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Abstract

This dissertation presents developments in stress constrained topology optimization with Adaptive Mesh

Refinement (AMR).

Regions with stress concentrations dominate the optimized design. As such, we first present an approach

to obtain designs with accurately computed stress fields within the context of topology optimization. To

achieve this goal, we invoke threshold and AMR operations during the optimization. We do so in an optimal

fashion, by applying AMR techniques that use error indicators to refine and coarsen the mesh as needed. In

this way, we obtain accurate simulations and greater resolution of the design domain in a computationally

efficient manner. We present results in two dimensions to demonstrate the efficacy of our method.

The topology optimization community has regularly employed optimization algorithms from the opera-

tions research community. However, these algorithms are implemented in the Euclidean space instead of the

proper function space where the design, i.e. volume fraction, field resides. In this thesis, we show that, when

discretizing the volume fraction field over a non-uniform mesh, algorithms in Euclidean space are mesh de-

pendent. We do so by first explaining the functional analysis tools necessary to understand why convergence

is affected by the mesh. Namely, the distinction between derivative and gradient definitions and the role

of the mesh dependent inner product. These tools are subsequently used to make the Globally Convergent

Method of Moving Asymptotes (GCMMA), a popular optimization algorithm in the topology optimization

community, mesh independent. We then benchmark our algorithm with three common problems in topology

optimization.

High resolution three-dimensional design models optimized for arbitrary cost and constraint functions are

absolutely necessary ingredients for the solution of real–world engineering design problems. However, such

requirements are non trivial to implement. In this thesis, we address this dilemma by developing a large scale

topology optimization framework with AMR. We discuss the need for efficient parallelizable regularization

methods that work across different mesh resolutions, iterative solvers and data structures. Furthermore, the

optimization algorithm needs to be implemented with the same data structure that is used for the design

field. To demonstrate the versatility of our framework, we optimize the designs of a three dimensional stress
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constrained benchmark L-bracket and a stress-constrained compliant mechanism.
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Chapter 1

Introduction

Topology optimization is a growing field that has found applications in many arenas, from the aerospace and

automotive industries to microfluidics. It is a design tool that finds the optimal distribution of material in

a design domain to minimize a cost function subject to a set of constraint inequalities. It is a relatively new

approach to design which obviates the need for trial-and-error design and lessens the need for engineering

intuition. Notably, it can be applied to design systems where intuition is lacking.

The first applications of topology optimization were in solid mechanics where the goal was to minimize

a structure’s compliance subject to a constraint on its mass. In real world applications, however, structural

components need to satisfy failure constraints related to maximum stress so as to prevent collapse. To satisfy

these constraints, a redesign step of the compliance optimized design is performed, thereby reverting to the

trial-and-error approach we want to avoid. Including these constraints directly in the optimization would

render these redesign steps unnecessary. However, before this can be done, the accuracy of the computed

stress field in the topology optimization must be increased; this thesis addresses this topic.

In topology optimization, the design geometry can be represented with volume fraction or level set

methods. The volume fraction method discretizes the design domain into elements and assigns a volume

fraction variable which ranges between 0 and 1 to each element. Penalization is used to enforce discrete

values, i.e. either 0 or 1. Although this penalization method can nucleate holes, it is highly dependent of

the problem and not always applicable. On the other hand, level set methods represent the design boundary

implicitly using the isocontour of the scalar-valued level-set function. The design is discrete from the start

hence penalization methods are unnecessary. However, the ability to change the topology is limited as new

holes in the design are not created without external tools such as the topological derivative. In this thesis,

we focus on the former method as it is well established in our field of application, i.e., linear elasticity.

The topology optimization problem is ill-posed, as the “optimal” designs consist of a non converging

sequence of structures with highly oscillatory material-void regions. By far the most popular way to formulate

a well-posed problem is by restriction whereby the oscillations are supressed by applying a filter operation

to the volume fractions. This filter, however, blurs the boundary and renders the stress field inaccurate. To
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obtain a sharp boundary, a threshold function over the volume fractions is commonly employed, however,

the stress field inaccuracy is still not resolved.

Adaptive Mesh Refinement (AMR) refines (coarsens) the mesh in the domain regions with the highest

(lowest) error of the approximated response is. This strategy allows us to save computational resources

while increasing accuracy. It is ideally suited for topology optimization in which regions devoid of material

are meaningless and need not be accurately modeled. The AMR would coarsen these regions. By the same

token, regions filled with material require a higher mesh resolution for more accurate geometry definition

and stress prediction.

In Chapter 2, we combine an AMR strategy with a thresholding function to obtain sharp boundaries

and accurately computed stress fields. First, we perform a validation study to demonstrate the accuracy

of the computed stress field by our AMR approach that is based on an energy error indicator. Next, we

replace the energy error indicator with a goal oriented error indicator that is more suitable for our computed

optimization cost and constraint functions. In this way, we attain suitably accurate cost and constraint

function values, which ensures the design prototypes will behave as expected.

Chapter 3 explains the mesh dependency in the optimized designs that can result when viewing the

design volume fraction field as an element of an Euclidean space rather than its proper function space.

Problems arise when this approach is applied over nonuniform meshes, such as those generated in AMR.

To address this issue, we first present an in-depth mathematical formulation of optimization algorithms in

function spaces. Then, we lay out the necessary concepts to formulate optimization algorithms independent

of the mesh configuration and apply them to one of the most popular algorithms in topology optimization,

the Globally Convergent Method of Moving Asymptotes (GCMMA).

Chapter 4 leverages the concepts introduced in Chapters 2 and 3 to extend the range of applications

to high resolution three dimensional designs. We also mention additional issues that need to be addressed

to solve such large scale problems. Namely, the use of an efficient technique to filter the volume fractions

across several mesh refinement levels and efficient preconditioners for the iterative linear solvers for multiple

systems of equations.

Recommendations for future work are provided in Chapter 5.
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Chapter 2

Adaptive mesh refinement in
stress-constrained topology
optimization

2.1 Introduction

Topology optimization is a well established design tool that has found industrial applications in recent years.

However, most developments focus on the “compliance problem”, i.e. to minimize compliance subject to a

mass constraint. This is in spite of the fact that in many cases, it is necessary to satisfy failure constraints

such as on maximum yield stress. In this work, we investigate stress constrained topology optimization.

There are numerous challenges to solve stress-constrained problems. First, the optimal stress constrained

solutions belong to degenerate lower dimension subspaces of the design domain. Gradient-based optimiza-

tion algorithms cannot reach these optima; rather they get trapped in locally optimal solutions. This

phenomenon, first studied in the optimal design of trusses [27, 52, 92] is known in the literature as the

“singularity problem”. It is resolved by relaxing the stress constraints, thereby regularizing the degenerate

subspace [25, 77] . This is accomplished via ε−relaxation [26] or qp−relaxation [19] and the relaxed stress

indicator [56]. In this work, we employ the last.

Second, the local stress constraints in the continuum setting lead to one constraint per finite element

after discretization. This creates a scenario where the number of design variables is as large as the number

of constraints, which is a computationally challenging problem. To overcome this, the constraints are

agglomerated into a single measure that approximates the maximum stress value over the domain. These

approximations include the p-norm and the Kreisselmeier-Steinhauser (KS) functions [73]. Alternatively, in

[10] a ramp function is used to penalize all regions with stress constraint violations. We adopt this approach.

Third, the inaccuracy of the computed stress field leads to designs that do not perform in service as

their simulations suggest. This is because topology optimization does not use a conforming mesh; rather, it

projects the design onto a fixed grid akin to a fictitious domain finite element method. Although this approach

is convenient for the optimization, it yields poor accuracy in the computed response. This issue is exasperated

in density-based topology optimization because the domain geometry is not explicitly defined; rather it is

defined by an interphase of “partially filled” finite elements which renders useless stress computations. In
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this work, we use Adaptive Mesh Refinement (AMR) and thresholding to obtain accurate stress values. Our

goals are to obtain comparable optimal designs to those that are obtained on highly refined uniform meshes,

compute accurate stress fields and reduce the computational cost. To achieve these goals we need a reliable

and efficient error indicator to drive the AMR and a topology optimization strategy that accommodates the

evolving discretization.

The first application of AMR in topology optimization appears in [63]; it uses separate design and analysis

meshes which are related by a smoothing algorithm. The AMR is only performed on the analysis mesh; it

is based on geometric criteria and no coarsening is performed. Coarsening is considered in [100] which uses

a mesh hierarchy to solve the compliance problem. Again the refinement and coarsening criteria are solely

based on the geometry and not on the error in the computed response. A similar approach proposed in [67]

uses the distance function with respect to the domain boundary as the refinement and coarsening indicator.

A study of the effects of various AMR parameters on the optimization performance appears in [71]. As in

[63], they use different design and analysis meshes and as in [67], the AMR uses a geometric error indicator

that is based on the proximity to the domain boundary. In [68], the AMR uses a tree data structure with

polygonal elements; again the error indicator is solely based on geometrical considerations. Following this

trend, [85] uses the phase-field method and refines regions adjacent to the design boundary.

Independently discretizing the design and analysis meshes, [102] refines each with their own error indi-

cators to solve the compliance problem. Unfortunately, this approach is not scalable because it is necessary

to perform a search over the design discretization for each finite element in the analysis mesh. On a pos-

itive note, a posteriori error estimators are used to obtain accurate displacement and stress fields. In [20]

two different error estimators are invoked to control error in the geometry and compliance. However, their

method is only applied to compliance problems. An energy based error indicator is used in [97] to refine

the mesh in the compliance problem. In the context of stress-constrained problems, [29] utilizes h-adaptive

mesh refinement by combining mesh quality and displacement based error indicators. However, they do not

validate the accuracy of their stress fields. [49] solves a stress constrained compliance minimization problem

using an anisotropic mesh adaptation scheme based on the metric tensors of the spatial Hessian of the cost

and constraint functions. Using topological derivatives [10] considers local stress constraints and develops

an AMR method that is based on residual error indicators of the energy norm of the displacement.

Finite element analysis in structural topology optimization is a delicate issue, especially in regard to the

calculation of the stress fields. Indeed, stress fields are not accurately resolved with the density method due

to the blurred boundary region. Because of this, topology optimized designs are post processed wherein

the blurred boundary is thresholded to define an “exact” boundary, a conforming mesh is created from this
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boundary and shape optimization is used to obtain designs with desirable stress distributions. To eliminate

the shape optimization task, [91] embeds stress field post-processing into the topology optimization wherein

the interior stress values are extrapolated to the boundary region to compute more accurate stress fields.

Another option to obtain accurate stress fields is to define an explicit domain boundary with the level set

method and use either a conforming mesh [8, 59, 103] or eXtended Finite Element Method (XFEM) and sim-

ilar approaches [41, 42, 83, 108] to capture the boundary. However, level-set methods cannot systematically

nucleate holes and their designs are highly dependent on the initial design, which limits their effectiveness

in comparison to density methods. It is possible to nucleate holes via topological derivatives; however, this

approach is only practical for linear problems. It is also well known that level set methods suffer from poor

convergence rates and numerical oscillations in the boundary [37]. They are also difficult to implement.

However, for stress-constrained problems, they are immune to the singularity issue because there is virtually

no blurred boundary region.

Our contribution is a topology optimization framework to obtain designs that satisfy pointwise stress

constraints with a high degree of accuracy. We are able to achieve this goal by combining AMR and a

thresholding function to obtain a sharp interphase that models the material boundary.

We implement our topology optimization framework on top of the parallel finite element library libMesh

[51], which allows us to address large scale problems. This framework accomodates arbitrary cost and

constraint functions and can be extended to other physics than elasticity. The high performance capability

will be essential when solving problems in three dimensions, which is the scope of our future work.

2.2 Adaptive mesh refinement in stress-constrained topology

optimization

Topology optimization finds the distribution of material within a hold-all domain D that minimizes a cost

function and satisfies constraints. Its mathematical statement is as follows

min
χ∈{0,1}

θ0(χ) =

∫
D

π(χ, u) dV , (2.1)

s.t. u ∈ V satisfies a(χ; u, v) = L(v) for all v ∈ V , (2.2)

θi(χ) =

∫
D

gi(χ, u)dV ≤ 0 i = 1, 2...ni , (2.3)

where

a(χ; u, v) =

∫
D

χC[∇u] · ∇v dV (2.4)
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and

L(v) =

∫
ΓN

t · v da . (2.5)

In the above, χ is the material indicator function defined such that χ(x) = 1 and χ(x) = 0 represents

the presence or lack of material at x ∈ D, θ0 is the cost function to be minimized, e.g. compliance, mean

displacement, maximum stress, etc. and θi are the ni inequality constraint functions that typically limit the

total mass, maximum stress, etc. In addition, the design needs to satisfy the linear elasticity equation, given

in its weak form in Equation (2.2) where u is the displacement field and V =
{
v ∈ H1(D)d | v = 0 on ΓD

}
is the function space of admissible displacements, where ΓD is the boundary of D over which Dirichlet

boundary conditions u = 0 are applied. ΓN is the complementary boundary of ∂D over which the non-

homogeneous traction t is applied; both ΓD and ΓN are fixed surfaces. Finally, C is the symmetric elasticity

tensor.

Our discrete optimization problem is not amenable to gradient-based algorithms. For this reason, we 1)

convexify the design domain by replacing the binary-valued design field χ ∈ {0, 1} with the volume fraction

field ν, which continuously varies from 0 to 1, i.e. ν ∈ [εν , 1], and 2) penalize intermediate values so that ν

best mimics the characteristic function χ. This ensures the elasticity problem is well-posed. In this work,

we penalize the elasticity tensor by replacing χ in Equation (2.4) with the RAMP function [86]

r(ν) =
ν

1 + q(1− ν)
,

where q is the penalization parameter. Figure 2.1 plots the RAMP function for several values of q. We

observe better behavior using the RAMP rather than the traditional SIMP method [16]. We use the usual

ersatz material to model regions with no material, i.e., we replace regions where χ(x) = 0 with ν(x) = εν .

Unfortunately, the topology optimization problem is ill-posed. Compliance designs consist of a non

converging sequence of structures with highly oscillatory material-void regions. There are two approaches

to obtain a well-posed problem, relaxation and restriction. We use the restriction approach, wherein the

design space is reduced by imposing a length scale constraint on the design’s geometric features. This is

accomplished by imposing a constraint on the perimeter [43], the slope of the volume fraction field [74] or as

in this work, by filtering the volume fraction field [17]. In this work, we use the cone filter presented in [21].

ν̂(x, ν) =

∫
Bε(x)

K(x− y)ν(y)dV , (2.6)
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Figure 2.1: RAMP interpolation scheme.

where Bε(x) is a ball of radius ε centered at x and K(x− y) is the cone kernel function, given by

K(p) =
1

ε
(ε− ‖p‖) if p ∈ Bε(x) . (2.7)

The filter radius ε is a parameter which defines the length scale such that the geometric complexity increases

as ε → 0. It is important to consider the integral in Equation (2.6) instead of the weighted average of

neighboring elements, as commonly seen in the literature, because the elements have different volume/areas

when applying AMR. We considered using the PDE-based filter [55], but its solution with traditional lagrange

elements requires a sufficiently refined mesh to avoid filtered volume fraction values above 1 and below 0.

This is not possible at early stages of our AMR strategy. We will investigate in the future alternative

methods that avoid this oscillation.

The filter operation brings an additional issue: the presence of blurred boundaries in the material inter-

face. To lessen this effect, we use the threshold function of [98], cf. Equation (2.8),

ν̃(ν̂) =
tanh(0.5β) + tanh(β(ν̂ − 0.5))

tanh(0.5β) + tanh(β(1.0− 0.5))
, (2.8)

where β is a parameter defined such that

lim
β→∞

ν̃(ν̂) = H(x− 0.5) , (2.9)
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Figure 2.2: Threshold function.

where H is the unit step function. It is known that the threshold operation does not prevent the appearance

of localized artifacts such as one-node-connected hinges in compliant problems, which can be alleaviated with

a robust formulation [98] or with a stress constraint [31]. Therefore, we do not worry about features below

the minimum length scale. The thresholding function makes the sensitivity zero in regions away from the

ν̃ = 0.5 level set boundary, which makes it difficult to nucleate holes. For this reason, we use a continuation

approach wherein β is selectively increased during the optimization.

Summarizing, we replace the binary material indicator field χ with the continuous volume fraction field ν

to convexify the design space and make the optimization problem amenable to NLP. We compute the filtered

volume fraction field ν̂ to impose a length scale constraint and hence obtain a well-posed optimization

problem. Finally we compute the thresholded volume fraction field ν̃ such that it mimics the originally

sought material indicator function χ. Ultimately we solve the topology optimization problem of finding ν

such that

min
ν∈[εν ,1]

θ0(ν) =

∫
D

π(ν̃, u) dV , (2.10)

s.t. u ∈ V satisfies a(ν; u, v) = L(v) for all v ∈ V , (2.11)

θi(ν) =

∫
D

gi(ν̃, u)dV ≤ 0 i = 1, 2..ni , (2.12)

where

a(ν; u, v) =

∫
D

r(ν̃)C[∇u] · ∇v dV . (2.13)
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2.3 Stress field accuracy in the density method

Convexifying the design space has the effect of blurring the domain boundaries, which creates inaccurate

stress field computations, as demonstrated by [91]. In their work, sharper boundaries are obtained via a

non-linear filter rather than the cone filter of Equation (2.6). Because of the mesh resolution, however, the

boundary is jagged which gives rise to artificially high stress values. To resolve this jaggedness, the stress

fields are post-processed by extrapolating the interior values onto the boundary.

In this work, we demonstrate that stress post-processing is not necessary if the mesh is adaptively refined

leaving only a fine interphase boundary region. To validate our method, we perform the dog-bone study of

[91] cf. Figure 2.3 in which D = 1 m and r = 1/3 m. The material Young’s modulus is E = 10 Pa and

the Poisson ratio, ν = 0.3. The volume fraction field that defines the plane stress structure is discretized

as piecewise constant over the elements. The geometry is directly interpolated onto the mesh, i.e. only the

elements whose centroids xi are within the structure boundary take a ν(xi) = 1 volume fraction. For all

other void elements we assign ν(xi) = εν = 10−5. We then filter the volume fraction with Equation (2.6)

and ε = 0.0625 m and thresholded with Equation (2.8) using β = 100 to leave a fine interphase region

with intermediate volume fraction values. We apply uniaxial loading of 10 Pa significantly distant from the

notches to avoid end effects in the notch region. Our calculated minimum principal stress is compared to

those from empirical formulas [106]. This computation is repeated for several dog-bone orientations within

the fixed mesh. In Figure 2.5, we plot the minimum principal stress across section A-A that passes through

the center of the notch where it is seen that stress converges to the same distribution regardless of the

orientation. The minimum principal stress value is −39.8, which is similar to the tabulated value −39.02 in

[106].

To obtain these results, we use the residual based error indicator of Equation (2.35) and the Dörfler

marking strategy [33] which is proven to decrease the error in elliptic problems. Unlike the marking strategy

that we will employ in the optimization, the Dörfler strategy does not allow for coarsening. In our Dörfler

implementation we select a subset M of elements with minimum cardinality such that

ηM =

( ∑
K∈M

η2
K

)1/2

≥ θη θ ∈ [0, 1] , (2.14)

where

η =

( ∑
K∈Th

η2
K

)1/2

(2.15)

and ηK is the element error of Equation (2.35) and θ = 0.3. The mesh is iteratively refined until the total
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energy error η of Equation (2.38) is below 0.5. Figure 2.4 shows the refined mesh for an orientation of 0.4.

Figure 2.3: Dog-bone structure from [106].

2.4 Stress constrained topology optimization

Now we are in a position to formulate our topology optimization problem. We intend to minimize the volume

of the structure subject to a constraint on the von Mises stress

σVM =

√
3

2
σdev · σdev , (2.16)

where

σdev = σ − 1

3
(trσ)I (2.17)

is the deviatoric stress. As such the topology optimization problem now reads

min
ν∈[εν ,1]

θ0(ν) =

∫
D

ν̃ dV , (2.18)

s.t. u ∈ V satisfies a(ν; u, v) = L(v) for all v ∈ V , (2.19)

and θ1(ν) =σVM ≤ σy for all x ∈ D , (2.20)

where σy is the maximum allowed stress.

A consistent numerical approach would use the same elasticity tensor for the displacement solution and

the stress evaluation. However, [34] showed that the stress field in a porous micro structure tends to a

non-zero value even when the volume fraction tends to zero. To be physically accurate, the stress field in

regions with intermediate volume fraction ν ∈ [εν , 1] should therefore tend to non-zero values as ν tends
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Figure 2.4: Dog-bone structure and the mesh used in the analysis for an orientation of 0.4 radians.
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Figure 2.5: Minimum principal stress over cross section A-A for orientations 0.0, 0.4, 0.7, 1.0 and 1.4 rad.
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Figure 2.6: Stress penalization function.

to zero. However, our focus is in obtaining black-and-white designs so we are not interested in accurately

calculating the stress in regions with intermediate volume fraction. Therefore, when computing the stress

we use a relaxed stress formulation similar to [56] wherein

C(ν̃) = ηc(ν̃)C0 , (2.21)

where ηc is the inverse RAMP function

ηc(ν̃) = ν̃
1 + q

1 + qν̃
, (2.22)

cf. Figure 2.6. Basically, when computing the displacement in regions with intermediate volume fraction, we

penalize C such that it is more compliant which generates a displacement field which is artificially “large”.

We now combine this large displacement field with a stiff C to compute an artificially large stress field.

Because of the volume minimization, the optimizer deems such regions inefficient and hence reduces their

size.

The stress constraint Equation (2.20) is a pointwise constraint. When solving the elasticity equation

using the finite element method, the pointwise constraint translates into one constraint per finite element; it

is evaluated at the element centroid xi. This results in a computationally challenging optimization problem.

To resolve this burden, the pointwise constraints σVM (xi) ≤ σy are replaced by the single global maximum

constraint max
xi

σVM (xi) ≤ σy. However, this constraint is not differentiable, which hinders the optimization
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algorithm. As such aggregation strategies in [34, 104] approximate the maximum value of the Von Mises

stress field with a p-norm or a Kreisselmeier-Steinhauser (KS) function [40]. Obviously the single global

measure cannot represent the pointwise field values. To address this shortcoming, several strategies employ

regional measures [47, 56, 72], where the single agglomerated constraint over the entire domain is replaced by

several such constraints over subdomains. Another shortcoming with these aggregated measures is that they

only approximate the maximum field value. A renormalization strategy was presented in [56] to improve the

approximation. However, this approach results in a non-differentiable constraint although the effect of the

non-differentiability lessens as the optimization converges.

We apply a different aggregation strategy that is commonly used in PDE-constrained optimization [46]

and in [10] for stress constrained optimization via the topological derivative. It requires neither renormaliza-

tion nor regional clustering techniques. We replace the pointwise constraint Equation (2.20) with the global

constraint ‖σVM − σy‖+ =
∫
D
R(σVMσy )dV where R is the shifted ramp function: R(x) = x− 1 if x > 1 and

R(x) = 0 otherwise. For the optimization, we replace the ramp function with a smooth approximation Rp

such that

Rp(x) = (1 + (x)p)
1
p − 1 , (2.23)

cf. Figure 2.7. In our calculations, we use p = 8 and leave it constant throughout the optimization.

The constraint of Equation (2.23) is enforced via a penalty method with a penalty parameter γ so that

the topology optimization problem now reads

min
ν∈(0,1]

θ0(ν) =

∫
D

ν̃ dV + γ ‖σVM − σy‖+ , (2.24)

s.t. u ∈ V satisfies a(ν; u, v) = L(v) for all v ∈ V . (2.25)

The parameter γ is increased throughout the optimization, starting from a small value. This helps alleviate

the sharp gradient in Equation (2.23).

We use an adjoint sensitivity analysis to evaluate the variation of a general functional θ(ν). Although

this derivation is well-known, it behooves us to present it as it also plays a role in our AMR.

We use a reduced space optimization formulation, hence we must consider dependency of u on the design

variable ν, i.e. u→ u(ν) so that θ̂(ν) = θ(ν, u(ν)). In this way

δθ̂(ν; δν) = δνθ(ν, u(ν); δν) + δuθ(ν, u(ν); δu(ν; δν)) , (2.26)
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Figure 2.7: Smoothed shifted function.

where δθ̂(ν; δν) is the variation of θ̂ at ν acting on δν; δuθ is the variation of θ at u acting on δu, δνθ is

the variation of θ at ν acting on δν and δu is the variation of u at ν acting on δν. In the adjoint method,

we annihilate the implicit variation δu(ν; δν). To do this we take the variation of the state Equation (2.25)

with respect to the design field ν and augment this zero term to δθ̂.

δθ̂(ν; δν) = δνθ(ν, u(ν); δν) (2.27)

+ δuθ(ν, u(ν); δu(ν; δν)) (2.28)

− δνa(u, v; δν) (2.29)

− δua(u, v; δu(ν; δν)) , (2.30)

where δνa and δua are the variations of the bilinear form a with respect to ν and u. In our linear elasticity

formulation

δua(u, v; δu(ν; δν)) = a(v, δu(ν; δν)) , (2.31)

and

δνa(u, v; δu(ν; δν)) =∫
D

δr(ν̃; δν̃(ν; δν))C[∇u] · ∇v dV . (2.32)
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To annihilate δu(ν; δν) in Equation (2.30), we define the arbitrary v ∈ V such that

a(v, δu) = δuθ(ν, u(ν); δu) for all δu ∈ V , (2.33)

where we use the symmetry of the bilinear from a. Having calculated v, δθ̂ reduces to.

δθ̂(ν; δν) = δνθ(ν, u(ν); δν)− δνa(u, v, δν) . (2.34)

Summarizing, to calculate δθ̂(ν), we first solve the primal problem of Equation (2.25) to obtain u, we

compute the partial derivative information δuθ(ν, u(ν); δu) and δνθ(ν, u(ν); δν), we solve the adjoint problem

of Equation (2.33) for v and finally we compute the variation δθ̂ from Equation (2.34).

2.4.1 Adaptive mesh refinement

To produce meaningful designs, we must compute the stress field with as much accuracy and efficiency

as possible, hence the motivation to use AMR. More importantly, in optimization, AMR also provides an

accurate and efficient means to compute the cost and constraint functions. Indeed, the engineer is basing

the entire design on the values of these functions so their computed values must be accurate.

The accuracy of our finite element computation is directly dependent on the spatial discretization. To

gauge this accuracy we compute an error measure which allows us to best allocate the spatial discretization

parameters while simultaneously achieving the desired accuracy. In the context of finite element methods,

these measures are called a posteriori error estimates. They bound the error in terms of the current solution

approximation and are computed by summing the element error indicators over the mesh. In our h-refinement

AMR strategy, a marking strategy identifies the elements with largest and smallest errors for refinement and

coarsening. The elements to be refined are divided in four children elements, which belong to a different

refinement level, cf. Figure 2.8. Those elements to be coarsened are removed along with the corresponding

children from the same parent, cf. Figure 2.9. The refinement creates so called “hanging nodes” that break

the continuity of the displacement field. To ensure continuity, constraints are imposed that relate these

nodes’ displacements to their parents’. We only allow for hanging nodes between children and their parents

neighbors; i.e. not between children and their grandparents neighbors. Such situations are corrected by

adding more elements, cf. Figure 2.10.

As just mentioned, the AMR strategy relies on element error indicators. The theory of a posteriori finite

element error estimation for elliptic problems is well established cf. the monographs [6, 95]. The a posteriori

error estimates are categorized into three types: explicit residual-based error estimates, implicit residual-
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Refinement

Figure 2.8: Element marked for refinement in red and the resulting refinement with now two levels.

Coarsening

Figure 2.9: Element marked for coarsening in blue and the coarsening result.

based error estimates and gradient or flux recovery based error estimates. The explicit and implicit methods

approximate the error with the current finite element solution. The explicit estimates are easy to implement,

however they render bounds with problem dependent constants that can be difficult to assign. The implicit

estimates require the solution of multiple regional boundary value problems over single elements or small

element patches. The problem dependent constants are avoided at the behest of additional computational

expense and onerous implementations. Error estimates based on gradient or flux recovery post-process

the finite element displacement field uh to obtain an improved approximation of the stress field σ̂(uh)

which is smooth and has better convergence properties versus the nominally computed discontinuous stress

field σ(uh). The element error indicator is based on the difference between σ̂(uh) and σ(uh). The most

popular flux recovery method is the Zienkiewicz-Zhu [111, 112], which locally projects σ(uh) onto a higher-

order polynomial approximation space over a patch of neighboring elements. Its popularity is due to its

easy implementation, generality and accuracy. However, it is well known that adaptive mesh refinement

algorithms using this estimator are not effective for interface problems, e.g. such as those encountered

in topology optimization problems [24, 70]. This is because the tangential components of the stress field

t ·σt, where t is any vector perpendicular to the interface normal vector, are discontinuous at the interface.

Smoothing these components results in unnecessary overrefinement. Knowing that the stress field exists in

the H(div,D) = {v ∈ L2(D,Rn) : div v ∈ L2(D)} space, [24] projects the stress field onto finite elements

in this space. However, we do not follow this approach because H(div,D) finite elements are notoriously

difficult to implement, especially in parallel computing environments.

Based on all these considerations, we use explicit residual-based a posteriori error estimates and follow
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Figure 2.10: Allowed hanging nodes green and disallowed hanging nodes in red (top) and additional refine-
ment to resolve disallowed hanging nodes (bottom).

[94] wherein the element error indicator for an element K ∈ Th, where Th is the finite element mesh, is

ηK = {h2
K ‖∇ · σ(uh) + f‖2L2(K)

+
1

2

∑
E∈E(K)

hE ‖j(σ(uh) · n)‖2L2(E)}
1/2 . (2.35)

In the above, the stress field is computed as

σ(uh) = r(ν̃)C[∇uh] (2.36)

and

j(σ · n)E =


Jσ(uh) · nK E /∈ ED, EN

tN − σ(uh) · n E ∈ EN
(2.37)

is the traction jump across the element face E, which belongs to the set of faces of element K, E(K).

ED ⊂ ΓD is the set of element faces with prescribed Dirichlet boundary condition and EN ⊂ ΓN is the set of

element faces with prescribed tN Neumann boundary condition. hK is the element diameter and hE is the

element face area.
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Summing the element error ηK gives the global error

η =

( ∑
K∈Th

η2
K

)1/2

. (2.38)

This in turn is used to compute upper and lower bounds on the energy norm of the error, i.e.

|||u− uh||| =
∫
D

r(ν̂)C[∇(u− uh)] · ∇(u− uh) dV . (2.39)

The upper bound Cη where C is a constant ensures that the error estimate is conservative, i.e.

|||u− uh||| ≤ Cη . (2.40)

On the other hand, the lower bound cη, where c is also a constant, ensures the error estimate is not excessively

conservative, i.e.

cη ≤ |||u− uh||| . (2.41)

To refine the mesh, we use the element error indicator ηK , cf. Equation (2.35). Refinement (coarsening)

is done in those elements whose error is above the 70-th percentile (below the 5-th percentile) of the error

indicator distribution.

Conventional error estimates are based on global measures such as the energy norm as in Equation

(2.39) or the L2-norm ‖u− uh‖L2 . However these measures are not effective as we are only interested in

accuracy of our optimization cost and constraint functions. For this purpose, goal-oriented error estimates

were developed [14, 69]. As alluded to above, these estimates require the solution of the adjoint problem,

which within our optimization context we have already solved to obtain the sensitivities.

To present the goal estimate, we discretize u, i.e. we now find uh ∈ Vh such that

a(uh, vh) = L(vh) for all vh ∈ Vh , (2.42)

where Vh is the finite element discretization of the function space V . Substracting Equation (2.11) from this

and noting that Vh ⊆ V yields the Galerkin orthogonality condition.

a(u− uh, vh) = 0 ∀vh ∈ Vh , (2.43)

i.e. the error u− uh is a-orthogonal to Vh.
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We are interested in defining the error θ(u) − θ(uh) in a goal functional θ(u) : V → R, i.e. a cost or

constraint function. We start by restating the adjoint problem in Equation (2.33). Dropping the argument

ν for conciseness and replacing δu with w we find v ∈ V such that

a(v, w) = δuθ(u; w) for all w ∈ V . (2.44)

Expanding θ(u)− θ(uh) in first-order Taylor series and applying Equation (2.44) we find

θ(u)− θ(uh) = θ(u)− θ(u + uh − u) , (2.45)

= θ(u)− θ(u)− δuθ(u; uh − u)

− o ‖uh − u‖2 , (2.46)

= δuθ(u; uh − u) , (2.47)

= a(v, u− uh) , (2.48)

= a(u− uh, v) . (2.49)

Equation (2.49) 1 gives us the error estimate for the quantity of interest θ, however, the exact adjoint solution

v is unknown, rather we compute vh using the discretization that is used to compute uh, but this yields

a zero error estimate by Galerkin orthogonality of (2.43). A common technique to resolve this issue is to

calculate vh over a more refined mesh or to post-process vh to obtain a higher order approximation. We

instead follow [38] and add the zero Galerkin orthogonality Equation (2.43) to Equation (2.49) and apply

Cauchy-Schwarz inequality to obtain bounds on the error.

θ(u)− θ(uh) = a(u− uh, v − vh) , (2.50)

=

∫
D

r(ν̂)C[∇(u− uh)]

· [∇(v − vh)] dV , (2.51)

≤
∥∥∥√r(ν̂)C[∇(u− uh)]

∥∥∥
L2

×
∥∥∥√r(ν̂)C[∇(v − vh)]

∥∥∥
L2

, (2.52)

= |||u− uh||||||v − vh||| . (2.53)

1In Equation (2.47), we have neglected the higher order terms. For details on higher order nonlinear functionals, we refer
to [14].
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With these bounds, we can reformulate the error estimate in terms of the energy norms:

θ(u)− θ(uh) ≤ |||u− uh||||||v − vh||| , (2.54)

≤
∑
K∈Th

|||u− uh|||K |||v − vh|||K , (2.55)

eK = |||u− uh|||K |||v − vh|||K . (2.56)

The expression inside the summation is the K element error indicator Equation (2.56) which is used to

mark cells for refinement and coarsening throughout the optimization. We compute the error indicator

|||u− uh|||K = ηK from Equations (2.35)–(2.36). The estimate for |||v − vh|||K is similarly computed using

Equations (2.35)–(2.36), but we replace uh with vh and f and tN with their corresponding body load and

traction from the adjoint linear term δuθ. With the error indicator eK for each element, we proceed as in

the energy error approach and refine the elements whose error is above the 70-th percentile of the error

indicators distribution and coarsen those below the 5th percentile. We only use the element error indicator

(2.56) and not the goal estimate (2.55), as it is not accurate [38].

2.4.2 Optimization algorithm and refinement strategy

Our optimization framework uses the C++ MMA [89] implementation by [3]. We implement a continuation

strategy for the β parameter in the threshold function Equation (2.8) and for the penalty parameter γ in

Equation (2.25). We do not wait for MMA to converge to change these parameters, rather we increase them

following a heuristic strategy.

For each optimization iteration k, we use the current design estimate νk to calculate the state uh and

adjoint vh states, which are needed to calculate the cost θ0 and constraint θi functions and their gradients

∇θ0 and ∇θi for (i = 1, ...,ni). These are fed into the optimizer which then updates the design to νk+1, cf.

Algorithm 1. During each optimization iteration, we determine if the relative change in the cost function

between iterations is smaller than tolAMR. If so, we invoke our AMR strategy described earlier. The MMA

mesh dependent information, i.e. the design field and Lagrangian multiplier variables over the last three

iterations [89], are interpolated onto the new mesh. Next, the filter kernel is reconstructed. We update

the threshold and penalty parameters β and γ following a heuristic strategy explained in the numerical

examples. Finally, tolAMR is updated such that its value is halved after each refinement. We reset tolAMR

to its starting value once the threshold parameter β exceeds 200 so as to reinitiate the refinement. The

termination criteria for the optimization is based on the change in the design or the maximum number of

iterations, set to 500.
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Algorithm 1 Algorithm outline.

1: Build filter.
2: while ‖νk − νk+1‖ > tol or it < maxit do
3: Solve state problem to obtain u
4: Solve adjoint problem to obtain v
5: Calculate θ0(νk), ∇θ0(νk)
6: Update νk+1 according to the MMA algorithm.

7: if θ0(νk)−θ0(νk+1)
θ0(ν) ≤ tolAMR then

8: Calculate ηK for K = 1...nel
9: Sort element errors in decreasing order.

10: Refine of 30 % of the elements with highest errors.
11: Coarsen of 5 % of the elements with lowest errors.
12: Update filter with the new mesh.
13: Project MMA data into the new discretization.
14: Update tolAMR

15: end if
16: if β satisfies β-criteria then
17: Update β
18: end if
19: if γ satisfies γ-criteria then
20: Update γ
21: end if
22: end while

2.4.3 Finite Element Implementation

The finite element computations are performed in parallel thanks to the libMesh finite element library [51].

For solvers we use PETSc [12, 13], and the HYPRE [60] preconditioner. As both the adjoint and primal

problems share the same stiffness matrix, we recycle the preconditioner to avoid the overhead of multiple

builds. libMesh uses a quadtree/octree data structure in their adaptive mesh refinement implementation.

We use bilinear Lagrangian elements and accomodate the hanging nodes via constraint equations. Our

code design is similar to that in [38] wherein the users need only write the optimization cost and constraint

functions and their derivatives with respect to u and ν. All the optimizations were run on a 8-core 2.60 GHz

Intel Xeon E5-2670 processor.

2.4.4 Numerical examples

We first benchmark our algorithm with the eyebar example from [10]. The design domain in Figure 2.11 is

discretized with the Gmsh library [28] using second order triangles to capture the circumference with more

precision and avoid sharp angles when refining the mesh. The largest triangle has an inradius of 0.15 mm

and the smallest, 0.10 mm, placed near the hole. The load applied on the left hand side of the hole follows

the distribution t(x, y) = (−((y−4)2−1.52), 0.0) and Dirichlet boundary conditions are applied to the 2 mm
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segment in the right side. The isotropic material has a Young’s modulus E = 1.0 MPa, a Poisson’s ratio of

ν = 0.3 and a yield criteria is σy = 5 MPa. The filter radius is ε = 0.6 mm. The initial mesh contains 681

elements. We limit the maximum refinement level to four because the relatively large filter radius compared

to the mesh dimensions causes the filter kernel to exhaust the computer’s memory if the refinement is too

high.

8
4

16
4

1.
5

2

y

x

Figure 2.11: Gray design domain, loads and boundary conditions. All dimensions are in mm.

Our continuation strategy to obtain optimized designs is as follows. First, the threshold parameter β

starts with a value of 1 and is increased by 5 every 20 iterations after iteration 50 to avoid having the design

fall into a local minimum. Second, the penalty parameter γ starts with a value of 10 and is increased by 50

every 50 iterations after iteration 50. The tolerance to trigger refinement tolAMR is 1e-2.

We plot the optimized design in Figure 2.12. As we can see, part of the structure is stuck to the right side

of the hole. The reason being that, thanks to the threshold function of Equation (2.8), the sensitivities are

only significant in the material-void transition regions, i.e. at the design boundaries. If the hold-all domain

boundary ∂D coincides with the intended design domain boundary, it is difficult to move the latter, as the

sensitivity is zero there because the design boundary interface cannot fully resolve itself. For this reason we

expand the domain into the hole, cf. Figure 2.13. To recover the intended design domain, we impose a zero

volume constraint for the thresholded volume fractions ν̃ in the extended, i.e. red, region.

Figure 2.12: Optimized design for the eyebar geometry.
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Figure 2.13: Initial mesh with extended simulation domain in red.

We plot the new design in Figure 2.14. The nonlocal nature of the filter causes the zero volume constraint

to extend its influence beyond the actual hole. To resolve this, in the extended domain, we equate ν = 0

and ε = 0 to avoid nonzero filtered volume fractions within the hole.

We first run an optimization using the global energy norm error indicator described in Section 2.4.1. The

result with this approach cf. Figure 2.15, shows how the algorithm fails to obtain a complete 0/1 design.

Indeed, the lack of a global convergence mechanism in MMA causes an oscillatory behavior in the boundary

region near the hole. We also plot the Von Mises Stress field in Figure 2.16. The optimization time was

1900.8 seconds, out of which 339.5 seconds were devoted to the filter kernel construction.

Using the same parameters as the previous case, we run an optimization using the goal-oriented error

indicator with respect to the cost function, cf. Equation (2.24). The new optimized design in Figure 2.17 is

almost identical to that obtained with the global energy error indicator, cf. Figure 2.15. The optimization

took 1893.6 seconds, with 313.91 devoted to the filter kernel. The evolution of the cost function is similar

as well, but the refinement process is not, cf. Figure 2.18. The goal error indicator initially refines fewer

elements than the energy error where after it refines more until the difference stagnates due to the ceiling

on the maximum level of refinement. The upticks in the value of the cost function correspond to mesh

refinements, which resulted in higher stress values.

Figure 2.14: Optimized design with a zero volume constraint in the extended region.
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Figure 2.15: Optimized design for the eyebar geometry with the global energy error indicator and ν = 0 and
ε = 0 in the extended simulation domain.

Figure 2.16: Von Mises stress field for the eyebar design in Figure 2.15.

Figure 2.17: Optimized design for the eyebar geometry with the goal-oriented error indicator and ν = 0 and
ε = 0 in the extended simulation domain.

For the sake of comparison, we study the “L-bracket” problem described in [56], cf. Figure 2.19. We

apply 0.08 N/mm traction over the load region, the isotropic material model has again a Young’s modulus

of E = 1.0 MPa , Poisson’s ratio of ν = 0.3 and εν = 10−4; the filter radius is ε = 2.0 mm and the maximum

allowable Von Mises stress is σy = 2 MPa. The initial design uses the mesh in Figure 2.20 which defines

refinement level 0.

Again, there are several knobs that need to be adjusted to obtain the optimized design. First, the

threshold parameter β in Equation (2.8) starts with a value of 1 and is not increased until iteration number
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Figure 2.18: Cost function and discretization degrees of freedom histories for the eyebar.

100. Thereafter then increased by 5 every 20 iterations up to a maximum value of 250. This is necessary

to obtain a sharp interface and also prevents the design from falling into local minima. Second, the penalty

parameter γ starts with an initial value of 1 and increases by 2 every 20 iterations after iteration 50. Third,

the maximum refinement level is fixed at 3 until iteration 200, 5 until iteration 400, and 8 thereafter. These

strategies give us the best results. For example, it prevents areas with intermediate volume fraction values

from being overly refined given that they are eliminated with the threshold function later in the optimization.

The tolerance to trigger the refinement tolAMR is initially 1e-2; it is halved after each refinement. As such

tolAMR can become very small early in the design process, i.e. while the primary topology is still evolving.

This is attributed to the threshold function, which makes the problem similar to a shape optimization.

Therefore, we reset tolAMR =1e-2 every 80 iterations after iteration 100.

As in the previous example, we extend the simulation domain beyond the design domain, cf. the red

region in Figure 2.20. We likewise equate ν = 0 and ε = 0 in these red areas. This approach however, does

not work well for the L-bracket problem. As seen in Figure 2.21, there is still part of the material stuck at

the L-bracket corner. The corner creates a high stress concentration, but the gradient is zero there due to

the threshold operation in (2.8), as explained earlier. For this reason, we revert to our previous approach

and place a zero constraint on thresholded volume fractions ν̃ in the extended region; we no longer have

ν = 0 and ε = 0. As in Figure 2.20 design, we run an optimization using the global energy norm error

indicator described in Section 2.4.1. Our result in Figure 2.22 shows an optimized design with a volume

of 1228.49 mm2. The final mesh contains 524,842 elements. The same mesh with a uniform refinement

corresponding to the smallest element would contain 6,160,384 elements.
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Figure 2.19: Gray design domain, loads and boundary conditions.. All dimensions are in mm.

Figure 2.20: Initial mesh for the optimization and actual design domain shown in gray. A zero volume
constraint is imposed in the extended domain shown in red.

We plot the Von Mises stress distribution calculated using the SIMP stress formula given in the weak

form in Equation (2.13), i.e. σ = r(ν̃)C[∇u], cf. Figure 2.23. The distribution is considerably more uniform,

which indicates a more optimized design. We plot the mesh corresponding to the optimized design with

different zoom levels in Figure 2.26. Note the high refinement level that it is necessary to accurately compute

the stress field.

The total computational cost was of 2181.6 seconds. Out of this time, 797.2 seconds were devoted on

building the cone filter in Equation (2.6). This expensive operation is done every time the mesh is refined
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Figure 2.21: Optimized design using ν = 0 and ε = 0 in the extended region.

Figure 2.22: Optimized design using zero volume constraint on the thresholded volume fractions in the
extended region.

and has an algorithmic complexity that is polynomial with respect to the number of elements. Based on

this, it is even more compeling to find out a way to use [55] in the context of AMR.

Using the same parameters as the previous case, we run another optimization but we replace the global

energy error indicator for the goal-oriented error indicator, cf. Equation (2.24) to obtain the best possible

accuracy. The optimized design is similar than that obtained with the global energy error indicator, cf.
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Figure 2.23: Von Mises stress for the design of Figure 2.22.

Figures 2.22 and 2.24. The total volume is 1233.01 mm2 and the mesh contains 516,346 elements which is

less than those obtained via the global energy error indicator.

The goal-oriented optimization took 2120.4 seconds. Figure 2.25 shows the evolution of the cost function

and the number of degrees of freedom for the displacement field. The goal oriented error indicator marks

fewer elements for refinement than the energy error indicator which translates into a slight computational

saving for our case. The global nature of the goal error, Equation (2.24), explains the similar number of

elements versus the energy error. A cost function localized in a small region would have resulted in a more

localized mesh refinement because the adjoint response would only be significant in the small region.

2.4.5 Design validation with explicit geometry finite element simulation

To validate the Figure 2.22 design, we use the ν̃ = 0.5 level set of the thresholded volume fraction field to

define the optimized geometry. A body-fitted mesh is genererated over this domain and a finite element

analysis is performed to compute the displacement and stress fields using the finite element library FEniCS

[9]. We plot the difference between the fitted and topology optimized (topopt) Von Mises stress fields

σfitted
VM − σtopopt

VM , cf. Figure 2.27. As we can see, most of the difference is within 10% of the maximum von

mises stress value of 2 MPa, with σtopopt
VM slightly greater than σfitted

VM .

For comparison purposes, we run a similar optimization with a single uniform mesh containing 528,384

elements, which is similar to the number of elements in the optimal design of Figure 2.22. This result is
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Figure 2.24: Optimized design using the goal oriented error indicator.
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Figure 2.25: Cost function and discretization degrees of freedom histories for the L-bracket.

plotted in Figure 2.28 with a total volume of 1381.9 mm2. We perform a similar validation study with a body

fitted mesh and plot the result in Figure 2.29, as expected the lack of refinement creates a greater difference

in the Von Mises stress field over the design boundaries and in the thin structural members. Increasing the

refinement with two additional levels to match the most refined elements in our AMR mesh will improve the

stress field, but this uniform mesh would result in 8,454,144 elements, versus the 524,842 elements in our

AMR mesh.
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2.5 Conclusion and future work

We presented a new topology optimization methodology to obtain designs in structural mechanics with

accurate stress fields that satisfy yield criteria. We are able to do so by combining a threshold function

that sharpens the otherwise blurred boundaries from the filter operation and adaptive mesh refinement that

increases the mesh resolution in the boundary region. We validated the stress accuracy by using geometries

whose stress fields are known and tabulated. The eye-bar and L-bracket example problems are used to

validate our approach. We foresee that it is possible to further improve our results by using a globally

convergence optimization algorithm such as the GCMMA [90] and the PDE-based filter [55] to reduce

memory requirements.

Future work will address a more rigurous mesh refinement strategies. One that considers the inexactness

of the finite element approximation and still ensures global convergence to a local minima [109]. This will

avoid our current heuristic and case dependent strategy, e.g. for the assignment of β, tolAMR, etc. Indeed

for this approach to be succesful, it is necessary to employ error estimates and error indicators with tighter

bounds than the currently used residual based approaches. To save computational resources, uncoupling the

discretizations of the volume fraction field and the displacement field could be incorporated.
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Figure 2.26: Final mesh for the design in Figure 2.22.
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Figure 2.27: Von Mises stress field verification.

Figure 2.28: Optimized design with a uniform mesh.
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Figure 2.29: Von Mises stress field difference for the optimized design with σy = 2 MPa and a uniform mesh
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Chapter 3

Mesh independency in topology
optimization

3.1 Introduction

Topology optimization finds the optimal distribution of material in a given design domain D to minimize a

cost function and satisfy constraint function inequalities. On a background mesh that represents the design

domain, the optimization algorithm places material in individual elements to define the geometry of the

optimal design. Regions devoid of material are meaningless, hence the motivation to coarsen the mesh in

these regions. By the same token, regions which contain material require a higher mesh resolution. This

cost saving strategy that distributes elements with different sizes within the mesh is known as the Adaptive

Mesh Refinement (AMR).

In the usual topology optimization scenario, the design is defined by an element-wise material volume

fraction. This piecewise uniform function, i.e. design field, belongs to the Hilbert space L2 defined on

D, i.e. L2(D). If the elements have differente sizes, as in AMR, it is intuitively wrong to think that all

design variables have the same contribution to the sensitivities. Here we explain why it is also necessary to

accomodate the element size when calculating the inner products involving the design variables within the

optimization algorithms. However, this is not done within most optimization algorithms used in the topology

optimization community as they assume the design is a vector in the Euclidean space `2, i.e., simply a vector

of length equal to the number of elements in the mesh, cf. IPOPT [96], SNOPT [39], MMA [89], FMINCON

[62] and Optimality Criteria [44]. On the other hand, the optimization libraries Optizelle [105], Moola [84],

ROL [76] and TAO [32] contain to various extents the capacity of treating design fields as elements of their

underlying function spaces. Related work by [81] compares mesh-independent and dependent versions of

the steepest descent algorithms for an unconstrained problem and estimates their rates of convergence. It

is also necessary to mention that in the PDE-constrained optimization community, optimization algorithms

are inherently mesh-independent as they are implemented in the corresponding function space. For instance,

[93] implements an infinite-dimensional (inf-dim) primal-dual interior-point method with a Newton solver

and [110] implements an inexact sequential quadratic programming method with an adaptive multilevel
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mesh refinement scheme.

The inconsistency between the L2 and `2 spaces is generally not a problem because most of the topology

optimization studies use uniform meshes. However, when using meshes with different element sizes, as is the

case in AMR, the `2 viewpoint yields mesh dependent designs, whereas the L2 approach does not.

This work is laid out as follows: Section 3.2 presents the mathematical tools we need to implement

mesh independent optimization algorithms. We use these tools in Section 3.3 to make one of the most

popular optimization algorithms in the topology optimization community, the Globally Convergent Method

of Moving Asymptotes (GCMMA/MMA) algorithm, mesh independent. In Section 3.4, we validate our

theory by solving three common problems in topology optimization. Section 3.5 briefly summarizes our

findings and presents conclusions.

3.2 Mathematical Preliminaries

Our topology optimization algorithm becomes mesh independent by being formulated in the inf-dim L2

space, using concepts from functional analysis. It is then discretized in a consistent manner using the finite

element space of the discretized design field, i.e. the element-wise uniform volume fraction field. Notably,

the norms in the optimization algorithm that check for convergence are discretized in this finite element

space.

To illustrate the proper discretization, consider the unconstrained minimization problem

min
ν∈V

θ(ν) , (3.1)

with the functional

θ : V 7→ R , (3.2)

where ν : V 7→ R is our volume fraction design field that belongs to V , a Hilbert space on domain D,

equipped with an inner product (·, ·)V , which induces the primal norm ‖·‖V . For our topology optimization,

V = L2(D); it is equipped with the norm

‖ν‖L2
=
√

(ν, ν)L2
=

(∫
D

ν2 dV

)1/2

. (3.3)

The space of all bounded linear functionals that maps V to R is the dual spaces V ∗, it is a subset of L (V ,R),
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the space of linear operators from V to R, i.e. V ∗ ⊂ L (V ,R). Both the primal ‖·‖V and dual ‖·‖V ∗ norms

can be used to check for convergence in optimization algorithms.

To formulate optimization algorithms on the function space V , we need the Riesz map from the Riesz

representation theorem: Let V be a Hilbert space with inner product (·, ·)V and dual space V ∗. For every

ϕ ∈ V ∗ there is a unique element u ∈ V such that ϕ(v) = (u, v)V for all v ∈ V . This one-to-one map is the

Riesz map Φ : V 7→ V ∗ defined such that Φ(u) = ϕ.

The discretization of the primal and dual spaces follows from [82]. We approximate the volume fraction

field ν ∈ V with νh ∈ Vh, where Vh is the span of basis functions P = {φ1, ...,φn}, φi ∈ V and n is the

dimension of Vh. Our approximation now reads

νh(x) =

n∑
i=1

νiφi(x) = νTφ(x) . (3.4)

Replacing ν with νh and similarly ι ∈ V with ιh ∈ Vh in the inner product definition yields

(νh, ιh)Vh =

∫
D

(νTφ)(ιTφ)dV

= νT
∫
D

φφT dV ι

= νTMι ,

(3.5)

where

M =

∫
D

φφT dV (3.6)

is the mass matrix that reflects the mesh discretization. By construction, M is symmetric and invertible.

The discretized design field νh is in the function space Vh = (Rn, (·, ·)M), i.e. vectors of dimension n with

an M inner product. This inner product induces the norm ‖νh‖Vh = ‖ν‖M = (νTMν)1/2.

Clearly the L2 norm ‖νh‖L2
= (νTMν)1/2 differs from the `2 norm ‖νh‖`2 = (νTν)1/2. In topology

optimization, νh is usually discretized via piecewise uniform functions over the individual elements so M

is a diagonal matrix whose entries are the volumes (areas) in 3D (2D) of each element in the mesh. So

if the mesh is uniform, M is simply the identity matrix times the element volume (area) Ve and hence

‖νh‖L2
= Ve ‖νh‖`2 .

The basis P induces a unique dual basis P∗ = {φ∗1, ...,φ∗n} for V ∗h defined such that φ∗i ∈ V ∗ and

φ∗i (φj) = δij ∀ i, j = 1, ...n. This P∗ basis is used to discretize any F ∈ V ∗ as Fh ∈ V ∗h such that for all
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ιh ∈ Vh

Fh(ιh) =

n∑
i=1

Fiφ
∗
i (ιh) . (3.7)

In this way, Fh(ιh) is computed as

Fh(ιh) =

n∑
i=1

Fiφ
∗
i

 n∑
j=1

ιjφj

 ,

=

n∑
i=1

Fj

n∑
j=1

ιjφ
∗
i (φj) ,

=

n∑
i=1

Fiιi ,

= FT ι ,

(3.8)

where we used the orthonormal property between the bases P and P∗ and the linearity of F . From the

Riesz representation theorem, there exists νh ∈ Vh such that Φ(νh) = Fh or Φ−1(Fh) = νh assuming Φ is

invertible, where Φ−1 : V ∗ 7→ V . Therefore,

Fh(ιh) = (

νh︷ ︸︸ ︷
Φ−1(Fh), ιh)V ,

= (νh, ιh)V ,

= νTMι .

(3.9)

From Equations (3.8) and (3.9) we can see that

FT ι = νTMι . (3.10)

Therefore,

F = Mν , (3.11)

and the discrete Riesz map and its inverse are defined such that Φh(ν) = Mν and

Φ−1
h (F) = M−1F . (3.12)

Considering the isometry between the spaces Vh and V ∗h and the Riesz map, we can now define and calculate
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the norm of an object Fh ∈ V ∗h as

‖Fh‖V ∗
h

=
∥∥Φ−1(Fh)

∥∥
Vh

,

=
∥∥M−1F

∥∥
M

,

=
√

FTM−1MM−1F ,

= ‖F‖M−1 ,

(3.13)

where we used the definition of the discrete inner product in Equation (3.5).

In this work, we use the Fréchet derivative Dθ(ν) ∈ V ∗ of the function θ : V 7→ R at ν, which if it exists,

is defined such that

θ(ν + h)− θ(ν)−Dθ(ν)[h] = O(‖h‖V ) (3.14)

for all h ∈ V . By definitionDθ(ν) ∈ V ∗, and hence the Riesz representation theorem tells us there is an object

in V that we will denominate ∇θ(ν) ∈ V , i.e. the gradient of θ at ν such that Dθ(ν)[h] = (∇θ(ν),h)V for all

h ∈ V . Using the Riesz map, Φ(∇θ(ν)) = Dθ(ν) and because the Riesz map depends on the inner product

(·, ·)V , so does ∇θ(ν) ∈ V . This is crucial in our optimization algorithm as the inner product depends on

the mesh discretization, notably ∇θ = M−1Dθ, where ∇θ and Dθ are the discrete counterparts of ∇θ(ν)

and Dθ(ν).

We are now in position to show how these functional analysis concepts apply to optimization algorithms

in the inf-dim space. We start by examining the most basic optimization algorithm for the solution of the

simple unconstrained minimization problem of (3.1). i.e, the steepest descent algorithm, for which the iterate

ν(k) is updated as

ν(k+1) = ν(k) − γ∇θ(ν(k)) . (3.15)

where γ ≥ 0 is the step length. It seems intuitive that ν and ∇θ(ν) must be in the same function space since

they are added together. This motivates us to use the gradient ∇θ(ν) and not the derivative Dθ(ν) in (3.15),

which is contrary to most topology optimization algorithms. For a uniform mesh M = VeI so ∇θ = 1
Ve

IDθ

are parallel and there is no difference in the search direction. In general, however, the discretized, Equation

(3.15) becomes

ν(k+1) = ν(k) − γ∇θ .

= ν(k) − γM−1Dθ .

(3.16)
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When calculating the norm to check for convergence, we use ‖∇θ(ν)‖V , which upon discretization is ‖∇θ‖M.

The second algorithm uses Newton’s method, wherein we iterate to find ν such that

Dθ(ν)[δν] = 0 ∀δν ∈ V . (3.17)

To do so, we linearize around ν(k) and solve for the update ∆ν(k) via

D2θ(ν(k))[∆ν(k), δν] = −Dθ(ν(k))[δν] ∀δν ∈ V , (3.18)

where D2θ(ν(k))[·, ·] : V 7→ L (V ×V ,R) is the Hessian, i.e. second derivative of θ at ν(k); it is a bilinear map

from (V ×V ) to R. The difference here is that we need to feed the algorithm with the derivative Dθ(ν) (and

the Hessian D2θ(ν)) and not the gradient ∇θ(ν) as in the steepest descent algorithm. Upon discretization,

Equation (3.18) becomes

D2θ∆ν(k) = −Dθ (3.19)

When calculating the norm to check for convergence, we use ‖Dθ(ν)‖V ∗ , whose discretization is ‖Dθ‖M−1

We showcase the difference between ∇θ(ν) and Dθ(ν) with the following convex unconstrained optimiza-

tion problem

min
ν∈V

θ(ν) =
1

2
〈ν, ν〉V − 〈ν, b〉V (3.20)

where b is a given function on V . The solution ν∗ = b is trivially calculated by the stationarity condition

Dθ(ν)

Dθ(ν)[v] = 0 = 〈∇θ, v〉V

= 〈ν − b, v〉V
(3.21)

We proceed to discretize the function θ with piecewise uniform elements, resulting in the expression

θ(ν) =
1

2
νTMν − νTMb (3.22)

whose derivative is

Dθ = M(ν − b) . (3.23)
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Note that Equation (3.23) is the discretization of Dθ(ν) in Equation (3.21). Applying the steepest descent

algorithm yields

ν(k+1) = ν(k) − γDθ

= ν(k) − γM(ν(k) − b)

(3.24)

The optimal step size γ is calculated with the closed-form expression

γ =
(ν(k) − b)TMM(ν(k) − b)

(ν(k) − b)TMTMM(ν(k) − b)
(3.25)

We use this expression in Equation (3.24) to obtain the fixed point iteration

ν(k+1) = ν(k) − (ν(k) − b)TMM(ν(k) − b)

(ν(k) − b)TMTMM(ν(k) − b)
M(ν(k) − b) (3.26)

If M is a positive definite diagonal matrix whose entries are not equal, as is common in AMR, we do not

obtain convergence. Indeed, Table 3.1 denotes the iteration history of Equation (3.26) with ten design

variables over a one dimensional mesh with nodes at positions x = (0.0, 1.0, 3.0, 6.0, 10.0, 15.0, 21.0, 28.0,

36.0, 45.0, 50.0) using elementwise uniform interpolation for ν, b = 9x+ 1 and the initial estimate ν(0) = 0.

The lack of convergence is attributed to the fact that we are adding members from different spaces (ν ∈ V

and Dθ(ν) ∈ V ∗). If we replace Dθ with the gradient ∇θ = M−1Dθ(ν) = ν − b in Equation (3.24) we

find γ = 1 and we converge in one iteration.

Iteration # Error ‖ν − b‖M
1 4.933
2 2.165
3 1.3056
30 0.003

Table 3.1: Iteration history for the discrete steepest descent in Equation (3.26).

3.3 GCMMA in function space

We are now motivated to formulate the first-order GCMMA algorithm [90] in the L2 space. GCMMA [90]

and its non globally-convergent version MMA [89] are widely used algorithms in the topology optimization

community. Following the implementation given in [88], we highlight the necessary details to obtain a
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mesh-independent algorithm. To begin, we consider the optimization problem

min
ν∈V

θ0(ν) ,

s.t. θi(ν) ≤ 0, i = 1, . . . ,m ,

νmin ≤ ν ≤ νmax .

(3.27)

First, the artificial optimization variables y = (y1, ..., ym) and z are added to make certain subclasses of

problems, like least squares or minmax problems, easier to formulate, i.e.

min
ν∈V
y∈Rm
z∈R

θ0(ν) + a0z +

m∑
i=1

(
ciyi +

1

2
diy

2
i

)
,

s.t. θi(ν)− aiz − yi ≤ 0, i = 1, . . . ,m ,

νmin ≤ ν ≤ νmax ,

y ≥ 0 ,

z ≥ 0 .

(3.28)

where a0, ai, ci and di are real numbers which satisfy a0 > 0, ai ≥ 0, ci ≥ 0, di ≥ 0 and ci + di > 0 for all i,

and also aici > a0 for all i [90]. Note that we recover the original algorithm for z = 0 and y = 0.

For each optimization iteration k, we solve the following convex approximate subproblem that is based

on Equation (3.28), the current iterate (ν(k),y(k), z(k)), the cost and constraint functions values and their

derivatives. Ultimately, we iterate by solving

(ν(k+1),y(k+1), z(k+1)) =arg min
ν∈V
y∈Rm
z∈R

θ̃0(ν) + a0z +

m∑
i=1

(
ciyi +

1

2
diy

2
i

)
,

s.t. θ̃i(ν)− aiz − yi ≤ 0, i = 1, . . . ,m. ,

α ≤ ν ≤ β ,

y ≥ 0 ,

z ≥ 0 .

(3.29)

where the newly introduced functions θ̃0 and θ̃i and bounds α and β are defined momentarily.

In our formulation of the above subproblem, we replace the summations of the approximating functionals
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θ̃i in [88] with integrals over the domain.

θ̃i(ν) =

∫
D

(
pi

U (k) − ν
+

qi
ν − L(k)

)
dV + ri, i = 0, 1, . . . ,m , (3.30)

ri = θi(ν
(k))−

∫
D

(
pi

U (k) − ν(k)
+

qi
ν(k) − L(k)

)
dV , (3.31)

where

pi = (U (k) − ν(k))2

(
1.001

(
∇θi(ν(k))

)+

+ 0.001
(
∇θi(ν(k))

)−
+

ρ
(k,j)
i

νmax − νmin

)
, (3.32)

qi = (ν(k) − L(k))2

(
0.001

(
∇θi(ν(k))

)+

+ 1.001
(
∇θi(ν(k))

)−
+

ρ
(k,j)
i

νmax − νmin

)
. (3.33)

and U (k) and L(k) are the soon to be defined moving upper and lower asymptotes. To ensure the subproblem

is convex, we use the ramp like functions (a)
+

= max(0, a), and (a)
−

= max(0,−a). The bounds (now fields

in V ) α and β are taken as

α = max{νmin,L(k) + 0.1(ν(k) − L(k)), ν(k) − 0.5(νmax − νmin)}

β = min{νmax,U (k) − 0.1(U (k) − ν(k)), ν(k) + 0.5(νmax − νmin)}
(3.34)

The GCMMA differs from the MMA in its attempt to achieve global convergence by controlling the

parameter ρ
(k,j)
i (which in the MMA is a fixed small value, usually lower than 10−5) in the convex approx-

imation of Equations (3.32) and (3.33). Here, the added superscript j corresponds to the inner iteration

within the GCMMA. For the initial j = 0 inner iteration, the solution (ν(k,0),y(k,0), z(k,0)) of the Equation

(3.29) subproblem is accepted if

θ̃i(ν
(k,j)) ≥ θi(ν(k,j)) ∀i = 0, ...,m , (3.35)

whereupon the outer iteration k+1 commences with the initial iterate (ν(k+1),y(k+1), z(k+1)) = (ν(k,0),y(k,0), z(k,0)).

Otherwise, the j+1 subproblem (3.29) is solved with a more conservative convex approximation by replacing

ρ
(k,j)
i with ρ

(k,j+1)
i > ρ

(k,j)
i and the Equation (3.35) inequality is rexamined. If Equation (3.35) is satisfied, we

begin the outer iteration k+1 with the initial iterate (ν(k+1,0),y(k+1,0), z(k+1,0)) = (ν(k,j+1),y(k,j+1), z(k,j+1)),

otherwise, the inner j + 2 subproblem is solved and so on, cf. Figure 3.1.

The parameters ρ
(k,j)
i are calculated following [90], but with integrals replacing summations. For sub-
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ν(0)

Calculate
θ(ν(k)), ∇θ(ν(k))

Obtain ρ(k,0)

Build θ̃(k,j)(ν(k))

Solve for ν(k,j)

Calculate θi(ν
(k,j)), θ̃i(ν

(k,j))

If θ̃i(ν
(k,j)) ≥ θi(ν(k,j))

∀i = 0, ...,m

ν(k+1,0) = ν(k,j)

Obtain ρ(k,j+1)

j = j + 1

No

Yes

j = 0

Figure 3.1: GCMMA algorithm.
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problem (k, 0)

ρ
(k,0)
i =

0.1

V̂

∫
D

|∇θi(ν(k,0))| (νmax − νmin) dV for i = 0, 1, . . . ,m , (3.36)

where V̂ is the volume (area) of D. For the subsequent (k, j + 1) subproblems

ρ
(k,j+1)
i = min

{
1.1
(
ρ

(k,j)
i + δ

(k,j)
i

)
, 10ρ

(k,j)
i

}
if δ

(k,j)
i > 0 ,

ρ
(k,j+1)
i = ρ

(k,j)
i if δ

(k,j)
i ≤ 0 ,

(3.37)

where

δ
(k,j)
i =

θi
(
ν(k,j)

)
− θ̃i

(
ν(k,j)

)
d
(
ν(k,j)

) . (3.38)

with

d(ν) =

∫
D

(
U (k) − L(k)

) (
ν − ν(k)

)2(
U (k) − ν

) (
ν − L(k)

)
(νmax − νmin)

dV , (3.39)

The moving asymptotes fields L ∈ V and U ∈ V are updated via heuristic rules. For iterations k = 1

and k = 2

L(k) = ν(k) − 0.5(νmax − νmin) ,

U (k) = ν(k) + 0.5(νmax − νmin) .

(3.40)

For iterations k ≥ 3,

L(k) = ν(k) − γ(k)(ν(k−1) − L(k−1)) ,

U (k) = ν(k) + γ(k)(U (k−1) − ν(k−1)) .

(3.41)

The field γ that appears in Equations (3.41) is determined by the variation of ν in the last three outer

iterations. When there is no oscillation in ν, we reduce the convexity by pushing the asymptotes further

apart by choosing a larger γ to accelerate convergence. Otherwise, we use a smaller value to move the

asymptotes closer together. Specifically, we assign

γ(k) =


0.7 if (ν(k) − ν(k−1))(ν(k−1) − ν(k−2)) < 0 ,

1.2 if (ν(k) − ν(k−1))(ν(k−1) − ν(k−2)) > 0 ,

1 if (ν(k) − ν(k−1))(ν(k−1) − ν(k−2)) = 0 ,

(3.42)
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subject to the inequalities

L(k) ≤ ν(k) − 0.01(νmax − νmin) ,

L(k) ≥ ν(k) − 10(νmax − νmin) ,

U (k) ≥ ν(k) + 0.01(νmax − νmin) ,

U (k) ≤ ν(k) + 10(νmax − νmin) .

(3.43)

The MMA subproblem (3.29) is solved using a primal-dual interior-point algorithm as in [88], where a

sequence of relaxed KKT conditions are solved using the Newton-Raphson method. Omitting the iteration

indices (k, j) for clarity we solve

min
ν∈V
y∈Rm
z∈R
s∈Rm

∫
D

(
po

U − ν
+

qo
ν − L

)
dV + a0z +

m∑
i=1

(
ciyi +

1

2
diy

2
i

)
+ r0 ,

s.t.

∫
D

(
pi

U − ν
+

qi
ν − L

)
dV − aiz − yi + ri + si = 0, i = 1, . . . ,m ,

α ≤ ν ≤ β ,

y ≥ 0 ,

z ≥ 0 ,

s ≥ 0 ,

(3.44)

where we have introduced the slack variable s ∈ Rm to transform the θi(ν) ≤ 0 inequality constraints into

m equality constraints.

To solve the above, the Lagrangian corresponding to Equations (3.44) is formed by introducing the

log-barrier terms for the inequality constraints.

L(ν, y, z,λ, s) =

∫
D

(
po

U − ν
+

qo
ν − L

)
dV + a0z +

m∑
i=1

(
ciyi +

1

2
diy

2
i

)
+ r0

+

m∑
i=1

λi

(∫
D

(
pi

U − ν
+

qi
ν − L

)
dV − aiz − yi + ri + si

)

− ε
∫
D

ln(ν − α) dV − ε
∫
D

ln(β − ν)dV − ε
m∑
i=1

lnyi − εln(z)− ε
m∑
i=1

lnsi .

(3.45)

Stationarity of the Lagrangian is then solved sequentially for different values of the barrier parameter ε,

starting at ε = 1 and decreasing by a factor of 0.1 until ε ≤ 10−5 Convergence for a given ε is deemed

when the residual of the derivative of the Equation (3.45) Lagrangian is less than 0.9ε. Note that the bound

constraints on the volume fraction field ν ∈ V are enforced via integrals, as it is known that the pointwise
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bounds α ≤ ν ≤ β for all x ∈ D will be satisfied by the integral expressions provided we start from a feasible

design.

To keep the notation clean, we group the variables as χ = (ν, y, z,λ, s) and express the function ψj(ν) :

V 7→ V , j = 0, . . . ,m as

ψj(ν) =
pj

U − ν
+

qj
ν − L

, j = 0, . . . ,m , (3.46)

In this way, the stationarity conditions on the Lagrangian become

DνL(χ)[δν] =

∫
D

(
Dψ0(ν)[δν] +

m∑
i=1

λiDψi(ν)[δν]− εδν

ν − α
+

εδν

β − ν

)
dV = 0 ∀δν ∈ V ,

DyiL(χ)[δyi] =

(
ci + diyi − λi −

ε

yi

)
δyi = 0 ∀δyi i = 1...m ,

DzL(χ)[δz] = (a0 −
m∑
i=1

λiai −
ε

z
)δz = 0 ∀δz ,

DλiL(χ)[δλi] =

(∫
D

ψi(ν) dV − aiz − yi + ri + si

)
δλi = 0 ∀δλi i = 1...m ,

DsiL(χ)[δsi] = (λi −
ε

si
)δsi = 0 ∀δsi i = 1...m ,

(3.47)

Equation (3.47).2 is fulfilled for any δyi, therefore the term in the parenthesis equals zero and similarly for

Equations (3.47).3-(3.47).5. From the last Equation (3.47).5, we obtain λisi = ε for i = 1...m.

We next introduce the dual variables

ε =
ε

ν − α
,

η =
ε

β − ν
,

µi =
ε

yi
, i = 1...m ,

ζ =
ε

z
,

(3.48)
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where ε, η ∈ V and µi, ζ ∈ R to generate the following system of nonlinear equations

DνL(χ)[δν] =

∫
D

(
Dψ0(ν)[δν] +

m∑
i=1

λiDψi(ν)[δν]− εδν + ηδν

)
dV = 0 ∀δν ∈ V ,

DyiL(χ) = ci + diyi − λi − µi = 0 i = 1...m ,

DzL(χ) = a0 −
m∑
i=1

λiai − ζ = 0 ,

DλiL(χ) =

∫
D

ψi(ν) dV − aiz − yi + ri + si = 0 i = 1...m ,

λisi = ε i = 1...m ,

(ν − α)ε = ε ,

(β − ν)η = ε ,

µiyi = ε i = 1...m ,

ζz = ε .

(3.49)

We express the above in a more compact form F (υ) = 0, where υ = (ν, y, z,λ, s, ε, η,µ, ζ) and F : V ×Rm×

R× Rm × Rm × V × V × Rm × R 7→ V ∗ × Rm × R× Rm × Rm × V × V × Rm × R is defined as

F (υ) =



∫
D

(Dψ0(ν)[δν] +
∑m
i=1 λiDψi(ν)[δν]− εδν + ηδν) dV

ci + diyi − λi − µi

a0 −
∑m
i=1 λiai − ζ∫

D
ψi(ν) dV − aiz − yi + ri + si

λisi − ε∫
D

((ν − α)ε− ε)δε dV∫
D

((β − ν)η − ε)δη dV

µiyi − ε

ζz − ε



=



δν

δyi

δz

δλi

δsi

δε

δη

δµi

δζ



(3.50)

for all δν ∈ V , δε ∈ V and δη ∈ V . As seen above, for discretization purposes, we enforce equations (3.49).6

and (3.49).7 weakly.

We solve F (υ) = 0 (for all δυ) via Newton-Raphson by linearizing around υ(k) and requiring ∆υ(k) to

satisfy

DF (υ(k))∆υ(k) = −F (υ(k)) , (3.51)
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which we expand into



∫
D

(
D2ψ0(ν)[δν, ∆ν] +

∑m
i=1 λiD

2ψi(ν)[δν, ∆ν] +
∑m
i=1Dψi(ν)[δν]∆λi − δν∆ε+ δν∆η

)
dV

di∆yi −∆λi −∆µi

−
∑m
i=1 ai∆λi −∆ζ∫

D
Dψi(ν)[∆ν] dV − ai∆z −∆yi + ∆si

∆λisi + λi∆si∫
D

(∆νε+ (ν − α)∆ε) δε dV∫
D

(−∆νη + (β − ν)∆η) δη dV

∆µiyi + µi∆yi

∆ζz + ζ∆z



=



−δν

−δyi

−δz

−δλi

−δsi

−δε

−δη

−δµi

−δζ


(3.52)

for all δν, δε and δη in V .

We proceed to discretize the fields ν, ε and η in V to be piecewise uniform over the finite elements as in

Equation (3.4). So that, e.g.

∆ν(x) = ∆νTφ(x) ,

δν(x) = δνTφ(x) .

(3.53)

Substituting these expressions in Equations (3.50) and (3.52) and using the arbitrariness of δν, δε and δη

yields the discretized residuals

δν =

∫
D

(Dψ0(ν) +
∑m
i=1 λiDψi(ν)− ε+ η)φ dV ,

δε = (ν −α) ◦ ε− ε1 , 1

δη = (β − ν) ◦ η − ε1 ,

(3.54)

where the operator ◦ denotes the Hadamard product, i.e. the component wise multiplication between two

1Note that for the choice of φ being piecewise uniform over the element
∫
D (ε(ν − α)− ε)φ dV =

diag(V 1
e ,V 2

e , ..., ) (ε ◦ (ν −α)− ε1). Equation (3.54).2 follows since diag(V 1
e ,V 2

e , ..., ) is invertible.
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vectors and 1 = (1, 1, ..., 1) . We also define

δy = c+ d ◦ y − λ− µ ,

δz = a0 − λTa− ζ ,

δλ =

[∫
D

ψ1(ν) dV , ...,

∫
D

ψm(ν) dV

]T
− az − y + r + s ,

δs = λ ◦ s− ε1 ,

δµ = µ ◦ y − ε1 ,

δζ = ζz − ε .

(3.55)

In this way, the discretized update equations read

Ψ∆ν + G∆λ−M(∆ε−∆η) = −δν ,

〈d〉∆y −∆λ−∆µ = −δy ,

−aT∆λ−∆ζ = −δz ,

GT∆ν −∆y − a∆z + ∆s = −δλ ,

〈s〉∆λ+ 〈λ〉∆s = −δs .

〈ε〉∆ν + 〈ν −α〉∆ε = −δε ,

−〈η〉∆ν + 〈β − ν〉∆η = −δη ,

〈µ〉∆y + 〈y〉∆µ = −δµ ,

ζ∆z + z∆ζ = −δζ ,

(3.56)

where the operator 〈·〉 is a diagonal matrix, e.g. 〈ν〉 = diag(ν1, ν2, ..., νn) and Ψ and G are the block matrices

Ψ =

∫
D

(
D2ψ0(ν) +

m∑
i=1

λiD
2ψi(ν)

)
φφT dV ,

G =

[∫
D

Dψ1(ν)φ dV ,

∫
D

Dψ2(ν)φ dV , ... ,

∫
D

Dψm(ν)φ dV

]
.

(3.57)
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Ultimately, we are left with the update equation



Ψ G −M M

〈d〉 −Im −Im

−aT −1

GT −Im −a Im

〈s〉 〈λ〉

〈ε〉 〈ν −α〉

−〈η〉 〈β − ν〉

〈µ〉 〈y〉

ζ z





∆ν

∆y

∆z

∆λ

∆s

∆ε

∆η

∆µ

∆ζ



=



−δν

−δy

−δz

−δλ

−δs

−δε

−δη

−δµ

−δζ



, (3.58)

where Im is the m ×m identity matrix. The pointwise operations in Equations (3.34), (3.40) - (3.43) are

carried out on the vector components of their corresponding discretized fields.

As in [88], the linear system of equations in (3.58) can be solved for ∆υ = (∆ν, ∆y, ∆z, ∆λ, ∆s, ∆ε, ∆η, ∆µ, ∆ζ)

quickly given that all the block matrices are diagonal, although this only happens for the piecewise uniform

discretization.

We limit the Newton step from violating the inequalities in Equations (3.44) as in [88]. To do this, we

first maximize the parameter t such that

t ≤ 1 ,

νl + t∆νl − αl ≥ 0.01 (νl − αl) for all l = 1, ...,n ,

βl − (νl + t∆νl) ≥ 0.01 (βl − νl) for all l = 1, ...,n ,

(y, z,λ, s, ε,η,µ, ζ, ) + t (∆y, ∆z, ∆λ, ∆s, ∆ε, ∆η, ∆µ, ∆ζ) ≥ 0.01 (y, z,λ, s, ε,η,µ, ζ) .

(3.59)

where all inequalities are performed on the vector components and n is the number of mesh elements. As in

[88], we assign υ ← υ + τ∆υ where τ is the largest of t, t/2, t/4, ... such that

‖F (υ + τ∆υ)‖Q < ‖F (υ)‖Q . (3.60)

We emphasize that ‖·‖Q is not the ordinary Euclidean norm, but the norm induced by the function space

Q = V ∗ × Rm × R× Rm × Rm × V × V × Rm × R, i.e.
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‖F (υ)‖Q =
√
‖δν‖2V ∗

h
+ ‖δy‖2`2 + ‖δz‖2 + ‖δλ‖2`2 + ‖δs‖2`2 + ‖δε‖2Vh + ‖δη‖2Vh + ‖δµ‖2`2 + ‖δζ‖2 , (3.61)

where, e.g.

‖δν‖V ∗
h

= δTν M−1δν ,

‖δε‖Vh = δTε Mδε .

(3.62)

To recover the original optimization algorithm by [88] posed in the Euclidean space `2, we merely replace

M with the identity matrix in the norm calculations and Equation (3.58).

The discretized Dθ needs to be passed to the optimization algorithm [78]. However, the GCMMA

requires the discretized gradient ∇θ cf. Equations (3.32), (3.33) and (3.66).1 which is calculated using the

Riesz map (3.12) as

∇θ = Φ−1
h (Dθ) ,

= M−1Dθ .

(3.63)

The gradient components are used to evaluate Equations (3.32) and (3.33), i.e.

p
(k,j)
i,l = (U

(k)
l − ν(k,j)

l )2

(
1.001

(
∇θi,l(ν(k,j))

)+

+ 0.001
(
∇θi,l(ν(k,j))

)−
+

ρ
(k,j)
i

νmax − νmin

)
,

q
(k,j)
i,l = (ν

(k)
l − L(k,j)

l )2

(
0.001

(
∇θi,l(ν(k,j))

)+

+ 1.001
(
∇θi,l(ν(k,j))

)−
+

ρ
(k,j)
i

νmax − νmin

)
.

(3.64)

where the subscript l in p
(k,j)
i,l and q

(k,j)
i,l corresponds to the mesh element l and in ∇θi,l it corresponds to

the component of the gradient ∇θi.

The termination criteria of the original problem (3.27), i.e. not the subproblem (3.29), is derived from

its KKT conditions. Notably, here we follow the stopping criteria of [90] and monitor the gradient of the

Lagrangian

L(ν,λ, τ+, τ−) = θ0(ν) +

m∑
i=1

λiθi(ν) +

∫
D

τ−(νmin − ν) dV +

∫
D

τ+(ν − νmax) dV . (3.65)
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Upon defining ω = (ν,λ, τ−, τ+), the KKT conditions read

∇νL(ω) = ∇θ0(ν) +

m∑
i=1

λi∇θi(ν)− τ− + τ+ = 0 ,

θi(ν) ≤ 0 i = 1, . . . ,m ,

λiθi(ν) = 0 i = 1, . . . ,m ,

λi ≥ 0 i = 1, . . . ,m ,

νmin ≤ ν ≤ νmax ,

τ−(νmin − ν) = 0 ,

τ+(ν − νmax) = 0 ,

τ+, τ− ≥ 0 .

Wherever the bound constraints are active, i.e. wherever ν = νmin, or ν = νmax, their corresponding Lagrange

multipliers are τ− = ∇θ0(ν) +
∑m
i=1 λi∇θi(ν) or τ+ = − (∇θ0(ν) +

∑m
i=1 λi∇θi(ν)) respectively. And since

τ− ≥ 0, we have ∇θ0(ν)+
∑m
i=1 λi∇θi(ν) ≥ 0 and similarly since τ+ ≥ 0 we have ∇θ0(ν)+

∑m
i=1 λi∇θi(ν) ≤

0. Using these inequalities in the complementary slackness, Equations (3.66).6 - (3.66).7, transforms them

to

λi(θi(ν))− = 0 , i = 1, . . . ,m ,

(θi(ν))+ = 0 , i = 1, . . . ,m ,

λi ≥ 0 , i = 1, . . . ,m ,

(νmin − ν)

(
∇θ0(ν) +

m∑
i=1

λi∇θi(ν)

)+

= 0 ,

(νmax − ν)

(
∇θ0(ν) +

m∑
i=1

λi∇θi(ν)

)−
= 0 ,

τ+, τ− ≥ 0

(3.66)

where the Lagrange multipliers λi are obtained from the solution of the convex approximation problem (3.29).

The norm of the KKT conditions is given by the norms of the left hand sides of Equations (3.66).1-(3.66).2

and (3.66).4-(3.66).5 where each norm is taken in its corresponding space, i.e., Equations (3.66).1-(3.66).2

in `2 and Equations (3.66).4-(3.66).5 in V . The primal-dual algorithm for the subproblem is outlined in

Algorithm 2
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Algorithm 2 Algorithm outline.

1: Input : Starting point for l = 1: ν(l) = α+β
2 , y

(l)
i = s

(l)
i = λ

(l)
i = 1.0, µ

(l)
i = max{1.0, 0.5ci} for i =

1, ...,m, z(l) = ζ(l) = 1.0, ε(l) = max{1.0, 1.0
ν(l)−α}, η

(l) = max{1.0, 1.0
β−ν(l) } and ε = 1.

2: while ε > 10−5 do
3: Calculate ∆υ in Equation (3.58).
4: Calculate step length τ in Equation (3.60).

5: Let υ(l+1) = υ(l) + τ∆υ(l).
6: if ‖F (υ)‖Q < 0.9ε then
7: ε = 0.1ε
8: end if
9: end while

3.4 Numerical examples

To illustrate the effectiveness of incorporating the L2 function space approach in the GCMMA, we solve

three common topology optimization problems. For each case, we use quadrangular elements with first

order Lagrange basis function. The modified GCMMA is implemented in parallel using data structures

from PETSc [12] and the FEA uses the libMesh library [51]. The design field discretization uses the typical

volume fraction based topology optimization approach with element-wise piecewise uniform basis functions.

In our examples, we use a0 = 1, ci = 10000 and ai = di = 0 for all i ≥ 1.

The topology optimization problem is formulated as

min
ν∈[εν ,1]

θ0(ν) =

∫
D

π(ν̂, u) dV ,

such that u ∈ V satisfies a(ν; u, v) = L(v) for all v ∈ V ,

θi(ν) =

∫
D

gi(ν̂, u)dV ≤ 0 i = 1, 2...m ,

(3.67)

where

a(ν; u, v) =

∫
D

r(ν̂)C[∇u] · ∇v dV , (3.68)

and

L(v) =

∫
Γ

t · v da . (3.69)

The filtered volume fraction ν̂ in the above is obtained from the PDE-based filter [55] to generate a well

posed topology optimization problem

−κ∇2ν̂ + ν̂ = ν , (3.70)

where κ determines the minimum length scale of the design such that a small (large) κ allows for fine (coarse)
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scale design fluctuations. We solve Equation (3.70) with a finite volume scheme. A lower bound εν on ν is

imposed in this ersatz approach to ensure the stiffness matrix in the finite element analysis is not singular.

We use the RAMP penalization [87] to encourage a 0-1 design on the filtered volume fractions ν̂ such that

r(ν̂) =
ν̂

1 + q(1− ν̂)
, (3.71)

where q = 20.

Finally, C is the elasticity tensor of an isotropic material with Young modulus E = 1 and Poisson ratio

ν = 0.3 and t is the applied traction on the surface Γ. We run all the optimization problems until the number

of iterations reaches 800 or the stopping criteria of Equations (3.66) is below 10−3. These two criteria were

deemed sufficient to obtain optimized designs.

As per usual, a reduced space approach is taken wherein we account for dependence of u on ν, i.e.

u 7→ u(ν) and the adjoint method is used to calculate the derivative.

The first problem we study is the proverbial structural compliance minimization subject to a volume

constraint V̂ , i.e.

θ0 =

∫
Γ

t · u da , (3.72)

θ1 =

∫
D

ν̂ dV − V̂ . (3.73)

The design domain D, cf. Figure 3.2, is subject to the traction t(x) = exp(−4.0(y − 25)/(5))e2 and the

length scale parameter is κ = 0.75. We perform four different optimizations corresponding to uniform and

nonuniform meshes with optimizations in `2 and L2. The uniform mesh contains 196,608 elements. Our

non-uniform mesh is illustrated in Figure 3.3 with four levels of refinement, but we perform six additional

levels of uniform refinement for a total of 380,928 elements.

The optimized designs in Table 3.2 show that the `2 algorithm is mesh dependent as opposed to the

L2 algorithm. Figures 3.4 - 3.6 show the evolution of the cost and constraint functions and the stopping

criteria, cf. Equations (3.66). The original `2 algorithm not only depends on the mesh, but it also performs

worse than the L2 algorithm. A common misconception in the topology optimization community is that the

restriction by filtration ensures mesh independent designs. However, as seen here, this does not hold true

for meshes with varying element sizes unless the optimization algorithm is formulated in the L2 space. Also

note that the L2 algorithm converges sooner than the `2 algorithm.

We next benchmark our algorithm with the compliant mechanism design problem, cf. Figure 3.7 where
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Figure 3.2: Compliance domain. L = 150 mm.
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Figure 3.3: Non-uniform mesh showing four levels of refinement; six additional levels of uniform refinement
are used for the computation.
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Table 3.2: Optimized designs for the compliance problem.

we minimize the horizontal displacement u = u · e1 in the output port Γ2, subject to a maximum volume
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Figure 3.4: Cost function evolution for the compliance problem.
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Figure 3.5: Constraint function evolution for the compliance problem.
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Figure 3.6: Stopping criteria evolution for the compliance problem.

constraint V̂ , viz.

θ0 =

∫
Γ2

u da , (3.74)

θ1 =

∫
D

ν̂ dV − V̂ . (3.75)

Consistent with [30], we introduce Robin boundary conditions into the (3.68) formulation.

n · C[∇u]n = −kin(u · n) + fx on Γ1 ,

n · C[∇u]n = −kout(u · n) on Γ2 ,

(3.76)

where fx = 10, the spring coefficients are kin = 1.0 and kout = 0.001. Figures 3.7 and 3.8 illustrate the

design domain and the different levels of refinement in the non-uniform mesh. No additional refinement is

done in this example. The number of elements in the uniform and non-uniform meshes are 115,200 and

382,068.

The optimized designs for the length scale κ = 1.1 illustrated in Table 3.3 and Figures 3.9 - 3.11 again

show that the original `2 algorithm is mesh dependent and performs worse than the L2 version. The stopping

criteria is small at the beginning of the optimization, however the designs are still evolving. As such, we

allow the algorithm pass this region before terminating it.

Our last example is the stress constrained problem where the goal is to minimize the volume of an L-

bracket subject to a pointwise constraint in the stress field, cf. Figure 3.12. We follow the formulation in
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Figure 3.7: Design domain and boundary conditions for the compliant mechanism problem. Domain sym-
metry is used whereby only the lower half of the structure is analyzed.
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Figure 3.8: Non-uniform mesh of the compliant mechanism problem (L = 60).

[10], where the stress constraint is imposed via a penalty method, i.e. our cost function is

θ0 =

∫
D

ν̂ da+ γ ‖σVM − σy‖+ , (3.77)

where the penalty parameter is γ = 100,

‖σVM − σy‖+ =

∫
D

Rp

(
σVM
σy

)
dV , (3.78)

Rp(x) = (1 + (x)p)
1
p − 1 , (3.79)
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Figure 3.9: Cost function evolution for the compliant mechanism problem.
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Figure 3.10: Constraint function evolution for the compliant mechanism problem.
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Table 3.3: Optimized designs for the compliant mechanism problem.

σVM is the Von Mises stress, σy = 2.0 MPa and p = 20. A relaxed stress formulation similar to [57] uses

Ĉ = ηcC , (3.80)

to calculate the Von Mises stress σVM , where ηc is the inverse RAMP function

ηc(ν̂) = ν̂
1 + q

1 + qν̂
, (3.81)

with q = 20. The filter parameter is κ = 1.0. To obtain a better design we extend the domain by adding

a layer of finite elements near the reentrant corner, cf. the red dotted region in Figure 3.13. These new

elements however, are not included in the design as they are assigned the uniform volume fraction εν = 10−3.

This added region lessens the boundary effect of the filter operation in the reentrant corner region which

otherwise adversely affects our results. The non-uniform mesh shown in Figure 3.13 (which does not show

two additional levels of uniform refinement) refines the regions surrounding the reentrant corner and applied

load; it contains 46,501 elements, whereas the uniform mesh contains 74,752 elements.

The optimized designs in Table 3.4 again illustrate the mesh dependence of the original `2 algorithm. This

time however, the difference in the cost function values between the `2 and L2 designs is barely noticeable,

cf. the log plot in Figure 3.14. Due to the high oscillation in the stopping criteria, we plot them separately

in Figures 3.15 - 3.18. The stopping criteria is still high after 800 iterations despite having designs that

appear to be optimal.
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Figure 3.11: Stopping criteria evolution for the compliant mechanism problem.
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Figure 3.12: Intended design domain for the stress constrained problem. All dimensions are in mm.
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Figure 3.13: Non-uniform mesh for the stress constrained problem; two additional levels of uniform refine-
ment are used for the computation. Red dots mark the extended region.

3.5 Conclusion

In this work, we presented the necessary mathematical concepts to obtain mesh independent topology

optimization algorithms and applied them to the GCMMA algorithm. Our mesh-independent L2 GCMMA

implementation outperforms the original `2 GCMMA implementation on three common problems in topology

optimization. Notably our results are independent of the mesh, while those with the algorithm in `2 are not.

More importantly, mesh independence makes this L2 algorithm suitable for use with AMR strategies within

the optimization. However, the stopping criteria employed does not work well for the stress-constrained

problem, which motivates future research.
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Figure 3.14: Cost function evolution for the stress constrained problem.
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Figure 3.15: Stopping criteria evolution for the stress constrained problem with uniform mesh in `2.
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Figure 3.16: Stopping criteria evolution for the stress constrained problem with uniform mesh in L2.
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Figure 3.17: Stopping criteria evolution for the stress constrained problem with non uniform mesh in `2.
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Figure 3.18: Stopping criteria evolution for the stress constrained problem with non uniform mesh in L2.
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Table 3.4: Optimized designs for the stress constrained problem.
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Chapter 4

Three dimensional adaptive mesh
refinement in stress constrained
topology optimization

4.1 Introduction

Topology optimization has found application in a wide range of industries: aerospace, automotive, medical,

etc. However, to further extend its range of application, it is necessary to solve computationally expensive

high resolution three dimensional design problems that involve multiple physical phenomena and cost and

constraint functions. The challenges to reach this goal are several: First, direct linear solvers are no longer

feasible when solving problems in excess of one million degrees of freedom. Only iterative linear solvers

with physics dependent preconditioners can perform in reasonable time scales. Second, the mesh discretiza-

tion cannot be excessively fine since the computational resources are limited. And thus, Adaptive Mesh

Refinement (AMR) is required to efficiently resolve the design. Third, the same mesh used to discretize

the displacement field is also used to discretize the design and the optimization Lagrange multiplier fields.

Therefore, whenever AMR modifies the mesh, the design and Lagrange multiplier discretizations also change.

This coupling between the optimization and the finite element analysis cannot be resolved with black box

optimization algorithms. And fourth, the optimization algorithm must be able to accommodate arbitrary

cost and constraint functions e.g. stress constraints, which proves difficult at large scales.

Large-scale design problems in topology optimization have been the focus of numerous previous works.

To solve compliance problems with more than 1 M design variables, [101] takes advantage of the small

design change between optimization iterations and proposes the recycling of the Krylov spaces and [35]

highlights the convergence problems when implementing a domain decomposition linear solver, i.e. finite

element tearing and interconnection/dual primal solver. Building upon the PETSc library [12] and MMA

optimization algorithm [89], [4] implements a topology optimization framework to solve the compliance

problem with more than 27 M variables with good scalability. [2] uses the PETSc framework with an

optimality criteria nonlinear programming algorithm to design an airplane wing with more than 1 B design

variables and [7] designs a heat sink cooled with natural convection with up to 27 M design variables.

Until now, most large scale topology optimization designs have been limited to compliance problems.
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Large scale stress constrained designs are scarce, despite the fact that most designs need to satisfy them.

This can be explained by the inherent difficulty to solve the stress constrained problem even over two

dimensional domains. These difficulties arise from three specific sources: stress singularity, locality of the

stress constraint and stress accuracy. We refer to [78] for more details on these issues. Using a full space

formulation, [65] proposes a sequential approximate optimization algorithm to obtain stress-constrained

designs with more than 200 K variables with neither aggregation nor stress relaxation techniques. Applying

AMR to obtain high resolution designs, [58] solves a large scale stress and frequency constrained problem

with more than 5 M design variables. However, they only apply AMR once during the optimization and

their error indicator is not specified.

In this work, we solve three dimensional stress constrained topology optimization problems. We imple-

ment our topology optimization framework on top of the parallel finite element library libMesh [51], which

allows us to address large scale problems as it employs the PETSc [12] linear algebra library. We solve the

optimization problem using a mesh independent large scale version of MMA [89] implemented in PETSc. cf.

Chapter 3. Besides the challenges mentioned above, we face an additional challenge in our implementation

when solving the PDE-filter [55] to impose a minimum length scale on the design. To preserve volume frac-

tion values between 0 and 1 over coarse mesh regions, we solve the PDE-filter using a finite volume instead

of a Lagrange finite element discretization. We explain the mathematical phenomena which motivates our

choice and derive the necessary sensitivities, as they differ from the original implementation in [55].

The layout of this chapter is as follows: In Section 4.2, we present the problem formulation of a stress

constrained problem. Section 4.3 explains the motivation to use a finite volume solver for the PDE-filter.

Additional considerations for the optimization algorithm and the preconditioner for the linear iterative

solver are discussed in Section 4.4. Finally, Section 4.5 presents optimized stress constrained L-bracket and

three-dimensional compliant mechanism designs.
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4.2 Adaptive mesh refinement in stress constrained topology

optimization

At the risk of being redundant, we restate the problem formulation for the stress constrained topology

optimization problem with AMR

min
ν∈(εν ,1]

θ0(ν) =

∫
D

π(ν, u) dV + γ ‖σVM − σy‖+ ,

s.t. u ∈ V satisfies a(ν; u, v) = L(v) for all v ∈ V ,

θi(ν) =

∫
D

gi(ν, u)dV ≤ 0 i = 1, 2...ni ,

(4.1)

where

a(ν; u, v) =

∫
D

r(ν̃)C[∇u] · ∇v dV ,

and

L(v) =

∫
ΓN

t · v dS .

In the above, ν is the volume fraction that defines the design geometry and ν̃ is the soon to be defined

thresholded filtered volume fraction. From the displacement u, we calculate the Von Mises stress σVM and

constrain it to be less than the yield stress σy by means of a ramp-like functional ‖·‖+ [10] weighted by a

penalty parameter γ. C is the elasticity tensor of an isotropic material with Young modulus E = 1 and

Poisson ratio ν = 0.3 and t is the applied traction on the surface ΓN . In this ersatz approach, the lower

bound εν = 10−3 ensures the stiffness matrix in the finite element analysis is not singular. The cost function

π and constraint functions gi are defined in the examples.

To obtain a 0–1 layout, we use the RAMP function r [86] to penalize the stiffness tensor C→ r(ν̃)C and

an inverse RAMP function ηc to penalize the Von Mises stress σVM → ηc(ν̃)σVM at intermediate volume

fractions defined such that

r(ν) =
ν

1 + q(1− ν)
(4.2)

and

ηc(ν) = ν
1 + q

1 + qν
, (4.3)

with q = 20.
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Topology optimization problems are notoriously ill-posed. The optimal design consist of a non converging

sequence of structures with highly oscillatory material-void regions. One way to obtain a well–posed problem

is via restriction wherein a length scale constraint is imposed on the design space. This is often achieved by

filtering [17] the volume fraction field such that [21].

ν̂(x, ν) =

∫
Bε(x)

K(x− y)ν(y)dV . (4.4)

where the kernel K is typically a cone function defined over a ball Bε of radius ε centered at x and ν̂ is

the filtered volume fraction. We are interested in obtaining very sharp domain boundaries so it is necessary

to employ a large number of elements in the discretization. This causes two issues when constructing the

cone filter. The linear operator that defines the cone filter in Equation (4.4) has finite support over Bε(x).

To find the elements covering Bε(x), a depth-first search algorithm is used which is time consuming when

the size of the elements are small compared to the filter radius ε. Additionally, parallel implementations of

depth-first searches requires much communication.

The drawbacks of the cone filter motivate [55] to develop an alternative “filter” based on a diffusion with

decay Partial Differential Equation (PDE)

−κ2∇2ν̂(x) + ν̂(x) = ν(x) for x ∈ D , (4.5)

where κ determines the minimum length scale of the design such that a small (large) κ allows for fine (coarse)

scale design fluctuations. Solving the PDE is analogous to applying the filter Equation (4.4) because the

Green’s function G(x−y), i.e. the solution of Equation (4.5) corresponding to a concentrated load δ(x−y)

has a similar smoothing effect as the cone filter. Indeed

ν̂(x, ν) =

∫
D

G(x− y)ν(y)dV ≈
∫
Bε(x)

K(x− y)ν(y)dV , (4.6)

since G(x− y) tends to zero for y /∈ Bε(x). Although we need to solve a PDE to obtain the filtered volume

fraction field and to calculate the sensitivities, this computation is readily parallelized and hence efficient.

Unfortunately, the use of a filter results in blurred design boundaries. To lessen this effect, we replace

the filtered volume fraction ν̂ with its thresholded value [98].

ν̃(ν̂) =
tanh(0.5β) + tanh(β(ν̂ − 0.5))

tanh(0.5β) + tanh(β(1.0− 0.5))
, (4.7)
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where β is a parameter defined such that

lim
β→∞

ν̃(ν̂) = H(x− 0.5) , (4.8)

and H is the unit step function. β is increased throughout the optimization with a continuation strategy.

Our AMR algorithm is the same as that in [78], nonetheless we repeat it here for completeness. In each

element, we calculate the residual-based a posteriori error indicator for the global energy norm [94]. We

then refine those elements whose error indicator is above the 70-th percentile and coarsen the elements below

the 5-th percentile as well as their siblings in the mesh hierarchy. This refinement/coarsening operation is

performed whenever the relative change in the cost function between iterations is smaller than tolAMR.

4.3 PDE filter solver

The so called minimum principle which applies to the diffusion with decay Equation (4.5), states that if

ν(x) ≥ 0 for all x ∈ D, then ν̂ attains its minimum ν̂∗ on ∂D and ν̂ ≥ 0. If the numerical method we use to

solve Equation (4.5) does not preserve this principle, ν̂ can be negative in some regions of the domain and

destroy the coercivity property of the elasticity operator in Equation (4.2), and thus the congujate gradient

linear solver and its preconditioner will fail. Discretizing Equation (4.5) via the Galerkin method with

Lagrange finite elements does not ensure satisfaction of the minimum principle. Indeed, for a sufficiently

small h/κ where h quantifies element size, the reaction term in Equation (4.5) dominates the diffusion term.

As such, ν̂ effectively becomes the L2-orthogonal projection of ν onto H1, which necessitates oscillations

to minimize the L2-distance. As stated in [18], sufficient resolution prevents these oscillations, but this

contradicts our AMR strategy, which uses a coarse mesh in some regions. To combat such oscillations we

solve Equation (4.5) with a second-order finite volume method over a mesh of rectangular/cuboid elements

(with varying sizes) as this inherently fulfills the minimum principle. We note here that an arbitrary

unstructured mesh with higher-order geometry will require a more elaborate finite volume method to fulfill

the minimum principle [36].

An alternative method to satisfy the minimum principle uses stabilized methods that add mesh-dependent

artificial diffusion. However, this approach increases the effective filter radius. We could have also employed

nonlinear schemes [23] to satisfy the minimum principle, but this increases the computational cost. Postpro-

cessing techniques such as clipping ν̂ are also undesirable as they adversely affect the gradient computation

and hence the optimization convergence.

We discuss the sensitivity calculation for the PDE filter since it significantly differs from the original
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PDE filter [55]. We solve Equation (4.5) using a second-order finite volume scheme by a weak formulation

in which we require ν̂ to satisfy

∫
D

(
−κ2∇2ν̂ + ν̂

)
τ dV =

∫
D

ντ dV , for all τ ∈W (4.9)

where W is the space of elementwise uniform functions over the mesh T which consists of elements K with

faces E . Next, we apply divergence theorem to transform Equation (4.9) to

∑
K∈T

[∑
E∈K

∫
E
−κ2J∇̂nν̂τK dS +

∫
K

ν̂τ dV

]
=
∑
K∈T

∫
K

ντ dV for all τ ∈W . (4.10)

Note the appearance of the jump term J∇̂nν̂τK = ((∇̂nν̂τ)+ − (∇̂nν̂τ)−) 1 across the intra-element faces E

shared by two elements K+ and K− . Next, we define the uniform element face flux ∇̂nν̂ over both K+ and

K− by the central difference, i.e.

∇̂nν̂
+

= ∇̂nν̂
−

=
Jν̂K

‖c+ − c−‖
, (4.11)

where c+ (c−) are the centroidal coordinates of the elements K+ (K−). In this way

J∇̂nν̂τK =
Jν̂K

‖c+ − c−‖
JτK , (4.12)

where we use the jump identity JabK = JaK{b}+ {a}JbK and {a} = 1
2 (a+ + a−) denotes the average operator.

For the sensitivity analysis, we express Equation (4.10) in a more compact way as

b(ν̂, τ) = l(τ) for all τ ∈W , (4.13)

where we use Equation (4.12) and define the bilinear

b(ν̂, τ) =
∑
K∈T

[∑
E∈K

∫
E
−κ2 Jν̂K
‖c+ − c−‖

JτK dS +

∫
K

ν̂τ dV

]
, (4.14)

and linear

l(τ) =
∑
K∈T

∫
K

ντ dV , (4.15)

forms.

1The normal gradient ∇n is defined such that ∇na = ∇a · n
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Given δν̂θ = δθ(ν̂; δν), i.e. the variation of θ with respect to ν̂, we proceed to calculate

δνθ = δθ(ν̂(ν); δν̂(ν; δν)) for all δν ∈W , (4.16)

i.e. the variation of θ at ν acting on δν. In the above, ν̂ satisfies (4.13) and δν̂(ν; δν) is the variation of ν̂ at

ν acting on δν. Taking the variation in Equation (4.13) with respect to ν yields the equality that δν must

satisfy

δb(ν̂(ν), τ ; δν̂(ν; δν))− δl(ν, τ ; δν) = 0 for all τ ∈W , (4.17)

where δb(ν̂(ν), τ ; δν̂(ν; δν)) = b(δν̂(ν; δν), τ) and δl(ν, τ ; δν) =
∫
D
τ δν dV are the variations of b and l at ν

acting on δν. We add Equation (4.17) to (4.16) to obtain

δνθ = δθ(ν̂(ν); δν̂(ν; δν)) + b(δν̂(ν; δν), τ)− δl(ν, τ ; δν) , (4.18)

which holds for all τ ∈ W . As per usual, in this adjoint method we annihilate δν̂(ν; δν), by requiring τ to

solve the adjoint problem

b(δν̂(ν), τ) = −δθ(ν̂(ν); δν̂(ν; δν)) for all δν̂(ν; δν) ∈W . (4.19)

We then use this τ in Equation (4.18) which reduces to

δνθ = −δl(ν, τ ; δν)

= −
∫
D

τδν dV for all δν ∈W .
(4.20)

In the forward PDE analysis, we obtain the filtered volume fractions ν̂ by solving Equation (4.13) for

the given ν which defines the linear form l of Equation (4.15). In the adjoint analysis, we obtain the adjoint

field τ by solving Equation (4.19) for a given δθ(ν̂; δν̂(ν; δν)) that acts as a linear operator with respect to

the implicitly defined variation δν̂(ν; δν). We finally use τ to evaluate the linear operator in Equation (4.20)

which gives the desired sensitivity δνθ.
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4.4 Optimization algorithm and iterative solver

We solve the optimization problem (4.1) with a large scale implementation of the MMA algorithm [89] in

PETSc [12] similar to the implementation by [5], although we solve the convex approximation using an

interior point method, as the original algorithm by [89], instead of a dual method as in [5].

Three dimensional stress constrained problems are difficult to solve with the MMA. The reason being

the lack of a convergence mechanism that prevents oscillations in the cost function value and convergence

to a local minimum. To reduce the oscillations without including a convergence strategy, the MMA tightens

the bound constraints for the convex approximation at each iteration k such that in each element l

ν(k,l)
max = min(νmax, ν(k,l) + σ(νmax − νmin)) ,

ν
(k,l)
min = max(νmin, ν(k,l) − σ(νmax − νmin)) ,

(4.21)

where σ is the move limit parameter, a value σ = 0.01 hinders the convergence rate, but avoids oscillations.

The GCMMA contains an additional inner loop in each optimization iteration. However, when changing the

Heaviside threshold parameter β in Equation (4.7) with our continuation approach, the number of inner loop

iterations skyrocketed and the convex approximation becomes too conservative whereby the design change

between iterations was almost zero. For this reason, we opted for the MMA.

Whenever possible, we implement the MMA using the same data structures we use to discretize the

design field ν. Notably, we use the ν data structure to discretize the Lagrange multipliers for the bound

constraints, the convex approximation bound constraints and the moving asymptotes, to ensure they share

the same mesh partitioning. Finally, we formulate the MMA algorithm in the L2 space making it mesh

independent, a crucial aspect in AMR, cf. Chapter 3.

To solve the linear system arising in the primal and adjoint problems, we use a conjugate gradient

method with the geometric algebraic multigrid preconditioner (GAMG) in PETSc [12]. We pass the rigid

body modes to the multigrid method so it can better approximate the near nullspace for the elasticity solver.

The specific PETSc options are
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� �
-ksp_type cg

-ksp_atol 1e-7

-ksp_rtol 1e-9

-ksp_norm_type unpreconditioned

-pc_type gamg

-pc_gamg_verbose 7

-pc_gamg_type agg

-pc_gamg_agg_nsmooths 1

-pc_gamg_threshold 0.001

-mg_levels_esteig_ksp_type cg

-mg_levels_ksp_chebyshev_esteig_steps 50

-mg_levels_ksp_type chebyshev

-mg_levels_pc_type sor� �
For the PDE-filter solve of Equation (4.5), we employ the algebraic multigrid in hypre [60] as the precondi-

tioner of the congujate gradient PETSc implementation. For this, we use the hypre options� �
-ksp_type cg

-pc_type hypre

-pc_hypre_type boomeramg

-pc_hypre_boomeramg_max_iter 200

-pc_hypre_boomeramg_coarsen_type HMIS

-pc_hypre_boomeramg_agg_nl 1

-pc_hypre_boomeramg_strong_threshold 0.25

-pc_hypre_boomeramg_interp_type ext+i

-pc_hypre_boomeramg_P_max 4

-pc_hypre_boomeramg_relax_type_all sequential -Gauss -Seidel

-pc_hypre_boomeramg_grid_sweeps_all 1

-pc_hypre_boomeramg_max_levels 25� �
4.5 Results

We first benchmark the algorithm with a three dimensional version of the common L-bracket design problem,

cf. Figure 4.1. The cost function θ0 in Equation 4.1 is the volume plus the penalty term for the stress

constraint, i.e. θ0 =
∫
D
ν̃ dV + γ ‖σVM − σ‖+. The initial design domain D in Figure 4.1 is augmented by

an extended red region Dred to mitigate the boundary effects due to the filter operation. To recover the

original problem we impose the constraint

∫
Dred

ν̃ dV ≤ 0 (4.22)
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We apply a −1e3 N/mm2 vertical load over the 10 × 10 mm2 red square region in Figure 4.1. The maximum

allowable Von Mises stress is σy = 20 MPa and the length scale parameter is κ = 0.7. We use an initial

coarse mesh with 390 elements and apply two levels of uniform refinement for a total of 24,960 elements

to begin the optimization. During the optimization, we allow for six additional levels of refinement from

the initial 24,960 element coarse mesh. As in [78], we modify several parameters during the optimization to

obtain sharp boundaries and avoid falling into local minima. First, the Heaviside threshold parameter β in

Equation (4.7) starts with a value of 1 until iteration number 100. Thereafter it is increased by 5 every 20

iterations up to a maximum value of 20. Second, the penalty parameter γ starts with an initial value of 1

and increases by 2 every 20 iterations after iteration 10. Third, the maximum refinement level is fixed at 4

until iteration 200, and 6 thereafter. Finally, we use tolAMR = 0.1 [78]. These strategies give us the best

results. For example, they prevent areas with intermediate volume fraction values, which are removed by

the threshold function later in the optimization, from being overly refined.

The optimized design in Figure 4.2 contains 2,815,813 elements in the thresholded design and 3,477,577

elements in the extended domain D ∪Dred. An equivalent uniform mesh with the same level of refinement

would contain 102,236,160 elements. Figure 4.3 shows the design evolution at select iterations. Figure 4.4

contains a clipped portion of the optimized design’s mesh to illustrate the different levels of refinement. Our

design shows a fairly uniform Von Mises stress field, cf. Figure 4.5, which is a desirable aspect of optimal

structures. In Figure 4.6 we plot the evolution in the cost function, and the number of degrees of freedom.

All visualizations were done with Paraview [11].

The simulations were run with 50 2.60 GHz Intel Xeon E5-2670 processors. The optimization ran for

20 hours and 368 design iterations. The linear iterative solver for the primal analysis took an average

of 30 iterations to converge for β = 1 and increased to an average of 50 for β = 20. The entire primal

solver over the 3,477,577 element mesh with β = 20 took on average 163.77 seconds, out of which the

preconditioner setup took 81.78 seconds on average. Over the same mesh, the PDE filter linear solve took

an average of 2 iterations to converge for a total time of 161.62 seconds with 0.62 seconds devoted to the

preconditioner setup. Our iterative solver is notably slower than the implementation in [5]. Indeed, their

geometric multigrid preconditioner implementation on a uniform structured mesh significantly hastens the

iterative solver, especially for the PDE filter. Unfortunately, implementing this preconditioner for adaptively

refined nonuniform meshes is non-trivial; libMesh does not have this capability, although there is an action

plan to implement it.

Next, we design a compliant mechanism whose purpose is to transfer an input displacement to an output

displacement through elastic deformation, thereby reducing wear, friction and backlash, commonly seen
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Figure 4.1: Mesh for initial L-bracket domain D with the extended simulation domain Dred in red. Dimen-
sions in mm.
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(a)

(b)

Figure 4.2: Optimized L-bracket design shows only thresholded volume fractions ν̃ greater than 0.8 (a) and
detailed region (b).

in rigid-body mechanisms. Most compliant mechanism designs contain “hinge” regions to maximize the

output displacement. Such hinge regions experience high stress and are susceptible to fatigue failure. This

motivated several previous authors [30, 64, 79] to include a maximum allowable stress constraint. We use

our framework to extend this work to three dimensional structures. Besides the usual Dirichlet boundary

conditions over ΓD cf. Figure 4.7, we follow [30] and include Robin boundary conditions to surfaces Γ1 and

Γ2, i.e.

n · C[∇u]n = −kinu+ tx on Γ1 ,

n · C[∇u]n = −koutu on Γ2 ,

(4.23)

where u = u · e1, kin = 1 N/mm3, kout = 0.001 N/mm3 and n is the surface normal. We apply a horizontal

load tx of 10 N/mm2 over the Γ1 surface and equate the length scale parameter to κ = 0.4. Refering to

Equation (4.1), we maximize the normal displacement over the surface Γ2 subject to the penalized stress

constraint, i.e. θ0 = −
∫

Γ2
u ·n dS+γ ‖σVM − σy‖+ and subject to the volume constraint θ1 =

∫
D
ν̃ dV ≤ V̂ ,

where V̂ is 30% of the total domain volume. As in Figure 4.1, we extend the design domain D by adding

a fine boundary layer Dred and enforce a zero volume constraint on the added region. To avoid stress

concentrations caused by the boundary conditions, we prescribe unit volume fractions in the cuboid regions

encompassing the surfaces Γ1 and ΓD and we do not include these regions in the stress constraint evaluation.

We employ the same continuation and AMR strategies as in the L-bracket example.

Using domain symmetry, we simulate one quarter of the total domain and use the usual symmetry
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Figure 4.3: L-bracket designs at iterations 15 (a), 45 (b) and 368 (c).
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Figure 4.4: Clipped mesh of optimized L-bracket.
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Figure 4.5: Von Mises stress field for the optimized L-bracket.
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Figure 4.6: Cost function (solid) and number of degrees of freedom (dashed) evolutions for the L-bracket
design problem.
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Figure 4.7: Compliant mechanism design domain. Dimensions in mm.

boundary conditions over the cut surfaces. We use an initial coarse mesh with 5,037 elements and apply one

level of uniform refinement for a total of 40,296 elements for the initial design. During the optimization, we

allow a maximum of four levels of refinement from the initial 40,296 element coarse mesh.

We first optimize a design with no stress constraint, i.e. γ = 0 in Equation (4.1). The optimized design,

cf. Figure 4.8, for the quarter model contains 2,030,128 thresholded elements, and 2,498,605 total elements.

The stress field illustrated in Figure 4.9 shows large stress concentrations in the eight line hinge regions. This

motivates us to constrain the maximum allowable Von Mises stress to be less than σy = 0.15. The resulting

optimized design replaces the line hinges with slender members cf. Figures 4.10-4.11. Not surprisingly, the

cost function value has substantially increased compared to the unconstrained case, cf. Figure 4.12.
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Figure 4.8: Optimized compliant mechanism design with no stress constraint shows only thresholded volume
fractions ν̃ greater than 0.8.
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Figure 4.9: Von Mises stress field for the compliant mechanism design with no stress constraint.

4.6 Conclusions

We present a high resolution topology optimization framework that accommodates more than three million

design variables in stress constrained problems by combining AMR with a parallel mesh independent opti-

mization algorithm and parallel linear algebra library. To preserve the 0–1 bounds on the filtered volume

fractions, we use a finite volume solver instead of a Galerkin method to resolve the PDE filter. When solving

three dimensional stress constrained problems with the MMA we noticed an oscillatory convergence behavior

which we attribute to the lack of a convergence mechanism. To facilitate convergence, we tighten the bounds

of the convex approximation cf. Equation (4.21). Three dimensional L-bracket and compliant mechanism

designs are optimized to benchmark the framework. Using our high resolution scheme allows us to obtain

designs with smooth surfaces that respect the stress constraint while saving computational resources. Such

resolution is not possible using a uniform mesh. Not surprisingly, the stress constraint enforcement severely

affects the optimized compliant mechanism design by replacing line hinges with slender members.

Among the most immediate future work improvements is adopting the libMesh geometric multigrid

preconditioner once it is implemented. Despite the computational savings by using AMR, there is still a

high computational cost. We believe that uncoupling the geometry from the simulation mesh by combining
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Figure 4.10: Optimized compliant mechanism design with stress constraint of σy = 0.15 shows only thresh-
olded volume fractions ν̃ greater than 0.8.
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Figure 4.11: Von Mises stress field for the compliant mechanism design with stress constraint.

0 50 100 150

−200

−150

−100

−50

0

Iteration #

O
b

je
ct

iv
e

fu
n

ct
io

n

0 50 100 150

0

2

4

6

8

·106

Iteration #

#
d

eg
re

es
o
f

fr
ee

d
o
m

(a)

0 100 200 300

−200

−150

−100

−50

0

Iteration #

O
b

je
ct

iv
e

fu
n

ct
io

n

0 100 200 300

0

2

4

6

8

·106

Iteration #

#
d

eg
re

es
o
f

fr
ee

d
o
m

(b)

Figure 4.12: Cost function (solid) and number of degrees of freedom (dashed) evolutions for compliant
mechanism designs without (a) and with (b) stress constraint.
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geometry projection schemes [66] and using Finite Cell [80] or the CuTFEM [22] methods will hasten the

computations without losing resolution.
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Chapter 5

Conclusions and future directions

In this dissertation, we have applied AMR to stress constrained topology optimization problems to obtain

highly accurate stress predictions and design resolutions at minimal computational expense.

In Chapter 2, a new approach to obtain accurate stress fields in topology optimization is presented for

the usual element-wise uniform volume fraction discretization. By combining a volume fraction thresholding

with AMR, the boundary is resolved with a high degree of accuracy which allows for accurate stress field

computations. To drive the adaptive refinement, error estimates based on the accuracies of global energy

norm and on the cost function approximations are used. The AMR stress computations are validated

and used to optimize two dimensional designs. The primal and sensitivity analyses and optimization are

implemented in a parallel environment.

Chapter 3 modifies the GCMMA optimization algorithm to operate in the L2 function space to better

accomodate meshes with elements of varying sizes. The goal of this chapter is to introduce several concepts

in functional analysis to the topology optimization community and to motivate their usage. We compared

the new L2 algorithm to the originally posed Euclidean space `2 algorithm via three benchmark topology

optimization problems. Our optimized designs and number of iterations using the L2 algorithm are inde-

pendent of the mesh configuration and the number of elements, while those obtained with the `2 algorithm

are not.

We used the developments from Chapters 2 and 3 to optimize stress constrained three-dimensional

structures with high resolution in Chapter 4. We layed out the obstacles to resolve and explained our

solutions. Namely the need for an efficient filtering scheme across different levels of mesh refinement and for

large scale iterative solvers for both primal and adjoint the analyses and the PDE filter.

Future work will address more rigurous mesh refinement strategies that consider the inexactness of

the derivatives in the finite element approximation and still ensure convergence to a local minimum [54],

[53]. These strategies have been developed only for full space optimization problems, where a posteriori

error estimates for the cost function and its gradient are calculated without additional cost, and not the

reduced space approach taken in this thesis, where the same error estimates require additional linear solves.
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However, full space formulations are more difficult to converge and they have yet to be implemented on more

challenging optimization problems like topology optimization. New problem formulations that avoid using

continuation procedures to obtain sharp boundaries should be also investigated.

As for the optimization algorithm, despite obtaining mesh independent results, it proved difficult to

obtain a reliable convergence criteria for stress constrained problems. It is necessary to dive deep into the

stress constrained problem to develop robust convergence criteria. One possible approach would use an

Augmented Lagrangian Method [45], to eliminate the need for global aggregate constraints and their high

degree of nonlinearity.

The main drawback of our approach is visible in our optimized designs, where a large number of elements,

and hence design parameters, are required to obtain properly resolved structures. Such goal could potentially

be achieved by combining geometry projection schemes [66] with immersed finite element methods that

perform an adaptive quadrature integration, i.e. the Finite Cell Method [80] or enrich the finite element

space by doubling the elements cut by the geometry, i.e. the CutFEM [22], build new shape functions, i.e.

the XFEM [15] or multiscale methods that enrich only the fine scale [61] to accomodate the discontinuity.

The last three approaches require a crisp definition of the geometry and therefore only work with the level

set method.

High order parametrizations such as the Radial Basis Functions [99], B-splines [75] or Fourier series [1]

make the problem inherently well-posed and do not require a filter operation. These parametrizations define

an inner product weighted by a non-diagonal mass matrix which should be included in the optimization to

obtain optimal convergence, cf. Chapter 3.

Finally, the topology optimization framework developed in this thesis could be quickly applied to com-

pliance mechanisms designs that account for fatigue. Compliance mechanisms must undergo hundreds of

thousands of loading cycles in their lifetime and therefore fatigue constraints must be considered in their

design. Fatigue contraints have already been accounted for in compliance designs [107], [50], [48], however,

there is no literature in compliant mechanisms, let alone the large scale designs included in this thesis.
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