocal tract are rigid. Once the transfer function of the vocal tract

is known, the resulting speech signal can be generated by applying an ex-

citation signal to the appropriate location in the vocal tract. Specifically,

a semiperiodic glottal wave is assumed to be generated in the location of

glottis and the white noise source for fricatives is assumed to be anterior to

the point of most constriction.

3.2.2 Gestural Movement Primitives

The key contribution of the Task Dynamic model is the focus on gestural

patterning in speech. Gestures in this case refer to a sequence of acoustically

relevant vocal tract configurations. In order to accomplish this, the model

implements a set of gestural primitives that each drive a subset of articu-

lators in a coordinated fashion in order to produce an acoustically relevant

constriction. Each constriction that is controlled by a gestural primitive is

represented by a vocal tract variable, and the trajectory of a vocal tract vari-

able is used to represent a specific gesture. Each gestural primitive applies

closed loop control to the articulators that are relevant to that constriction

in order to produce the cross-sectional area specified by the value of its vocal

tract variable. The vocal tract variables, denoted by z, are implemented as

a mass spring model defined in Equation 3.1, where B is a diagonal ma-

trix of damping coefficients, K is a diagonal matrix of stiffness coefficients,

and z0 is the equilibrium of the variable. The movement of the articula-

tors is then determined by the kinematic relationship shown in Equation 3.2

where φ is defined to be the vector of articulator variables, and J is the
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Jacobian matrix defined by Jij = ∂zi
∂φj

. The acceleration of the articulators

is then given by Equation 3.3 where the weighted pseudoinverse is defined

by J∗ = W−1J>(JW−1J>)−1. In this model, the elements of the diago-

nal weighting matrix W serve as “gating variables” that define the set of

articulator variables that are driven by a given tract variable.

z̈ = −Bż −K(z − z0) (3.1)

z = z(φ)

ż = Jφ̇

z̈ = Jφ̈+ J̇ φ̇

(3.2)

φ̈A = J∗
(
M−1

[
−BJφ̇−K∆z(φ)

])
− J∗J̇ φ̇+ (In − J∗J) φ̈d (3.3)

Using this model, an utterance can be represented as a set of gestures in

the space of vocal tract variables. Because of the closed loop control struc-

ture implemented in the gestural primitives, a specific utterance is dependent

on the control targets rather than the specific movements of the articulators.

This robust form of gesture representation results in a model that is tolerant

to mechanical disturbances to the articulators and elegantly represents com-

pensatory articulation and coarticulation. Finally, we note that this approach

carries a great deal of similarity to more recent developments in robotics and

control of systems with large numbers of degrees of freedom, namely the de-

velopment of “dynamic movement primitives” [43][44]. Dynamic movement

primitives are defined in terms of a point attractor toward which some prim-

itive variable (analogous to the vocal tract variable in Task Dynamic model)

is driven by the controller. The controller can then be defined as a simple

mass spring system with an equilibrium point that can be steered by some

high level control action.

In the case of dynamic movement primitives, the structure of these primi-

tives is defined more generally and inferred based on imitation learning (e.g.

the instructor moves the robotic actuator through a given movement or task

like swinging a tennis racquet). This is somewhat more general than the ges-

tural primitives used in the Task Dynamic model, which were largely defined

based on human analysis rather than using some form of statistical inference.
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Regardless, either supervised learning or the a priori development of a con-

trol structure requires information that is unlikely to be available to a human

while they learn to speak. As such, our exploration of speech primitives for

communication is strongly focused on primitives that are learned without

supervision through exploration of the articulatory space.

Although the use of feedback control and gestural scores results in a robust

representation of speech, the role of acoustic feedback is not addressed in

this model. As a result, the controller lacks a direct means of estimating

the receiver’s ability to estimate the gestures used for a particular utterance.

When coupled with the inherent shortcomings of the motor theory of speech

perception noted in Chapter 1, this notion of a gestural score is not sufficient

for representing the process of speech communication.

3.3 The DIVA Model

DIVA (directions into velocities of articulators) presently represents the most

advanced model of articulatory speech production [55][50]. The model struc-

ture used in DIVA is notable in that it implements articulator control using

artificial neural networks for the purpose of imitating speech phenomena ob-

served in humans, primarily for the purpose of studying speech pathologies.

The control structure utilizes both somatosensory and acoustic feedback to

drive the articulators of the vocal tract in a hierarchical control scheme. In-

terestingly, early versions of this model did not actually simulate the speech

production process, but it utilized a “Speech Recognition System” that acted

as an expert system to map vocal tract shapes to speech sounds. As DIVA

was further developed, a modified version of Maeda’s vocal tract simulation

[53][56] was implemented and used to produce the resultant acoustic signals.

3.3.1 The Maeda Vocal Tract Model

Much like other geometric models of the vocal tract, the Maeda model utilized

a two-dimensional representation where the area function at a given point

along the vocal tract is determined by the corresponding midsagittal cross-

section. Unlike the rotational symmetry found in other models, the cross

sectional area is determined by the formula shown in Equation 3.4, where
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αx and βx vary along the length of the vocal tract and y is the width of the

midsagittal cross-section. The actual values of α and β were determined in

an ad hoc manner.

A = αxy
βx (3.4)

Simulation of the acoustic waveform produced by the vocal tract is accom-

plished in a manner very similar to the method used in both the Mermelstein

and CASY models. Specifically, the transfer function of the vocal tract is

determined by modeling the area function as a lossy transmission line. The

sound source is then implemented in the same manner as Mermelstein’s model

by injecting a glottal wave or white noise at the appropriate points along the

vocal tract. Once again, this model simulates the glottal wave as a function

of time by assuming a constant pressure input from the lungs, rather than

directly modeling the dynamics that drive the oscillation of the vocal folds.

Much like the Mermelstein model, the Maeda model is controlled through

a set of articulators that correspond to actual articulators that exist in the

vocal tract. The choice of articulators was determined based on cineradio-

graphic and labiofilm data using statistical analysis rather than the more

traditional engineering analysis used to fit the Coker and Mermelstein mod-

els to existing data. Maeda makes a particular note that the mapping from

the space of articulators to the area function can be treated as a linear trans-

formation and, as such, can be determined via factor analysis. Solving for

this transformation, however, is complicated by the existence of multiple

solutions, most of which are arbitrary and do not correspond to the physi-

cal anatomy of the vocal tract articulators. In order to solve this problem,

Maeda utilizes “arbitrary component analysis”, wherein the most important

articulators (such as the jaw) are determined a priori and their influence

is subtracted from the correlation matrix. The resultant correlation matrix

can then be further decomposed using PCA to capture the effects of less

significant articulator parameters.

It is significant that the Maeda model was designed to capture the fact that

the vocal tract has excess degrees of freedom relative to the resultant speech

signal. As a result, it is well suited for the characterization of compensatory

articulation due to the imposed orthogonality of the articulators. It is this

characteristic in particular that makes the Maeda model well suited for the
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goals of the DIVA model of speech production, specifically the study of speech

pathologies.

3.3.2 Neural Model of Control

In many ways, DIVA builds directly from the design of the Task Dynamic

model. The control is implemented in a hierarchy such that a low level

controller drives the vocal tract toward ‘orosenory’ targets (much like the

Task Dynamic vocal tract variables) and a high level controller adjusts those

targets based on acoustic feedback. Acoustic targets are extended by rep-

resenting them as target regions rather than the point attractor structure

used by the Task Dynamic model. Additionally, the use of neural networks

to implement the controller allows for a flexible nonlinear mapping that is

able to represent much more complex behavior than can be represented by

a linear feedback controller. Lastly, the controller parameters are learned

through babbling wherein random articulator movements are super-imposed

on an oscillatory jaw movement, which is intended to mimic vocal play seen

in infants.

Research involving DIVA has increasingly focused on the mapping between

components of the model and brain regions by empirically relating behav-

ioral, neurophysiological, lesion, and neuroanatomical data to subsets of the

model’s neural nets [50]. As such, the implicit goal in the development of

DIVA has been imitation of human behavior as a means of predictively mod-

eling speech pathologies. In contrast, the development of speech primitives

presented in this thesis is intended to be a more general framework for model-

ing speech communication as opposed to direct imitation of human behavior.

3.4 Conclusion

In this chapter, we have provided an overview of basic vocal tract anatomy

and its nuanced relationship to the structure of the acoustic speech signal. In

addition, we have reviewed several prominent models of articulatory speech

production. Although each of the models lends important insights to our

development of speech primitives, they incorporate significant trade-offs due

to limitations in computational power available when they were originally
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developed. Given that our development of speech primitives is heavily in-

fluenced by the structure of the speech production model, we seek a speech

production model that is more anatomically faithful than those outlined in

this chapter. The following chapter will introduce a model that does suit the

needs of this research; namely, the Praat model and its Python adaption we

call the Pyraat library.
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CHAPTER 4

THE PRAAT MODEL AND PYRAAT
LIBRARY

The Pyraat vocal tract model is an implementation of the vocal tract model

developed by Paul Boersma for his Praat software package. Boersma’s vocal

tract model is significantly more advanced than the articulatory models used

in both the Task Dynamic model and DIVA, and is capable of simulating

speech phenomena that had not been simulated by any preceding speech

production models. Pyraat is a stand-alone python library, developed by

the author and W. Jacob Wagner, that implements Boersma’s Praat vocal

tract model. By implementing the Pyraat library in Python, algorithms for

articulatory control of the Praat vocal tract model can be rapidly developed.

This chapter will focus on the Praat vocal tract geometry, the simulation

of the acoustic signal, and the adaptation of the Praat software for the pur-

pose of implementing feedback control. In addition, we will also provide an

overview of the simulation of the acoustic signal, and discuss how the model

software has been modified for the research presented in this thesis. Because

of these significant improvements over its predecessors, the Praat model is

capable of simulating speech phenomena that had not been previously sim-

ulated in any other vocal tract model. Given that this model is far more

anatomically accurate than its predecessors, it is presently the best choice

for our development of speech primitives.

4.1 The Praat Model

The development of Praat was motivated by an investigation of the principles

of functional phonology and as such is inherently focused on the transmis-

sion of information via the speech signal. As such, the mechanisms used to

generate and receive the speech signal must be faithfully represented by the

simulator. As a result, the Praat model of articulatory speech synthesis seeks
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to faithfully model the entire vocal apparatus, from lungs through the lips

and nostrils. In contrast with models that simplify the vocal tract as having

rigid walls, the Praat model simulates all the walls of the vocal tract as a set

of mass spring systems in the same manner as the classical two-mass model

of the glottis [22]. In addition, the Praat model simulates the acoustic wave

by directly simulating the pressure inside the vocal apparatus, which allows

the internal air pressure to affect mass-spring walls of the vocal tract and the

area function. These significant improvements in the anatomical faithfulness

of this model come at a much higher computational cost; however, this cost

is no longer prohibitive in light of modern computing systems.

4.1.1 Vocal Tract Geometry and Control

Unlike most vocal tract simulations, the Praat model represents the entire

vocal apparatus from lungs to lips. The lungs through the larynx are mod-

eled as a set of tubes that progressively branch out in order to model the

branching of the bronchi down to the alveoli in the lungs. The articulators

of the vocal tract and the vocal tract geometry are directly based on the

Mermelstein model and depicted in Figure 4.1. Control of the articulators

is implemented through inputs that represent the muscles that are used to

drive the articulators. The muscle inputs drive the articulators by changing

the equilibrium length of the muscles and thus influencing the equilibrium

point of the articulators. The behavior of these muscle inputs is effectively

equivalent to the muscle control strategy proposed by the equilibrium point

hypothesis for motor control [57][58]. Praat does not include any explicit co-

ordinative structures like those found in DIVA or the Task-Dynamic model;

rather, control of the vocal tract is performed by manually defining the tra-

jectories of the muscle input parameters. In addition, the lengths of the tubes

are allowed to vary within the simulation, much like the model due to Maeda

which included extension of the lips.

The vocal apparatus as modeled by Praat consists of a total of 78 tube

segments, with the lower respiratory system (lungs through bronchi) con-

sisting of 29 segments, the trachea and glottis consisting of 8 segments, the

oral cavity consisting of 27 segments, and the nasal cavity consisting of 14

segments. Each tube segment is made up of a mass spring system where the
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Figure 4.1: Geometry of the Praat vocal tract model where J is the joint
about which the jaw hinges, θJ is the jaw angle, B is the center of the tongue
body, θB and Rbody are the angle and radius of the tongue body center, Rpalate

is the radius of the palate, and D is used to determine the tongue root shape.

41



Table 4.1: Table of the input parameters and their effect on the vocal appa-
ratus.

Muscle Function
Lungs Compression of the lungs, simplification of

diaphragm and abdominal muscles
Interarytenoid Constriction of the larynx
Cricothryroid Tension of the vocal chords
Thyroarytenoid Combination of aryepiglottic sphincter muscles
Posterior
Cricoarytenoid

Opening of glottis

Lateral
Cricoarytenoid

Opening of glottis

Stylohyoid Upward movement of the hyoid bone
Sternohyoid Downward movement of the hyoid bone
Thyropharyngeus Constriction of the ventricular folds
Sphincter Backward movement of the hyoid bone, forward

movement of rear pharyngeal wall
Hyoglossus Downward movement of the tongue body
Styloglossus Upward movement of the tongue body
Genioglossus Forward movement of the tongue body
Upper Tongue Upward curling of the tongue tip
Lower Tongue Downward curling of the tongue tip
Transverse Tongue Thickening of the tongue
Vertical Tongue Thinning of the tongue
Risoris Spreading of the lips
Orbicularis Oris Rounding of the lips
Levator Palatini Opening or closing of the velo-pharyngeal port
Masseter Closing of the jaw
Mylohyoid Opening of the jaw
Lateral Pterygoid Horizontal jaw position
Buccinator Oral wall tension
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muscle inputs outlined in Table 4.1 determine the equilibrium length of the

various tube segments. In addition, each pair of adjacent tube sections is

coupled together by a coupling spring force. Finally, contact between walls

of the vocal tract is modeled via a collision force wherein the interacting walls

of the vocal tract are compressed. In order to model such collisions while

maintaining a smooth area function, the collisions are performed through a

“zipper” process which does not attempt to simulate any actual asymmetric

behavior of the walls.

Because the vocal tract walls are modeled as mass spring systems, the

Praat vocal tract model is capable of simulating speech phenomena not found

in other articulatory synthesizers. Since the entirety of the vocal tract is mod-

eled in the same way, it is possible to achieve the same type of oscillation

found in the glottis (during voicing) at any point in the vocal tract, provided

that the tube segments are subjected to the correct conditions. As a result,

the model can produce clicks at various points in the vocal tract and even

inflate the vocal tract in what Boersma refers to as “ballooning.” In addi-

tion, the model is capable of producing trills, though manually setting up

the correct conditions and sequence of muscle inputs is prohibitively chal-

lenging. It should be noted, however, that achieving such fidelity comes with

a significant increase in both the number of control inputs and the overall

computational cost.

Although the Praat model of the vocal apparatus is more biologically faith-

ful than others, it does make some concessions for the sake of simplifying con-

trol of the articulators through the set of muscle inputs. First, the muscles’

effects on the articulators are explicitly additive, which greatly simplifies the

more complex interactions found in the muscles of the human vocal tract.

Second, some of the muscles involved in speech are grouped together in order

to reduce the number of control inputs. Among these grouped muscles are

the lungs, some of the muscles in the larynx, and the various muscles of the

tongue. Control of the tongue is an especially significant simplification in

this model in that it does not directly attempt to capture the behaviors of

the muscles; instead, the control inputs for the tongue correspond directly to

the articulators themselves. This concession is a significant departure from

the design philosophy of the Praat model, but it captures the movement of

the tongue without the need for modeling the complex interactions of its

muscle structures.
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4.1.2 Aerodynamics

Because the walls of the vocal tract are deformable, the set of equations that

govern the geometry of the Praat vocal apparatus is coupled to the equa-

tions that govern the aerodynamics within the vocal tract. This myoelastic-

aerodynamic coupling allows for a higher fidelity simulation at the cost of

increased computational complexity. Specifically, the set of aerodynamic

differential equations is simplified substantially by the assumption of a rigid

vocal tract geometry. Notably, all other models of articulatory synthesis that

have been presented in this chapter have employed this “rigid vocal tract”

assumption.

In order to properly deal with the variable vocal tract walls within this

simulation, the treatment of continuity of mass must first be dealt with. In

Boersma’s development of this model, he derives the continuity of mass equa-

tion directly in the form shown in Equation 4.1, where A is the area function,

x is the position along the length of the tube, and v is the particle velocity

along the tube. If the area function is assumed constant at any instant in

time, then it could be eliminated from this equation and the resultant sim-

ulation could be greatly simplified. This equation is particularly important

when we consider the role of the lungs in this model as the pressure source

for the air moving through the vocal tract. Specifically, if we assume that

the vocal tract is filled with an incompressible fluid (i.e. ρ is constant), then

a change in area A produces an opposing change in volume flow vA. That is

to say that a decrease in the area of the vocal tract will force air out of the

vocal tract and an increase in area function will pull air in.

∂(ρA)

∂t
+
∂(ρvA)

∂x
= 0 (4.1)

Other important aspects of this aerodynamic simulation include some im-

portant but less novel considerations. First, the Bernoulli effect is accounted

for along all tubes in the vocal tract in the same manner as the traditional

two mass glottal model. Friction is captured by accounting for viscous re-

sistance of the air along the vocal tract walls, which is significant in the

case of sections of the vocal apparatus are modeled as multiple parallel tubes

(i.e. lungs, bronchi, nasal cavity). Turbulence is not directly modeled as

an aerodynamic process; instead, the Reynolds number is used to determine

the amplitude of a white noise source applied to the pressure function along
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the vocal tract. Importantly, the same set of aerodynamics equations is ap-

plied across each tube segment throughout the entire vocal apparatus, which

results in a more consistent model of speech production.

4.1.3 Numerical Simulation

The numerical simulation of the acoustic and myoelastic equations is per-

formed in discrete time steps. The differential equations governing the my-

oelastic and aerodynamic equations are numerically approximated using first

order approximations, finite difference methods, and a modified version of

the Lax-Wendroff method. Justification for each of these numerical methods

based on accuracy, stability, and frequency response is provided in Chapter 4

of Boersma’s “Functional Phonology” [59], to which the interested reader is

referred . As a result of these numerical methods, the sampling period must

be smaller than the time needed for sound to travel the length of any single

tube segment in order guarantee numerical stability. Given that the smallest

tube is 0.7mm and the speed of sound is approximately 350m/s within the

vocal tract, the simulation must be computed at a minimum sampling rate

of approximately 500kHz. At the time of its development, simulating 1 sec-

ond of speech data with Praat took approximately 1,000 seconds, but this is

reduced to the range of 2-3 seconds on a modern desktop computer.

4.2 Export to Python: Pyraat

The Praat software includes the vocal tract simulation outlined in this sec-

tion; however, the interface to this vocal tract model is relatively limited. In

particular, the vocal tract control inputs can only be controlled via a simple

open loop control script where the control inputs linearly interpolate between

a fixed set of targets. Although this might be suitable for producing a desired

utterance repeatably, it does not allow for closed loop control of the vocal

tract. In order to implement a closed loop controller on the Praat model,

it has been extracted from the open source Praat software and implemented

as a Python library called Pyraat. The Python library is written in C++,

the native programming language that Praat was originally written in, and

exported to Python using Boost to expose the C++ functions to Python.
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Using this library, the Praat vocal tract model can be controlled using feed-

back control implemented in a high level scripting language with negligible

increase in run-time.

The Pyraat library interfaces with the Praat model using the same set of

muscle inputs defined in Table 4.1. In addition, the library provides the re-

sultant acoustic waveform, as well as the area function and pressure at each

tube segment sampled at the same rate as the acoustic waveform. As in the

original Praat software, the sampling rate of the acoustic waveform is variable

and can be defined based on the requirements of each specific application.

Since the minimum sampling rate for simulating the aerodynamic-myoelastic

equations is much higher than the necessary sampling rate for audio signal

processing, the acoustic waveform is captured by subsampling the pressure

function at the lips and nose. Example acoustic waveforms and their corre-

sponding spectrograms are shown in Figure 4.2.

4.3 Conclusion

It should be noted that the Praat model was developed for the purpose of

investigating the concept of functional phonology, which argues that phono-

logical structure is the result of optimizing the reliability of speech com-

munication [59]. This notion of phonology is central to the research pre-

sented in this thesis; however, our investigation of this concept is notably

different from that used by Boersma. Specifically, we seek to develop a no-

tion of speech primitives that are fundamentally unsupervised. Conversely,

Boersma’s treatment of functional phonology is fundamentally built around

imitation of human speech and generally presupposes the existence of phonemes

as the fundamental units of the speech signal. Even so, the common thread

between these two lines of research is the need for a highly accurate ar-

ticulatory model of speech synthesis. As such, the development of speech

primitives in the remaining chapters of this thesis will make heavy use of the

Pyraat library as a means of interfacing our speech primitives with a vocal

tract model.
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Figure 4.2: Example utterances simulated using the Pyraat library.
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CHAPTER 5

PRIMITIVES FOR LINEAR FEEDBACK
CONTROL

The concept of sensorimotor primitives was broadly introduced in Chapter 2

and this chapter further develops the framework in terms of feedback control.

In this chapter, we formally develop the concept of sensorimotor primitives

as it applies to feedback control and tailor it for specific application to the

Pyraat speech synthesizer. In keeping with the notion of primitives as a

means of simplifying the problem of interfacing with the environment, we

define sensorimotor primitives in terms of a generalized feedback transfor-

mation. Under this definition, we consider the linear case of sensorimotor

primitives and how they can be learned in an unsupervised manner, with

special consideration for high dimensional systems. Finally, we consider some

practical considerations when estimating these linear sensorimotor primitives

from very large sets of data.

5.1 A Formal Definition

Rather than motivate the notion of primitives using a specific control prob-

lem, such as control of the human vocal tract, we will first consider a more

general treatment of the concept. The use of primitives for robotics and

control is primarily motivated by reducing the complexity of a given con-

trol task. This is typically achieved by imposing some form of hierarchy in

which a simple high level controller uses simplified actions to steer a low

level controller that in turn drives the system of interest, as illustrated by

Figure 5.1.

Throughout this chapter, we will consider the development of primitives

in the context of this control hierarchy. The primary insight provided by

Todorov [45] is that the low level controller in Figure 5.1 should be treated

as a feedback transformation that serves to provide a “simplified” interface
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High Level
Controller

Low Level
Controller

system
· · · vt ut yt
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Figure 5.1: A general hierarchical control structure with two feedback trans-
formation stages in the control hierarchy.

for the high level controller. In the case of high dimensional systems with

redundant control inputs (such as those seen in biological motor control), a

simplified interface would reduce the dimensionality of the system through

coordination of redundant elements. We now proceed with developing the

formal mathematical framework for achieving this goal through unsupervised

learning methods.

5.1.1 Primitives as a Feedback Transformation

Consider the general dynamical system defined by Equation 5.1, where zt is

the internal state of the system, yt is the observed output, ut is the low level

control input, and f and g represent the dynamics and sensory mappings

respectively.

zt+1 = f(zt, ut)

yt = g(zt, ut)
(5.1)

We seek a low level controller input ut that can be steered by some high

level control signal vt. Let ht be the internal state of the low level controller,

let X
↼p

t denote the past p observations of the inputs and outputs, as shown in

Equation 5.2, and let X
⇀f

t be the future of length f , as shown in Equation 5.3.

X
↼p

t =

[
Y
↼p

t

U
↼p

t

]
, Y

↼p

t =


yt−p

...

yt−1

 , U
↼f

t =


ut−p

...

ut−1

 (5.2)

X
⇀f

t =

[
Y
⇀f

t

U
⇀f

t

]
, Y

⇀f

t =


yt
...

yt+f

 , U
⇀f

t =


ut
...

ut+f

 (5.3)
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The fundamental step in this formulation is then to fit a low level controller

to the conditional probability model in Equation 5.4.

P
(
X
⇀f

t

∣∣∣X↼p

t

)
=
∑
h

P
(
X
⇀f

t

∣∣∣ht)P (ht ∣∣∣X↼p

t

)
(5.4)

With this conditional probability structure, the internal state of the low

level controller can be used to compactly represent the history of the system

and determine the control actions of both the high and low level controller.

Specifically, we can estimate the internal state by computing ĥt = E
(
h|X↼

p

t

)
,

where E denotes the expectation operator. The high level control action is

then determined by vt = Q(ĥ), where Q is some task-specific control policy.

The low level control actions can then be determined by ut = E (u|vt).
A sensorimotor primitive is then defined to be a feedback transformation

that satisfies this probabilistic model [45]. We then define the general feed-

back transformation as shown in Equation 5.5. In this formulation, T and G
are deterministic operators that represent the dynamics of the system and ηt

and εt are uncorrelated zero-mean random variables. The control input ut is

then determined at each time step by selecting the corresponding row from

the future history produced by G. Under this formulation, we will refer to h

as the internal state of the low level controller and v is now the control input

that is driven by a high level control policy.

ht = T
(
X
↼p

t

)
+ ηt

X
⇀f

t = G (vt) + εt
(5.5)

Using the general model structure shown in Equation 5.5, we have that the

conditional probability structure of Equation 5.4 is satisfied. In addition, the

problem of control may be separated into two steps. The first is the problem

of unsupervised learning of T and G, which is the focus of this chapter. The

second is the problem of learning a set of task-specific control policies of the

form vt = Q(ht), which is central to the problem of speech communication

and will be dealt with in Chapter 6.
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5.1.2 Gestures vs. Coordinative Control

The notions of gestures and coordinative control are both common themes

in the study of primitives and, as such, it is important to address how these

concepts relate to this model of sensorimotor primitives. Coordinative struc-

tures are critical to the notion of dimensionality reduction when dealing with

systems with many degrees of freedom. Gestures, on the other hand, can be

thought of as trajectories through the space of control actions and are central

to tasks such as movement segmentation. Under the framework of sensori-

motor primitives, both of these concepts are elegantly represented in terms

of the operators T , G, and Q.

The notion of coordinative control is naturally represented in terms of the

operator G. Let the low level control input be defined as ut = [u1
t , . . . , u

n
t ]>

and let the high level control input be vt = [v1
t , . . . , v

n
t ]>, where vit and ujt

are scalar elements of each vector. Without loss of generality, suppose G
maps vt → ut for some fixed value of ht. Then we have that a change in

any single vit will result in a change to a subset of ujt values. The structure

of this mapping then forms the basis of coordinative control in that a single

dimension of the high level controller maps to multiple dimensions of the low

level controller.

Gestures, on the other hand, are neatly represented in terms of the high

level control policy Q. Let h̃t be a control target in H = span(ht) and let Q
define the policy vt = Q(ht) such that ht → h̃ as t→∞. For a given starting

point h0, we have thatQ defines a trajectory through the state space H to the

point h̃. An important contrast in such an approach to gestures as compared

to other gesture based primitives [43][44] is that the trajectory is defined in

the space of coordinated control inputs rather than considering individual

trajectories for each control input. A key advantage to this approach is that

the gestures learned at this higher level of control are both more intuitive

for human understanding and naturally deal with the issue of time-aligning

various low level trajectories.

5.2 The Linear Assumption: Dynamic Factor Analysis

We now proceed with the development of a method of estimating the oper-

ators of our feedback transformation. It should be noted that although the
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basic formulation is similar to that developed by Todorov [46], the estima-

tion method presented here is largely due to collaboration with W. Jacob

Wagner [60]. Let us assume that the system under analysis is linear and

represented by the linear state space model shown in Equation 5.6. Note

that in this case, we have that ut is determined by a linear function of the

internal state of the system and the high level control input is given by vt.

We can then reformulate the dynamics of the system as the predictive model

shown in Equation 5.7.

zt+1 = Azt +But + Fvt

yt = Czt +Dut +Gvt

ut = Ezt +Hvt

(5.6)

X
⇀f

t = GT X↼
p

t + E V⇀
f

t (5.7)

The past and future history are denoted by X
⇀f

t and X
↼p

t , as previously

defined in Equations 5.2 and 5.3, and V
⇀f

t is the vector of future high level

control inputs. The matrices G, T and E can then be derived from the

linear system model to find the definitions shown in Equation 5.8, where

Ā = (A + BE), C̄ = (C + DE), F̄ = F (DH + G)†, and † denotes the

pseudoinverse operator.

G̃ =



C̄

C̄Ā
...

C̄Āf

E
...

EĀf


(5.8a)

T̃ =
[
F̄ ,
(
A− F̄ C̄

)
F̄ , . . .

(
A− F̄ C̄

)f
F̄ , B, . . .

(
A− F̄ C̄

)f
B
]

(5.8b)
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E =



G 0 · · · 0

C̄F G
...

...
. . . 0

C̄Āf−1F · · · C̄F G

H 0 · · · 0

EF H
...

...
. . . 0

EĀf−1F · · · EF H


(5.8c)

Under this definition, we have that the operators T and G predictively

model the future values of y and u with a prediction error given by E V⇀
f

t .

We then seek to estimate matrices T̂ and Ĝ such that the error is minimized.

The matrices that satisfy this condition can then be used to form the linear

feedback transform given by Equation 5.9.

ht = T̂ X↼
p

t

X
⇀f

t = Ĝ (ht + vt)
(5.9)

Under this framework, the feedback transform represented by T̂ and Ĝ
forms a linear predictive model that represents the dynamics of the system.

Additionally, the rows of Ĝ that map to the predicted U
⇀f

t represent a coordi-

native structure that maps the high level control inputs vt onto the low level

control actions.

5.2.1 Considerations in Model Selection

The predictive model defined by Equation 5.7 represents a generalization of

linear prediction analysis as applied to vector signals. It is important to

note that traditional linear prediction analysis of the speech signal requires

the assumption that the signal is stationary over the window of time being

analyzed. The stationarity assumption is equally important in this notion of

vector linear prediction, but instead this model assumes that the dynamics

of the vocal apparatus are stationary. Given that the simulated vocal tract

used in this thesis models the entirety of the speech production process with a

fixed set of difference equations, this stationarity assumption is not violated.

In addition, the selection of past and future observation lengths, p and f
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respectively, plays an important role in the behavior of this model. As with

linear prediction, we have that the prediction error tends asymptotically

toward zero as p → ∞; however, this property does not hold when finite

training data is available. In general, p must be chosen large enough such

that the error is minimized but small enough such that the model is not over-

fit to the training data. A method of selecting p with finite training data is

dealt with in Section 5.2.2. The selection of f , the other hand, minimizes

the prediction error when f = 1, but for f > 1 the predicted control actions

tend toward the mean of u. As a result, the selection of f > 1 can be used

as a means of smoothing the mapping from high level to low level control

actions.

5.2.2 Parameter Inference

In general, there are two approaches to learning the operator matrices T and

G in an unsupervised manner. The most commonly used method for this

form of system identification problem is to compute the maximum likelihood

(ML) estimate of the parameters using the Expectation-Maximization (EM)

algorithm. Unfortunately, computing the ML estimate via the EM algo-

rithm comes with a high computational cost that grows exponentially with

the dimension of the system. An alternative is to compute the minimum

mean square error (MMSE) estimate using the Subspace Method proposed

by Kapetanios for application to high dimensional data sets [61]. Due to the

high dimensionality of the Praat model, the EM algorithm is poorly suited for

parameter inference in this system so we focus our attention on the Subspace

Method.

Let F = GT be the composition of the two linear operators, then we have

that the future inputs and outputs can be estimated by Equation 5.10. The

linear operators G and T can then be found by matrix decomposition of F
in order to get Equation 5.9.

X
⇀f

t = FX↼
p

t (5.10)

The goal is then to estimate F by minimizing ‖X⇀
f

t − FX
↼p

t‖2 for the

observed input/output history of the system. First, we compile T input-

output data points to form the matrices X
↼p

=
[
X
↼p

p, X
↼p

p+1, . . . , X
↼p

T−f

]
and
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X
⇀f

=
[
X
⇀f

p , X
⇀f

p+1, . . . , X
⇀f

T−f

]
. By applying the Projection Theorem, we have

that the MMSE estimate is given by F̂ = X
⇀f

(
X
↼p
)†

.

From this estimate, we can then estimate T̂ and Ĝ using singular value

decomposition (SVD) of F̂ = USV >, as shown in Equations 5.11a and 5.11b.

T̂ = S
1
2
k V
>
k (5.11a)

Ĝ = UkS
1
2
k (5.11b)

Here we define Sk to be the k × k diagonal submatrix of S, with Uk and

Vk being the first k columns of U and V . Provided that k has been selected

correctly and the system under analysis is both linear and stable, we have

that the range space of Ĝ will coincide with the original state-space z in

the limit as T → ∞ [61]. It should be noted the solution for F = GT is

not unique. Specifically, there exists an affine ambiguity such that for any

nonsingular k × k matrix C, we have G̃ = GC and T̃ = C−1T forms a space

of valid solution. Although the choice of C does not affect the consistency of

this estimate, it does provide a means by which we can impose restrictions on

the structure of the state space H. For example, it may be useful to resolve

this ambiguity by choosing C such that the dimensions of H are orthogonal.

Lastly, in order for F̂ to be a consistent estimate we must select a value

of p such that ln(T )α < p < T
1
3 , where α is dependent on the stability

of the state transition matrix A [61]. Alternatively, p can be chosen based

on the Akaike information criterion (AIC), for which a choice of p = 2pAIC

satisfies this requirement almost surely [62][63]. Let the observation history

of the input-output of the system be represented by the matrix X defined

in Equation 5.12, where q is the total number of observations per column.

The value for pAIC is then computed using Equation 5.13, where λi is the ith

eigenvalue of the covariance of X [64].

X =



u0 uq u2q · · · uT−q

y0 yq y2q · · · yT−q

u1 uq+1 u2q+1 · · · uT−q+1

...
...

yq−1 · · · · · · yT


(5.12)
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pAIC = arg min
p
−2 log


k∏

i=p+1

λ
1/(q−p)
i

1

q − p

k∑
i=p+1

λi


(q−p)T

+ 2p(2k − p) (5.13)

5.2.3 Considerations for Large Training Data

We now consider the critical challenge of estimating linear primitive operators

from a large set of high dimensional data. Given that the vocal tract is

controlled by a set of 26 muscle inputs and the area function is represented

by 78 tube segment diameters, a history of the input-output space of the

system can quickly consume massive amounts of memory. The critical step

in estimating the primitive operators is computing the MMSE estimate of

the prediction matrix F , as defined in Equation 5.10. This computation

requires a matrix product of an f · k × T matrix with the pseudo-inverse of

a p · k × T matrix, where T is the total number of data points divided by

f + p, and k is the dimension of the input-output space (k = 115 in the case

of the Praat vocal tract model). Since these matrices grow linearly with T ,

computational memory is very quickly consumed.

In order to deal with the problem of memory allocation, we seek a method

of estimating F through batch updates that do not consume unbounded

amounts of memory. One way of accomplishing this is to incrementally esti-

mate F through a set of rank one updates. More precisely, we can compute

a set of intermediate matrices of constant dimension that can be used to

compute an MMSE estimate of F .

For simplicity of notation, we’ll denote the set of past histories by X
↼p

n and

X
⇀f

n based on the definitions given in Equations 5.2 and 5.3 with the addition

of the subscript n to indicate that each was constructed from a total of n

I/O histories of length p + f . Additionally, X
↼p

n(i) is used to denote the ith

row of X
↼p

n and X
⇀f

n(i) is defined similarly.

We then define the nth update of F , denoted by Fn. It is then possible

to rewrite the estimate of Fn as the product of the variables Φn and Ψn

as shown in Equation 5.14. Importantly, the dimensions of Φn and Ψn are
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proportional to f × p and p × p respectively and do not change with n as

the value of n only affects the inner dimensions of their respective matrix

products. In addition these matrices may be updated incrementally without

the need to store all data points in memory simultaneously.

Fn =
(
X
⇀f

n · X
↼p

n

>)(
X
↼p

n · X
↼p

n

>)−1

Fn = ΦnΨ−1
n

(5.14)

Importantly, the data must be normalized to be zero mean and unit vari-

ance prior to computing the estimate of Fn; however, the mean and variance

must also be estimated from the available data. One solution would be to

compute the mean and variance from all the available data and normalize

prior to constructing Φn and Ψn. The drawback of this approach is that it

requires storing all the data and parsing it at least twice in order to estimate

F . Instead, we seek a method of normalizing the data after constructing

Φn and Ψn. Given that the variance is normalized by a multiplicative op-

eration, this normalization may be achieved by element-wise division of Fn.

Normalizing the mean value of the data points is somewhat more nuanced.

Let µn be the mean estimated from the first n data points as defined by

Equation 5.15. Then we define ∆µn+1 to be the change to the estimated mean

induced by the addition of a new data point, as shown in Equation 5.16.

µn =
1

n

n∑
i=1

xi (5.15)

∆µn+1 = µn+1 − µn =
xn+1 − µn
n+ 1

(5.16)

Next, we use the superscript to denote a tiling operation such that µfn is

the mean vector tiled f times so that it has the same dimension as X
⇀f

n(i).

We can then define the normalized values of Φn and Ψn recursively as shown

in Equations 5.17 and 5.18, where Spn is the summation defined recursively

in Equation 5.19 and Sfn is defined similarly.

Φn+1 = Φn +
(
xfn+1 − µ

f
n+1

) (
xpn+1 − µ

p
n+1

)>
−
(

∆µfn+1

)
Spn
> − Sfn

(
∆µfn+1

)>
+n
(

∆µfn+1

) (
∆µpn+1

)> (5.17)
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Ψn+1 = Ψn +
(
xpn+1 − µ

p
n+1

) (
xpn+1 − µ

p
n+1

)>
−
(
∆µpn+1

)
Spn
> − Spn

(
∆µpn+1

)>
+n
(
∆µpn+1

) (
∆µpn+1

)> (5.18)

Spn+1 =
n+1∑
i=1

(
Xp
i − µ

p
n+1

)
= Spn + n∆µpn+1 +

(
Xp
n+1 − µ

p
n+1

)
(5.19)

Lastly, normalizing the variance of the data only requires that a running

estimate of the variance be kept as each new datum is collected. The esti-

mated variance is updated using Equation 5.20. The final estimates of Φ and

Ψ can then be normalized by computing the element-wise division shown in

Equation 5.21, where ⊗ denotes the outer product and the superscript de-

notes the tiling operation applied to the standard deviation estimated from

the nth variance estimate.

σ2
n+1 = σ2

n +
(xn+1 − µn+1)2 + n∆µ2

n+1 − 2∆µn+1Sn − σ2
n

n+ 1
(5.20)

Φn =
Φn

σfn ⊗ σpn
Ψn =

Ψn

σpn ⊗ σpn
(5.21)

After this final normalization, the nth estimate of the prediction operator F
can be computed as Fn = ΦnΨ

−1

n . As a final note, this incremental method of

computing the MMSE estimate of F consumes a finite and constant amount

of memory; however, the values stored in the summation Sn may diverge

since the variance of Sn = nσ2 according to the central limit theorem [65].

Fortunately, the divergence of these values occurs linearly with the number

of data points and does not risk overflow unless exceedingly large amounts of

data are used. Even so, Sn is only ever multiplied by ∆mun+1 so it is possible

to simply store Sn

n+1
and effectively eliminate any risk of storing a divergent

variable in memory.
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5.2.4 Exploration and Model Structure

Estimation of the primitive model parameters requires a history of observa-

tions of the system’s inputs and outputs. The production of this history is

typically referred to as exploration, which consists of driving the inputs of

the system with some random sequence of inputs ut. In the case of the linear

feedback transform employed in this model of sensorimotor primitives, the

selection of this exploratory control sequence plays a significant role. In the

case that ut is random and uncorrelated with finite variance, we have that

the resultant feedback transform will predictively model the mechanics of the

system. Importantly, the feedback transformation imposes a closed loop con-

troller that drives the system based on these observed mechanics. In effect,

the default control policy determined by G for vt = ht drives the system to-

ward a point corresponding to the average value of ut and yt. Alternatively,

if some structure were imposed on the control signal used for exploration,

the feedback transformation would characterize this structure as part of the

system’s mechanics. In essence, by structuring the excitation signal ut, the

default control policy is biased in a manner that matches this structure.

It is also possible to utilize a hierarchy of feedback transforms as depicted

in Figure 5.2 where each transform is denoted by (Gi, Ti). Each feedback

transform can then be learned sequentially through random excitation of

each new high level control input. In the case that the original system has

multiple output channels, it is possible to map these output channels to

different levels of the hierarchy. Furthermore, this approach can be tailored

to a particular application by imposing differently structured excitation at

each level of the hierarchy.

5.3 Conclusion

In this chapter, we developed a notion of sensorimotor primitives in terms of

a feedback transformation. Furthermore, we developed a means of estimating

the primitive operators under a linear system assumption and developed a

means of dealing with high dimensional systems and large data sets. Impor-

tantly, this development of linear sensorimotor primitives is particularly well

suited to the problem of coordinative control of a high dimensional simulation

of the vocal tract. In the following chapter, we will consider experimental
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T3,G3 T2,G2 T1,G1 system
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y1
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y3

yn

...

h1h2

Figure 5.2: The notional implementation of a hierarchy of feedback transfor-
mations.

results in applying linear sensorimotor primitives to the Praat vocal tract

simulation for the purpose of controlling the vocal tract geometry. We will

also explore the problems of learning a high level control policy and esti-

mating the internal state without access to all sensory channels or low level

control inputs.
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CHAPTER 6

LINEAR FEEDBACK CONTROL

In this chapter, we explore the application of linear sensorimotor primitives

to the vocal tract and the development of control policies that interface with

the resultant primitive operators. Bearing in mind that the primary focus

of this work is to develop a communication model of speech, we focus our

attention on the issue of controlling the vocal tract to produce some desired

acoustic output. As we will see, the use linear sensorimotor primitives is not,

on its own, sufficient for speech communication; however, valuable insights

are gained in examining the successes and shortcomings of this approach.

6.1 Linear Articulatory Primitives

We consider the acoustic and articulatory sensory information as separate

outputs from the vocal apparatus. Equation 6.1 then represents the model

of the system where at represents the articulatory sensory output and st

represents the acoustic sensory output (a for articulatory, s for sound). In

general, we will assume that both at and st are feature vectors that sufficiently

represent their respective sensory information. Throughout this chapter, we

will explore the hierarchical application of sensorimotor primitives to each

of these sensory channels. Specifically, the area function is driven by low

level articulatory primitives while the acoustic output is driven by high level

acoustic primitives that interface with the articulatory primitives. Given that

the acoustic signal is largely determined by the vocal tract area function, it

follows that the proprioceptive sensory channel be the lowest level of the

primitive hierarchy.
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zt+1 = f(zt, ut)

at = ga(zt, ut)

st = gs(zt, ut)

(6.1)

Let A
↼p

t be the history vector of at and let U
↼p

t be the history vector of

u. Furthermore, let the articulatory input and output history be X
↼p

t =[
A
↼p

t , U
↼p

t

]>
. Then we have the feedback transformation corresponding to

sensory output, represented by the vocal apparatus area function at, defined

by Equation 6.2.

ht = TaX
↼p

t

ut = Ga (vt)
(6.2)

In this formulation, the subscript a is used to indicate parameters that

correspond to the articulatory feedback transformation. We then seek to

learn the set of model parameters Ta and Ga such that the vocal tract can be

controlled by the high level control input vt. As a first step in this process,

we must first determine a set of articulatory features to include in the sensory

output signal at.

6.1.1 Articulatory Feature Extraction

The feedback transformation matrices Ta and Ga inherently capture a notion

of coordinative control by finding correlations between the input and output

dimensions of the system. In the case of choosing articulatory features for

vocal control, it is important to choose features that are relevant to speech

production. It is also important to note that Ga is effectively a projection

matrix that performs linear feature extraction in a manner analogous to

principle component analysis. As such, the articulatory features should be

chosen such that they carry acoustically relevant information but one should

be careful not to present features that have been heavily reduced.

For this experiment, the articulatory features consist of the vocal tract

area function, the area function over the lungs, and the cross-sectional area

of the velar opening. The area function consists of the cross sectional area of

each tube segment starting from the glottis up through the lips and including

the opening of the velum. Given that the area functions of the nasal cavity
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and bronchial tubes do not change with time (excluding any vibrations of

the walls), they are excluded from this set of features.

6.1.2 Random Excitation

The muscle inputs to the vocal tract are excited by applying a random walk

over each muscle input with independent increments and independent ran-

dom time steps. Let mi(t) be the ith muscle input at time t and let t0 be the

start time for the random walk such that mi(t0) = 0. We define a sequence of

target times tk by Equation 6.3a where τk is a nonnegative random variable.

At each target time, the ith muscle target is determined by Equation 6.3b,

where δk is a random variable. The function mi is then defined by linear in-

terpolation between the sequence of targets defined by {mi(t0),mi(t1), . . .}.
This process is then repeated across all muscle inputs such that the sam-

ple paths of all muscle inputs are mutually independent. By defining this

random walk, changes in muscle commands are intentionally unsynchronized

and can evolve with a bounded random velocity.

tk = tk−1 + τk , τk ∈ [τmin, τmax] (6.3a)

mi(tk) = mi(tk−1) + δk , δk ∈ [−δmax, δmax] (6.3b)

Using the random walk defined by Equation 6.3, a random excitation was

generated and applied to the Praat vocal tract model for 500 minutes. The

random walk parameters for this experiment are defined to be δmax = 0.3 and

(τmin, τmax) = (0.02, 0.2), where τ is in seconds. The data collected from the

simulation is then sampled at a sampling period of 10ms, which is the Nyquist

rate corresponding to τmin. The resultant muscle commands from the first 5

seconds of data are shown in Figure 6.1, with the trace corresponding to the

lung input highlighted. The mean and relative standard deviation of each

articulator are shown in Figure 6.2. Figure 6.3 shows a plot of the mean

and relative standard deviation of the output features based on the random

sequence of muscle inputs. The mean and variance of the articulator inputs

are shown as a rough measure of whether or not enough input samples are

taken since the mean and standard deviation will converge to 1
2

and 1√
12

respectively as the sample size increases.
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Figure 6.1: The first 5 seconds of each articulator input with the lung input
is highlighted.
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Figure 6.2: The average value of each articulator input with a margin of one
standard deviation.
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Figure 6.3: The cross-sectional area of the lungs through the trachea, and of
the glottis through the lips followed by the velar opening.
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6.1.3 Parameter Inference

The articulatory primitive operators are estimated based on the input and

output data from the vocal tract under random excitation. Given that the

space of possible inputs is quite large, a very large number of samples is

needed in order to properly estimate the primitive operators. Fortunately,

the method outlined in the previous chapter allows an MMSE estimate of the

primitive operators based on an arbitrarily large data set; the only practical

limitation is computation time. As such, the primitives are estimated based

on a total of 500 minutes of vocal tract data, with input output pairs captured

at a frequency of 1 kHz. In total, the primitives are estimated from 30 million

input-output vectors.

The history and prediction length were chosen to be p = 20ms and f =

10ms. It should be noted that the necessary history length is given by

2pAIC ≈ 12ms, which is given by the minimum value indicated in Figure 6.4.

Conversely, a longer history results in a smoother estimate of the internal

state. As such, p is selected to be as large as possible without significantly

impeding computation time. The dimension of h is chosen to be 10; the

selection of this parameter essentially determines the primitive controllers

resolution.
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Figure 6.4: The computed AIC value as a function of time computed from a
100s data sample. The minimum value is indicated with a red dot.

The process of estimating the sensorimotor primitives is performed itera-

tively as the input-output data are generated. In order to judge the stability

of the parameter estimates, we iteratively compute the prediction operator

Fn using n minutes worth of simulated data. The relative change in Fn,

66



defined in Equation 6.4, is then computed as each new batch of data is gen-

erated. Additionally, the mean and variance of the elements of Fn were

computed as a means of monitoring the relative change in the matrix over

time. Plots of these measurements are shown in Figures 6.5 and 6.6, illus-

trating the convergence of the prediction operator toward a fixed point value.

Notably, the relative change in F is still rather noisy even after 400 minutes

of data have been collected. Arguably, a much larger set of data would lead

to a more consistent estimate but the time needed to simulate such data is

prohibitively long. Even in the case of this data set, the total computation

time was approximately 5 days when run on a standard desktop computer.

∆Fn =
‖Fn −Fn−1‖
‖Fn + Fn−1‖

(6.4)

0 100 200 300 400 500

0

50

100

n (Batch Count, 60 sec each)

10
0%

*
∆
F
n

Figure 6.5: Percent change in prediction operator as a function of total data
size.

The resultant feedback transform corresponding to the first three dimen-

sions of h is visualized in Figures 6.7 and 6.8. Each parameter in these figures

is labeled with a value of k, which defines the corresponding dimension of h.

The input parameters can be interpreted as a projection matrix for a linear

transform, where the time variation along each feature can be thought of

as capturing a distribution of frequencies. The output parameters, on the

other hand are more readily interpreted as indicating correlation between

articulator inputs and sensory outputs. Although the structures of the input

and output matrices are interesting to examine, the interpretation of these

results is largely subjective. Instead, we will examine the behavior of the
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Figure 6.6: Statistics computed for the elements of the prediction operator
Fn.
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vocal tract under the application of this feedback transformation.
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Figure 6.7: Input features extracted from T .

6.2 Articulatory Feedback Control

With an articulatory primitive model in hand, we now consider the problem

of feedback control. In order to implement this feedback control, we first must

consider the nature of the vocal tract model being employed. In particular,

the Praat model is designed such that it adheres to the equilibrium point

hypothesis [59]. In terms of feedback control, this effectively means that

any given state in the system will act as an equilibrium point so long as

the control input is held constant. As a result, controller design is greatly

simplified in that state feedback is not needed to stabilize the system. This

means that we simply need to learn a feedback controller that is able to steer

an already stable system.
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Figure 6.8: Output features extracted from G.

6.2.1 Linear State Feedback Control

A first approach at feedback control is to apply the standard method of

linear quadratic regulation. In order to implement this control method, we

consider the articulatory primitive model in terms of a simple linear system

as shown in Equation 6.5, where ht is the internal primitive state and vt is the

control input, A represents the state evolution matrix, and B is the control

input matrix. Notably, the values of A and B are unknown and must be

estimated before any control can be applied. We do this in a manner similar

to the process used to estimate the primitive operators, namely by driving

the input with a random walk and finding the MMSE operators that best

fit the observed state evolution. Given that the primitive operators give us

access to the internal state, this estimation is straightforward. The resulting

A and B matrices are shown in Figure 6.9. As a form of sanity check, we

see that the state matrix A is estimated as the identity matrix, which gives

some confidence in the quality of these estimates.

ht+1 = Aht +Bvt (6.5)

State feedback can then be defined by the rule shown in Equations 6.6

and 6.7, where K is the feedback gain and h̃ is the desired state. The feed-

back gain matrix K can then be determined based on the algebraic Riccati

equation (ARE) shown in Equation 6.8, where R and Q represent the vari-

70



0 2 4 6 8

0

2

4

6

8

(a) State transition matrix

0 2 4 6 8

0

2

4

6

8

(b) Control input matrix

Figure 6.9: A simple visualization of the results of performing system iden-
tification on the primitive controlled vocal tract.

ance of the input and state matrices.

vt = −K
(
ht − h̃

)
(6.6)

K =
(
R +B>PB

)−1
B>PA (6.7)

A>PA− P −
(
A>PB

) (
R +B>PB

)−1 (
B>PA

)
+Q = 0 (6.8)

This feedback rule is applied to the primitive model and all dimensions of

the internal state toward zero. The resulting state evolution and articulator

inputs are shown in Figure 6.10. As we can see, the feedback controller largely

fails at driving the states toward zero. This result is hardly surprising as the

assumption that the vocal tract is a linear system does not actually hold. In

particular, we see that the controller does begin to drive the states toward

zero but begins to fail as soon as the articulators begin to hit their boundaries

of their input range of [0, 1]. Although this result fails to give a method of

controlling the vocal tract toward a desired state, it clearly shows that linear

state feedback is insufficient.

6.2.2 Reinforcement Learning

An alternative approach to learning a control policy for the articulatory

primitive model is through reinforcement learning. We can formulate the

problem of control in terms of Q-learning by defining a reward function that
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(a) Internal state of the primitive controller
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(b) Articulator inputs to the

Figure 6.10: Traces of the state evolution and articulator inputs under LQR
feedback control.
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provides positive reward at the desired state and null or negative reward at

undesired states. The policy learner then accumulates a ‘value’ associated

with all state-action pairs. Since the states and actions of the primitive model

are continuous, Q-learning requires that the Q-function be parameterized

through some form of function approximation. For the sake of simplicity, we

will consider Q-learning over a quantized version of the state action space.

Q-learning was applied to two dimensions of the state and action spaces

respectively (i.e. two-dimensional state space, two-dimensional action space).

The unused dimensions of the sensorimotor primitive inputs are held constant

at a value of zero, while the first two dimensions are driven by the controller.

The discrete action space is then defined by {−0.1, 0, 0.1} and the primitive

control input is incremented by the selected action value. Each dimension

of the primitive state space is quantized into 11 bins evenly spaced over the

range of [−1, 1].

The choice of implementing this controller over only two dimensions stems

from the fact that the space of state-action pairs grows exponentially with

each new dimension. As such, the time needed to learn a control policy

grows exponentially with each new dimension. The choice of two dimensions

is sufficient to show that a policy can be learned to simultaneously drive two

states to a desired point in the state space. Figure 6.11 illustrates the state

evolution and articulator inputs determined by a policy learned after 100

seconds of training, with a controller operating at a sampling period of 5ms.

As can be seen, the controller is capable of driving the two internal states

toward the bin centered at zero, and no further change in control input is

applied once the states reach the target.

This discretized Q-learning based controller demonstrates that a nonlinear

control policy can be learned for driving the state space of the primitive con-

troller. Unfortunately, dimensionality is a nontrivial hurdle for this approach.

In this simplistic implementation, the space of state-action pairs is quantized

into 33n values (where n is the primitive dimension). As such, the number

of training iterations needed to train the policy grows prohibitively large for

n > 3. In addition the Q-function is only trained to drive the primitive state

toward a single point. This means a new controller must be learned for each

target state, which further compounds the high computational cost.

Lastly, this approach suffers from a subtle problem in the nature of the

primitive states. Specifically, it is not necessarily possible to tell whether
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(b) Articulator inputs to the Pyraat simulator

Figure 6.11: Traces of the state evolution and articulator inputs under Q-
learning based control policy.
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a particular state is reachable. This is primarily due to the fact that the

states are not independent of one another and as such, driving one state to a

particular value may prohibit another state from reaching some other range

of values. This is shown in Figure 6.12, where the control policy is learned for

driving three primitive states toward (0, 0, 0). As we can see, the controller

is able to drive each state to the desired target before one state is ejected

from the goal and the policy is unable to drive it back. A key lesson learned

here is that we must first discover the set of valid target states before we can

learn a control policy.
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Figure 6.12: Traces of the state evolution under 3 state Q-learning control
policy.

6.3 Linear Acoustic Primitives

Having demonstrated some efficacy in the use of linear sensorimotor primi-

tives for articulatory control, we will now briefly explore their application to

controlling the acoustic output of the vocal tract. To do this, we will em-

ploy mel frequency cepstral coefficients (MFCCs) as an approximation of the

acoustic features extracted by the cochlea. The choice of MFCCs is primarily

motivated by the fact that MFCCs are inspired by the frequency response

observed in the cochlea. In addition, MFCCs have been extensively used in

speech recognition technologies as they have been shown to be highly effective

for the purpose of classifying speech sounds [66][67]. With this reasoning, we

will employ MFCC features as a means of extracting the frequency content
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of the acoustic signal produced by the vocal tract.

6.3.1 Parameter Estimation

We implement sensorimotor primitives by defining the system inputs as the

articulatory primitive inputs and the outputs as the MFCC features. The

primitive model can then be trained using the same parameter estimation

procedure outlined in Chapter 5. Training was performed using 500 minutes

of training data randomly generated by randomly exciting the articulatory

primitives as the control inputs. We discover, however, that the resulting

primitive model does not sufficiently represent the system for the purpose of

communication. To visualize how this approach fails, we can look at a simple

example.

We consider the acoustic primitive operators in the case of a history and

prediction length set to p = f = 1, which is chosen simply because the

primitive operators can be easily visualized. The input controls to the system

are the inputs to the articulatory primitives described earlier in this chapter

and the outputs are 13 MFCC feature vectors. The estimated input and

output operators for the acoustic primitives are shown in Figure 6.13. Since

the history lengths are set to unity, it is easy to interpret all dimensions of the

operators simultaneously. In particular, we see that the MFCC components

of operators primarily contribute to the zeroth state of the new primitive

space. As a result, these acoustic primitives make extremely poor acoustic

observers if they do not have access to the control inputs of the vocal tract.

When this is attempted, the estimated state is restricted to a very small

neighborhood around the origin.

The failure of this model is likely due to two primary factors. First is

that the linear assumption of the sensorimotor primitive estimation process is

strongly violated by the relationship between the primitive inputs and MFCC

features. Second is that there appears to be only a very small subset of states

in the primitive state space that correspond to sound production. As such,

the random stimulation largely produces MFCC features that correspond

to little or no noise at all. This poses a challenge that calls for nonlinear

methods that can more readily deal with the restricted distribution of sound

producing states.
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Figure 6.13: Input and output operators of the linear acoustic primitive
model. In each matrix visualization, the first 10 columns/rows represent
the articulatory primitive control action and the remaining columns/rows
represent MFCC values.

6.4 Considerations for Further Development

Having applied linear sensorimotor primitives to the Praat model, several

interesting lessons have been learned. As was previously noted, the mapping

from vocal tract shape onto acoustic features is generally nonlinear and so

the utility of linear primitives was expected to be limited. In addition, there

were other observations that play into their failure to represent the acoustic

communication channel. First is the fact that most of the vocal tract states

(as represented by the articulatory primitives) do not produce any audible

sound. Related to this issue is the problem of learning a nonlinear control

policy that requires a priori knowledge of the desired state. In this section, we

will consider each of these problems and their implications for this approach

to developing a control theoretic model of speech communication.

6.4.1 The Audible State Space

We define the audible subspace as the subset of the articulatory primitive

state space which coincides with the production of audible acoustic waveform.

As noted previously, during random excitation of the vocal tract, sound is

only produced during a comparatively small number of simulations. Given

the poor performance of the linear acoustic primitives, this raises the question

as to the size of the audible subspace relative to all possible states of the vocal
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tract. In addition, some primitive states can only be reached dynamically

and thus the system can only pass through them as part of some trajectory.

In order to get a sense of the relative size of the audible subspace, we can

consider the total amount of time in which the vocal apparatus produced

sound during random excitation. During the training process used to esti-

mate the acoustic primitives discussed in Section 6.3, we tallied up the total

time in which the energy of the acoustic waveform crossed a threshold of

10−3. The choice of threshold is selected based on perception of the author

while playing the utterance over a set of computer speakers. From the 500

minutes of utterances, approximately 17 minutes and 21 seconds were above

the threshold; approximately 3.5%. Given the relative size of the audible sub-

space, it is unsurprising that the linear sensorimotor primitives are primarily

influenced by non-acoustic features.

6.4.2 Control Policy Representation and Learning

Although Q-learning was demonstrated as a basic means of learning a control

policy to drive the articulatory primitives, there are a couple of important

ways in which this approach could be improved. Foremost is the observa-

tion that the discretized formulation of Q-learning that was applied in Sec-

tion 6.2.2 is a relatively crude implementation of reinforcement learning. In

general, we would expect more efficient policy learning if the control policy

were represented using a parameterized continuous function.

The larger issue in this approach, however, is that reinforcement learn-

ing generally requires the definition of some form of goal state. Given that

communication is the fundamental goal of this work, the system would first

need to discover the set of goal states before the control policies could be

learned. From a communication perspective, the goal states would need to

be some set of states that can be distinguished from one another by an ob-

server. Given that linear sensorimotor primitives were shown to make poor

acoustic observers, we still need to divine a (probably nonlinear) observer to

match with this control policy.

How, then, should one proceed with learning an observer and control pol-

icy? In order to address this question, we must revisit our approach to

defining speech primitives in order to extend our formulation to the trans-
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mission and reception of the acoustic signal. As we will show in the next

two chapters, we can solve the problem of the acoustic observer and the

high level control policy simultaneously by framing the problem as nonlinear

communication channel and applying our sensorimotor primitive framework.
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CHAPTER 7

NONLINEAR PRIMITIVES FOR
COMMUNICATION

In this chapter, we reconsider our development of speech primitives in order to

address the problem of controlling the acoustic signal. As shown in Chapter 6,

linear sensorimotor primitives fall short of our needs in constructing a speech

communication channel. A fundamental flaw in this approach is ultimately

in the construction of an acoustic observer. Although it seems natural to

assume that one might be able to construct an observer using an architecture

analogous to the controller, the linear systems approach is insufficient for

accomplishing this. In order to develop an observer, then, we reformulate

the problem as a communication channel rather than a control system.

In this chapter, we formally define the approach to learning primitive oper-

ators for transmitting information over a nonlinear communication channel.

We specifically consider the path from the inputs to the vocal tract through

the output features produced by the cochlea as a channel through which

we wish to transmit information. The task is then to learn a pair of oper-

ators that map from some space of primitive features through the channel

and back onto the primitive features. In essence, we seek to develop a pair of

nonlinear encoder and decoder operators that map through a nonlinear chan-

nel. Throughout this chapter, we will develop the inverse channel encoder

(ICE) as a means of learning these nonlinear operators simultaneously by

extending the notion of the autoencoder neural network. We then illustrate

the behavior of such a mapping by considering a simplified example using

written digits as a channel.

7.1 The Autoencoder

We begin our development of the ICE by briefly outlining the traditional au-

toencoder neural network from the perspective of operator theory. Generally
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speaking, the autoencoder is implemented in the form of a neural network

for the purpose of unsupervised feature learning. Rather than present the

concept strictly as a neural network architecture, we will first consider the

generalization of the autoencoder as a form of operator decomposition. This

generalization is significant in that it more naturally leads to an intuitive

development of the ICE architecture.

7.1.1 An Operational Definition

Suppose we have some set of data X = {x0, x1, . . . xN}, where each xi is

a vector in some high dimensional space X. Then we define a latent space

H such that H is constrained in a manner that is useful to the application

of interest, e.g. low dimensionality or sparsity are commonly used. An

autoencoder is then defined by two operators: the encoder E : X → H that

maps the data onto the latent space, and the decoder D : H → X that

maps the latent space back onto the original data space. The goal is then

to learn operators such that x ≈ x̂i = D ◦ E(xi) ∀i. More formally, we

seek operators such that d(X, X̂) according to some distance metric d. The

optimal encoder and decoder operators are then defined by the solution to

the nonconvex optimization shown in Equation 7.1.

D∗, E∗ = arg min
D,E

d(X, X̂)

s.t. E : X→ H
and D : H→ X

(7.1)

In Figure 7.1, we visualize E and D as a nonlinear decomposition of the

identity operator, denoted by I. This decomposition is conceptually analo-

gous to linear decomposition such as principle component analysis or inde-

pendent component analysis. Once the operators E and D have been learned,

the latent space H serves as a representation of the data that is both analytic

and generative.

It is important to note, however, that unless the topology of H is somehow

constrained, the mapping from the latent space onto the data space may be

poorly behaved. In particular, the topology of H may contain discontinuities

or be highly nonconvex in the unconstrained case. As as result, this basic

form of the autoencoder is typically not used as a generative model, since
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Figure 7.1: The notional form of the Channel Autoencoder.

much of the space in H does not map into points that bear any meaning in

the data space X.

7.1.2 Approximation Using Neural Networks

Given that the optimization shown in Equation 7.1 is in general neither con-

vex nor are the solutions unique, it cannot be solved analytically. Instead,

a sub-optimal E and D can be learned through using a special architec-

ture of neural network. Although feed-forward neural networks are generally

well suited for function approximation problems, they are especially powerful

tools for this particular application because their layered structure allows for

a straightforward means of function decomposition. Specifically, the network

is trained to approximate the identity operator I : X → X with a special

“constraint layer” placed at the middle of the network. Once the network

is trained, the identity operator can be easily decomposed by ‘cutting’ the

network at the constraint layer and using each half of the neural net to ap-

proximate both E and D. An example of such a network architecture is

shown in Figure 7.2, where the network maps from a four-dimensional (4D)

space through a two-dimensional space and then approximates the original

4D input. The dimension of latent space and the width and depth of the

network are entirely problem-specific design choices, but it is important that

symmetry is maintained between the architecture of D and E so that the two

networks have equivalent representational power as function approximators.

Interestingly, the general structure of this neural network architecture

has been employed for nonlinear manifold learning and unsupervised fea-

ture learning since as early as 1987 [68]. With the more modern advances

in neural network research, autoencoders have been employed using much

deeper and often more advanced architectures with many applications in

high dimensional domains, such as image processing and motion learning
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Figure 7.2: Example autoencoder network mapping from x ∈ R4 through
h ∈ R2.

[69][70]. As stated previously, this general form of the autoencoder, though

well suited for unsupervised feature learning, performs rather poorly as a

generative model. It should be noted, however, that a generative model is of

central importance in forming a model of primitive operators for communica-

tion. In the following section, we will consider extensions to the autoencoder

architecture through specific choices in the nature of the constraint layer as

a means of controlling the topology of the latent space.

7.2 Constraining the Latent Topology

In the case of a traditional autoencoder, the data with which the network

was trained may map through any arbitrary subset of H. As a result, the

points in H that do not correspond to the training data may map to arbitrary

points in X that have no meaningful relationship with the training data. A

consequence of this behavior is that the decoder D is not well suited as a

generative model of the larger population of data from which the training

data is taken. In order to solve this problem, we can impose a constraint on

the topology of H during the training process. The variational autoencoder

(VAE) solves this problem by imposing an additional constraint on the dis-

tribution of points in H while the network is trained. This VAE architecture

can then be further extended into the Channel Autoencoder (ChAE), which

directly uses a fixed channel model as the constraint layer in the network.
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7.2.1 The Variational Autoencoder

In order to best explain the structure of the VAE, we return to thinking in

terms of nonlinear operators rather than neural network architecture. Sup-

pose that each xi is a Gaussian random variable with a distribution given

by N (µx,Σx). Then the encoder is chosen such that the hi = E(xi) is a

Gaussian random variable with standard normal distribution N (0, I). In

addition, the decoder must be chosen such that for any hi sampled from a

standard normal, we have that x̂i = D(hi) is a random variable with a dis-

tribution N (µx,Σx). In general, it is possible to impose other distributions

on these random variables but the Gaussian is generally the easiest to work

with. Under these constraints it is possible to use D as a generative model

that maps from points not seen in the training data onto the distribution

N (µx,Σx) [71].

In order to construct such a network, we first consider how the Gaussianity

constraint is imposed on the latent space and define the objective function for

which the network will be optimized. Figure 7.3 depicts the general architec-

ture of the VAE when considered at the operator level where the Gaussianity

constraint is imposed using what is known as the ‘reparameterization trick’.

The ‘reparameterization trick’ can be thought of in two parts. First, the

output of the encoder is defined to be the parameters of a Gaussian distribu-

tion, namely the mean and variance. A random sample is then drawn from

that Gaussian distribution and used as input to the decoder. The random

sampling is accomplished by converting a random sample ε from a standard

normal via multiplication and addition with the standard deviation and mean

respectively.

X E µh

σh

N (µh, σh)

+

×

ε

D X̂

Figure 7.3: An implementation of the VAE using the ‘reparameterization
trick’.
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The objective function that this network is trained to maximize is given by

L in Equation 7.2, where the first term can be thought of as the reconstruction

cost and the second imposes the Gaussianity constraint on h. Specifically,

if X is Guassian then P (X|h) is maximized when ‖X − X̂‖2 is minimized.

Additionally, since we assume that h must be a standard Gaussian then the

second term is minimized when E(x) is also a standard Gaussian.

L = Eh [log(P (X|h))]−KL [P (h|X, E)‖P (h)] (7.2)

Because of the randomness induced in the reparameterization trick, the

encoder and decoder operators are robust to samples that may not have

been seen in the original training set. It is important to note, however, that

enforcing this topology on the latent space comes with a direct trade-off in

the model’s accuracy in its approximation of the identity operator. This

commonly manifests in the form of ‘fuzzy’ outputs from the decoder. This

trade-off can be more explicitly seen in the more general implementation of

VAE known as the β-VAE, in which a weighting variable β is inserted into

the objections function shown in Equation 7.3. The extra weighting variable

allows for control of the balance between Gaussianity and reconstruction

error; however, the selection of a value of β cannot be determined analytically

before training and instead must be found through trial and error [72].

L = Eh [log(P (X|h))]− β ·KL [P (h|X, E)‖P (h)] (7.3)

7.2.2 The Channel Autoencoder

We now extend the concept of the VAE by observing that the ‘reparameter-

ization trick’ used in the constraint layer can be further generalized. Specif-

ically, the reparameterization trick is the implementation of a differentiable

operator1 that is parameterized by the output of the encoder operator. This

concept can then be extended by noting that the constraint layer can be

replaced with any other operator for which the gradient can be analytically

1The differentiability of the operator is of particular importance because the gradient
is necessary for the backpropagation algorithm that is used to train the weights of the
neural net through gradient descent. It is possible to train the network using gradient-free
optimization methods; however, such algorithms are computationally much more expensive
and typically grow exponentially with network depth [73].
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solved. The general architecture of this Channel Autoencoder (ChAE) is

depicted as the graphical model shown in Figure 7.4.

X E C D X̂

Fixed Channel

Figure 7.4: The notional form of the Channel Autoencoder.

This notion of the Channel Autoencoder has been applied to a simple RF

channel model where the encoder and decoder are trained to map a binary

vector through the channel [74]. Using a convolutional network architecture,

this application of the Channel Autoencoder formed a nonlinear mapping

that blurred the lines between modulation and coding in order to operate

near the channel capacity of an arbitrary differentiable channel. Additionally,

recurrent neural nets were employed in a similar architecture to learn codes

for feedback channels [75][76][77]. Although these results are compelling, the

requirement that the gradient of the channel be known a priori limits the

application of this direct approach rather severely. Given that our model of

speech production is not easily differentiable, we seek a method of extending

this notion of the Channel Autoencoder to channel models for which the

gradient is unknown.

7.3 Generalized Channel Autoencoder

In the case of utilizing the vocal tract as the channel operator, a closed

form solution to the gradient cannot be directly computed. As such, we

seek an alternative formulation of the problem that will still allow the neural

network to be efficiently trained via back-propagation. In order to do this,

we once again return to thinking about the problem in terms of operator

decomposition rather than thinking in terms of neural network architecture.

In the channel autoencoder, the neural net learns a composition of operators

(namely the encoder, channel, and decoder) that approximate the identity

operator denoted by I. We can then graphically represent the mappings

between these operators as loop shown in Figure 7.5.

The important observation in this diagram is that the inverse of each
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Figure 7.5: A visualization of the operator mappings employed in the chan-
nel autoencoder with the operators indicated by arrows mapping between
mathematical spaces.

operator can be approximated as a composition of other three. In the case of

the channel autoencoder, the identity operator is its own inverse and so this

relationship is not as readily apparent. Importantly, so long as the network

architecture is appropriately constructed, it is possible to learn the encoder

and decoder operators by approximating the inverse of either the identity

operator or the channel. The latter approach is the primary contribution of

this chapter and outlined in further detail in the following sections.

7.3.1 The Inverse Channel Encoder

From this operator perspective, the ChAE is trained using the inputs and

outputs of the identity operator in order to learn its inverse. The network can

then be thought of as breaking the loop shown in Figure 7.5 at the identity

operator to form the feed-forward network represented by Figure 7.4. Given

that we are interested in a channel for which the gradient is unknown, back

propagation cannot be used to estimate the encoder and decoder operators

directly. Instead, we can break the loop at the channel itself and learn

an approximation of the channel inverse as a composition of the opposing

operators C−1 ≈ D ◦ I ◦ E . With this form of feed-forward network, we can

then impose the Gaussian constraint on the latent space that exists between

the decoder and encoder operators in a manner equivalent to the traditional
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VAE.

By learning the inverse channel model using this VAE-like architecture,

we have that the encoder maps the output of the channel onto a Gaussian

distribution and the decoder maps that Gaussian distribution back onto the

inputs of the channel. As a result, the communication channel that is formed

by the composition ĥ = E ◦ C ◦ D(h) is effectively a Gaussian communica-

tion channel over the latent space H. The resulting network illustrated in

Figure 7.6 is computationally very similar to the traditional VAE with the

exception that the overall network is trained to learn the inverse channel

model rather than the identity operator.

Y D N (µx, σx) E Û

Gaussian Constraint

Ĉ−1

Figure 7.6: The notional form of the Inverse Channel Autoencoder.

Notably, there is no need to know anything analytic about the channel’s

internal structure, although this information is relevant to choosing a neural

network architecture. All that is necessary for training this model is access

to sufficient training data consisting of samples taken from the input and

output of the desired channel. Lastly, this inverse channel encoder (ICE)

effectively learns the same set of operators shown in Figure 7.5, which can

then be rearranged to form an approximation of the channel autoencoder.

Since the encoder and decoder map through a Gaussian constraint, the input

and output of this channel autoencoder are similarly constrained. In essence,

the newly learned operators effectively convert the arbitrary channel C into a

Gaussian channel. As such, this transformed channel can be analyzed using

well established methods of analyzing Gaussian channels in order to impose

a coding scheme on the channel that maps bits of information onto points in

H.
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7.4 An Example Application with Written Digits

In order to illustrate the ICE, we will consider the application to the MNIST

database [78] using two ‘toy’ channel models. The first will consider written

digits without any distortion, i.e. the channel is the identity operator, which

is equivalent to the traditional VAE. The second channel will correspond to a

horizontal blurring operator and the inverse channel encoder is then trained

to ‘unblur’ the digits.

Furthermore, we will consider the problem of selecting the dimensionality

for the latent space H. We begin by first constraining the latent space to three

dimensions, which is generally insufficient for representing the information

contained in the images but allows for a straightforward visualization of the

space. We then examine the behavior in the case that the latent space is

allowed to utilize up to 10 dimensions, which is more difficult to visualize

but demonstrates the behavior when more dimensions than necessary are

employed. As we will see, the Gaussian constraint in the utility function

imposes an elegant method of constraining the dimensionality of the latent

representation.

In each case, the encoder and decoder networks are both composed of three

fully connected layers with each layer consisting of 50 rectified linear units

(ReLU). Encoder and decoder are then connected by a three-dimensional

Gaussian constraint layer using the reparameterization trick. The network

was then trained using the Adam optimizer provided within the Tensorflow

framework [79]. The choice of network architecture, activation function, and

backpropagation optimizer may be adjusted to improve performance; how-

ever, in this application we simply require a function approximator with

sufficient representational power that can be trained in a relative short pe-

riod of time. Each network discussed in this chapter was trained over 20

epochs, after which the loss function begins to plateau.

7.4.1 Over-Constrained Latent Space

In this first example, the latent dimension of the VAE is constrained to three

dimensions. In order to get a sense of the representational power of the

network, we first visualize input and output images of the VAE. Figure 7.7

illustrates a sampling of such input-output pairs as sorted by digit. As we
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can see, the limited dimensionality of the latent space results in somewhat

‘fuzzy’ output images and a nontrivial amount of confusion between digits

that are visually similar.

In addition, we can visualize the latent space as a 3D scatterplot where the

colors of the points indicate the digit labels provided in the MNIST dataset,

as shown in Figure 7.8. Notably, the training labels are not used in training

the VAE; they are simply used for the purpose of illustrating that each of the

digits are effectively clustered together. As can be seen, the digits appear to

separate into clusters within the latent space but there is a moderate amount

of overlap between them. This is largely the cause that drives mixed digits

seen in Figure 7.7.

Lastly, we use the encoder and decoder networks to form a 3D Gaussian

channel that transmits information through the space of handwritten digits.

We can then measure the average error in the channel by transmitting three-

dimensional vector valued numbers that have been sampled from a standard

normal distribution N (0, 1). The mean square error is then estimated using

the average squared error between the input and output for each of these ran-

dom samples. The MSE estimated from this 3D channel is 0.26 as measured

from 5000 random samples. We can visualize the channel error in Figure 7.9,

where the inputs are uniformly sampled along each axis from -1 to 1 and

plotted alongside the outputs.

Next we look at the performance of the inverse channel encoder when ap-

plied to the horizontally blurred channel. As with the null channel example,

we begin by examining the input and output digits of the channel in order to

get a sense of the neural net’s representational power. Figure 7.10 illustrates

a sampling of such input-output pairs as sorted by digit.

As would be expected, the performance of the communication channel is

degraded compared with the undistorted channel but the results are still

quite promising. In particular, digits that were already somewhat confused

are much worse under this distortion. This is largely due to the fact that

the horizontal blur obscures some of the features that might be used to

distinguish certain digits.

To visualize the channel, we randomly sampled points from the input as

was done with the null channel example. The MSE estimated from the data

is approximately 0.47, which is much higher than that measured in the null

channel. As such, the visualization in Figure 7.9 is ill-suited for a channel
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Figure 7.7: Example inputs and outputs of the MNIST VAE, with input
images shown above the reconstructed output.
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Figure 7.8: Scatterplot of the latent space illustrating the clustering per-
formed by the VAE over written digits. Each color in the scatterplot corre-
sponds to a digit label provided within the MNIST dataset.

Figure 7.9: View of the channel distortion by transmitting points along the
axes of the latent space. The points in blue represent the inputs to the
channel and the points in red represent the outputs.
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Figure 7.10: Example inputs and outputs of the MNIST VAE, with input
images shown above the reconstructed output.
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with such high error as the structure of the output would be difficult to

recognize. Instead, we can visualize the distortion of the channel as shown

in Figure 7.11. Here the points are plotted based on the coordinates of the

inputs to the channel and they are colored based on the measured MSE. As

we can see, the over-constrained inverse channel encoder appears to organize

the latent space such that points with high error are separated from those

with low error.

Figure 7.11: View of the channel distortion by transmitting points along the
axes of the latent space.

Since the encoder operator produces the mean and standard deviation of

a probability distribution as its output, we can also look at the variance and

its relation to the error magnitude. The relationship for the null channel

is shown in Figure 7.12, and the blurred channel is shown in Figure 7.13.

Interestingly, the null channel does not appear to exhibit any clear relation-

ship between standard deviation and measured MSE; however, the blurred

channel shows a notable linear relationship between the two. It should be

noted that this relationship is not perfectly predictive, but it suggests that

the variance could be used as an indication of uncertainty in the output of

the channel.

7.4.2 Under-Constrained Latent Space

Next we consider the case that the latent space consists of ten dimensions.

Recall that the two terms in the objective function in Equation 7.3 drive the

latent space to be as close to a standard normal as possible while approximat-

ing the output as accurately as possible. As a result, the encoder and decoder

operators only use as many dimensions as are needed for reconstruction and
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Figure 7.12: Scatterplot of the measured MSE of the null channel model
versus standard deviation output by the encoder operator as the horizontal
and vertical axes respectively.
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Figure 7.13: Scatterplot of the measured MSE of the blurred channel model
versus standard deviation output by the encoder operator as the horizontal
and vertical axes respectively.
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fix the remaining dimensions of the space as standard normal distributions.

We begin by considering the case of the null distortion, where we note that

only five of the dimensions are actually used. Once again, we use example

digits sampled as input and output of the channel in order to visualize the

network’s representational accuracy. As is seen in Figure 7.14, the output

images appear to more accurately represent the input images than when the

latent dimension was over-constrained.

Figure 7.14: Example inputs and outputs of the ICE trained on the MNIST
dataset with no distortion operator applied. Input images are sampled from
MNIST and shown above the reconstructed output.

Next, the encoder and decoder operators are used to form a channel and

the transmission error is estimated by randomly sampling points from the
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five-dimensional latent space. Using 5000 data points normally distributed

within the 5D space, we find that the MSE is approximately 0.11, which is

much reduced from the 3D example.

Although it is hard to visualize the 5D latent space, we can visualize the

digits that correspond to given coordinates. Figure 7.15 shows the digits

corresponding to the input and output coordinates of the inverse channel

encoder when used as a communication channel. Each pair of rows shows

a sweep across one of the latent dimensions and thus gives a form of visual

representation analogous to that shown in Figure 7.9.

Figure 7.15: A visualization of the ‘digit’ represented by points swept along
each of the 5 dimensions of the latent space. The upper row in each pair
represents the input to the channel and the lower represents the output.

The same procedure is then repeated for the case of a horizontal blur ap-

plied to the digits. Figures 7.16 and 7.17 show example inputs and outputs

as well as a sweep of each dimension of the latent space, respectively. We

find that the higher dimensional latent space does much better at approxi-

mating the inverse of the blurring channel than when the latent space was

constrained to 3 dimensions. In addition, we note that the latent space em-

ploys a total of 6 dimensions in contrast with 5 used in the case of the null

distortion. Lastly, we find that the MSE of the channel formed using the

encoder, decoder and blurring operator has an estimated MSE of 0.11, which

is effectively unchanged from the null example. This last result is particu-
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larly significant in that it demonstrates that the ICE naturally balances the

cost of using additional latent dimensions with representing a more complex

channel operator.

7.5 Conclusion

In this chapter, we have developed a notion of the inverse channel encoder

as a method of learning a pair of operators that map into and out of any

arbitrary channel operator. Importantly, this model can be applied to any

arbitrary channel model to learn a pair of encoder and decoder operators

that map Gaussian random variables through the channel. The issue of

transmitting discrete symbols over a Gaussian channel is a well established

application of information theory [80]. In addition, by representing the space

of primitives in terms of continuous variables, this approach lends itself to a

straightforward interpretation under the framework of exemplar theory [21].

Relating back to speech, we will next consider a communication channel

that extends from speech production through perception. Using the Praat

speech production model, we can readily generate the necessary training for

approximating the inverse model of speech production using the inverse chan-

nel encoder. With such an inverse model, we then have a pair of operators

that map from the latent space onto the space of articulatory gestures and

map from the acoustic feature space back onto the latent space. The follow-

ing chapter will detail the application of the ICE for learning sensorimotor

primitives of the acoustic speech communication channel.
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Figure 7.16: Example inputs and outputs of the ICE trained on the MNIST
dataset with a horizontal blur operator applied. Input images are sampled
from MNIST and shown above the reconstructed output.
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Figure 7.17: A visualization of the ‘digit’ represented by points swept along
each of the 6 dimensions of the latent space. The upper row in each pair
represents the input to the channel and the lower represents the output.
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CHAPTER 8

THE SPEECH COMMUNICATION
CHANNEL

As shown in Chapter 6, a linear control system implementation of sensorimo-

tor primitives is ill-equipped for modeling communication using the acoustic

speech signal. In order to extend the sensorimotor primitive model of speech

to the domain of the acoustic signal, we utilize a nonlinear model of both the

high level controller and acoustic observer, or in the taxonomy of communi-

cation, the encoder and decoder respectively. In this chapter we demonstrate

the inverse channel encoder (ICE) neural network architecture as a unsuper-

vised method of learning this encoder/decoder pair.

The following sections detail the application of the ICE to speech commu-

nication. We begin by specifying the speech communication channel, giving

special attention to the channel inputs and outputs as they are defined in

this model. Next, we provide specifications of the neural network architec-

ture used to implement the ICE, as well as the procedure used to generate

data and train the network. We then examine some experimental results

demonstrating basic communication over the speech communication channel

using the encoder and decoder derived from the trained ICE neural network.

We conclude by discussing the implications and limitations of these results.

8.1 Channel Specifications

We define the speech communication channel as the mapping from the lin-

ear primitive control inputs through the acoustic features produced by the

cochlea. The basic layout of this channel is graphically represented in Fig-

ure 8.1.
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Figure 8.1: Notional depiction of the speech communication channel that
maps from motor control commands to acoustic features.

8.1.1 Channel Inputs: Primitive Control

The channel inputs are defined using the linear sensorimotor primitives that

are detailed in Chapter 5. Importantly, the linear primitives are only im-

plemented using proprioceptive feedback as a means of controlling the area

function of the vocal tract. The details of the training procedure and speci-

fications for the linear articulatory primitives are provided in Chapter 6. In

this case, we utilize a 10 dimensional primitive control input as a means of

driving the vocal tract.

A critical advantage of this approach, as opposed to applying the ICE di-

rectly to the muscle inputs of the Praat model, is that the linear primitives

provide a form of coordinated control over the muscles. Although it could be

expected that the encoder learned by the ICE architecture could presumably

learn this same coordinated control, the articulatory primitives serve as a

form of shortcut in training the neural network, since the linear primitives

have already been trained on a very large dataset. Additionally, the re-

duced dimension allows for training data to be created much more efficiently.

Rather than generate training data by randomly exciting all muscle inputs,

we can randomly excite the primitive inputs and cover the same subset of

vocal tract configurations.

8.1.2 Channel Outputs: Acoustic Features

We define the output of the speech communication channel as the features

extracted by the cochlea. In Section 1.1.4, we noted that a model of the

cochlea is generally much less important than a model of the vocal tract

dynamics. Instead, we select a simplified model of acoustic features that is
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inspired by the cochlea, namely mel frequency cepstral coefficients (MFCC).

For the experiments described in this chapter, we represent the acoustic fea-

tures produced at the output of the vocal tract using an MFCC feature vector

containing 13 coefficients. The stream of feature vectors are computed over

a 30ms hamming window, that is stepped along the speech signal in 10ms

increments. This analysis window length and step size are selected to coin-

cide with typical values used in analyzing speech as a short-time stationary

signal [22].

8.1.3 Training Data Production

Training data is generated using the linear sensorimotor primitives detailed

in Chapter 5 to drive the Praat model. Because of the coordinated control

inputs produced by the linear primitives, the discovery of sound-producing

gestures through random inputs is much more frequent than when compared

with direct muscle control. As a result, the linear primitive inputs were used

to generate training data that involved driving all muscle inputs through

coordinated random inputs from the linear primitives. The data was collected

and saved in the same manner as the direct muscle control, using an energy

threshold of 10−3 to collect 1000 one-second-long utterances that each contain

an audible segment.

8.2 ICE Specifications

The structure of the neural network used to implement the ICE is detailed

in this section. Although the layout of the network does play a significant

role in the nature of the resultant primitive operators, it is important to note

that our selection of this architecture is largely arbitrary. In this case, we

simply choose a neural network architecture that strikes a balance between

representational power and training efficiency.

8.2.1 Neural Network Architecture

The ICE neural network used in this experiment can be considered in two

parts: the encoder network and the decoder network. The decoder and en-
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Figure 8.2: Topology of the ICE neural network with annotations indicating
the dimension of each layer that was used in the experiments discussed in
this chapter.

coder are then connected by a Gaussian constraint layer. The annotated

topology of the ICE neural network is shown in Figure 8.2. The decoder

network consists of an input layer for the 13 acoustic features followed by 3

fully connected layers. The output of the decoder produces the mean and

variance parameters for a 20 dimensional Gaussian constraint layer. Simi-

larly, the encoder consists of three fully connected layers that map from the

20 dimensional output of the Gaussian constraint layer to a 10 dimensional

output layer for the control inputs. In both the encoder and decoder, the

fully connected layers each consist of 100 relative linear unit (ReLU) nodes.

As stated, the choice of fully connected layers is primarily driven by en-

suring that the networks have sufficiently large representational power. In

addition, ReLU is selected as the activation function due to the fact that

its gradient is computationally simple, and, as such, backpropagation can be

computed rapidly. Lastly, we take a moment to emphasize that this selec-

tion of architecture is largely arbitrary. What is important is that the neural

network be able to adequately represent the inverse channel operator in a

manner than can be decomposed into an encoder/decoder pair. As such,

this experiment simply illustrates the efficacy of the ICE architecture at a

high level.
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8.2.2 Neural Network Training

The ICE neural network is trained as a feed-forward network using the MFCC

features as input and primitive control actions as output. The training data

consists of 1000 seconds of randomly generated utterances generated based

on the procedure outlined in Section 8.1.3. Prior to training, the data are

normalized to the interval of [0, 1], and the input-output pairs are shuffled

into random batches. The network weights were learned using the Adam

optimizer as implemented in the Tensorflow framework. The training proce-

dure is then iterated over 100 epochs, which is sufficiently long for the loss

term to plateau.

8.3 Experimental Results

Using the trained ICE network, a communication channel is formed using the

ICE-encoder to map the primitive feature space onto articulatory primitive

actions and the ICE-decoder to map the resulting MFCCs back onto the

primitive feature space. Given that the network is trained on only 1000

seconds of random utterances, it is important to note that this model of

speech primitives is actually quite limited. Since speech production is learned

over several months in humans, it is reasonable to expect that the training

dataset would need to be orders of magnitude larger in order to fully represent

all possible speech sounds.

In looking at these results, it is interesting to note that the dimensions

of the primitive feature space are not used equally. This can be effectively

measured by examining the variance parameter at the output of the decoder

network. This is represented by the graph in Figure 8.3 which shows the

variance output on each latent dimension, as averaged across the training

data inputs.

As we examine the performance of this model, we will look at two metrics

of performance. First, we will consider the quality with which the model

can reproduce a given utterance. Second, we will consider the performance

of this model as a communication channel that maps the primitive feature

space through the speech channel.
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Figure 8.3: A graph showing the average variance of each primitive output
by the decoder network.

8.3.1 Utterance Reproduction

We first consider a qualitative demonstration of utterance reproduction us-

ing this primitive model. We do this by examining a randomly generated

utterance that is reproduced using the ICE primitive model. Utterance re-

production is achieved by feeding the MFCC features into the ICE network

in its original feed-forward layout. The articulatory primitive actions that

are generated at the output of the ICE network are then used to drive the

Praat vocal tract model to produce an imitation of the original utterance.

The spectrograms of the original and reproduced utterances are shown in

Figure 8.4, where we see a strong resemblance between the two. If we first

consider the error in reproduction of the motor inputs shown in Figure 8.5,

we see that the quality of reproduction appears to be somewhat poor. Even

more interestingly, we see that the motor inputs are all defaulted to a value

near zero for the first part of the utterance, where no sound is being produced.

Finally, we consider the primitive features produced by both the original and

reproduced utterance as well as the “error bounds” indicated by the variance

in the primitive features. What we see in Figure 8.6, is that the primitive

features appear to be reproduced quite well. Furthermore, the primitive

features show a large variance during the quiet segment of the utterance,

effectively indicating that little information is being transmitted during that

segment.

More quantitatively, the reproduction error can be measured by consider-

ing the error in MFCC value and the error in control input values. Since
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Figure 8.4: An example of an imitated utterance produced using the ICE
primitive model. The spectrogram of the original is shown above the spec-
trogram of imitation.

the utterances are imitated directly in 5ms time steps, the error can be com-

puted directly without the need for advanced methods of time alignment

like dynamic time warping [81]. The errors values shown in Figure 8.7 were

computed for 100 randomly generated utterances that were reserved as the

validation set during training.

8.3.2 Communication Performance

Next we consider the communication channel formed using the full communi-

cation channel as illustrated in Figure 8.8, which is formed using the encoder,

articulatory primitive controller, Praat simulator, and decoder. We evalu-

ate the performance of the encoder and decoder operators by estimating the

channel capacity under two simple conditions. The first is a measure of the

capacity under random input sequences, constructed in the same manner as

those used for training the ICE neural network. We then consider the channel

performance under static inputs, which roughly correspond to vowel sounds.

We then estimate the channel capacity based on the ‘waterfilling’ method

for channels with colored Gaussian noise [80]. Effectively, we find an upper

bound for the mutual information of the channel inputs and outputs defined
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Figure 8.5: The 10 control inputs used to produce the original and imitation
utterances. The original control inputs are shown in blue and the imitation
in dashed red.
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in Equation 8.1, where we use Σ to represent the covariance matrix of a

random variable and E = X − Y is the error measured at the output of the

channel.

I(X;Y) = h(Y )− h(Y |X)

= h(Y )− h(E)

= log
(
|ΣY |
|ΣE |

) (8.1)

We find an upper bound for the mutual information in Equation 8.1, using

the properties of the determinant operator and eigen-decomposition. Specif-

ically, we define ΣE = QΛQ>, where QQ> = I. Then the determinant may

be computed as the product of eigenvalues, |ΣE| =
∏

i λi. In addition, we

have Hadamard’s inequality which states that, for a positive definite ma-

trix A, the determinant is bounded by the product of the diagonal elements,

|A| ≤
∏

iAi,i. We then define A = QΣYQ
> and compute an upper bound on

the mutual information using Equation 8.2. In effect, this is a reverse engi-

neering of the waterfilling procedure where the waterline is fixed and defined

by Ai,i > λi.

I(X;Y) ≤
∑
i

[log(Ai,i)− log(λi)] for ∀i : Ai,i > λi (8.2)

We apply random gesture sequences ht to the input of the encoder and

compute the estimation error at the output of the channel E = ht− ĥt. The

covariance matrices of the channel output and the error are then visualized

in Figure 8.9. In addition, we can visualize the ‘waterline’ of the channel as

shown in Figure 8.10. Using Equation 8.2, we compute the upper bound on

the mutual information to be 15.48 bits per channel usage.

Next, we consider the behavior of the channel when constant inputs are

provided and consider the error at the output over time. This provides us

with a means of parameterizing the error versus time spent transmitting a

given symbol - i.e. a way of selecting an appropriate symbol rate for static

speech sounds. We then plot the average error as a function of integration

time as shown in Figure 8.11.

We can compute the average error per utterance for each channel dimension

and compute the corresponding covariance matrix for this Gaussian channel.

Applying the same procedure for computing an upper bound on the mutual

information using Equation 8.2, we estimate a bit rate of approximately
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Figure 8.11: The average error as a function of integration time for constant
valued inputs to the speech communication channel.

3.08 bits per channel usage. Effectively, this implies that this model of the

speech channel can produce at most 8 vowel-type sounds that can be reliably

distinguished from one another.

In both of these examples, we note that the computed bit rate is much

smaller than what might be found by breaking speech down into phones or

phonemes and computing a corresponding bit rate. The reason for this is

largely due to the narrow scope of the data used to train this model. Specif-

ically, this model is trained using a total of 1000 seconds of data produced

by random excitation of the articulatory primitives. This represents only a

minuscule subset of the total space of articulatory gestures. If the model

were to be trained on a dataset that more fully sampled the space of possible

gestures, we would expect the corresponding channel model to accurately

represent the actual channel capacity of speech.

8.4 Discussion

This chapter demonstrated the application of the ICE neural network archi-

tecture as a means of learning a nonlinear speech primitive model. While

these results show the efficacy of this approach to characterizing the speech

signal within the framework of a communication channel, it is important to

note the limitations of these results. The most prominent limitation is the

limited amount of training data used to train the neural net. Although this
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limitation is severe, it is notable that the resultant model was still able to

form a functional speech communication channel. Given sufficient time to

generate a large enough training set, this approach would be usable as a

general framework for speech analysis in natural speech. An additional lim-

itation of this work is in the simplistic neural network design. Namely, the

network architecture is only selected to satisfy the basic ICE structure and

does not employ any advanced neural network design in selecting the internal

structure of the network. If a more advanced network design were employed,

it is possible that a more robust set of speech primitives could be learned.

Given these strong limitations on this model design, it is significant that the

model developed here was capable of forming a simple speech communication

channel. Although this model does not yet represent a universal framework

for analyzing speech, reaching that goal is largely a matter of increasing the

size of the training data.
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CHAPTER 9

CONCLUSION

In this thesis, we have developed the general framework of sensorimotor prim-

itives as a means of interfacing with a complex environment. The primitive

operators serve as a map between the environment and an abstract primitive

feature space. By training the primitive operators using random excitation,

the dynamics of the environment are effectively abstracted away. As a re-

sult, an autonomous agent is able to use the primitive features as a simplified

representation of its interaction with the environment.

This work is motivated by speech communication through the use of a

high fidelity articulatory synthesizer, namely the Praat model. Specifically,

the Praat model of articulatory speech production is both high dimensional

and nonlinear. To simplify the interface to this speech production model, we

have developed two specific realizations of sensorimotor primitives as a means

of articulatory control and acoustic communication. Articulatory primitives

were developed in terms of a linear feedback control system in order to imple-

ment a reduced dimension articulatory controller. Acoustic primitives were

developed in terms of a nonlinear communication channel in order to imple-

ment a channel encoder and decoder for the synthesized acoustic signal. The

resultant primitive operators were then demonstrated to interface with the

Praat model in order to form a simple speech communication channel.

9.1 Future Directions

The work presented in this thesis leaves two important avenues for the future

development of sensorimotor speech primitives. Although our development of

sensorimotor primitives for linear feedback control is largely complete, there

remains much room for improvement in the design of a specially tailored

implementation of the inverse channel encoder (ICE) for speech analysis.
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9.1.1 Larger Datasets and Simulation Time

A strong constraint in our implementation of the ICE is the amount of avail-

able training data. In the case of the sensorimotor primitives for linear

control systems, the model could be trained using an arbitrarily large set of

data without the need to store that data in memory all at once. In the case

of the nonlinear primitive operators, they are trained using back-propagation

and thus the training data must be stored in memory in order to iterate over

the dataset for multiple epochs. As such, we expect that this development of

speech primitives would be able to serve as a general model of speech so long

as enough training data can be stored in memory. Unfortunately, the size of

such a training set is likely to require significant memory storage resources.

An additional constraint in this approach is the available computational

power. As noted in previous chapters, the Praat model is computationally

expensive and requires a long run time in order to generate large amounts

of speech production data. In the case of the 500 minutes of training data

detailed in Chapter 6, it took approximately 5 days of run time on a general

purpose computer. This problem is further compounded by the fact that only

a small percent of the simulated data produces audible speech sounds. Given

that humans learn speech production over the course of months, it would be

reasonable to assume that a full exploration of the system would require a

comparably long set of training data. As such, it would be advantageous to

apply more computational power in order to shorten simulation run-time or

run multiple parallel simulations.

9.1.2 Improved Neural Net Architecture

In the development of primitives as a nonlinear channel decomposition, a

very simplistic form of neural network was used to represent the nonlinear

operators. It is expected that more advanced neural network architectures

may improve upon the results presented in this thesis. In particular, a convo-

lutional architecture or a recurrent neural network (or perhaps a combination

of the two) may lead to a more robust representation of primitive operators.

Given that convolutional models have deep roots in speech processing that

date back to the source filter model discussed in Chapter 1, it seems likely

that our representation of speech production would be improved by incor-
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porating this into the network architecture. Similarly, feedback control has

played a large role in our formulation of speech primitives and thus it is

reasonable to expect that a network architecture that incorporates feedback

would be an improvement over a simple feed-forward architecture. Alterna-

tively, it may be that some other parameterization of nonlinear operators

could be well suited to this problem; the only true restriction is that the

representation must allow for operator decomposition.

9.2 Final Notes: The Primitive Framework

An important aspect of the development of speech primitives presented in

this thesis is that they are an inherently general representation of speech

that is not language specific. This generality is drawn from the fact that

the primitives were trained using random excitation of the vocal tract. It is

notable that this approach to training is generally slower than if the model

were trained to directly imitate human speech sounds; however, this approach

to learning primitives causes them to learn a representation of the system

dynamics rather than the existing structure of some existing language. By

training in a manner that is not language specific, the resulting primitive

feature space can be used as a universal representation through which dis-

parate languages could be compared. In addition, the primitive feature space

provides a representation that can be used to quantify and analyze the in-

formation encoded in the speech signal. As the concept of speech primitives

is further developed, we expect that it will provide a quantitative framework

through which speech can be analyzed in terms of an information theoretic

framework.

9.2.1 Broader Applications

Although this thesis is motivated by the study of speech and language, is

important to consider the broader implications of our mathematical devel-

opment of primitives. Fundamentally, we consider primitives in terms of

operators that are used to transform the problem space into a simpler repre-

sentation. It is important to note that the implementations of sensorimotor

primitives developed in this thesis could easily be applied to other forms
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of communication and control. This could take the form of human com-

munication such as sign language, animal behaviors such as bird songs and

bee dancing, or technological implementations of communication over some

nonlinear medium.

9.2.2 The Primitive Mindset

The most important contribution of this work does not come from the specific

mathematical developments that were presented; rather, it lies in the way

of thinking that led to these developments. The study of primitives in both

control theory and biology has yet to reach a unified notion of what primitives

are. In this thesis, we posit that primitives serve the function of simplifying

a problem space rather than breaking down some specific problem that is

at hand. By thinking in terms of simplifying a space of problems, we can

more readily come to a mathematical development of primitives that enable

a broad range of learning and adaptation to be implemented in the abstract

primitive space.
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