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ABSTRACT

In this thesis, we consider nonlinear Schrödinger equations with double well potentials

with attractive and repelling nonlinearities. We discuss bifurcations along bound

states, especially ground states and the first excited states, and also deal with orbital

stability of the ground states. In attractive case with large separations for double

wells, our results shows that the ground state must undergo the secondary symmetry

breaking bifurcation, while the first excited states can be uniquely extended as long

as the bifurcation of the ground state has not occurred. In repelling case with large

separations for double wells, we prove that the secondary bifurcation of the ground

state does not emerge, even in the strongly nonlinear regime, while the first excited

state must undergo the secondary bifurcation on the first excited states.
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CHAPTER 1

INTRODUCTION

The time-dependent nonlinear Schrödinger (NLS) equation :

iut = −∆u+ V (x)u+ f(|u|)u, (1.1)

where u(x, t) : Rn × R→ C and V (x) : Rn → R, is an ubiquitous model in applica-

tions e.g., laser beam propagation through optical fiber [1, 2, 3], water waves [4] and

Bose-Einstein Condensates (BEC’s) [5]. It describes nonlinear waves propagating

through different media such as the ones mentioned above.

The main results of this thesis concern the existence and bifurcation of bound

states (solitary waves or solitons) i.e., solutions of the form u(x, t) = eiEtφ(x), φ ∈
H2(Rn,C), where φ satisfies the stationary NLS equation:

F (φ,E) = −∆φ(x) + V (x)φ(x) + f(|φ(x)|)φ(x) + Eφ(x) = 0, x ∈ Rn, (1.2)

Many physical applications involve these special solutions, for example: solitons

in optical fibers and water waves, Bose-Einstein Condensates (BEC) in statistical

physics, etc. Some of them, such as the BEC’s, are bound states of lowest energy

which, from now on, will be called ground states. As we shall see in the next chapter,

for linear Schrödinger equations, the dynamics can be decomposed as a superposi-

tion of bound states, which is the projection onto the eigenfunctions of the discrete

spectrum, and a part that scatters (disperses) to infinity, which is the projection

onto the continuous spectrum. This shows that the following conjecture, which is

the most important mathematical problem in scattering theory, is true for the linear

case:
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Asymptotic Completeness Conjecture Any initial data evolves into a superpo-

sition of bound states and a part that disperses (scatters) to infinity.

Unlike the linear case, in the nonlinear case, the conjecture has been solved only for

very particular problems, for example the completely integrable cubic Schrödinger

equation in 1d, or certain weakly nonlinear regimes i.e., small initial data, see

[6, 7, 8, 9]. In this thesis we show how the bound states organize themselves in com-

plicated manifolds that intersect each other, giving rise to bifurcations and changes

in the stability of the underlying solutions. The bifurcations lead to very compli-

cated dynamics and can happen, as we shall see below, even in the weakly nonlinear

regime.

Albeit our techniques can be adapted to general nonlinearities, see Chapter 7 for a

discussion or [10], for clarity reasons, throughout most of the thesis we will consider

a power nonlinearity:

f(|u|) = σ|u|2p, 0 < p <
2

n− 2
, σ ∈ R \ 0,

and the coefficient σ may be negative (attractive/focusing nonlinearity) or positive

(repelling/defocusing nonlinearity).

Remark 1.1. The map F in (1.2) satisfies the gauge equivariance:

F (eiθφ,E) = eiθF (φ,E) for all 0 ≤ θ < 2π

F (φ,E) = F (φ,E)

where φ denotes the complex conjugate of φ. In particular, if (φ,E) solves (1.2), then

(eiθφ,E), 0 ≤ θ < 2π and (φ,E) also solve (1.2).

There are only few results about bifurcations along bound states of NLS equations

in the strongly nonlinear regime. The non-existence of secondary bifurcation along

the symmetric (even in x1) ground states was proved in [11] when σ < 0, n = 1 and
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the symmetric potential V (x) is C1, monotonically increasing for x > 0, V (0) < 0 and

limx→∞ V (x) = 0. In [12], the existence of secondary bifurcation along the symmetric

ground state was proved and geometric analysis of an asymmetric state emerging

from the ground state was considered, with cubic nonlinearity and an double well

potential consisting of two Dirac delta functions.

In [13], Kirr, Kevrekidis and Pelinovsky showed the existence of secondary bifur-

cation along the ground state in the case of one space dimension (n = 1), σ < 0 and

potential V (x) which satisfies:

(H1’) V ∈ L∞(R),

(H2’) lim|x|→∞ V (x) = 0,

(H3’) V (−x) = V (x) for all x ∈ R, (symmetric),

(H4’) −∂2
x + V has the lowest eigenvalue −E0 < 0.

Theorem 1.1 (E. Kirr, P.G. Kevrekidis, and D. Pelinovsky). Consider the stationary

NLS equation (1.2) with σ < 0 and V (x) satisfying (H1’)-(H4’). The C1 curve E 7→
ψE which is symmetric, real-valued solutions bifurcating from zero at E0, undergoes

another bifurcation at a finite E∗ > E0 provided V (x) has a nondegenerate maxima

at x = 0 and xV ′(x) ∈ L∞(R).

The above result takes advantage of the fact that, in one space dimension (n = 1),

all solutions of (1.2) are real-valued up to multiplication, and reduces the analysis to

real valued only solutions. In this thesis we will be working in arbitrary Rn spaces

n ≥ 1, and consider solutions that are complex valued. However, our bifurcation

results will not apply to arbitrary symmetric potentials but to double well potentials

with large separation between the wells which are defined in Section 2.3. In other

words we will be generalizing the results in [14], where Kirr, Kevrekidis, Shlizerman

and Weinstein proved that when σ < 0, the nonlinearity is cubic (p = 1) and V (x)

is symmetric, smooth and rapidly decaying as |x| → ∞, then secondary bifurcation

of the ground state occurs at small L2-norm provided a certain value depending on

the distance between two lowest eigenvalue is small enough.
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Theorem 1.2 (E. Kirr, P.G. Kevrekidis, E. Shlizerman, and M.I. Weinstein). Let

(E0, ψ0) and (E1, ψ1) be simple eigenvalues, real eigenfunctions pairs of (−∆ +

V (x))ψ = −Eψ with ψ0 is symmetric and ψ1 is anti-symmetric, −E0 < −E1 < 0.

Assume Ξ[ψ0, ψ1] = ‖ψ0‖4
L4 − ‖ψ1‖4

L4 − 2‖ψ0ψ1‖2
L2 < 0, ‖ψ0ψ1‖L2 6= 0, and E0−E1

Ξ[ψ0,ψ1]2

is sufficiently small. Then there exists a bifurcation point Ncr > 0 such that for

‖ψE‖2
L2 = N > Ncr, there are two branches of solutions : (a) a continuation of the

symmetric branch and (b) a new asymmetric branch.

In particular, the results in [14] and [13] can be applied to double well potentials

with large separation which we will handle for the most part of this thesis, but, as

opposed to us, they are restricted to the case n = 1 or p = 1.

Our main results are presented in Chapters 5 and 6. These results are obtained for

double well potentials Vs where s represents the distance between the wells, whose

definition and properties will be discussed in Section 2.3. Chapter 5 deals with

focusing nonlinearity σ < 0 and shows that for double well potentials with large

separations i.e., there exists s∗ > 0 such that for all s ≥ s∗, we have that the ground

states bifurcating from the lowest eigenvalue E0,s, undergo a secondary bifurcation

at E∗,s due to an eigenvalue of the linearized operator crossing zero at (ψE∗,s , E∗,s)).

Moreover, we show that the bifurcation is of pitchfork type with symmetry breaking

i.e., for E0,s < E < E∗,s, the ground state is unique up to rotation, orbitally stable

and symmetric: ψE(−x1, x2, · · · , xn) = ψE(x1, x2, · · · , xn) while for E > E∗,s we

have three ground states up to rotation: one is symmetric and orbitally unstable

while two are asymmetric and orbitally stable provided p < p∗ = 3+
√

13
2

and orbitally

unstable for p > p∗. Furthermore, E∗,s → w0 and ψE∗,s
H2

−→ 0 as s → ∞. These

results generalize the one dimensional result n = 1 in [13, Corollary 2] and the

analytic p = 1 result in [14]. In addition, we show that the first excited state branch

bifurcating from the second eigenvalue E1,s can be uniquely extended (no bifurcation)

beyond the weakly non-linear regime where the bifurcation along the ground state

occurs. Whether bifurcations may occur in the strongly nonlinear regime remain to

be studied via global, non-perturbative techniques, see [15].

In Chapter 6, we deal with defocusing (repelling) nonlinearities σ > 0. Under the
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same assumptions on the potentials, we prove that, in the repelling case, the first

excited state branch must bifurcate at some E∗∗,s and there are no bifurcations along

the ground state branch, even in the strong nonlinear regime.
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CHAPTER 2

LINEAR SCHRÖDINGER OPERATORS AND
THEIR SPECTRAL AND DYNAMICAL

PROPERTIES

In this chapter, we will review known results mostly about the spectral properties of

linear Schrödinger operators with real valued potentials.

2.1 The Free Schrödinger Operator

The free Schrödinger Operator −∆ : H2(Rn,C)→ L2(Rn,C) :

−∆u = −
n∑
i=1

∂2u

∂x2
i

is an unbounded self-adjoint operator on L2 with domain H2. Its spectrum can

be readily determined via Fourier transform: Σ(−∆) = Σess(−∆) = [0,∞) with

generalized eigenfunctions at |ξ|2 ≥ 0, ξ ∈ Rn, given by eiξ·x

(2π)n/2
. See for example

[16, 17].

The Hamiltonian dynamical system generated by:

iut = −∆u for x ∈ Rn and t ∈ R (2.1)

u(x, 0) = f(x) for x ∈ Rn

can also be solved using the spectral decomposition:

u(x, t) =
1

(2π)n/2

∫
k(ξ, t)eiξ·xdξ (2.2)
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where the coefficients k(ξ, t) :

k(ξ, t) =
1

(2π)n/2

∫
u(x, t)e−iξ·xdx = F(u(·, t))(ξ).

Hence, by taking Fourier transform of (2.1) we get for each ξ ∈ Rn :

i
d

dt
k(ξ, t) = |ξ|2k(ξ, t)

k(ξ, 0) =
1

(2π)n/2

∫
f(x)e−iξ·xdx = F(f)(ξ)

with the solution:

k(ξ, t) = e−i|ξ|
2tk(ξ, 0) (2.3)

and group velocity for wave packets at frequency ξ :

vg(ξ) = ∇|ξ|2 = 2ξ

showing dispersion in frequency. Its effect on general initial data can be measured

in L2 and L∞ norms:

‖u(t)‖L2 = ‖F−1e−i|ξ|
2tFu(0)‖L2 = ‖u(0)‖L2 (2.4)

‖u(t)‖L∞ − ‖(4πit)−n/2
∫
e
−|x−y|2

4it u(y, 0)dy‖L∞ ≤ |4πt|−n/2‖u(0)‖L1 . (2.5)

i.e., the wave packets making up the initial condition disperse (scatter) to infinity,

preserving the L2 norm but their contribution in any fixed bounded domain decays

zero. By interpolating between (2.4) and (2.5), we get a rate of decay for Lp norm

for 2 ≤ p ≤ ∞ : if f ∈ Lq, 1 ≤ q ≤ 2, 1/p+ 1/q = 1, then

‖u(t)‖Lp ≤ |4πt|−
n(1/2−1/p)

2 ‖u(0)‖Lq .

See for example [17]. We will need some technical results about Sobolev spaces. We
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recall that Schwartz spaces:

S(Rn) = {u ∈ C∞(Rn) : sup
x∈Rn
|xαDβu(x)| <∞ for all α, β ∈ Nn}

where Dα = ∂α1

∂x
α1
1
· · · ∂αn

∂xαnn
for a multi-index α = (α1, α2, · · · , αn), and spaces of

tempered distribution on Rn: S ′(Rn), i.e., the dual of S(Rn). For m ∈ N and 1 ≤
p ≤ ∞, Sobolev spaces are defined as follows:

Wm,p(Rn) = {u ∈ Lp(Rn) : Dαu ∈ Lp(Rn) for |α| ≤ m}

and the resolvent of the free Schrödinger operator which we state here and prove the

less known ones. The first result allows us to use a Fourier type norm on Sobolev

spaces. We recall that the definition of the Fourier transform is extended to tempered

distributions, hence, one defines as follows: For s ∈ R and 1 ≤ p ≤ ∞,

Hs,p(Rn) = {u ∈ S ′(Rn) : F−1[(1 + |ξ|2)s/2Fu] ∈ Lp(Rn)}.

Theorem 2.1 (Mihlin multiplier theorem). If 1 < q <∞, and m is an integer, then

Wm,p(Rn) = Hm,p(Rn)

and the norm of Wm,p is equivalent to the norm of Hm,p :

‖u‖Hm,p = ‖F−1[(1 + |ξ|2)m/2Fu]‖Lp .

See [18].

Remark 2.1. We now use the Fourier type norm ‖ · ‖H2,p on W 2,q.

Proposition 2.1. (−∆ + 1) : W 2,q → Lq is unitary for all 1 < q <∞.

Proof. For any g ∈ W 2,q, 1 < q <∞,

‖(−∆ + 1)g‖Lq = ‖F−1[(1 + |ξ|2)Fg]‖Lq = ‖g‖W 2,q

8



Proposition 2.2. ‖(−∆ +m+ i)−1‖Lq→W 2,q ≤ 1 +
√

2 for all 1 < q <∞,m ∈ R.

Proof. For any g ∈ S(Rn) we get

‖(−∆ +m+ i)g‖Lq = sup
h∈S(Rn),‖h‖

Lq
′≤1

|〈h, (−∆ +m+ i)g〉|

= sup
h∈S(Rn),‖h‖

Lq
′≤1

|〈∇h,∇g〉+ 〈h, (m+ i)g〉|

≥ sup
h∈S(Rn),‖h‖

Lq
′≤1

√
m2 + 1|〈h, g〉|

=
√
m2 + 1‖g‖Lq .

It follows that

‖(−∆ +m+ i)−1‖Lq→Lq ≤
1√

m2 + 1
.

Now, since

(−∆ +m+ i)−1 = (−∆ + 1)−1(I + (1−m− i)(−∆ +m+ i)−1)

and

‖(I + (1−m− i)(−∆ +m+ i)−1)‖Lq→Lq ≤ 1 + |1−m− i|‖(−∆ +m+ i)−1‖Lq→Lq

≤ 1 +

√
(m− 1)2 + 1√
m2 + 1

≤ 1 +
√

2,

combined with Proposition 2.1, ‖(−∆ +m+ i)−1‖Lq→W 2,q ≤ 1 +
√

2.

2.2 Schrödinger Operators with real-valued potentials

Consider the Schrödinger operator with real-valued potential −∆+V : H2(Rn,C)→
L2(Rn,C) where V : Rn → R (real-valued). We will assume the following about the
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potential V :

(H1) V (x) ∈ Lr + L∞ε for all 1 ≤ r ≤ q where q ≥max(n/2, 2) for n 6= 4, q > 2 for

n = 4.

Under this assumption, −∆ + V remains self-adjoint on L2 with domain H2. More-

over, V is a relatively compact perturbation of −∆, i.e., V (−∆ + i)−1 is a compact

operator on L2(Rn), see [19] Chapter XIII.4. By Weyl’s theorem the essential spec-

trum of −∆ + V is the same as −∆, i.e., Σess(−∆ + V ) = [0,∞). However, the

relatively compact perturbation may add a finite or countable number of isolated

eigenvalues −w0 < −w1 < · · · < −wk < · · · < 0 with only possible accumula-

tion point 0, and, each of them have a finite dimensional invariant subspace, i.e.,

ker(−∆+V +wk) is finite dimensional for all k. In what follows, we will assume that

at least one such eigenvalue is supported by the potential:

(H2) The L2 spectrum of −∆ + V (x) has the lowest negative eigenvalue −w0 < 0.

This is definitely the case when V is continuous, nonzero and V ≤ 0 on R or R2,

see Chapter XIII.3. Note that because of the uniform ellipticity of the second order

operator −∆ + V, its lowest eigenvalue is simple. i.e., ker(−∆ + V + w0) is one

dimensional (over C).

Our arguments will also rely on the spectral property of the family of Schrödinger

operators:

L(E) = −∆ + V + σ̃|ψE|2p

where E 7→ ψE is a C1 map from an interval I ⊆ (0,∞) to H2(Rn,C), 0 < p <
2

n− 2
and σ̃ ∈ R is a constant. We will show that not only V, but also the effective

potential of the operator Veff (E) = V + σ̃|ψE|2p is a relatively compact perturbation

of −∆. Note that by Sobolev embedding, H2(Rn,C) is embedded in Lq(Rn,C) for

all 2 ≤ q ≤
2n

n− 4
for n > 4, 2 ≤ q < ∞ for n = 4 and 2 ≤ q ≤ ∞ for n < 4. By

choosing some proper r > 0, we can see that σ̃|ψE|2p ∈ Lr(Rn,C). Indeed, if n > 4,

we choose r = max(1
p
, n

2
) ⇔ 2pr = max(2, np) while we choose r = max(1

p
, 3) ⇔

2pr = max(2, 6p) if n = 4 and r = max(1
p
, 2) ⇔ 2pr = max(2, 4p) if n < 4. Then
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‖|ψE|2p‖Lr = ‖ψE‖2p
L2pr < ∞ since 2 ≤ 2pr ≤ 2n

n−4
for n > 4 and 2 ≤ 2pr < ∞

for n ≤ 4. Thus, σ̃|ψE|2p ∈ Lr for some r ≥ max(n
2
, 2) for n 6= 4 and r > 2 where

n = 4. Hence, σ̃|ψE|2p is a relatively compact perturbation of −∆ and consequently,

the effective potential Veff (E) = V + σ̃|ψE|2p is a relatively compact perturbation of

−∆. Therefore for all E ∈ I, Σess(L(E)) = [0,∞). Moreover, the C1 dependence of

the effective potential Veff on E implies C1 dependence of simple eigenvalues of L(E)

on E, and, for non-simple eigenvalues, the projection operator onto their invariant

subspace remains C1 with respect to E, see [19] Chapter XII.2.

We will also need some technical results about the resolvent of the Schrödinger

operator between Sobolev spaces.

Proposition 2.3. For all 1 < q <∞, m ∈ R, (−∆ + V + m + i)−1 : Lq → W 2,q is

bounded.

Proof. Note that

(−∆ + V +m+ i)−1 = (−∆ +m+ i)−1(I + V (−∆ +m+ i)−1)−1

(I + V (−∆ +m+ i)−1)−1 : Lq → Lq is bounded because

I + V (−∆ +m+ i)−1 = (−∆ + V +m+ i)(−∆ +m+ i)−1

and the spectrum of −∆,−∆ +V is in R so the both equation in right hand side are

invertible from Lq to Lq. Thus, Proposition 2.2 completes the proof.

2.3 Schrödinger Operators with double-well potentials

In this section, we will discuss the Schrödinger operator with double well poten-

tials. The main results of this thesis are based on double well potentials with large

separation, which are constructed in the following manner. Consider a (single-well)

potential V0(x) satisfying (H1) and (H2), then the double well potential V = Vs is:

V ≡ Vs = TsV0T−s +RTsV0T−sR

11



where T±s and R are the translations, respectively reflection operators:

T±sg(x1, x2, · · · , xn) = g(x1 ± s, x2, · · · , xn)

Rg(x1, x2, · · · , xn) = g(−x1, x2, · · · , xn)

−s s

Figure 2.1: The graph in right pane is a double well potential which is constructed by
translating and reflecting the single well potential in left pane.

In physical applications, large separation between the wells means that any given

particle tends to “feel” only the effect of one well. Mathematically, this means that

the spectrum of the operator with the double well potential has two eigenvalues very

close to one eigenvalue in the spectrum of the operator with the corresponding one

well potential:

Proposition 2.4 (see [14]). Assume that −w0 < 0 is a simple eigenvalue of −∆+V0

separated from the rest of the spectrum of −∆ + V0 by a distance greater than 2d∗.

Denote by ψ0 its corresponding eigenvector, ‖ψ0‖L2 = 1. Then there exists l0 > 0

such that for s ≥ l0 the following are true.

(i) −∆ + Vs has exactly two simple eigenvalues −E0,s and −E1,s nearer to −w0

than 2d∗. Moreover, lims→∞Ei,s = w0, i = 0, 1.

(ii) One can choose the normalized eigenvectors ψi,s, ‖ψi,s‖L2 = 1, corresponding to

the eigenvalues −Ei,s, i = 0, 1, such that they satisfy

lim
s→∞

∥∥∥ψi,s − Tsψ0 + (−1)iRTsψ0√
2

∥∥∥
H2

= 0, i = 0, 1

12



See [20] for the L2 result and [14] Appendix for the convergence of the eigenvectors

in H2.

We need one more technical result, namely the uniform in ”s” L2 → H2 bounds

for the resolvent :

Lemma 2.1. Let d∗ > 0. Then there exists s0 and M > 0, independent of s, such

that for s ≥ s0, ‖(−∆ + Vs + E)−1‖L2∩{ψs,0,ψs,1}⊥→H2 ≤ M for all E ∈ {E > 0 :

dist(E,Σs \ {E0,s, E1,s}) ≥ d∗} where Σs is the spectrum of −∆ + Vs.

Proof. Note that

(−∆ + Vs + E)−1 = (−∆ + Vs + iΩ)−1[(−∆ + Vs + E)(−∆ + Vs + iΩ)−1]−1

for Ω > 0. The proof has two parts: first, we show that for some Ω > 0, we have

‖(−∆ + Vs + iΩ)−1‖L2→H2 ≤ 2. second, we prove that ‖[(−∆ + Vs + E)(−∆ + Vs +

iΩ)−1]−1‖L2→L2 is uniformly bounded.

Let us prove the first part. For any Ω > 1 and any g ∈ L2, we have:

sup
g∈L2,‖g‖L2=1

‖(−∆ + iΩ)−1g‖H2 = sup
g∈L2,‖g‖L2=1

∥∥∥∥ |ξ|2 + 1

|ξ|2 + iΩ
Fg(ξ)

∥∥∥∥
L2

≤ 1.

Thus, we get

‖(−∆ + iΩ)−1‖L2→H2 ≤ 1. (2.6)

Next, we claim that there exists Ω > 1 such that ‖Vs(−∆ + iΩ)−1‖L2→L2 ≤ 1
2
. By

using spectral representation and the fact that ‖V0(−∆ + i)−1‖L2→L2 is an compact

operator, we can show that

lim
Ω→∞

‖V0(−∆ + iΩ)−1‖L2→L2 = 0,

see [19] Chapter XIII.4 Corollary 2. Hence we can choose Ω > 1 such that

‖V0(−∆ + iΩ)−1‖L2→L2 ≤ 1

4
.
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Now, because T±s and R are unitary and commute with −∆, we have:

‖Vs(−∆ + iΩ)−1‖L2→L2

≤ ‖TsV0T−s(−∆ + iΩ)−1‖L2→L2 + ‖RTsV0T−sR(−∆ + iΩ)−1‖L2→L2

= 2‖V0(−∆ + iΩ)−1‖L2→L2 ≤ 1

2
.

Consequently, I + Vs(−∆ + iΩ)−1 is invertible and

‖[I + Vs(−∆ + iΩ)−1]−1‖L2→L2 ≤ 2.

All in all,

‖(−∆ + Vs + iΩ)−1‖L2→H2 = ‖(−∆ + iΩ)−1[I + Vs(−∆ + iΩ)−1]−1‖L2→H2

≤ ‖(−∆ + iΩ)−1‖L2→H2‖[I + Vs(−∆ + iΩ)−1]−1‖L2→L2

≤ 2.

Next, in order to show ‖[(−∆ + Vs + E)(−∆ + Vs + iΩ)−1]−1‖L2∩{ψs,0,ψs,1}⊥→L2 is

uniformly bounded, we need to prove that for any f ∈ L2 ∩ {ψs,0, ψs,1}⊥, ‖f‖L2 = 1

there exists M > 0 such that

‖[(−∆ + Vs + E)(−∆ + Vs + iΩ)−1]f‖L2 ≥M. (2.7)

By using spectral Theorem, we have:

[(−∆ + Vs + E)(−∆ + Vs + iΩ)−1]f =

= ΣEn,s∈Σs,disc

En,s + E

En,s + iΩ
〈ψn,s, f〉ψn,s +

∫
Σs,cont

ξ + E

ξ + iΩ
µs(ξ)fdξ

= ΣEn,s∈Σs,disc\{E0,s,E1,s}
En,s + E

En,s + iΩ
〈ψn,s, f〉ψn,s +

∫
Σs,cont

ξ + E

ξ + iΩ
µ(ξ)fdξ

where ψn,s are L2-normalized eigenfunctions corresponding to the isolated eigenvalue

−En,s of −∆ + Vs, Σs,cont (Σs,disc) is continuous (discrete) spectrum of −∆ + Vs and
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µs(ξ) is the spectral measure of −∆ + Vs on the continuous spectrum. The last

equality is due to the fact that f ∈ L2 ∩ {ψs,0, ψs,1}⊥. Therefore, we get:

‖[(−∆ + Vs + E)(−∆ + Vs + iΩ)]f‖2
L2 =

= ΣEn,s∈Σs,disc

∣∣∣∣ En,s + E

En,s + iΩ

∣∣∣∣2 |〈ψn,s, f〉|2 +

∫
Σs,cont

∣∣∣∣ ξ + E

ξ + iΩ

∣∣∣∣2 |µ(ξ)|2|f |2dξ

≥ min

(
min

En,s∈Σs,disc,n6=0,1

∣∣∣∣ En,s + E

En,s + iΩ

∣∣∣∣2 , min
ξ∈Σs,cont

∣∣∣∣ ξ + E

ξ + iΩ

∣∣∣∣2
)
‖f‖2

L2

≥ min

(
d∗

2

E2
2,s + Ω2

,min

(
1,
E2

Ω2

))
.

The last line is due to (5.3) and Σs,cont = [0,∞), because −∆ + Vs is a relatively

compact perturbation of −∆. Since E2,s approaches the second lowest eigenvalue of

−∆ + V0 as s → ∞, there exist some N > 0 such that E2,s ≤ N for s ≥ s0. Thus,

we obtain uniform bound:

|[(−∆ + Vs + E)(−∆ + Vs + iΩ)−1]−1‖L2→L2 ≤M =
1√

min
(

d∗2

N2+Ω2 ,min
(
1, E

2

Ω2

))
.

Combining the first and second parts, the lemma is proved.

Remark 2.2. The proof above also shows that for d∗ > 0, if E ∈ {E > 0 :

dist(−E,Σs) ≥ d∗}, then there exist s0 and M > 0, independent of s, such that

‖(−∆ + Vs + E)−1‖L2→H2 ≤M for all s ≥ s0.

15



CHAPTER 3

LOCAL BIFURCATION THEORY

In this chapter, we will review local bifurcation theory, including Implicit Function

Theorem, Lyapunov-Schmidt decomposition and Morse Lemma. See for example

[21].

3.1 Calculus in Banach space and Implicit Function

Theorem

Let X and Y be Banach spaces and B(X, Y ) be the set of bounded linear maps from

X to Y. Let f : U → Y, be a mapping defined on an open subset of X, U.

Definition 3.1. f has a Gâteaux derivative at u ∈ U in the direction x ∈ X if:

lim
ε→0

f(u+ εx)− f(u)

ε

exists and finite.

The limit is usually denoted by df(u)[x] if it exists. We say that f is Gâteaux

differentiable at u ∈ U if and only if f has a Gâteaux derivative in any direction.

Definition 3.2. f is Fréchet differentiable at u ∈ U if there exists A ∈ B(X, Y ) such

that:

lim
|x|→0

‖f(u+ x)− f(u)− Au‖
‖x‖

= 0.

A is called a Fréchet derivative and denoted by Df(u) if it exists.
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Theorem 3.1. If f is Fréchet differentiable at u ∈ U, then F is Gâteaux differentiable

at u and:

Df(u)[x] = df(u)[x] for all x ∈ X

As in finite dimensions, where the Gateaux derivative corresponds to directional

derivatives, the reciprocal is not true in general. However the following result holds:

Theorem 3.2. Let V be a neighborhood of u ∈ U. Assume df(v)[·] ∈ B(X, Y ) for

any v ∈ V and df : V → B(X, Y ) is continuous at u. Then f is Fréchet differentiable

at u.

For example, the Gâteaux derivative of (1.2) at φ in the direction u is:

dF (φ)[u] = lim
ε→0

F (φ+ εu)− F (φ)

ε

= (−∆ + V + E)u+ lim
ε→0

1

ε
(|φ+ εu|2p(φ+ εu)− |φ|2pφ)

= (−∆ + V + E)u+ (p+ 1)u|φ|2p + pū|φ|2p−2φ2.

provided ε ∈ R, for ε ∈ C the limit does not exists. Consequently we will be forced to

work with the real structure over the Hilbert spaces H2 and L2. With this observation

we have dF : H2(Rn)→ B(H2(Rn), L2(Rn)) is continuous, by the above results, the

Fréchet derivative of (1.2) at each point exists and is equal to:

DφF (φ,E) =

[
−∆ + E 0

0 −∆ + E

]
+ V(φ) (3.1)

where

V(φ) =

[
V (x) + σ(2p+ 1)|φ|2p − 2σp|φ|2p−2(=φ)2 2σp|φ|2p−2<φ=φ

2σp|φ|2p−2<φ=φ V (x) + σ|φ|2p + 2σp|φ|2p−2(=φ)2

]
,

hence it is also continuous from H2(Rn) to B(H2(Rn), L2(Rn)) i.e., the map F is C1.
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At a real valued φ, it simplifies to:

DφF (φ,E)[u1 + iu2] = L+u1 + iL−u2 =

[
L+(φ,E) 0

0 L−(φ,E)

][
u1

u2

]
, (3.2)

where L± are linear, self-adjoint, Schrödinger type operators:

L+(φ,E) = −∆ + E + V (x) + σ(2p+ 1)|φ|2p(x)

L−(φ,E) = −∆ + E + V (x) + σ|φ|2p(x)
(3.3)

The linearization of the stationary equation is important for the analysis in this

thesis.

Remark 3.1. If (φ,E) solves (1.2) then zero is an eigenvalue of DφF (φ,E) with

eigenfunction iφ. This can be directly seen from Remark 1.1 since iφ is the infinites-

imal generator of rotation : φ 7→ eiθφ. In particular, if φ is real-valued then 0 is an

eigenvalue of L−(φ,E) with eigenfunction φ.

Now, we talk about Implicit Function Theorem in Banach spaces.

Theorem 3.3. Let f : U → Z where U ⊆ X × Y is open and X, Y and Z are

Banach spaces. Assume that

1. f(x0, y0) = 0 for (x0, y0) ∈ U

2. f is continuous at (x0, y0)

3. Dxf(x0, y0) ∈ B(X,Z) is isomorphism from X to Z

4. Dxf(x, y) exists for all (x, y) ∈ U and (x, y) 7→ Dxf(x, y) is continuous at

(x0, y0).

Then

(i) there exist δ > 0, r > 0 with Bδ(x0) × Br(y0) ⊆ U and a unique map u :

Br(y0) → Bδ(x0) such that the solution of f(x, y) = 0 in Bδ(x0) × Br(y0) are
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given by (u(y), y). Moreover u is continuous at y0 and if f is Fréchet differen-

tiable at (x0, y0) then so is u at y0 and

Du(y0) = −[Dxf(x0, y0)]−1Dyf(x0, y0)

(ii) If f is continuous on Bδ(x0) × Br(y0) then u is continuous on Br(y0). If f is

Fréchet differentiable on Bδ(x0)×Br(y0) then u is differentiable on Br(y0) and

Du(y) = −[Dxf(u(y), y))]−1Dyf(u(y), y)

(iii) If f ∈ Cp on Bδ(x0)×Br(y0) then u is Cp on Br(y0).

Along this trivial family of solutions φ ≡ 0, E ∈ R, we have:

DφF (0, E) =

[
−∆ + V + E 0

0 −∆ + V + E

]

which is an isomorphism for E /∈ Σ(−∆ + V ) = Σess(−∆ + V ) ∪ Σdisc(−∆ + V ) =

[0,∞)∪Σdisc(−∆+V ). Therefore, the Implicit Function Theorem implies that there

are no other small in H2-norm bound states for E > 0, −E /∈ Σdisc(−∆ + V ). It

is already known that for E < 0 there are no other localized bound states (rapidly

decaying at infinity solutions of (1.2)), see [22]. For −E ∈ Σdisc(−∆ + V ),

Σdisc(−∆ + V ) = {−w0,−w1, · · · ,−wk, · · · },

we have at Ek = wk, ker(−∆ + V + Ek) is finite dimensional, see Section 2.2, and

ran(−∆ + V + Ek) = ker(−∆ + V + Ek)
⊥ due to self-adjointness of −∆ + V + Ek

on L2. Consequently, DφF (0, Ek) : H2(Rn,R)×H2(Rn,R)→ L2(Rn,R)×L2(Rn,R)

will have a finite dimensional kernel, double the dimension of ker(−∆ + V + Ek)

and its range will have an orthogonal complement of finite dimension, double the

dimension of ker(−∆ + V +Ek). Hence we will be able to apply Lyapunov-Schmidt

decompositon, see next section, to study bifurcation on nontrivial, nonlinear bound

states for the Schrödinger equation (1.2) from (φ ≡ 0, Ek).
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Note that even if −E is a simple eigenvalue of −∆ +V , 0 is a double eigenvalue of

DφF (0, E) =

[
L+ 0

0 L−

]
where L+ = L− = −∆ + V + E. However, the degeneracy

is due to the gauge invariance, see Remark 1.1 and 3.1, and by moding out the

rotations, we rigorously analyze these small nonlinear bound states, see Section 4.1

or [13, 23]. Moreover, in Section 4.2 we show that the small nonlinear bound states

emerging from a simple eigenvalue of −∆+V organize themselves in C1 manifolds of

dimension 2 (E, θ) 7→ eiθψE which can be extended until an eigenvalue of L+(ψE, E)

crosses zero.

3.2 Fredholm Operators and Lyapunov-Schmidt

Decomposition

Definition 3.3. Let X, Y be Banach spaces. A bounded linear operator T : X → Y is

called Fredholm if:

1. kerT is finite dimensional and

2. ran T is closed and has a finite dimensional complement in Y, i.e., it has finite

codimension.

The index of T is defined by the number dim(kerT )-dim(complement of ran T ).

In fact, the condition that ran T is closed is redundant when its complement has

finite dimension, hence it is closed:

Lemma 3.1. Let T : X → Y be a operator so that the complement subspace for the

range is closed. Then the range of T is closed.

Now, we discuss Lyapunov-Schmidt decomposition, as explained at the end of

the previous section, which is important in our local bifurcation analysis. (See for

example [21].) Let X,Λ, Y be Banach spaces. Consider f : U → Y where U ⊆ X is

open and assume f(x0, λ0) = 0 for (x0, λ0) ∈ U. We are interested in the solutions of

f(x, λ) = 0 (3.4)
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near (x0, λ0). Assume that f is C1 in U and Dxf(x0, y0) is Fredholm, i.e.,

1. kerDxf(x0, y0) = X1 is finite dimensional

2. ranDxf(x0, y0) = Y1 is closed with finite codimension.

Without loss of generality, we suppose (x0, λ0) = (0, 0). We can decompose X and

Y as X = X1

⊕
X2, i.e., for any x ∈ X there exists x1 ∈ X1 and x2 ∈ X2 such that

x = x1 + x2, and Y = Y1

⊕
Y2. Let Q be the associated projection onto Y1, which is

continuous (bounded) because Y1 is closed. Then (3.4) is equivalent to:

Q(f(x1 + x2, λ)) = 0 (3.5)

(I −Q)(f(x1 + x2, λ)) = 0. (3.6)

We have Dx2Qf(x0, λ0) = QDx2f(x0, λ0) = QDf(x0) |X2 which is an isomorphism

from X2 to Y1.

Now, by applying Implicit Function Theorem to (3.5), there exists δ1, δ2, δ3 and a

unique C1 solution of (3.5), x2 : Bδ1(0)×Bδ2(0)→ Bδ3(0) such that:

Q(f(x1 + x2(x1, λ), λ)) = 0.

Substituting x2(x1, λ) into (3.6), we finally get:

(I −Q)(f(x1 + x2(x1, λ), λ)) = 0

which is a system with finitely many equations since Y2 is finite dimensional, with

finitely many unknowns since X1 is finite dimensional.

3.3 Application to bifurcations. Morse Lemma

Consider the equation f : X × Λ→ Y :

f(x, λ) = 0
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where x ∈ X,λ ∈ Λ, X and Y are Banach spaces. We are interested in a family

of solutions of the equation which depends on a parameter λ: x(λ). We say that a

bifurcation happens if the family of solution undergoes a qualitative or topological

change at a certain parameter. As we have seen in the previous section, the bifur-

cation problem can be reduced to one finite dimensional equation as long as Dxf is

Fredholm.

From multivariable calculus, we know that a topological change occurs when the

second derivative at a critical point is invertible. In general case we call this property

non-degeneracy, i.e., the Hessian is singular at a critical point. The following theorem

is Morse Lemma which can be applied to the bifurcation problems of codimension 1

at a non-degenerate critical point.

Theorem 3.4 (Morse Lemma). Consider G : Ω → Rn in Cp(Ω,R), p ≥ 2, where

Ω ⊆ Rn is open. Suppose G satisfies G(x0) = 0,∇G(x0) = 0 and D2G(x0), the

Hessian matrix is invertible for some x0 ∈ Ω. Then, there exists change of variable

near x0, x 7→ ξ(x), such that:

G(x) =
1

2
〈D2G(x0)ξ(x), ξ(x)〉.

See for example [21]. Using the Morse Lemma, we can analyze the set of solutions

of G(x) = 0 near a nondegenerate critical point x0 by representing G as a quadratic

form. When n = 2 and the quadratic form 〈D2G(x0)ξ(x), ξ(x)〉 is indefinite, then

the set of solutions of G(x) = 0 forms two Cp−2 distinct curves intersecting at only

x0 (transversally if p > 2). When n > 2 and 〈D2G(x0)ξ(x), ξ(x)〉 is indefinite, the

set of solutions forms two conical hypersurfaces of dimension n−1 with vertex at x0.

We will use Morse Lemma in conjunction with Lyapunov-Schmidt decomposition to

prove one part of one of our main results, see Theorem 5.2.
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CHAPTER 4

BOUND STATES BRANCHES BIFURCATING
FROM SIMPLE EIGENVALUES

In this chapter we show that the previously known small bound states bifurcating

from simple eigenvalues can be uniquely continued until an eigenvalue of the lin-

earization crosses zero. Results of this type restricted to real-valued solutions in

space dimension n = 1 were first obtained in [13]. We generalize them to any dimen-

sion and complex-valued solutions in Section 4.2.

4.1 Small bound states bifurcating from simple eigenvalues

In this section we recall, see for example [23], the following result about local bi-

furcation from simple eigenvalues of the linear Schrödinger operator. We also recall

that we are studying solutions of the following equation (1.2):

F (φ,E) = −∆φ(x) + V (x)φ(x) + σ|φ(x)|2pφ(x) + Eφ(x) = 0.

Proposition 4.1. Let −Ek be a simple eigenvalue of L0 = −∆ + V (x) with L2-

normalized real-valued eigenfunction ψk. Then there exist ε, δ > 0, and real-valued

function

h : {a ∈ R : |a| < δ} → H2(Rn) ∩ {ψk}⊥real, ‖h(a)‖H2 = O(|a|2p+1)

such that for |E−Ek| < ε, (1.2) has a nontrivial real-valued solution (Ψreal(a), E(a))
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given by :

Ψreal(a) = aψk + h(a), E(a) = Ek − σ|a|2p‖ψk‖2p+2
L2p+2 +O(|a|4p), |a| < δ, a ∈ R.

Moreover, all solutions of (1.2) in the neighborhood |E − Ek| < ε, ‖Ψ‖H2 < δ are

unique up to multiplication with eiθ i.e., of the form:

(eiθΨreal(a), E(a)), 0 ≤ θ < 2π,

or, equivalently,

Ψ(a) = aψk + h(a)

where a = 〈ψk, ψ(a)〉, |a| < δ and h(a) is extended to complex numbers via

h(a) = eiθh(|a|), 0 ≤ θ < 2π.

Proof. The map F : H2(Rn,C)× R→ L2(Rn,C) given by

F (φ,E) = −∆φ(x) + V (x)φ(x) + σ|φ(x)|2pφ(x) + Eφ(x)

is C1 for p > 0 with respect to the real (not complex) Hilbert spaces L2 and H2.

Its Fréchet derivative with respect to variable φ is given by (3.1), which, at φ ≡ 0,

becomes:

DφF (0, E) =

[
−∆ + V + E 0

0 −∆ + V + E

]
. (4.1)

Since −Ek is a simple eigenvalue of L0 = −∆ + V with L2-normalized, real-valued

eigenfunction ψk, it follows that DφF (0, Ek) is a self-adjoint, Fredholm operator with

kerDφF (0, Ek) = span {ψk, iψk} and ran DφF (0, Ek) = [kerDφF (0, Ek)]
⊥.

Let

P‖φ = 〈ψk, φ〉realψk + 〈iψk, φ〉realiψk = 〈ψk, φ〉ψk, P⊥φ = φ− 〈ψk, φ〉ψk. (4.2)
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The Lyapunov-Schmidt decomposition of (1.2) with respect to span{ψk, iψk} and its

orthogonal complement is :

φ = aψk + h, a = 〈ψk, φ〉 ∈ C, h = P⊥φ

G(E, a, h) := P⊥F (aψk + h,E) = 0 (4.3)

P‖F (aψk + h,E) = 0. (4.4)

The map G : (0,∞)× C× P⊥H2(Rn,C)→ P⊥L
2(Rn,C) is C1, and

G(Ek, 0, 0) = 0, DhG(Ek, 0, 0) = L0 + Ek.

The latter is an isomorphism from P⊥H
2 to P⊥L

2, hence, by the Implicit Function

Theorem, there exists ε, δ > 0, and a unique C1 map

h(E, a) : (Ek − ε, Ek + ε)× {a ∈ C : |a| < δ} → H2(Rn,C)

such that h solves (4.3). Moreover, (4.3) can be rewritten in the fixed point form:

h = −σ [P⊥(L0 + E)P⊥]−1 P⊥|aψk + h|2p(aψk + h) (4.5)

where the right hand side is a contraction in h, uniform in E, on a neighborhood of

zero in H2(Rn,C), provided |E−Ek| < ε, |a| < δ. Consequently we get the estimate

‖h(E, a)‖H2 ≤ C|a|2p+1, (4.6)

for some constant C > 0 independent of both E and a, |E − Ek| < ε, |a| < δ.

Also note that our choice of ψk real-valued leads to the two projections, P‖, P⊥

having the same symmetry as F , see Remark 1.1, more precisely,

P‖e
iθφ = eiθP‖φ, P⊥e

iθφ = eiθP⊥φ

25



and

P‖φ = P‖φ, P⊥φ = P⊥φ

see (4.2). According to the general theory of Lyapunov-Schmidt decompositon with

symmetry, see for example [24], we have:

h(E, eiθa) = eiθh(E, a)

h(E, a) = h(E, a)

in particular, h(E, a) is real-valued whenever a ∈ R. Moreover, we can now restrict

the solutions of (4.4):

K(E, a) := P‖F (aψk + h(E, a), E) = 0, a ∈ C (4.7)

to real-valued ones i.e., a ∈ R, because, for a complex valued solution a = |a|eiθ we

have the corresponding real solution:

K(E, |a|) = K(E, e−iθa) = P‖F (e−iθaψk + e−iθh(E, a), E)

= e−iθP‖F (aψk + h(E, a), E) = e−iθK(E, a) = 0.

For a 6= 0, (4.7) can be rewritten as:

0 = K̃(E, a) =
K(E, a)

a
= (E − Ek) +

σ

a
〈ψk, |aψk + h|2p(aψk + h)〉. (4.8)

But, because of p > 0 and estimate (4.6), K̃ can be continuously extended at a = 0

by K̃(E, 0) = E − Ek. Now, K̃(E, a) : (Ek − ε, Ek + ε) × (−δ, δ) → R, and, even

though it is not C1 for 0 < p ≤ 1/2, both K̃ and ∂EK̃ are continuous at (Ek, 0), see

estimate (4.6). Moreover,

K̃(Ek, 0) = 0, ∂EK̃(Ek, 0) = 1,

hence, by the Implicit Function Theorem, there exist δ1 and the unique solution of
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(4.8) E(a) defined in −δ1 < a < δ1. In addition

|E(a)− Ek + σ|a|2p‖ψ0‖2p+2
L2p+2| = O(|a|4p).

Now, we can define a real-valued function h(a) for −δ1 < a < δ1

h(a) = h(E(a), a).

Moreover, by (4.6)

‖h(a)‖H2 = O(|a|2p+1).

In conclusion, (eiθΨreal(a), E(a)), 0 ≤ θ < 2π are the only solutions of (1.2) in a

small neighborhood of (φ = 0, E = Ek), where (Ψreal(a), E(a)) = (aψk + h(a), E(a))

which are real-valued.

Remark 4.1. For a 6= 0 (⇔ E 6= Ek), the map a 7→ E(a) becomes C1 and invertible,

so that Ψ(a) can be rewritten as E 7→ ΨE ∈ C1. Furthermore

|ΨE|2p = − E − Ek
σ‖ψk‖2p+2

L2p+2

+ o(E − Ek)

and

lim
E→Ek

d|ΨE|2p

dE
= − |ψk|2p

σ‖ψk‖2p+2
L2p+2

.

Remark 4.2. From Remark 3.1 we already know that iΨE ∈ kerDφF (ΨE, E) when

(ΨE, E) are the solutions bifurcating from (0, Ek) given by the previous Proposi-

tion. Hence 0 is an eigenvalue of DφF (ΨE, E), but, more importantly, it is a simple

eigenvalue! Indeed, if ΨE is not real valued then, according to the Proposition 4.1,

there is θ ∈ [0, 2π) such that ΨE = eiθΨreal
E where Ψreal

E is a real valued solution.

Consequently,

DφF (ΨE, E) = eiθDφF (Ψreal
E , E)e−iθ,
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which shows that their spectrum is the same, and

DφF (Ψreal
E , E) =

[
L+(Ψreal

E , E) 0

0 L−(Ψreal
E , E)

]
.

Now, due to the continuous dependence of the spectrum of L±(Ψreal
E , E) on E near

Ek, we have that 0 remains a simple eigenvalue of L−, but evolves into a strictly

negative eigenvalue of L+ if σ < 0 (strictly positive if σ > 0), because of comparison

principle for self adjoint operators and L+ − L− = σ2p|Ψreal
E |2p < 0 (> 0 if σ > 0.)

In the particular case of double-well potential V = Vs, see Section 2.3, we will use

the following stationary equation:

Fs(φ,E) = −∆φ(x) + Vs(x)φ(x) + σ|φ(x)|2pφ(x) + Eφ(x) = 0. (4.9)

Recall that we assumed that −∆ + V0 has the lowest simple eigenvalue −w0 < 0,

and consequently, there exist two simple eigenvalues −E0,s and −E1,s of −∆ + Vs

and one can choose ψ0,s, respectively ψ1,s, which is the real-valued L2-normalized

eigenfunction corresponding E0,s, respectively E1,s, see Proposition 2.4.

Proposition 4.2. For the double well potential V = Vs, there exist s0 > 0 such that

for any s ≥ s0, there exist ε, δ, r > 0 (independent of s) such that any solution of

(4.9), (ΨE, E), satisfying |E − w0| ≤ ε and ‖ΨE‖H2 ≤ r can be written as:

ΨE = aψ0,s + bψ1,s + h̃(a, b, E), a, b ∈ C, |a| ≤ δ, |b| ≤ δ, |E − w| ≤ ε

where h : {a, b ∈ C : |a| ≤ δ, |b| ≤ δ} × {E ∈ R : |E − w0| ≤ ε} → H2 ∩ {ψ0,s, ψ1,s}⊥

is a function which is real C1 and the unique solution of

P⊥Fs(aψ0,s + bψ1,s + h̃, E) = 0

in the neighborhood |a| ≤ δ, |b| ≤ δ and |E − w0| ≤ ε, where

P⊥φ = φ− 〈ψ0,s, φ〉ψ0,s − 〈ψ1,s, φ〉ψ1,s.
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Moreover, h̃ satisfies:

h̃(eiθa, eiθb, E) = eiθh̃(a, b, E), θ ∈ [0, 2π),

h̃(a, b, E) = h̃(a, b, E),

hence, for a, b ∈ R, h̃(a, b, E) is real-valued. In particular, the ground state ψE and

the first excited state ψ1(E) (bifurcating at the two lowest eigenvalues E0,s and E1,s

of −∆ + Vs via Proposition 4.1) are of the form:

ψE = aeiθψ0,s + eiθh̃(a, 0, E), a ∈ R, |a| ≤ δ, θ ∈ [0, 2π)

ψ1(E) = beiθψ1,s + eiθh̃(0, b, E), b ∈ R, |b| ≤ δ, θ ∈ [0, 2π)

and the ground state is even in x1 while the first excited state is odd in x1.

Proof. From Proposition 2.4, we have

lim
s→∞
|Ek,s − w0| = 0, k = 0, 1

and they are separated from the rest of the spectrum i.e., there exist l0, d∗ > 0 such

that for s ≥ l0 and k = 0, 1 we have:

|Ei,s − τ | ≥ d∗, for any τ ∈ Σs \ {E0,s, E1,s},

where Σs is a spectrum of −∆ + Vs. We first define projections onto ψ0,s and ψ1,s:

P‖0φ = 〈ψ0,s, φ〉ψ0,s, P‖1φ = 〈ψ1,s, φ〉ψ1,s

which implies P⊥φ is their orthogonal complement of φ. Consider any solution of

(4.9),(ΨE, E). By applying above projections we can decompose the solution as fol-

lows:

Ψreal
E = aψ0,s + bψ1,s + h̃
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where

a = 〈ψ0,s,ΨE〉, b = 〈ψ1,s,ΨE〉, h̃ = P⊥ΨE.

Also, Fs(ΨE, E) = 0 implies

P⊥Fs(ΨE, E) = (−∆ + Vs + E)P⊥ΨE + σP⊥(|ΨE|2pΨE) = 0. (4.10)

Then due to Lemma 2.1, there exist s0 > 0, ε > 0 and M > 0 such that for s ≥ s0,

we have {E : |E − w0| ≤ ε} ⊂ {E > 0 : dist(E,Σs \ {E0,s, E1,s}) ≥ d∗
2
} and

‖(−∆ + Vs + E)−1P⊥‖L2→H2 ≤M for E ∈ {E > 0 : dist(E,Σs \ {E0,s, E1,s}) ≥ d∗
2
}.

Hence, (4.10) can be rewritten as:

h̃+ σ(−∆ + Vs + E)−1P⊥(|aψ0,s + bψ1,s + h̃|2p(aψ0,s + bψ1,s + h̃)) = 0 (4.11)

for E ∈ {E : |E −w0| ≤ ε}. Hence, for s ≥ s0, we can define the map Gs : C2 × {E :

|E − w0| ≤ ε} ×H2 ∩ {ψ0,s, ψ1,s}⊥ :

Gs(a, b, E, h̃) = h̃+ σ(−∆ + Vs + E)−1P⊥(|aψ0,s + bψ1,s + h̃|2p(aψ0,s + bψ1,s + h̃))

which is real C1 for p > 0. Since

Gs(0, 0, E, 0) = 0, Dh̃Gs(0, 0, E, 0) = I,

a direct application of the Implicit Function Theorem will give δ(s), r(s) > 0 such

that for |a| ≤ δ, |b| ≤ δ, ‖aψ0,s + bψ1,s + h̃‖2
H < r, (4.11) has a unique solution:

h̃ = h̃(a, b, E) ∈ H2 ∩ {ψ0,s, ψ1,s}⊥

which is real C1, and we have:

h̃(eiθa, eiθb, E) = eiθh̃(a, b, E), θ ∈ [0, 2π) (4.12)

h̃(a, b, E) = h̃(a, b, E) (4.13)
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by the general theory of Lyapunov-Schmidt decompositon with symmetry. In fact,

δ and r are independent of s because of the contraction argument used to prove the

Implicit Function Theorem. To show this, we rewrite (4.11) in the form:

h̃ = −σ(−∆ + Vs + E)−1P⊥(|aψ0,s + bψ1,s + h̃|2p(aψ0,s + bψ1,s + h̃))

:= Ks(a, b, E, h̃)

We want to find δ, r independent of s such that

‖Dh̃Ks(a, b, E, h̃)‖H2→H2 ≤ 1

2
(4.14)

for |a| ≤ δ, b ≤ δ, ‖aψ0,s + bψ1,s + h̃‖2
H < r. By Hölder’s inequality, for any direction

v ∈ H2, ‖v‖H2 = 1, we have

‖Dh̃(|aψ0,s + bψ1,s + h̃|2p(aψ0,s + bψ1,s + h̃))[v]‖L2

= ‖(p+ 1)|aψ0,s + bψ1,s + h̃|2pv + p|aψ0,s + bψ1,s + h̃|2p−2(aψ0,s + bψ1,s + h̃)2v‖L2

≤ (2p+ 1)‖|aψ0,s + bψ1,s + h̃|2p‖Lq‖v‖Lq′

≤ (2p+ 1)‖aψ0,s + bψ1,s + h̃‖2p
L4p+2‖v‖L4p+2

≤ (2p+ 1)C4p+2‖aψ0,s + bψ1,s + h̃‖2p
L4p+2‖v‖H2

≤ (2p+ 1)C2
4p+2‖aψ0,s + bψ1,s + h̃‖2p

H2 (4.15)

where q = 2 + 1
p
, q′ = 4p + 2. Then, combined with Lemma 2.1, (4.14) holds for

‖aψ0,s + bψ1,s + h̃‖2
H < r with r = 2p

√
1

2(2p+1)|σ|MC2
4p+2

which is independent of s. Also,

we need to choose δ, r̃, independent of s, such that |a| ≤ δ, |b| ≤ δ and ‖h̃‖H2 ≤ r̃

implies

‖aψ0,s + bψ1,s + h̃‖H2 < r and ‖aψ0,s + bψ1,s‖H2 ≤

(
r̃

2|σ|MC2p+1
4p+2

) 1
2p+1

.
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If so, for |a| ≤ δ, |b| ≤ δ and ‖h̃‖H2 ≤ r̃, we get

‖Ks(a, b, E, h̃)−Ks(0, 0, E, 0)‖H2

≤ ‖Ks(a, b, E, h̃)−Ks(a, b, E, 0)‖H2 + ‖Ks(a, b, E, 0)‖H2

≤ ‖Dh̃Ks(a, b, E, h̃)‖H2→H2‖h̃‖H2

+‖σ(−∆ + Vs + E)−1P⊥(|aψ0,s + bψ1,s|2p(aψ0,s + bψ1,s))‖H2

≤ 1

2
‖h̃‖H2 + |σ|M‖(|aψ0,s + bψ1,s|2p(aψ0,s + bψ1,s))‖L2

≤ 1

2
‖h̃‖H2 + |σ|M‖|aψ0,s + bψ1,s‖2p+1

L4p+2

≤ 1

2
‖h̃‖H2 + |σ|MC2p+1

4p+2‖aψ0,s + bψ1,s‖2p+1
H2

≤ 1

2
r̃ +

1

2
r̃ ≤ r̃

so that the contraction argument holds independently of s. From Proposition 2.4,

there exists l̃0 such that for s ≥ l̃0, we have

‖ψi,s‖H2 ≤
∥∥∥Tsψ0 + (−1)iRTsψ0√

2

∥∥∥
H2

+ 1 ≤ 2√
2
‖ψ0‖H2 + 1, i = 0, 1

where ψ0 is the L2-normalized eigenfunction of −∆ + V0 corresponding −w0 and

we used the triangle inequality for the H2 norm and the fact that translation and

reflection are isometries in Sobolev spaces. By choosing r̃ < 1
2
r and

δ < 1
2(
√

2‖ψ0‖H2+1)
min

(
1
2
r,

(
r̃

2|σ|MC2p+1
4p+2

) 1
2p+1

)
, for s ≥ l̃0, we get

‖aψ0,s + bψ1,s + h̃‖H2 ≤ (|a|+ |b|)(
√

2‖ψ0‖H2 + 1) + ‖h̃‖H2 <
1

2
r +

1

2
r = r

and

‖aψ0,s + bψ1,s‖H2 ≤ (|a|+ |b|)(
√

2‖ψ0‖H2 + 1) ≤

(
r̃

2|σ|MC2p+1
4p+2

.

) 1
2p+1

.

32



The first part of the theorem is proven.

Now, consider the two bound state branches given by Proposition 4.1, the ground

state ψE (the solutions bifurcating at E0,s) and the first excited state ψ1(E) (the

solutions bifurcating at E1,s). By the invariance of equation (4.9) under the reflection

operator R,

F (Rφ,E) = RF (φ,E).

Hence (Rφ,E) is a solution whenever (φ,E) is. From Proposition 4.1, we have

ψE = aψ0,s + h(a)

with a = 〈ψ0,s, ψE〉. Now RψE is also a solution of (4.9) with the representation

RψE = a′ψ0,s + h(a′)

and since

a′ = 〈ψ0,s, RψE〉 = 〈Rψ0,s, RψE〉 = 〈ψ0,s, ψE〉 = a

where we used Rψ0,s = ψ0,s, we get

RψE = aψ0,s + h(a) = ψE

i.e., the ground state branch ψE is even in x1. A similar argument, using Rψ1,s =

−ψ1,s leads to the first excited branch ψ1(E) being odd in x1. Consequently, the

ground state is always orthogonal on ψ1,s while the first excited state is orthogonal

on ψ0,s. Hence, combined with (4.12) and (4.13), we get

ψE = aeiθψ0,s + eiθh̃(a, 0, E), a ∈ R, |a| ≤ δ, θ ∈ [0, 2π)

ψ1(E) = beiθψ1,s + eiθh̃(0, b, E), b ∈ R, |b| ≤ δ, θ ∈ [0, 2π).
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4.2 Continuation of bound state branches

In this section we show that the branches given by Proposition 4.1 can be uniquely

continued until an eigenvalue of the linearization crosses zero. We start with a local

continuation result. From Remark 4.2 we already know that 0 is a simple eigenvalue

of DφF (ψE, E) when (ψE, E) are the solutions of (1.2) constructed in the previous

section. We now show that in the absence of other degeneracies i.e., if the 0 eigenvalue

of the linearized operator remains simple, the C1 manifold of solutions constructed

in Proposition 4.1 can be extended.

Proposition 4.3. Let (ψẼ, Ẽ) = (eiθ̃ψreal
Ẽ

, Ẽ) for some θ̃ ∈ [0, 2π) be a solution of

(1.2) obtained by rotating a real-valued solution ψreal
Ẽ

. Assume that kerDφF (ψẼ, Ẽ) is

one dimensional. Then there exist ε, δ > 0 and a map v : (Ẽ− ε, Ẽ+ ε)→ H2(Rn,R)

such that all solutions (φ,E) of (1.2) satisfying

inf
θ∈[0,2π)

‖φ− eiθψẼ‖H2 < δ, |E − Ẽ| < ε

are of the form (eiθv(E), E) where 0 ≤ θ < 2π.

Proof. From Remark 3.1 and the hypothesis on the kernel, we get that

kerDφF (ψẼ, Ẽ) = span {iψẼ}.

Now from:

DφF (ψẼ, Ẽ) = eiθ̃DφF (ψreal
Ẽ

, Ẽ)e−iθ̃,

see Remark 4.2, we get

kerDφF (ψreal
Ẽ

, Ẽ) = span {iψreal
Ẽ
}.

We first consider all real-valued solutions of (1.2) near (ψreal
Ẽ

, Ẽ). Since F trans-

forms real functions into real functions, we can define F̃ (φ,E) : H2(Rn,R) →
L2(Rn,R), which is the restriction of the map F to real-valued functions. Further-

more, DφF̃ (ψreal
Ẽ

, Ẽ) is an isomorphism because all real-valued functions are perpen-
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dicular to iψreal
Ẽ

with respect to the real scalar product. Thus, by applying Implicit

Function Theorem, we get the unique C1 map v(E) solving F̃ (ψreal
Ẽ

+ v(E), E) =

F (ψreal
Ẽ

+ v(E), E) = 0 :

v(E) : (Ẽ − ε1, Ẽ + ε1)→ Breal
δ1

(ψreal
Ẽ

) ⊂ H2(Rn,R) (4.16)

where Breal
δ1

(ψreal
Ẽ

) = {φ ∈ H2(Rn,R) : ‖φ− ψreal
Ẽ
‖H2 < δ1} for some ε1, δ1 > 0.

Next consider solutions (φ,E) of (1.2) near (ψreal
Ẽ

, Ẽ) for which φ − ψreal
Ẽ

are

perpendicular to iψreal
Ẽ

with respect to the real scalar product in H2. By applying

Implicit Function Theorem at ψreal
Ẽ

to P⊥F (φ,E) = 0 where P⊥ is the L2 projection

onto {iψreal
Ẽ
}⊥real, and the orthogonality here is with respect to the L2 real scalar

product and we restrict F to H2 functions ψreal
Ẽ

+ f, f ⊥ iψreal
Ẽ

with respect to the

H2 real scalar product, there exist ε2, δ2 > 0 and the unique C1 map ṽ(E) solving

P⊥F (ψreal
Ẽ

+ ṽ(E), E) = 0 :

ṽ(E) : (Ẽ − ε2, Ẽ + ε2)→ Bδ2(ψ
real
Ẽ

) ⊂ H2(Rn,C)

where Bδ2(ψ
real
Ẽ

) = {φ ∈ H2(Rn,C) : 〈φ, iψreal
Ẽ
〉H2 real = 0 and ‖φ− ψẼ‖H2 < δ2}.

Let min{ε1, ε2}) = ε, min{δ1, δ2} = δ. Since real valued functions are automatically

orthogonal to iψreal
Ẽ

with respect to the real scalar product (in H2) and both v and

ṽ maps solve P⊥F (ψreal
Ẽ

+ f, E) = 0 in the H2 ball of radius δ centered at ψreal
Ẽ

restricted to this orthogonal subspace, by uniqueness we deduce that they coincide

at least on the interval (Ẽ − ε, Ẽ + ε).

Now let (φ,E) be a solution (1.2) which satisfies:

inf
θ∈[0,2π)

‖φ− eiθψẼ‖H2 < δ, |E − Ẽ| < ε

Then there exists θ∗ ∈ [0, 2π) such that φ− eiθ∗ψreal
Ẽ
⊥ ieiθ∗ψreal

Ẽ
i.e., θ∗ satisfies

‖φ− eiθ∗ψreal
Ẽ
‖H2 = min

θ∈[0,2π)
‖φ− eiθψẼ‖H2 .

35



ψreal
Ẽ

v(E)

φ = eiθ∗v(E)

Figure 4.1

It implies that e−iθ∗φ is a solution for which e−iθ∗φ − ψreal
Ẽ

is perpendicular to

iψreal
Ẽ

, e−iθ∗φ ∈ Bδ(ψẼ). Hence, by the above argument, (e−iθ∗φ,E) = (v(E), E).

Remark 4.3. From the proof of the above Proposition, see (4.16), it is clear that

the solutions in a neighborhood of (eiθψẼ, Ẽ) are still obtained by rotating a curve

of real-valued solutions v(E).

Now, by combining the two propositions with standard comparison principles for

the spectrum of linear, self-adjoint operators, see Remark 4.2, we show that the

branch constructed in Proposition 4.1 can be uniquely extend in parameter E, see

Remark 4.1, until an eigenvalue of L+ or L− crosses zero or the branch reaches

the boundary of the Fredholm domain i.e., E = 0, E = ∞. For clarity we will

separate the attractive nonlinearity case, σ < 0, from the repelling nonlinearity case,

σ > 0. The first result extends Theorem 2 in [13] to any dimensions and more general

potentials.

Theorem 4.1. Assume σ < 0, and that the hypotheses of Proposition 4.1 hold.

Then, the (E, θ) parameterized, two dimensional manifold (eiθψrealE , E), 0 ≤ θ < 2π,

of solutions of (1.2) bifurcating from (0, Ek) can be uniquely continued on a maximal

interval E ∈ I = (Ek, E∗) where:

(i) E∗ =∞, or

(ii) Ek < E∗ <∞ and there exist a sequence {En}n∈N ⊂ I such that limn→∞En =

E∗ and a corresponding sequence of non-zero eigenvalues {λn}n∈N of L+(ψrealEn
, En),

or L−(ψrealEn
, En) such that limn→∞ λn = 0.
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For the repelling case we have:

Theorem 4.2. Assume σ > 0, and that the hypotheses of Proposition 4.1 hold.

Then, the (E, θ) parameterized, two dimensional manifold (eiθψrealE , E), 0 ≤ θ < 2π,

of solutions of (1.2) bifurcating from (0, Ek) can be uniquely continued on a maximal

interval E ∈ I = (E∗, Ek) where:

(i) E∗ = 0, or

(ii) 0 < E∗ < Ek and there exist a sequence {En}n∈N ⊂ I such that limn→∞En = E∗

and a corresponding sequence of non-zero eigenvalues {λn}n∈N of L+(ψrealEn
, En),

or L−(ψrealEn
, En) such that limn→∞ λn = 0.

Proof. We focus first on the attractive, σ < 0 case. Let

E∗ = sup {E : E > Ek, and E 7→ ψrealE is an extension of the map in Remark 4.1 for

which 0 is not in the spectrum of L+ and is a simple eigenvalue of L−}

Remark 4.2 guarantees that the set above is non-empty. Also note that E > Ek in

the σ < 0 case, see Proposition 4.1.

By contradiction, suppose neither of (i)-(ii) in Theorem 4.1 hold for E∗. Conse-

quently, there exist Ẽ and d > 0 such that

‖
[
L+(ψrealE , E)

]−1 ‖L2→L2 ≤ 1/d, ∀E ∈ Ĩ = [Ẽ, E∗). (4.17)

This follows from the L2 spectrum of L+ being away from zero. Indeed, the contin-

uous spectrum of L+(ψrealE , E) is the interval [E,∞), since both V (x) and |ψE|2p(x)

are relatively compact perturbations of the Laplacian, the former due to assumption

(H1), while the latter is due to its exponential decay as |x| → ∞, see for example

[25]. Hence, the continuous spectrum is at least at distance Ẽ > Ek > 0, from

0. Moreover, the eigenvalues of L+ depend continuously on E along the C1 curve

E 7→ ψrealE which combined with the fact that (ii) does not hold prevents the discrete

spectrum from approaching zero.
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By differentiating (1.2) with respect to E, we get:

−
[
L+(ψrealE , E)

]−1
ψrealE = ∂Eψ

real
E . (4.18)

Thus, combining (4.18) with (4.17) and with:

∂E‖ψrealE ‖2
L2 = 2〈∂EψrealE , ψrealE 〉L2 ≤ 2‖∂EψrealE ‖L2‖ψrealE ‖L2 ≤ 2

d
‖ψrealE ‖2

L2 ,

we get, on E ∈ Ĩ = [Ẽ, E∗),

‖ψrealE ‖2
L2 ≤ ‖ψrealẼ

‖2
L2e

2
d

(E∗−Ẽ) = M2
2 <∞ (4.19)

i.e., due to E∗ is finite (from negating (i)) we have that ‖ψrealE ‖L2 is uniformly bounded

on Ĩ .

Next we obtain a uniform bound for ‖ψrealE ‖
2p+2
L2p+2 , E ∈ Ĩ . Consider the energy

functional for E : H1(Rn,C)→ R :

E(φ) =

∫
Rn
|∇φ(x)|2dx+

∫
Rn
V (x)|φ(x)|2dx+

σ

p+ 1

∫
Rn
|φ(x)|2p+2dx. (4.20)

Note that ψrealE is a weak solution of (1.2) if and only if

DE(ψrealE )[v] = −2E〈ψrealE , v〉

for all v ∈ H1. If we now look at the composition, we have:

dE
dE

= DE(ψrealE )[∂Eψ
real
E ] = −2E〈ψrealE , ∂Eψ

real
E 〉

and by Cauchy-Schwarz inequality,∣∣∣∣ dEdE
∣∣∣∣ ≤ 2E‖ψrealE ‖L2‖∂EψrealE ‖L2 .

Thus, from (4.18) and (4.19) the derivative of the energy functional is uniformly
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bounded on Ĩ , which also implies E(E) is uniformly bounded on Ĩ:

E(E) ≤ME for E ∈ Ĩ .

Now, by using the weak formulation of solutions of (1.2), we get

‖∇ψrealE ‖2
L2 +

∫
Rn
V (x)|ψrealE (x)|2dx+ σ‖ψrealE ‖

2p+2
L2p+2 + E‖ψrealE ‖2

L2 = 0. (4.21)

Subtracting (4.21) from (4.20), we get:

σ

(
1

p+ 1
− 1

)
‖ψrealE ‖

2p+2
L2p+2 − E‖ψrealE ‖2

L2 ≤ME

which is equivalent to

‖ψrealE ‖
2p+2
L2p+2 ≤

p+ 1

|σ|p
(ME + E‖ψrealE ‖2

L2) ≤
p+ 1

|σ|p
(ME + E∗M

2
2 ) = M2p+2

2p+2 for E ∈ Ĩ .

(4.22)

i.e., we get a uniform bound for L2p+2 norm of ψrealE on Ĩ .

Finally, we use a standard regularity argument, see for example [26, Theorem

8.1.1], to obtain H2 uniform bounds for ψrealE , E ∈ Ĩ from the uniform bounds in L2

and L2p+2. We start by rewriting ψrealE as:

ψrealE = (−∆ + V + i)−1[(i− Ek)ψrealE + σ(2p+ 1)|ψrealE |2pψrealE ] (4.23)

It is known that for any 1 < q <∞ there exists lq > 0 such that:

‖(−∆ + V + i)−1‖Lq→W 2,q ≤ lq (4.24)

because

(−∆ + V + i)−1 = (−∆ + i)−1(I + V (−∆ + i)−1)−1

and both (−∆ + i)−1 : Lq → W 2,q and (I + V (−∆ + i)−1)−1 : Lq → Lq are bounded.

See Section 2.1 and 2.2.
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Define the sequence qj by

q0 = 2p+ 2,
1

qj
=

2p+ 1

qj−1
− 2

n
= (2p+ 1)j

(
1

2p+ 2
− 1

np
+

1

np(2p+ 1)j

)
for j ≥ 1

where n is the space dimension. Since p < 2
n−2

, (p <∞ when n = 1, 2), we have:

1

qj+1
− 1

qj
=

2p+ 1

qj
− 2

n
− 1

qj
= (2p+ 1)j

(
2p

2p+ 2
− 2

n

)
< 0 (4.25)

i.e., 1
qj

is decreasing and not Cauchy hence:

lim
j→∞

1

qj
= −∞. (4.26)

From (4.22), since q0 = 2p + 2, we have ‖ψrealE ‖Lq0 ≤ Mq0 , for all E ∈ Ĩ . It implies

that ‖|ψrealE |2p|ψrealE ‖L
q0

2p+1
≤ (Mq0)

2p+1, and by combining with (4.24),

‖(−∆ + V + i)−1|ψrealE |2p|ψrealE ‖
W

2,
q0

2p+1
≤ l q0

2p+1
(Mq0)

2p+1.

Meanwhile, we have:

‖(−∆ + V + i)−1(i− E)ψrealE ‖W 2,2 ≤ l2
√
E2
∗ + 1M2.

Note that

W 2,
q0

2p+1 is embedded in Lq for all q ≥ q0

2p+ 1
such that

1

q
≥ 2p+ 1

q0

− 2

n
=

1

q1

.

For clarity, we split the analysis in two cases depending on the space dimension,

n ≤ 4 and n > 4. In the first case, n ≤ 4, we know that

W 2,2 is embedded in Lq for all q ≥ 2.

Since both W 2,
q0

2p+1 and W 2,2 are embedded in Lq1 , by taking Cq1 to be the maximum
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of the two embedding constants, we get:

‖ψrealE ‖Lq1 ≤ Cq1(l q0
2p+1

(Mq0)
2p+1 + l2

√
E2
∗ + 1M2) = Mq1 for all E ∈ Ĩ .

We can repeat this process and obtain uniform bounds for ψrealE , E ∈ Ĩ , in Lqj , 1
qj

=
2p+1
qj−1 − 2

n
, j ≥ 1 until qj+1 becomes negative, see (4.26), i.e.,

2p+ 1

ql
≥ 2

n
for 0 ≤ l ≤ j − 1 and

2p+ 1

qj
≤ 2

n
.

But 2p+1
qj
≤ 2

n
implies that

W 2,
qj

2p+1 is embedded in Lq for all q ≥ qj
2p+ 1

.

In particular we can fix a q > 4p+ 2 such that

‖ψrealE ‖Lq ≤Mq for all E ∈ Ĩ . (4.27)

For the second case, n > 4,

W 2,2 is embedded in Lq for all q ≥ 2 such that
1

q
≥ 1

2
− 2

n
=
n− 4

2n
.

We can repeat the above process and obtain uniform bounds for ψrealE , E ∈ Ĩ , in

Lqj , 1
qj

= 2p+1
qj−1 − 2

n
, j ≥ 1 until W 2,2 no longer embeds in Lqj+1 i.e.,

2p+ 1

ql
≥ 1

2
for 0 ≤ l ≤ j − 1 and

2p+ 1

qj
<

1

2
.

Note that such j exists due to (4.26) and q0 = 2p + 2. Moreover, in this n > 4 case

we now have qj > 0 and 2p+1
qj

< 1
2

implies qj > 4p + 2. Hence we get (4.27) with

q = qj.

We now finish the H2 bounds. By applying Riesz-Thorin interpolation for the

L4p+2 norm of ψrealE , E ∈ Ĩ , using (4.22) and (4.27) we get that there exists M4p+2 > 0
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such that ‖|ψrealE |2p|ψrealE ‖L2 ≤ (M4p+2)2p+1, for all E ∈ Ĩ , which combined with (4.19)

and the identity (4.23)gives uniform bounds in H2 :

‖ψrealE ‖H2 ≤ M̃ for all E ∈ Ĩ . (4.28)

We now show that E 7→ ψrealE has limit in H2 at E∗. We again start with the L2

limit. Now, for any sequence {En}n∈N ⊂ Ĩ such that limn→∞En = E∗,

‖ψrealEm − ψ
real
El
‖L2 ≤ ‖∂EψrealE ‖L2|Em − El| ≤

M

d
|Em − El| → 0 as m, l→∞.

Therefore, by completeness of L2(Rn,R), there exists ψrealE∗ ∈ L
2(Rn,R) such that

lim
n→∞

‖ψrealEn − ψ
real
E∗ ‖L2 = 0.

In fact, ψrealE∗ is independent on sequences {En} and consequently,

lim
E→E∗

‖ψrealE − ψrealE∗ ‖L2 = 0.

Also, since ψrealEn
is bounded in H2(Rn,R), there exists a subsequence Enk and ψ̃ ∈

H2(Rn,R) such that ψrealEnk
⇀ ψ̃ in H2 as k →∞. It implies that ψrealEnk

⇀ ψ̃ in L2 as

k → ∞, hence ψE∗ = ψ̃ ∈ H2(Rn,R). Moreover, ‖ψE∗‖H2 ≤ lim infk→∞ ‖ψEnk‖H2 ≤
M̃. To simplify the notation, let us redenote Enk = Ek, ψ

real
Enk

= ψrealEk
. As we did in

(4.23), we can rewrite ψrealEk
as:

ψrealEk
= (−∆ + V + i)−1[(i− Ek)ψrealEk

+ σ(2p+ 1)|ψrealEk
|2pψrealEk

]. (4.29)

Clearly, (−∆ + V + i)−1(i − Ek)ψrealEk
→ (−∆ + V + i)−1(i − E∗)ψrealE∗ in H2. Now,

we show that the remaining part also converges in H2. Let f : L4p+2 → L2 as
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f(φ) = |φ|2pφ. Then by mean value Theorem for the Fréchet derivative, we get:

‖|ψrealEk
|2pψrealEk

− |ψrealE∗ |
2pψrealE∗ ‖L2 (4.30)

≤ ‖Dfφ[(1− αk)|ψrealEk
|+ αk|ψrealE∗ |]|ψ

real
Ek
− ψrealE∗ |‖L2

≤ ‖(2p+ 1)[(1− αk)|ψrealEk
|+ αk|ψrealE∗ |]

2p|ψrealEk
− ψrealE∗ |‖L2

≤ (2p+ 1)‖[(1− αk)|ψrealEk
|+ αk|ψrealE∗ |]

2p‖L4p+2→L2‖ψrealEk
− ψrealE∗ ‖L4p+2

for some 0 < αk < 1. By the Hölder’s inequality, for any v ∈ L4p+2, ‖v‖L4p+2 = 1, we

have:

‖[(1− αk)|ψrealEk
|+ αk|ψrealE∗ |]

2pv‖L2 ≤ ‖[(1− αk)|ψrealEk
|+ αk|ψrealE∗ |]

2p‖Lq‖v‖L4p+2

= ‖[(1− αk)|ψrealEk
|+ αk|ψrealE∗ |]‖

2p
L2pq‖v‖L4p+2

≤ ((1− αk)‖ψrealEk
‖L2pq + αk‖ψrealE∗ ‖L2pq)2p‖v‖L4p+2

≤ ( sup
E∈[Ẽ,E∗]

‖ψrealE ‖L2pq)2p‖v‖L4p+2

. M̃2p (4.31)

where q = 2 + 1
p
. The Minkowski inequality can be applied to the third line because

2pq = 4p + 2 > 2. The last inequality is due to the fact that H2 is embedded

in L2pq because of Sobolev embedding Theorem and 0 < p < 2
n−2

. Thus, ‖[(1 −
αk)|ψrealEk

| + αk|ψrealE∗ |]
2p‖L4p+2→L2 is uniformly bounded. Moreover, by using Riesz

Thorin interpolation theorem we get:

‖ψrealEk
− ψrealE∗ ‖L4p+2 ≤ ‖ψrealEk

− ψrealE∗ ‖
a
L2‖ψrealEk

− ψrealE∗ ‖
1−a
L

2n
n−4

(4.32)

. ‖ψrealEk
− ψrealE∗ ‖

a
L2(2M̃)1−a

where a satisfies 0 < a < 1, 1
4p+2

= a
2

+ (1−a)(n−4)
2n

. (This a exists because 2 < 4p+2 <
2n+4
n−2

< 2n
n−4

.) Since the right hand side of (4.32) converges to 0 as Ek → E∗, it follows

that, combining with (4.31), the right hand side of (4.30) converges to 0 as Ek → E∗.
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Therefore, the right hand side of (4.29) converges to (−∆ + V + i)−1[(i−E∗)ψrealE∗ +

σ(2p + 1)|ψrealE∗ |
2pψrealE∗ ] in H2, while the left hand side converges to ψrealE∗ in H2 as

Ek → E∗. It follows that (ψrealE∗ , E∗) is a solution of (1.2).

Now Proposition 4.3 can be applied to (ψrealE∗ , E∗) because its spectral assumpptions

follows from negating (ii). Consequently E 7→ ψrealE can be C1 extended past E∗

which contradicts the choice of E∗.

For the repelling, σ > 0, case we define

E∗ = inf {Ẽ : Ẽ < Ek, and E 7→ ψrealE is an extension of the map in Remark 4.1 for

which 0 is not in the spectrum of L+ and is a simple eigenvalue of L−}.

As before, Remark 4.2 guarantees that the set above is non-empty but in this case

E < Ek, see Proposition 4.1. As before, we prove Theorem 4.2 by contradiction.

Obvious adaptation of the above argument e.g., the continuous spectrum of the

linearized operator is now at distance at least E∗ from zero, where E∗ > 0 by negating

(i) in Theorem 4.2, leads to the existence of a unique C1 extension of the E 7→ ψrealE

map below E∗ contradicting the choice of E∗.
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CHAPTER 5

DOUBLE WELL POTENTIALS WITH
ATTRACTIVE NONLINEARITY

In this chapter we show that the attractive nonlinearity causes a symmetry breaking

bifurcation along the ground state branch in problems with double well potentials

with large separation. The bifurcation is due to an eigenvalue of the linearized opera-

tor crossing zero. The eigenvalue corresponds to an antisymmetric eigenfunction (i.e.,

odd in x1) while up to the bifurcation point the ground states were symmetric (i.e.,

even in x1). Therefore, the bifurcation is of pitchfork type with the symmetric ground

state branch continuing past the bifurcation point but becoming unstable, while the

emerging asymmetric branch is stable for low power nonlinearities, p ≤
3 +
√

13

2
, but

unstable for higher power nonlinearities. These results extend the one dimensional

ones in [13, Corollary 2] and the cubic nonlinearity results in [14]. As for the first

excited branch we show that it can be uniquely continued much further compared

to the ground state branch, including parts of the strongly nonlinear regime.

5.1 Bifurcations of ground states

In this section we analyze in detail the branch of symmetric ground states bifurcat-

ing from zero at the lowest eigenvalue of a Schrödinger operator with double well

potential, see Proposition 4.2. We first show that for large enough separation of
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wells, case (ii) holds in our previous continuation Theorem 4.1 i.e., an eigenvalue of

the linearized operator approaches zero, see Theorem 5.1 where we also approximate

the end point E∗.. Then, we identify the eigenvalue as corresponding to an antisym-

metric eigenfunction and, by first restricting our analysis to symmetric solutions, we

infer that a limit point where the eigenvalue is zero does exist and the symmetric

branch can be continued past it. Moreover, a pitchfork bifurcation occurs at the

limit point and an asymetric branch of ground states emerges from it, see Theorem

5.2.

Theorem 5.1. Let σ < 0, p > 0 and potential V = Vs be a double-well potential.

Consider the branch of solutions (ψE, E) = (eiθψrealE , E), (ψrealE is a real-valued, θ ∈
[0, 2π]) of (1.2) which bifurcates from the lowest eigenvalue −E0,s of L0 = −∆+Vs(x),

see Proposition 4.1. Then there exists s∗ > 0 such that for all s ≥ s∗, there exists

E∗,s, E0,s < E∗,s <∞ such that this branch can be uniquely continued on (E0,s, E∗,s).

Moreover, as the parameter E approaches the endpoint E∗,s, the second eigenvalue

of L+(ψrealE , E), denoted by λ(E), which is simple, and only the second eigenvalue

approaches 0 i.e.,

lim
E↗E∗,s

λ(E) = 0.

Proof. Suppose (i) in Theorem 4.1 holds. Let us rewrite (1.2):

F (φ,E) = −∆φ+ Vsφ+ Eφ+ σ|φ|2pφ = 0 (5.1)

for a double-well potential Vs. By 2.4, the two lowest eigenvalues −E0,s < −E1,s of

−∆ + Vs are simple and satisfy

lim
s→∞
|Ek,s − w0| = 0, k = 0, 1 (5.2)

where −w0 is the lowest eigenvalue of −∆ + V0. Moreover, they are separated from

the rest of the spectrum i.e., there exist s0, d∗ > 0 such that for s > s0 and k = 0, 1

we have:

|Ei,s − τ | ≥ d∗, ∀τ ∈ Σ \ {E0,s, E1,s}, (5.3)
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where Σ is a spectrum of −∆ + Vs. Furthermore, the L2-normalized real-valued

eigenfunctions ψ0,s, ψ1,s of −∆+Vs corresponding to the eigenvalues E0,s, E1,s satisfy

lim
s→∞

∥∥∥ψi,s − Tsψ0 + (−1)iRTsψ0√
2

∥∥∥
H2

= 0, i = 0, 1 (5.4)

where ψ0 is the L2-normalized eigenfunction of −∆ +V0 corresponding to the lowest

eigenvalue −w0.

From Theorem 4.1 we have a unique two dimensional manifold of solutions of (5.1),

(E, θ) 7→ eiθψrealE , θ ∈ R, [E0,s, E∗,s) where E∗,s = ∞ since we are assuming that

(i) holds. Note that the map is C1 on (E0,s,∞), and ψE0,s = 0, where according

to Proposition 4.1, we can use the parametrization given by the projection onto the

eigenfunction of −∆ + Vs corresponding to eigenvalue E0,s.

(ψE, E) = (eiθψreal(a), E(a)) for a = 〈ψ0,s, ψ
real(a)〉, |a| < δ, θ ∈ [0, 2π),

for some δ > 0. Moreover, the following estimates hold:

ψE = eiθψreal(a) = aeiθψ0,s+O(|a|2p+1) i.e., ∃C1 > 0 : ‖ψE−aeiθψ0,s‖H2 ≤ C1|a|2p+1

(5.5)

and there exists C2 > 0 such that

∣∣E − (E0,s − σ‖ψ0,s‖2p+2
L2p+2 |a|2p

)∣∣ ≤ C2|a|4p. (5.6)

First, we note that the estimates (5.5) and (5.6) are uniform in the parameter

measuring the distance between wells i.e., there is s0 > 0 such that the constants

C1, C2 can be chosen independent of s ≥ s0. This follows from the fact that, for

s ≥ s0 given by (5.3), the estimates (5.5)-(5.6) rely on contraction mapping theorem

for h, see (4.5):

h = −σ [P⊥,s(−∆ + Vs + E)P⊥,s]
−1 |aψ0,s + h|2p(aψ0,s + h)

where P⊥,sφ = φ − 〈ψ0,s, φ〉ψ0,s. Since P⊥,s(−∆ + Vs + E)P⊥,s restricted to even
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functions is invertible with uniformly bounded inverse on {E > 0 : dist(−E,Σ \
{E0,s, E1,s}) ≥ d∗}, we can choose the Lipschitz constant for the map on the right

hand side, and, consequently, the C1, C2 above independent of s, see Lemma 2.1 for

a complete argument.

Now, since the dependence in E > E0,s of the ground state branch is at least C1, see

Remark 4.1, so is the dependence of the second eigenvalue of L+(ψrealE , E), λ(E, s) for

as long as it remains simple. The continuous dependence of the discrete spectrum of

L+(ψrealE , E) on E together with the non-discrete (continuous) spectrum being given

by the interval [E,∞) and the lowest two e-values of L+(0, E0,s) being separated

from rest of the spectrum, see (5.3), also gives us δ > 0, which, as above, can be

chosen independent of s > s0 such that, for all E ∈ [E0,s, E0,s + δ] :

|λ(E, s)− τ | ≥ d∗
2
, ∀τ ∈ ΣE \ {λ0(E, s), λ(E, s)}, (5.7)

where ΣE is the spectrum of L+(ψrealE , E) and λ0(E, s) is its lowest eigenvalue. More-

over, a collision between the first and second eigenvalue of L+(ψrealE , E) will make

its lowest eigenvalue non-simple in contradiction with the uniform ellipticity of this

operator. Consequently λ(E, s), E0,s ≤ E ≤ E0,s + δ remains simple, and together

with its L2-normalized real-valued eigenfunction ηE depends C1 on E and satisfies:

L+(ψrealE , E)ηE = ληE.

By differentiating the above with respect to E, we have:

L+(ψrealE , E)
dηE
dE

+ ηE + σ(2p+ 1)ηE
d

dE
|ψrealE |2p =

dλ

dE
ηE + λ

dηE
dE

.

Taking the scalar product with ηE, we get:

1 + (2p+ 1)σ

∫
Rn
η2
E

d

dE
|ψrealE |2pdx =

dλ

dE
. (5.8)

Thus, using Remark 4.1, see also (5.5), (5.6), we have for a→ 0 : lima→0E(a) = E0,s
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and

lim
a→0

d

dE
|ψrealE |2p = lim

E→E0,s

d

dE
|ψrealE |2p =

ψ2p
0,s

−σ‖ψ0,s‖2p+2
L2p+2

.

Then by the continuous dependence with respect to a of L+, we obtain:

dλ

dE
(a = 0, s) = lim

a→0

[
1+(2p+1)σ

∫
Rn
η2
E

d

dE
|ψrealE |2pdx

]
= 1− 2p+ 1

‖ψ0,s‖2p+2
L2p+2

∫
Rn
ψ2

1,sψ
2p
0,sdx.

Furthermore, using (5.4) we get:

lim
s→∞

∫
Rn
ψ2

1,sψ
2p
0,sdx = 2−p‖ψ0‖2p+2

L2p+2 (5.9)

lim
s→∞
‖ψ0,s‖2p+2

L2p+2 = 2−p‖ψ0‖2p+2
L2p+2 . (5.10)

Therefore, we have

lim
s→∞

lim
a→0

dλ

dE
(a, s) = −2p < 0.

We will show that the estimate of ηE in the formula above are uniform in s which

combined with the uniform estimate of d
dE
|ψrealE |2p given by (5.5) and (5.6), see also

the paragraph below them, gives

lim
s→∞
a→0

dλ

dE
(a, s) = lim

s→∞
lim
a→0

dλ

dE
(a, s) = −2p < 0. (5.11)

Indeed, the eigenvalue-eigenfunction problem for L+(ψrealE , E) can be rewritten as

H(η, λ, E) : H2(Rn,R)odd × R× R→ L2(Rn,R)× R:

H(η, λ, E) =

[
L+(ψrealE , E)η − λη

〈η, η〉 − 1

]

where H2(Rn,R)odd is H2(Rn,R) restricted to odd functions. Now this problem satis-

fies the hypothesis of Implicit Function Theorem at (η, λ, E) = (ψ1,s, E0,s−E1,s, E0, s)

because H(ψ1,s, E0,s − E1,s, E0, s) =

[
0

0

]
, the Frechét derivative of H with respect
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to (η, λ)

D(η,λ)H(η, λ, E) =

[
L+(ψrealE , E)− λ −η

2〈η, ·〉 0

]
is obviously continuous in (η, λ) uniformly in s, and

D(η,λ)H(ψ1,s, E0,s − E1,s, E0) =

[
−∆ + Vs + E1,s −ψ1,s

2〈ψ1,s, ·〉 0

]

is invertible with inverse that is uniformly bounded in s when restricted to odd η.

Indeed, combined with (5.4) and Lemma 2.1,

[D(η,λ)H(ψ1,s, E0,s − E1,s, E0)]−1 =

[
(−∆ + Vs + E1,s)

−1 − 〈ψ1,s, ·〉ψ1,s
1
2
ψ1,s

−〈ψ1,s, ·〉 0

]

is uniformly bounded in s. To get the uniform estimate of ηE, we will use the fixed

point argument in the proof of Implicit Function Theorem. LetAs := D(η,λ)H(ψ1,s, E0,s−

E1,s, E0). Note that H(η, λ, E) = ~0 is equivalent to K(η, λ, E) =

[
η

λ

]
−

[
ψ1,s

E0,s − E1,s

]
where

K(η, λ, E) =

[
η

λ

]
−

[
ψ1,s

E0,s − E1,s

]
− A−1

s H(η, λ, E)

The Frechét derivative of K(η, λ, E) with respect to (η, λ) is:

D(η,λ)K(η, λ, E) = I− A−1
s D(η,λ)H(η, λ, E)

and at (ψ1,s, E0,s − E1,s, E0), we get

D(η,λ)K(ψ1,s, E0,s − E1,s, E0) = 0.

Since D(η,λ)H(η, λ, E) is continuous with respect to (η, λ) uniformly in s and A−1
s is

uniformly bounded in s, there exist r, t > 0, independent of s, such that

‖D(η,λ)K(η, λ, E)‖ ≤ 1

2
, for all (η, λ, E) ∈ Br(ψ1,s, E0,s − E1,s)×Bt(E0).
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By Implicit Function theorem, there exists the solution of H(η, λ, E) = 0, (ηE, λE)

and by the fixed point argument, we get:

‖ηE − ψ1,s‖H2 + |λE − (E0,s − E1,s)| (5.12)

≤ 1

2
‖A−1

s ‖L2×R→H2×R‖L+(ψrealE , E)ψ1,s − (E0,s − E1,s)ψ1,s‖L2 +
1

2
r (5.13)

≤ 1

2
‖A−1

s ‖L2×R→H2×R‖Eψ1,s + σ|ψE|2pψ1,s‖L2 +
1

2
r (5.14)

and last bound converges to 0 uniformly in s due to (5.4) and (5.5). As a result, we

get the uniformly (in s) estimate of ηE. In conclusion, (5.11) holds.

Therefore, there exists s1 and ε1 such that:

dλ

dE
(a, s) < −p for all s > s1, |a| < ε1

and, by Remark 4.1, see also (5.6), there exist ε ≤ δ such that:

dλ

dE
(E, s) < −p for all s > s1, |E − E0,s| < ε. (5.15)

Also, from (5.2), there exists s2 such that for a = 0 : E(a = 0) = E0,s, and

0 < λ(E0,s, s) = E0,s − E1,s < εp for all s > s2. (5.16)

Now let s∗ = max{s̃0, s1, s2}. From (5.15) and (5.16), we conclude that, for any

s > s∗, the graph of E 7→ λ(E, s) is below the graph of y = −p(x−E0,s) + εp which

becomes negative at E = E0,s + ε, see Figure 5.1. Consequently λ(E, s) must cross

zero at some E = E∗,s, E0,s < E∗,s < E0,s+ε, which contradicts our assumption that

E∗,s =∞, i.e. that (i) in Theorem 4.1 holds. Consequently (ii) in the same theorem

holds with the second eigenvalue of L+ approaching zero at the end of the maximal

interval of unique continuation and remaining simple on this interval. All the other

spectrum except the lowest e-value is at distance at least d∗/2 from zero while the

lowest e-value λ0(E) cannot approach zero as following argument. Assume that there

exists a sequence En ↗ E∗,s such that λ0(En)→ 0 as n→∞. By min-max principle,
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E0,s − E1,s

E0,s

y

EE0,s + α1 E0,s + α2

σ < 0

εp

E0,s + ε

y = λ(E, s)

y = −p(E − E0,s) + εp

Figure 5.1: The above figure shows the branch of second eigenvalue of L+, λ(E, s) (the red
line), crosses zero at some finite E since y = −p(E − E0,s) + εp (the black line) crosses zero. The
blue and green dotted lines denote the lines with slope −2p, −p whose x-intercept is
E0,s + α1 = E0,s +

E0,s−E1,s

2p , E0,s + α2 = E0,s +
E0,s−E1,s

p , respectively. They give an

approximation of x-intercept of λ(E, s), E = E∗,s, corresponding to a∗(s).

we have:

λ0(En) ≤ 1

‖ψrealEn
‖2
L2

〈L+(ψrealEn , En)ψrealEn , ψ
real
En 〉

=
1

‖ψrealEn
‖2
L2

[
〈L−ψrealEn , ψ

real
En 〉+ 2pσ〈|ψrealEn |

2pψrealEn , ψ
real
En 〉

]
= 2pσ

‖ψrealEn
‖2p+2
L2p+2

‖ψrealEn
‖2
L2

Since λ0(En) → 0 as n → ∞, limn→∞ ‖ψrealEn
‖2p+2
L2p+2 = 0. However, by plugging ψrealEn
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into (5.1) and taking L2 scalar product with
ψrealEn

‖ψrealEn
‖2
L2
, we have:

−E0,s ≤ 〈(−∆ + Vs)ψ
real
En ,

ψrealEn

‖ψrealEn
‖2
L2

〉 = 〈(−σ|ψrealEn |
2pψrealEn − Enψ

real
En ),

ψrealEn

‖ψrealEn
‖2
L2

〉

= −σ
‖ψrealEn

‖2p+2
L2p+2

‖ψrealEn
‖2
L2

− En.

Thus, by taking limit to n → ∞, this inequality shows that −E0,s ≤ −E∗,s, which

contradicts that E∗,s > E0,s. Therefore, the lowest eigenvalue cannot approach zero

and only the second lowest eigenvalue λ(E, s) crosses zero.

Now, the theorem is completely proven and we have, for double well potentials

with large separation s > s∗,

E0,s +
E0,s − E1,s

2p
. E∗,s < E0,s +

E0,s − E1,s

p
. (5.17)

Note that, by Remark 4.1, this corresponds to a unique |a| = a∗(s) :

a∗(s) ≈
(
E0,s − E1,s

2p

)1/2p

.

Remark 5.1. Note that the estimate, given in (5.17), shows that the maximal

interval of unique continuation for this ground state branch is actually small, since

lims→∞ |E0,s−E1,s| = 0, in fact it is exponetially small in parameter s, see [20]. This

also implies that the bifurcation that follows happens in small amplitude regimes, at

the corresponding amplitude:

a∗(s) ≈
(
E0,s − E1,s

2p

)1/2p

see Remark 4.1.

Now, we show that the second eigenvalue of the linearization L+ crossing zero at
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E = E∗,s leads to a symmetry breaking bifurcation along the ground state branch.

This is the main result of this section:

Theorem 5.2. Let σ < 0, p > 1
2

and V = Vs be a double-well potential and consider

the branch of solutions (ψE, E) = (eiθψrealE , E), (ψrealE is a real-valued, θ ∈ [0, 2π]) of

(1.2) which bifurcates from the lowest eigenvalue −E0 = −E0,s of L0 = −∆ + Vs(x).

Then for all s ≥ s∗ (s∗ is the number from Theorem 5.1), there exists E∗ <∞ such

that (E0, E∗) is the maximal interval on which this branch can be uniquely continued.

Moreover, the set of solutions of (1.2) past E∗ in a H2×R neighborhood of (ψE∗ , E∗)

consists of exactly two surfaces of class at least C [2p]−1 intersecting along the circle

eiθψrealE∗ , 0 ≤ θ < 2π. Each of these surfaces is obtained by rotating (multiplicity by

eiθ) a curve of real valued solutions of (1.2).

Proof. We will let E0,s = E0 and E∗,s = E∗ for fixed s. Theorem 5.1 already

guarantees the existence of a finite E∗, such that the branch of solutions (ψE, E)

can be uniquely continued on the interval (E0, E∗), and the second eigenvalue of

L+(ψrealE , E), λ(E), and only it approaches zero as E ↗ E∗, while remaining simple

on this interval. Its corresponding L2 normalized eigenfunction must be odd in x1

because L+(ψrealE , E) commutes with the reflection operator R and the eigenfunction

is odd at the (0, E0) end point. By restricting our analysis to the Banach subspace

of even functions in H2, (note that this branch if formed by even functions, see

Proposition 4.2), we deduce that L+(ψrealE , E) restricted to even functions has no

eigenvalue approaching zero as E ↗ E∗. Indeed, Theorem 5.1 guarantees that only

an eigenvalue corresponding to an odd eigenvector λ(E) approaches zero and this

eigenvalue is removed by the restriction to even functions. Applying Theorem 4.1 in

this restricted Banach spaces we deduce that the branch can be extended past E∗.

In particular there exists a unique (ψrealE∗ , E∗) on this branch.

Let φ∗ be the L2-normalized real-valued eigenfunction of L+(ψrealE∗ , E∗) correspond-

ing to its zero eigenvalue. Since RL+(ψrealE∗ , E∗) = L+(ψrealE∗ , E∗)R, where R is the

reflection operator and 0 is a simple eigenvalue, φ∗ is anti-symmetric in x1. Further-

more, for fixed θ ∈ [0, 2π), (eiθψrealE , E) is uniquely continued on the same interval.

In order to prove the existence of the bifurcation at E∗, we use Lyapunov-Schmidt
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decomposition and Morse Lemma. The map F (φ,E) : H2(Rn,C)×R→ L2(Rn,C) :

F (φ,E) = −∆φ(x) + V (x)φ(x) + σ|φ(x)|2pφ(x) + Eφ(x)

has the Fréchet derivative at (φ,E) where φ is real-valued:

DφF (φ,E) =

[
L+(φ,E) 0

0 L−(φ,E)

]
.

Since iψrealE∗ is the L2-normalized eigenfunction of L−(ψrealE∗ , E∗) corresponding to its

zero eigenvalue, DφF (ψrealE∗ , E∗) is a Fredholm operator with

kerDφF (ψrealE∗ , E∗) = span{φ∗, iψrealE∗ }, ran DφF (ψrealE∗ , E∗) = [kerDφ∗F (ψrealE∗ , E∗)]
⊥.

Let kerDφF (ψrealE∗ , E∗) =span{φ∗, iψrealE∗ } = X1 and RanDφF (ψrealE∗ , E∗) = X2. Then,

P‖φ∗φ = 〈φ∗, φ〉realφ∗, P‖iψrealE∗
φ = 〈iψrealE∗ , φ〉realiψ

real
E∗ , P⊥φ = φ−P‖φ∗φ−P‖iψrealE∗

φ

are three orthogonal projections on L2 =span{φ∗, iψrealE∗ } ⊕ X2. By applying the

Lyapunov-Schmidt decomposition at (ψrealE∗ , E∗), the equation (1.2) is equivalent to

three following equations:

P⊥F (ψrealE∗ + a1φ∗ + a2iψ
real
E∗ + k(a1, a2, E), E) = 0 (5.18)

P‖φ∗F (ψrealE∗ + a1φ∗ + a2iψ
real
E∗ + k(a1, a2, E), E) = 0 (5.19)

P‖iψrealE∗
F (ψrealE∗ + a1φ∗ + a2iψ

real
E∗ + k(a1, a2, E), E) = 0 (5.20)

where a1φ∗ = P‖φ∗(φ − ψrealE∗ ), a2iψ
real
E∗ = P‖iψrealE∗

(φ − ψrealE∗ ), k = P⊥(φ − ψrealE∗ ).

Therefore, by Implicit Function Theorem, we get :

Lemma 5.1. There is an unique C [2p]+1 map k : U → L2 ∩ {φ∗, iψE∗}⊥ in some

neighborhood W ⊂ H2 × R of (ψE∗ , E∗), U ⊂ R3 of (0, 0, E∗) such that for any
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solution (φ,E) of (1.2),

∃!a1, a2 such that (a1, a2, E) ∈ U, φ = ψE∗ + a1φ∗ + a2iψ
real
E∗ + k(a1, a2, E)

where a1 = 〈φ− ψrealE∗ , φ∗〉real, a2 = 〈φ− ψrealE∗ , iψE∗〉real and

〈φ∗, F (ψrealE∗ + a1φ∗ + a2iψ
real
E∗ + k(a1, a2, E), E)〉real = 0 (5.21)

〈iψrealE∗ , F (ψrealE∗ + a1φ∗ + a2iψ
real
E∗ + k(a1, a2, E), E)〉real = 0. (5.22)

Our strategy is to make the LHS of (6.6) identically vanish so that Morse Lemma

can be applied, see Nirenberg [21] and [13]. To vanish the LHS of (6.6), we use a

similar argument in Proposition 2.

First, assume φ− ψrealE∗ ⊥ iψrealE∗ with respect to real scalar product. Then a2 = 0

and φ = ψrealE∗ +a1φ∗+k(a1, 0, E). We claim that in this case k(a1, 0, E) must be real

valued, hence φ is also real valued. To show this, we solve again (1.2) under restriction

a2 = 0 and P⊥(φ − ψE∗) is real valued. Define F⊥ : R × H2(Rn,R) ∩ X2 × R →
X2 ∩ L2(Rn,R) :

F⊥(a1, k(a1, 0, E), E)) = P⊥F (ψrealE∗ + a1φ∗ + k(a1, 0, E)).

This is well-defined because P⊥F (φ,E) maps from H2(Rn,C)×R to X2 ∩L2(Rn,C)

and for real-valued k, we have real-valued ψrealE∗ + a1φ∗+ k(a1, 0, E) and F (φ,E) and

P⊥ maps from real-valued to real-valued functions. Now

DkF⊥(0, 0, E∗) = L+(ψrealE∗ , E∗)

is an isomorphism from H2(Rn,R)∩X2×R→ X2∩L2(Rn,R). By Implicit Function

Theorem, ∃δ1, δ2 and a unique C [2p]+1 function k̃ : (−δ1, δ1)×(E∗−δ2, E∗+δ2)→ X2∩
L2(Rn,R) such that (a1, k̃(a1, E), E) is the unique solution of F⊥(a1, k(a1, 0, E), E))

in a neighborhood W̃ ⊂ (−δ1, δ1) × H2(Rn,R) × R of (0, 0, E∗). It gives another
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unique real-valued solution

φ = ψrealE∗ + a1φ∗ + k̃(a1, E)

of (5.18) when a2 = 0. By uniqueness, k̃(a1, E) = k(a1, 0, E). It follows that (6.6) is

zero since F (ψrealE∗ + a1φ∗ + k(a1, 0, E)) is real valued.

Next, consider the case φ − ψrealE∗ 6⊥ iψrealE∗ . In this case, we can use the argument

in Proposition 4.3, i.e.,there exists θ∗ such that

‖eiθ∗ψrealE∗ − φ‖H2 = inf
θ∈[0,2π)

‖eiθψrealE∗ − φ‖H2 .

Then, as we have seen in Propostion 4.3, φ−eiθ∗ψrealE∗ ⊥ ieiθ∗ψrealE∗ , which is equivalent

to e−iθ∗φ−ψrealE∗ ⊥ iψrealE∗ . By apply the Lyapunov-Schmidt decomposition to e−iθ∗φ,

we get

e−iθ∗φ = ψrealE∗ + 〈e−iθ∗φ− ψrealE∗ , φ∗〉φ∗ + k(a, 0, E).

Since the right-hand-side of the above equation is real-valued, 〈iψrealE∗ , F (e−iθ∗φ,E)〉 =

0. To finish the proof, use the same argument in [13].

5.2 Stability analysis

In this section we show that the pitchfork bifurcation given by Theorem 5.2 leads to

a change in the orbital stability of the ground states. We start by defining orbital

stability and by recalling a well known result we will subsequently use.

Definition 5.1 (see [27]). The family of bound states {ΨEe
−iEθ : θ ∈ [0, 2π)} is

orbitally stable if for all ε > 0 there exists δ > 0 such that if the initial data u(x, 0) =

u0 satisfies

inf
θ∈[0,2π)

‖u0(·)−ΨE(·)eiθ‖H2 < δ
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E0,s E∗,s E

H2

Figure 5.2: Bifurcation diagram for ground states of NLS equation with a double well potential
and attractive nonlinearity. The blue line represents the symmetric state bifurcating from a trivial
solution at E0,s and being continuing even past E∗,s. The red line represents the asymmetric state
bifurcating from the ground states at E∗,s. The set of solutions is two surfaces of curves
intersecting along the circle at E∗,s and there are three branches up to rotation for E > E∗,s : one
is symmetric and the other two is asymmetric.

then the solution u(x, t) of (1.1) satisfies

inf
θ∈[0,2π)

‖u(·, t)−ΨE(·)eiθ‖H2 < ε.

Theorem 5.3 (see [28, 29, 27, 30, 31]). Let n−(L+) = the number of negative eigen-

values of L+ along the branch of solutions.

(i) Suppose n−(L+) = 1 and L− is nonnegative. If

d

dE
‖ΨE‖2

L2 > 0,

then ΨE is orbitally stable.

(ii) Suppose L− is nonnegative. If n−(L+) ≥ 2, or, n−(L+) = 1 and d
dE
‖ΨE‖2

L2 < 0,

then ΨE is orbitally unstable.
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The following theorem guarantees that the manifolds of ground states near the

bifurcation point are of class C2 for all p ≥ 1/2 which allows us to calculate the

quantities in Theorem 5.3 along each branch emerging from the bifurcation point,

hence determine its orbital stability. The theorem generalizes the one dimensional

result in [13, Corollary 2]

Theorem 5.4. Let σ < 0, p ≥ 1
2
, and V = Vs be a double-well potential and s ≥ s∗

where s∗ satisfying Theorem 5.2. The two C [2p]−1 surfaces in a H2×R neighborhood

of (ψE∗ , E∗) which we obtained in Theorem 5.2 are in fact C2, and :

(a) the first surface, (ψE, E), is a continuation of the symmetric ground states past

E = E∗. It is also even in x1 and orbitally unstable past E∗.

(b) the second surface, (φ(a), E(a)) is the new asymmetric states past E = E∗ such

that

φ(a) = eiθψrealE∗ + aeiθφ∗ + eiθk(a,E) for some θ ∈ [0, 2π)

E(a) = E∗ +
Q

2
a2 + o(a2)

where a = 〈e−iθφ− ψrealE∗ , φ∗〉 ∈ R, k(a,E) is real-valued and

Q = − 1

λ′(E∗)

[
1

3
(2p+ 1)2p(2p− 1)σ〈φ2

∗, (ψ
real
E∗ )2p−2φ2

∗〉 (5.23)

−(2p+ 1)2(2p)2σ2〈(ψrealE∗ )2p−1φ∗, L+(0, E∗)
−1(ψrealE∗ )2p−1φ2

∗〉
]
.

φ is orbitally stable if Q > 0 and R > 0 and orbitally unstable if Q < 0, or Q > 0

and R < 0 where

R = lim
E→E∗

d‖φ‖2
L2

dE
= 2

λ′(E∗)

Q
+N ′(E∗), N(E) = ‖ψE‖2

L2 . (5.24)

Proof. For part (a), consider the Fréchet derivative of F (φ,E) at (ψrealE∗ , E∗) :

DφF (ψrealE∗ , E∗) =

[
L+(ψrealE∗ , E∗) 0

0 L−(ψrealE∗ , E∗)

]
.
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Figure 5.3: The figure shows what three (real-valued) branches look like for E > E∗,s. The top
left (blue) subplot represents the real-valued symmetric state ψrealE which is even in x1. The top
right (green) subplot represents the L2-normalized real-valued eigenfunction of L+(ψrealE∗

, , E∗)
corresponding to zero eigenvalue, φ∗, which is odd in x1. The bottom left and right (red) subplot
represent the two real-valued asymmetric states. Since the asymmetric state is written by
φ(a) = eiθψrealE∗

+ aeiθφ∗ + eiθk(a,E), there are two real-valued asymmetric states for a > 0 or

a < 0. Let φ+ and φ− be the real-valued asymmetric states: ψrealE∗
+ aφ∗ + k(a,E) for a > 0 or

a < 0 resp. They are the sum of one odd function aφ∗ and two even functions ψrealE and k(a,E).
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Note that ψrealE∗ = limE↗E∗ ψ
real
E , see Theorem 3 in [13]. It implies that ψrealE∗ is

even in x1. Thus, DφF (ψrealE∗ , E∗) transforms even functions into even functions (in

x1). Moreover, we note that KerDφF (ψrealE∗ , E∗) =span{φ∗, iψrealE∗ } and φ∗, which

is the eigenfunction corresponding the second eigenvalue of L+(ψrealE∗ , E∗), is odd.

Therefore, the functional D∗ : H2(Rn,R)even → L2(Rn,R)even, which is the func-

tional DφF (ψrealE∗ , E∗) restricted in real-valued and even functions, is an isomor-

phism. By using Implicit Function Theorem, a set of real-valued, even solutions

is uniquely extended in a neighborhood of (ψrealE∗ , E∗). Next, consider even solutions

which are perpendicular to iψrealE∗ . Then we can apply Implicit Function Theorem

again to the functional P⊥DφF (ψrealE∗ , E∗)even : H2(Rn,C)even∩[span{iψrealE∗ }]
⊥ →

L2(Rn,C)even∩[span{iψrealE∗ }]
⊥ where P⊥ is the projection onto [span{iψrealE∗ }]

⊥. More-

over, the unique continuation from above coincides with the unique real-valued even

continuation due to the similar argument in Proposition 4.3. Now, we can extend

the symmetric ground states ψE in the all even function space near E∗. If there

is a even solution near (ψE∗ , E∗) which is not orthogonal to iψE∗ , then there is a

θ∗ ∈ [0, 2π) such that the solution is orthogonal to ieiθ∗ψE∗ . Using the similar argu-

ment in Proposition 4.3, we conclude that the ground states is continued past E∗ in

the even function space.

Moreover, E 7→ ψE is C2. Since ψE is the eigenfunction corresponding the lowest

eigenvalue of L−(ψE, E) we can choose the real-valued strictly positive function ψrealE

for any E near E∗. Therefore, F (ψrealE , E) = (−∆ +V +E)ψrealE + |ψrealE |2pψrealE is C2

in E for p ≥ 1/2 and hence, L+ = DφF is C1. Differentiating F (ψrealE , E) ≡ 0, we

get
dψrealE

dE
= −(L+)−1ψrealE .

This follows that ψrealE is C2 in E. Also, since all even solutions near (ψE∗ , E∗) is of

the form (ψE, E) = (eiθψrealE , E), θ ∈ [0, 2π), ψE is C2 in E. From Theorem 5.1, the

second eigenvalue of L+(ψE, E), λ(E) is negative for E > E∗ while L−(ψE, E) does

not have strictly negative eigenvalues. If follows that eiEtψE is orbitally unstable for

E > E∗ by Theorem 5.2 in [14].

Now, we will prove part (b). From Theorem 5.2, the solution of (1.2) past E∗ can
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be decomposed as

φ = eiθψrealE∗ + aeiθφ∗ + eiθk(a,E) (5.25)

for some θ ∈ [0, 2π) where a = 〈e−iθφ−ψrealE∗ , φ∗〉 ∈ R, k(a,E) is real-valued. Consider

the continuation of symmetric ground states (ψE, E). Then a = 〈e−iθψE, φ∗〉 = 0,

hence

ψE = eiθψrealE∗ + eiθk(0, E) for some θ ∈ [0, 2π) (5.26)

〈φ∗, F (ψrealE∗ + k(0, E), E)〉 ≡ 0. (5.27)

Let F‖φ∗ = 〈φ∗, F (ψrealE∗ +aφ∗+k(a,E), E)〉. Then in the right hand side of equation,

a can be factored out. Define a function g(a,E) : R× R→ R

g(a,E) =

{ F‖φ∗
(a,E)−F‖φ∗ (0,E)

a
, if a 6= 0

∂F‖φ∗
∂a

(0, E), if a = 0
(5.28)

Then the second surface of solutions of (1.2) when a 6= 0 must satisfy

g(a,E) = 0.

We will show that

(a) g(0, E∗) = 0

(b) g ∈ C1 in a neighborhood of (a = 0, E = E∗)

(c) ∂g
∂E∗

(0, E∗) 6= 0, ∂g
∂a

(0, E∗) = 0.

If (a)-(c) hold, Implicit Function Theorem implies that there exists a unique C1 curve

a 7→ E(a) for |a| < ε for some ε with E(0) = E∗. Moreover from (c) we get

dE

da
(0) = −

∂g
∂a

(0, E∗)
∂g
∂E∗

(0, E∗)
= 0. (5.29)
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We also will show a 7→ E(a) is C2 and

d2E

da2
(0) = Q (5.30)

where Q is (5.23). Then

E(a) = E∗ +
Q

2
a2 + o(a2). (5.31)

Since k is C1, we get

∂k

∂a
= −(P⊥L+)−1P⊥L+φ∗,

∂k

∂E
= −(P⊥L+)−1P⊥[ψrealE∗ + k] (5.32)

and a 7→ φ(a) = eiθ(ψrealE∗ + aφ∗ + k(a,E(a))) is C2 since

∂φ

∂a
= eiθ(φ∗+

∂k

∂a
+
∂k

∂E
E ′(a)) = eiθ(φ∗−(P⊥L+)−1P⊥[L+φ∗+E

′(a)(ψrealE∗ +k)]) ∈ C1.

Moreover, we show

λ′(E∗) = 1 + (2p+ 1)2pσ

∫
Rn

(ψrealE∗ )2p−1φ2
∗
∂k

∂E
(0, E∗)dx. (5.33)

This is because of following facts. Using continuous dependence of spectral decom-

position of L+(ψE, E), with respect to E,

lim
E→E∗

‖ηE − φ∗‖H2 = 0

From the fact ∂ψE
∂E

= −L−1
+ ψE and (5.32), we get

lim
E→E∗

‖∂ψ
real
E

∂E
− ∂k

∂E
(0, E∗)‖H2 .

Therefore, by (5.8), (5.33) is proved.

Now, using (5.25),(5.32), (5.33) and the properties of the partial derivatives of

63



k(a,E), we obtain

λ1(a) = −λ′(E∗)Qa2 + o(a2) (5.34)

‖φ(a)‖2
L2 = N(E∗) + 1/2(2λ′(E∗) +QN ′(E∗))a

2 + o(a2) = N(E∗) + 1/2QRa2 + o(a2)

(5.35)

where λ1(a) is the second eigenvalue of L+(φ(a), E(a)). By theorem 5.3, when Q < 0

or Q > 0, R < 0, φ is unstable and when Q > 0 and R > 0, φ is stable by (5.34) and

(5.35).

Now we need to prove (a)-(c) and (5.30). By (5.28), g(0, E∗) =
∂F‖φ∗
∂a

(0, E∗) = 0

since
∂F‖φ∗
∂a

(a,E) = 〈φ∗, L+[φ∗ + ∂k
∂a

]〉 and L+(ψrealE∗ , E∗)φ∗ = 0. Therefore, (a) is

proved. For (b), we consider two cases. First, when a 6= 0, (b) is clear since for

p ≥ 1/2, F is C1 over real functions. To prove (b) for a = 0, we need to prove

lim
a→0,E→E∗

∂g

∂a
(a,E) exists, and lim

a→0,E→E∗

∂g

∂E
=
∂2F‖φ∗
∂E∂a

(0, E∗) (5.36)

since
∂2F‖φ∗
∂E∂a

(0, E∗) is continuous in E. Consider the first limit lima→0,E→E∗
∂g

∂a
(a,E).

For a 6= 0, we have

∂g

∂a
(a,E) = −

F‖φ∗ (a,E)− F‖φ∗ (0, E)

a2
+
〈φ∗, L+(a,E)[φ∗ + ∂k

∂a
(a,E)]〉

a

where L+(a,E) = L+(ψrealE∗ +aφ∗+k(a,E), E).Adding and subtract 1
a
〈φ∗, L+(a,E)[φ∗+

∂k
∂a

(0, E)]〉, we get

lim
a→0,E→E∗

∂g

∂a
(a,E) =

= lim
a→0,E→E∗

−
F‖φ∗ (a,E)− F‖φ∗ (0, E)− a〈φ∗, L+(a,E)[φ∗ + ∂k

∂a
(0, E)]〉

a2

+ lim
a→0,E→E∗

〈φ∗, L+(a,E)[φ∗ + ∂k
∂a

(a,E)]〉 − 〈φ∗, L+(a,E)[φ∗ + ∂k
∂a

(0, E)]〉
a

= I1 + I2.
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Note that I1 = −1
2
I2 provided I2 exists. For p > 1/2, we have

I2 = 〈φ∗, ∂aL+(0, E∗)[φ∗ +
∂k

∂a
(0, E∗)] + L+(0, E∗)

∂2k

∂a2
(0, E∗)〉 = 0

because k is C2 and L+ is C1. For p = 1/2, we get

I2 = lim
a→0,E→E∗

〈φ∗, (L+(a,E)− L+(0, E))[φ∗ + ∂k
∂a

(a,E)]〉
a

+ lim
a→0,E→E∗

〈φ∗, L+(0, E)[∂k
∂a

(a,E)− ∂k
∂a

(0, E)]〉
a

= I3 + I4.

For I3, we note that

(L+(a,E)− L+(0, E))[φ∗ +
∂k

∂a
(a,E)] =

= 2σ(|ψrealE∗ + aφ∗ + k(a,E)| − |ψrealE∗ + k(0, E))|[φ∗ +
∂k

∂a
(a,E)]

≤ 2σ|aφ∗ + k(a,E)− k(0, E)|
∣∣∣∣φ∗ +

∂k

∂a
(a,E)

∣∣∣∣
≤ 2σ|a|

(
|φ∗|+

∣∣∣∣∂k∂a (a′, E)

∣∣∣∣) ∣∣∣∣φ∗ +
∂k

∂a
(a,E)

∣∣∣∣ for some |a′| < |a|.

Therefore, the integrand is bounded by an integrable function:∣∣∣∣∣φ∗(L+(a,E)− L+(0, E))[φ∗ + ∂k
∂a

(a,E)](x)

a

∣∣∣∣∣
≤ 2σ

[
|φ∗|2(x) + |φ∗|(x)

∣∣∣∣∂k∂a (a′, E)

∣∣∣∣ (x)

] ∣∣∣∣φ∗ +
∂k

∂a
(a,E)

∣∣∣∣
since φ∗,

∂k
∂a
∈ L2(Rn)∩L3=2p+2(Rn). Moreover, since k ∈ H2 is continuous in (a,E),

lim
a→0,E→E∗

‖(ψrealE∗ + aφ∗ + k(a,E))− (ψrealE∗ + k(0, E∗))‖H2 = 0.

It implies that for any sequence {an}n∈Z, {En}n∈Z such that (an, En)→ (0, E∗), there
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exists a subsequence {ank}k∈Z, {Enk}k∈Z such that

lim
k→∞

ψrealE∗ + ankφ∗ + k(ank , Enk)(x) = ψrealE∗ + k(0, E∗)(x)

for almost everywhere x. Therefore there exists Nx such that for k > Nx, ψ
real
E∗ +

ankφ∗ + k(ank , Enk)(x) > 0 a.e. x because ψrealE∗ + k(0, E∗)(x) > 0 and we have

pointwise convergence a.e x :

lim
k→∞

|ψrealE∗ + ankφ∗ + k(ank , Enk)| − |ψrealE∗ + k(0, E∗)|(x)

ank

= lim
k→∞

ankφ∗(x) + k(ank , Enk)− k(0, E∗)(x)

ank
= φ∗(x) +

∂k

∂a
(0, E∗)(x).

Thus, by Lebesque Dominated Convergence Theorem we have

I3 = 〈φ∗, 2σ(φ∗ +
∂k

∂a
(0, E∗))

2〉 = 0.

Similarly, the integrand of I4 is in L1 and

lim
a→0,E→E∗

∂k
∂a

(a,E)− ∂k
∂a

(0, E∗)

a
= −(P⊥L+)−1P⊥

(
∂L+

∂a
(0.E∗)

)[
φ∗ +

∂k

∂a
(0, E∗)

]
.

Therefore, we get

I4 = 〈φ∗,−L+(0, E∗)(P⊥L+)−1P⊥2σ

[
φ∗ +

∂k

∂a
(0, E∗)

]2

〉 = 0.

Thus, the existence of lima→0,E→E∗
∂g
∂a

(a,E) is proved. Similarly, we can show

lim
a→0,E→E∗

∂g

∂E
=
∂2F‖φ∗
∂E∂a

(0, E∗).
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For a 6= 0,

∂g

∂E
=

1

a

(
∂F‖φ∗
∂E

(a,E)−
∂F‖φ∗
∂E

(0, E)

)
=

1

a

(
a+ 〈φ∗, L+(a,E)

∂k

∂E
(a,E)〉 − 〈φ∗, L+(0, E)

∂k

∂E
(0, E)〉

)
.

By adding and subtract 1
a
L+(0, E) ∂k

∂E
(a,E) we get

lim
a→0,E→E∗

∂g

∂E
= 1 + lim

a→0,E→E∗

〈φ∗, (L+(a,E)− L+(0, E)) ∂k
∂E

(a,E)〉
a

+ lim
a→0,E→E∗

〈φ∗, L+(0, E)
(
∂k
∂E

(a,E)− ∂k
∂E

(0, E)
)
〉

a
= 1 + Ĩ1 + Ĩ2.

The same argument of I1 and I2 in limit of ∂g
∂a

gives

Ĩ1 = (2p+ 1)2pσ〈φ∗, (ψrealE∗ + k(0, E∗))
2p−1(φ∗ +

∂k

∂a
(0, E∗))

∂k

∂E
(0, E∗)〉

Ĩ2 = 〈φ∗, L+(0, E∗)
∂2k

∂E∂a
(0, E∗)〉

which implies

lim
a→0,E→E∗

∂g

∂E
=
∂2F‖φ∗
∂E∂a

(0, E∗) = λ′(E∗) 6= 0.

Thus, (b) and (c) are proved and there exists C1 curve a 7→ E(a) in some neighbor-

hood (0, E∗) with

E(0) = E∗,
dE

da
(0) = −

∂g
∂a

(0, E∗)
∂g
∂E

(0, E∗)
= 0.

Furthermore, we can show that E(a) is C2, which is clear for a 6= 0, p > 1/2 since g

is C2. For a 6= 0, p = 1/2, we can use the fact that ψE(a) = ψrealE∗ +aφ∗+k(a,E(a)) is

a solution of the elliptic equation L−ψE(a) = 0 which implies ψrealE∗ +aφ∗+k(a,E(a))
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is strictly positive for all x. Therefore, we can prove that ∂g
∂a

and ∂g
∂E

are C1 in (a,E)

by using the similar argument for (5.36), which includes pointwise convergence. For

a = 0,

E ′′(0) = lim
a→0

dE
da

(a)− dE
da

(0)

a− 0
= − 1

λ′(E∗)
lim
a→0

1

a

∂g

∂a
(a,E(a))

=− 1

λ′(E∗)

[
1

3
(2p+ 1)2p(2p− 1)σ〈φ2

∗, (ψ
real
E∗ )2p−2φ2

∗〉

− (2p+ 1)2(2p)2σ2〈(ψrealE∗ )2p−1φ∗,−L+(0, E∗)
−1(ψrealE∗ )2p−1φ2

∗〉
]
.

The limit of 1
a
∂g
∂a

(a,E(a)) can be obtained by the same argument as the limit of
∂g
∂a

(a,E(a)), only except that for 1/2 < p < 1, in order to apply Lebesque Dominated

Convergence Theorem we need:

|ψrealE∗ + aφ∗ + k(a,E(a))|2p−2|φ∗| ∈ L2 ∩ L∞. (5.37)

Since φ∗ and ψE(a) = ψrealE∗ +aφ∗+k(a,E(a)) > 0 are solutions of the uniform elliptic

equations, by Theorem A.3 in [25], we have:

|φ∗(x)| ≤ C(δ)e(−
√
E∗−δ|x|), ψE(a) ≥ C(ε)e−(

√
E∗+ε|x|)

for δ > 0 and ε > E(a) − E∗. Thus, for E(a) − E∗ < ε̃ <
E∗

(2− 2p)2
− E∗, we can

choose 0 < δ < E∗ − (2− 2p)2(E∗ + ε̃) in which case :

|ψ(a)|2p−2|φ∗| < Ce−η|x|

where η = (E∗ − δ)
1
2 − (2 − 2p)(E∗ + ε̃)

1
2 > 0. It implies (5.37) and finishes the

proof.

Corollary 5.1. Under the assumptions of Theorem 5.4, the asymmetric states in

Theorem 5.4-(b) is orbitally stable if p < p∗ =
3 +
√

13

2
and orbitally unstable if

p > p∗.
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Proof. We will figure out the sign of Q = Q(s), R = R(s) with

lim
s→∞

a2−2p
∗ (s)Q(s) = −σ22−p

3
(2p+ 1)(p+ 1)‖ψ0‖2p+2

L2p+2 (5.38)

lim
s→∞

a2−2p
∗ (s)R(s) =

2p(−p2 + 3p+ 1)

−σ(2p+ 1)(p+ 1)p‖ψ0‖2p+2
L2p+2

. (5.39)

By above the limits and choosing some s̃∗ which is larger than s∗, Q(s) > 0 for all

s ≥ s̃∗ and R(s) > 0 if p < p∗ =
3 +
√

13

2
while R(s) < 0 if p > p∗ for all s ≥ s̃∗.

It remains to compute (5.38) and (5.39). For (5.38), we already showed that

lim
s→∞

λ′(E∗) = −2p.

Moreover, by (5.4) and the uniform estimate in s, (5.5), we get

lim
s→∞
a→0

∫
Rn
a−q(ψrealE )qη2k

E dx = 21−q/2−k‖ψ0‖q+2k
Lq+2k , for all q ≥ 0, k = 1, 2, ... (5.40)

Recall that ηE is the L2-normalized real-valued eigenfunction corresponding to the

second eigenvalue of L+(ψrealE , E). Thus, we obtain

lim
s→∞

a2−2p
∗ 〈φ2

∗, (ψ
real
E∗ )2p−2φ2

∗〉 = 2−p‖ψ0‖2p+2
L2p+2 .

The only remaining part forQ is calculating a2−2p〈(ψrealE∗ )2p−1φ∗, L+(0, E∗)
−1(ψrealE∗ )2p−1φ2

∗〉.
Since L+(0, E∗)ψ

real
E∗ = L+(ψrealE∗ , E∗)ψ

real
E∗ = σ2p(ψrealE∗ )2p+1, for even functions, it is

equivalent to

L+(0, E∗)
−1(ψrealE∗ )2p+1 =

1

2pσ
ψrealE∗ .

Also, since

(ψrealE∗ )2p−1φ2
∗ = (ψrealE∗ )2p−1

[
(ψrealE∗ )2

‖ψrealE∗
‖2
L2

+

(
φ2
∗ −

(ψrealE∗ )2

‖ψrealE∗
‖2
L2

)]
,
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we have

〈(ψrealE∗ )2p−1φ∗, L+(0, E∗)
−1(ψrealE∗ )2p−1φ2

∗〉 = I1 + I2 + I3

where

I1 =
1

‖ψrealE∗
‖4
L2

〈(ψrealE∗ )2p+1φ∗, L+(0, E∗)
−1(ψrealE∗ )2p+1〉 =

1

2pσ‖ψrealE∗
‖4
L2

∫
Rn

(ψrealE∗ )2p+2dx

I2 =
2

‖ψrealE∗
‖2
L2

〈L+(0, E∗)
−1(ψrealE∗ )2p+1, (ψrealE∗ )2p−1

(
φ2
∗ −

(ψrealE∗ )2

‖ψrealE∗
‖2
L2

)
〉

=
1

pσ‖ψrealE∗
‖2
L2

∫
Rn

(ψrealE∗ )2p

(
φ2
∗ −

(ψrealE∗ )2

‖ψrealE∗
‖2
L2

)
dx

I3 = 〈(ψrealE∗ )2p−1

(
φ2
∗ −

(ψrealE∗ )2

‖ψrealE∗
‖2
L2

)
, L+(0, E∗)

−1(ψrealE∗ )2p−1

(
φ2
∗ −

(ψrealE∗ )2

‖ψrealE∗
‖2
L2

)
〉.

Using (5.40), a2−2p
∗ I1 and a2−2p

∗ I2 converges to zero as s → ∞. Also,we can expand

I3 by using spectral Theorem. Due to the facts that the only first two eigenvalues of

L+(0, E∗) approaches zero and I3 contains only even functions, we get

lim
s→∞

a2−2p
∗ I3 = lim

s→∞
a2−2p
∗

|〈(ψrealE∗ )2p−1
(
φ2
∗ −

(ψrealE∗ )2

‖ψrealE∗ ‖
2
L2

)
, η0,E∗〉|2

λ0(E∗)

where λ0(E∗) is the lowest eigenvalue of L+(0, E∗) and η0,E∗ is the corresponding

eigenfunction. By L’Hospital’s rule, the latter becomes zero because the derivative

of the numerator is zero, while the derivative of denominator is:

lim
s→∞

λ′0(E∗) = −2p < 0

by the similar argument of (5.11). Combining all computations, we get (5.38).

Finally, in order to show (5.39), we compute N ′(E∗) first. Using (5.5) and (5.6),

we have

N ′(E∗) = lim
a→a∗

2〈dψ
real
E

da

(
dE

da

)−1

, ψrealE 〉 = lim
a→a∗

2a+O(|a|2p+1)

−2pσ‖ψ0,s‖2p+2
L2p+2a2p−1 +O(|a|4p−1)

.
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Taking the limit in s, we get

lim
s→∞

a2p−2
∗ N ′(E∗) =

2p

−σp‖ψ0‖2p+2
L2p+2

.

Combining this with (5.11), (5.38) and (5.24), the definition of R, we attain (5.39).

5.3 Unique continuation of the first excited states

In this section we show that the secondary bifurcation occurring along the ground

state branch and analyzed above does not occur along the first excited branch. More

precisely, we can prove that the branch ψ1(E), which bifurcates from 0 at the second

lowest eigenvalue E1, can be uniquely continued to large values of E and ‖ψ1(E)‖L2 .

Theorem 5.5. Let σ < 0, V = Vs be a double well potential. Let ψ1(E) be the first

excited state bifurcating from 0 at E1,s. Then there exist s̃ and c > 0 such that for

all s ≥ s̃, the first excited branch can be extended at least on (E1,s, E1,s + c).

Proof. Let λ−i,s(E) respectively λ+
i,s(E), be the i-th eigenvalue of L−(ψ1(E), E) re-

spectively L+(ψ1(E), E), for V = Vs and let N = ‖ψ1(E)‖L2 . If (i) in The-

orem 4.1 holds, the proof is done because ψ1(E) can be uniquely continued on

(E1,s,∞). Thus, suppose (ii) in Theorem 4.1 holds: ψ1(E) can be uniquely extend

on I = (E1,s, E∗,s) where E∗,s is finite and there exists a sequence {En}n∈N ⊂ I

such that limn→∞En = E∗,s, and a corresponding sequence of nonzero eigenvalues

of L+(ψ1(En), En) or L−(ψ1(En), En), {λn}m∈N, such that limn→∞ λn = 0. We will

show that for some c > 0, E∗,s must be greater than E1,s + c for large enough s.

Let us focus on the first and second eigenvalues of linearizations. Since L−(ψ1(E1,s), E1,s) =

L0 + E1,s, λ
−
1,s(E1,s) is E1,s − E0,s < 0. Using continuity of discrete eigenvalues, we

have λ−2,s(E) ≡ 0 for all E1,s ≤ E < E∗,s because 0 is an eigenvalue of L−(ψ1(E), E)

for all E1,s ≤ E < E∗,s and λ−2,s(E1,s) = 0, see Remark 4.2. We note that eigen-

functions corresponding to λ−1,s(E) are even in x1, see Proposition 4.2. By Theorem
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4.1, ψ1(E) can be smoothly extended past E∗,s in the Banach space restricted to odd

functions. In particular, there exists a solution (ψ1(E∗,s), E∗,s) unique up to rotation

restricted to odd functions.. Assume that λ−1,s(En) = λn. By continuity of discrete

eigenvalues, λ−1,s(E∗,s) = 0 = λ−2,s(E∗,s), which is a contradiction with the simplicity

of the lowest eigenvalue of the second order elliptic operator L−(ψE∗,s , E∗,s).

Similarly to L−, λ+
1,s(E1,s) is E1 − E0 < 0 at N = 0 and λ+

2,s(E1,s) is 0. We can

show that λn cannot be λ+
2,s(En) because there exists δ > 0, d > 0 such that

λ+
2,s(E) ≤ −d < 0 for all E ∈ [E∗,s − δ, E∗,s).

Indeed, by the min-max principle, we have for any n ∈ N:

λ+
2,s(En) = inf

φ∈H2,‖φ‖L2=1,φ⊥ψ+
0,s(En)

〈φ, L+(ψ1(En), En)φ〉

≤ 1

‖ψ1(En)‖2
L2

〈ψ1(En), L+(ψ1(En), En)ψ1(En)〉

=
1

‖ψ1(En)‖2
L2

〈ψ1(En), L−(ψ1(En), En)ψ1(En) + 2pσ|ψ1(En)|2pψ1(En)〉

= 2pσ
‖ψ1(En)‖2p+2

L2p+2

‖ψ1(En)‖2
L2

< 0

where let ψ+
0,s(E) be the eigenfunction corresponding λ+

1,s(E) and we used that

ψ+
0,s(En) is even, ψ1(En) is odd hence ψ1(En) ⊥ ψ+

0,s(En). Let us assume that

λ+
2,s(En)→ 0 as En ↗ E∗,s. Then from the above inequality, we get:

lim
n→∞

‖ψ1(En)‖2p+2
L2p+2

‖ψ1(En)‖2
L2

= 0.

However, since L−(ψ1(En), En)ψ1(En) = 0, by taking the inner product with ψ1(En)

‖ψ1(En)‖2
L2
,

we obtain:

−En − σ
‖ψ1(En)‖2p+2

L2p+2

‖ψ1(En)‖2
L2

= 〈 ψ1(En)

‖ψ1(En)‖L2

, (−∆ + V )
ψ1(En)

‖ψ1(En)‖L2

〉 ≥ −E1,s
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The last inequality comes from the min-max principle, for −∆ + V :

−E1,s = inf
φ∈H2,‖φ‖L2=1,φ⊥ψ0,s

〈φ, (−∆ + V )φ〉

by plugging in φ = ψ1(En)
‖ψ1(En)‖L2

which is odd hence orthogonal to ψ0,s which is even.

By passing to the limit as n → ∞, we get E1,s ≥ E∗,s, which is a contradiction.

Therefore, λn cannot be λ+
2,s(En) and it follows that λn also cannot be λ+

1,s(En) which

is less than λ+
2,s(En). In conclusion, the sequence of eigenvalues from the assumption,

λn, cannot be the first or the second eigenvalues of linearizations L− and L+.

spec of L−

N

E1,s − E0,s 0

λ−
2,s

λ−
1,s

[
E1,s

ess spec of L−

spec of L+

N

E1,s − E0,s 0
[

λ+
1,s λ+

2,s

E1,s

ess spec of L+

Figure 5.4: λ−i,s and λ+i,s denote the i-th eigenvalue of L− and L+ respectively, and

N = ‖ψ1(E)‖2L2 . The left graph shows that λ−1,s cannot cross zero because of the simplicity of the

lowest eigenvalue of elliptic second order operator. The right graph shows that λ+1,s and λ+2,s must

be less than λ−1,s and λ−2,s resp., since L+ − L− = σ2p|ψ1|2p < 0, which eliminates the possibility

that λ+1,s and λ+2,s cross zero.

Therefore, if (ii) in Theorem 4.1 holds, λn must be the third eigenvalue of L+(ψ1(En), En)

or L−(ψ1(En), En). If the branch of third eigenvalue of linearizations crosses zero,

the third eigenvalue of L+(ψ1(E), E) would cross zero first because L+(ψ1(E), E) <

L−(ψ1(E), E) implies λ+
3,s(En) ≤ λ−3,s(En). Hence, we can consider only the case that

λ+
3,s(En) = λn. Let d∗ be the distance between the lowest eigenvalue and the rest of

the spectrum of the operator with the single well potential. Namely,

d∗ = dist(−w0,Σ(−∆ + V0) \ {−w0}) (5.41)
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where −w0 is the lowest eigenvalue of −∆+V0. By Proposition 4.1, we get that there

exists δ1 > 0 such that for |a| < δ1:

‖ψ1(E)− aψ1,s‖H2 ≤ C1,s|a|2p+1 (5.42)

|E − E1,s − σ‖ψ1,s‖2p+2
L2p+2 |a|2p| ≤ C2,s|a|4p (5.43)

where a = 〈ψ1,s, ψ1(E)〉. By the same argument of (5.5) and (5.6), there exist s1, C1

and C2 independent of s ≥ s1 such that C1,s ≤ C1, C2,s ≤ C2, and C1, respectively

C2, satisfies (5.42), respectively (5.43) for any s ≥ s1. Therefore, we obtain:

‖L+(ψ1(E), E)− (−∆ + Vs + E1,s)‖H2→L2

= ‖(−∆ + Vs + E) + σ(2p+ 1)|ψ1(E)|2p − (−∆ + Vs + E1,s)‖H2→L2

= ‖E − E1,s + σ(2p+ 1)|ψ1(E)|2p‖H2→L2

≤ |σ‖ψ1,s‖2p+2
L2p+2 |a|2p|+ |σ|(2p+ 1)‖ψ1,s‖2p

L4p |a|2p + C2|a|4p + C1|a|4p
2+2p.(5.44)

Let −w1 be the second lowest eigenvalue of −∆ + V0, if there exists. Otherwise, let

w1 = 0. Then we note that

d∗ = w0 − w1.

Moreover, there exists s2 such that for s ≥ s2,

|E1,s − w0| <
d∗
4
,

|E2,s − w1| <
d∗
4
.

To emphasis that L+(ψ1(E), E) = −∆ + Vs + E + σ(2p+ 1)|ψ1(E)|2p depends on

s, let us use the notation Ls+(ψ1(E), E) = L+(ψ1(E), E). Now, we claim that for λ =

E1,s−w0 + d∗
2
, there exists s̃ ≥ s2, δ > 0 such that (Ls+(ψ1(E), E))−λ)−1 : L2 → H2

is uniformly bounded for s ≥ s̃ and |a| < δ. It follows that there is no eigenvalue

of Ls+(ψ1(E), E) crosses E = E1,s − w0 + d∗
2
, which implies that no eigenvalue of

Ls+(ψ1(E), E) crosses 0. Due to the fact that E1,s −w0 + d∗
2

is greater than zero and
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E1,s − E0,s E1,s − w0 0 = E1,s − E1,s E1,s − w0 + d∗
2

E1,s − E2,s E1,s − w1 spec of L+

N

d∗

< d∗
4

< d∗
4

Figure 5.5

less than E1,s−E2,s for s ≥ s2, and eigenvalues of Ls+(ψ1(E), E) are continuous with

respect to a, we can conclude that λ+
3,s(E) cannot cross zero. To show this, let us

rewrite (Ls+(ψ1(E), E))− λ)−1 as:

(Ls+(ψ1(E), E))−λ)−1 = (−∆+Vs+E1,s−λ)−1[I+(B−A)(−∆+Vs+E1,s−λ)−1]−1.

where B−A = Ls+(ψ1(E), E)− (−∆ + Vs +E1,s). Since E1,s− λ = w0− d∗
2
, we have

dist(−(E1,s − λ),Σ(−∆ + Vs)}) >
d∗
4
.

By Remark 2.2, there exists sM ≥ s2,M > 0 such that for all s ≥ sM , we have:

‖(−∆ + Vs + E1,s − λ)−1‖L2→H2 ≤M. (5.45)

Next, by (5.44), there exists s̃M and δM such that for s ≥ s̃M , |E − E1,s| < δM , we

have:

‖(B − A)‖H2→L2 ≤ 1

2M
.
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It follows that

‖(B − A)(−∆ + Vs + E1,s − λ)−1‖L2→L2

≤ ‖(B − A)‖H2→L2‖(−∆ + Vs + E1,s − λ)−1‖L2→H2

≤ 1

2M
·M

≤ 1

2
.

Consequently, for s ≥ max{sM , s̃M} and |E − E1,s| < δM , I + (B − A)(−∆ + Vs +

E1,s − λ)−1 is invertible and

‖[I + (B − A)(−∆ + Vs + E1,s − λ)−1]−1‖L2→L2 ≤ 2.

Combined with (5.45), we obtain and for s ≥ max{sM , s̃M} and |E − E1,s| < δM :

‖(Ls+(ψ1(E), E))− λ)−1‖L2→H2 ≤ 2M.

By (5.43), there exist s1 and δ which is independent of s such that |a| < δ implies

|E − E1,s| < δM . Hence, for s ≥ s̃, where s̃ = max{sM , s̃M , s1}, and for |a| < δ :

‖(Ls+(ψ1(E), E))− λ)−1‖L2→H2 ≤ 2M

which complete the claim. By the above argument, we obtain that for s ≥ s̃:

|λ+
3,s(E)− 0| ≥ E1,s − w0 +

d∗
2
>
d∗
4

for |a| < δ. (5.46)

Now, we show that there exists c > 0 such that for all s ≥ s̃, ψ1(E) can be extended

on (E1,s, E1,s + c). From Proposition 4.1, there exists δ̃ such that E is defined as a

increasing function of a for |a| < δ̃:

E(a) = E(|a|) = E1,s − σ|a|2p‖ψ1,s‖2p+2
L2p+2 +O(|a|4p).

Let c = E(min{δ, δ̃}) − E1,s. Then for any En ∈ (E1,s, E1,s + c), where En is the
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sequence of eigenvalues from the assumption, |λ+
3,s(En) − 0| > d∗

4
. It completes the

theorem.

Corollary 5.2. Let σ < 0, V = Vs be a double well potential. Let ψ1(E) be the first

excited state bifurcating from 0 at E1,s. Then there exists s̃1 such that for all s ≥ s̃1,

ψ1(E) can be parametrized by N = ‖ψ1(E)‖L2 and it can be extended at least on the

interval (0, ‖ψE∗,s‖L2) where ‖ψE∗,s‖L2 is a L2 norm of the ground state bifurcation

point.

Proof. From Proposition 4.1, there exists δ such thatN = ‖ψ1(E)‖L2 is an increasing

function of E on (E1,s, E1,s + δ). By Theorem 5.5, there exists s̃ such that for any

s ≥ s̃, ψ1(E) can be uniquely (up to rotation) extended at least on the interval

(0, ‖ψ1(Ẽs)‖L2) where Ẽs = E1,s+min{δ, c}. Since a 7→ E(a) is invertible near a = 0,

see Remark 1.1, we can replace the interval of the previous statement (0, ‖ψ1(Ẽs)‖L2)

with (0, ‖ψ1(a = ε∗)‖L2) for some ε∗ > 0.

By Theorem 5.1, there exists s∗ such that for any s ≥ s∗, the ground state ψE

bifurcates at

|a∗(s)| ≈
(
E0,s − E1,s

−2p

)1/2p

.

In fact, 0 < |a∗(s)| ≤

(
E0,s − E1,s

−p

)1/2p

. By (5.2),

lim
s→∞

a∗(s) = 0. (5.47)

From Proposition 4.1, we have

‖ψE‖2
L2 ≤ |a|2‖ψ0,s‖2

L2 + ‖h(a)‖2
L2

|a|2‖ψ1,s‖2
L2 ≤‖ψ1(E)‖2

L2 ≤ |a|2‖ψ1,s‖2
L2 + ‖h1(a)‖2

L2

where h(a) respectively h1(a) are orthogonal complements of ψE respectively ψ1(E)

to ψ0,s respectively ψ1,s. Also, ‖h(a)‖2
L2 , ‖h1(a)‖2

L2 = O(|a|4p+2). Therefore, combin-
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ing with (5.47), we can choose some s1 such that:

|a∗(s)| <
ε∗√

2

‖h(a∗(s))‖2
L2 = O(|a∗(s)|4p+2) <

ε2∗
8
‖ψ0‖2

L2

for any s ≥ s1. Moreover, by (5.4), there exists s2 such that for any s ≥ s2 :

|‖ψi,s‖2
L2 − ‖ψ0‖2

L2| <
‖ψ0‖2

L2

4
i = 1, 2.

Let max{s̃, s1, s2} = s̃1. Then, for any s ≥ s̃1,

‖ψE∗‖2
L2 ≤ |a∗(s)|2‖ψ0,s‖2

L2 + ‖h(a∗(s))‖2
L2 <

ε2∗
2

(
‖ψ0‖2

L2 +
‖ψ0‖2

L2

4

)
+
ε2∗
8
‖ψ0‖2

L2

=
3ε2∗
4
‖ψ0‖2

L2 ≤ ε2∗‖ψ1,s‖2
L2 ≤ ‖ψ1(a = ε∗)‖2

L2 .

Thus, for s ≥ s̃1, ψ1(E) can be extended at least on the interval (0, ‖ψE∗‖L2) ⊆
(0, ψ1(a = ε∗)‖2

L2).

a

EE0,sE1,s

ε∗

a∗(s)

ψ1(E) ψE

Figure 5.6
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Remark 5.2. We just proved that bifurcations along the first excited branch in

attractive case cannot happen at small amplitude (perturbation regime). The exis-

tence of such bifurcations at large amplitude is left to a forthcoming paper which

uses global techniques, see [15].
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CHAPTER 6

DOUBLE WELL POTENTIALS WITH
REPELLING NONLINEARITY

In this chapter we show, for the first time to our knowledge, that the repelling

nonlinearity causes a symmetry breaking bifurcation along the first excited state

branch in problems with double well potentials with large separation. Our techniques

also show that the ground state branch can be uniquely continued past the low

amplitude regime. Note that the results in [32] show that a connected component of

this branch reaches E = 0. We claim and show that there are no bifurcation along

this branch until it reaches E = 0.

6.1 Bifurcations of first excited states

In this section we analyze in detail the branch of antisymmetric ground states bi-

furcating from zero at the second lowest eigenvalue of a Schrödinger operator with

double well potential, see Proposition 4.2. We first show that for large enough sep-

aration of wells, case (ii) holds in our previous continuation Theorem 4.2 i.e., an

eigenvalue of the linearized operator approaches zero. Then, we identify the eigen-

value as corresponding to a symmetric eigenfunction and, by first restricting our

analysis to antisymmetric solutions, we infer that a limit point where the eigenvalue

is zero does exist and the antisymmetric branch can be continued past it. Moreover,

a pitchfork bifurcation occurs at the limit point and an asymetric branch of first
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excited states emerges from it, see Theorem 6.2.

Theorem 6.1. Let σ > 0 and potential V = Vs be a double-well potential. Consider

the branch of solutions (ψ1(E), E) = (eiθψ1(E)real, E), (ψ1(E)real is a real-valued,

θ ∈ [0, 2π]) of (1.2) which bifurcates from the second lowest eigenvalue −E1,s of L0 =

−∆+Vs(x). Then there exists s∗∗ > 0 such that for all s ≥ s∗∗, the lowest eigenvalue

of L+(ψ1(E), E), denote it by µ(E), and only the lowest eigenvalue approaches 0 as

E ↘ E∗∗,s for some E∗∗,s, 0 < E∗∗,s < E1,s.

Proof. Assume that (i) in Theorem 4.2 holds. Let us use the same notation in proof

of Theorem 5.1. From Proposition 1, there exist δ > 0 and solutions of (5.1) :

(ψ1(E), E) = (eiθψ1(a), E(a)) for |a| < δ, θ ∈ [0, 2π)

bifurcating from (0, E1,s) such that

ψ1(E) = eiθψ1(a) = aeiθψ1,s +O(|a|2p+1), i.e. ‖ψ1(E)− aeiθψ1,s‖H2 = O(|a|2p+1)

(6.1)

E = E1,s − σ‖ψ1,s‖2p+2
L2p+2|a|2p +O(|a|4p) (6.2)

where a parameter a = 〈ψ1,s, ψ
real
1 (E)〉. As shown in Theorem 5.1, for some s0 we can

find the uniform estimates for (6.1) and (6.2) when s ≥ s0, by using the contraction

argument for h:

h = −σ [P⊥,s(−∆ + Vs + E)P⊥,s]
−1 |aψ1,s + h|2p(aψ1,s + h)

where P⊥,sφ = φ− 〈ψ1,s, φ〉ψ1,s.

Let µ, ζE be the lowest eigenvalue and the corresponding eigenfunctions of L+(ψ1(E), E).

Then we obtain:

dµ

dE
(a, s) = 1 + (2p+ 1)

∫
Rn
ζ2
E

d

dE
|ψ1(E)|2pdx.
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Using (6.1), (6.2) and continuous dependence with recpect to a of L+, we get:

dµ

dE
(0, s) = lim

a→0

[
1+(2p+1)σ

∫
Rn
ζ2
E

d

dE
|ψ1(E)|2pdx

]
= 1− 2p+ 1

‖ψ1,s‖2p+2
L2p+2

∫
Rn
ψ2

0,s|ψ1,s|2pdx.

From (5.4) we get:

lim
s→∞

∫
Rn
ψ2

0,s|ψ1,s|2pdx = 2−p‖ψ0‖2p+2
L2p+2 ,

lim
s→∞
‖ψ1,s‖2p+2

L2p+2 = 2−p‖ψ0‖2p+2
L2p+2 .

By the same argument in Theorem 1, there exists s1, s2 and ε such that:

dµ

dE
(a, s) < −p < 0 for all s > s1, |E1,s − E| < ε

−εp < µ(E1,s, s) = E1,s − E0,s < 0 for all s > s2.

Unlike the focusing case, E decreases as a increases. Let s∗∗ =max{s0, s1, s2}.
Then for any s > s∗∗, µ(E, s) must cross zero once at some E = E∗∗,s, 0 < E∗∗,s <

E1,s. This contradicts (i) in Theorem 4.2. Therefore, (ii) must hold with the lowest

eigenvalue of L+ approaching zero at the end of the maximal interval of unique

continuation. By the similar argument in Theorem 5.1, approximations of E∗∗,s and

|a| = a∗∗(s), with large separation s > s∗∗, is given by:

E1,s +
E1,s − E0,s

p
. E∗∗,s < E1,s +

E1,s − E0,s

2p
(6.3)

and

a∗∗(s) ≈
(
E0,s − E1,s

2p

)1/2p

. (6.4)

Now, we show that the second eigenvalue of the linearization L+ crossing zero at

E = E∗∗,s leads to a pitchfork bifurcation along the first excited state branch.

82



E1,s − E0,s

E1,s

y

E

σ > 0

E1,s + β1E1,s + β2

εp

E0,s + ε

y = µ(E, s)

y = −p(E − E1,s)− εp

Figure 6.1: The above figure shows the branch of the lowest eigenvalue of L+, µ(E, s) (the red
line), crosses zero at some finite E since y = −p(E − E1,s)− εp (the black line) crosses zero. The
blue and green dotted lines denote the lines with slope −2p, −p whose x-intercept is
E1,s + β1 = E1,s +

E1,s−E0,s

2p , E1,s + β2 = E1,s +
E1,s−E0,s

p , respectively. They give an

approximation of x-intercept of µ(E), E = E∗∗,s, corresponding to a∗∗(s).
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Theorem 6.2. Let σ > 0, p > 1
2

and V = Vs be a double-well potential and consider

the branch of solutions (ψ1(E), E) = (eiθψreal1 (E), E), (ψreal1 (E) is a real-valued, θ ∈
[0, 2π]) of (1.2) which bifurcates from the second lowest eigenvalue −E1 = −E1,s of

L0 = −∆ + Vs(x). Then for all s ≥ s∗∗, there exists E∗∗ < ∞ such that (E1, E∗∗)

is the maximal interval on which this branch can be uniquely continued. Moreover,

the set of solutions of (1.2) past E∗∗ in a H2 × R neighborhood of (ψ1(E∗∗), E∗∗)

consists of exactly two surfaces of class at least C [2p]−1 intersecting along the circle

eiθψ1(E∗∗)
real, 0 ≤ θ < 2π. Each of these surfaces is obtained by rotating (multiplicity

by eiθ) a curve of real valued solutions of (1.2).

Proof. We will let E1,s = E1 and E∗∗,s = E∗∗ for fixed s. Theorem 6.1 already guar-

antees the existence of a finite E∗∗, such that the branch of solutions (ψ1(E), E)

can be uniquely continued on the interval (E1, E∗∗), and the lowest eigenvalue of

L+(ψreal1 (E), E), µ(E), and only it approaches zero as E ↗ E∗∗, while remaining

simple on this interval. Its corresponding eigenfunction must be even in x1, since

L+(ψ1(E), E) commutes with the reflection operator and the eigenfunction is even at

(0, E1). Therefore, L+(ψreal1 (E), E) restricted to odd functions has no eigenvalue ap-

proaching zero as E ↗ E∗∗, which implies that ψ1(E) can be extended past E∗∗ in the

Banach space restricted to odd functions. In particular, there exists a (real-valued)

unique continuation ψ1(E∗∗) at E∗∗ on the branch. Let τ∗∗ be the L2-normalized real-

valued eigenfunction of L+(ψ1(E∗∗)
real, E∗∗) corresponding to its zero eigenvalue. τ∗∗

is even in x1, as mentioned above. Also, for fixed θ ∈ [0, 2π), (eiθψreal1 (E), E) is

uniquely continued on (E1, E∗∗). The map F (φ,E) : H2(Rn,C)× R→ L2(Rn,C) :

F (φ,E) = −∆φ(x) + V (x)φ(x) + σ|φ(x)|2pφ(x) + Eφ(x)

has the Fréchet derivative at (φ,E) where φ is real-valued:

DφF (φ,E) =

[
L+(φ,E) 0

0 L−(φ,E)

]
.

Since iψ1(E∗∗)
real is the L2-normalized eigenfunction of L−(ψ1(E∗∗)

real, E∗∗) corre-
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sponding to its zero eigenvalue, DφF (ψ1(E∗∗)
real, E∗∗) is a Fredholm operator with

kerDφF (ψ1(E∗∗)
real, E∗∗) = span{τ∗∗, iψ1(E∗∗)

real},

ran DφF (ψ1(E∗∗)
real, E∗∗) = [kerDφF (ψ1(E∗∗)

real, E∗∗)]
⊥.

Let kerDφF (ψ1(E∗∗)
real, E∗∗) =span{τ∗∗, iψ1(E∗∗)

real} = X1 and RanDφF (ψ1(E∗∗)
real, E∗∗) =

X2. Then,

P‖τ∗∗φ = 〈τ∗∗, φ〉realτ∗∗, P‖iψ1(E∗∗)realφ = 〈iψ1(E∗∗)
real, φ〉realiψ1(E∗∗)

real,

P⊥φ = φ− P‖τ∗∗φ− P‖iψ1(E∗∗)realφ

are three orthogonal projections on L2 =span{τ∗∗, iψ1(E∗∗)
real} ⊕ X2. By apply-

ing the Lyapunov-Schmidt decomposition at (ψ1(E∗∗)
real, E∗), the equation (1.2) is

equivalent to three following equations:

P⊥F (ψ1(E∗∗)
real + a1τ∗∗ + a2iψ1(E∗∗)

real + k(a1, a2, E), E) = 0

P‖τ∗∗F (ψ1(E∗∗)
real + a1τ∗∗ + a2iψ1(E∗∗)

real + k(a1, a2, E), E) = 0

P‖iψ1(E∗∗)realF (ψ1(E∗∗)
real + a1τ∗∗ + a2iψ1(E∗∗)

real + k(a1, a2, E), E) = 0

where a1τ∗∗ = P‖τ∗∗(φ−ψ1(E∗∗)
real), a2iψ1(E∗∗)

real = P‖iψ1(E∗∗)real(φ−ψ1(E∗∗)
real), k =

P⊥(φ− ψ1(E∗∗)
real). Therefore, by Implicit Function Theorem, we get :

Lemma 6.1. There is an unique C [2p]+1 map k : U → L2∩{τ∗∗, iψ1(E∗∗)}⊥ in some

neighborhood W ⊂ H2 ×R of (ψ1(E∗∗), E∗∗), U ⊂ R3 of (0, 0, E∗∗) such that for any

solution (φ,E) of (1.2),

∃!a1, a2 such that (a1, a2, E) ∈ U, φ = ψ1(E∗∗) +a1τ∗∗+a2iψ1(E∗∗)
real +k(a1, a2, E)

where a1 = 〈φ− ψ1(E∗∗)
real, τ∗∗〉real, a2 = 〈φ− ψ1(E∗∗)

real, iψ1(E∗∗)〉real and

〈τ∗∗, F (ψ1(E∗∗)
real + a1τ∗∗ + a2iψ1(E∗∗)

real + k(a1, a2, E), E)〉real = 0 (6.5)
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〈iψ1(E∗∗)
real, F (ψ1(E∗∗)

real + a1τ∗∗+ a2iψ1(E∗∗)
real + k(a1, a2, E), E)〉real = 0. (6.6)

Our strategy is to make the LHS of (6.6) identically vanish so that Morse Lemma

can be applied, see Nirenberg [21] and [13]. To vanish the LHS of (6.6), we use a

similar argument in Proposition 2.

First, assume φ − ψ1(E∗∗)
real ⊥ iψ1(E∗∗)

real with respect to real scalar product.

Then a2 = 0 and φ = ψ1(E∗∗)
real + a1τ∗∗ + k(a1, 0, E). We claim that in this case

k(a1, 0, E) must be real valued, hence φ is also real valued. To show this, we solve

again (1.2) under restriction a2 = 0 and P⊥(φ − ψ1(E∗∗)) is real valued. Define

F⊥ : R×H2(Rn,R) ∩X2 × R→ X2 ∩ L2(Rn,R) :

F⊥(a1, k(a1, 0, E), E)) = P⊥F (ψ1(E∗∗)
real + a1τ∗∗ + k(a1, 0, E)).

This is well-defined because P⊥F (φ,E) maps from H2(Rn,C)×R to X2 ∩L2(Rn,C)

and for real-valued k, we have real-valued ψ1(E∗∗)
real+a1τ∗∗+k(a1, 0, E) and F (φ,E)

and P⊥ maps from real-valued to real-valued functions. Now

DkF⊥(0, 0, E∗∗) = L+(ψ1(E∗∗)
real, E∗∗)

is an isomorphism from H2(Rn,R)∩X2×R→ X2∩L2(Rn,R). By Implicit Function

Theorem, ∃δ1, δ2 and a unique C [2p]+1 function k̃ : (−δ1, δ1)×(E∗−δ2, E∗+δ2)→ X2∩
L2(Rn,R) such that (a1, k̃(a1, E), E) is the unique solution of F⊥(a1, k(a1, 0, E), E))

in a neighborhood W̃ ⊂ (−δ1, δ1) × H2(Rn,R) × R of (0, 0, E∗). It gives another

unique real-valued solution

φ = ψ1(E∗∗)
real + a1τ∗∗ + k̃(a1, E)

of (5.18) when a2 = 0. By uniqueness, k̃(a1, E) = k(a1, 0, E). It follows that (6.6) is

zero since F (ψ1(E∗∗)
real + a1τ∗∗ + k(a1, 0, E)) is real valued.

Next, consider the case φ−ψ1(E∗∗)
real 6⊥ iψ1(E∗∗)

real. In this case, we can use the
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argument in Proposition 4.3, i.e.,there exists θ∗ such that

‖eiθ∗ψ1(E∗∗)
real − φ‖H2 = inf

θ∈[0,2π)
‖eiθψ1(E∗∗)

real − φ‖H2 .

Then, as we have seen in Propostion 4.3, φ−eiθ∗ψ1(E∗∗)
real ⊥ ieiθ∗ψ1(E∗∗)

real, which

is equivalent to e−iθ∗φ−ψ1(E∗∗)
real ⊥ iψ1(E∗∗)

real. By apply the Lyapunov-Schmidt

decomposition to e−iθ∗φ, we get

e−iθ∗φ = ψ1(E∗∗)
real + 〈e−iθ∗φ− ψ1(E∗∗)

real, τ∗∗〉τ∗∗ + k(a, 0, E).

Since the right-hand-side of the above equation is real-valued, 〈iψrealE∗ , F (e−iθ∗φ,E)〉 =

0. To finish the proof, use the same argument in [13].

6.2 Unique continuation of the ground states

In this section we improve the global bifurcation result for ground states in [32].

We not only show by a different technique that the ground state branch bifurcating

from zero at the lowest eigenvalue of the Schrödinger operator can be continued until

E = 0 but also that the continuation is unique i.e., there are no bifurcations along

this branch. We essentially use a comparison principle for the linearized operators

combine with our continuation Theorem 4.2. While our nonlinearity is a particular

example of the ones considered in [32], see also [11], we expect that the technique we

use can be extended to more general nonlinearities.

Theorem 6.3. Let σ > 0 and the potential V which satisfies (H1), (H2) and

lim inf
R→∞|x|≥R

V (x) = 0, (6.7)

inf
x∈Rn

V (x) > −∞. (6.8)

Then the ground state branch ψE bifurcating from 0 at E0 can be uniquely extended

(to the left) to the maximal interval (0, E0).
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Proof. Let λ−i (E) respectively λ+
i (E), be the i-th eigenvalue of L−(ψE, E) respec-

tively L+(ψE, E), and let N = ‖ψE‖L2 . If (i) in Theorem 4.2 holds, we are done.

Suppose (ii) in Theorem 4.2 holds i.e., ψE can be uniquely extended to (E∗, E0) where

0 < E∗ < E0 and there exists a sequence {En}n∈N ⊂ I such that limn→∞En = E∗ and

a corresponding non-zero eigenvalues {λn}n∈N of L+(ψE, E) or L−(ψE, E) such that

limn→∞ λn = 0. We will show that (ii) cannot hold by showing that no eigenvalues

of linearizations can accumulate to zero.

We note that λ+
1 (E0) = 0 and λ+

2 (E0) = E0−E1 > 0 at N = 0. We will first show

that limn→∞ λ
+
1 (En) is strictly positive, so λn cannot be λ+

1 (En) as well as λ+
i (En)

for i = 2, 3, · · · , by using the results in [32]. Let S = {(ψrealE , E) ∈ H2(Rn,R) ×
R|(ψ,EE) be the branch of real-positive solution of (1.2) bifurcating at E0} and

SE∗ = {(ψrealE , E) ∈ S|E ∈ [E∗, E0)}. Since E∗ > 0, we can choose ε > 0 such that

E∗− ε > 0. Due to the hypothesis of potential V, (6.7) and (6.8), there exists Rε > 0

such that

V (x) + σ|s|2p ≥ −ε for all |x|2 + s2 ≥ R2
ε .

Set Ω = {x ∈ Rn|ψrealE > Rε, (ψE, E) ∈ SE∗} and suppose that Ω 6= ∅. Then we have

∆ψrealE (x) = (V (x) + σ|ψrealE (x)|2p + E)ψrealE (x) ≥ (E∗ − ε)ψrealE (x) > 0 on Ω,

and ψrealE (x) = Rε on ∂Ω. By the weak maximum principle, we get

max
Ω̄

u ≤ max
∂Ω

u = Rε

which implies Ω = ∅, so that ψrealE (x) ≤ Rε for E∗ ≤ E < E0 and for all x ∈ Rn.

To find the standard upper bound for ψrealE , let η(x) = Rεe
−
√
E∗−ε(|x|−Rε). Then η

is positive, continuous, η → 0 as |x| → ∞ and

∆η(x) = (E∗ − ε)η(x)− 2
√
E∗ − ε
|x|

η(x) ≤ (E∗ − ε)η(x), η(x) = Rε for |x| = Rε,
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Moreover, we have for |x| ≥ Rε,

∆ψrealE (x) = (V (x) + σ|ψrealE (x)|2p + E)ψrealE (x) ≥ (E∗ − ε)ψrealE (x).

By [33, Theorem 2.1], ψrealE ≤ η for |x| ≥ Rε. It follows that, combined with ψrealE ≤ Rε

for |x| ≤ Rε,

ψrealE (x) ≤ Rεe
−
√
E∗−ε(|x|−Rε) = η(x) for all x ∈ Rn (6.9)

for (ψrealE , E) ∈ SE∗ .
Now, we will show that (6.9) implies the existence of the limit point of ψE at

E∗. Since we are under the assumption that (ii) in Theorem 4.2 holds, there exists

a sequence {En}n∈N such that En → E∗ as n → ∞ and a corresponding non-zero

eigenvalues {λn}n∈N of L+(ψE, E) or L−(ψE, E) with limn→∞ λn = 0. ψrealE (x) is

bounded in H2 for E ∈ [E∗, E0) because ψrealE can be rewritten as

ψrealE = (−∆ + V + E∗ + i)−1[(i+ E∗ − E)ψrealE − σ|ψrealE |2pψrealE ],

and (−∆+V +E∗+ i)−1 : L2 → H2 is bounded, (i+E∗−E)‖ψrealE ‖L2 is bounded by√
1 + (E∗ − E0)2‖η‖L2 and ‖|ψrealE |2pψrealE ‖L2 is bounded by ‖η‖2p+1

L4p+2 where η is given

in (6.9). Hence, there exists a subsequence ψrealEnk
and ψ̃ ∈ H2 such that ψrealEnk

⇀ ψ̃

as k → ∞ in H2. In fact, ψrealEnk
converges to ψ̃ in Lq for 2 < q < 2n

n−4
(2 < q ≤ ∞ if

n ≤ 4) by the following argument, see also [26, Lemma 1.7.2]. Fix ε > 0 and R > 0

to be chosen later. Then for all 2 < q < 2n
n−4

(2 < q ≤ ∞ if n ≤ 4), we have

‖ψrealEnk
− ψ̃‖Lq = ‖ψrealEnk

− ψ̃‖Lq({|x|<R}) + ‖ψrealEnk
− ψ̃‖Lq({|x|≥R}) (6.10)

≤ ‖ψrealEnk
− ψ̃‖Lq({|x|<R}) + ‖ψrealEnk

− ψ̃‖
p−2
p

L∞({|x|≥R})‖ψ
real
Enk
− ψ̃‖L2 .

The last inequality comes from Riesz Thorin interpolation theorem. By (6.9), ψrealEnk
(x)→

0 as |x| → ∞ uniformly for all n ≥ 1. Hence, we can choose R large enough such

that

‖ψrealEnk
− ψ̃‖

p−2
p

L∞({|x|≥R})‖ψ
real
Enk
− ψ̃‖L2 ≤ ε

2
.

89



Next, since ψrealEnk
|{|x|<R} is bounded in H2({|x| < R}), by Rellich’s compactness theo-

rem there exists a subsequence, denoted byEnk for simplicity, such that ψrealEnk
|{|x|<R} →

ψ̃|{|x|<R} as k → ∞ in Lq({|x| < R}) for 2 < q < 2n
n−4

(2 < q ≤ ∞ if n ≤ 4). Thus,

for large enough k, we have

‖ψrealEnk
− ψ̃‖Lq({|x|<R}) ≤

ε

2
.

Therefore, by (6.10), ψrealEnk
→ ψ̃ as k →∞ in Lq. Furthermore, ψrealEnk

can be rewritten

as:

ψrealEnk
= (−∆ + E∗)

−1[(E∗ − Enk)ψrealEnk
− V ψrealEnk

− σ|ψrealEnk
|2pψrealEnk

] (6.11)

and the right hand side, (−∆ + E∗)
−1[(E∗ − Enk)ψ

real
Enk
− V ψrealEnk

− σ|ψrealEnk
|2pψrealEnk

],

converges to (−∆ + E∗)
−1[V ψ̃real − σ|ψ̃|2pψ̃] as k → ∞ so that ψ̃ is in H2 and a

solution of (1.2). Indeed, we note that (−∆ + E∗)
−1 : L2 → H2 and

‖(E∗ − Enk)[ψrealEnk
− ψ̃]‖L2 ≤ |E∗ − Enk | · 2 sup

E∈[E∗,E0)

‖ψrealE ‖L∞ → 0 as k →∞

since ‖ψrealE ‖L∞ ≤ Rε on [E∗, E0). Also, we have

‖|ψrealEnk
− ψ̃|2p(ψrealEnk

− ψ̃)‖L2 = ‖ψrealEnk
− ψ̃‖2p+1

L4p+2 → 0 as k →∞

since 4p+ 2 <
2n

n− 4
. It remains to show that V (ψrealEnk

− ψ̃) converges to 0 in L2. For

n ≤ 4, [ψrealEnk
converges ψ̃ in L∞, so

‖V (ψrealEnk
− ψ̃)‖L2 ≤ ‖V ‖L2‖ψrealEnk

− ψ̃‖L∞ → 0 as k →∞.

For n > 4, the hypothesis of V, (H1), implies that there exists r = 2 + δ for some

δ > 0 such that V ∈ Lr +L∞ε . It follows that for all ε > 0, there exist V1 and V2 such

that V = V1 + V2, ‖V1‖Lr <∞, ‖V2‖L∞ < ε. Thus, we obtain

‖V (ψrealEnk
− ψ̃)‖L2 ≤ ‖V1‖Lr‖ψrealEnk

− ψ̃‖Lr′ + ‖V2‖L∞‖ψrealEnk
− ψ̃‖L2 (6.12)
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where r′ satisfies 1
2

= 1
r

+ 1
r′
. By Riesz Thorin interpolation, for any q > 2n−1

n−4
, we

have

‖ψrealEnk
− ψ̃‖Lq ≤ ‖ψrealEnk

− ψ̃real‖
2
q

L
2n−1
n−4
‖ψrealEnk

− ψ̃‖
q−2
q

L∞

≤ ‖ψrealEnk
− ψ̃‖

2
q

L
2n−1
n−4
· (2Rε)

q−2
q → 0 as k →∞.

It follows that ‖V1‖Lr‖ψrealEnk
− ψ̃‖Lr′ → 0 as k → ∞. Also, since ψrealE is bounded in

L2 on [E∗, E0) and ‖V2‖ < ε for any ε > 0, the left hand side of (6.12) converges 0 as

k →∞, which complete the argument that ψ̃ is in H2 and a solution of (1.2). Thus,

we have a limit point of ψrealE at E∗, say ψrealE∗ ∈ H
2.

Now, we assume, for the sake of contradiction, limn→∞ λ
+
1 (En) = λ+

1 (E∗) = 0. Let

φ∗ be the L2-normalized eigenfunction of L+(ψrealE∗ , E∗) corresponding to λ+
1 (E∗) = 0.

By the min-max principle, for any φ ∈ H2, ‖φ‖L2 = 1, we have

〈φ, L−(ψE, E)φ〉 ≥ 0 = λ−1 (E). (6.13)

Therefore, we have

0 ≤ 〈φ∗, L−(ψrealE∗ , E∗)〉

≤ 〈φ∗, L+(ψrealE∗ , E∗)〉 − 2pσ〈φ∗, |ψrealE∗ |
2pφ∗〉

= −2pσ〈φ∗, |ψrealE∗ |
2pφ∗〉 ≤ 0.

Thus, ψE∗ ≡ 0 because if not, ψE∗ is strictly positive so that φ∗ = 0, a.e., which

contradicts the fact that φ∗ is the L2-normalized eigenfunction. However, L−(ψE∗ =

0, E∗) = −∆ + Vs +E∗ has a negative eigenvalue E∗ −E0 < 0 which contradicts the

continuity of eigenvalues of L−(ψE, E) with respect to E and the simplicity of the

lowest eigenvalue of L−(ψE, E).

It remains to show that nonzero eigenvalues of L−(ψEn , En) cannot be λn. Since

L−(ψE0 , E0) = L0 +E0, λ
−
1 (E0) is 0 at N = 0 so that λ−1 (E) ≡ 0 for all 0 < E < E0

by continuity of discrete eigenvalues, see Remark 4.2. Also, λ−2 (E0) = E0 − E1 > 0

at N = 0. We note that the eigenfunction corresponding to λ−2 (E) is odd in x1,
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see Proposition 4.2. By Theorem 4.2, ψE can be smoothly extended past E∗ in the

Banach space restricted to even functions. In particular, there exists (ψE∗ , E∗) unique

up to rotation restricted to even functions. Suppose λ−2 (En) = λn. By continuity

of discrete eigenvalues, λ−2 (E∗) = 0 = λ−1 (E∗) which lead a contradiction for the

simplicity of the lowest eigenvalue of the second order elliptic operator L−(ψE∗ , E∗),

so that λn cannot be the larger eigenvalues λ−2 (En). This implies that λn also cannot

be the larger eigenvalues λ−i (En) for all i = 3, 4, · · · .

spec of L−

N(E)

E0 − E10

λ−
2

λ−
1

[
E0

ess spec of L−

spec of L+

N(E)

E0 − E10
[

λ+
1

λ+
2

E0

ess spec of L+

Figure 6.2: As in Figure 5.4, λ−i and λ+i denote the i-th eigenvalue of linearization and
N(E) = ‖ψE‖2L2 . Similarly to Theorem 5.5, λ−2 never crosses zero because of the simplicity of the
lowest eigenvalue of elliptic second order operator. Moreover, since L+ − L− = σ2p|ψ1|2p > 0, λ+1
and λ+2 must be greater than λ−1 and λ−2 resp., which eliminates the possibility that λ+1 and λ+2
cross zero.

Remark 6.1. The above result shows not only that the ground state branch reaches

E = 0, see also [32] but also that there are no bifurcations along it. Now at E = 0,

the linearization Dφ(ψE=0, E = 0) is no longer Fredholm as both L+ and L− have

the continuous spectrum starting at 0, i.e., spec of L± = [0,∞). What happen with

the ground state at this point i.e., whether it becomes an embedded bound state or

a metastable state, is left for another paper.
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CHAPTER 7

CONCLUSIONS

This thesis gives several results about bound states, especially the ground state

and the first excited state with double well potentials with attractive and repelling

nonlinearities. In attractive cases, we attain the result that with large separations,

the ground states (ψE, E) must undergo a secondary symmetric breaking bifurcation

at some finite E∗,s. In addition, we prove that the ground state is unique up to

rotation, orbitally stable and symmetric before bifurcation, and once the bifurcation

occurs, it is divided into three branches (up to rotation), one of whom is orbitally

unstable and symmetric while the others are asymmetric and orbitally stable for

p < p∗ and orbitally unstable for p > p∗ where the nonlinearity power p∗:

p∗ =
3 +
√

13

2
.

Similar results have been obtained in the particular cases n = 1, see [13], respectively

n ≥ 1 but p = 2, see [14]. The latter makes crucial use of the real analyticity of the

nonlinearity when p = 2 which is not available for our cases. [13] uses both the fact

that all one dimensional bound states are real valued (up to a rotation) and that

H1(R) embeds in L∞(R). In the n > 1 case, we show that bound states which cannot

be rotated into real valued ones do not appear near branches we study by employing

a Lyapunov-Schmidt decomposition with symmetry which consistently modes out

rotations. Moreover, we employ an elliptic regularity type argument to overcome the

fact that H1(Rn) might not embed into L∞(Rn). The techniques developed in this

thesis form the basis to understanding the effect of general nonlinearities on bound

states and their bifurcations e.g. (1.2) with |f(y)| ≤ C1y
2p1 +C2y

2p2 , y > 0, p1 ≤ p2
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and limy→0 f(y)/y2p1 = σ, see [10].

The other important result in the attractive case is that the first excited state

branch can be uniquely continued to large amplitude, where their L2 andH2 norm are

at least of order 1, while the ground state already bifurcates at small amplitude. To

determine whether further bifurcations occur in the large amplitude regimes requires

non-perturbative techniques as opposed to the perturbative ones developed in this

thesis, see the recent progress in this direction [15] and [34].

In the case of repelling nonlinearity we obtain the existence of secondary bifurca-

tion along the first excited state at small amplitude and the non-existence of sec-

ondary bifurcations along the ground state. The difference from attractive case is

that we can show that the ground state branch can be uniquely continued until it

reaches the boundary of the Fredholm domain i.e., until E = 0. The behavior of the

ground state near E = 0 where 0 is in the essential spectrum of the linearization

remains an open problem.
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