
c© 2019 Enver Candan

IMPROVING DATA CENTER POWER DELIVERY EFFICIENCY
AND POWER DENSITY WITH DIFFERENTIAL POWER PROCESSING

AND MULTILEVEL POWER CONVERTERS

BY

ENVER CANDAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Associate Professor Robert C. N. Pilawa-Podgurski, Chair
Professor Philip T. Krein
Professor Alejandro Domı́nguez-Garćıa
Assistant Professor Arijit Banerjee
Dr. Pradeep S. Shenoy, Texas Instruments

ABSTRACT

Existing data center power delivery architectures consist of many cascaded power conversion stages.

The system-level power delivery efficiency decreases each time the requisite power is processed

through the individual stages, and the total power converter footprint increases by each cascaded

conversion stage. Innovative approaches are investigated in this dissertation for dc-dc step-down

conversion and single-phase ac-dc conversion to improve power delivery efficiency and power density

in data centers. This dissertation proposes a series-stacked architecture that provides inherently

higher efficiency between a dc bus and dc loads through architectural changes, reporting above

99% power delivery efficiencies. The proposed series-stacked architecture increases power deliv-

ery efficiency by connecting the dc loads in series to allow the bulk of the requisite power to

be delivered without being processed and by reducing overall power conversion using differential

power processing. The series-stacked architecture exhibits voltage regulation and hot-swapping

while delivering power to rapidly changing computational loads. This dissertation experimentally

demonstrates series-stacked power delivery using real-life computational loads in a custom designed

four-server rack. In order to provide a complete grid-to-12 V power delivery for data center appli-

cations, this dissertation also proposes a buck-type power factor correction converter that yields

high power density between a single-phase grid and the dc bus, achieving 79 W/in3 power density.

The proposed buck-type power factor correction converter improves power density by eliminating

the high-voltage step-down dc-dc conversion stage, which is typically cascaded to boost-type power

factor correction converters in conventional data center power delivery architectures, and by lever-

aging recent developments in flying capacitor multilevel converters using wide-bandgap transistors.

The buck-type flying capacitor multilevel power factor correction converter presents a unique op-

eration condition where the flying capacitor voltages are required to follow the input voltage at

50/60 Hz. This dissertation experimentally explores the applicability of such an operation by using

a digitally controlled six-level flying capacitor multilevel converter prototype.

ii

To Miranda, my parents Ali and Mahinur, and my sister Sebnem.

iii

ACKNOWLEDGMENTS

When I reminisce about my time in Champaign-Urbana, I very much appreciate this little town,

which many would sniff at because of its location, for being the place where my path has crossed

with those of many amazing people. I am grateful for those who directly or indirectly made my

graduate student life remarkable, and will do my best to acknowledge them all here. It is said that

the two most important people in a Ph.D. student’s life are his/her advisor and spouse. I am so

fortunate that I met with both of them at the University of Illinois at Urbana-Champaign.

I must start with thanking Professor Robert C. N. Pilawa-Podgurski, my advisor, for accepting

me to his research group at Illinois, because it has been a life-changing opportunity for me. I

am grateful for his guidance through my career, for his trust in me during the projects, and for

his support in attending many conferences and workshops all around the globe. Owing to the

freedom he provided me during my time at Illinois, my graduate school experience exceeded pure

research and included organizing conferences and working at several technology companies. His

enthusiasm for power electronics teaching and research has always been a source of inspiration for

me. I admire the research group culture he created and upheld while guiding more than a dozen

graduate students through some of the most challenging projects. I am fortunate to be able to

learn from his hands-on experience in power electronics to become a better engineer and researcher.

I would like to thank Professor Philip T. Krein, Professor Arijit Banerjee, Professor Alejandro

Domı́nguez-Garćıa, and Dr. Pradeep S. Shenoy for being on my doctoral committee and sharing

their valuable time and knowledge. I especially would like to thank Prof. Philip T. Krein for his

advice on the ac-dc power conversion portion of this dissertation, and Dr. Pradeep Shenoy for his

feedback on the series-stacked power delivery portion of this dissertation, and for his mentorship

over the years. I would also like to thank all the professors in the Power and Energy group at

Illinois, especially Professor Pete Sauer for holding the Power and Energy Systems group together,

his support in organizing the Power and Energy Conference at Illinois, and the amazing speeches

iv

he gave during many gatherings. Also, I am thankful to Professor George Gross, as I found out

at the beginning of my final exam that he made my admission to Illinois possible by bringing my

application to Professor Pilawa-Podgurski’s attention.

I am pleased to be a member of the Pilawa-Group at Illinois. I learned a lot from every experience

I had with members of the group, past and present: Yutian Lei, Shibin Qin, Christopher Barth,

Andrew Stillwell, Thomas Foulkes, Nathan Pallo, Tomas Modeer, Nathan Brooks, Yizhe Zhang,

Zichao Ye, Zitao Liao, Josiah McClurg, Derek Heeger, Maggie Blackwell, Pourya Assem, Derek

Chou, Wen-Chuen Joseph Liu, Pei Han Ng, Samantha Coday, Jeff Wheeler, Yujia Zhang, Eric

Saathoff, Intae Moon, Adwaita Dani, Benedict Foo, Won Ho Chung, Aaron Ho, Ben Macy, Yuqi

Li, Roy Bell, Marcel Shuck, and many more. Thank you all for your sincere friendship in this

journey. Nowadays, what one can learn from papers and textbooks is the same anywhere in the

world. I believe what made my dissertation and research unique in many ways is working with

you, so I thank you all for that. I would like to especially acknowledge Andrew Stillwell for his

help on the power factor correction portion of this dissertation; Shibin Qin, Zitao Liao and Nathan

Brooks for their help on developing the power factor correction microcontroller code; Nathan

Pallo, Thomas Modeer, and Maggie Blackwell for their help in flying capacitor multilevel converter

design; Thomas Foulkes and Christopher Barth for their help on frequency response analysis and

countless discussions in the lab as we work on our own projects; and Josiah McClurg, Yizhe Zhang,

Jeff Wheeler, and Yujia Zhang for their help in development of the series-stacked testbed. Your

genuine help reduced the workload on my shoulders during the development of this dissertation. It

is much appreciated.

Many incredible people at Illinois have become my friends and made my time in graduate school

a very delightful experience: In addition to the members of the Pilawa-Group mentioned above, I

thank Shamina Hossain-McKenzie, Giang-Chau Ngo, Mehmet Kurt, Itir Akgun, Onur Gur, Sezer

Ozerinc, Bilge Acun, Tutku Buyukdegirmenci, Maryam Kazerooni, Andy Yoon, Cecilia Klauber,

Adriano Lima Abrantes, Jason Galtieri, Dipanjan Das, Phuc Thanh Huynh, Siddhartha Nigam,

Mariola Ndrio, Soteris Demetriou, Dimitra Apostolopoulou, Kai Van Horn, Stanton Cady, Matt

Magill, Stanton Cady, Trevor Hutchins, and many more. Thank you all for your friendship; knowing

you all has been a true pleasure. I hope we can keep in touch.

The Electrical and Computer Engineering staff have helped me tremendously during my time at

Illinois. I would like to thank Joyce C. Mast and Robin Lynn Smith for administering the Power

v

and Energy Systems group, from filing reimbursements to organizing many social events that I

had always looked forward to attending. Thanks to Kevin Colravy for managing the research and

teaching labs; Beverly Curtis, Stephanie Schneider, Joshua McNattin, and Clint Harper for handling

an enormous amount of purchase orders and shipments that made the experimental work in this

dissertation possible; and James Hutchinson for proofreading and editing many of my publications,

including this dissertation.

I also would like to thank the Fulbright Commission in Turkey and the Institute of International

Education for supporting my master’s degree at Illinois. Thanks to them, I was able to make it to

the United States and attend my dream with the privilege of being a Fulbright Scholar. I would

like to thank the IEEE Power Electronics Society for choosing me as the 2017 recipient of the

IEEE Joseph John Suozzi INTELEC Fellowship Award in Power Electronics. I also would like to

acknowledge the financial support from Texas Instruments, Google, National Science Foundation

under Grant 1509815, and Advanced Research Projects Agency - Energy (ARPA-e), U.S. Depart-

ment of Energy, under Award Number DE-AR0000906 for funding the work in this dissertation in

part.

I must extend special thanks to Miranda, my wife-to-be. She has just accepted my proposal which

was long overdue. Although there have been times that we had to live on different continents, she

has never left me alone in this journey. Working for a Ph.D. is not easy, but I am sure putting up

with its roller-coaster effect on my personal life on a daily basis is not any easier. She deserves a

special acknowledgment for that. In addition, I proudly thank her for proofreading many of my

writings. Since she accepted my coffee offer in Espresso Royale in Urbana, not only has she been

a substantial joy of my life, she has also shown me, by example, how to become a better person. I

cannot overstate her love and support, for which I am and will be always grateful.

Last but certainly not least, I would like to thank my parents, Ali and Mahinur, and my sister,

Sebnem, for their unconditional love and support. My parents, sister and Miranda have made the

biggest sacrifice by giving up their time with me during my graduate school. This dissertation, like

my all accomplishments, is thus dedicated to them.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER 1 INTRODUCTION . 1
1.1 Research contribution . 2
1.2 Organization of this dissertation . 2

CHAPTER 2 BACKGROUND ON DATA CENTER POWER DELIVERY 4
2.1 Common power delivery architectures in data centers 4
2.2 Efficiency . 7
2.3 Reliability . 10
2.4 Backup power . 10
2.5 Redundancy . 11
2.6 Isolation and grounding . 12
2.7 Protection . 13
2.8 Renewable and distributed energy sources . 14
2.9 Cooling . 15
2.10 Total cost of ownership . 15

CHAPTER 3 SERIES-STACKING AND DIFFERENTIAL POWER PROCESSING
FOR DATA CENTER POWER DELIVERY . 17
3.1 Motivation . 17
3.2 Background on series stacking and differential power processing 18
3.3 Analysis of the server-to-virtual bus DPP architecture 21

3.3.1 Steady-state operation . 21
3.3.2 Hot-swapping operation . 25

3.4 Key implementation challenges . 30
3.4.1 Communication across voltage domains . 30
3.4.2 Initialization . 31
3.4.3 Hot-swapping . 31

CHAPTER 4 BIDIRECTIONAL HYSTERESIS CONTROL FOR THE SERVER-TO-
VIRTUAL BUS DPP ARCHITECTURE . 32
4.1 System analysis for control discussion . 32
4.2 Control objectives . 35
4.3 Proposed control . 36

vii

4.3.1 Voltage sampling . 37
4.3.2 Current need . 37
4.3.3 Power flow direction . 37

4.4 Cs and CV B sizing considerations . 39
4.5 Extension of bidirectional hysteresis control . 41

4.5.1 Hot-swapping . 41
4.5.2 Varying dc bus voltage . 42

4.6 Simulation Study . 44

CHAPTER 5 EXPERIMENTAL STUDY OF THE SERVER-TO-VIRTUAL BUS DPP
ARCHITECTURE . 47
5.1 Prototype DPP hardware . 47

5.1.1 Differential converter . 48
5.1.2 Stack initialization circuitry . 49
5.1.3 Hot-swapping circuitry . 51

5.2 Experimental setup . 52
5.2.1 Testbed . 53
5.2.2 Controller . 54
5.2.3 Measurement system . 55
5.2.4 Efficiency and power loss calculations . 56

5.3 Test scenarios . 58
5.3.1 Test I: Initialization and hot-swapping . 59
5.3.2 Test II: Decaying bus voltage . 60

5.4 Results . 60
5.4.1 Test I: Initialization and hot-swapping . 60
5.4.2 Test II: Decaying bus voltage . 67

CHAPTER 6 SINGLE-PHASE AC TO DC POWER CONVERSION 70
6.1 Motivation . 70
6.2 Buck-type power factor correction . 72
6.3 Flying capacitor multilevel converters . 78

CHAPTER 7 BUCK PFC CONTROL . 82
7.1 Background . 82
7.2 Overview of the proposed control algorithm . 83

7.2.1 PLL . 85
7.2.2 Comparator . 85
7.2.3 Reference current . 85
7.2.4 Feedforward control . 87
7.2.5 Multiloop feedback control . 88

CHAPTER 8 EXPERIMENTAL STUDY OF AN FCML BUCK PFC CONVERTER . . . 91
8.1 Prototype FCML buck converter for single-phase ac-dc power conversion 91
8.2 Experimental setup . 95
8.3 Six-level FCML buck converter in dc-dc operation 96
8.4 Verification of the proposed PFC control on a conventional (two-level) buck converter 97
8.5 Verification of the proposed PFC control on a six-level FCML buck converter 99
8.6 Flying capacitor voltage balancing in ac-dc buck conversion 104

viii

8.6.1 Time constant of flying capacitor voltage balancing dynamics 104
8.6.2 Phase-shift direction . 110
8.6.3 Impact on input and inductor current shaping 111

8.7 Six-level FCML converter in universal input ac-dc conversion 114

CHAPTER 9 CONCLUSION AND FUTURE WORK . 118
9.1 Conclusion . 118
9.2 Future work . 119

9.2.1 Server-to-virtual bus DPP . 119
9.2.2 Buck-type FCML as a PFC converter . 120

APPENDIX A DESIGN FILES OF PROTOTYPE DPP HARDWARE 122

APPENDIX B MICROCONTROLLER CODE USED IN SERVER-TO-VIRTUAL BUS
DPP EXPERIMENTAL STUDY . 125

APPENDIX C FREQUENCY RESPONSE OF A SIX-LEVEL FCML BUCK CONVERTER159

APPENDIX D DESIGN FILES OF PROTOTYPE FCML BUCK CONVERTER 164

APPENDIX E MICROCONTROLLER CODE USED IN FCML BUCK PFC CON-
VERTER EXPERIMENTAL STUDY . 166

APPENDIX F ADDITIONAL EXPERIMENTAL RESULTS WITH SIX-LEVEL BUCK
CONVERTER . 184
F.1 Step-down dc-dc application . 184
F.2 Power factor correction application . 184

REFERENCES . 187

ix

LIST OF TABLES

2.1 Tier certificate requirements summary . 12

3.1 Processed and delivered power in the example operations of the six-server rack
in Figure 3.5, calculated by (3.13) and (3.14) . 26

4.1 Decision table for bi-directional hysteresis control . 38
4.2 Decision table for extended bidirectional hysteresis control 42

5.1 Key components of the differential converter . 48
5.2 Key components of the stack initialization circuitry 51
5.3 The key components of the hot-swapping circuitry 52
5.4 The key components of the custom design current sense board 56
5.5 Breakdown of average input and output powers, efficiency, and average power

loss during the experiment . 64
5.6 Breakdown of average input and output powers, efficiency, and average power

loss during the experiment . 69

7.1 Parameters used for multiloop feedback control compensator tuning 90

8.1 Key components of the FCML buck-type PFC hardware prototype 93
8.2 Updated components and specifications for the two-level configuration of the

hardware prototype . 98

C.1 Updated components and specifications for the frequency response comparison
of two-level and six-level configurations of the hardware prototype 160

C.2 Control-to-output voltage frequency response of the six-level FCML buck converter . 161
C.3 Control-to-output voltage frequency response of the conventional buck converter . . 162
C.4 Control-to-output current frequency response of the six-level FCML buck converter . 162

F.1 Updated components of the FCML buck stage for step-down dc-dc application . . . 185

x

LIST OF FIGURES

2.1 Simplified drawings of common power delivery architectures in data centers. For
prioritizing transition from ac to dc power distribution, protection equipment and
cooling devices are not depicted in these figures, but of course exist in practical
designs and may introduce additional power conversion stages. 5

2.2 Simplified drawings of common point-of-load (POL) converter configurations in
IT equipment motherboards. POL converters perform the final voltage step-down
conversion in the power delivery architecture. 6

2.3 Various UPS configurations for data centers. 11

3.1 AC power distribution in data center, dc power distribution in the rack. The ac
power is delivered to the racks. Then, a rack-level rectification stage provides an
intermediate high dc voltage to the rack. Separate dc-dc converters perform final
voltage step-down at the server input. 17

3.2 Proposed server-to-virtual bus DPP power delivery architecture for server racks. . . 19
3.3 Server-to-virtual bus DPP architecture schematic used for analysis. 22
3.4 A statistical comparison between total processed power and delivered power in the

server-to-virtual bus DPP architecture, assuming ideal converters and a Gaussian
distribution of computational load mismatch. 25

3.5 Examples of normal and hot-swapped operations of a six-server rack. Anno-
tated server currents correspond to a 95% average computational load with ±5%
computational load range scenario when all servers are operational. Annotated
differential currents show direction and average amount of current flow, assuming
ideal converters. 27

3.6 Comparison of total processed and delivered power in the server-to-virtual bus
architecture. 30

4.1 Server-to-virtual bus DPP architecture schematic used for analysis. 33
4.2 Server model in the series-stack. 34
4.3 Proposed bidirectional hysteresis action. 36
4.4 Charts for Cs, CV B, εS , εV B and i∆ decisions. 40
4.5 Extended bi-directional hysteresis shape. Note that the bidirectional hysteresis

shape is generic and independently valid for each series-stacked server and the
virtual bus. 41

4.6 A circuit diagram depicting feasible UPS placement in the series-stacked architecture. 43
4.7 Simulation schematic model in PLECS. 44
4.8 Simulated server waveforms. 45
4.9 Simulated differential currents. 46

xi

4.10 Simulated virtual bus voltage. 46

5.1 Schematic of prototype DPP hardware. 47
5.2 Efficiency of the power stage in the hardware prototype 49
5.3 Annotated photograph of the prototype DPP hardware. 50
5.4 Annotated schematic of the experimental setup. 53
5.5 Annotated picture of the testbed. 55
5.6 Schematic of the custom designed current sense board. 56
5.7 A timing diagram for initialization and hot-swapping test scenario. 59
5.8 A timing diagram of decaying bus voltage test scenario. 59
5.9 Measured instantaneous data showing swapin transient of the second server. 60
5.10 Measured server currents and voltages. (Measured data is 10 ms window averaged

for better illustration of the entire test on a single plot.) Major events during
the experiment are annotated on the plot. Note the absence of the second server
current and voltage when it is hot-swapped out of the stack. 61

5.11 Measured virtual bus voltage that shows its successful regulation. (Measured
data is 10 ms window averaged for better illustration of the entire test on a
single plot.) . 62

5.12 Instantaneous server waveforms during swapout. 63
5.13 Instantaneous differential currents into the virtual bus node. 65
5.14 Instantaneous server waveforms during swapout. 66
5.15 A pie chart of Ploss,sys distribution during the stress test 90 s < t < 210 s. During

this time interval, an average of 472.8 W was delivered to the servers. 67
5.16 Measured server and bus waveforms during the experiment. Measured data is 10

ms window averaged for better illustration of the entire test on a single plot. 68
5.17 Measured virtual bus voltage during the experiment. Measured data is 10 ms

window averaged for better illustration of the entire test on a single plot. 69

6.1 An example of conventional power delivery in data centers, illustrating major
power conversion stages with annotated voltage levels at each stage. 71

6.2 Buck converter. 73
6.3 The input voltage and current, inductor current, and duty cycle in a buck PFC

converter for a full ac line cycle at 60 Hz, with a 10 A average output current,
assuming ideal control and filtering. 74

6.4 Phase shift of input current due to output voltage ripple. 75
6.5 An ac-dc converter with noninverting buck-boost converter. 77
6.6 Operation modes of the noninverting buck-boost converter for ac-dc rectification. . . 77
6.7 N -level FCML converter, configured as a buck converter. 79

7.1 High-level control diagram. 84
7.2 A generic ac-dc power converter connected between a single-phase ac input source

and a dc load that includes a twice-line frequency energy buffering element. 86
7.3 The uncompensated and PI compensated loop gain of (Gid(z)). 89

8.1 The six-level FCML buck converter schematic for a single-phase PFC application. . . 92
8.2 A close-up photograph of the FCML buck stage of the hardware prototype. (Ac-

tual size.) . 92
8.3 Top and side views of the hardware prototype. 94

xii

8.4 Side view of the hardware prototype with attached heat sink. 94
8.5 Hardware prototype with attached microcontroller. 95
8.6 Efficiency of the FCML buck converter in dc-dc operation. 97
8.7 Six-level FCML buck converter dc-dc operation at Vin = 340 V, Vout = 48 V and

Iout = 16 A. 98
8.8 Input voltage and current, and inductor current, of the conventional (two-level)

buck converter for PFC operation. Vin = 60 VRMS, Vout = 12 V and Iout,ave = 4.5 A. 99
8.9 Input voltage and current, and inductor current, of the six-level buck converter

for PFC operation. Vin = 60 VRMS, Vout = 12 V and Iout,ave = 4.5 A. 99
8.10 Flying capacitor voltages at Vin = 60 VRMS, Vout = 12 V and Iout,ave = 4.5 A. 100
8.11 Six-level buck converter for PFC operation at Vin = 120 VRMS, Vout = 24 V and

Iout,ave = 4.5 A. 101
8.12 Six-level buck converter for PFC operation at Vin = 160 VRMS, Vout = 32 V and

Iout,ave = 4.5 A. 102
8.13 Six-level buck converter for PFC operation at Vin = 90 VRMS, Vout = 48 V and

Iout,ave = 4.5 A. 103
8.14 Flying capacitor voltages of six-level buck converter in PFC operation for different

Cfly values. 106
8.15 Flying capacitor voltages of six-level buck converter in PFC operation for different

fsw and L values. Cfly = 6× 2.2 µF. 108
8.16 Flying capacitor voltages of six-level buck converter in PFC operation. Cfly =

6× 2.2 µF, L = 2.8 µH, fsw =40 kHz. 109
8.17 Flying capacitor voltages of six-level buck converter in PFC operation. Cfly =

6× 2.2 µF, fsw = 80 kHz, L = 5.6 µH, phase-shift direction: Lag. 110
8.18 Flying capacitor voltages of six-level buck converter in PFC operation. Cfly =

6× 2.2 µF, fsw = 40 kHz, L = 2.8 µH, phase-shift direction: Lag. 111
8.19 The input and output voltage, current, and power of the six-level buck converter

for PFC operation. Cfly = 6 × 2.2 µF, fsw = 80 kHz, L = 5.6 µH, phase-shift
direction: Lag. 112

8.20 The input and output voltage, current, and power of the six-level buck converter
for PFC operation. Cfly = 6× 2.2 µF, fsw = 40 kHz, L = 2.8 µH. 113

8.21 Efficiency of the updated FCML buck converter in dc-dc operation. 114
8.22 Six-level buck converter for PFC operation at Vin = 90 VRMS, Vout = 48 V and

Iout,ave = 4.5 A. 115
8.23 Six-level buck converter for PFC operation at Vin = 240 VRMS, Vout = 48 V and

Iout,ave = 4.5 A. 116
8.24 AC to dc conversion efficiency and power factor at 90, 120 and 240 VRMS input

voltage. 117

A.1 PCB layout of prototype DPP hardware: All layers, silkscreens and solder masks. . . 122
A.2 PCB layout of prototype DPP hardware: Top layer, silkscreen and solder mask. . . . 123
A.3 PCB layout of prototype DPP hardware: Bottom layer, silkscreen and solder mask. . 123
A.4 PCB layout of prototype DPP hardware: Ground layer. 124
A.5 PCB layout of prototype DPP hardware: Signal layer. 124

C.1 High-level diagram of the frequency response comparison experimental setup. 160
C.2 Control-to-output voltage frequency response of the six-level FCML and conven-

tional buck converter. 163

xiii

C.3 Control-to-output current frequency response of the six-level FCML buck converter. 163

D.1 PCB layout of prototype FCML hardware: Top layer, silkscreen and solder mask.
Not to scale due to page width. 164

D.2 PCB layout of prototype FCML hardware: Bottom layer, silkscreen and solder
mask. Not to scale due to page width. 164

D.3 PCB layout of prototype FCML hardware: Second layer. Not to scale due to
page width. 165

D.4 PCB layout of prototype FCML hardware: Third layer. Not to scale due to page
width. 165

F.1 Six-level FCML buck converter dc-dc conversion efficiency at 400 V input voltage. . 185
F.2 The input and output voltage, current, and power of the six-level buck converter

in PFC operation at 240 VRMS input voltage with 10 Ω series resistor between
the ac power supply and the converter. 186

xiv

CHAPTER 1

INTRODUCTION

As high performance computing and data storage transition towards becoming Internet-based ser-

vices, the world has witnessed an ever-increasing demand for both the size and capacity of data

centers. The growth of cloud-based services and applications shows no sign of slowing down, with

additional custom hardware for machine learning algorithms beginning to be deployed at scale in

dedicated data centers. Today’s data centers accommodate many pieces of information technol-

ogy (IT) equipment such as data processing units, data storage units, and communication devices.

The technological developments in the early 2000s led to a rapid expansion of data centers. As

a result, data center energy consumption has increased greatly, which has been noted in several

reports [1, 2]. A 2016 report estimated the energy usage of data centers in the United States (US)

alone at 70 billion kWh in 2014, corresponding to 1.8% of the total electric energy consumed in the

country [3]. A 2018 survey noted that high density IT equipment started to require above 50 kW

per rack, mainly driven by artificial intelligence algorithms and high performance computing ap-

plications [4]. Power electronics plays a critical role in achieving high power conversion efficiency

and high power density in data centers. An in-depth review of power electronics, ranging from

utility-scale to chip-level converters in data centers, can be found in [5].

Because IT equipment requires low dc voltage (typically ranging from a few volts to a few dozen

volts) to operate, various power converters are needed in data centers to provide low dc voltage

from utility and renewable resources. As data processing and cloud services continue to grow, any

power conversion loss affects the operational cost of data centers both through the direct cost of

electricity and the added cooling requirement. Improved conversion efficiency can be achieved,

but this typically results in higher power converter volume, limiting power density in data centers.

Alternative architectures that offer high efficiency and small overall volume for data center power

delivery must be pursued for sustainable growth of this technology.

1

1.1 Research contribution

Although a typical data center employs a vast amount of IT equipment, the power delivery archi-

tectures for data centers still treat each piece of equipment as a separate load and utilize power

delivery methods which were initially intended for single computer applications. This dissertation

seeks to demonstrate how architectural changes can increase power delivery efficiency and reduce

the requisite converter footprint in data centers. The two crucial power conversion stages, the

dc-dc bus converter and the single-phase ac-dc power factor correction converter, are bottlenecks

for higher system-level efficiency and power density in data centers. This dissertation focuses on

innovative approaches for these power conversion stages.

For the dc-dc bus conversion stage, a series-stacked architecture leveraging an inherently high-

efficiency power delivery architecture is proposed. In dc systems where multiple similar loads or

sources are present, series stacking and differential power processing (DPP) offer improved overall

efficiency [6]. The series-stacking and DPP part of this dissertation builds upon a master of science

thesis [7], which was the first hardware demonstration of a server-to-virtual bus DPP architec-

ture for 48 V to 12 V voltage conversion. The new work further shows practical implementation

challenges such as hot-swapping and varying input voltage. These results are the first hardware

demonstration of a series-stacked power delivery architecture where the IT equipment performs

real-life data center operations.

For the single-phase ac-dc power factor correction (PFC) stage, a flying capacitor multilevel

(FCML) buck converter leveraging an inherently high power density power conversion technique is

proposed. The FCML buck converter offers high power density by employing capacitive elements,

which inherently have up to 2-3 orders of magnitude higher energy density than inductors, in energy

conversion [8]. Despite the notable power density that the FCML converter can offer, its usage in a

buck PFC application presents an uncommon operation condition where the flying capacitors must

drastically charge and discharge during each ac half-cycle. This dissertation also presents the first

experimental study that explores the FCML buck converter in a single-phase ac-dc application.

1.2 Organization of this dissertation

The remainder of this dissertation is organized as follows.

• Chapter 2 provides brief background on data center power delivery architectures and summa-

2

rizes conventional ac and dc configurations. Key considerations in data center power delivery

such as efficiency, reliability, and backup power are explained in this chapter.

• In Chapter 3, background on series-stacked power delivery architectures is provided. The

crucial practical considerations in data centers, initialization and hot-swapping of servers,

are addressed conceptually using case studies. Mathematical expressions for processed and

delivered power in the proposed virtual bus architecture are derived.

• Chapter 4 explains the bidirectional hysteresis control algorithm, which is a key enabler to

achieve high efficiency power delivery in the proposed series-stacked power delivery architec-

ture.

• Experimental results that validate the feasibility of the proposed series-stacked power delivery

architecture for data center applications are reported in Chapter 5. Also, a prototype DPP

hardware design which combines a differential converter and associated hot-swapping and

initialization circuits on a single board is explained in this chapter.

• Chapter 6 provides background information on single-phase ac-dc power conversion, specif-

ically focusing on buck-type PFC conversion. The advantages and challenges of the FCML

buck converter in PFC operation are presented here.

• The proposed digital PFC control algorithm is explained in Chapter 7.

• In Chapter 8, an experimental study that explores the FCML buck converter in single-phase

ac-dc conversion is reported. A thorough investigation of flying capacitor voltage balancing

in FCML buck converters for PFC operation is provided here.

• Chapter 9 concludes the dissertation and suggests future research directions.

The material in this dissertation has been published in part in [9–13], and is reused here with

permission.

3

CHAPTER 2

BACKGROUND ON DATA CENTER POWER DELIVERY

This chapter addresses major aspects of power delivery architectures in data centers including

but not limited to efficiency, power density, reliability, integration with renewable resources, and

protection.

2.1 Common power delivery architectures in data centers

In data centers, since the major energy supply is the ac utility and the primary power consumers

(i.e., information technology (IT) equipment) require low voltage dc, both ac and dc power infras-

tructures are concurrent. As power is delivered from the utility to low voltage dc loads, rectification

(power conversion from ac to dc form) can be performed at various points, resulting in different

power architecture configurations [14].

Conventionally, utility power is distributed in ac form inside a data center, and then, rectification

and voltage step-down conversion are performed at the load end of the power architecture by a

dedicated power supply unit (PSU) for each piece of IT equipment. Conversely, utility power can

be rectified at the source end of the power architecture (i.e., data center input), and distributed in

high dc voltage form within the data center. Then, a dedicated dc-dc converter per IT device steps

down the high dc voltage. Alternatively, ac power can be distributed to racks that host the IT

equipment, and rectifiers that are in the same rack (or in another rack that is in close proximity)

provide dc power to the IT equipment. Simplified diagrams of these common data center power

distribution architectures are depicted in Figure 2.1.

Modern IT equipment employs many dc-dc converters (i.e., point-of-load (POL) converters) in

order to step down its input voltage for even lower voltage data processing and storage loads, where

the power is eventually needed. For example, Figure 2.2 show key elements of IT equipment that

includes a central processing unit (CPU), hard drive, and memory. Since each element requires a

different dc voltage, the POL converters step down the IT equipment’s input voltage to various

4

AC

DC
IT Eq.

Blade

GRID DATA CENTER

AC

AC

Site

Substation

Rack

UPS

{

480 VAC 208 VAC 12 VDC400 VDC

DC

AC DC

AC

480 VAC

AC

AC

Power

Distribution

Transformer

(a) AC power distribution in data centers. A single ac-dc converter provides rectifi-
cation, voltage step-down and isolation for each piece of IT equipment.

GRID DATA CENTER

DC

DC
IT Eq.

Blade

AC

AC

Site

Substation

Rack

DC

DCAC

DC

480 VAC 380 - 400 VDC 48 VDC 12 VDC

Central

Rectifier
High Voltage

Step-down

Converter

Bus

Converter

(b) DC power distribution in data center. A central rectifying stage at the data
center input provides a high dc voltage which is distributed to the racks. Then, dc-dc
converters step down the high dc voltage and provide isolation for each piece of IT
equipment.

DC

DC
IT Eq.

Blade

GRID DATA CENTER

AC

AC

Site

Substation

Rack
480 VAC 208 VAC

DC

ACAC

AC

Power

Distribution

Transformer

48 VDC

Rack-level

Rectifier

Bus

Converter

(c) AC power distribution in data center, dc power distribution in the rack or within
a few racks. The ac power is delivered to the racks. Then, a rack-level rectification
stage provides an intermediate high dc voltage to the rack. Separate dc-dc converters
perform final voltage step-down and provide isolation at the IT equipment input.

Figure 2.1: Simplified drawings of common power delivery architectures in data centers. For
prioritizing transition from ac to dc power distribution, protection equipment and cooling devices
are not depicted in these figures, but of course exist in practical designs and may introduce
additional power conversion stages.

lower well-regulated voltage levels. The POL converters may require a lower intermediate bus

voltage (9-12 V) as shown in Figure 2.2(a), or they may directly interface the IT equipment input

voltage as in Figure 2.2(b). Since the final voltage regulation for the key elements inside the IT

equipment is governed by POL converters, conventional power delivery architectures sometimes

5

48 VDC

DC

DC

9-12 VDC

DC

DC
CPU

1 V

DC

DC
Memory

1.2 V

DC

DC
Disk

3.3 V

IT Equipment

To rack-level converter

(AC-DC or DC-DC)

Point-of-load

converter

(a) 48 V to intermediate bus to POL architecture. A dc-dc con-
verter at the IT equipment input creates an intermediate bus and
provides isolation. Then, POL converters step down the interme-
diate bus voltage to a few volts to provide the ultimate low voltage
for the data processing and storage units.

48 VDC

DC

DC
CPU

1 V

DC

DC
Memory

1.2 V

DC

DC
Disk

3.3 V

IT Equipment

To rack-level converter

(AC-DC or DC-DC)

Point-of-load

converter

(b) 48 V-to-POL architecture. POL converters step
down the IT equipment input voltage directly to a few
volts to provide the ultimate low voltage for the data
processing and storage units.

Figure 2.2: Simplified drawings of common point-of-load (POL) converter configurations in IT
equipment motherboards. POL converters perform the final voltage step-down conversion in the
power delivery architecture.

sacrifice precise voltage regulation at the IT equipment input or at the dc bus [15]. This may also

enable efficient uninterruptible power supply (UPS) integration in the system, since the voltage

typically varies when it is supplied by a UPS, especially during utility-level power loss.

Because of the extensive background, acceptability and well-established standardization of ac

distribution in many other applications, a high percentage of existing data centers use variations

of the power delivery architectures depicted in Figure 2.1(a) or 2.1(c), which are fundamentally

inherited from telecom applications. Recently, dc power delivery architectures, as depicted in

Figure 2.1(b), have gained attention, mainly because they involve fewer conversion stages and

6

could potentially simplify the integration of ancillary distributed energy resources, such as solar

PV and fuel cells. A well-cited 2008 report has underlined the benefits of high voltage dc power

distribution in data centers [16], although the idea of using a voltage level higher than 48 V for

data center power distribution appears in the literature as early as 1999 [17]. Over the years the

literature has addressed various high dc voltage levels such as 270 V [17], 300 V [18], 325 V [19],

380 V [20, 21], and 400 V [20, 22]; however, the consensus for high voltage dc distribution in data

centers eventually appears to have become nominal 400 V. The protracted discussion on voltage

levels over 15 years, combined with relatively slow development of standards for IT equipment

and power distribution such as ETSI EN 300 132-3-1 [23] for 400 V dc bus voltage, ETSI EN 301

605 [24] for grounding, and IEC 61643-21 [25] for protection, arguably have discouraged short-term

adoption of dc distribution in data centers.

Following the potential of dc distribution for data centers noted in [16], ac and dc power distri-

bution architectures for data centers have been both quantitatively and qualitatively compared by

both academia and industry [26–30]. In addition, [31] has reviewed some highly cited comparison

reports and notes that results vary widely and overstate the benefits of dc power architectures.

In order to fairly evaluate comparison studies, it should be noted that over the years significant

barriers such as lack of standardization, market share, and compatibility with IT equipment have

prevented the widespread adoption of high voltage dc in data centers, while already well-established

ac distribution architectures have kept developing to meet expectations.

2.2 Efficiency

In recent years, electricity has become the largest operating cost of data centers; thus, maintaining

high power conversion efficiency has become critical. As shown in Figure 2.1, regardless of the

preferred distribution architecture, utility power must go through several cascaded power conversion

stages before it reaches IT equipment. Since power consumed by IT equipment must be processed

by each power converter, the overall power infrastructure efficiency is the product of the efficiency

of all power converters, and thus mainly limited by the least efficient power converter. Power

delivery studies therefore must consider the entire power conversion stage, from high voltage ac

input to the building, all the way down to processor and memory voltages, around 1 V.

Recent literature has focused on efficiency improvements of each major power electronics con-

verter type for data center applications. Development and commercial availability of wide band gap

7

devices have been leveraged in converter designs. Consequently, high power density designs have

achieved high-90% efficiencies in three phase [32,33] and single-phase rectifiers [34–36], mid-90% ef-

ficiencies in 400 V to 12 V [37–39] or to 48 V [40] dc to dc converters, and mid/high-90% efficiencies

in both silicon based [41] and GaN based [42–44] 48 V to 12 V bus converters, and 48 V [45–48] or

12 V [49–53] POL converters for data center applications. Since actual power conversion efficiency

in a power converter changes depending on the output power, estimating overall power conversion

efficiency of cascaded converters between grid and load is not trivial. A survey of prominent peak

and full load efficiency values in [32–53] demonstrates a “best-case” combined efficiency between

93% (if the converters ideally operate at their peak efficiency point) and 86% (if the converters

operate at full load) from the ac grid to low voltage dc loads.

One key approach to increasing system-level conversion efficiency is to eliminate – to the greatest

extent possible – any double conversion, where voltage is stepped up and down or power is converted

from ac to dc or dc to ac more times than the absolute minimum. An example of such a double

conversion is the back-to-back ac-dc and dc-ac conversion of the centralized UPS approach shown

in Figure 2.1(a), which is one reason why it is no longer a preferred approach. Below are some

opportunities to reduce the number of power stages.

• A facility-level battery system for power backup in a high voltage dc power distribution

architecture as shown in Figure 2.1(b) does not require an inverter stage while providing

backup power to both the IT equipment and auxiliary loads such as lighting and cooling.

Since electrochemical energy storage is inherently in dc form, a battery bank for a utility

outage or failure scenario can be connected to the high voltage dc bus. Of course, additional

circuitry may be needed to connect battery banks to the high voltage dc bus for regulatory or

other operating reasons; however, such circuitry does not process the requisite power similar

to an inverter that outputs a tightly regulated ac waveform and synchronizes with multiple

converters across the bus.

• Twice-line frequency energy buffering is a well-known issue in single-phase rectifiers [54]. The

recent Google Little Box Challenge [55] has accelerated research efforts in the area of twice-line

frequency energy buffering, and as a result extremely high efficiencies for twice-line frequency

energy buffering have been reported in the literature [56]. Nevertheless, moving from single-

phase rectification at the IT equipment input to centralized three phase rectification at the

high voltage dc bus eliminates the need for twice-line frequency energy buffering and the

8

associated circuitry from the cascaded power chain. Similar benefits can be realized if three-

phase rectifiers are employed in an ac distribution approach, generally at the rack level (i.e.,

rack-level three-phase rectifiers).

• Similar to twice-line frequency energy buffering, active power factor correction (PFC) circuitry

is an essential requirement in both single and multiphase high power rectifiers. The most

common single-phase PFC architecture is the boost-type converter, meaning the output of

the PFC circuit is at a higher voltage than its input. Since IT equipment requires low

voltage dc, employing PFC closer to the low voltage load requires a back-end, high conversion

ratio, voltage step-down converter. Although a centralized three phase rectification does not

eliminate PFC circuitry, it can remove a cascaded voltage step up and down conversion at

the IT equipment input, which is potentially counterproductive since the load is at low dc

voltage. Here, recent developments in step-down (e.g., buck-derived) PFC rectifiers [32, 57]

show promise to achieve increased system-level efficiencies.

At a high level, it may appear that simply reducing the number of conversion stages would

increase efficiency. However, one must be careful to consider that for a given power converter

volume, a high-step-down power converter generally has lower efficiency than a converter with a

modest voltage step-down ratio. This is particularly telling in the case of the 48 V to point-of-load

concept, where the conventional architecture shown in Figure 2.2(a) involves first 48 V to 9-12 V

conversion, followed by (typically several) 9-12 V to point-of-load (e.g., 1-2 V) converters. While

it may be tempting to simply eliminate the two-stage conversion and design a single 48 V to 1 V

converter as shown in Figure 2.2(b), such a converter is significantly more difficult to design to be

highly efficient and power dense [45–48]. For example, consider the reference design of [58], which

represents a single-stage buck converter, achieving a peak efficiency of 84%. Other more complex

topologies likewise achieve limited performance in both efficiency and power density. In comparison,

recent hybrid switched-capacitor power converters have been shown to achieve near 99% efficiency

with extraordinarily high power density (106.5 kW/L) for 48 V to 12 V conversion [41], and separate

12 V to 1 V converter can similarly achieve high overall efficiency and power density [49, 51–53].

While there may be other considerations (such as reliability, cost, reduced complexity, etc.) to

prefer fewer numbers of stages, the above discussion highlights that increased efficiency is not

necessarily an outcome of this approach.

9

2.3 Reliability

Maintaining high reliability in data centers is crucial because of our society’s dependence on unin-

terrupted IT services. Today, any outage of IT services can have a large impact, both financial and

in terms of societal impact. A typical target reliability for a data center is 99.99% uptime (often

called “four nines”), which corresponds to 52.5 minutes downtime per year [59]. This requirement,

combined with maintaining high efficiency, makes data center power delivery architecture design

challenging. Fortunately, similar to improving the power delivery architecture efficiency, reducing

the number of cascaded power stages typically reduces the overall risk of system failure and the

mean time between failures. Therefore, opportunities to reduce the number of power conversion

stages in dc data centers facilitates higher reliability and uptime. Elimination of conversion stages

such as power distribution transformers and the inverter at the UPS output in high voltage dc

distribution is considered a major advantage for dc data centers [22, 60, 61]. However, the anal-

ysis in these past works is qualitative and the details are unclear. A 2010 study quantitatively

compared the reliability of ac and dc power distribution for data centers with emphasis on UPS,

and concluded that dc distribution would be more reliable than ac distribution without supple-

mentary effects of redundancy [27]. A more recent quantitative reliability analysis for data centers

considering UPS, power converter failure mechanisms, and redundancy options is missing in the

literature. Nevertheless, reducing the number of conversion stages alone is not sufficient to assure

reliable power distribution; backup power and redundancy must be incorporated in data center

power architecture design to achieve the desired reliability level.

2.4 Backup power

Utility power loss is an expected scenario in data centers instead of a failure. Data centers employ

uninterrupted power supplies (UPS), backup generators, and recently fuel-cells at specific points

in the power delivery architecture to be able to compensate for both utility loss and power stage

failure. Various possible configurations preferred in recently developed data center power delivery

architectures are depicted in Figure 2.3.

In case of utility loss, the facility level UPS must be able to provide enough backup power to

critical loads until backup generators can initialize and output sufficient energy to the facility. On

the other hand, UPS placement close to the load (IT equipment) can compensate for any component

10

Rack

DC

AC

or DC

AC or DC

Source

DC

DC
IT Eq.

Blade

DC

DC
IT Eq.

Blade

DC

DC
IT Eq.

Blade

Rack-level

UPS

(a) Rack-level UPS. UPS is located inside the racks and provides
backup power for multiple pieces of IT equipment.

Rack

DC

AC

or DC

AC or DC

Source

IT Eq.

Blade

IT Eq.

Blade

IT Eq.

Blade

Distributed UPS

(b) Distributed UPS. Each piece of IT equipment has a
dedicated UPS. This configuration offers uninterrupt-
ible power in case of any converter failure.

Rack

DC

DC
+

IT Eq.

Blade

IT Eq.

Blade

IT Eq.

Blade

_

Facility-level

UPS

(c) Facility-level UPS. UPS is located out-
side of the rack and provides backup
power for multiple racks.

Figure 2.3: Various UPS configurations for data centers.

failure between the utility and the IT equipment. Uptime Tier Certification requires data centers

to have on-site fuel storage for at least 12 hours of utility loss [62].

Recent data center power delivery designs are moving away from central UPS double-conversion

towards rack-level UPS single-conversion in ac distribution architectures (e.g., Figure 2.1(c)). While

there are some benefits in terms of maintenance and costs associated with a central UPS system,

rack-level UPS can also help mitigate power distribution faults in data centers, as each rack can

operate directly from its own UPS.

2.5 Redundancy

Redundancy is typically achieved through the incorporation of additional and separate power con-

version stages, UPS, and power distribution paths in data center power infrastructure. Redundant

components may be operated at all times (e.g., each running at partial load to increase peak ef-

11

Table 2.1: Tier certificate requirements summary

Tier I Tier II Tier III Tier IV

Redundancy level N N+1 N+1 N After any failure
Distribution path 1 1 1 active, 1 alternate 2 active

ficiency) but, strictly speaking, are only needed to meet the power demand of the load in case of

failures. Typical redundancy levels for data centers are N+1, 2N and 2N+1, where N represents

the number of power converters or UPS systems in parallel to meet the load demand. The Uptime

Institute defines Tier Classification levels for data centers depending on the redundancy level of the

data center [62]. Tier I represents basic data center infrastructure without any redundancy. Tier II

certification requires redundant power stages and UPS; however, the power distribution path is not

redundant. Tier III certification requires the data center to have both redundant power stages and

multiple independent power distribution paths, although only one distribution path is actively used

at any time, while the other is for maintenance purposes. Tier IV certification requires redundant

power stages and multiple active power distribution paths configured to serve the entire data center

under any infrastructure failure. Tier Certificate requirements are summarized in Table 2.1 and

details can be found in [62].

2.6 Isolation and grounding

Electrical (galvanic) isolation has been an essential part of data center power delivery architectures.

Provided by transformers, electrical isolation offers to filter grid disturbances, harmonic currents,

and electrical noise. Also, electrical isolation limits ground loops and circulation of dc currents

between IT equipment and racks [14]. Because of these benefits, electrical isolation through iso-

lation transformers is a recommended practice under IEEE STD 1100 for ac power distribution

architectures [63].

Electrical isolation may be implemented at several points throughout the data center power

delivery architecture. In Figure 2.1 common power delivery architectures were shown, where power

distribution transformers provide electrical isolation at 50/60 Hz. In addition to power distribution

transformers, isolated dc-dc converters can also be used to provide electrical isolation in data center

power delivery architectures.

The most obvious shortcoming of introducing electrical isolation is the trade-off between effi-

12

ciency and density. 50/60 Hz transformers can be highly efficient but bulky, while high frequency

transformer design and optimization are nontrivial to be included in dc-dc converters. A common

conception in the data center power delivery area is that an added isolation stage reduces power

conversion efficiency by 3%. For instance, in [37] losses of a carefully optimized transformer in an

LLC converter for data center applications correspond to 1.5-3% of the rated power. Although the

exact percentage penalty value in isolated dc-dc converter efficiency is questionable, it may not be

inherently linked to high frequency transformer designs. Recent developments in transformer de-

sign, wide bandgap devices [37,39,64], and optimization approaches [65] enable high efficiency and

compact isolated dc to dc converters. Also, in order to provide only electrical isolation (without

voltage conversion), unity transformation ratio has been demonstrated in dc to dc converters for

data center applications at 400 V [66] and 48 V [67].

Although electrical noise, ground loops and circulation of dc currents may still be present in

data centers, enforcing electrical isolation may not be the only practice to overcome such issues.

For example, modern communication links typically provide inherent isolation, either through the

medium itself (fiber optics), signal isolation transformers (Ethernet), or ac coupling capacitors

(high speed serial links). With adequate system grounding, high safety may be obtainable without

requiring galvanic electrical isolation. An example of this transition is the case of grid-tied pho-

tovoltaic inverters, which until recently were required to have galvanic isolation in the US, while

transformerless inverters were adopted earlier in Europe since they offered higher power efficiency

and density at a lower cost [68]. Similar efforts may lead to elimination of electrical isolation from

data center power distribution architectures in the future.

Proper grounding is an essential requirement in power infrastructure for protection, safety and

signal integrity. Lightning protection is the primary driver for grounding in data centers. In

addition, grounding contributes to safety from electrical hazards by routing damaging currents away

from IT equipment and personnel. Proper grounding also enables a common voltage reference for

the overall electrical system in a data center, including power infrastructure and communications

equipment.

2.7 Protection

IT equipment and power infrastructure in data centers represent large investments. Therefore, any

damage due to power system faults must be prevented by protection equipment such as fuses, relays

13

and circuit breakers. Protection is activated to isolate failed IT equipment or section off the power

infrastructure from the rest of the system. Therefore, the location of protection equipment in the

power infrastructure is vital to enable isolation of any IT equipment and power stages whenever

needed.

A periodic current zero-crossing is inherent in ac distribution architectures as the polarity of

voltage and current alternates 50 or 60 times per second; however, in dc distribution voltage and

current are controlled to be constant values and do not naturally cross zero. The lack of a periodic

zero-crossing of dc voltage and current complicates protection equipment design if dc power delivery

is preferred, and can result in self-sustaining faults. In addition, although sometimes overlooked,

abrupt interruption of dc current results in high current slew rates (di/dt), which induce high

voltages in any parasitic inductive loops along the power path. This may endanger semiconductors

and capacitors if not considered.

The basic operation principle of protection equipment (i.e., moving electrical contacts away from

each other when triggered) is similar in ac and dc systems, but with added challenges for dc

protection. In order to successfully extinguish an arc in dc distribution architectures, the electrical

contacts must move not only farther away from each other, but also faster than in ac distribution.

Alternatively, protection equipment involving electronics to force the dc current towards zero can

be used.

2.8 Renewable and distributed energy sources

Photovoltaics (PV) [69] and fuel cells (FC) [70] are two energy sources for data centers commonly

preferred by the industry. Since both PV and FC are inherently dc energy sources, their integration

into dc power infrastructure is simplified. While it is theoretically possible to design a PV array to

directly interface with a high voltage bus in a power delivery architecture, typically it is preferred

to do so through a dedicated dc-dc converter that ensures that the PV system operates at its

maximum power point, which varies with irradiation and temperature. Alternatively, multiple

panel-embedded power converters [71, 72] can be employed to provide this voltage conversion, in

addition to improved PV array performance.

14

2.9 Cooling

In addition to computational, data storage, and networking loads, cooling requires substantial

electrical energy in data centers. Since IT equipment mainly consists of digital circuits, combined

with losses in the power distribution architecture, almost all energy consumed in data centers

results in heat that must be dissipated. In order to maintain safe operation of IT equipment,

temperature control is critical at all times. Therefore, the reliability discussion above also applies

to the cooling system, and backup power should be designed to support the cooling load in case of

a utility outage.

In order to provide sustainable heat removal from IT equipment, typical data center cooling

infrastructure includes air conditioning equipment and a chilled water system, which require pumps

and fans. Such equipment involves electric motors which are typically controlled by adjustable speed

drives (ASDs) for maximum efficiency and performance. Similar to UPSs, dc data centers require

only an inverter stage for ASDs, compared to ac-driven ASDs, which first perform rectification,

followed by the adjustable frequency and voltage inverter.

Since power converters are in close proximity to IT equipment, existing cooling infrastructure

in data centers is leveraged to extract heat generated in power converters. Conventionally, heat

sinks are attached to power transistors to improve heat transfer quality by increasing surface area.

On the other hand, recent literature explores innovative heat transfer mechanisms using jumping

droplet condensation for actively cooling hot spots in power converters [73,74].

2.10 Total cost of ownership

Total cost of ownership (TCO) is an important consideration in data center design because building

a data center is a substantial investment for businesses. TCO extends beyond the cost of power

equipment and electricity, but as far as power architecture is a concern, there are two main expenses:

capital and operational expenses. Capital expenses include up front costs such as installation and

equipment purchases, while operational expenses include electricity and maintenance cost and

therefore involve efficiency and reliability aspects. A detailed explanation of TCO beyond power

infrastructure can be found in [59,75].

Unfortunately, TCO is rather overlooked in the literature, since the primary motivation for most

work is efficiency and reliability. A 2011 white paper quantifies oversizing of power infrastructure

15

as the primary cost driver of data center TCO and suggests measuring the TCO on a per-rack

basis [76]. Power infrastructure oversizing can be as severe as triple of what is needed because

of uncertainties in final power demand and inadequate assumptions [77]. A three phase rectifier

for data center applications is optimized for TCO in [32]. In [61], the cost advantage of high

voltage dc data centers is reported as 15% less in capital cost and 36% less in lifetime cost, but

detailed analysis is missing. It should be noted that improvements in efficiency and reliability do

not translate to business decisions unless TCO analysis is incorporated into the benefits.

Critically, because TCO analysis requires accurate field data regarding reliability, it is likely that

estimates of hypothetical designs without empirical results vary widely. Hence, TOC aspects of

data centers are difficult to assess by researchers at this time. Moreover, major corporations that

carefully track these metrics (e.g., Facebook, Amazon, Google, etc.) generally view these num-

bers as key competitive features of their respective designs, and are unlikely to share them with

researchers.

As this chapter briefly explained, data center power delivery architectures ultimately aim to pro-

vide high quality power to IT equipment. The IT workhorses in data centers are servers, which are

essentially collections of data processing and storage units, and operate at typically 12 V or 48 V

dc voltage. Various power delivery architectures are available in various voltage and power levels

throughout data centers as explained in this chapter. The remainder of this dissertation focuses

on single-phase rectification (i.e., 240 VRMS to 48 V dc) and bus conversion (i.e., 48 V dc to 12 V

dc) stages.

16

CHAPTER 3

SERIES-STACKING AND DIFFERENTIAL POWER

PROCESSING FOR DATA CENTER POWER DELIVERY

This chapter focuses on high efficiency dc-dc power conversion for data center power delivery

through series stacking and differential power processing.

3.1 Motivation

Although today’s data centers employ a large number of servers, conventional data center power de-

livery architectures are still based on designs originally developed for single computer applications.

As the number of servers and their power consumption increase, conventional architectures suffer

from increased power conversion loss because a more efficient power converter does not translate to

reduced power conversion loss. Shown in Figure 3.1 is an example conventional data center power

delivery architecture which was mentioned in Section 2.1. Here, it is depicted again to facilitate

the discussion.

In the power delivery architecture shown in Figure 3.1, ac power is delivered to each server rack,

and a central rectifier regulates a dc bus (typically at 48 or 400 V) for the rack. Following this, each

server has a dc-dc converter that steps down the high dc voltage to a suitable motherboard voltage

for the server (typically at 12 or 48 V). A key observation from inspecting the conventional power

GRID DATA CENTER

Site

Substation

Server Rack
480 VAC 208 VAC

AC

AC

Power

Distribution

Transformer

400 or 48 VDC

Rack-level

Rectifier

Bus Converters

AC

AC

Server
1

DC

DC

Server
2

DC

DC

12V

Server
J

DC

DC

12VAC

DC

V
HV Bus

+

-

12 VDC

UPS

Figure 3.1: AC power distribution in data center, dc power distribution in the rack. The ac power
is delivered to the racks. Then, a rack-level rectification stage provides an intermediate high dc
voltage to the rack. Separate dc-dc converters perform final voltage step-down at the server input.

17

delivery architecture depicted in Figure 3.1 (or the other architectures depicted in Chapter 2) is

that system-level efficiency is limited by efficiency of the power converters, since full server power

must be processed during server operation. In other words, there exists a direct coupling between

delivered power and associated power losses at each converter, which intensifies as rated server

power or the number of servers increases.

This dissertation presents an inherently more efficient dc-dc conversion architecture for data

centers by proposing a system-level solution that decouples power conversion losses from delivered

power, rather than focusing on efficiency improvements in individual dc-dc converters. By elec-

trically connecting the servers in series, the proposed power delivery architecture greatly reduces

requisite power conversion inside server racks. This architecture yields significantly reduced power

loss, and thus higher system-level efficiency.

3.2 Background on series stacking and differential power processing

Low-voltage elements (sources or loads) are commonly connected in series to interface with a high

dc bus voltage in applications such as photovoltaic sources, battery systems, and LEDs. In these

applications, the elements are connected in series because the desired operating voltage of each

element is lower than the available or desired dc bus voltage. The large number of low-voltage

servers in data centers represents a similar scenario, where series connection within a server blade

may be beneficial.

Series stacking and various configurations of differential power processing (DPP) architectures

have been proposed for dc systems where a group of low-voltage elements must be connected to a

higher voltage dc bus [6]. Series-stacked architectures and differential or partial power processing

have been explored in various fields, such as solar photovoltaics [72,78–93], digital circuits [94–102],

biomedical implants [103, 104], and active battery cell balancing applications [105–113] and have

provided significant performance improvements.

Series-stacked power delivery for data center applications initially attempted to regulate the

server voltages in software [114]. Although this work achieved reasonable voltage balancing with

power-aware load balancing web traffic management software, computational performance was

slightly compromised, and each series-stacked server also needed a UPS in parallel. In order to

demonstrate the potential of series-stacked power delivery in data center applications, various DPP

techniques have been theoretically and experimentally studied as a hardware solution. Server-to-

18

virtual bus DPP [115], server-to-server DPP [116], server-to-bus [117] and hybrid DPP [118–120]

architectures have been verified experimentally. In [115] and [116], series-stacked architectures are

also compared with the conventional power delivery architecture shown in Figure 2.1(c) based on

best-in-class dc-dc converters, and have achieved up to 40 times reduction in average power conver-

sion loss under real-world data center operations such as web traffic management and computation.

Although various DPP architectures exist as summarized and qualitatively compared for data cen-

ter applications in [115], this dissertation focuses on server-to-virtual bus DPP architecture and

seeks to demonstrate how a series-stacked topology can be applied to server power delivery.

Figure 3.2 shows a series-stacked architecture with the server-to-virtual bus DPP technique,

which is the architecture used in this dissertation. Similar to the other DPP architectures described

in [121], in this architecture, low-voltage loads (servers) are connected in series in order to directly

interface to a higher voltage dc bus. This series connection not only eliminates the step-down

voltage conversion stage, but also enables bulk power consumed by servers to be delivered without

being processed by a dc-dc converter. Since series-connected loads must conduct the same amount

of current, any power mismatch between servers can alter their input voltages if not compensated.

In order to compensate power mismatch between series-stacked servers, the server-to-virtual bus

DPP architecture features bidirectional and isolated dc-dc converters (referred to as differential

converters in this work) and a shared energy reservoir (i.e., the virtual bus). The virtual bus

is essentially a capacitor bank that is isolated from the dc bus and connected in parallel with

the secondary sides of the differential converters. In comparison to the conventional systems in

Figure 2.1(c), where each server’s power converter must process full server power, the server-to-

virtual bus architecture only processes the difference in power between servers. This architecture

GRID DATA CENTER

Site

Substation

Server Rack

480 VAC 208 VAC

AC

AC

Power

Distribution

Transformer

400 or 48 VDC

Rack-level

Rectifier

Differential

Converters

AC

AC

AC

DC

12 VDC

Server
1

DC

DC

Server
2

DC

DC

Server
J

DC

DC

V
Bus

+

-

Figure 3.2: Proposed server-to-virtual bus DPP power delivery architecture for server racks.

19

thus separates the total amount of processed power from delivered power, resulting in considerable

reduction of power conversion losses, in particular when individual server power consumption is

similar.

There are a few other key advantages of the server-to-virtual bus DPP architecture. First, since

the virtual bus voltage is an unrestricted design parameter, it can be chosen to be the same as the

nominal server voltage. This not only eliminates the voltage conversion need in the system, but also

enables the differential converters to be designed using low-voltage high-frequency switches on both

the primary and secondary side of the transformer. Another key benefit of the proposed virtual

bus architecture is the scalability of the approach. Here, each DPP converter must only be rated

for the server voltage and the virtual bus voltage, while the number of servers can be increased

to accommodate a higher bus voltage, given that the transformer is properly rated. Moreover,

since in the server-to-virtual bus DPP architecture any differential converter in the series stack can

exchange power with the others by injecting current to or extracting current from the virtual bus,

the power mismatch order of the series stack has no effect on the total amount of processed power

as long as the virtual bus voltage is regulated within a limit. It should be noted that virtual bus

voltage regulation slightly increases total processed power and control complexity compared to the

server-to-bus DPP architecture. However, as shown in [10], a suitable control implementation can

achieve excellent regulation and efficient power delivery.

Note that while the virtual bus capacitor is shown as a discrete element in Figure 3.2, it can also

be distributed among the secondary side capacitors of the differential converters. Also, although

the power is distributed in ac form within the data center in Figure 3.2, neither the proposed

series-stacked architecture nor the discussion in this dissertation changes if the power is distributed

in dc form within the data center.

It should be also noted that the virtual bus capacitor topology employed here is quite similar

to active battery balancing using isolated power converters [106, 107, 109, 112]. Moreover, it has

been successfully employed in differential power processing architectures for photovoltaic applica-

tions [82, 88]. However, this work is the first in the literature that uses a virtual bus topology

for regulating series-stacked server voltages which inherently exhibit a more dynamic power profile

than batteries and photovoltaics.

20

3.3 Analysis of the server-to-virtual bus DPP architecture

The power delivery nature of the series-stacked and DPP architecture enables the processing of

only the difference in power between series-connected servers. The total processed power varies

depending on average power consumption of each series-connected server. Derivation of the total

processed power in the system for a given load distribution scenario is thus an important consid-

eration when evaluating the proposed system. This section analyzes the proposed architecture by

deriving total average power processed and comparing it with the total average delivered power

to the servers for various power consumption distributions under steady-state and hot-swapping

operation.

3.3.1 Steady-state operation

Shown in Figure 3.3 is a schematic diagram of the server-to-virtual bus DPP architecture that

facilitates the discussion. Here, an ideal dc voltage source models the output of an ac-dc converter

(or connection to a high voltage dc bus) which provides power (by VBus and iBus) to the series-

stacked servers. The terms iS,j and vS,j represent the jth server current and voltage, where the

subscript j may refer to any server in the series stack, and J is the total number of servers (i.e.,

jε{1, 2, 3, . . . , J}) in the series stack. The virtual bus capacitor voltage and current are represented

by vV B and iV B, respectively. The input and output currents of the dc-dc converters are shown

separately as i∆,j and iδ,j . Since each dc-dc converter is connected between a server in the series

stack and the virtual bus, the terminal voltages of the jth dc-dc converter are vS,j and vV B.

In the server-to-virtual bus DPP architecture shown in Figure 3.3, KVL around the series stack

and KCL at every intermediate node of the series stack result in

VBus =

J∑
j=1

vS,j (3.1)

and

iBus = iS,j + i∆,j , ∀j, (3.2)

respectively. Also, since the virtual bus capacitor is connected in parallel with all dc-dc converters,

21

+
−

DC

DC

+
-

Server
1

v
S,1

+
_

i
S,1

i
Δ,1

DC

DC

+
-

Server
J

v
S,J

+
_

DC

DC

+
-

Server
2

v
S,2

+
_

vVB
+

i
Bus

V
Bus

_

i
Bus

i
S,2

i
Δ,2

i
Bus

i
S,J

i
Δ,J

i
Bus

i
δ,1

i
δ,2

i
δ,J

i
VB

Figure 3.3: Server-to-virtual bus DPP architecture schematic used for analysis.

the virtual bus current is given by

iV B =
J∑
j=1

iδ,j . (3.3)

Assume that all series-stacked server voltages and the virtual bus voltage are regulated to their

nominal steady-state values (VS,nom and VV B,nom, respectively) with a general time period. (A

control algorithm that accomplishes this will be presented in Chapter 4.) Averaging (3.1), (3.2)

and (3.3) over this general time period results in

VBus =

J∑
j=1

Vs,j = J × VS,nom, (3.4)

IBus = IS,j + I∆,j , ∀j, (3.5)

and

IV B =

J∑
j=1

Iδ,j , (3.6)

respectively. Recall that the virtual bus is a capacitive buffer. As the controller regulates its

voltage to a constant value (VV B,nom), the average current into the virtual bus becomes zero over

the time period. For simplicity of the analysis, assume that the differential converters are ideal,

22

and they provide one-to-one voltage conversion (i.e., VS,nom = VV B,nom, i∆,j = iδ,j and I∆,j = Iδ,j).

Therefore,

IV B =

J∑
j=1

Iδ,j = 0 =⇒
J∑
j=1

I∆,j = 0. (3.7)

The node current equations given by (3.5) are valid for every server and differential converter

pair throughout the series stack, as can be seen in Figure 3.3. The sum of J node current equations

gives

J × IBus =
J∑
j=1

(IS,j + I∆,j) =
J∑
j=1

IS,j +
J∑
j=1

I∆,j . (3.8)

Given the constraint of (3.7), (3.8) simplifies to

IBus =
1

J

J∑
j=1

IS,j , (3.9)

which states that the average bus current equals the mean of the time average of the server currents.

The average processed power by the differential converters (i.e., the total processed power in the

system) is

Pprocessed =

J∑
j=1

|P∆,j | =
J∑
j=1

|Vs,jI∆,j |, (3.10)

where P∆,j is the average processed power by the jth differential converter. With a control

algorithm that successfully regulates the series-stacked server voltages to their nominal values

(VS,nom), (3.10) simplifies to

Pprocessed = Vs,nom

J∑
j=1

|I∆,j |. (3.11)

Moreover, using the KCL constraint given by (3.2), (3.11) can be rewritten as

Pprocessed = Vs,nom

J∑
j=1

|IBus − IS,j |. (3.12)

Since the average bus current (IBus) is equal to the mean of the time average of the server

currents, as in (3.9), the total amount of processed power given by (3.12) can also be expressed as

Pprocessed = Vs,nom

J∑
j=1

∣∣∣∣∣∣
 1

J

J∑
j=1

IS,j

− IS,j
∣∣∣∣∣∣ . (3.13)

23

It is illustrative to compare the total processed power with the total delivered power to the servers

in the server-to-virtual bus DPP architecture. Assuming ideal converters, the total delivered power

to the servers is the sum of all server powers, and it can be expressed as

Pdelivered =

J∑
j=1

Ps,j = Vs,nom

J∑
j=1

IS,j , (3.14)

where Ps,j is the average power consumed by the jth server. Recall that IBus is the mean of the

time average of the server currents in (3.9), which implies

min(IS,j) < IBus < max(IS,j) ∀j. (3.15)

Since IS,j > 0 for all j when all servers are operational, it can be observed that the processed power

by (3.12) is always less than the delivered power by (3.14). This is an important feature of the

series-stacked power delivery architecture.

Case Study I

A statistical case study is performed in order to compare the processed power and delivered power in

the server-to-virtual bus DPP architecture using (3.13) and (3.14). In this case study, a server rack

consisting of 32 servers (each rated at 300 W) is used to illustrate the effect of various mismatch

conditions. The average computational load for the server rack is swept from 50% to 95% of

the rated power. For every average computational load scenario, the computational load range

within the server rack is randomly assigned using a Gaussian distribution, and examined for 1000

iterations, causing different mismatch conditions. Equations (3.13) and (3.14) are used to calculate

the total processed and delivered power at each iteration, and then the results of 1000 iterations

are averaged for every scenario. The result is plotted in Figure 3.4.

Figure 3.4 shows the total processed and delivered power in the server-to-virtual bus DPP ar-

chitecture versus average computational load scenarios (and computational load ranges). As the

average computational load is increased from 50% to 95% of rated power, the computational load

range narrows (i.e., there is less mismatch between the series-stacked servers). As expected, the

delivered power increases as the average computational load increases. However, the processed

power decreases as the average computational load increases. This is because the average server

current is delivered through the dc bus without being processed and the Gaussian distribution of

24

50
%

(0
-1

00
%

)

55
%

(1
0-

10
0%

)

60
%

(2
0-

10
0%

)

65
%

(3
0-

10
0%

)

70
%

(4
0-

10
0%

)

75
%

(5
0-

10
0%

)

80
%

(6
0-

10
0%

)

85
%

(7
0-

10
0%

)

90
%

(8
0-

10
0%

)

95
%

(9
0-

10
0%

)

Average computational load power (Computational load range)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
ot

al
 a

m
ou

nt
 o

f
pr

oc
es

se
d

po
w

er
[W

]

Pprocessed
Pdelivered

Figure 3.4: A statistical comparison between total processed power and delivered power in the
server-to-virtual bus DPP architecture, assuming ideal converters and a Gaussian distribution of
computational load mismatch.

the computational load range narrows as the average computational load increases.

3.3.2 Hot-swapping operation

An operation essential for servers in data centers is hot-swapping, which is inserting or removing

individual servers while other servers in a rack are operational. Hot-swapping may be required

if a server is intentionally removed for maintenance or if a server unexpectedly fails and requires

repairs. Regardless of the reason, when a server is hot-swapped in a series-stacked power delivery

architecture, the flow of bus current must be maintained by the differential converters and the

virtual bus, or a bypass switch must keep the remaining servers operational. Maintaining the flow

of bus current through differential converters and the virtual bus will increase processed power

in the system. On the other hand, using a bypass switch to maintain the flow of bus current by

shorting the differential converter corresponding to the hot-swapped server would result in increased

25

Table 3.1: Processed and delivered power in the example operations of the six-server rack in
Figure 3.5, calculated by (3.13) and (3.14)

Fig.3.5(a) Fig.3.5(b) Fig.3.5(c) Fig.3.5(d) Fig.3.5(e) Fig.3.5(f)

Pdelivered [W] 1701 1422 1125 828 558 288
Pprocessed [W] 63 474 750 828 744 480

input voltage for the remaining servers in the series stack. However, this can be mitigated by

temporarily reducing the dc bus voltage, or by designing wider input voltage range servers and

differential converters. This dissertation focuses on hot-swapping achieved by maintaining bus

current through differential converters and the virtual bus.

In the remainder of this section, hot-swapped operation using differential converters and the

virtual bus to maintain bus current is conceptually explained in a case study through an example

server rack that includes six series-stacked servers. Mathematical derivation of processed and

delivered power in the system is extended for hot-swapped operation. In a final case study, the

32-server rack and two of the average computational load scenarios in Case Study I are studied

again to show processed and delivered power under hot-swapped operation.

Case Study II

Case Study I compared processed and delivered power in the server-to-virtual bus architecture when

the computational load distribution within series-stacked servers follows a Gaussian distribution.

Although hot-swapping or a server failure occurs rarely, it represents a severe mismatch in terms of

computational load distribution for a series-stacked architecture, thus increasing processed power

in the system.

Figure 3.5 illustrates examples of normal and hot-swapped operation of a six-server rack employ-

ing the server-to-virtual bus DPP architecture. Assuming 300 W rated power and 12 V nominal

voltage servers, the annotated server currents in Figure 3.5(a) represent 95% average computational

load and ±5% computational load range within the rack, similar to Case Study I. It can be seen in

Figure 3.5(a) that the bus current equals the average of the six server currents. Each differential

converter injects or rejects the difference in current between its corresponding server current and

the bus current given by (3.5). The total current into the virtual bus capacitor is zero, resulting in

63 W processed power as in (3.11), and 1701 W delivered power as in (3.14).

26

DC

DC
+
-

Server
6

DC

DC
+
-

Server
5

DC

DC
+
-

Server
4

DC

DC
+
-

Server
3

DC

DC
+
-

Server
2

DC

DC
+
-

Server
1

V
Bus

I
Bus

24.75A

22.5A

23.25A

24A

24.75A

22.5A

1.125A

15.625A1.125A

0.375A

1.125A

0.375A

1.125A

23.625A

(a) All servers are
operational.

DC

DC
+
-

Server
6

DC

DC
+
-

Server
5

DC

DC
+
-

Server
4

DC

DC
+
-

DC

DC
+
-

Server
2

DC

DC
+
-

Server
1

V
Bus

I
Bus

24.75A

22.5A

24A

24.75A

22.5A

2.75A

15.625A5A

19.75A

2.75A

4.25A

5A

19.75A

(b) One server is
swapped out.

DC

DC
+
-

Server
6

DC

DC
+
-

DC

DC
+
-

Server
4

DC

DC
+
-

DC

DC
+
-

Server
2

DC

DC
+
-

Server
1

V
Bus

I
Bus

24.75A

22.5A

24A

22.5A

6.875A

15.625A9.125A

15.625A

6.875A

8.375A

15.625A

15.625A

(c) Two servers
are swapped out
at the same time.

DC

DC
+
-

Server
6

DC

DC
+
-

DC

DC
+
-

Server
4

DC

DC
+
-

DC

DC
+
-

Server
2

DC

DC
+
-

V
Bus

I
Bus

22.5A

24A

22.5A

11A

11.5A

11.5A

11A

12.5A

11.5A

11.5A

(d) Three servers
are swapped out
at the same time.

DC

DC
+
-

DC

DC
+
-

DC

DC
+
-

Server
4

DC

DC
+
-

DC

DC
+
-

Server
2

DC

DC
+
-

V
Bus

I
Bus

22.5A

24A

14.75A

7.75A

7.75A

7.75A

16.25A

7.75A

7.75A

(e) Four servers
are swapped out
at the same time.

DC

DC
+
-

DC

DC
+
-

DC

DC
+
-

Server
4

DC

DC
+
-

DC

DC
+
-

DC

DC
+
-

V
Bus

I
Bus

24A

4A

4A

4A

4A

20A

4A

4A

(f) Five servers
are swapped out
at the same time.

Figure 3.5: Examples of normal and hot-swapped operations of a six-server rack. Annotated
server currents correspond to a 95% average computational load with ±5% computational load
range scenario when all servers are operational. Annotated differential currents show direction
and average amount of current flow, assuming ideal converters.

Shown in Figure 3.5(b) is an example where the third server is swapped out from the six-server

rack, under the same load distribution as in Figure 3.5(a). Treating the absence of the third server

as the third server consuming 0 A, the differential currents can be calculated from (3.5). Note that

the differential converter for the third server ensures the flow of bus current in the series stack by

injecting it into the virtual bus. In order to ensure virtual bus regulation, the remaining differential

converters share the extra current on the virtual bus, and inject it back to their servers. For this

example, the processed and delivered power are 474 W and 1422 W, respectively.

Figures 3.5(c) through 3.5(f) illustrate examples in which the servers are swapped out from the

six-server rack one by one. It can be observed that the bus current decreases as more servers are

swapped out since the bus current equals the average of the six server currents (again, treating the

swapped-out server currents as 0 A). Also, the differential converters of the swapped-out servers

inject the bus current to the virtual bus while the remaining differential converters share the total

extra current and inject it back to their servers. The processed and delivered power for each

example in Figure 3.5 are given in Table 3.1.

27

Processed and delivered power during hot-swapping

Recall the expressions for processed power (i.e., (3.13)) and delivered power (i.e., (3.14)) in the

server-to-virtual bus DPP architecture with ideal differential converters. Since the physical location

of a server in the series stack does not affect (3.14) and (3.12), the hot-swapped servers can be

lumped on top of the series stack in order to simplify the expressions of the following equations:

Pdelivered = Vs,nom

J∑
j=H+1

IS,j , (3.16)

and

Pprocessed = Vs,nom

 H∑
j=1

IBus +

J∑
j=H+1

|IBus − IS,j |

 , (3.17)

where H is the number of simultaneously hot-swapped servers (i.e., IS,j = 0 for jε{1, 2, . . . ,H},

and IS,j > 0 for jε{H + 1, H + 2, . . . , J}).

In order to further simplify (3.17), assume that the bus current is less than all remaining server

currents during any hot-swap, which means |IBus− IS,j | < 0 for jε{H+1, H+2, . . . , J}. Note that

this assumption is the situation studied in Case Study II and Figure 3.5. Then, (3.17) becomes

Pprocessed = Vs,nom

 H∑
j=1

IBus +
J∑

j=H+1

(−IBus + IS,j)

= Vs,nom

H × IBus − (J −H)× IBus +
J∑

j=H+1

IS,j

= Vs,nom

(2H − J)× IBus +
J∑

j=H+1

IS,j

 . (3.18)

Recall that the bus current is the mean of the time average of the server currents, given by (3.9).

Since IS,j = 0 is valid for all hot-swapped servers, (3.9) can be restated as

IBus =
1

J

J∑
j=H+1

IS,j . (3.19)

28

Using (3.19) in (3.18), the processed power becomes

Pprocessed = Vs,nom

(2H − J)× 1

J

J∑
j=H+1

IS,j +

J∑
j=H+1

IS,j

= Vs,nom

((2H − J)

J
+ 1

)
×

J∑
j=H+1

IS,j

= Vs,nom

(2H

J

)
×

J∑
j=H+1

IS,j

=

2H

J
Pdelivered. (3.20)

On the other hand, if the bus current is higher than at least one of the remaining server currents

during a hot-swap (i.e., |IBus − IS,j | > 0 for at least one jε{H + 1, H + 2, . . . , J}), further sim-

plification of (3.17) requires more information about the server currents, and therefore does not

produce a closed form expression.

Equation (3.20) can be used to relate the processed power to the delivered power in the series-

stacked architecture when the bus current is less than all remaining server currents during any

hot-swap (i.e., IBus < IS,j for jε{H + 1, H + 2, . . . , J}). In such a scenario, it can be observed

that due to the 2H
J term, processed power is guaranteed to be less than the delivered power in the

server-to-virtual bus DPP architecture unless half of the servers are hot-swapped at the same time.

(Note that Pprocessed and Pdelivered in Table 3.1 also follow (3.20).)

Case Study III

In this case study, hot-swapped operation is applied to the 32-server rack used in Case Study I. For

60% and 95% average computational load scenarios in Case Study I, (3.13) and (3.14) are plotted

versus the total number of swapped-out units in Figures 3.6(a) and 3.6(b), respectively.

As shown in Figures 3.6(a) and 3.6(b), unless half of the servers in a series stack are swapped out

at the same time, the processed power in the server-to-virtual bus DPP architecture is less than

the delivered power, yielding an efficiency improvement for the series-stacked approach compared

to conventional solutions. Although processed power is more than delivered power after more than

half of the servers are hot-swapped at the same time, processed power decreases as more servers

are hot-swapped since processed power is related to delivered power by (3.20).

29

0 5 10 15 20 25 30
Total number of swapped out servers

0

2000

4000

6000

8000

10000
A

ve
ra

ge
 p

ro
ce

ss
ed

 p
ow

er
 [

W
] Pprocessed

Pdelivered

(a) 60% average computation load and ± 40% compu-
tational load range.

0 5 10 15 20 25 30
Total number of swapped-out servers

0

2000

4000

6000

8000

10000

A
ve

ra
ge

 P
ro

ce
ss

ed
 P

ow
er

 [
W

] Pprocessed
Pdelivered

(b) 90% average computation load and ± 5% compu-
tational load range.

Figure 3.6: Comparison of total processed and delivered power in the server-to-virtual bus
architecture.

3.4 Key implementation challenges

Even though the series-stacked architecture has an inherent advantage in terms of power delivery

efficiency, there are some implementation challenges that are unique to data center applications.

3.4.1 Communication across voltage domains

Since there is no common ground between servers in a series-stacked architecture to be used as a

reference level for communication purposes, communicating across different voltage domains may

be considered an implementation challenge. However, commonly used communication interfaces

in data center applications typically involve inherent isolation which is sufficient for the series-

stacked architecture. For example, the signal isolation transformers in standard Ethernet are rated

for 1.5 kV dc isolation. Also, high-speed fiber optic cables and ac coupling capacitors in serial

links can be used to communicate across serially connected servers. Note that such interfaces are

already in use in data centers, reducing the additional implementation effort needed to achieve

communication in series-stacked architectures [114].

30

3.4.2 Initialization

In a series-stacked configuration, when the dc bus voltage is applied to the series stack, voltage

balance between the series-stacked hardware may be an issue before any voltage control by the

differential converters can take place. One solution to this challenge could be connecting shunt

resistors in parallel with the series-stacked hardware to ensure proper voltage balancing when there

is no voltage regulation. However, the continuous employment of shunt resistors reduces the high

efficiency power delivery promise of the series-stacked architecture. Therefore, a circuit is needed

to disable the shunt resistors after voltage regulation in the stacked architecture is successfully

initialized.

3.4.3 Hot-swapping

Hot-swapping implementation in conventional power delivery architectures is straightforward due

to the individual power delivery paths. However, in series-stacked architectures, hot-swapping

implementation becomes challenging since series connected servers form the main power delivery

path. In order to implement hot-swapping in any series-stacked architecture, the system must be

capable of isolating a swapped-out server from the series stack, the main power delivery path must

be maintained by using a bypass switch or by sinking bus current through the differential converter,

and in-rush current must be limited when a server is swapped in.

Hot-swapping operation first requires complete isolation of a server from the series stack. This

is crucial for operator safety, since each server is at a different voltage level in the series stack.

Moreover, once a server is isolated from the series stack, the absence of that server in the main

current flow path must be detected by the control algorithm and the flow of bus current in the

series stack must be maintained by the corresponding differential converter or a bypass switch as

mentioned in Section 3.3.2. When a server is plugged in after a hot-swap event, inrush current

occurs due to the high server input capacitance [122]. In the series-stacked architecture, inrush

current tends to flow through the series connected servers, and if unchecked, this may lead to a

voltage imbalance across the series stack, potentially damaging adjacent servers and differential

converters. Therefore, limiting in-rush current is an important requirement in a series-stacked

architecture.

31

CHAPTER 4

BIDIRECTIONAL HYSTERESIS CONTROL FOR THE

SERVER-TO-VIRTUAL BUS DPP ARCHITECTURE

In this chapter, the details of a control algorithm developed for the server-to-virtual bus DPP

architecture are presented. The fundamental challenge in the server-to-virtual bus DPP architecture

is voltage regulation of the series-stacked servers and the virtual bus. Since series connected servers

need to conduct the same amount of current, any power mismatch between servers results in voltage

variation at server input. This variation may easily exceed the allowed input voltage rating and

cause damage to the servers. Bidirectional differential converters capable of injecting or rejecting

current are used to regulate the series-stacked server voltages. Special attention must be given to

the virtual bus voltage while regulating the server voltages. In order for the virtual bus to be an

instantaneous energy buffer, its voltage must be regulated within safe limits. Voltage regulation in

the server-to-virtual bus DPP architecture thus becomes a challenging control problem. Here, the

operation of the server-to-virtual bus DPP architecture is revisited with concentration on control

aspects of the system. First, a control method is proposed and explained for steady-state operation

at fixed dc bus voltage. Then, it is extended for hot-swapped operation and for varying dc bus

operation. Key features of the control are supported with simulations in PLECS [123].

4.1 System analysis for control discussion

The server-to-virtual bus DPP architecture was given in Figure 3.3. It is depicted again in Figure 4.1

to facilitate the discussion.

As can be seen in Figure 4.1, since the inputs and outputs of all differential converters are the

same, neither the physical location of a server in the series stack nor the number of series-stacked

servers affects the following discussion. Therefore, Sj represents any server in the series stack, ζ

represents the set containing all servers in the system (i.e., Sj ε ζ), and J represents the total

number of series-stacked servers (i.e., J = |ζ|). Following this notation, iSj and vSj represent

the jth server current and voltage, respectively, and i∆,j represents the differential current for Sj ,

32

+
−

DC

DC

+
-

Server
1

v
S,1

+
_

i
S,1

i
Δ,1

DC

DC

+
-

Server
J

v
S,J

+
_

DC

DC

+
-

Server
2

v
S,2

+
_

vVB
+

i
Bus

V
Bus

_

i
Bus

i
S,2

i
Δ,2

i
Bus

i
S,J

i
Δ,J

i
Bus

i
δ,1

i
δ,2

i
δ,J

i
VB

Figure 4.1: Server-to-virtual bus DPP architecture schematic used for analysis.

which is defined as the difference between the server current and the bus current. The outputs of

all differential converters are connected at the virtual bus capacitor; therefore, the output voltage

of all differential converters is vV B. Also, the dc bus is shown as an ideal voltage source for now

since in practice it can be regulated by a rectifier and supplied with capacitor banks in order to

provide a bus voltage with a larger time constant than the server dynamics. Therefore, in the

following discussion the dc bus has constant voltage (i.e., vBus = VBus) and it can provide any

amount of bus current (iBus).

In Section 3.3, steady-state operation of the server-to-virtual bus DPP was explained. Here,

for the purpose of control discussion, three key circuit constraints that need to be satisfied in the

server-to-virtual bus DPP architecture are restated. Since all servers are connected in series, server

input voltages must sum up to the fixed bus voltage,

VBus =
∑
jεJ

vs,j . (4.1)

Another constraint of the system is KCL at every intermediate node in the series stack. Since

bus current must continuously flow through the series-stack, it must be shared by each server and

33

Voltage Regulator
Module

DC

DC

DC

DC

iBus
iVRM

iCs
is iΔ

vsCs CVB

+
_

Digital
load

Differential
Converter

Server DPP Architecture

Figure 4.2: Server model in the series-stack.

differential converter pair in the stack,

iBus = iS,j + i∆,j . (4.2)

Since the virtual bus is connected at the output of every differential converter, the current into the

virtual bus is the sum of all differential converter currents (assuming the differential converters are

ideal for simplicity),

iV B =
∑
jεJ

i∆,j . (4.3)

In addition to these three key circuit constraints, a simplified model of a server in the server-to-

virtual bus DPP architecture shown in Figure 4.2 introduces another KCL expression. The model

in Figure 4.2 consists of one input capacitor (CS,j) in parallel with one voltage regulator module

(VRM) that provides a lower voltage level for a computing module. Since series-stacked servers

share the same bus current (iBus), the difference between iBus and iV RM,j is supplied or stored in

CS,j absent any differential converter current injection or rejection (i.e., i∆,j = 0). This difference

causes a variation in server voltage,

iCS
= iBus − iV RM = CS

dvS
dt

, (4.4)

again for the case where i∆,j = 0. The virtual bus is also a capacitive buffer for instantaneous

power mismatch between the servers and its voltage variation can be captured by

iV B =
∑
jεJ

i∆,j = CV B
dvV B
dt

. (4.5)

Depending on the power mismatch between series stacked servers, each server must be an element

in one of three subsets as explained below.

34

Let Sk refer to servers that require higher current than the bus current (i.e., iS,k = iV RM,k +

iCS,k
> iBus). Before differential current takes effect, this requirement results in a voltage decrease

given by (4.4). INJ ⊂ ζ is defined as the subset that contains servers which need current injection

(i.e., SkεINJ), and K is the number of servers in this subset (i.e., K = |INJ |).

Let Sl refer to servers that require less current than the bus current (i.e., iS,l = iV RM,l + iCS,l
<

iBus). Before differential current takes effect, this requirement results in a voltage increase given

by (4.4). REJ ⊂ ζ is defined as the subset that contains servers which need current rejection (i.e.,

SkεREJ), and L is the number of servers in this subset (i.e., L = |REJ |).

For the sake of completeness, let Sn refer to any remaining servers (i.e., iS,n = iBus). NONE ⊂ ζ

is defined as the subset that contains servers which do not require any current (i.e., SnεNONE),

and N is the number of servers in this set (i.e., N = |NONE|). Following these definitions, one

can deduce that K + L+N = J , INJ ∩REJ ∩NONE = 0, and INJ ∪REJ ∪NONE = ζ.

Note that since current consumption of servers is not constant over time, the elements of INJ ,

REJ , and NONE may change. However, the voltage constraint of the series connection given by

(4.1) enforces the following relations: all servers cannot require current injection or rejection at the

same time (as given in (4.6)), if there exists one server that requires current injection, there must

be at least one other server that requires current rejection or does not require any action (as given

by (4.7)). Likewise, if there exists one server that requires current rejection, there must be at least

one other server that requires current injection or does not require any action (as given by (4.8)).

K 6= J & L 6= J (4.6)

K ≥ 1→ L+N ≥ 1 (4.7)

L ≥ 1→ K +N ≥ 1 (4.8)

4.2 Control objectives

The server-to-virtual bus DPP architecture consists of J servers and J differential converters;

however, there are J + 1 voltages to regulate since the voltage of the virtual bus is free to vary, but

must be regulated to within acceptable limits. Each differential converter is thus responsible for

regulating its server’s voltage while also ensuring there is always energy in the virtual bus capacitor,

and that the virtual bus voltage is within limits. In addition, in this work, the differential converters

35

must be rated for full server power in order to accommodate any abnormal operational conditions

such as server initialization, shutdown, and hot-swapping. However, during normal operation when

servers are (ideally) equally loaded, the mismatch power between servers is much less than rated

server power. This requires the differential converters to work at light load with high efficiency.

For these reasons, the control algorithm must be able to determine both the direction and the

amount of power flow in each differential converter. Moreover, only voltage feedback is desired

for control simplicity and to avoid wasting energy at current shunt monitors. Also, distributed

digital control eliminates the need for communication between converters, making the server-to-

virtual bus architecture easy to implement. In order to achieve these objectives, a distributed

bidirectional hysteresis control method that uses only voltage measurements is developed here for

the server-to-virtual bus DPP architecture.

4.3 Proposed control

The fundamental approach of the proposed control method is for each local controller to monitor

the input and output voltage of its local converter in order to determine whether the converter needs

to turn on or off. Note that if the converter needs to turn on, the direction of power flow should

be dynamically determined as well. This approach can be grouped into three sequential steps: a

voltage sampling step, a current need determination step, and a power flow direction decision step.

Each of these steps is discussed below. Following this discussion, an example scenario is explained in

detail, emphasizing both the distributed and bidirectional nature of the proposed control method.

ε1

ε0-ε1
-ε0

Error
0

Current Need

Injection

No Action

Rejection

Figure 4.3: Proposed bidirectional hysteresis action.

36

4.3.1 Voltage sampling

Each differential converter samples both its server voltage and the virtual bus voltage, and the

voltage variation of each voltage domain is given by

εS,j = Vnom − vS,j and εV B = Vnom − vV B (4.9)

for each converter, where Vnom is the nominal server input voltage.

4.3.2 Current need

The current needs of both the server and virtual bus are determined by referring to the proposed

bidirectional hysteresis shape in Figure 4.3, which is valid for both server and virtual bus voltages

independently. The hysteresis shape in Figure 4.3 has three “current need states” on the y-axis

(current injection, current rejection and no action) and four predefined error values on the x-axis

(±ε0 and ±ε1). Depending on the calculated voltage error and the current need state of the voltage

domain during the previous sampling time, the state for the present sampling time is determined.

As a result of this step, each server becomes an element in one of the subsets INJ , REJ , or

NONE. Note that Figure 4.3 is demonstrated in general, but applies to both the converter input

and output separately.

4.3.3 Power flow direction

For each differential converter the current need determination step has nine possible outcomes

since each differential converter is responsible for two voltage domains (i.e., the server and the

virtual bus) and each voltage domain has three possible current need states (i.e., current injection,

current rejection and no action). These nine possible outcomes and the corresponding decisions

are tabulated in Table 4.1, where +I∆,j corresponds to average current being injected to the server

(+ < i∆,j >) at that sampling time, −I∆,j corresponds to the current being removed from the

server (− < i∆,j >) at that sampling time (i.e., injected to the virtual bus), and OFF corresponds

the converter being kept off at that sampling time.

Although Table 4.1 is unique and generated for each differential converter separately at every

sampling time, the current need of the virtual bus is common to all differential converters. There-

fore, the information in the columns of Table 4.1 is the same for and naturally shared among all

37

Table 4.1: Decision table for bi-directional hysteresis control

Virtual Bus
No Action Injection Rejection

S
er

ve
r No Action OFF +I∆,j −I∆,j

Injection −I∆,j OFF −I∆,j

Rejection +I∆,j +I∆,j OFF

differential converters. However, the current need of each server depends on the instantaneous

power mismatch between servers. The information in the rows of Table 4.1 is thus different for

each differential converter.

In Table 4.1, for outcomes that are located in off-diagonal cells, neither the server nor the virtual

bus requires current injection (or rejection) at the same time. For these off-diagonal outcomes,

current injection (or rejection) decisions made to satisfy the current need of one voltage domain

have no adverse effect on the other voltage domain. In addition, keeping the differential converter

off when the server and virtual bus do not require any current injection or rejection follows from the

hysteresis control algorithm. On the other hand, for remaining off-diagonal outcomes in Table 4.1,

both the server and the virtual bus require current injection (or rejection) at the same time. For

these diagonal outcomes, the control decision relies on the series-stacked system properties analyzed

in Section. 4.1 and keeps the converter off, as can be seen in Table 4.1. This decision is explained

through the example scenario below.

Consider one of the differential converters in the stack and let a digital controller sample both

its server voltage (vS,j) and the virtual bus voltage (vV B). The current need state of each voltage

domain for this sampling time is determined as explained in Section 4.3.2 for both voltage domains.

For example, consider the outcome that server Sj and the virtual bus simultaneously require current

injection. This occurs when both vS,j and vV B are lower than their nominal values. It results in

Sj being SkεINJ and K ≥ 1. Recall that the sum of all series-stacked server voltages is enforced

to be fixed by (4.1). This implies that there must be at least one other server in the series stack

that is SlεREJ and/or SnεNONE, as in (4.7). As in Table 4.1, the decision made to satisfy Sl

and/or the decision that has no adverse effect on Sn is to inject current into the virtual bus to

satisfy the requirements of the virtual bus. Also, since (3.2) needs to be valid at every intermediate

node in the series stack, differential current rejection from Sl and/or Sn increases the bus current

by exactly the same amount that Sk would get if the virtual bus did not require current injection.

38

This increase in iBus satisfies the current injection requirement of Sk and increases its voltage.

The same idea is valid when both a server and the virtual bus simultaneously require current

rejection. Therefore, when both a server and the virtual bus simultaneously have the same demands,

the appropriate decision is to keep the converter off as shown in Table 4.1.

4.4 Cs and CV B sizing considerations

Important design considerations for light load operation of the proposed control algorithm are

the size of Cs and CV B, and the hysteresis bands for both the server (εS,j,1) and the virtual bus

(εV B,1), since these parameters affect how often the differential converters need to process power.

Also, the magnitude of the differential current (i∆) affects the amount of processed power. These

directly affect the system-level efficiency since power loss in the system only occurs when differential

converters are operational. Keeping the differential converters off as long as possible is thus an

important way to maximize system-level efficiency. A four-server rack system is planned for the

experimental study in this work; the discussion thus continues for a four-server rack.

For design intuition about Cs, CV B, εS,j,1, εV B,1 and i∆ values, contour plots in Figure 4.4 are

plotted using (4.4) and (4.5) for certain operating conditions.

When the differential converter is kept off, contour lines in Figure 4.4(a) show the allowed

difference between iBus and iV RM for various values of CS and εS,j,1. Once the difference between

iBus and iV RM exceeds its allowed value for a chosen pair of CS and εS,j,1, the server voltage varies

higher than εS,j,1. The differential converter then turns on and provides current to the system.

Contour lines in Figure 4.4(b) show the required magnitude of i∆ for the same values of CS and

εS,j,1 as in Figure 4.4(a). For a given allowed difference between iBus and iV RM , a feasible pair

of CS and εS,j,1 can be selected by referring to Figure 4.4(a). The minimum differential current

magnitude to regulate the server voltage back within the hysteresis limits is determined by referring

to Figure 4.4(b).

Since voltage regulation requirements on the virtual bus capacitor are more relaxed in terms of

both magnitude and duration, sizing of the virtual bus capacitor is considered for a worst case

scenario. In the four-server rack considered in this work, the worst case occurs when K = 3 and

L = 1 (or when K = 1 and L = 3). In this scenario, the net virtual bus current is twice the

differential current. Contour lines in Figure 4.4(c) show the allowed consecutive sampling times

under the worst case scenario before the virtual bus requires regulation action for different values

39

0.5A
1A

1.5A
2A

2.5A

3A

3.5A

4A

4.5A

5A

5.5A

ε 1
[V

]

Server Capacitance [mF]
2 4 6 8 10

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(a) Allowed voltage variation of server voltage
versus CS for the difference between iBus and
iV RM .

2A
4A

6A 8A

10A

12

ε 1
[V

]
Server Capacitance [mF]

2 4 6 8 10
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(b) Minimum amount of i∆ in order to regulate
the server voltage.

5

10

15

20

25

30
35

40

45

ε V
B
[V

]

Virtual Bus Capacitance [mF]
20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Allowed consecutive sampling times before
the differential converters start regulating the
virtual bus.

Figure 4.4: Charts for Cs, CV B, εS , εV B and i∆ decisions.

40

Current Need

ε1

ε0-ε1
-ε0

Error
0 ε2

-ε2

Light Injection

Full Injection

Light Rejection

Full Rejection

No Action

Figure 4.5: Extended bi-directional hysteresis shape. Note that the bidirectional hysteresis shape
is generic and independently valid for each series-stacked server and the virtual bus.

of CV B and εV B.

Considering the above method Cs = 5 mF, εS,j,1 = 0.15 V, i∆ = 3 A, CV B = 50 mF, and

εV B = 0.5 V are chosen as initial control parameters for simulation study. The sampling time is

chosen to be 50 µs, corresponding to 20 kHz control bandwidth in simulation.

4.5 Extension of bidirectional hysteresis control

Before proceeding to a simulation study, the operation of the bidirectional hysteresis algorithm

must be extended to enable its usage for hot-swapping and varying dc bus operation.

4.5.1 Hot-swapping

Here, light load operation of the bidirectional hysteresis algorithm is extended to enable its usage

for abnormal operation where more current injection or rejection may be necessary such as during

server initialization and hot-swapping.

Shown in Figure 4.5 is the extended bidirectional hysteresis shape having two more “current

need states” added on the y-axis (heavy current injection and heavy current rejection) and two

more predefined error values added on the x-axis (±ε2).1 The five different current need states

in Figure 4.5 result in 25 possible outcomes for each differential converter, which are tabulated in

Table 4.2. In addition to the notation used in Table 4.1, the superscript ∗ in Table 4.2 means that

the differential converter operates at a higher current level. For example, in Figure 4.5 when the

voltage error of any voltage domain is less than ±ε2, current injection or rejection in light-load mode

1More quantized states and predefined error values are possible as mentioned in [7], and might provide better
regulation at the expense of a more complicated decision table.

41

Table 4.2: Decision table for extended bidirectional hysteresis control

Virtual Bus
No Action Light Injection Light Rejection Full Injection Full Rejection

S
er

ve
r

No Action OFF +I∆,j −I∆,j +I∗∆,j −I∗∆,j
Light Injection −I∆,j OFF −I∆,j +I∆,j −I∆,j

Light Rejection +I∆,j +I∆,j OFF +I∆,j −I∆,j

Full Injection −I∗∆,j −I∆,j −I∗∆,j OFF −I∗∆,j
Full Rejection +I∗∆,j +I∗∆,j +I∆,j +I∗∆,j OFF

is sufficient to regulate the voltage domain within ±ε0. However, if the voltage error of any voltage

domain is more than ±ε2, the differential converter needs to operate in a higher current mode

until the voltage domain is regulated within ±ε0. In the extended bidirectional hysteresis control,

differential converters are kept off to maximize power delivery efficiency when their corresponding

voltage domains are within ±ε1. Further explanation of both Figure 4.5 and Table 4.2 follows the

same principles as explained in Section 4.3 and are not repeated here.

4.5.2 Varying dc bus voltage

So far, the proposed control algorithm assumes a fixed dc bus voltage, which may not be compatible

with battery backup systems where the dc bus is supplied through a UPS, as shown in Figure 4.6.

Here, the proposed control algorithm is extended to maintain continuous operation of series-stacked

servers when the dc bus voltage is not constant.

Recall (3.1), the KVL expression around the series connection, which is valid under all circum-

stances:

vbus =
J∑
j=1

vS,j . (4.10)

Here, vbus and vserver,j refer to instantaneous voltages of the dc bus and jth series-stacked server,

respectively. Since the virtual bus voltage is a free design parameter in the system, it can be

enforced to be the same as the average of the instantaneous server voltages (i.e., vbus/J). These

two properties of the server-to-virtual bus DPP architecture enable all J + 1 voltages (J servers

and one virtual bus voltage) to be coupled through the series connection.

Assume Vbus,min and Vbus,max are the minimum and maximum expected voltages at the dc bus

in a server rack under unregulated bus conditions (i.e., Vbus,min < vbus < Vbus,max). For example,

for a server rack that employs an UPS at its dc bus, Vbus,min and Vbus,max refer to the UPS output

42

voltage range. Further, assume that POL converters inside a server motherboard can perform

output voltage regulation for server input voltage values between Vbus,min/J and Vbus,max/J . The

server-to-virtual bus DPP architecture should regulate all J + 1 voltages to vbus/J in order to

ensure operation of the series-stacked servers while maintaining the virtual bus at a safe energy

exchange value.

The proposed extension to the bidirectional hysteresis control algorithm can be summarized as

follows: At every sampling time, the reference voltage (vref) for the series-stacked servers and the

virtual bus is determined by measuring the dc bus voltage and dividing it by the number of series-

stacked servers (i.e., vref = vBus/J). The server voltage and the virtual bus voltage are measured

locally by each differential converter. Each differential converter compares its server voltage and the

virtual bus voltage to the reference voltage to calculate errors given by verror,Server = vref−vServer,j

and verror,V B = vref − vV B. Depending on the sign and magnitude of the errors, the current need

of the server or virtual bus can be determined as explained in Section 4.3. Note that the dc bus

voltage must be known by each differential converter controller at every sampling time for this

extended bidirectional hysteresis control to function in a distributed manner.

Before proceeding to a simulation study of the proposed bidirectional hysteresis control for the

server-to-virtual bus DPP architecture, one last thing to be noted is that regulating all series-stacked

server voltages and the virtual bus voltage to vbus/J can also be achieved locally by differential

converters using a proportional controller. (An implementation of such a control idea for photo-

voltaic systems can be found in [85].) Each differential converter can sample its input (i.e., server)

and output (i.e., virtual bus) voltage, and feed back the error between its input and output voltage

to a local proportional controller in order to determine the amount and direction of current flow.

AC

DC

Server
1

DC

DC

Server
2

DC

DC

Server
J

DC

DC

v
Bus

+

-

Blade

Rack

Feasible
UPS placement

Figure 4.6: A circuit diagram depicting feasible UPS placement in the series-stacked architecture.

43

DC BUS
V: 48

Probe

Server Probe

Server Voltages

Probe

Virtual Bus Probe

Server

Model1
+
-

D
at

a

Probe

DC Bus Probe DC Bus

Server

Model2
+
-

D
at

a
Server

Model3
+
-

D
at

a

Server

Model4
+
-

D
at

a

Probe

Server Probe1

Server Currents

C: 0.05

Differential Currents

Measured

Server

Current

1
2
3
4

Virtual Bus

Differential

Converter

Model4

Virtual Bus+Server +
Virtual Bus -Server -

C
u
rr

en
t

Differential

Converter

Model1

Virtual Bus+Server +
Virtual Bus -Server -

C
u
rr

en
t

Differential

Converter

Model2

Virtual Bus+Server +
Virtual Bus -Server -

C
u
rr

en
t

Differential

Converter

Model3

Virtual Bus+Server +
Virtual Bus -Server -

C
u
rr

en
t

Figure 4.7: Simulation schematic model in PLECS.

As the local proportional controller tries to reduce the error between the input and output voltage

of its differential converter, the series-stacked server voltages and virtual bus voltage converge to

vbus/J . Although the local proportional controller idea can achieve the desired control objective,

inefficient light-load operation of the differential converters may reduce overall power conversion

efficiency; thus, it is not explored in this dissertation.

4.6 Simulation Study

The distributed bidirectional hysteresis algorithm is validated in a simulation environment with

the simulation model shown in Figure 4.7. Both normal (i.e., when servers are consuming similar

currents) and hot-swapped operation are simulated in order to show the operation of the pro-

posed control algorithm. Varying dc bus operation of the server-to-virtual bus DPP architecture

44

0 0.05 0.1 0.15 0.2
0

2

4

6

8

i S
1

0 0.05 0.1 0.15 0.2
0

2

4

6

8

i S
2

0 0.05 0.1 0.15 0.2
0

2

4

6

8

i S
3

0 0.05 0.1 0.15 0.2
Time [s]

0

2

4

6

8

i S
4

[A
]

[A
]

[A
]

[A
]

(a) Server currents.

0 0.05 0.1 0.15 0.2
11.7

11.85

12

12.15

12.3

v S
1

[V
]

0 0.05 0.1 0.15 0.2
11.7

11.85

12

12.15

12.3

v S
2

[V
]

0 0.05 0.1 0.15 0.2
11.7

11.85

12

12.15

12.3

v S
3

[V
]

0 0.05 0.1 0.15 0.2
Time [s]

11.7

11.85

12

12.15

12.3

v S
4

[V
]

(b) Server voltages.

Figure 4.8: Simulated server waveforms.

is validated in the experimental study in Section 5.4.2.

The server models in Figure 4.7 employ an input capacitor in parallel with a controlled current

sink which takes its values from measured server currents. A mathematical model for 95% efficient

bidirectional converters was built to count for potential power loss in the differential converters.

The proposed control algorithm is coded in a C-Script block of the simulator. Simulated server

waveforms, differential currents, and the virtual bus voltage for normal operation are given in

Figures 4.8 through 4.10.

There is no severe mismatch between server currents, given in Figure 4.8(a), during the first

half of the simulation. This represents normal operation in which all series-stacked servers are

similarly loaded. At t=0.1 seconds, the current of the second server is pulled down to zero to

simulate a hot-swapping scenario. The simulated server and virtual bus voltages are plotted in

Figure 4.8(b) and 4.10, showing voltage regulation during both steady-state operation and hot-

swapping operation. The differential currents given in Figure 4.9 show both the bidirectional and

hysteresis nature of the control. Note that after the second server current pulls down to zero,

the second differential converter starts to process higher power in order to guarantee continuous

operation of the remaining servers.

45

0 0.05 0.1 0.15 0.2

-6
-3
0
3
6

i ∆
1

0 0.05 0.1 0.15 0.2

-6
-3
0
3
6

i ∆
2

0 0.05 0.1 0.15 0.2

-6
-3
0
3
6

i ∆
3

0 0.05 0.1 0.15 0.2
Time [s]

-6
-3
0
3
6

i ∆
4

[A
]

[A
]

[A
]

[A
]

Figure 4.9: Simulated differential currents.

0 0.05 0.1 0.15 0.2
Time [s]

11.5

12

12.5

v
V
B

[V
]

Figure 4.10: Simulated virtual bus voltage.

46

CHAPTER 5

EXPERIMENTAL STUDY OF THE SERVER-TO-VIRTUAL

BUS DPP ARCHITECTURE

In this chapter, implementation details of prototype hardware and an experimental testbed for the

server-to-virtual bus DPP architecture are described, and the experimental results are reported.

5.1 Prototype DPP hardware

Prototype DPP hardware for the server-to-virtual bus architecture is depicted in detail in Figure 5.1.

This hardware has three terminals: a server terminal (Server+ and Server- in Figure 5.1), a

virtual bus terminal (Virtual Bus+ and Virtual Bus- in Figure 5.1), and a series-stack terminal

(Series-Stack+ and Series-Stack- in Figure 5.1) for interconnecting to the series stack. These

three terminals separate the hardware into two stages: the interface stage and the differential

converter stage. The interface stage between the server and the series-stack terminals holds stack

initialization circuitry and also is responsible for hot-swapping operation. The differential converter

stage is placed between the series stack and the virtual bus terminals. It is responsible for server

and virtual bus voltage regulation.

Isolated
Power
Supply

5V

Digital
Isolator

M1

M2

M3

EnableM1

EnableM2

EnableM3EnableM1

EnableM2

EnableM3

EnableM1

EnableM2

Digital
Isolator

5V

EnableM3

Rlimit

Digital
Isolator

3.3V 3.3V

LDO 5V

LDO 3.3V

LDO 5V

LDO 3.3V

C C

PWM1,2

Enable1,2

PWM1,2

Enable1,2

L

VVB

VVB
EnableM5EnableM5

EnableM5

M4

M5

Power
Stage1

Power Power Power
Stage2 Stage3 Stage4

{ { { {

RSS'RSS

3.3V 3.3V VSeries-Stack

VSeries-Stack

RG1

RG2

RG3

CG1
Server+

Server-

Series-Stack-

Series-Stack+

Bus-

Bus+
Virtual

Virtual

PWM1,2,3,4

Enable1,2,3,4

EnableM1,M2

EnableM3,M5

Contol
signals
from
MCUServer1

+
−

DC

DC

DPP hardware

DC

DC

DPP hardware

DC

DC

DPP hardware

Server2

ServerJ

+
-

+
-

+
-

out in

Figure 5.1: Schematic of prototype DPP hardware.

47

Table 5.1: Key components of the differential converter

Power Stage TI CSD95372BQ5MC
Digital Isolators TI ISO724x series
LDOs TI LP298x series
Transformer Coilcraft SMT PL160 × 2
Inductor Coilcraft SLC1480
Cin and Cout, ceramic TDK 10µF 16V X5R × 6
Cin and Cout, aluminum Panasonic 1mF 16V SMD × 2

5.1.1 Differential converter

The differential converter stage depicted in Figure 5.1 is a dual active bridge (DAB) dc-dc converter

which offers bidirectional power flow with symmetric design at both sides of the transformer when

the input (server) and output (virtual bus) voltages are nominally the same [124–128]. The DAB

converter is implemented with off-the-shelf discrete components that are common in many server

power supply designs such as a power stage that employs a high-side and a low-side MOSFET

with integrated gate driver circuitry for each half bridge in the converter. Digital isolators are used

as level shifters in order to transfer necessary digital signals to the different levels in the series

stack. The switching frequency is 200 kHz. The power flow direction and output power in the

DAB converter in this work are determined by a simple phase-shift modulation technique [126].

The key components of the differential converter are listed in Table 5.1.

Hot-swapping as pursued in this dissertation requires the differential converters and the virtual

bus to maintain the bus current. As explained in Section 3.3.2, hot-swapping operation increases

processed power in the system. When not in hot-swapping, the differential converters only process

the difference in power, and thus, do not need to be rated for full server power. However, during

hot-swapping, the differential converters must be able to handle maximum bus current at nominal

server voltage. For example, recall Case Study II where six 300 W rated 12 V servers were handling

95% average computational load with ±5% computational load range. Under this load distribution,

Figure 3.5(a) showed a server being hot-swapped, causing 237 W processed power in its differential

converter. Although this is almost 80% of the rated power, note that in Case Study II, the differ-

ential converters are assumed to be ideal to simplify the analysis, and average power consumption

is used to calculate the processed power. In this work, experimental hot-swapping is demonstrated

under a similar load distribution; however, possible power loss in differential converters and in-

stantaneous power demand during hot-swapping and initialization transients are considered when

48

Output urrent [A]
0 2 4 6 8 10

E
ff

ic
ie

nc
y

[%
]

40

50

60

70

80

90

100

From series-stack to virtual bus
From virtual bus to series-stack

c

Figure 5.2: Efficiency of the power stage in the hardware prototype

rating the differential converters. Each differential converter is designed to be able to sink or source

rated server power (i.e., 120 W at 12 V) from the series-stack terminal, depending on the power

flow direction. It is acknowledged that, given an expected load distribution in the series-stacked

servers and careful modeling of converter losses, differential converter rating can be optimized and

presumably reduced. On the other hand, hot-swapping could have been achieved by using a bypass

switch, as explained in Section 3.3.2, which would require bus voltage to be temporarily decreased.

If a bypass switch is used to maintain bus current during hot-swapping, the differential converter

rating can be further optimized and reduced.

The measured efficiency of the DAB converter prototype is plotted in Figure 5.2 for both power

flow directions. As shown in Figure 5.2, due to the symmetric design of the converter, almost

identical efficiency curves for both power flow directions are achieved with a peak at 95% around

40 W. An annotated photograph of the prototype hardware is given in Figure 5.3. The printed

circuit board (PCB) layouts of the prototype DPP hardware can be found in Appendix A.

5.1.2 Stack initialization circuitry

The Series-Stack terminals of the hardware prototype (shown as Series-Stack+ and Series-Stack-

in Figure 5.1) facilitate connecting multiple hardware prototypes to each other in order to build the

49

Differential converter

Hot-swappingcircuitryVirtual bus connector

Series-stack connector

Server connector

Figure 5.3: Annotated photograph of the prototype DPP hardware.

stacked architecture. The dc bus is connected to the stacked architecture at the Series-Stack+ ter-

minal of the top board and Series-Stack- terminal of the bottom board. In such a series-connected

configuration, when dc bus voltage is applied to the series stack, voltage balance between the

series-stacked boards can be preserved with shunt resistors between the Series-Stack terminals of

each board. Continuous employment of shunt resistors reduces the high power conversion effi-

ciency of the series-stacked architecture; therefore, shunt resistors should be disabled after stacked

architecture is successfully initialized.

Shown in Figure 5.1, between the Series-Stack+ and Series-Stack- terminals of the hardware

prototype, is the proposed stack initialization circuitry, which consists of a shunt resistor (RSS) and

auxiliary components (R
′
SS , M4 and M5). As the bus voltage is applied to the stacked architecture,

M4 naturally turns on since its gate is pulled high through R
′
SS (provided that the gate signal

of M5 is kept low), connecting RSS between the Series-Stack terminals. This ensures that the

dc bus voltage is equally divided between Series-Stack terminals of the stacked boards. As the

dc bus voltage ramps up to its nominal value, the linear regulators in Figure 5.1 start to provide

logic voltages to both the hot-swapping circuitry and the differential converter. After closed-loop

operation of the converters is activated, M4 can be turned off by turning on M5, and RSS is

disconnected from the series stack. Key components of the stack initialization circuitry are listed

50

Table 5.2: Key components of the stack initialization circuitry

Switches TI CSD85301Q2
RSS 120 Ω

R
′
SS 100 kΩ

in Table 5.2.

5.1.3 Hot-swapping circuitry

As mentioned before, once a server is hot-swapped in a series-stacked architecture, the main current

flow path can be ensured by the corresponding differential converter or a bypass switch. In this

dissertation, hot-swapping is achieved using differential converters instead of a bypass switch. A

hot-swapping circuitry is designed to achieve this operation.

Hot-swapping circuitry for the series-stacked architecture should provide complete isolation when

a server is swapped out, and also should limit the in-rush current due to the large input capacitor

of the server during swapin. In a hot-swapping event, complete isolation between the hot-swapped

server and the series-stack is achieved by turning off M1, M2, and M3 in Figure 5.1. While M1, M2,

and M3 comprise transistors in this implementation, galvanically isolated switches such as relays

may be employed, depending on the safety and regulatory requirements. At the end of the hot-

swapping event, M2 and M3 in Figure 5.1 are turned on, enabling a resistive path to limit in-rush

current to the server. Once the input capacitance of the hot-swapped server is slowly charged to the

voltage at the Series-Stack terminals (vStack), M1 is enabled for a low-resistance path between the

server and the series stack to supply energy efficiently to the server and resume normal operation.

M2 is turned off a few seconds after M1 is turned on.

The turn-on transients of M2 and M3 during swapin are important to consider for reliable op-

eration. Although Rlimit is employed to limit the in-rush current into the server, fast turn-on

transients of M2 and M3 can still interfere with the DPP control algorithm. Therefore, the gate

resistances of M2 and M3 (i.e., RG2 and RG3 in Figure 5.1) are set to 1.5 kΩ to increase the RC

turn-on time constant of M2 and M3. As M2 and M3 turn on slowly, the current flow through the

Rlimit forces M2 to operate in its linear region until the input capacitor of the server is charged

since the enable signal of M2 (EnableM2 in Figure 5.1) is referenced to Server+ terminal. Note

that the input capacitor of the server cannot be charged exactly to the stack voltage (vStack) due to

51

Table 5.3: The key components of the hot-swapping circuitry

Hot-Swapping Switches TI CSD18540Q5
Digital Isolator TI ISO724x series
Isolated Power Supply TI DCP010505BP
LDO TI LP2985
Rlimit 2.8 Ω

the impedance network formed by the server and Rlimit when M2 and M3 are on. Before the server

is initialized, the impedance at the input terminals of the server can be modeled as a high resistor

(due to a non-operational voltage regulator module) in parallel with the input capacitor. When

charging of the input capacitor is completed, vStack is actually divided between Rlimit and the high

resistance in parallel with the input capacitor. Although Rlimit is small, the voltage drop across

it creates a small current spike as M1 turns on, which affects the other series-stacked voltages if

not managed. The turn-on transient of M1 is thus decelerated by increasing gate resistance RG1

as well. An additional discrete capacitor (CG1=1 µF in Figure 5.1) is added to the gate of M1 to

further decelerate the turn-on transient of M1 without increasing RG1 beyond 100 kΩ. Excessive

gate resistance can cause the transistor to operate in the linear region, owing to the inherent gate

leakage of the device. The turn-off transient of M1 and M3, on the other hand, must be as rapid

as possible to quickly isolate a malfunctioning server from the series stack during a swapout event.

Ultrafast Schottky diodes are added to the gate driving circuit of M1 and M3 in order to bypass

RG1 and RG3 while their gate capacitors are discharged during a swapout event.

The goal of this work was to design hot-swapping circuitry that did not reduce the efficiency

noticeably. The TI CSD16570Q5B was found to have the lowest on resistance, 0.59 mΩ with a 5 V

gate signal. In order to achieve lower on resistance, 5 MOSFETs are paralleled in the hot-swapping

circuit. The additional components of the hot-swapping circuitry are listed in Table 5.3. Note that

the hot-swapping switches used in this implementation are rated at 60 V since the dc bus voltage

in the experimental testbed is 48 V.

5.2 Experimental setup

In order to validate the operation of the server-to-virtual bus DPP architecture, an experimental

setup that consists of a four-server testbed, a controller, and measurement units is built in addition

to the four prototype DPP hardware. An annotated schematic of the experimental setup is given

52

in Figure 5.4. This section summarizes details of the experimental setup.

vStack1vS1

A

-

+ + DC

DCServer1

+
-

A

- -

+ + DC

DC

+
-

A

- -

+ + DC

DC

+
-

A

- -

+ + DC

DC

+
-

A

+
−

A

vBus
+

-

iBus

iS1

iS2

iS3

iS4

vS2

vS3

vS4

vStack2

vStack3

vStack4

iD1

iD2

iD3

iD4

vVB
+

-

VBus

-

Server2

Server3

Server4

A

A

A

Dell Optiplex Pentium 4

Differential converter,
hot-swapping and initialization circuitry

Custom designed
current sense board

Figure 5.4: Annotated schematic of the experimental setup.

5.2.1 Testbed

A flexible and modular laboratory testbed was developed for experimental validation of the server-

to-virtual bus DPP architecture. The servers are Dell Optiplex SX280 workstations with a Pentium

4 CPU, a 2.5” magnetic hard drive disk, and DDR2 memory. These workstations have a single 12 V

motherboard input; however, the operating input voltage range is empirically found to be 10.5-13 V.

53

Each workstation is rated for 120 W peak power. Although these workstations consume lower power

than typical servers in data centers, their terminal characteristics in response to computational loads

are similar to high-end servers. The workstations used in this experimental work serve as scaled

down versions of costly servers and enable validation of series-stacked power delivery at reasonable

cost. All workstations run the Linux Ubuntu 14.04 operating system.

The testbed employed a power supply (HP 6674A) that has 0-60 V programmable voltage output

to feed the 48 V dc bus. This power supply was used to model both the output of an ac-dc

rectification stage and a 48 V UPS at the dc bus. The testbed was grounded to earth at the

negative terminal of VBus and vV B; therefore in this work all voltages are positive with respect to

earth. As noted in Section 2.6, various other grounding options may exist in data centers. While

the proposed architecture is independent of ground location, care must be taken in safety isolation

of floating servers, as well as in implementation of hot-swapping circuitry with respect to polarity

and blocking capabilities of switches. Although not used in the test-bed built in this dissertation,

diode ORing devices can be employed to enforce current flow in certain directions.

A 32 mF discrete capacitor was used as the virtual bus capacitor. Although in this setup

one capacitor was used, the virtual bus capacitor could have been distributed among differential

converters, corresponding to 8 mF per converter.

Doubled 16 AWG copper wire is used for all interconnections in the testbed. An annotated

photograph of the testbed is given in Figure 5.5.

5.2.2 Controller

A single off-board microcontroller (TI C2000 Piccolo F28069) samples all series-stack voltages,

runs the control algorithm explained in Chapter 4 to generate PWM signals for the four differential

converters, and manages enable/disable signals for all interface boards. The hysteresis control

decision, as explained in Chapter 4, is executed at 2 kHz, corresponding to 500 µs. This is decided

empirically considering that differential converters have turn-on and turn-off transients, and must

provide requisite charge to increase or decrease their terminal voltages.

The microcontroller code is given in Appendix B.

54

Virtual bus capacitor

DC bus input

Series connection

12 V 120 W motherboards

Figure 5.5: Annotated picture of the testbed.

5.2.3 Measurement system

A data acquisition unit was used to sample the annotated signals in Figure 5.4 simultaneously:

server voltages (vS1 - vS4) and currents (iS1 - iS4), series-stack voltages (vStack1 - vStack4), bus

voltage (vBus) and current (iBus), differential currents (iD1 - iD4) and virtual bus voltage (vV B),

at 5000 samples per second. The data acquisition unit consists of an NI PXIe-1078 chassis, PXIe-

4300 analog input module, TB-4300 (feedthrough) and TB-4300B (30 to 1 attenuation) terminal

blocks. The PXIe-4300 analog input module has 0.02% error, the TB-4300B attenuator has 0.05%

tolerance, together yielding 0.07% tolerance in voltage measurements. All voltages are measured by

the analog input module and attenuator. Each current measurement is performed with a custom

designed current sense board, followed by the analog input module of the data acquisition unit.

Shown in Figure 5.6 is the schematic of the current sense board. It includes a 3 mΩ high power

current sense resistor, a high common-mode voltage current shunt monitor, and an isolated dc-dc

55

−

+i

Rsense
to DAQ

+
−

DC

5V
external

5V

DC

v

Isolated

Figure 5.6: Schematic of the custom designed current sense board.

Table 5.4: The key components of the custom design current sense board

Current Sense Resistor Stackpole Electronics CSNL1206FT3L00 (3 mΩ)
Current Shunt Monitor Analog Devices AD8210
Isolated Power Supply CUI PQM1-S5-S5-M

converter with a single regulated output (see Table 5.4 for part numbers). All current sense boards

are energized with a separate 5 V DC power supply regulated through an on-board isolated dc-dc

converter. The voltage output of each current shunt monitor is calibrated with an Agilent 34410A

6 1/2 digit digital multimeter at each corresponding common mode voltage in order to capture

the very high efficiencies of the series-stacked system. After calibration, each current sense board

has 0.07% tolerance. Combined with 0.02% tolerance of PXIe-4300 analog input module, current

measurements have 0.09% tolerance.

By using this measurement system, power data provided in the remainder of this chapter will

carry 0.16% uncertainty.

5.2.4 Efficiency and power loss calculations

The system level efficiency is calculated as follows. The instantaneous input power to the system

is calculated by multiplication of the measured instantaneous bus current and voltage,

pin = vBus × iBus. (5.1)

Each server’s instantaneous power is calculated by multiplying the measured server current and

voltage, and the total instantaneous output power is the sum of each server’s power consumption,

pout =

4∑
j=1

vS,j × iS,j . (5.2)

56

The difference between (5.1) and (5.2) is the power loss in the system,

ploss = pin − pout. (5.3)

The loss can be grouped into four categories as follows:

1. Measurement loss (ploss,meas.): The current sense boards used to measure the server and

differential currents are placed inside the series-stacked system as shown in Figure 5.4. The

measurement loss due to the sense resistors is

ploss,meas. =

4∑
j=1

Rsense × i2S,j︸ ︷︷ ︸
due to server current

+
4∑
j=1

Rsense × i2D,j︸ ︷︷ ︸
due to differential current

, (5.4)

where Rsense is 3 mΩ.

2. Hot-swapping circuitry loss (ploss,HS): The hot-swapping circuitry shown in Figure 5.1 com-

prises transistors that cause conduction loss due to their on-state resistance. In this work,

this is referred to as hot-swapping circuitry loss,

ploss,HS =

4∑
j=1

(vStack,j − vOut,j)× iS,j , (5.5)

where vOut,j is the voltage at the server terminal of jth prototype DPP hardware,

vOut,j = vS,j + iS,j ×RSense ∀j. (5.6)

3. Cabling loss (ploss,cabling): As mentioned in Section 5.2.1, the dc bus and hardware prototypes

are connected to each other with doubled 16 AWG aluminum wire in order to form the series-

stack connection. The total voltage drop in the series-stack connection is

vdrop = vBus −
4∑
j=1

vS,j ,

which causes conduction loss in the series connection. In this work, this is referred to as

cabling loss,

ploss,cabling = vdrop × iBus, (5.7)

57

since the current in the series-stack connection is the same as the bus current.

4. Power conversion loss (ploss,conv.): As mentioned before, the differential converters in Fig-

ure 5.4 are bidirectional dc-dc converters. The measurement of power loss due to power

processing in each differential converter thus requires instant detection of power flow. In-

stead, in this work, all remaining power loss in the system is lumped together in power

conversion loss,

ploss,conv. = ploss − ploss,meas. − ploss,HS − ploss,cabling. (5.8)

In order to calculate efficiency of the series-stacked system, the instantaneous power calculations

given by (5.1) - (5.8) are averaged over a time interval:

P =
1

T × fs

T×fs∑
1

p, (5.9)

where T is the duration of the time interval, fs is the sampling rate and P is the average value of

the instantaneous power of interest p.

System-level efficiency includes power conversion loss, hot-swapping circuitry loss, and cabling

loss but excludes the loss due to the current sensing. It is given by

ηsys = 1−
Ploss,sys
Pin

, (5.10)

where

Ploss,sys = Ploss,HS + Ploss,cabling + Ploss,conv..

On the other hand, the system-level power conversion efficiency (i.e., the power processing efficiency

of all differential converters) is

ηconv. = 1−
Ploss,conv.

Pin
. (5.11)

5.3 Test scenarios

Several test scenarios were executed on the testbed in order to validate the server-to-virtual bus

DPP architecture. A test scenario that demonstrated stack initialization and hot-swapping of a

58

All servers
are idle

[30 s]

Stress test [360 s] Shut down

[20 s]

Four
servers are
operational

[100 s]

Server #2
is hot

swapped
[60 s]

Server #2
initializes

[80 s]

Four
servers are
operational

[120 s]

Initialization

[90 s]

Shutdown

Figure 5.7: A timing diagram for initialization and hot-swapping test scenario.

Stress test [170 s]
Varying

bus
voltage
[110 s]

Constant
bus

voltage
[60 s]

All servers
are idle at
constant

bus voltage
[10 s]

Figure 5.8: A timing diagram of decaying bus voltage test scenario.

server while bus voltage is constant, and another test scenario that demonstrated operation of all

series-stacked servers when the bus voltage is decaying, are explained below. In both scenarios,

the standard Linux “stress” utility [129] was used as a computational load on servers in order to

replicate a real-world computation scenario. Also, continuous operation of series-stacked servers

under a web traffic management algorithm is not mentioned here but can be found in [115].

5.3.1 Test I: Initialization and hot-swapping

A 500 s test was executed on the testbed in order to validate the hot-swapping concept with the

server-to-virtual bus DPP architecture. The test started with initialization of the series-stacked

converters with shunt resistors as described before. Then, four servers were connected to the

series stack with the hot-swapping circuitry. As the operating system on the servers initialized, an

Ethernet connection was established in order to start the stress utility for 360 s. Two minutes into

the stress test, one of the servers was swapped out and kept isolated from the stack for one minute,

while the other servers continued the stress test. The swapped-out server was then swapped into

the stack and re-initialized, and the stress test continued for almost two more minutes. Following

the conclusion of the stress test, shutdown commands are sent to the servers. The shunt resistors

were then connected back to the series-stack nodes in order to keep voltage balanced throughout the

stack while the dc bus was disconnected. A timing diagram of this initialization and hot-swapping

test scenario is given in Figure 5.7.

59

9.5 10 10.5 11 11.5 12 12.5 13

[A
]

0

5

10

i S
2

Time [s]
9.5 10 10.5 11 11.5 12 12.5 13
0

5

10

v
S2

v
Stack,2

Server
turns on

M2 & M3
are enabled

M1 is
enabled

[V
]

v S
2

v S
ta
ck
,2

an
d

Figure 5.9: Measured instantaneous data showing swapin transient of the second server.

5.3.2 Test II: Decaying bus voltage

A 180 second test was executed on the testbed in order to validate operation of the server-to-virtual

bus DPP architecture under a varying dc bus. This test skipped initialization of the series-stacked

converters, and assumes it can be achieved as explained in Test I. In this test, four servers stayed

idle for 10 seconds and executed a computational load generated by the standard Linux “stress”

utility for 170 seconds. During the first 60 seconds of this test, the bus voltage was kept constant

at 52 V in order to represent fixed bus voltage operation of the proposed architecture. Then, the

bus voltage was manually decreased by adjusting the programmable output of the HP 6674A dc

power supply from 52 to 44 V to represent a decaying UPS voltage after a power loss. A timing

diagram of decaying bus voltage test scenario is given in Figure 5.8.

5.4 Results

5.4.1 Test I: Initialization and hot-swapping

When the dc bus was first applied to the series stack at the beginning of the test, all servers were

isolated from the stack and the shunt resistors were connected between the series-stack terminals of

the DPP hardware. The applied bus voltage was thus equally divided between the shunt resistors,

allowing linear regulators on DPP hardware boards to provide logic voltages to digital isolators

and gate drives. The differential converters were then enabled to regulate both their input and

60

0 100 200 300 400 500

I S
1

[A
]

0

5

10

0 100 200 300 400 500

I S
2

[A
]

0

5

10

0 100 200 300 400 500

I S
3

[A
]

0

5

10

Time [s]
0 100 200 300 400 500

I S
4

[A
]

0

5

10

Stack
start-up

Stress test

Server 2
hot-swapped

Servers
are idle

Server 2
reinitializes

Shut
down

0 100 200 300 400 500

V
S

1
[V

]

11.4
11.6
11.8

12
12.2
12.4
12.6

0 100 200 300 400 500

V
S

2
[V

]

11.4
11.6
11.8

12
12.2
12.4
12.6

0 100 200 300 400 500

V
S

3
[V

]

11.4
11.6
11.8

12
12.2
12.4
12.6

Time [s]
0 100 200 300 400 500

V
S

4
[V

]

11.4
11.6
11.8

12
12.2
12.4
12.6

Server 2
hot-swapped

Stack
start-up

Stress test
Servers
are idle

Shut
down

Figure 5.10: Measured server currents and voltages. (Measured data is 10 ms window averaged
for better illustration of the entire test on a single plot.) Major events during the experiment are
annotated on the plot. Note the absence of the second server current and voltage when it is
hot-swapped out of the stack.

output voltages to 12 V. The shunt resistors were disconnected a few seconds after the control

algorithm initialized as explained in Section 5.1.3. The servers were then connected simultaneously

to the series stack, 10 s into the experiment, by using the hot-swapping circuitry. This operation

(previously explained in detail in Section 5.1.3) is shown in Figure 5.9 through the measured and

annotated current and voltage of the second server as an example of the swapin transient during this

experiment. At 10 s, the high resistance path of the hot-swapping interface (given in Figure 5.1)

was enabled by turning on M2 and M3. As can be seen in Figure 5.9, the server current was limited

to less than 1 A by M2 operating in its linear region, causing a linear increase of the server voltage

(vS2). At about 10.7 s, the low-resistance path of the hot-swapping interface was slowly enabled

61

Time [s]
0 100 200 300 400

V
V

B
[V

]

11

11.4

12

12.6

13

Figure 5.11: Measured virtual bus voltage that shows its successful regulation. (Measured data is
10 ms window averaged for better illustration of the entire test on a single plot.)

through M1, causing a small current increase due to the voltage drop across Rlimit in Figure 5.1.

The server turned on at about 12.3 s. Although this mechanism is demonstrated for one server

here, similar behavior was observed in every server in the series stack.

Figure 5.10 shows measured and 10 ms window averaged server currents and voltages, and

Figure 5.11 shows measured and 10 ms window averaged virtual bus voltage during the entire test.

Following swapin of all servers at about 10 s, initialization of servers started at approximately 12

s and takes approximately 80 s. During this time interval, system-level efficiency is measured as

97.2%. The computation test was started on servers at 90 s. During the first two minutes of the

test, all four servers were executing the computation test and system-level efficiency is measured

as 98.4%. At about 210 s, the second server was swapped out, and kept isolated for approximately

one minute. As shown in Figure 5.10, the differential converters were able to regulate the operating

server voltages and the virtual bus voltage while the second server’s current and voltage were zero.

During this time interval, system-level efficiency decreased to 95% because the differential converter

of the second server processed full bus current and acted as a dc voltage sink by regulating vStack,2.

The second server was swapped into the series stack and re-initialized around at about 270 s, while

the other servers were still executing the computation test. During this time interval, system-level

efficiency was 97.9%. After the second server’s re-initialization was completed, the computation

test continued on all four servers for two more minutes, and system-level efficiency during the last

minute of the test was 98.3%. After the stress test was completed, the servers were kept in their

idle state before the shutdown command was executed at about 480 s. During this time interval,

system-level efficiency was 96.9%. The server currents immediately went to zero; however, server

voltages were regulated to 12 V until all servers were isolated from the series stack by using the

hot-swapping circuitry. The series-stacked system then returned to its initial state by reactivating

the shunt resistors to allow safe voltage transients as the dc bus was disconnected from the series

62

209.4 209.5 209.6 209.7 209.8

i S
1

[A
]

0

5

10

209.4 209.5 209.6 209.7 209.8

i S
2

[A
]

0

5

10

209.4 209.5 209.6 209.7 209.8

i S
3

[A
]

0

5

10

Time [s]
209.4 209.5 209.6 209.7 209.8

i S
4

[A
]

0

5

10

Server 2
swapped out

(a) Server currents.

209.2 209.4 209.6 209.8 210 210.2

v S
1

[V
]

10

12

14

209.2 209.4 209.6 209.8 210 210.2

[V
]

10

12

14

v
Stack,2

209.2 209.4 209.6 209.8 210 210.2
v S
3

[V
]

10

12

14

Time [s]
209.2 209.4 209.6 209.8 210 210.2

v S
4

[V
]

10

12

14

v
S2

Server 2
swapped outv S

2
v S
ta
ck
,2

an
d

(b) Server voltages.

Figure 5.12: Instantaneous server waveforms during swapout.

stack. A breakdown of the average input and output powers, the efficiency, and the average power

loss is given in Table 5.5 for the entire test. Recall that the power measurements provided in

Table 5.5 carry 0.16% uncertainty.

Figure 5.12 plots the instantaneous server waveforms during the swapout of the second server

at about 210 s. In order to demonstrate and explain the operation of the bidirectional hysteresis

algorithm, VStack2 is plotted along with VS2 in Figure 5.12(b), and also the instantaneous differ-

ential currents into the virtual bus node are plotted in Figure 5.13. Before the second server was

swapped out at about 210 s, all server voltages were regulated to a hysteresis band (as shown in

Figure 5.12(b)) while the differential converters were operating in light-load mode with bidirectional

hysteresis control (as shown in Figure 5.13(a)). Right after the second server was swapped out,

the light-load operation of the second differential converter was not sufficient to regulate VStack2

63

T
ab

le
5.

5:
B

re
ak

d
ow

n
o
f

av
er

ag
e

in
p

u
t

an
d

ou
tp

u
t

p
ow

er
s,

effi
ci

en
cy

,
an

d
av

er
ag

e
p

ow
er

lo
ss

d
u

ri
n

g
th

e
ex

p
er

im
en

t

S
ta

ck
S

tr
es

s
S

er
ve

r
2

S
er

ve
r

2
S

tr
es

s
S

h
u

t
S

ta
rt

u
p

T
es

t
H

ot
-S

w
ap

p
in

g
S

ta
rt

u
p

T
es

t
D

ow
n

T
im

e
In

te
rv

a
l

[s
]

0
<
t
<

9
0

90
<
t
<

21
0

21
0
<
t
<

27
0

27
0
<
t
<

33
0

33
0
<
t
<

45
0

45
0
<
t
<

50
0

<
P
in
>

[W
]

2
64

.9
48

1.
9

37
8.

8
45

2.
5

48
8.

5
19

2.
6

<
P
o
u
t
>

[W
]

2
57

.1
47

2.
8

35
8.

6
44

1.
7

47
9.

2
18

6.
4

<
P
lo
ss
,m
ea
s.
>

[W
]

0.
5

1.
2

1.
2

1.
1

1.
2

0.
3

<
P
lo
ss
,s
y
s
>

[W
]

7
.3

7.
9

19
.0

9.
7

8.
1

5.
9

<
P
lo
ss
,H
S
>

[W
]

1.
1

1.
6

1.
1

1.
5

1.
6

0.
5

<
P
lo
ss
,c
a
bl
in
g
>

[W
]

0
.9

2.
4

1.
6

2.
2

2.
5

0.
5

<
P
lo
ss
,c
o
n
v
.
>

[W
]

5
.3

3.
9

16
.3

6.
0

4.
0

4.
9

<
η s
y
s
>

[%
]

9
7.

2
98

.4
95

.0
97

.9
98

.3
96

.9
<
η c
o
n
v
.
>

[%
]

9
8.

0
99

.2
95

.7
98

.7
99

.2
97

.5

64

209.2 209.4 209.6 209.8 210 210.2

i D
1

[A
]

-10

0

10

209.2 209.4 209.6 209.8 210 210.2

i D
2

[A
]

-10

0

10

209.2 209.4 209.6 209.8 210 210.2

i D
3

[A
]

-10

0

10

Time [s]
209.2 209.4 209.6 209.8 210 210.2

i D
4

[A
]

-10

0

10

Server 2
swapped out

(a) During swapout.

269.6 269.8 270 270.2 270.4 270.6

i D
1

[A
]

-10

0

10

269.6 269.8 270 270.2 270.4 270.6

i D
2

[A
]

-10

0

10

269.6 269.8 270 270.2 270.4 270.6
i D
3

[A
]

-10

0

10

Time [s]
269.6 269.8 270 270.2 270.4 270.6

i D
4

[A
]

-10

0

10

Server 2
swapped in

(b) During swapin.

Figure 5.13: Instantaneous differential currents into the virtual bus node.

within the same hysteresis band as before. The second differential converter thus switched to

full-load mode, with increased hysteresis bands, while the other differential converters were still

able to regulate their server voltages while mostly maintaining their light-load operation mode as

before the swapout occurred. Note that the frequency of the server voltage ripple increased slightly

during hot-swapped operation. This indicates that the differential converters turn on and off more

often than in normal operation, which aligns with increased average power loss during hot-swapped

operation.

The instantaneous server waveforms during the swapin of the second server at about 270 s are

also illustrated in Figure 5.14. Starting from 269 s, the voltage and current of the second server

increased in a controlled manner, similar to the demonstration in Figure 5.9. Following the 270 s,

the second server initialized; however, the second differential converter still remained in full-load

hysteresis mode since the second server’s power consumption during initialization is quite different

65

269.6 269.8 270 270.2 270.4 270.6

i S
1

[A
]

0

5

10

269.6 269.8 270 270.2 270.4 270.6

i S
2

[A
]

0

5

10

269.6 269.8 270 270.2 270.4 270.6

i S
3

[A
]

0

5

10

Time [s]
269.6 269.8 270 270.2 270.4 270.6

i S
4

[A
]

0

5

10

Server 2
swapped in

(a) Server currents.

269.6 269.8 270 270.2 270.4 270.6

v S
1

[V
]

0

5

10

269.6 269.8 270 270.2 270.4 270.6
0

5

10

v
S2

v
Stack,2

269.6 269.8 270 270.2 270.4 270.6
v S
3

[V
]

0

5

10

Time [s]
269.6 269.8 270 270.2 270.4 270.6

v S
4

[V
]

0

5

10

Server 2
swapped in

[V
]

v S
2

v S
ta
ck
,2

an
d

(b) Server voltages.

Figure 5.14: Instantaneous server waveforms during swapout.

from that of the remaining servers as they continue the stress test.

The series-stacked architecture separates the processed power from the delivered power. By

processing only the power difference throughout the experiment, system-level power conversion

efficiency that is higher than the efficiency of the differential converters is achieved. When the

servers are almost equally loaded during the stress test (i.e., 90 s < t < 210 s and 330 s < t < 450 s),

the differential converters process insignificant amounts of power in the system, yielding above 99%

power conversion efficiency. The average power loss distribution while the series-stacked servers are

executing the stress test between 90 s and 210 s is also demonstrated in a pie chart in Figure 5.15.

Here, power conversion losses are reduced to almost half of the overall losses in the system, while the

other half is basically shared as conduction loss between the hot-swapping circuit and the cabling.

66

Hot-swapping
circuitry loss:
1.6 W (20.2%)

Cabling loss:
2.4 W (30.4%)

Power
conversion

loss:
3.9 W (49.4%)

Figure 5.15: A pie chart of Ploss,sys distribution during the stress test 90 s < t < 210 s. During
this time interval, an average of 472.8 W was delivered to the servers.

5.4.2 Test II: Decaying bus voltage

In this test, after successful initialization of the series-stacked servers as explained in Section 5.4.1,

four servers stayed idle for 10 s, followed by execution of a computational load generated by the

standard Linux “stress” utility for 170 s. During the first minute of the stress test, the bus voltage

was kept constant, and then the bus voltage was manually decreased by using the programmable

output of the HP 6674A dc power supply.

Annotated plots include 10 ms window averaged voltage and current waveforms of the servers and

the bus, and also the voltage waveform of the virtual bus, are given in Figures 5.16 and Figure 5.17

for the entire experiment. As shown in Figure 5.16(b) and Figure 5.17, series-stacked server voltages

and the virtual bus voltage were successfully regulated within a 10.5 V-13 V range, depending on

whether the bus voltage was constant or varying. While bus voltage was constant (i.e., 0 s < t <

70 s), server voltages were regulated to constant values near 13 V since the reference voltage input

to the control algorithm was constant as well. On the other hand, while bus voltage was varying

(i.e., 70 s < t < 180 s), the reference voltage input to the control algorithm varied. This resulted in

variation of server voltages and the virtual bus voltage. Since the voltage variation was within the

allowed range of the input server voltage, operation of the series-stacked servers was maintained.

As can also be seen in Figure 5.16(a), server currents vary, depending on whether the bus voltage

was constant or varying, since each server was a constant power load regardless of its input voltage.

While the bus voltage was constant (i.e., 0 s < t < 70 s), the server currents were constant at

about 5 A when they were idle (i.e., 0 s < t < 10 s), or at about 8.5 A when they executed the

stress test (i.e., 10 s < t < 70 s). On the other hand, while the bus voltage was varying (i.e.,

70 s < t < 180 s), server currents increased as their input voltages decreased following the reference

input to the control algorithm. Average input and output power of the system, average power loss

in the system, and system-level efficiency for the various time intervals of the experiment are given

67

0 30 60 90 120 150 180

I B
us

[A
]

0
2
4
6
8

10
12

0 30 60 90 120 150 180

I S
1

[A
]

0
2
4
6
8

10
12

0 30 60 90 120 150 180

I S
2

[A
]

0
2
4
6
8

10
12

0 30 60 90 120 150 180

I S
3

[A
]

0
2
4
6
8

10
12

0 30 60 90 120 150 180

I S
4

[A
]

0
2
4
6
8

10
12

Time [s]

Servers
are idle

Stress test

Varying VBus

(a) Current waveforms.

0 30 60 90 120 150 180

V
B

us
[V

]

44

46

48

50

52

0 30 60 90 120 150 180

V
S

1
[V

]

10
10.5

11
11.5

12
12.5

13
13.5

14

0 30 60 90 120 150 180

V
S

2
[V

]

10
10.5

11
11.5

12
12.5

13
13.5

14

0 30 60 90 120 150 180

V
S

3
[V

]

10
10.5

11
11.5

12
12.5

13
13.5

14

0 30 60 90 120 150 180

V
S

4
[V

]

10
10.5

11
11.5

12
12.5

13
13.5

14

Time [s]

Constant VBus Varying VBus

(b) Voltage waveforms.

Figure 5.16: Measured server and bus waveforms during the experiment. Measured data is 10 ms
window averaged for better illustration of the entire test on a single plot.

in Table 5.6. Recall that the power measurements provided in Table 5.6 carry 0.16% uncertainty.

68

Time [s]
0 30 60 90 120 150 180

V
V

B
[V

]

10
10.5

11
11.5

12
12.5

13
13.5

14

Constant VBus Varying VBus

Figure 5.17: Measured virtual bus voltage during the experiment. Measured data is 10 ms
window averaged for better illustration of the entire test on a single plot.

Table 5.6: Breakdown of average input and output powers, efficiency, and average power loss
during the experiment

Servers are idle Stress Test Overall

Constant VBus Constant VBus Varying VBus

Time Interval [s] 0 < t < 10 10 < t < 70 70 < t < 180 0 < t < 180

Pin [W] 226.0 444.8 463.0 443.8
Pout [W] 221.7 441.9 460.4 441.0
Ploss [W] 4.3 2.9 2.6 2.8
η [%] 98.1% 99.3% 99.4% 99.4%

69

CHAPTER 6

SINGLE-PHASE AC TO DC POWER CONVERSION

As mentioned in Chapter 2, due to dc voltage supply needs of servers, data centers must employ

power converters to rectify the ac grid voltage at some point in the power conversion architecture.

In data centers, the ac voltage may be available at various different voltage levels, at 50 or 60 Hz

frequency and as three phases or a single phase. This chapter focuses on single-phase ac to dc power

conversion from universal voltage (approximately 90 to 240 VRMS at 50/60 Hz) that is delivered

to the rack or blade level.

6.1 Motivation

For ac to dc power conversion at the rack or blade level, the commonly preferred topology steps up

a rectified ac voltage in order to achieve power factor correction and twice-line frequency energy

buffering. However, the ultimate goal of the power delivery architecture is to generate a well-

regulated low dc voltage for digital circuits. Figure 6.1 shows an example conventional data center

power delivery architecture which was mentioned in Chapter 2. Here, it is depicted again with

annotated voltage levels throughout the power delivery chain to facilitate discussion.

In the conventional power delivery architecture depicted in Figure 6.1, utility scale 50/60 Hz

transformers and power distribution units provide single-phase ac power (e.g., 240 VRMS) to the

server racks. The single-phase ac voltage is rectified at the rack level by a diode bridge or active

rectifier, and then boosted up to a higher dc voltage (e.g., 400 V) for power factor correction (PFC)

and twice-line frequency energy buffering. The high dc voltage is then stepped back down to a lower

dc voltage (e.g., 48 V) to be delivered to server blades through a dc bus. A recent trend in data

center power delivery applications is to place the uninterruptible power supply (UPS) or battery

backup units at the dc bus in the rack, which is also illustrated in Figure 6.1. In this architecture,

achieving PFC using a boost-type front end converter requires a dc voltage which is significantly

higher than the final load voltage in data center applications. Although the high dc voltage in

70

GRID DATA CENTER

AC

AC

Site

substation

DC

DC

AC

DC

UPS

DC

DC

Rectification,

boost-type PFC,

step-down

Bus

converter

CPU
DC

DC

Hard
Drive

DC

DC
Memory

DC

DC

ServerServerServerServerServerServerServerServerServerServerDCServerServerHard ServerDCServerServerServerServerServerServerServerServerServerServerServerServerServer
Rack

Blade

AC

AC

Power

distribution

transformer

Point-of-load convertersRectification,

boost-

step-down

Site

substatio

Power

distribut

transformer

Rectification,

type PFC,

DC

Bus

converter

Point-of-load converters

480√2 V

240√2 V
400 V

48 V
12 V 1 V, 1.8 V, 3.3 V

Figure 6.1: An example of conventional power delivery in data centers, illustrating major power
conversion stages with annotated voltage levels at each stage.

the front end converter also creates an effective environment to buffer twice-line frequency energy

using low-cost and energy dense electrolytic capacitors, the front end converter must be followed

by a high conversion ratio dc-dc converter in order to step down the high dc voltage to a lower dc

level before the power is distributed throughout the server motherboard.

A single-stage solution in this application could have various advantages. First, stepping up the

voltage for PFC and twice-line frequency energy buffering, and then stepping down the voltage for

power distribution on the motherboard, is a counterproductive approach since the final loads are

at various low dc voltage levels that are much below the high dc voltage created to achieve PFC.

In addition, a two-stage solution requires both power stages to be optimized, implemented and

tested separately. Furthermore, the power is being processed twice, limiting system-level efficiency

and increasing total power converter footprint. Recently many research efforts have focused on the

efficiency and power density improvements of boost-type PFC converters, and high voltage step-

down converters. For instance, in recent literature a carefully optimized boost-type PFC converter

has an efficiency curve ranging from 97.7% to 98.8% and a power density of 220 W/in3 [34]. A

carefully optimized 400 V to 48 V dc-dc converter has a peak efficiency of 94.5% and a power

density of 164 W/in3 [40]. Combining these two stages would yield a best-case 93.4% efficiency and

71

94 W/in3 power density. On the other hand, commercial products achieve 92% typical efficiency

and 140 W/in3 power density [130] for boost PFC, and 93.6% peak efficiency and 258 W/in3 power

density [131] for 400 V to 48 V dc-dc conversion. Combining these two stages would yield a best-

case 86.1% efficiency and 90.8 W/in3 power density. Note that these converter efficiencies and

power densities do not include twice-line frequency energy buffering.

This work seeks to leverage a 48 V UPS, which is a large energy storage component in a data

center power delivery system, to handle twice-line frequency energy buffering at the dc bus, and to

explore potential efficiency and power density improvements when a single-stage power converter

topology is employed in data center applications to rectify 240 VRMS to 48 V dc. Therefore,

the motivation of this work is to explore a single-stage solution to perform PFC in single-phase

240 VRMS ac to 48 V dc power conversion.

6.2 Buck-type power factor correction

In grid-connected power supplies, PFC is often employed to meet power quality requirements

mandated by standards such as IEC/EN 61000-3-2 and EnergyStar. Although a data center power

distribution system may not be connected directly to the ac grid, power quality in a data center

facility is still an important consideration. The 80 Plus certification [132], which is a voluntary

program aimed to encourage more efficient power supply units for computer applications, is also

widely accepted in data center power delivery architectures. Although 80 Plus certification was

originally intended for power conversion efficiency, currently its highest tier (e.g., 80 Plus Titanium)

requires above 0.95 power factor for 20-100% of rated load [132].

There are many control techniques and power converter topologies for single-phase PFC oper-

ation [133]; however, the boost-type PFC converter is preferred in high power and high voltage

applications since it can offer unity power factor and a sufficiently high intermediate voltage to

buffer twice-line frequency energy in an effective way. On the other hand, a buck-type converter

in a single-phase ac to dc application (depicted in Figure 6.2) can also perform PFC [134–137],

though unity power factor is not possible. This limitation is due to the nature of the converter,

i.e., when the input voltage is less than the output voltage; the buck converter cannot draw current

from its input terminal. Buck-type PFC thus trades off bucking a high ac input voltage directly

to a desired low dc output voltage with some ac input current distortion that limits achievable

power factor. Note that in Figure 6.2, a full-bridge rectifier is assumed to be used to create the

72

C
out

S
A

S
B

L

R
V
out

Rectified

sine

v
in

i
in

i
L

+ +

- -

Figure 6.2: Buck converter.

rectified sine voltage source from an ac source in order to prevent the output voltage from being

discharged through the body diode of the high side switch when the input voltage is below the

output voltage. Ideal operation waveforms of a buck converter achieving best case power factor are

illustrated in Figure 6.3 for a rectified ac input of 240 VRMS at 60 Hz and a fixed dc output voltage

of 48 V, for an example case of 10 A average output current. Assuming ideal control and filtering,

the inductor current and the duty cycle of the buck converter that achieve best case power factor

are also illustrated in Figure 6.3 to facilitate the discussion.

Since a buck converter cannot supply power to its load when the input voltage is less than the

output voltage, the ac input current conduction angle, shown as α in Figure 6.3, is less than 180deg.

As it is also apparent in the duty ratio plot in Figure 6.3, while the ac line voltage is less than the

output voltage, the duty ratio (i.e., the on-time of SA) is zero, which indicates that the buck-type

PFC converter is disabled at the beginning and end of each ac half-cycle. During this time, the

requisite load energy is provided by the output capacitor, which is assumed to be infinitely large in

the ideal waveforms shown in Figure 6.3. In addition, further examination of Figure 6.3 shows that

the start and end of α are determined by the instantaneous input and output voltage. Therefore,

the limit of achievable power factor depends on the input and output voltage, although higher

input current offers higher power factor. In this work, the target input voltage range is 90 VRMS to

240 VRMS and the target output voltage is 48 V. These conditions, assuming a fixed output voltage

and filtered input current, limit the theoretically achievable PF to 0.9967 for 90 VRMS and 0.9988

for 240 VRMS.

In practice, because of PFC control limitations, output voltage ripple and input filtering, power

factor is expected to be lower than the theoretical limit. Any PFC control method has limitations

due to controller bandwidth and energy which results in input current distortions, reducing the

achievable power factor. Further discussion of buck-type PFC control and its limitations is provided

73

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

200

400

v in a
nd

 V
ou

t
[V

] v
in

V
out

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

1

2

3

i in
[A

]

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

10

20

i L
[A

]

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
Time [s]

0

0.2

0.4

0.6

0.8

1

D

Half ac cycle

Conduction angle (α)

Figure 6.3: The input voltage and current, inductor current, and duty cycle in a buck PFC
converter for a full ac line cycle at 60 Hz, with a 10 A average output current, assuming ideal
control and filtering.

in Chapters 7 and 8. Here, output voltage ripple and input filtering effects on a buck PFC converter

are discussed. The output voltage ripple in a buck PFC converter may result in input current

displacement, reducing the achievable power factor. Since a buck converter cannot provide power

74

vin

vout Vout,target

iin

Enabled

Disabled

Enabled

Disabled

Enabled{ {

Phase lead

α αα

Figure 6.4: Phase shift of input current due to output voltage ripple.

to its output and must be disabled when the input voltage is less than the output voltage, the

output capacitor provides the requisite load energy at the beginning and end of each ac half-cycle.

The output voltage of the buck converter will thus decrease when the converter is disabled during

PFC operation. The rate of voltage decrease is directly proportional to load current, and inversely

proportional to output capacitance. This voltage decrease causes an earlier turn-on in the next ac

half-cycle, as depicted by the representative waveforms of input voltage and current, and output

voltage without twice-line frequency energy buffering ripple in Figure 6.4. Similarly, since the

converter must both compensate for the voltage decrease and provide the requisite energy to the

output when enabled, the output voltage must reach a value above the reference value, so that

the average output voltage over the full ac cycle is equal to the reference value. This causes an

earlier turn-off as depicted in Figure 6.4. The voltage decrease when the converter is disabled can

be reduced by employing a higher capacitance at the converter output. For example, less than half

a degree of input current displacement requires at most 5% decrease from 48 V when the converter

is disabled. At 500 W constant output power, at least 3.3 mF of output capacitance is needed to

limit the output voltage ripple within ±5% of 48 V. The output voltage ripple displaces the input

current, further reducing the power factor. The input filter is another reason for input current

displacement in PFC converters, reducing the achievable power factor. Design of a PFC converter

input filter requires careful design trade-offs in order to minimize input current displacement [138].

In a buck PFC where the input current ripple at the switching frequency must be substantially

attenuated, input filtering may severely disrupt the phase angle of the input current and reduce

75

the power factor. In summary, practical limitations of control, nonnegligible output voltage ripple,

and input filtering impose limitations on achievable power factor in a buck-PFC converter.

In addition to a power factor limitation, a few other important points regarding buck converter

PFC operation can be highlighted by inspecting Figure 6.3. Recall that input and inductor currents

in Figure 6.3 are plotted for an example of 10 A average output current (i.e., 480 W output power at

48 V) and assuming perfect filtering. In a practical implementation of such an operating condition,

the inductor current also exhibits current ripple which is given by

∆iL =
(1−D)Vout

Lfsw
, (6.1)

where fsw is the switching frequency. This means that the inductor in the circuit must have

saturation current well above 20 A, and also must withstand the full input voltage as it is directly

connected to the input when the high-side switch (SA in Figure 6.2) is closed. Such an inductor is

potentially quite large, and limits converter power density by dominating converter volume. The

conventional way of reducing the inductor requirement by increasing fsw is challenging, as the

high output current translates to semiconductors with low resistance, and typically fairly large

parasitic capacitances that limit the practical switching frequency. In addition, the ideal duty

cycle in Figure 6.3 is below 20% for more than half of operating time, which also occurs when

the inductor current is above the average output current. This means that the buck converter

needs to perform high voltage step-down conversion when the highest power is also transferred

from input to output, which is the least efficient operating condition for a buck converter. On the

other hand, relatively more efficient operating points of a buck converter (i.e., 0.4 < D < 1) occur

during times of lower power transfer, only performing moderate voltage conversion at relatively

low current. These challenges of employing the buck converter as a PFC converter, combined

with limited achievable power factor, have made the buck converter less commonly employed in

single-phase PFC applications.

In order to improve achievable power factor, a low voltage boost stage can be integrated after the

inductor in the buck converter as depicted in Figure 6.5. Such a configuration is commonly referred

to as a four-switch noninverting buck-boost converter or a cascaded buck-boost converter in the

literature, and has been used to perform PFC in ac-dc power conversion [139–143]. The cascaded

buck-boost converter consists of a buck stage, a shared inductor, and a boost stage as depicted in

Figure 6.5. The operation of this converter can be divided into two modes, as shown in Figure 6.6,

76

C
outS

L

S
H

S
A

S
B

L
Shared

R
V
out

Rectified

sine
v
in

i
in

i
L

+ +

- -

Figure 6.5: An ac-dc converter with noninverting buck-boost converter.

0 π
0

50

100

150

200

250

300

350

2π3π/2π/2

v
in

V
out

Boost Boost

BuckBuck

Figure 6.6: Operation modes of the noninverting buck-boost converter for ac-dc rectification.

to achieve unity power factor. Switches SA and SB, and SH and SL, are run in a complementary

manner. While the rectified input voltage is lower than 48 V, SA is kept continuously on (SB

continuously off) while SH and SL are modulated for boost operation. On the other hand, while

the input voltage is higher than 48 V, SH is kept continuously on (SL continuously off) while SA

and SB are modulated for buck operation. Note that the low-voltage boost stage is only activated

when the input voltage is lower than the output voltage, meaning that the input voltage is only

boosted to the desired low output dc voltage (i.e., 48 V), rather than a higher dc voltage observed

in a conventional boost-type PFC converter. By using the additional boost stage, the achievable

power factor of the buck-type PFC converter can be extended at low expense, since the boost stage

processes low power at low voltage, and only adds minor conduction loss through its high side

77

switch when not activated. Addition of the boost stage can also mitigate input current phase lead

caused by output voltage ripple due to turn-off of the buck converter when the input voltage is less

than the output voltage.

Although achievable power factor can be increased by adding a boost stage, buck or four-switch

noninverting buck-boost PFC converters still require large inductors and suffer from high voltage

step-down at high output current. As mentioned earlier, since converter losses here are dominated

by conduction loss due to high output current, switching frequency increases are difficult to realize

in practice to reduce the inductor requirement. In order to improve power density of the buck-type

PFC converter, the two-level buck stage can be replaced with a flying capacitor multilevel converter

stage.

6.3 Flying capacitor multilevel converters

Flying capacitor multilevel (FCML) converters [144] were initially employed in high voltage and

high power dc-dc and dc-ac converters where there is no available semiconductor switch that can

sustain the required voltage in the converters. Over the years, FCML converters have been ex-

plored in numerous applications [101, 145, 146], including envelope tracking [147], power factor

correction [148], and renewable energy systems [149]. More recently, with the adoption of wide

band-gap semiconductor (GaN) switches, FCML converters have been revisited for non-isolated

dc-dc [45,146,150–153], dc-ac [154–157], and ac-dc [36,158,159] power conversion to increase power

density of conventional two-level buck and boost topologies. In particular, the seven-level boost

PFC in [159] provided 2.2x improvement in power density in comparison to a two-level boost

PFC [34] without compromising efficiency. Similar performance improvements could be made fea-

sible by transitioning to a multilevel design in a buck-type PFC. An N level FCML converter

employed in a dc-dc voltage step-down application is depicted in Figure 6.7, which is used to

briefly explain the operation and key advantages of FCML converters.

Operation of an FCML converter can be summarized as follows. In Figure 6.7, switch pairs SiA

and SiB, where i = 1, 2, ..., (N − 1), are driven by complementary PWM signals with a duty ratio

of D = Vout/Vin at an equal switching frequency fsw, as in a conventional two-level synchronous

buck converter. Assuming floating capacitors (also called flying capacitors) Cfly,j , where j =

1, 2, ..., (N − 2), are large enough to be treated as constant voltage sources during a switching

period (Tsw = 1/fsw), phase shifting the PWM signals [160] that drive two consecutive switch

78

Cfly(N-2) C
out

S (N-1)A

S(N-1)B

S1A

S1B

R VoutC

L

C

S2A

S2B

+ +

-
fly2 fly1inV_

+_

swV

Figure 6.7: N -level FCML converter, configured as a buck converter.

pairs by 360◦/(N − 1) enforces equal charge and discharge times on the flying capacitors. In

steady-state, when operated with properly phase shifted PWM signals, capacitors Cfly,j are charged

to (1 − j
(N−1)) × Vin, which is commonly known as the natural flying capacitor voltage balancing

property of FCML converters [161]. By controlling D of individual switch pairs, N different voltage

levels (j×Vin/(N−1), where j = 0...(N−2)), can be achieved at the switching node, at an effective

frequency of (N−1)×fsw. The output switching node voltage (Vsw) is then filtered by filter inductor

(L) and output capacitor (Cout) to achieve the desired output voltage (Vout = D × Vin).

The key advantages of FCML converters include

• Reduced switch voltage stress: In an N -level FCML converter, each switch needs to be rated

only for Vin/(N−1). This enables the use of low voltage, high frequency, and smaller footprint

switches.

• Multiple voltage levels at the switching node: Depending on D, Vsw can have N different

levels (i.e., k× Vin/(N − 1), where k = 0, ..., (N − 1)). This reduces the maximum voltage

magnitude that the inductor needs to filter to Vin/(N − 1).

• Increased frequency at the switching node: The effective switching frequency (fsw,eff) ob-

served at the switching node is (N − 1) × fsw, where fsw is the switching frequency of the

individual switch pairs. This increases the chopped switching node voltage frequency that

needs to be filtered without an extreme increase in switching loss of individual switch pairs.

• Reduced filter inductance: Combined with reduced voltage magnitude at the switching node,

increased effective switching frequency reduces the required inductance value for desired op-

eration of the converter.

• Capacitive energy conversion: Along with the inductor, the flying capacitors also participate

79

in energy conversion. Since capacitors inherently have 2-3 orders of magnitude higher energy

density than inductors [162], total passive component volume can be decreased, yielding

improved power density.

• Heat dissipation of semiconductor switches: The total switch loss (switching loss and conduc-

tion loss) can be spread out over 2(N−1) switches, resulting in wider area for heat dissipation

and possible improved thermal management.

• Electromagnetic interference (EMI): Although satisfying the EMI requirements in data center

applications is not the focus of this work, an FCML topology generates lower EMI because of

reduced dv/dt due to the multilevel waveform. The work in [155] experimentally showed that

the FCML converter requires a much smaller EMI filter compared to a conventional two-level

buck converter.

Several implementation and operation challenges of FCML converters should be acknowledged.

These include flying capacitor voltage balancing, floating gate drives, and commutation loop in-

ductance. Flying capacitor voltage balancing, if not achieved, results in increased voltage stress

across the switches, potentially leading to overvoltage failure of the semiconductors. Therefore,

flying capacitor voltage dynamics [163–166], active balancing control techniques [167–170], and cir-

cuit control methods [45, 145, 169] are thoroughly examined in the literature to better understand

the properties of natural balancing and to avoid flying capacitor imbalance. In addition, [171] has

shown analytically and experimentally that an FCML with an even number of levels has better

natural balancing than one with an odd number of levels when the source impedance and input

capacitor are considered.

Floating gate drives in an FCML converter require level shifters and isolated power convert-

ers. Supplying isolated power to many floating and isolated gate drives in an FCML converter

requires inefficient and bulky circuits which may penalize efficiency and power density improve-

ment. In [172], a well-known bootstrap circuit is modified to provide gate drive power for FCML

converters in a compact, efficient, and low-cost way. Parasitic inductance (commonly known as

commutation loop inductance in conventional two-level buck converters) exists in FCML converters

and may result in significant switch ringing during high dv/dt switching transitions. The commu-

tation loop at each level of an FCML converter must be minimized by careful replacement of flying

capacitors and bypass capacitors in order to maintain the benefits of the converter [154,156,173].

80

In addition to implementation challenges, usage challenges of FCML converters include circuit

initialization and reliability. The turn-on transient of a (especially buck-type) FCML converter, if

not carefully managed, may damage the transistors due to uncertainty of flying capacitor voltages

when rated input voltage is instantaneously applied to the input terminal. Such a transient can

be controlled using startup circuitry similar to the inrush current limiting circuitry explained in

Section 5.1.3. Due to the higher component count of an FCML converter, traditional reliability

calculation approaches, in which mean time to failure of a system is dominated mainly by component

count in the system, suggest deficient reliability when applied to FCML converters. Presumably,

reliability calculation approaches need to be revisited to consider the relatively reduced component

stresses and temperature rise, and also system-level opportunities for improved integration, for a

fairer reliability analysis FCML converters. Further details of converter operation and an in-depth

analysis of key advantages of FCML converters can be found in [8, 162].

The buck-type FCML converter shown in Figure 6.7 is a well-known topology. However, its use

in an ac-dc conversion application where the flying capacitor voltages follow the rectified ac line

voltage at 50/60 Hz in an ac-dc converter has not been explored previously, and is a key contribution

of this work to the field. Note that such operation of an FCML converter is fundamentally different

from a boost-type FCML converter in a PFC application, where the flying capacitor voltages are

the fractions of the output voltage, which can be considered relatively constant throughout the

ac line cycle when a large twice-line frequency energy buffer is present. A thorough search of the

relevant literature yielded only [174–176] in which the flying capacitor voltages are subject to follow

the ac input voltage at the ac line frequency. In [174–176], a four-level FCML buck converter is

employed in an ac-ac application to step down the line voltage by using a fixed duty ratio during

the entire line cycle. In this dissertation, an FCML buck converter is tasked to achieve PFC in

an ac-dc operation, which results in a unique operating condition as the duty ratio changes at the

line frequency. The investigation of flying capacitor voltages under this unique condition is a focus

of this dissertation; thus, non-unity power factor operation, where the FCML buck PFC converter

disables when the input voltage is below the output voltage, is explored.

81

CHAPTER 7

BUCK PFC CONTROL

Although an FCML buck converter increases power density in comparison to conventional two-

level designs, it also presents challenges in PFC control. In this chapter, existing PFC control

techniques for conventional buck converters are summarized, and a new PFC control methodology

that is applicable to both conventional two-level and FCML buck topologies is proposed.

7.1 Background

PFC control of the buck converter has been thoroughly analyzed in the literature and several

different control methods have been proposed. Most of the existing work in the literature uses a full-

bridge rectifier followed by an asynchronous buck converter, in order to simply disable the converter

by opening the high side switch when the input voltage is lower than the output voltage. In [134], an

asynchronous buck converter performs power factor correction in discontinuous conduction mode

by keeping the duty ratio constant throughout the entire ac line cycle. In [177, 178], it is shown

that by adding an LC filter to the input of a buck converter, the input capacitor voltage can be

forced into discontinuous mode, and a control algorithm to achieve PFC is proposed. Discontinuous

input voltage and inductor current mode operations are also combined to achieve PFC in a 1 kW

asynchronous buck converter [179]. An averaged small-signal model of an asynchronous buck

converter is derived as a function of its output impedance and used in PFC control in [180].

In [137], a universal-input, 80 V output, 94 W buck converter achieved power factor up to 0.96

over its the entire operating range by using a clamped current control methodology that relies on

switch current measurement. Critical conduction mode based on inductor current is also leveraged

to perform PFC, and constant [181] and variable [182] on time control methods that use inductor

current measurement are applied to asynchronous buck converters for notebook charger and LED

applications.

As mentioned in Chapter 6, a cascaded buck-boost converter can also be used in PFC applications

82

to increase achievable power factor compared to a conventional buck converter [139]. In the cascaded

buck-boost converter, instantaneous input and output voltage determine whether the buck stage

or boost stage is modulated, and the duty ratios required to control both stages are calculated

separately. In [183], the buck stage is controlled by limiting inductor current within a band to

perform PFC control. A current programmed control that offers inrush and overcurrent protection

is proposed in [140] and power factor correction is performed without changing the current reference

as the converter transitions between the buck and the boost stage. Discontinuous input voltage

mode [143], and boundary or critical conduction mode of the inductor current [184], also have been

investigated in the cascaded buck-boost topology used as a PFC converter. Recently, a hybrid

feedforward control offered seamless transition between its buck and boost stages while performing

power factor correction in a cascaded buck-boost converter [57].

Existing PFC control methodologies for buck and cascaded buck-boost converters are not directly

applicable to an FCML buck topology because it employs synchronous switch pairs that are con-

trolled with complementary phase shifted PWM signals as explained in Chapter 6. In phase-shifted

PWM control, natural balancing of flying capacitor voltages relies on all flying capacitors charging

and discharging for the same duration in each switching period. This makes cycle by cycle duty

ratio adjustments to limit inductor current within a band at the switching frequency challenging.

Moreover, flying capacitor voltages in a FCML topology for PFC are expected to follow the input

voltage at 50/60 Hz; therefore, they should not be discontinuous. In this work, a feedforward

control, combined with a high bandwidth inner current loop and a slower bandwidth outer voltage

loop are used to generate the duty ratio, which is kept constant during each switching period to

achieve natural balancing of flying capacitors with phase shifted PWM signals. The rest of this

chapter explains the details of the proposed control approach.

7.2 Overview of the proposed control algorithm

In order to focus on the PFC task in the development of the proposed control algorithm, the

FCML buck converter is assumed to achieve natural balancing of the flying capacitor voltages, and

twice-line frequency energy buffering is assumed to be handled by a capacitor bank at the con-

verter output. Active voltage balancing of the flying capacitors and advanced twice-line frequency

energy buffering techniques can be incorporated later if needed. The proposed control algorithm

is applicable to any number of levels, including conventional (i.e., two-level) buck converter. The

83

PLL

Measure
V

ac,peak

|sin(.)|

X

X

+

-

V
ac

*

+
-

PI

sin2(.)

Signal
Conditioning

+
-

PI

+
+X

/

V
ac,peak

θ

V
ac,pos

V
ac,neg

V
out

Turn ON/OFF

D
ff

D
i

D

Phase shifted
PWM generator

to FCML gate drivers

<i
L
>

V
out,ref

i
ref

θ
θ

Figure 7.1: High-level control diagram.

control actions are executed as they were for a conventional buck converter, and additional PWM

signals for the remaining FCML converter switches are properly phase shifted to achieve natural

balancing of the flying capacitor voltages.

A high-level control diagram of the proposed PFC algorithm for the FCML buck converter is

illustrated in Figure 7.1. The algorithm is implemented on a 32-bit floating-point microcontroller

with a 200 MHz system clock. The 12-bit ADC submodules of the microcontroller are used to

sample the input voltage, output voltage, and output (or, average inductor) current, shown as

Vac,pos, Vac,neg, Vout, and < iL > in Figure 7.1, respectively. The control signal (i.e., duty ratio),

shown as D in Figure 7.1, is sent to the FCML gate drives through the PWM peripherals of the

microcontroller. The ADC and control signal calculation are executed at a sampling frequency

matched to the switching frequency. The microcontroller has a trigonometric math unit (TMU)

which is used to construct signal equivalents of the input voltage and reference current. Note

that by neglecting the phase shifted PWM block, the proposed algorithm can also be applied to a

conventional two-level buck converter.

The proposed control algorithm comprises a feedforward term (Dff in Figure 7.1) which provides

the ideal duty ratio given the converter operating point, and a multiloop control term (Di in

Figure 7.1) which compensates the nonidealities which are not governed within the feedforward

control. The multiloop control consists of a higher bandwidth inner current loop which tracks a

desired reference current and a slower bandwidth voltage loop which provides an amplitude for the

reference current to achieve PFC. Other supporting functions of the proposed control algorithm

include a phase-locked loop to synchronize the converter with the ac input voltage, and a comparator

to determine whether the PFC algorithm and the converter must be enabled or disabled.

84

7.2.1 PLL

A phase-locked loop (PLL) based adaptive notch filter is used to synchronize the converter with

the ac input voltage. As shown in Figure 7.1, the PLL control block uses Vac,pos and Vac,neg to

extract the phase angle of the input ac voltage (denoted as θ in Figure 7.1). Once the converter is

locked to the ac input voltage, the peak value of the input voltage can be calculated to adapt the

control algorithm for universal input voltage. The peak value of the input voltage and the phase

angle are also used to construct a distortion- and noise-free replica of the input voltage (denoted

as V ∗
ac in Figure 7.1) with the help of the TMU.

7.2.2 Comparator

As stated in Chapter 6, an FCML buck converter is unable to perform PFC and deliver power

when the input voltage is less than the output voltage. Therefore, a comparator block is needed

to compare the replica of the input voltage (V ∗
ac) to the measured output voltage (Vout) at every

sampling period to determine whether the multiloop and feedforward control laws are executed or

the converter is disabled. Here, using the replica of the input voltage (V ∗
ac) instead of the actual

input voltage measurement prevents the converter from having a turn-on/off oscillation after it is

enabled at every ac half-cycle. In practice, depending on the output current, the sampled input

voltage may exhibit a small decline when the converter is enabled. Such a decline, combined

with measurement noise, may cause a lower input voltage measurement than the output voltage

measurement, and may disable the converter in the next sampling period.

7.2.3 Reference current

A reference signal is needed as an input to the current loop portion of the PFC controller so that

the input current is in phase and sinusoidal when the input voltage is higher than the output

voltage. As mentioned before, in this work, the high bandwidth inner current loop tracks the

average inductor current, which is unlike boost-type PFC converters, at the converter output.

Since the input current must be as sinusoidal as possible to achieve good power factor, power flow

analysis is needed to identify a reference current for the average inductor current.

Figure 7.2 shows an ac-dc power converter that is connected between a single-phase ac power

source and a dc load that includes a twice-line frequency buffering element. In single-phase ac-

85

Power
Converter

iin iout

vin vout
DC load

with buffer

vin , iin
+

_

+

_

vout

t

t

Vout,ave

Vin,peak

Iin,peak

Figure 7.2: A generic ac-dc power converter connected between a single-phase ac input source and
a dc load that includes a twice-line frequency energy buffering element.

dc power conversion, unity power factor occurs when the input voltage (vin in Figure 7.2) and

current (iin in Figure 7.2) are both sinusoidal and in phase (i.e., vin(t) = Vin,peaksin(2πfgridt) and

iin(t) = Iin,peaksin(2πfgridt)). The instantaneous input power is given by

Pin(t) = vin(t)iin(t) = Vin,peaksin(2πfgridt)Iin,peaksin(2πfgridt). (7.1)

In this analysis, it is assumed that the power converter also provides twice-line frequency power

buffering, through active or passive means. Under this assumption, although some voltage ripple

still exists at the output, its amplitude will be much smaller than the average value of the output

voltage. Thus, the output voltage is assumed to be constant in this analysis and vout(t) ≈ Vout,ave.

The instantaneous output power is given by

Pout(t) = vout(t)iout(t) ≈ Vout,aveiout(t). (7.2)

Further assume that the generic ac-dc power converter in Figure 7.2 is ideal. By equating (7.1)

and (7.2), a mathematical relationship for the instantaneous output current can be obtained as

iout(t) =
vin(t)iin(t)

vout(t)
=
Vin,peakIin,peak

Vout,ave
sin2(2πfgridt). (7.3)

Equation (7.3) means that sinusoidal and in-phase input current requires the output current to

be proportional to a sine squared waveform that is in phase with the input voltage. In order to

compensate for losses that are ignored by equating (7.1) and (7.2), and also to achieve output

voltage regulation, a proportionality constant K can be determined by the outer voltage loop. In

conclusion, in order to achieve high power factor by tracking the output current (i.e., the average

86

inductor current in a buck converter), the inner current loop reference is given by

iref (t) =

Ksin2(2πfgridt), if vin(t) > vout(t)

0, otherwise.

(7.4)

Once the PLL provides the angle of the input voltage, the TMU of the microcontroller can calculate

the sine squared term in (7.4).

7.2.4 Feedforward control

Feedforward control is an effective method to improve control performance by reducing the effects

of disturbances in PFC applications, and is often preferred in boost-type PFC converters [141,185].

Here, feedforward is used to estimate the ideal duty ratio by using circuit equations that govern

converter behavior. As mentioned before, the control algorithm is developed by approximating

FCML buck converter dynamics with conventional buck converter dynamics. Thus, in order for

the inductor current to follow the reference current derived above, the following first-order equation

must be satisfied:

L
diL
dt

= vinD − vout. (7.5)

Given the reference current iref and target output voltage Vout,ref , (7.5) can be rewritten as

L
diref

dt
= vinD − Vout,ref . (7.6)

In order to obtain a feedforward term, (7.6) can be reorganized as

D =
L

vin

diref
dt

+
Vout,ref
vin

, (7.7)

which can be implemented in a digital controller as

Dff =
L

vin

∆iref
∆t

+
Vout,ref
vin

. (7.8)

Under ideal conditions, (7.8) should suffice to achieve PFC control. However, sensitivities and

uncertainties in the converter itself and sensing hardware require multiloop feedback control to

track the reference current and voltage. Nevertheless, the feedforward term Dff given by (7.8) can

87

be calculated by the microcontroller since all but the inductance value (L) information is available

through the microcontroller internal states and sensing peripherals. ∆iref can be calculated by

storing the reference current value from the previous sampling time, ∆t is the sampling period,

a signal replica of vin is constructed by using the PLL block, and Vout,ref is given as a reference

voltage to the multiloop control to achieve load regulation. The true value of L depends on inductor

current, temperature, and various other operating parameters which change with operating point.

This is another reason to include a multiloop feedback loop to track the reference current and

voltage.

In [141], a feedforward term similar to (7.7) is derived for boost PFC converters and called

“complete feedforward”. As mentioned before, one key feature of an FCML buck converter is a

reduced inductor requirement for a given switching frequency. In “complete feedforward” for the

buck PFC converter given by (7.7), the impact of the derivative term is attenuated as the inductance

gets smaller, resulting in poor reference current tracking performance. Since multiloop feedback

control is employed in this work to compensate for uncertainties in the system, the derivative term

may be omitted from (7.7), which simplifies (7.8) to

Dff =
Vout,ref
vin

. (7.9)

In [141], a feedforward term that is similar to (7.9) is also derived for boost PFC converters and

called “partial feedforward”. This work uses (7.9) to calculate the feedforward term, and relies

on multiloop feedback control to track the reference current and voltage. Note that in the actual

implementation of (7.9), the signal replica of the input voltage (vin) is used.

7.2.5 Multiloop feedback control

Multiloop control of buck converters, which consists of a fast inner current loop and a slower voltage

loop, is well-known [186]. Both the inner loop and the outer loop employ proportional and integral

(also known as PI, or lag, or type 1) compensation, and are tuned by using a converter small-signal

model. In multiloop feedback control of a converter, the outer loop uses the reference voltage and

measured output voltage to provide a reference current for the inner loop. The inner loop uses the

reference current and measured average inductor current to track the reference current.

Multiloop feedback control is used in the proposed PFC control. The dynamic behavior of the

88

M
ag

ni
tu

de
 [

dB
]

-20

0

20

40

60

80

100

100 101 102 103 104

P
ha

se
 [

°]

-180

-90

0

90

180

Frequency [Hz]

Uncompensated
Compensated 55°

Figure 7.3: The uncompensated and PI compensated loop gain of (Gid(z)).

FCML buck converter is approximated with the dynamic behavior of a conventional buck converter.

(This approximation is experimentally validated by comparing the frequency response of a six-level

FCML to a conventional (two-level) buck converter. The comparison results can be found in

Appendix C.) Thus, a buck converter small signal model is used to tune the PI compensator

parameters. Although the small signal model is not completely appropriate for large signal (i.e.,

PFC) operation, in this work the feedforward term (i.e., (7.9)) brings the converter near an ideal

operating point by providing the expected conversion ratio between input and output. Multiloop

feedback control which is tuned by using a small-signal model only compensates for nonidealities

and uncertainties around the operating point provided by the feedforward term.

Since the proposed control algorithm is implemented using digital control, discrete time modeling

of the buck converter and direct-digital design of the PI compensator are preferred in this work.

Interested readers can refer to [186] for complete details of discrete time modeling of a synchronous

buck converter (Section 3.2.1 in [186]), and multiloop feedback control compensator design of a

synchronous buck converter (Section 4.2.3 in [186]).

Converter specifications for digital modeling and compensator design are given in Table 7.1. The

PI compensator for the inner current loop is designed for the discrete time duty ratio to inductor

89

Table 7.1: Parameters used for multiloop feedback control compensator tuning

Variable Value

Input Voltage 340 V (≈ 240 VRMS)
Output Voltage 48 V
Output Power 400 W
Switching Frequency 80 kHz
Filter Inductor 5.6 µH
Output Capacitor 5 mF

current transfer function (Gid(z)) of a conventional buck converter. The PI compensator for the

inner current loop is designed to have 55◦ phase margin at 10 kHz crossover frequency (one eighth

of the switching frequency). The uncompensated and PI compensated loop gain of (Gid(z)) are

plotted in Figure 7.3. The PI compensator for the outer voltage loop is evaluated with the inner

current loop closed. Separating the cut-off frequencies of the inner and outer loops by three to four

orders of magnitude is common practice. Therefore, the PI compensator for the outer voltage loop

is designed at 10 Hz crossover frequency.

90

CHAPTER 8

EXPERIMENTAL STUDY OF AN FCML BUCK PFC

CONVERTER

Numerous ac-dc and dc-dc experiments were performed to validate performance of the FCML buck

converter and control. This chapter describes the experimental studies performed and discusses the

results. During the experiments, various converter parameters and operation points were tested.

Although not repeatedly underlined throughout the experimental study, the control parameters in

the proposed PFC control algorithm are tuned accordingly as converter parameters and operating

points change.

8.1 Prototype FCML buck converter for single-phase ac-dc power
conversion

The hardware prototype used in this work consists of two main power stages: an active rectifier,

and an N -level buck converter. The active rectifier stage is a straightforward implementation

with four low RDS(on) MOSFETs that can withstand the ac line voltage, and associated gate drive

circuitry. However, the design space for the N -level buck converter is quite broad. A Monte

Carlo optimization was pursued to provide good balance between power density and efficiency.

Interested readers can refer to [154] for an example of the Monte Carlo optimization method and

the loss models used in this work.

As mentioned before, the FCML buck converter needs to operate over universal input voltage and

48 V output voltage. The highest voltage that the converter must withstand occurs at 240 VRMS

input voltage, which is the operation condition considered when designing the hardware proto-

type. The number of levels in the FCML buck converter is chosen as six, not only because of

prior work [171] which demonstrated that an even number of levels has better natural balancing

of the flying capacitor voltages, but also because a six-level design yields 68 V maximum voltage

stress at the ac line peak, enabling the use of 100 V semiconductor switches with adequate margin.

Considering the high output current requirements of buck-type PFC converters, GaN transistors

91

Cfly4 C
out

S5A

S5B

S4A

S4B

S1A

S1B

R Vout

L
S3A

S3B

S2A

S2B

Cbuf
v
in

v
rec

+

-

+

-
Cfly3 Cfly2 Cfly1Cin

Figure 8.1: The six-level FCML buck converter schematic for a single-phase PFC application.

Figure 8.2: A close-up photograph of the FCML buck stage of the hardware prototype. (Actual
size.)

are preferred to achieve high power density and low conduction loss despite the dynamic on-state

resistance phenomena in present power GaN transistors [187]. The filter inductor and flying capac-

itor values are chosen to allow 8.5 A average output current at 80 kHz switching frequency, yielding

approximately 400 W maximum output power. Gate drive circuitry for the floating transistors in

the FCML buck converter is energized using a cascaded bootstrap scheme [172]. The key compo-

nents used in the multilevel hardware prototype are listed in Table 8.1. The schematic is given in

Figure 8.1.

Care must be taken in converter layout to maximize power density while maintaining a reasonable

thermal profile and low commutation loop inductance. Proper heat sink placement on top-cooled

devices is often challenging due to uneven component heights. In this work, GaN transistors from

GaN Systems, which offer bottom cooled devices, are preferred, and all components are placed on

the top side of a four-layer printed circuit board (PCB). Minimizing the commutation loop induc-

tance in the FCML buck converter layout is crucial. As in a two-level buck converter, commutation

loop parasitic inductance exists between complementary switch pairs and flying capacitors in an

FCML converter. In order to minimize this parasitic inductance, small footprint decoupling ca-

pacitors are connected in parallel with larger footprint higher capacitance flying capacitors, but

92

T
ab

le
8.

1:
K

ey
co

m
p

on
en

ts
of

th
e

F
C

M
L

b
u

ck
-t

y
p

e
P

F
C

h
ar

d
w

ar
e

p
ro

to
ty

p
e

S
ta

g
e

C
o
m

p
o
n

en
t

M
an

u
fa

ct
u

re
r

&
P

ar
t

N
u

m
b

er
D

et
ai

ls

A
ct

iv
e

re
ct

ifi
er

T
ra

n
si

st
or

s
S

T
M

ic
ro

el
ec

tr
on

ic
s

S
T

L
57

N
65

M
5

65
0

V
,

61
m

Ω
G

a
te

d
ri

v
er

F
ai

rc
h

il
d

S
em

ic
on

d
u

ct
or

F
A

N
73

93
2

B
o
o
ts

tr
a
p

d
io

d
e

R
oh

m
S

em
ic

on
d

u
ct

or
R

F
N

1L
6S

D
ig

it
a
l

is
o
la

to
r

S
il

ic
on

L
ab

s
S

I8
42

3
O

p
ti

on
al

F
C

M
L

b
u

ck
T

ra
n

si
st

or
s

G
aN

S
y
st

em
s

G
S

61
00

8P
10

0
V

,
7

m
Ω

G
a
te

d
ri

v
er

S
il

ic
on

L
ab

s
S

I8
27

1G
B

-I
S

Is
ol

at
ed

,
si

n
gl

e
ch

an
n

el
F

ly
in

g
ca

p
a
ci

to
r

T
D

K
C

57
50

X
6S

45
0

V
,

2.
2
µ

F
,

6
in

p
ar

al
le

l
p

er
le

ve
l

D
ec

ou
p

li
n

g
ca

p
a
ci

to
r

T
D

K
C

20
12

X
7T

45
0

V
,

47
n

F
,

4
in

p
ar

al
le

l
p

er
le

ve
l

In
d

u
ct

or
V

is
h

ay
IL

H
P

50
50

E
Z

E
R

5.
6
µ

H
O

u
tp

u
t

ca
p

a
ci

to
r

T
D

K
C

G
A

9N
3X

7S
10

0
V

,
10

µ
F

,
16

in
p

ar
al

le
l

In
p

u
t

ca
p

a
ci

to
r

T
D

K
C

57
50

X
6S

45
0

V
,

2.
2
µ

F
,

3
in

p
ar

al
le

l

C
as

ca
d

ed
b

o
ot

st
ra

p
B

o
o
ts

tr
a
p

d
io

d
e

V
is

h
ay

S
em

ic
on

d
u

ct
or

s
V

S
-2

E
F

H
02

H
M

3
0.

75
V

,
2

A
B

o
o
ts

tr
a
p

ca
p

a
ci

to
r

T
D

K
C

16
08

X
5R

25
V

,
10

µ
F

L
D

O
T

ex
as

In
st

ru
m

en
ts

L
P

29
85

6.
1

V

D
ig

it
a

co
n
tr

ol
le

r
M

ic
ro

co
n
tr

o
ll

er
T

ex
as

In
st

ru
m

en
ts

F
28

37
7D

L
ev

el
sh

if
te

rs
T

ex
as

In
st

ru
m

en
ts

S
N

74
L
V

4T
12

5P
W

R

C
u

rr
en

t
se

n
si

n
g

D
iff

er
en

ti
a
l

am
p

li
fi

er
L

in
ea

r
T

ec
h

n
ol

og
y

L
T

19
99

50
V

/V
V

o
lt

a
ge

re
fe

re
n

ce
T

ex
as

In
st

ru
m

en
ts

R
E

F
30

12
1.

2
V

S
en

se
re

si
st

o
r

O
h

m
it

e
F

C
4L

2
m

Ω

L
og

ic
v
o
lt

a
ge

L
D

O
M

ic
ro

ch
ip

T
ec

h
n

ol
og

y
M

C
P

17
00

5
V

93

1.4 in1.4 in

6.8 in6.8 in

4.3 in4.3 in

0.27 in

Figure 8.3: Top and side views of the hardware prototype.

Figure 8.4: Side view of the hardware prototype with attached heat sink.

are placed close to the floating switch pairs in order to achieve the smallest possible commutation

loop area. Similar component placement to minimize commutation loop inductance in an FCML

converter design can be found in [153–156,173]. To minimize the hardware prototype box volume,

a low profile inductor is used to match the height of the flying capacitors that are stacked in two

rows. The FCML buck stage alone, shown in Figure 8.2, has a box volume of 1.63 in3. The hard-

ware prototype, side and top views of which are shown in Figure 8.3, fits in a box of volume of

2.57 in3. Experimental results which are provided in this work are achieved with a 0.29 in tall heat

sink, placed on the bottom of the PCB. A side view of the converter with the heat sink attached is

provided in Figure 8.4. The box volume of the hardware prototype with the heat sink is 5.33 in3,

yielding a 75 W/ in3 power density. Note that the heat sink is not optimized for this converter or

for its heat transfer requirements. The PCB layouts of the prototype FCML buck converter are

provided in Appendix D.

A microcontroller that can output phase shifted PWM signals at reasonable frequency and resolu-

tion is preferred to control the hardware prototype. 12-bit ADC submodules of this microcontroller

sample the voltages through resistive dividers. For current measurement, two high bandwidth dif-

94

Figure 8.5: Hardware prototype with attached microcontroller.

ferential amplifiers with shunt resistors are used to measure both inductor and output current.

Since the output voltage is less than 60 V, the current measurement can be done on the high side

without violating common mode voltage capability of commercially available differential amplifiers.

The hardware prototype with the microcontroller connected can be seen in Figure 8.5.

As mentioned before, this work focuses on the PFC front end converter and twice-line frequency

energy buffering is assumed to be provided separately by the UPS. Therefore, for the experimental

work, a large electrolytic capacitor bank (annotated as Cbuf in Figure 8.1) on the order of millifarads

is added to the converter output to mimic 48 V UPS behavior. The large capacitor bank is not

part of the PFC front end for purposes of power density calculation.

8.2 Experimental setup

The experimental setup consisted of a programmable ac voltage source, Pacific Power Source 112-

AMX; a programmable dc voltage source, Keysight N8937A; two programmable electronic loads,

one Agilent 6060B and one Chroma 63803; an ac power analyzer, Keysight PA2201A; a power

meter, Yokogawa WT3000; and various high power resistors. Two dedicated dc power supplies,

95

HP 6632A, provide auxiliary power to the hardware prototype at 6.5 V and 12 V.

Code Composer Studio from Texas Instruments was used to program and debug the microcon-

troller. A JTAG emulator, Spectrum Digital XDS100V2, established communication between the

computer and the microcontroller. When running the converter, a SeaISO USB isolator, Sealevel

ISO-1-OEM, isolated the computer ground from the converter ground.

Converter waveforms were captured with a mixed signal oscilloscope, Tektronix MSO4034. The

ac power analyzer was used to capture input and output waveforms and measure the input and

output values such as power factor and efficiency in ac-dc operation. The power meter is used to

measure efficiency in dc-dc operation. Both the ac power analyzer and the power meter have 0.05%

measurement accuracy. The input voltage and flying capacitor voltages were measured with a data

acquisition unit (National Instruments PXIe-1078 chassis, PXIe-4300 16-bit analog input module,

and PXIe-4300B terminal block) at 25000 samples per second to study voltage balancing. Note

that this sampling frequency does not capture switching frequency ripple on the flying capacitor

voltages. Thermal images were captured with FLIR T420.

In addition to the hardware prototype described in Section 8.1, two 15 µH inductors and one 1 Ω

high power resistor were added in series between the source and the hardware prototype during

the experimental work to set the source impedance and to aid FCML converter startup.

The microcontroller code used in this experimental study is provided in Appendix E.

8.3 Six-level FCML buck converter in dc-dc operation

The six-level FCML buck converter was operated as a dc-dc converter to test its performance at

various operating points over the rectified ac cycle. The input voltage, duty ratio and the output

current of the converter were manually adjusted to create the operating points that the converter

will run during ac-dc conversion. The converter efficiency at selected operating points is given in

Figure 8.6.

Flying capacitor voltage balancing and heat dissipation performance of the hardware prototype

were also tested in dc-dc operation. The six-level FCML buck converter achieves excellent natural

voltage balancing and thermal profile in dc-dc operation. The switch node voltage and the ac

coupled inductor current at the peak input voltage and inductor current can be seen in Figure 8.7(a).

Also, note that at this dc-dc operating point, the FCML buck stage (shown in Figure 8.2) provides

16 A at 48 V from 340 V input, yielding 228 W/in3 power density including the heat sink. A thermal

96

Output current [A]
0 2 4 6 8 10 12 14 16

E
ff

ic
ie

nc
y

[%
]

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

V
in

= 100 V

V
in

= 150 V

V
in

= 200 V

V
in

= 250 V

V
in

= 300 V

V
in

= 340 V

Figure 8.6: Efficiency of the FCML buck converter in dc-dc operation.

image of the converter for this dc-dc operating point is provided in Figure 8.7(b). Additional

experimental results that demonstrate dc-dc operation of the six-level FCML converter can be

found in Appendix F.1.

8.4 Verification of the proposed PFC control on a conventional (two-level)
buck converter

The proposed PFC control algorithm was first applied to a conventional two-level buck converter

in order to validate the combined feedforward and multiloop feedback control approach. The

hardware prototype shown in Figure 8.3 was configured as a two-level buck converter using the

same transistors, gate drives and analog sensing circuitry. Since each transistor is rated for 100 V,

the input and output voltage were scaled down by four times, to preserve the current conduction

angle for PFC operation. The output power was also scaled down to 50 W since this experiment

focused on control validation. The filter inductor was replaced with an off-board 50 µH inductor to

approximately match the current ripple in a six-level FCML converter. The output capacitor was

adjusted both to have enough twice-line frequency energy buffering at the lower output voltage,

97

vSW

iL

(a) Switch node voltage and ac coupled inductor cur-
rent.

InductorGaN FETs

(b) Thermal image of the dc-dc stage

Figure 8.7: Six-level FCML buck converter dc-dc operation at Vin = 340 V, Vout = 48 V and
Iout = 16 A.

Table 8.2: Updated components and specifications for the two-level configuration of the hardware
prototype

Specification New Value

Input Voltage 60 VRMS

Output Voltage 12 V
Output Power 50 W

Component New Value

Filter Inductor 50 µH
Output Capacitor 10 mF

and to provide the requisite load energy when the input voltage is less than the output voltage.

The updated specifications and parts are summarized in Table 8.2. The proposed control algorithm

was tuned for the updated specifications in Table 8.2.

The input voltage and current, and inductor current are given in Figure 8.8. This operation

point achieved 0.9880 power factor. The PFC performance observed in Figure 8.8 validated the

feedforward and multiloop feedback control approach.

98

vin

iin

iL

Figure 8.8: Input voltage and current, and inductor current, of the conventional (two-level) buck
converter for PFC operation. Vin = 60 VRMS, Vout = 12 V and Iout,ave = 4.5 A.

vin

iin

iL

Figure 8.9: Input voltage and current, and inductor current, of the six-level buck converter for
PFC operation. Vin = 60 VRMS, Vout = 12 V and Iout,ave = 4.5 A.

8.5 Verification of the proposed PFC control on a six-level FCML buck
converter

Next, the proposed PFC control algorithm was applied to the six-level FCML buck converter

prototype.

Initially, in order to see the natural balancing of flying capacitor voltages with a 60 Hz ac input,

the input and output voltage were scaled down by four times, to preserve the current conduction

angle for PFC operation, and output power was set to 50 W. All components of the hardware

prototype are as listed in Table 8.1, except that the electrolytic output capacitance is 10 mF. This

assures enough twice-line frequency energy buffering at the lower output voltage and requisite load

99

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(a) For two ac line cycle

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(b) During converter turn-on and -off

Figure 8.10: Flying capacitor voltages at Vin = 60 VRMS, Vout = 12 V and Iout,ave = 4.5 A.

energy for 50 W output power during the time interval when the input voltage is less than the

output voltage. The PI compensator parameters were updated by targeting the same 55◦ phase

margin at 10 kHz to reflect changes to the hardware and operating point.

The input voltage and current, and inductor current, are given in Figure 8.9. The flying capacitor

voltages are given in Figure 8.10 for two full ac line cycles and during converter turn-on and -off.

This operating point achieved 0.9324 power factor.

As shown in Figure 8.10(a), where the flying capacitor voltages are given for two full ac line

cycles, they are not close to their expected values which are specific fractions of the rectified input

voltage. At the beginning and end of the conduction angle, where the rectified input voltage has

the highest dv
dt and the duty ratio change is the fastest across the complete conduction angle, flying

capacitor voltage balance was not maintained, as can be seen in Figure 8.10(b). In addition, the

poor balance at the end of the conduction angle results in flying capacitor voltages at uncontrolled

levels just before the converter was disabled. This resulted in a nonideal initial condition for

the flying capacitor voltages at the beginning of the conduction angle in the next ac line cycle.

Thus, the flying capacitor voltages oscillated after the converter was enabled. Nevertheless, voltage

imbalances on flying capacitor voltages at the beginning and end of the conduction angle do not

violate the switch voltage ratings even at rated input voltage. For safe circuit operation (i.e., in

order not to violate the voltage rating of the transistors), the flying capacitor voltages must be well-

balanced at the input voltage peak. However, flying capacitor voltage imbalance led to additional

current harmonics on the inductor current, which ultimately translated to the input current shape

100

vin

iin

iL

(a) Input voltage and current, and inductor current.

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

20

40

60

80

100

120

140

160

180
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(b) Flying capacitor voltages for two ac line cycle

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

20

40

60

80

100

120

140

160

180
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(c) Flying capacitor voltages during turn-on and -off

Figure 8.11: Six-level buck converter for PFC operation at Vin = 120 VRMS, Vout = 24 V and
Iout,ave = 4.5 A.

shown in Figure 8.9.

Although the flying capacitor voltages shown in Figure 8.10(a) for 60 VRMS input voltage were

not well balanced, the resulting voltage stress at the input voltage peak (for instance when t = 0 s

in Figure 8.10(a)) seemed reasonable. In order to see how the flying capacitor voltage balancing

performance scales to higher input voltages, the input voltage was gradually increased by preserving

the voltage conversion ratio and current conduction angle in the 240 VRMS to 48 V case. Here,

only 120 VRMS to 24 V and 160 VRMS to 32 V results are provided.

The results of 120 VRMS to 24 V experiment are given in Figure. 8.11. This operating point

achieved 0.8684 power factor. The results of 160 VRMS to 32 V experiment are given in Figures 8.12.

101

vin

iin

iL

(a) Input voltage and current, and inductor current.

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

50

100

150

200

250
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(b) Flying capacitor voltages for two ac line cycle.

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

50

100

150

200

250
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(c) Flying capacitor voltages during converter turn-on
and -off.

Figure 8.12: Six-level buck converter for PFC operation at Vin = 160 VRMS, Vout = 32 V and
Iout,ave = 4.5 A.

This operating point achieved 0.8411 power factor.

While the current conduction angle was the same in 60 VRMS, 120 VRMS, and 160 VRMS experi-

ments, higher input voltage resulted in lower power factor. As the input voltage increased, a slight

input current displacement can be observed; however, the lower power factor was mainly caused

by increased input current distortion in Figures 8.11(a), and 8.12(a) for 120 VRMS and 160 VRMS,

respectively. On the other hand, Figures 8.11(b) and 8.12(b) show that the balancing behavior

in the flying capacitor voltages is similar to the 60 VRMS input voltage case, and arguably worse

around peak voltage values. As shown in Figure 8.11(c) and 8.12(c), poor voltage balancing during

converter turn-on and -off remained similar to the 60 VRMS input voltage case. In the 160 VRMS to

102

vin

iin

iL

(a) Input voltage and current, and inductor current

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

20

40

60

80

100

120

140
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(b) Flying capacitor voltages for two ac line cycle.

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

20

40

60

80

100

120

140
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(c) Flying capacitor voltages during converter turn-on
and -off.

Figure 8.13: Six-level buck converter for PFC operation at Vin = 90 VRMS, Vout = 48 V and
Iout,ave = 4.5 A.

32 V experiment, the highest switch voltage stress was measured as 56.80 V, whereas with perfect

flying capacitor voltage balancing, it should have been 45.3 V. Therefore, higher input voltages were

not tested. Instead, the hardware prototype was tested for the low-line universal voltage condition

given 48 V output. The PI compensator parameters were updated by targeting 55◦ phase margin

at 10 kHz cut-off frequency to reflect changes in the operating point.

The results of 90 VRMS to 48 V experiments are given in Figure 8.13. This operating point

achieved 0.9080 power factor.

As shown in Figure 8.13(a), the inductor and input current shapes with the proposed PFC control

have also degraded. Also, Figure 8.13(b) and Figure 8.13(c) show that the balancing behavior in

103

the flying capacitor voltages depends on the current conduction angle, and gets significantly worse

as the conduction angle decreases. At this point, it became clear that the flying capacitor voltage

balancing must be better understood to improve PFC performance of the prototype hardware and

proposed control algorithm.

8.6 Flying capacitor voltage balancing in ac-dc buck conversion

The experimental results in the Section 8.5 suggested that flying capacitor voltage balancing must

be enhanced to further pursue an FCML buck converter in PFC applications. There are several

approaches to improve voltage balancing. Active balancing techniques proposed in the literature

mainly target dc-ac [167, 168] or dc-dc [169, 170] applications, where flying capacitor voltages are

balanced around steady voltages. Such techniques require switched node voltage, flying capacitor

voltages, or inductor current to be measured, often at higher sampling frequencies than the switch-

ing frequency, imposing further practical challenges. Application of active balancing techniques

when the operating voltages for the flying capacitors change at 60 Hz has not been reported. It

should be also noted that the expected duty ratio change in ideal operating conditions, as depicted

in Figure 6.3, has the highest rate of change at the beginning and end of the current conduction

angle. An appropriate active balancing technique for this application, especially at the beginning

and end of the current conduction angle, must compensate for voltage imbalance considerably faster

than the input voltage and duty ratio rate of change, which is not apparent even if existing active

balancing techniques are implemented. Therefore, methods to improve natural voltage balancing

of the flying capacitors, such as reducing the time constant of flying capacitor voltage balanc-

ing dynamics, and changing the phase shift direction of the gate drive signals, are investigated

experimentally in this work.

8.6.1 Time constant of flying capacitor voltage balancing dynamics

FCML converter voltage balancing dynamics were analyzed in time domain for three- [163], four-

[164], five- [165] and six-level [166] converters. The analysis and exact results for each converter

are mathematically complicated. Here, only the relationships between the component values and

operating parameters are provided.

A flying capacitor voltage, as provided for many different cases in [163–166], can be summarized

104

by

vC(t) = vC,nom + exp(−t/τ)g(t), (8.1)

where vC,nom is the nominal voltage of each flying capacitor (i.e., a fraction of the input voltage),

τ is the damping time constant of the flying capacitor voltage dynamics, and g(t) is a function

of coupled flying capacitor voltages and oscillatory charge transfers between unbalanced flying

capacitors. Similar to the flying capacitor voltage, the damping time constant τ , as provided for

many different cases in [163–166], has the following parameter dependencies:

τ ∝ L2, f2
sw, Cfly,

1

R
, h(D,N), (8.2)

where L is the inductor value, fsw is the transistor switching frequency, Cfly is the flying capacitor

value, R is the load, and h(.) is a nonlinear function that depends on the duty ratio D and the

number of levels N .

According to (8.1), the dynamic behavior of the flying capacitor voltages decays with a time

constant τ , which is related to circuit parameters by (8.2). From (8.1) and (8.2), natural balancing

is faster for smaller L, Cfly, and fsw, but larger R. It is acknowledged that (8.1) and (8.2) govern

flying capacitor voltage dynamics when the input voltage is constant, which is not the case in the

ac-dc applications. Here, the relations summarized by (8.1) and (8.2) are used to accelerate natural

balancing of the flying capacitor voltages by reducing τ to achieve better balancing at the peak

input voltage, where voltage balancing is needed for safe converter operation.

The relations summarized by (8.1) and (8.2) were validated for ac-dc PFC application using

the six-level hardware prototype with various L and Cfly values at various fsw values. As shown

in (8.2), Cfly is linearly related, while L and fsw are quadratically related, and to accelerate the

natural balancing, L, Cfly and fsw should be reduced. Although many different L, Cfly and fsw

values were tested, only key results are reported here. In the remaining experimental results, unless

otherwise is noted Vin = 60 VRMS, Vout = 12 V and Iout,ave = 4.5 A.

In order to observe natural balancing behavior, the six-level FCML converter in PFC operation

was first tested by changing the flying capacitor values between 4 × 2.2 µF and 8 × 2.2 µF. The

flying capacitor voltages for selected Cfly values are given in Figure 8.14.

105

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(a) For two ac line cycle. Cfly = 8 × 2.2 µF

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(b) During converter turn-on and -off. Cfly = 8 ×
2.2 µF

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(c) For two ac line cycle. Cfly = 6 × 2.2 µF

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(d) During converter turn-on and -off. Cfly = 6 ×
2.2 µF

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(e) For two ac line cycle. Cfly = 4 × 2.2 µF

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(f) During converter turn-on and -off. Cfly = 4 ×
2.2 µF

Figure 8.14: Flying capacitor voltages of six-level buck converter in PFC operation for different
Cfly values.

106

As is apparent in Figure 8.14, Cfly changes the balancing behavior of flying capacitors in PFC

operation as they charge and discharge at twice-line frequency. According to (8.2), τ should reduce

(or the natural balancing should accelerate) as Cfly is reduced from 8×2.2 µF to 4×2.2 µF. A visual

comparison of Figure 8.14(a), 8.14(c), and 8.14(e) shows that the peak voltages of Cfly,1 through

Cfly,4 better align with the peak voltage of Vrec as Cfly reduces. Also, Figure 8.14(b), 8.14(d),

and 8.14(f) show that the damping time constant becomes smaller as Cfly reduces and flying

capacitor voltages tend to approach their expected values sooner after the converter is enabled.

With reduced Cfly, it is evident in Figure 8.14 that the flying capacitor voltages are still far from

their expected values, and further acceleration of natural balancing is necessary. As mentioned

before, Cfly is linearly related to τ , while L and fsw are quadratically related. Therefore, further

acceleration of natural balancing was investigated by adjusting fsw and L while keeping Cfly

constant at 6× 2.2 µF, as described in the remainder of this chapter.

In order to further accelerate natural balancing, the six-level FCML converter in PFC operation

was tested by reducing fsw to 40 kHz (i.e., half of the previous switching frequency which should

accelerate natural balancing by 4 times). The flying capacitor voltages for this test are given in

Figure 8.15(a) and 8.15(b).

As can be seen in Figure 8.15(a), natural balancing of the flying capacitor voltages was accel-

erated, yielding better alignment around the input voltage peak compared to the flying capacitor

voltages in Figure 8.10. The voltage imbalance during the beginning and end of the current conduc-

tion angle still exists, as shown in Figure 8.15(b), but is reduced to a certain extent in comparison

to the imbalance in Figure 8.10(b).

According to (8.2), natural balancing can also be accelerated by reducing L. The six-level

FCML converter in PFC operation was tested by reducing L to 2.8 µH at a switching frequency of

80 kHz. The flying capacitor voltages for this test are given in Figure 8.15(c) and Figure 8.15(d).

Following (8.2), this test should result in flying capacitor voltage behavior similar to the results in

Figure 8.15(a) and Figure 8.15(b), since the effective τ is the same in both tests. Close examination

of Figure 8.15(a) versus Figure 8.15(c), and Figure 8.15(b) versus Figure 8.15(d) shows that this

is indeed the case.

Although a choice of smaller τ by reducing either fsw or L accelerated natural balancing, the

flying capacitor voltages still did not reasonably follow appropriate fractions of the rectified input

voltage. Also, due to the rapid duty ratio change (as depicted in Figure 6.3) in the beginning

107

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(a) For two ac line cycle. fsw = 40 kHz, L = 5.6 µH

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(b) During converter turn-on and -off. fsw = 40 kHz,
L = 5.6 µH

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(c) For two ac line cycle. fsw = 80 kHz, L = 2.8 µH

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(d) During converter turn-on and -off. fsw = 80 kHz,
L = 2.8 µH

Figure 8.15: Flying capacitor voltages of six-level buck converter in PFC operation for different
fsw and L values. Cfly = 6× 2.2 µF.

and end of the conduction angle, the six-level FCML converter goes through the highest four duty

ratio ranges (i.e., 1<D<0.2) when the duty ratio has the highest rate of change. However, the

converter operates in the lowest duty ratio range (i.e., 0<D<0.2) during a substantial portion of

each half line cycle. Therefore, the time constant given by (8.2) is expected to have limited impact

at the beginning and end of the current conduction period, unless reduced drastically. This is also

apparent in Figures 8.14(b), 8.14(d), 8.14(f), 8.15(b), 8.15(d), among which the change in τ was

limited to a few times. Therefore, τ was even further reduced by updating the hardware prototype

with L = 2.6 µH and fsw = 40 kHz, which represents a factor of 16 reduction compared to the first

108

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(a) For two ac line cycle.

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(b) During converter turn-on and -off.

Figure 8.16: Flying capacitor voltages of six-level buck converter in PFC operation.
Cfly = 6× 2.2 µF, L = 2.8 µH, fsw =40 kHz.

result where Cfly = 6 × 2.2 µF, L = 5.8 µH and fsw = 80 kHz. The flying capacitor voltages of

the updated hardware prototype are given in Figure 8.16.

As expected, natural balancing of the flying capacitor voltages was further accelerated, yielding

better alignment around the input voltage peak, as can be seen in Figure 8.16(a). However, voltage

imbalance during the beginning and end of the current conduction angle still exists, as shown in

Figure 8.16(b). More importantly, reduction in voltage imbalance during the beginning and end

of the current conduction angle was still limited compared to the case with fsw = 40 kHz, L =

5.8 µH (as shown in Figure 8.15(b)), or the case with fsw = 80 kHz, L = 2.8 µH (as shown

in Figure 8.15(d)). This implies that the available improvement at the beginning and end of

the conduction angle by accelerating natural balancing has reached its limit, and other methods

should be pursued to enhance flying capacitor voltage behavior during the beginning and end of

the current conduction angle. Nevertheless, the updated hardware prototype achieves reasonable

voltage balancing at the rectified input voltage peak, where voltage balancing was necessary for

safe converter operation at rated input voltage. It should also be noted that the reduction of

both switching frequency and inductance value yielded a significantly increased current ripple on

the inductor, which increased losses. In general, active balancing methods that enable switching

frequency and inductance values to be determined by efficiency and power density targets, rather

than by natural balancing time constants, are certainly desirable.

109

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(a) For two ac line cycle.

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(b) During converter turn-on and -off.

Figure 8.17: Flying capacitor voltages of six-level buck converter in PFC operation.
Cfly = 6× 2.2 µF, fsw = 80 kHz, L = 5.6 µH, phase-shift direction: Lag.

8.6.2 Phase-shift direction

Until now, the preferred phase-shift direction for the gate driving signals is known as lead (i.e.,

referring to the transistor order in Figure 8.1, S5A leads S4A, S4A leads S3A, S3A leads S2A, S2A leads

S1A). The phase-shift direction can also lag (i.e., referring to the transistor order in Figure 8.1,

S5A lags S4A, S4A lags S3A, S3A lags S2A, S2A lags S1A). Lead and lag phase shifts result in inverse

switching states. This reverses the charge and discharge order of the flying capacitors. Although

lead or lag modulation does not affect the value of τ according to [165], it affects the oscillation order

of flying capacitor voltages as natural balancing occurs. Interested readers can refer to [165, 188]

for further explanation of lead versus lag modulation. Experimental results are reported here for

ac-dc operation to investigate the effect of phase shift direction on natural balancing.

Flying capacitor voltages in the six-level FCML converter operated with lag phase shift were

tested for L = 5.6 µH and fsw = 80 kHz. Results are given in Figure 8.17. Lag phase shift severely

affected the flying capacitor voltages at the rectified input voltage peak as shown in Figure 8.17(a).

Compared to Figure 8.10(a), where the same converter specifications operated with lead phase

shift, lag phase shift resulted in worse voltage balancing at input voltage peak.

Flying capacitor voltages of the six-level FCML converter operated with lag phase shift were

also tested when natural balancing is accelerated by reducing L to 2.8 µH and switching frequency

to 40 kHz. Flying capacitor voltages for this test are given in Figure 8.18. Accelerated natural

balancing shown in Figure 8.18 mitigated the undesired difference between lead and lag phase shift

110

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(a) For two ac line cycle.

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

10

20

30

40

50

60

70

80

90
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(b) During converter turn-on and -off.

Figure 8.18: Flying capacitor voltages of six-level buck converter in PFC operation.
Cfly = 6× 2.2 µF, fsw = 40 kHz, L = 2.8 µH, phase-shift direction: Lag.

between Figures 8.10 and 8.17, and did not severely affect the flying capacitor voltages compared

to Figure 8.16. As can be seen in Figure 8.18(b), lag phase shift significantly affected voltage

oscillation at the beginning and voltage imbalance at the end of the current conduction angle,

compared to Figure 8.16(b), where the converter is operated with the same specifications except

for lead phase shift.

In conclusion, experimental results showed that phase-shift direction has a nonnegligible effect

on flying capacitor voltages in ac-dc operation as they follow the rectified input voltage at 120 Hz.

8.6.3 Impact on input and inductor current shaping

So far, the experimental work in this chapter has prioritized improving natural balancing of flying

capacitor voltages in order to be able to run the six-level buck converter at rated input voltage

(i.e., 240 VRMS). Various flying capacitance, switching frequency, inductance, and phase shift

directions, and their several combinations were explored experimentally. However, their impact on

input current shape has not been reported to focus on the behavior of flying capacitor voltages as

the rectified input voltage varies at 120 Hz. Current shaping performance of the converter with

selected key parameters is reported here.

First, the converter was operated with lag phase shift at fsw = 80 kHz and L = 5.6 µH. The

input voltage and current, and inductor current, for this configuration can be seen in Figure 8.19.

111

vin

iin

iL

Figure 8.19: The input and output voltage, current, and power of the six-level buck converter for
PFC operation. Cfly = 6× 2.2 µF, fsw = 80 kHz, L = 5.6 µH, phase-shift direction: Lag.

This operating point achieved 0.9331 power factor. In comparison to Figure 8.9, where the same

converter is operated with lead phase shift, the input current in Figure 8.19 exhibited a small but

noticeable cusp. Cusp distortion on input current is typical of zero-crossing distortion and occurs

due to the limited voltage across the inductor to drive the inductor current to follow the reference

in boost-type single-phase PFC converters [189]. In the buck-type PFC considered in this work, a

cusp is expected following converter turn-on, after the input voltage exceeds the output voltage,

instead of right after the input voltage zero crossing. Although not clearly visible on the inductor

current plot due to excessive ripple, the cusps are annotated on both the inductor current and the

input current in Figure 8.19.

Next, the converter was operated with lead and lag phase shift at fsw = 40 kHz and L = 2.8 µH.

The input voltage and current, and inductor current of the converter under these configurations,

can be seen in Figure 8.20. Lead phase shift achieved 0.9252 power factor, and lag phase shift

achieved 0.9288 power factor.

Both Figure 8.20(a) and Figure 8.20(b) exhibit larger cusps in the input current, even though the

converter employs a smaller inductance. This behavior is counterintuitive since smaller inductor

should have mitigated cusp distortion, as is generally the case in boost type PFC converters [189].

However, it should be noted that in Figure 8.20(a) and Figure 8.20(b), the switching frequency

is also reduced by half, the same as the inductance. In a buck-type FCML converter, the switch

node voltage is a combination of flying capacitor voltages, which are, as experimentally shown in

Section 8.6, impacted by the natural balancing time constant and phase shift direction, especially

112

vin

iin

iL

(a) Phase-shift direction: Lead.

vin

iin

iL

(b) Phase-shift direction: Lag.

Figure 8.20: The input and output voltage, current, and power of the six-level buck converter for
PFC operation. Cfly = 6× 2.2 µF, fsw = 40 kHz, L = 2.8 µH.

during the beginning of the current conduction angle. Presumably, the nonideal switch node voltage

due to flying capacitor voltage imbalance has more impact on current shape than the size of the

inductor, at least at the beginning of the conduction period.

In conclusion, experimental results showed that phase shift direction, inductance, and switching

frequency have less effect on power factor than on flying capacitor voltages. Therefore, the hardware

prototype specifications in Table 8.1 were updated with fsw = 40 kHz and L = 2.8 µH, and the

converter was operated with lag phase shift in subsequent experimental work.

113

Output current [A]
0 2 4 6 8 10 12 14 16

E
ff

ic
ie

nc
y

[%
]

93

94

95

96

97

98

99

100

V
in

= 100 V

V
in

= 150 V

V
in

= 200 V

V
in

= 250 V

V
in

= 300 V

V
in

= 340 V

Figure 8.21: Efficiency of the updated FCML buck converter in dc-dc operation.

8.7 Six-level FCML converter in universal input ac-dc conversion

Before testing the updated six-level buck converter in universal voltage operation, it was operated

as a dc-dc converter to record its performance at various operating points across the rectified ac

cycle as well. The input voltage, duty cycle, and output current of the converter were manually

adjusted to create operating points that the converter would run during the ac-dc conversion as

in Section 8.3. Without further increasing the flying capacitor values, fsw = 40 kHz and L =

2.8 µH limit the average output current to 4.5 A at 240 VRMS input voltage for safe operation of

the hardware prototype. This reduces the power density of the hardware prototype with the heat

sink to 41 W/in3. The updated dc-dc converter efficiency is given in Figure 8.21.

For 90 VRMS input voltage, the six-level buck converter achieved 0.935 power factor and 95.63%

power conversion efficiency at rated current. The input voltage and current, and inductor current,

are given in Figure 8.22(a). Flying capacitor voltages are given in Figure 8.22(b) for two full ac

line cycles. Figure 8.22(c) shows the flying capacitor voltages during converter turn-on and -off.

As shown in Figure 8.22(a), inductor and input current shaping performance of the proposed PFC

control degraded due to reduced switching frequency and the smaller inductor, compared to results

114

vin

iin

iL

(a) Input voltage and current, and inductor current

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

20

40

60

80

100

120

140
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(b) Flying capacitor voltages for two ac line cycle.

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

20

40

60

80

100

120

140
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(c) Flying capacitor voltages during converter turn-on
and -off.

Figure 8.22: Six-level buck converter for PFC operation at Vin = 90 VRMS, Vout = 48 V and
Iout,ave = 4.5 A.

at fsw = 80 kHz and L = 5.6 µH shown in Figure 8.13(a). Figure 8.22(b) and Figure 8.22(c) show

that balance in the flying capacitor voltages has improved compared to results at fsw = 80 kHz

and L = 5.6 µH in Figure 8.13(b) and Figure 8.13(c). However, reduced current conduction angle

still negatively affected flying capacitor voltage balance. Nevertheless, at low voltage, poor voltage

balance did not present a hazardous operating condition for the converter, although it impacted

overall efficiency.

For 240 VRMS input voltage, the six-level buck converter achieved 0.741 power factor and

91.714% power conversion efficiency at rated current. The input voltage and current, and inductor

current, are given in Figure 8.23(a). Flying capacitor voltages are given in Figure 8.23(b) for

115

vin

iin
iL

(a) Input voltage and current, and inductor current

Time [ms]

0 5 10 15 20 25 30

V
o

lt
ag

e
[V

]

0

50

100

150

200

250

300

350
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(b) Flying capacitor voltages for two ac line cycle.

Time [ms]

1 2 3 4 5 6 7

V
o

lt
ag

e
[V

]

0

50

100

150

200

250

300

350
v
rec

v
Cfly,4

v
Cfly,3

v
Cfly,2

v
Cfly,1

(c) Flying capacitor voltages during converter turn-on
and -off.

Figure 8.23: Six-level buck converter for PFC operation at Vin = 240 VRMS, Vout = 48 V and
Iout,ave = 4.5 A.

two full ac line cycles. Figure 8.23(c) shows the flying capacitor voltages during converter turn-

on and -off. As shown in Figure 8.23(a), inductor and input current ripple increased, and the

shape performance of the proposed PFC control degraded further due to increased input voltage.

Figure 8.23(b) and Figure 8.23(c) show that flying capacitor voltage balance was maintained at

rated input voltage.

For 90 VRMS, 120 VRMS, and 240 VRMS input voltages, Figure 8.24(a) and 8.24(b) show output

current versus measured ac to dc conversion efficiency and power factor, respectively. As shown in

Figure 8.24(a), ac-dc conversion efficiency reduced as the input voltage increases. This is typical of

buck-PFC converters since higher input voltage requires larger voltage step-down, and thus lower

116

Output current [A]

1.5 2 2.5 3 3.5 4 4.5

E
ff

ic
ie

n
cy

 [
%

]

88

90

92

94

96

98

100

V
in

= 90 V
RMS

V
in

= 120 V
RMS

V
in

= 240 V
RMS

(a) Efficiency vs. output current

Output current [A]

1.5 2 2.5 3 3.5 4 4.5

P
o

w
er

 f
ac

to
r

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

V
in

= 90 V
RMS

V
in

= 120 V
RMS

V
in

= 240 V
RMS

(b) Power factor vs. output current

Figure 8.24: AC to dc conversion efficiency and power factor at 90, 120 and 240 VRMS input
voltage.

efficiency in buck conversion. Similar behavior was also observed in Figure 8.24(b) where power

factor reduces as input voltage increases, although lower power factor for higher input voltage

in buck-type PFC conversion is an unusual result. In a two-level buck converter, higher input

voltage would inherently result in higher power factor because higher input voltage yields longer

current conduction angle throughout the ac line cycle. However, in order to achieve reasonably fast

natural balancing in the six-level FCML converter, lower inductance was needed, which degraded

the current shaping capability of the PFC controller.

117

CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

The series-stacked power delivery architecture discussed in this dissertation showed that it is capable

of maintaining server operation under various conditions. It is a suitable candidate to replace the

bus conversion stage in conventional architectures. By electrically connecting the servers in series,

the proposed series-stacked power delivery architecture achieves superior power delivery efficiency.

A hardware prototype that included differential converters and stack initialization circuitry was

designed and verified in a real-life scenario that includes startup, hot-swapping, and shutdown of

series-stacked servers. In addition, to show the feasibility of 48 V UPS placement at the stack

input, the proposed control algorithm was modified to maintain operation of series-stacked servers

under varying dc bus voltage. In both cases, more than 99% power delivery efficiency was reported

in this dissertation.

The ac-dc front-end power conversion method investigated in this dissertation targets power

conversion efficiency and power density improvements by reducing the number of cascaded power

stages in single-phase ac-dc power conversion. In data center power delivery applications, the

ultimate goal is regulating low dc voltage for digital loads; therefore, an FCML buck PFC con-

verter has been designed and implemented that can provide 48 V from universal input voltage

in a single power stage. The FCML topology increases power density by leveraging capacitors

along with inductors in the energy conversion process and by reducing the overall required induc-

tor size. However, implementation of an FCML buck converter in a PFC application introduces

unique operation scenarios in which the flying capacitor voltages must follow the input voltage at

60 Hz proportionally to ensure proper converter operation. One contribution of this dissertation is

experimental exploration of flying capacitor voltage behavior in this unique operation.

A high power density six-level FCML buck converter was designed with GaN transistors to

118

perform the experimental study. A digital PFC control algorithm was developed and verified using

a conventional two-level buck converter and a six-level FCML buck converter at low input voltage.

In order to achieve natural balancing of flying capacitor voltages at 60 Hz input, both the inductor

and the switching frequency, which were initially chosen to achieve high power density for the

six-level FCML buck converter, had to be reduced by half. This specification update to accelerate

natural balancing of the flying capacitors reduced the power factor, especially as the input voltage

increases. Nevertheless, the behavior of flying capacitor voltages as they follow appropriate fractions

of a rectified input voltage was successfully evaluated in the experiments.

9.2 Future work

An ultimate goal for future work is to provide a continuous grid-to-server power delivery architec-

ture that cascades an FCML buck PFC converter and a series-stacked architecture in a compact

and efficient implementation. If designed as a plug and play solution, future work can also include

a comparison to commercially available power converters in actual data centers. This dissertation

focuses on efficiency and power density improvements. Reliability analysis of the proposed archi-

tectures is a major future research area, since high reliability is as valuable as high efficiency and

power density in data centers.

9.2.1 Server-to-virtual bus DPP

Differential converters used in this research were preliminary hardware prototypes designed with

off-the shelf components. The design of differential converters can be improved to achieve high

power density and efficiency of the converters themselves. Due to the low-voltage nature of differ-

ential converters, all analog and digital circuitry and power switches likely can be implemented in

an integrated circuit. PCI Express can be used as a single connector for both power and control

signals between a motherboard and a differential converter. Through the redesign of differential

converters, leveraging recent advancements in planar magnetics and GaN transistors, a high den-

sity bidirectional isolated dc-dc converter can be achieved. Power-aware load scheduling algorithms

can be extended to balance computational load between the series-stacked servers. Such algorithms

reduce the processed power in the system, but also present a guideline for differential converter

design. If expected load mismatch between series-stacked servers can be predetermined by soft-

119

ware solutions, differential converter design can be optimized to enable lower power rated dc-dc

converters.

Data center grade UPS can be incorporated into converter design to test real-life power loss

scenarios. In this work, the UPS is assumed to be positioned at the 48 V input; however, a 12 V

virtual bus is also a feasible location for UPS integration and should be investigated in the future.

The control algorithm can be extended to detect loss and recovery of supply to maintain operation

of a series stack under all conditions. Some additional features such as pre-charge of the virtual bus

capacitor and automated initialization of a series stack can be integrated into the control algorithm.

The server-to-virtual bus DPP architecture can be built in a standard size server blade that

employs commercial processors. Collaborative communities that address efficient power infrastruc-

tures for data center applications, such as the Open Compute Project, can be leveraged in server

blade design. Using real high performance computing benchmarks, the performance of a server

blade with the series-stacked architecture can be compared to that of off-the-shelf server blades

that employ conventional power delivery architectures. Such a demonstration could accelerate the

adoption of this innovative approach.

9.2.2 Buck-type FCML as a PFC converter

This dissertation showed that achieving natural balancing of flying capacitor voltages in an FCML

buck converter used in a single-phase PFC application imposes limits on flying capacitance, in-

ductance, and transistor switching frequency. There are many areas that can be pursued in the

future to improve power factor, natural balancing of flying capacitor voltages, and power density

of FCML buck converters.

Power factor can be improved by redesigning the input filter, enhancing PFC control and inte-

grating a low voltage boost stage into the FCML buck stage. A higher order input filter can be

designed to attenuate input current switching ripple, although such an input filter may introduce

input current displacement. Digital control algorithms can be extended to consider and compensate

for input current displacement. As mentioned in Section 6.2, to achieve unity power factor, a low

voltage boost stage can be added to the buck stage. This addition may help with the input current

cusp and voltage imbalance when the buck FCML is enabled at the beginning of a conduction pe-

riod. Control algorithms that can shape the input current directly instead of the inductor current

may improve the power factor achieved in this work. However, such control algorithms may present

120

difficulties when applied to an FCML buck converter that is controlled with phase-shifted PWM

signals to achieve natural balancing of the flying capacitor voltages.

Flying capacitor voltages may be controlled using active balancing or pre-charge approaches.

Future work can explore cases in which such approaches can have the highest benefit during a line

cycle. Accelerated natural balancing enabled the prototype converter to operate at rated voltage

by achieving excellent voltage balancing at the input voltage peak. However, accelerated natural

balancing was not sufficient to maintain flying capacitor voltage balancing during the beginning

and end of the current conduction angle. Perhaps a combination of natural and active balancing

can be more beneficial than running an active balancing method over the entire line cycle. Since the

natural balancing time constant depends on the number of levels in FCML converters, dynamically

adjusting the number of levels may selectively improve voltage balancing. Based on the experience

gained during this work, the preferred active balancing, pre-charge or dynamic level selection

approach must be quite fast to drive the flying capacitor voltages to their proper values. Such

approaches may be challenging to implement, especially at the beginning of the current conduction

angle where the input voltage rate of change is the highest.

The hardware prototype can be redesigned to achieve higher power density while achieving power

factor correction by considering natural balancing limitations presented in this work. Previous lit-

erature showed that the number of levels has an impact on the natural balancing time constant.

High power density optimization should consider the trade-off between the inductor, switching fre-

quency, and time constant as a function of the number of levels to design the densest converter

possible. Additional components and functionality such as EMI filters, startup routines, and re-

dundancy are also needed so that a single-stage FCML buck converter can be employed in data

center applications.

121

APPENDIX A

DESIGN FILES OF PROTOTYPE DPP HARDWARE

This appendix contains printed circuit board (PCB) layouts of the prototype DPP hardware.

Figure A.1: PCB layout of prototype DPP hardware: All layers, silkscreens and solder masks.

122

Figure A.2: PCB layout of prototype DPP hardware: Top layer, silkscreen and solder mask.

Figure A.3: PCB layout of prototype DPP hardware: Bottom layer, silkscreen and solder mask.

123

Figure A.4: PCB layout of prototype DPP hardware: Ground layer.

Figure A.5: PCB layout of prototype DPP hardware: Signal layer.

124

APPENDIX B

MICROCONTROLLER CODE USED IN

SERVER-TO-VIRTUAL BUS DPP EXPERIMENTAL STUDY

This appendix contains microcontroller code used in server-to-virtual bus DPP experimental study.

Listing B.1: main.c

1 #inc lude ”DSP28x Project . h” // Device Header f i l e and Examples Inc lude F i l e

2

3 // Prototype statements f o r f unc t i on s found within t h i s f i l e .

4 void In i t i a l i z e GPIOs (void) ;

5

6 void Adc Config (void) ;

7

8 void EPwm Config (void) ;

9 void EPwm1 Config (void) ;

10 void EPwm2 Config (void) ;

11 void EPwm3 Config (void) ;

12 void EPwm4 Config (void) ;

13 void EPwm5 Config (void) ;

14 void EPwm6 Config (void) ;

15 void EPwm7 Config (void) ;

16 void EPwm8 Config (void) ;

17

18 void D i sab l e A l l Conve r t e r s (void) ;

19 void Rese t A l l Conve r t e r s (void) ;

20 void Update Al l Enables (void) ;

21 void Update Al l Phase Sh i f t s (void) ;

22 void Update HotSwap (void) ;

23 void Update Stack (void) ;

24 void Ca l cu l a t e Vo l tage s (void) ;

25 void Determine Phi n Dir (void) ;

26 void Swap All In (void) ;

27 void Swap All Out (void) ;

28 void Swap One In (void) ;

29 void Swap One Out (void) ;

30

31

32 i n t e r rup t void a d c i s r (void) ;

33 // i n t e r rup t void c p u t i m e r 0 i s r (void) ;

34

35 // Global v a r i a b l e s used in t h i s f i l e

36 Uint16 adc count = 0 ; // adc counter

37 Uint16 adc d i v i d e r = 10 ; // adc d i v i d e r f o r averag ing n measurements

38 Uint16 adc i = 0 ; // adc measurement index

39 Uint16 a dc r e a d y f l a g = 0 ;

40

41 Uint16 swap one counter = 0 ;

42 Uint16 swap one mult ip = 500 ;

43 Uint16 swap one i n f l a g = 0 ;

125

44 Uint16 swap one out f l ag = 0 ;

45

46 Uint16 swap a l l c oun t e r = 0 ;

47 Uint16 swap a l l mu l t ip = 500 ;

48 Uint16 s w a p a l l i n f l a g = 0 ;

49 Uint16 s w a p a l l o u t f l a g = 0 ;

50

51 int16 VVB[1 0] ; //must be same as adc d i v i d e r

52 int16 V1 [1 0] ;

53 int16 V2 [1 0] ;

54 int16 V3 [1 0] ;

55 int16 V4 [1 0] ;

56

57 int16 VVB ave ;

58 int16 V1 ave ;

59 int16 V2 ave ;

60 int16 V3 ave ;

61 int16 V4 ave ;

62

63 int16 V vb ;

64 int16 V s1 ;

65 int16 V s2 ;

66 int16 V s3 ;

67 int16 V s4 ;

68

69 int16 V vb err ;

70 int16 V s1 e r r ;

71 int16 V s2 e r r ;

72 int16 V s3 e r r ;

73 int16 V s4 e r r ;

74

75 int16 V 1 ;

76 int16 V 2 ;

77 int16 V 3 ;

78 int16 V 4 ;

79

80 int16 V s1 hy s h i ghe s t = −78;// 2357 ;//2370 ;

81 int16 V s1 hys h igh = −35;// 2400 ;

82 int16 V s1 hys low = −15;// 2420 ;

83 int16 V s1 hys low = 17 ; // 2452 ;

84 int16 V s1 hys h igh = 35 ; // 2470 ;

85 int16 V s1 hys h ighe s t = 76 ; // 2511 ;//2492 ;

86

87 int16 V s2 hy s h i ghe s t = −87;// 2292 ;//2317 ;

88 int16 V s2 hys h igh = −44;// 2335 ;

89 int16 V s2 hys low = −14;// 2365 ;

90 int16 V s2 hys low = 16 ; // 2395 ;

91 int16 V s2 hys h igh = 39 ; // 2418 ;

92 int16 V s2 hys h ighe s t = 92 ; // 2471 ;//2460 ;

93

94 int16 V s3 hy s h i ghe s t = −85;// 2386 ;//2410 ;

95 int16 V s3 hys h igh = −41;// 2430 ;

96 int16 V s3 hys low = −22;// 2449 ;

97 int16 V s3 hys low = 19 ; // 2490 ;

98 int16 V s3 hys h igh = 39 ; // 2510 ;

99 int16 V s3 hys h ighe s t = 87 ; // 2558 ;//2544 ;

100

101 int16 V s4 hy s h i ghe s t = −84;// 2366 ;//2386 ;

102 int16 V s4 hys h igh = −43;// 2407 ;

103 int16 V s4 hys low = −20;// 2430 ;

104 int16 V s4 hys low = 20 ; // 2470 ;

126

105 int16 V s4 hys h igh = 43 ; // 2493 ;

106 int16 V s4 hys h ighe s t = 82 ; // 2532 ;//2508 ;

107

108 int16 V vb hys h ighes t = −207;// 2275;// 2334 ;

109 int16 V vb hys high = −124;// 2358 ;//2376 ;

110 int16 V vb hys low = −20;// 2462 ;

111 int16 V vb hys low = 21 ; // 2503 ;

112 int16 V vb hys high = 124 ; // 2606 ;//2538 ;

113 int16 V vb hys h ighest = 207 ; // 2689 ;//2580 ;

114

115 int16 s t a t e s 1 = 0 ;

116 int16 s t a t e s 1 1 = 0 ;

117 int16 s t a t e s 2 = 0 ;

118 int16 s t a t e s 2 1 = 0 ;

119 int16 s t a t e s 3 = 0 ;

120 int16 s t a t e s 3 1 = 0 ;

121 int16 s t a t e s 4 = 0 ;

122 int16 s t a t e s 4 1 = 0 ;

123 int16 s ta t e vb = 0 ;

124 int16 s t a t e vb 1 = 0 ;

125

126 Uint16 ph i 1 = 0 ; // Set Phase , phi ˜= − de s i r ed phas e / 180 ∗ per iod , where per iod i s

de f ined below , f i n e tuning may be needed

127 Uint16 ph i 2 = 0 ; // Set Phase , phi ˜= − de s i r ed phas e / 180 ∗ per iod , where per iod i s

de f ined below , f i n e tuning may be needed

128 Uint16 ph i 3 = 0 ; // Set Phase , phi ˜= − de s i r ed phas e / 180 ∗ per iod , where per iod i s

de f ined below , f i n e tuning may be needed

129 Uint16 ph i 4 = 0 ; // Set Phase , phi ˜= − de s i r ed phas e / 180 ∗ per iod , where per iod i s

de f ined below , f i n e tuning may be needed

130

131 //DPP#1 i s connected to s e rve r1

132 //DPP#2 i s connected to s e rve r2

133 //DPP#3 i s connected to s e rve r3

134 //DPP#4 i s connected to s e rve r4

135

136 Uint16 ph i 1 x = 5 ; // ph i 1 value f o r cur rent i n j e c t i o n to s e r v e r

137 Uint16 ph i 1 x pr ime = 11 ; // ph i 1 value f o r cur rent i n j e c t i o n to v i r t u a l bus

138 Uint16 ph i 1 xx = 27 ; // ph i 1 value f o r cur rent i n j e c t i o n to s e r v e r

139 Uint16 ph i 1 xx pr ime = 30 ; // ph i 1 value f o r cur rent i n j e c t i o n to v i r t u a l bus

140

141 Uint16 ph i 2 x = 5 ; // ph i 2 value f o r cur rent i n j e c t i o n to s e r v e r

142 Uint16 ph i 2 x pr ime = 11 ; // ph i 2 value f o r cur rent i n j e c t i o n to v i r t u a l bus

143 Uint16 ph i 2 xx = 25 ; // ph i 2 value f o r cur rent i n j e c t i o n to s e r v e r

144 Uint16 ph i 2 xx pr ime = 29 ; // ph i 2 value f o r cur rent i n j e c t i o n to v i r t u a l bus

145

146 Uint16 ph i 3 x = 5 ; // ph i 3 value f o r cur rent i n j e c t i o n to s e r v e r

147 Uint16 ph i 3 x pr ime = 11 ; // ph i 3 value f o r cur rent i n j e c t i o n to v i r t u a l bus

148 Uint16 ph i 3 xx = 27 ; // ph i 3 value f o r cur rent i n j e c t i o n to s e r v e r

149 Uint16 ph i 3 xx pr ime = 30 ; // ph i 3 value f o r cur rent i n j e c t i o n to v i r t u a l bus

150

151 Uint16 ph i 4 x = 5 ; // ph i 4 value f o r cur rent i n j e c t i o n to s e r v e r

152 Uint16 ph i 4 x pr ime = 11 ; // ph i 4 value f o r cur rent i n j e c t i o n to v i r t u a l bus

153 Uint16 ph i 4 xx = 27 ; // ph i 4 value f o r cur rent i n j e c t i o n to s e r v e r

154 Uint16 ph i 4 xx pr ime = 30 ; // ph i 4 value f o r cur rent i n j e c t i o n to v i r t u a l bus

155

156 Uint16 d i r 1 = 0 ; // DPP d i r e c t i o n ; 0 = VB to s e rv e r (p r i 2 s e c) , 1 = se rv e r to VB (s e c 2 p r i)

157 Uint16 d i r 2 = 0 ; // DPP d i r e c t i o n ; 0 = VB to s e rv e r (p r i 2 s e c) , 1 = se rv e r to VB (s e c 2 p r i)

158 Uint16 d i r 3 = 0 ; // DPP d i r e c t i o n ; 0 = VB to s e rv e r (p r i 2 s e c) , 1 = se rv e r to VB (s e c 2 p r i)

159 Uint16 d i r 4 = 0 ; // DPP d i r e c t i o n ; 0 = VB to s e rv e r (p r i 2 s e c) , 1 = se rv e r to VB (s e c 2 p r i)

160

161 Uint16 enab l e 1 1 = 0 ; // Enable DPP1 pr i switches , i n i t i a l l y d i s ab l ed

127

162 Uint16 enab l e 1 2 = 0 ; // Enable DPP1 sec switches , i n i t i a l l y d i s ab l ed

163 Uint16 enab l e 2 1 = 0 ; // Enable DPP2 pr i switches , i n i t i a l l y d i s ab l ed

164 Uint16 enab l e 2 2 = 0 ; // Enable DPP2 sec switches , i n i t i a l l y d i s ab l ed

165 Uint16 enab l e 3 1 = 0 ; // Enable DPP3 pr i switches , i n i t i a l l y d i s ab l ed

166 Uint16 enab l e 3 2 = 0 ; // Enable DPP3 sec switches , i n i t i a l l y d i s ab l ed

167 Uint16 enab l e 4 1 = 0 ; // Enable DPP3 pr i switches , i n i t i a l l y d i s ab l ed

168 Uint16 enab l e 4 2 = 0 ; // Enable DPP3 sec switches , i n i t i a l l y d i s ab l ed

169

170 Uint16 s t 1 = 0 ; // Enable Stack 1 , i n i t i a l l y d i s ab l ed

171 Uint16 s t 2 = 0 ; // Enable Stack 2 , i n i t i a l l y d i s ab l ed

172 Uint16 s t 3 = 0 ; // Enable Stack 3 , i n i t i a l l y d i s ab l ed

173 Uint16 s t 4 = 0 ; // Enable Stack 4 , i n i t i a l l y d i s ab l ed

174

175 Uint16 h i g h s i d e h i g h r e s s e r v e r 1 = 0 ; // Enable high s i d e high r e s i s t a n c e path f o r server1 ,

i n i t i a l l y d i s ab l ed

176 Uint16 h i g h s i d e l o w r e s s e r v e r 1 = 0 ; // Enable high s i d e low r e s i s t a n c e path f o r server1 , i n i t i a l l y

d i s ab l ed

177 Uint16 l o w s i d e s e r v e r 1 = 0 ; // Enable low s i d e f o r server1 , i n i t i a l l y d i s ab l ed

178

179 Uint16 h i g h s i d e h i g h r e s s e r v e r 2 = 0 ; // Enable high s i d e high r e s i s t a n c e path f o r server1 ,

i n i t i a l l y d i s ab l ed

180 Uint16 h i g h s i d e l o w r e s s e r v e r 2 = 0 ; // Enable high s i d e low r e s i s t a n c e path f o r server1 , i n i t i a l l y

d i s ab l ed

181 Uint16 l o w s i d e s e r v e r 2 = 0 ; // Enable low s i d e f o r server1 , i n i t i a l l y d i s ab l ed

182

183 Uint16 h i g h s i d e h i g h r e s s e r v e r 3 = 0 ; // Enable high s i d e high r e s i s t a n c e path f o r server1 ,

i n i t i a l l y d i s ab l ed

184 Uint16 h i g h s i d e l o w r e s s e r v e r 3 = 0 ; // Enable high s i d e low r e s i s t a n c e path f o r server1 , i n i t i a l l y

d i s ab l ed

185 Uint16 l o w s i d e s e r v e r 3 = 0 ; // Enable low s i d e f o r server1 , i n i t i a l l y d i s ab l ed

186

187 Uint16 h i g h s i d e h i g h r e s s e r v e r 4 = 0 ; // Enable high s i d e high r e s i s t a n c e path f o r server1 ,

i n i t i a l l y d i s ab l ed

188 Uint16 h i g h s i d e l o w r e s s e r v e r 4 = 0 ; // Enable high s i d e low r e s i s t a n c e path f o r server1 , i n i t i a l l y

d i s ab l ed

189 Uint16 l o w s i d e s e r v e r 4 = 0 ; // Enable low s i d e f o r server1 , i n i t i a l l y d i s ab l ed

190

191 Uint16 c l o s e d l o o p = 0 ;

192 Uint16 d i s a b l e a l l = 0 ; // Disab le a l l c onve r t e r s when = 1

193 Uint16 r e s e t a l l = 0 ; // Disab le a l l c onve r t e r s and phases and d i r e c t i o n s when = 1

194 Uint16 update enbl = 0 ; // Update EPWM Enable Reg i s t e r s when = 1

195 Uint16 update ps = 0 ; // Update EPWM Phase S h i f t Reg i s t e r s when = 1

196 Uint16 update hotswap = 0 ; // Update Hot Swap Reg i s t e r s when = 1

197 Uint16 update s t = 0 ; // Update Stack Reg i s t e r s when = 1

198 Uint16 s t a ck enb l = 0 ;

199 Uint16 s t a c k d i s b l = 0 ;

200

201 Uint16 sampl ing t ime = 100 ; // sampling time = sampl ing t ime ∗ 5mus

202 Uint16 per iod = 200 ; // per iod = 0 .5 ∗ TBCLK / f d e s i r e d , where

203 // TBCLK = SYSCLKOUT / (HSPCLKDIV CLKDIV)

204 // SYSCLKOUT i s s e l e c t e d in DevInit F2806x . c

205 // HSPCLKDIV and CLKDIV are s e l e c t e d in TBCTL r e g i s t e r

206

207 void main (void)

208 {

209 // Step 1 . I n i t i a l i z e Syst i p h e r a l Clocks

210 // This example func t i on i s found in the F2806x SysCtrl . c f i l e .

211 I n i t S y s C t r l () ;

212

213 // Step 2 . I n i t i a l i z e GPIO:

214 InitEPwm1Gpio () ; // I n i t i a l i z e GPIO pins f o r ePWMs

128

215 InitEPwm2Gpio () ; // These func t i on s are in the F2806x EPwm . c f i l e

216 InitEPwm3Gpio () ;

217 InitEPwm4Gpio () ;

218 InitEPwm5Gpio () ;

219 InitEPwm6Gpio () ;

220 InitEPwm7Gpio () ;

221 InitEPwm8Gpio () ;

222 In i t i a l i z e GPIOs () ; // For Enable s i g n a l s and Debugging Toggle Pin

223

224 // Step 3 . Clear a l l i n t e r r u p t s and i n i t i a l i z e PIE vector tab l e :

225 // Disab le CPU i n t e r r u p t s

226 DINT;

227

228 // I n i t i a l i z e the PIE con t r o l r e g i s t e r s to t h e i r d e f au l t s t a t e .

229 // The d e f a u l t s t a t e i s a l l PIE i n t e r r u p t s d i s ab l ed and f l a g s

230 // are c l e a r ed .

231 // This func t i on i s found in the F2806x PieCtr l . c f i l e .

232

233 I n i t P i e C t r l () ;

234

235 // Disab le CPU i n t e r r u p t s and c l e a r a l l CPU in t e r rup t f l a g s :

236 IER = 0x0000 ;

237 IFR = 0x0000 ;

238

239 // I n i t i a l i z e the PIE vector tab l e with po in t e r s to the s h e l l In t e r rupt

240 // Se rv i c e Routines (ISR) .

241 // This w i l l populate the e n t i r e table , even i f the i n t e r rup t

242 // i s not used in t h i s example . This i s u s e f u l f o r debug purposes .

243 // The s h e l l ISR rou t i n e s are found in F2806x Defau l t I s r . c .

244 // This func t i on i s found in F2806x PieVect . c .

245 In i tPieVectTable () ;

246

247 // In t e r rup t s that are used in t h i s example are re−mapped to

248 // ISR func t i on s found within t h i s f i l e .

249

250 EALLOW; // This i s needed to wr i t e to EALLOW protec ted r e g i s t e r

251 PieVectTable .ADCINT1 = &a d c i s r ;

252 EDIS ; // This i s needed to d i s a b l e wr i t e to EALLOW protec ted r e g i s t e r s

253

254 // Cal l ADC c o n f i g u r a t i o n

255 InitAdc () ;

256 Adc Config () ;

257

258 // Step 4 . I n i t i a l i z e a l l the Device Pe r i phe ra l s :

259 // This func t i on i s found in F2806x In i tPe r iphe ra l s . c

260

261 EALLOW;

262 SysCtrlRegs .PCLKCR0. b i t .TBCLKSYNC = 0 ;

263 EDIS ;

264

265 EPwm Config () ;

266

267 EALLOW;

268 SysCtrlRegs .PCLKCR0. b i t .TBCLKSYNC = 1 ;

269 EDIS ;

270

271 // Step 5 . User s p e c i f i c code , enable i n t e r r u p t s

272

273 // Enable CPU int1 which i s connected to CPU−Timer 0

274 PieCtr lRegs . PIEIER1 . b i t . INTx1 = 1 ; // Enable INT 1.1 in the PIE (ADCINT1 in PIE)

275 IER |= M INT1 ; // Enable CPU Inte r rupt 0

129

276

277 // Enable TINT0 in the PIE : Group 1 in t e r rup t 7 f o r CPU TImer 0

278 // PieCtr lRegs . PIEIER1 . b i t . INTx7 = 1 ;

279

280 // Enable g l oba l I n t e r rup t s and higher p r i o r i t y rea l−time debug events :

281 EINT; // Enable Global i n t e r rup t INTM

282 ERTM; // Enable Global r ea l t ime i n t e r rup t DBGM

283

284 // Step 6 . i n f i n i t e f o r loop

285 f o r (; ;)

286 {

287 i f (d i s a b l e a l l == 1)

288 {

289 D i sab l e A l l Conve r t e r s () ;

290 d i s a b l e a l l = 0 ;

291 c l o s e d l o o p = 0 ;

292 s t 1 = 0 ;

293 s t 2 = 0 ;

294 s t 3 = 0 ;

295 s t 4 = 0 ;

296 Update Stack () ;

297 Swap All Out () ;

298 Update HotSwap () ;

299 }

300 e l s e i f (r e s e t a l l == 1)

301 {

302 Rese t A l l Conve r t e r s () ;

303 r e s e t a l l = 0 ;

304 c l o s e d l o o p = 0 ;

305 s t 1 = 0 ;

306 s t 2 = 0 ;

307 s t 3 = 0 ;

308 s t 4 = 0 ;

309 Update Stack () ;

310 Swap All Out () ;

311 Update HotSwap () ;

312 }

313 e l s e i f (c l o s e d l o o p == 0)

314 {

315 i f (s w a p a l l i n f l a g == 1)

316 {

317 i f (a d c r e ad y f l a g == 1) // t h i s i f takes around 5 .6 mus

318 {

319 Swap All In () ;

320 Update HotSwap () ;

321 AdcRegs .ADCINTFLGCLR. b i t .ADCINT1 = 1 ; // Clear ADCINT1 f l a g r e i n i t i a l i z e f o r next

SOC

322 PieCtr lRegs .PIEACK. a l l = PIEACK GROUP1; // Acknowledge i n t e r rup t to PIE

323 a d c r e ad y f l a g = 0 ;

324 }

325 }

326 i f (s w a p a l l o u t f l a g == 1)

327 {

328 Swap All Out () ;

329 Update HotSwap () ;

330 }

331 i f (swap one i n f l a g == 1)

332 {

333 i f (a d c r e ad y f l a g == 1) // t h i s i f takes around 5 .6 mus

334 {

335 Swap One In () ;

130

336 Update HotSwap () ;

337 AdcRegs .ADCINTFLGCLR. b i t .ADCINT1 = 1 ; // Clear ADCINT1 f l a g r e i n i t i a l i z e f o r next

SOC

338 PieCtr lRegs .PIEACK. a l l = PIEACK GROUP1; // Acknowledge i n t e r rup t to PIE

339 a d c r e ad y f l a g = 0 ;

340 }

341 }

342 i f (swap one out f l ag == 1)

343 {

344 Swap One Out () ;

345 Update HotSwap () ;

346 }

347 i f (update hotswap == 1)

348 {

349 Update HotSwap () ;

350 update hotswap = 0 ;

351 }

352 i f (update enbl == 1)

353 {

354 Update Al l Enables () ;

355 update enbl = 0 ;

356 }

357 i f (update s t == 1)

358 {

359 Update Stack () ;

360 update s t = 0 ;

361 }

362 i f (ad c r e ad y f l a g == 1) // t h i s i f takes around 5 .6 mus

363 {

364 Ca l cu l a t e Vo l tage s () ;

365 AdcRegs .ADCINTFLGCLR. b i t .ADCINT1 = 1 ; // Clear ADCINT1 f l a g r e i n i t i a l i z e f o r next SOC

366 PieCtr lRegs .PIEACK. a l l = PIEACK GROUP1; // Acknowledge i n t e r rup t to PIE

367 a dc r e ad y f l a g = 0 ;

368 }

369 Update Al l Phase Sh i f t s () ;

370 }

371 e l s e i f (c l o s e d l o o p == 1)

372 {

373 i f (s t a ck enb l == 1)

374 {

375 s t 1 = 1 ;

376 s t 2 = 1 ;

377 s t 3 = 1 ;

378 s t 4 = 1 ;

379 s t a ck enb l = 0 ;

380 Update Stack () ;

381 }

382 i f (s t a c k d i s b l == 1)

383 {

384 s t 1 = 0 ;

385 s t 2 = 0 ;

386 s t 3 = 0 ;

387 s t 4 = 0 ;

388 s t a c k d i s b l = 0 ;

389 Update Stack () ;

390 }

391 i f (update s t == 1)

392 {

393 Update Stack () ;

394 update s t = 0 ;

395 }

131

396 i f (update hotswap == 1)

397 {

398 Update HotSwap () ;

399 update hotswap = 0 ;

400 }

401 i f (a d c r e ad y f l a g == 1) // t h i s i f takes around 10 mus

402 {

403 i f (s w a p a l l i n f l a g == 1)

404 {

405 Swap All In () ;

406 Update HotSwap () ;

407 }

408 i f (s w a p a l l o u t f l a g == 1)

409 {

410 Swap All Out () ;

411 Update HotSwap () ;

412 }

413 i f (swap one i n f l a g == 1)

414 {

415 Swap One In () ;

416 Update HotSwap () ;

417 }

418 i f (swap one out f l ag == 1)

419 {

420 Swap One Out () ;

421 Update HotSwap () ;

422 }

423

424 Ca l cu l a t e Vo l tage s () ;

425 Determine Phi n Dir () ;

426 Update Al l Phase Sh i f t s () ;

427 Update Al l Enables () ;

428 AdcRegs .ADCINTFLGCLR. b i t .ADCINT1 = 1 ; // Clear ADCINT1 f l a g r e i n i t i a l i z e f o r next SOC

429 PieCtr lRegs .PIEACK. a l l = PIEACK GROUP1; // Acknowledge i n t e r rup t to PIE

430 a dc r e ad y f l a g = 0 ;

431 }

432 }

433 } // End o f i n f i n i t e f o r loop

434

435 } // End o f Main

436

437 i n t e r rup t void a d c i s r (void)

438 {

439 i f (adc count >= (sampl ing t ime − adc d i v i d e r))

440 {

441 VVB[adc i] = AdcResult .ADCRESULT0;

442 V4 [adc i] = AdcResult .ADCRESULT1;

443 V3 [adc i] = AdcResult .ADCRESULT2;

444 V2 [adc i] = AdcResult .ADCRESULT3;

445 V1 [adc i] = AdcResult .ADCRESULT4;

446 adc i += 1 ;

447 }

448 i f (adc count == sampl ing t ime − 1)

449 {

450 GpioDataRegs .GPBTOGGLE. b i t . GPIO33 = 1 ;

451 a d c r e ad y f l a g = 1 ;

452 adc count = 0 ;

453 }

454 e l s e

455 {

456 AdcRegs .ADCINTFLGCLR. b i t .ADCINT1 = 1 ; // Clear ADCINT1 f l a g r e i n i t i a l i z e f o r next SOC

132

457 PieCtr lRegs .PIEACK. a l l = PIEACK GROUP1; // Acknowledge i n t e r rup t to PIE

458 adc count += 1 ;

459 }

460 return ;

461 }

462

463 //−−−

464 // Control Functions : Below func t i on s c o n t r o l s conver t e r ope ra t i on s

465 //−−−

466

467 void D i sab l e A l l Conve r t e r s ()

468 {

469 enab l e 1 1 = 0 ;

470 enab l e 1 2 = 0 ;

471 enab l e 2 1 = 0 ;

472 enab l e 2 2 = 0 ;

473 enab l e 3 1 = 0 ;

474 enab l e 3 2 = 0 ;

475 enab l e 4 1 = 0 ;

476 enab l e 4 2 = 0 ;

477 Update Al l Enables () ;

478 }

479

480 void Rese t A l l Conve r t e r s ()

481 {

482 enab l e 1 1 = 0 ;

483 enab l e 1 2 = 0 ;

484 enab l e 2 1 = 0 ;

485 enab l e 2 2 = 0 ;

486 enab l e 3 1 = 0 ;

487 enab l e 3 2 = 0 ;

488 enab l e 4 1 = 0 ;

489 enab l e 4 2 = 0 ;

490 ph i 1 = 0 ;

491 ph i 2 = 0 ;

492 ph i 3 = 0 ;

493 ph i 4 = 0 ;

494 d i r 1 = 0 ;

495 d i r 2 = 0 ;

496 d i r 3 = 0 ;

497 d i r 4 = 0 ;

498 Update Al l Enables () ;

499 Update Al l Phase Sh i f t s () ;

500 s t a t e s 1 = 0 ;

501 s t a t e s 1 1 = 0 ;

502 s t a t e s 2 = 0 ;

503 s t a t e s 2 1 = 0 ;

504 s t a t e s 3 = 0 ;

505 s t a t e s 3 1 = 0 ;

506 s t a t e s 4 = 0 ;

507 s t a t e s 4 1 = 0 ;

508 s ta t e vb = 0 ;

509 s t a t e vb 1 = 0 ;

510 }

511

512 void Update Al l Phase Sh i f t s ()

513 {

514 EPwm2Regs .TBPHS. h a l f .TBPHS = phi 1 ; // Add phi to watch window and change i t s value to ad jus t

phase

515 // phi ˜= − de s i r ed phas e / 180 ∗ period , f i n e tuning may be needed

516 EPwm2Regs .TBCTL. b i t .PHSDIR = d i r 1 ; // Add phase d i r to watch window and change i t s value to

133

change d i r e c t i o n

517 // pahse d i r = 0 epwm1a leading , 1 epwm2a l ead ing

518

519 EPwm4Regs .TBPHS. h a l f .TBPHS = phi 2 ; // Add phi to watch window and change i t s value to ad jus t

phase

520 // phi ˜= − de s i r ed phas e / 180 ∗ period , f i n e tuning may be needed

521 EPwm4Regs .TBCTL. b i t .PHSDIR = d i r 2 ; // Add phase d i r to watch window and change i t s value to

change d i r e c t i o n

522 // pahse d i r = 0 epwm1a leading , 1 epwm2a l ead ing

523

524 EPwm6Regs .TBPHS. h a l f .TBPHS = phi 3 ; // Add phi to watch window and change i t s value to ad jus t

phase

525 // phi ˜= − de s i r ed phas e / 180 ∗ period , f i n e tuning may be needed

526 EPwm6Regs .TBCTL. b i t .PHSDIR = d i r 3 ; // Add phase d i r to watch window and change i t s value to

change d i r e c t i o n

527 // pahse d i r = 0 epwm1a leading , 1 epwm2a l ead ing

528

529 EPwm8Regs .TBPHS. h a l f .TBPHS = phi 4 ; // Add phi to watch window and change i t s value to ad jus t

phase

530 // phi ˜= − de s i r ed phas e / 180 ∗ period , f i n e tuning may be needed

531 EPwm8Regs .TBCTL. b i t .PHSDIR = d i r 4 ; // Add phase d i r to watch window and change i t s value to

change d i r e c t i o n

532 // phase d i r = 0 epwm1a leading , 1 epwm2a l ead ing

533 }

534

535 void Update Al l Enables ()

536 {

537 GpioDataRegs .GPBDAT. b i t . GPIO50 = enab l e 1 1 ;

538 GpioDataRegs .GPADAT. b i t . GPIO13 = enab l e 1 2 ;

539 GpioDataRegs .GPADAT. b i t . GPIO13 = enab l e 1 2 ;

540

541 GpioDataRegs .GPADAT. b i t . GPIO12 = enab l e 2 1 ;

542 GpioDataRegs .GPADAT. b i t . GPIO12 = enab l e 2 1 ;

543 GpioDataRegs .GPADAT. b i t . GPIO14 = enab l e 2 2 ;

544 GpioDataRegs .GPADAT. b i t . GPIO14 = enab l e 2 2 ;

545

546 GpioDataRegs .GPADAT. b i t . GPIO15 = enab l e 3 1 ;

547 GpioDataRegs .GPADAT. b i t . GPIO25 = enab l e 3 2 ;

548 GpioDataRegs .GPADAT. b i t . GPIO25 = enab l e 3 2 ;

549

550 GpioDataRegs .GPADAT. b i t . GPIO24 = enab l e 4 1 ;

551 GpioDataRegs .GPADAT. b i t . GPIO24 = enab l e 4 1 ;

552 GpioDataRegs .GPADAT. b i t . GPIO27 = enab l e 4 2 ;

553 }

554

555 void Update Stack ()

556 {

557 GpioDataRegs .GPADAT. b i t . GPIO28 = s t 1 ;

558 GpioDataRegs .GPADAT. b i t . GPIO28 = s t 1 ;

559 GpioDataRegs .GPADAT. b i t . GPIO30 = s t 2 ;

560 GpioDataRegs .GPADAT. b i t . GPIO30 = s t 2 ;

561 GpioDataRegs .GPBDAT. b i t . GPIO32 = s t 3 ;

562 GpioDataRegs .GPBDAT. b i t . GPIO32 = s t 3 ;

563 GpioDataRegs .GPBDAT. b i t . GPIO34 = s t 4 ;

564 GpioDataRegs .GPBDAT. b i t . GPIO34 = s t 4 ;

565 }

566

567

568 void Update HotSwap ()

569 {

570 GpioDataRegs .GPADAT. b i t . GPIO26 = h i g h s i d e h i g h r e s s e r v e r 1 ;

134

571 GpioDataRegs .GPADAT. b i t . GPIO26 = h i g h s i d e h i g h r e s s e r v e r 1 ;

572 GpioDataRegs .GPADAT. b i t . GPIO16 = h i g h s i d e l o w r e s s e r v e r 1 ;

573 GpioDataRegs .GPADAT. b i t . GPIO16 = h i g h s i d e l o w r e s s e r v e r 1 ;

574 GpioDataRegs .GPADAT. b i t . GPIO18 = l o w s i d e s e r v e r 1 ;

575 GpioDataRegs .GPADAT. b i t . GPIO18 = l o w s i d e s e r v e r 1 ;

576

577 GpioDataRegs .GPADAT. b i t . GPIO17 = h i g h s i d e h i g h r e s s e r v e r 2 ;

578 GpioDataRegs .GPADAT. b i t . GPIO17 = h i g h s i d e h i g h r e s s e r v e r 2 ;

579 GpioDataRegs .GPADAT. b i t . GPIO19 = h i g h s i d e l o w r e s s e r v e r 2 ;

580 GpioDataRegs .GPADAT. b i t . GPIO19 = h i g h s i d e l o w r e s s e r v e r 2 ;

581 GpioDataRegs .GPADAT. b i t . GPIO21 = l o w s i d e s e r v e r 2 ;

582 GpioDataRegs .GPADAT. b i t . GPIO21 = l o w s i d e s e r v e r 2 ;

583

584 GpioDataRegs .GPADAT. b i t . GPIO23 = h i g h s i d e h i g h r e s s e r v e r 3 ;

585 GpioDataRegs .GPADAT. b i t . GPIO23 = h i g h s i d e h i g h r e s s e r v e r 3 ;

586 GpioDataRegs .GPADAT. b i t . GPIO29 = h i g h s i d e l o w r e s s e r v e r 3 ;

587 GpioDataRegs .GPADAT. b i t . GPIO29 = h i g h s i d e l o w r e s s e r v e r 3 ;

588 GpioDataRegs .GPADAT. b i t . GPIO31 = l o w s i d e s e r v e r 3 ;

589 GpioDataRegs .GPADAT. b i t . GPIO31 = l o w s i d e s e r v e r 3 ;

590

591 GpioDataRegs .GPADAT. b i t . GPIO20 = h i g h s i d e h i g h r e s s e r v e r 4 ;

592 GpioDataRegs .GPADAT. b i t . GPIO20 = h i g h s i d e h i g h r e s s e r v e r 4 ;

593 GpioDataRegs .GPADAT. b i t . GPIO22 = h i g h s i d e l o w r e s s e r v e r 4 ;

594 GpioDataRegs .GPADAT. b i t . GPIO22 = h i g h s i d e l o w r e s s e r v e r 4 ;

595 GpioDataRegs .GPBDAT. b i t . GPIO51 = l o w s i d e s e r v e r 4 ;

596 GpioDataRegs .GPBDAT. b i t . GPIO51 = l o w s i d e s e r v e r 4 ;

597

598 }

599

600 void Ca l cu l a t e Vo l tage s ()

601 {

602 VVB ave = 0 ;

603 V1 ave = 0 ;

604 V2 ave = 0 ;

605 V3 ave = 0 ;

606 V4 ave = 0 ;

607

608 f o r (adc i = 0 ; adc i < adc d i v i d e r ; ad c i++)

609 {

610 VVB ave += VVB[adc i] ;

611 V1 ave += V1 [adc i] ;

612 V2 ave += V2 [adc i] ;

613 V3 ave += V3 [adc i] ;

614 V4 ave += V4 [adc i] ;

615 }

616

617 V vb = VVB ave/ adc d i v i d e r ;

618 V 1 = V1 ave/ adc d i v i d e r ;

619 V 2 = V2 ave/ adc d i v i d e r ;

620 V 3 = V3 ave/ adc d i v i d e r ;

621 V 4 = V4 ave/ adc d i v i d e r ;

622

623 V vb = V vb ;

624 V s4 = V 4 ;

625 V s3 = 2 ∗ V 3 − V s4 ;

626 V s2 = 3 ∗ V 2 − V s4 − V s3 ;

627 V s1 = 4 ∗ V 1 − V s4 − V s3 − V s2 ;

628

629 // Constant DC bus

630 V s1 e r r = V s1 − 2435 ;

631 V s2 e r r = V s2 − 2379 ;

135

632 V s3 e r r = V s3 − 2471 ;

633 V s4 e r r = V s4 − 2450 ;

634 V vb err = V vb − 2482 ;

635

636 // Varying DC bus

637 // V s1 e r r = V s1 − V 1 ;

638 // V s2 e r r = V s2 − V 1 ;

639 // V s3 e r r = V s3 − V 1 ;

640 // V s4 e r r = V s4 − V 1 ;

641 // V vb err = V vb − V 1 ;

642

643 adc i = 0 ;

644 }

645

646 void Determine Phi n Dir (void)

647 {

648 // s t a t e d e c i s i o n s

649 i f (V s1 e r r > V s1 hys h ighe s t)

650 {

651 i f ((s t a t e s 1 1 == 1) | | (s t a t e s 1 1 == 2))

652 {

653 s t a t e s 1 = 2 ;

654 }

655 e l s e i f ((s t a t e s 1 1 == −1) | | (s t a t e s 1 1 == −2))

656 {

657 s t a t e s 1 = 0 ;

658 }

659 e l s e i f (s t a t e s 1 1 == 0)

660 {

661 s t a t e s 1 = 1 ;

662 }

663 }

664 e l s e i f (V s1 e r r < V s1 hys h i ghe s t)

665 {

666 i f ((s t a t e s 1 1 == −1) | | (s t a t e s 1 1 == −2))

667 {

668 s t a t e s 1 = −2;

669 }

670 e l s e i f ((s t a t e s 1 1 == 1) | | (s t a t e s 1 1 == 2))

671 {

672 s t a t e s 1 = 0 ;

673 }

674 e l s e i f (s t a t e s 1 1 == 0)

675 {

676 s t a t e s 1 = −1;

677 }

678 }

679 e l s e i f (V s1 e r r > V s1 hys h igh)

680 {

681 i f ((s t a t e s 1 1 == 0) | | (s t a t e s 1 1 == 1))

682 {

683 s t a t e s 1 = 1 ;

684 }

685 e l s e i f ((s t a t e s 1 1 == −1) | | (s t a t e s 1 1 == −2))

686 {

687 s t a t e s 1 = 0 ;

688 }

689 e l s e i f (s t a t e s 1 1 == 2)

690 {

691 s t a t e s 1 = 2 ;

692 }

136

693 }

694 e l s e i f (V s1 e r r < V s1 hys h igh)

695 {

696 i f ((s t a t e s 1 1 == 0) | | (s t a t e s 1 1 == −1))

697 {

698 s t a t e s 1 = −1;

699 }

700 e l s e i f ((s t a t e s 1 1 == 1) | | (s t a t e s 1 1 == 2))

701 {

702 s t a t e s 1 = 0 ;

703 }

704 e l s e i f (s t a t e s 1 1 == −2)

705 {

706 s t a t e s 1 = −2;

707 }

708 }

709 e l s e i f (V s1 e r r > V s1 hys low)

710 {

711 i f ((s t a t e s 1 1 == −1) | | (s t a t e s 1 1 == −2))

712 {

713 s t a t e s 1 = 0 ;

714 }

715 e l s e i f (s t a t e s 1 1 == 0)

716 {

717 s t a t e s 1 = 0 ;

718 }

719 e l s e i f (s t a t e s 1 1 == 1)

720 {

721 s t a t e s 1 = 1 ;

722 }

723 e l s e i f (s t a t e s 1 1 == 2)

724 {

725 s t a t e s 1 = 2 ;

726 }

727 }

728 e l s e i f (V s1 e r r < V s1 hys low)

729 {

730 i f ((s t a t e s 1 1 == 1) | | (s t a t e s 1 1 == 2))

731 {

732 s t a t e s 1 = 0 ;

733 }

734 e l s e i f (s t a t e s 1 1 == 0)

735 {

736 s t a t e s 1 = 0 ;

737 }

738 e l s e i f (s t a t e s 1 1 == −1)

739 {

740 s t a t e s 1 = −1;

741 }

742 e l s e i f (s t a t e s 1 1 == −2)

743 {

744 s t a t e s 1 = −2;

745 }

746 }

747 e l s e

748 {

749 s t a t e s 1 = s t a t e s 1 1 ;

750 }

751

752 i f (V s2 e r r > V s2 hys h ighe s t)

753 {

137

754 i f ((s t a t e s 2 1 == 1) | | (s t a t e s 2 1 == 2))

755 {

756 s t a t e s 2 = 2 ;

757 }

758 e l s e i f ((s t a t e s 2 1 == −1) | | (s t a t e s 2 1 == −2))

759 {

760 s t a t e s 2 = 0 ;

761 }

762 e l s e i f (s t a t e s 2 1 == 0)

763 {

764 s t a t e s 2 = 1 ;

765 }

766 }

767 e l s e i f (V s2 e r r < V s2 hys h i ghe s t)

768 {

769 i f ((s t a t e s 2 1 == −1) | | (s t a t e s 2 1 == −2))

770 {

771 s t a t e s 2 = −2;

772 }

773 e l s e i f ((s t a t e s 2 1 == 1) | | (s t a t e s 2 1 == 2))

774 {

775 s t a t e s 2 = 0 ;

776 }

777 e l s e i f (s t a t e s 2 1 == 0)

778 {

779 s t a t e s 2 = −1;

780 }

781 }

782 e l s e i f (V s2 e r r > V s2 hys h igh)

783 {

784 i f ((s t a t e s 2 1 == 0) | | (s t a t e s 2 1 == 1))

785 {

786 s t a t e s 2 = 1 ;

787 }

788 e l s e i f ((s t a t e s 2 1 == −1) | | (s t a t e s 2 1 == −2))

789 {

790 s t a t e s 2 = 0 ;

791 }

792 e l s e i f (s t a t e s 2 1 == 2)

793 {

794 s t a t e s 2 = 2 ;

795 }

796 }

797 e l s e i f (V s2 e r r < V s2 hys h igh)

798 {

799 i f ((s t a t e s 2 1 == 0) | | (s t a t e s 2 1 == −1))

800 {

801 s t a t e s 2 = −1;

802 }

803 e l s e i f ((s t a t e s 2 1 == 1) | | (s t a t e s 2 1 == 2))

804 {

805 s t a t e s 2 = 0 ;

806 }

807 e l s e i f (s t a t e s 2 1 == −2)

808 {

809 s t a t e s 2 = −2;

810 }

811 }

812 e l s e i f (V s2 e r r > V s2 hys low)

813 {

814 i f ((s t a t e s 2 1 == −1) | | (s t a t e s 2 1 == −2))

138

815 {

816 s t a t e s 2 = 0 ;

817 }

818 e l s e i f (s t a t e s 2 1 == 0)

819 {

820 s t a t e s 2 = 0 ;

821 }

822 e l s e i f (s t a t e s 2 1 == 1)

823 {

824 s t a t e s 2 = 1 ;

825 }

826 e l s e i f (s t a t e s 2 1 == 2)

827 {

828 s t a t e s 2 = 2 ;

829 }

830 }

831 e l s e i f (V s2 e r r < V s2 hys low)

832 {

833 i f ((s t a t e s 2 1 == 1) | | (s t a t e s 2 1 == 2))

834 {

835 s t a t e s 2 = 0 ;

836 }

837 e l s e i f (s t a t e s 2 1 == 0)

838 {

839 s t a t e s 2 = 0 ;

840 }

841 e l s e i f (s t a t e s 2 1 == −1)

842 {

843 s t a t e s 2 = −1;

844 }

845 e l s e i f (s t a t e s 2 1 == −2)

846 {

847 s t a t e s 2 = −2;

848 }

849 }

850 e l s e

851 {

852 s t a t e s 2 = s t a t e s 2 1 ;

853 }

854

855 i f (V s3 e r r > V s3 hys h ighe s t)

856 {

857 i f ((s t a t e s 3 1 == 1) | | (s t a t e s 3 1 == 2))

858 {

859 s t a t e s 3 = 2 ;

860 }

861 e l s e i f ((s t a t e s 3 1 == −1) | | (s t a t e s 3 1 == −2))

862 {

863 s t a t e s 3 = 0 ;

864 }

865 e l s e i f (s t a t e s 3 1 == 0)

866 {

867 s t a t e s 3 = 1 ;

868 }

869 }

870 e l s e i f (V s3 e r r < V s3 hys h i ghe s t)

871 {

872 i f ((s t a t e s 3 1 == −1) | | (s t a t e s 3 1 == −2))

873 {

874 s t a t e s 3 = −2;

875 }

139

876 e l s e i f ((s t a t e s 3 1 == 1) | | (s t a t e s 3 1 == 2))

877 {

878 s t a t e s 3 = 0 ;

879 }

880 e l s e i f (s t a t e s 3 1 == 0)

881 {

882 s t a t e s 3 = −1;

883 }

884 }

885 e l s e i f (V s3 e r r > V s3 hys h igh)

886 {

887 i f ((s t a t e s 3 1 == 0) | | (s t a t e s 3 1 == 1))

888 {

889 s t a t e s 3 = 1 ;

890 }

891 e l s e i f ((s t a t e s 3 1 == −1) | | (s t a t e s 3 1 == −2))

892 {

893 s t a t e s 3 = 0 ;

894 }

895 e l s e i f (s t a t e s 3 1 == 2)

896 {

897 s t a t e s 3 = 2 ;

898 }

899 }

900 e l s e i f (V s3 e r r < V s3 hys h igh)

901 {

902 i f ((s t a t e s 3 1 == 0) | | (s t a t e s 3 1 == −1))

903 {

904 s t a t e s 3 = −1;

905 }

906 e l s e i f ((s t a t e s 3 1 == 1) | | (s t a t e s 3 1 == 2))

907 {

908 s t a t e s 3 = 0 ;

909 }

910 e l s e i f (s t a t e s 3 1 == −2)

911 {

912 s t a t e s 3 = −2;

913 }

914 }

915 e l s e i f (V s3 e r r > V s3 hys low)

916 {

917 i f ((s t a t e s 3 1 == −1) | | (s t a t e s 3 1 == −2))

918 {

919 s t a t e s 3 = 0 ;

920 }

921 e l s e i f (s t a t e s 3 1 == 0)

922 {

923 s t a t e s 3 = 0 ;

924 }

925 e l s e i f (s t a t e s 3 1 == 1)

926 {

927 s t a t e s 3 = 1 ;

928 }

929 e l s e i f (s t a t e s 3 1 == 2)

930 {

931 s t a t e s 3 = 2 ;

932 }

933 }

934 e l s e i f (V s3 e r r < V s3 hys low)

935 {

936 i f ((s t a t e s 3 1 == 1) | | (s t a t e s 3 1 == 2))

140

937 {

938 s t a t e s 3 = 0 ;

939 }

940 e l s e i f (s t a t e s 3 1 == 0)

941 {

942 s t a t e s 3 = 0 ;

943 }

944 e l s e i f (s t a t e s 3 1 == −1)

945 {

946 s t a t e s 3 = −1;

947 }

948 e l s e i f (s t a t e s 3 1 == −2)

949 {

950 s t a t e s 3 = −2;

951 }

952 }

953 e l s e

954 {

955 s t a t e s 3 = s t a t e s 3 1 ;

956 }

957

958 i f (V s4 e r r > V s4 hys h ighe s t)

959 {

960 i f ((s t a t e s 4 1 == 1) | | (s t a t e s 4 1 == 2))

961 {

962 s t a t e s 4 = 2 ;

963 }

964 e l s e i f ((s t a t e s 4 1 == −1) | | (s t a t e s 4 1 == −2))

965 {

966 s t a t e s 4 = 0 ;

967 }

968 e l s e i f (s t a t e s 4 1 == 0)

969 {

970 s t a t e s 4 = 1 ;

971 }

972 }

973 e l s e i f (V s4 e r r < V s4 hys h i ghe s t)

974 {

975 i f ((s t a t e s 4 1 == −1) | | (s t a t e s 4 1 == −2))

976 {

977 s t a t e s 4 = −2;

978 }

979 e l s e i f ((s t a t e s 4 1 == 1) | | (s t a t e s 4 1 == 2))

980 {

981 s t a t e s 4 = 0 ;

982 }

983 e l s e i f (s t a t e s 4 1 == 0)

984 {

985 s t a t e s 4 = −1;

986 }

987 }

988 e l s e i f (V s4 e r r > V s4 hys h igh)

989 {

990 i f ((s t a t e s 4 1 == 0) | | (s t a t e s 4 1 == 1))

991 {

992 s t a t e s 4 = 1 ;

993 }

994 e l s e i f ((s t a t e s 4 1 == −1) | | (s t a t e s 4 1 == −2))

995 {

996 s t a t e s 4 = 0 ;

997 }

141

998 e l s e i f (s t a t e s 4 1 == 2)

999 {

1000 s t a t e s 4 = 2 ;

1001 }

1002 }

1003 e l s e i f (V s4 e r r < V s4 hys h igh)

1004 {

1005 i f ((s t a t e s 4 1 == 0) | | (s t a t e s 4 1 == −1))

1006 {

1007 s t a t e s 4 = −1;

1008 }

1009 e l s e i f ((s t a t e s 4 1 == 1) | | (s t a t e s 4 1 == 2))

1010 {

1011 s t a t e s 4 = 0 ;

1012 }

1013 e l s e i f (s t a t e s 4 1 == −2)

1014 {

1015 s t a t e s 4 = −2;

1016 }

1017 }

1018 e l s e i f (V s4 e r r > V s4 hys low)

1019 {

1020 i f ((s t a t e s 4 1 == −1) | | (s t a t e s 4 1 == −2))

1021 {

1022 s t a t e s 4 = 0 ;

1023 }

1024 e l s e i f (s t a t e s 4 1 == 0)

1025 {

1026 s t a t e s 4 = 0 ;

1027 }

1028 e l s e i f (s t a t e s 4 1 == 1)

1029 {

1030 s t a t e s 4 = 1 ;

1031 }

1032 e l s e i f (s t a t e s 4 1 == 2)

1033 {

1034 s t a t e s 4 = 2 ;

1035 }

1036 }

1037 e l s e i f (V s4 e r r < V s4 hys low)

1038 {

1039 i f ((s t a t e s 4 1 == 1) | | (s t a t e s 4 1 == 2))

1040 {

1041 s t a t e s 4 = 0 ;

1042 }

1043 e l s e i f (s t a t e s 4 1 == 0)

1044 {

1045 s t a t e s 4 = 0 ;

1046 }

1047 e l s e i f (s t a t e s 4 1 == −1)

1048 {

1049 s t a t e s 4 = −1;

1050 }

1051 e l s e i f (s t a t e s 4 1 == −2)

1052 {

1053 s t a t e s 4 = −2;

1054 }

1055 }

1056 e l s e

1057 {

1058 s t a t e s 4 = s t a t e s 4 1 ;

142

1059 }

1060

1061

1062 i f (V vb err > V vb hys h ighest)

1063 {

1064 i f ((s t a t e vb 1 == 1) | | (s t a t e vb 1 == 2))

1065 {

1066 s ta t e vb = 2 ;

1067 }

1068 e l s e i f ((s t a t e vb 1 == −1) | | (s t a t e vb 1 == −2))

1069 {

1070 s ta t e vb = 0 ;

1071 }

1072 e l s e i f (s t a t e vb 1 == 0)

1073 {

1074 s ta t e vb = 1 ;

1075 }

1076 }

1077 e l s e i f (V vb err < V vb hys h ighes t)

1078 {

1079 i f ((s t a t e vb 1 == −1) | | (s t a t e vb 1 == −2))

1080 {

1081 s ta t e vb = −2;

1082 }

1083 e l s e i f ((s t a t e vb 1 == 1) | | (s t a t e vb 1 == 2))

1084 {

1085 s ta t e vb = 0 ;

1086 }

1087 e l s e i f (s t a t e vb 1 == 0)

1088 {

1089 s ta t e vb = −1;

1090 }

1091 }

1092 e l s e i f (V vb err > V vb hys high)

1093 {

1094 i f ((s t a t e vb 1 == 0) | | (s t a t e vb 1 == 1))

1095 {

1096 s ta t e vb = 1 ;

1097 }

1098 e l s e i f ((s t a t e vb 1 == −1) | | (s t a t e vb 1 == −2))

1099 {

1100 s ta t e vb = 0 ;

1101 }

1102 e l s e i f (s t a t e vb 1 == 2)

1103 {

1104 s ta t e vb = 2 ;

1105 }

1106 }

1107 e l s e i f (V vb err < V vb hys high)

1108 {

1109 i f ((s t a t e vb 1 == 0) | | (s t a t e vb 1 == −1))

1110 {

1111 s ta t e vb = −1;

1112 }

1113 e l s e i f ((s t a t e vb 1 == 1) | | (s t a t e vb 1 == 2))

1114 {

1115 s ta t e vb = 0 ;

1116 }

1117 e l s e i f (s t a t e vb 1 == −2)

1118 {

1119 s ta t e vb = −2;

143

1120 }

1121 }

1122 e l s e i f (V vb err > V vb hys low)

1123 {

1124 i f ((s t a t e vb 1 == −1) | | (s t a t e vb 1 == −2))

1125 {

1126 s ta t e vb = 0 ;

1127 }

1128 e l s e i f (s t a t e vb 1 == 0)

1129 {

1130 s ta t e vb = 0 ;

1131 }

1132 e l s e i f (s t a t e vb 1 == 1)

1133 {

1134 s ta t e vb = 1 ;

1135 }

1136 e l s e i f (s t a t e vb 1 == 2)

1137 {

1138 s ta t e vb = 2 ;

1139 }

1140 }

1141 e l s e i f (V vb err < V vb hys low)

1142 {

1143 i f ((s t a t e vb 1 == 1) | | (s t a t e vb 1 == 2))

1144 {

1145 s ta t e vb = 0 ;

1146 }

1147 e l s e i f (s t a t e vb 1 == 0)

1148 {

1149 s ta t e vb = 0 ;

1150 }

1151 e l s e i f (s t a t e vb 1 == −1)

1152 {

1153 s ta t e vb = −1;

1154 }

1155 e l s e i f (s t a t e vb 1 == −2)

1156 {

1157 s ta t e vb = −2;

1158 }

1159 }

1160 e l s e

1161 {

1162 s ta t e vb = s ta t e vb 1 ;

1163 }

1164

1165 //end o f s t a t e d e c i s i o n s

1166 //dpp1 d e c i s i o n

1167 i f (s t a t e s 1 == 1 && (s ta t e vb == 0 | | s t a t e vb == −1 | | s t a t e vb == −2 | | s t a t e vb == 2))

1168 {

1169 enab l e 1 1 = 1 ;

1170 enab l e 1 2 = 1 ;

1171 ph i 1 = ph i 1 x pr ime ;

1172 d i r 1 = 1 ;

1173 }

1174 e l s e i f (s t a t e s 1 == −1 && (s ta t e vb == 0 | | s t a t e vb == 1 | | s t a t e vb == 2 | | s t a t e vb == −2))

1175 {

1176 enab l e 1 1 = 1 ;

1177 enab l e 1 2 = 1 ;

1178 ph i 1 = ph i 1 x ;

1179 d i r 1 = 0 ;

1180 }

144

1181 e l s e i f (s t a t e s 1 == 2 && (s ta t e vb == 0 | | s t a t e vb == −1 | | s t a t e vb == −2))

1182 {

1183 enab l e 1 1 = 1 ;

1184 enab l e 1 2 = 1 ;

1185 ph i 1 = phi 1 xx pr ime ;

1186 d i r 1 = 1 ;

1187 }

1188 e l s e i f (s t a t e s 1 == 2 && (s ta t e vb == 1))

1189 {

1190 enab l e 1 1 = 1 ;

1191 enab l e 1 2 = 1 ;

1192 ph i 1 = ph i 1 x pr ime ;

1193 d i r 1 = 1 ;

1194 }

1195 e l s e i f (s t a t e s 1 == −2 && (s ta t e vb == 0 | | s t a t e vb == 1 | | s t a t e vb == 2))

1196 {

1197 enab l e 1 1 = 1 ;

1198 enab l e 1 2 = 1 ;

1199 ph i 1 = phi 1 xx ;

1200 d i r 1 = 0 ;

1201 }

1202 e l s e i f (s t a t e s 1 == −2 && (s ta t e vb == −1))

1203 {

1204 enab l e 1 1 = 1 ;

1205 enab l e 1 2 = 1 ;

1206 ph i 1 = ph i 1 x ;

1207 d i r 1 = 0 ;

1208 }

1209 e l s e i f ((s t a t e s 1 == 0 && sta t e vb == 0) | | (s t a t e s 1 == 1 && sta t e vb == 1) | | (s t a t e s 1 == 2 &&

sta t e vb == 2) | | (s t a t e s 1 == −1 && sta t e vb == −1) | | (s t a t e s 1 == −2 && sta t e vb == −2))

1210 {

1211 enab l e 1 1 = 0 ;

1212 enab l e 1 2 = 0 ;

1213 ph i 1 = 0 ;

1214 d i r 1 = 0 ;

1215 }

1216 e l s e i f (s t a t e s 1 == 0 && sta t e vb == 1)

1217 {

1218 enab l e 1 1 = 1 ;

1219 enab l e 1 2 = 1 ;

1220 ph i 1 = ph i 1 x ;

1221 d i r 1 = 0 ;

1222 }

1223 e l s e i f (s t a t e s 1 == 0 && sta t e vb == −1)

1224 {

1225 enab l e 1 1 = 1 ;

1226 enab l e 1 2 = 1 ;

1227 ph i 1 = ph i 1 x pr ime ;

1228 d i r 1 = 1 ;

1229 }

1230 e l s e i f (s t a t e s 1 == 0 && sta t e vb == 2)

1231 {

1232 enab l e 1 1 = 1 ;

1233 enab l e 1 2 = 1 ;

1234 ph i 1 = phi 1 xx ;

1235 d i r 1 = 0 ;

1236 }

1237 e l s e i f (s t a t e s 1 == 0 && sta t e vb == −2)

1238 {

1239 enab l e 1 1 = 1 ;

1240 enab l e 1 2 = 1 ;

145

1241 ph i 1 = phi 1 xx pr ime ;

1242 d i r 1 = 1 ;

1243 }

1244 //end o f dpp1 d e c i s i o n

1245 //dpp2 d e c i s i o n

1246 i f (s t a t e s 2 == 1 && (s ta t e vb == 0 | | s t a t e vb == −1 | | s t a t e vb == −2 | | s t a t e vb == 2))

1247 {

1248 enab l e 2 1 = 1 ;

1249 enab l e 2 2 = 1 ;

1250 ph i 2 = ph i 2 x pr ime ;

1251 d i r 2 = 1 ;

1252 }

1253 e l s e i f (s t a t e s 2 == −1 && (s ta t e vb == 0 | | s t a t e vb == 1 | | s t a t e vb == 2 | | s t a t e vb == −2))

1254 {

1255 enab l e 2 1 = 1 ;

1256 enab l e 2 2 = 1 ;

1257 ph i 2 = ph i 2 x ;

1258 d i r 2 = 0 ;

1259 }

1260 e l s e i f (s t a t e s 2 == 2 && (s ta t e vb == 0 | | s t a t e vb == −1 | | s t a t e vb == −2))

1261 {

1262 enab l e 2 1 = 1 ;

1263 enab l e 2 2 = 1 ;

1264 ph i 2 = phi 2 xx pr ime ;

1265 d i r 2 = 1 ;

1266 }

1267 e l s e i f (s t a t e s 2 == 2 && (s ta t e vb == 1))

1268 {

1269 enab l e 2 1 = 1 ;

1270 enab l e 2 2 = 1 ;

1271 ph i 2 = ph i 2 x pr ime ;

1272 d i r 2 = 1 ;

1273 }

1274 e l s e i f (s t a t e s 2 == −2 && (s ta t e vb == 0 | | s t a t e vb == 1 | | s t a t e vb == 2))

1275 {

1276 enab l e 2 1 = 1 ;

1277 enab l e 2 2 = 1 ;

1278 ph i 2 = phi 2 xx ;

1279 d i r 2 = 0 ;

1280 }

1281 e l s e i f (s t a t e s 2 == −2 && (s ta t e vb == −1))

1282 {

1283 enab l e 2 1 = 1 ;

1284 enab l e 2 2 = 1 ;

1285 ph i 2 = ph i 2 x ;

1286 d i r 2 = 0 ;

1287 }

1288 e l s e i f ((s t a t e s 2 == 0 && sta t e vb == 0) | | (s t a t e s 2 == 1 && sta t e vb == 1) | | (s t a t e s 2 == 2 &&

sta t e vb == 2) | | (s t a t e s 2 == −1 && sta t e vb == −1) | | (s t a t e s 2 == −2 && sta t e vb == −2))

1289 {

1290 enab l e 2 1 = 0 ;

1291 enab l e 2 2 = 0 ;

1292 ph i 2 = 0 ;

1293 d i r 2 = 0 ;

1294 }

1295 e l s e i f (s t a t e s 2 == 0 && sta t e vb == 1)

1296 {

1297 enab l e 2 1 = 1 ;

1298 enab l e 2 2 = 1 ;

1299 ph i 2 = ph i 2 x ;

1300 d i r 2 = 0 ;

146

1301 }

1302 e l s e i f (s t a t e s 2 == 0 && sta t e vb == −1)

1303 {

1304 enab l e 2 1 = 1 ;

1305 enab l e 2 2 = 1 ;

1306 ph i 2 = ph i 2 x pr ime ;

1307 d i r 2 = 1 ;

1308 }

1309 e l s e i f (s t a t e s 2 == 0 && sta t e vb == 2)

1310 {

1311 enab l e 2 1 = 1 ;

1312 enab l e 2 2 = 1 ;

1313 ph i 2 = phi 2 xx ;

1314 d i r 2 = 0 ;

1315 }

1316 e l s e i f (s t a t e s 2 == 0 && sta t e vb == −2)

1317 {

1318 enab l e 2 1 = 1 ;

1319 enab l e 2 2 = 1 ;

1320 ph i 2 = phi 2 xx pr ime ;

1321 d i r 2 = 1 ;

1322 }

1323 //end o f dpp2 d e c i s i o n

1324 //dpp3 d e c i s i o n

1325 i f (s t a t e s 3 == 1 && (s ta t e vb == 0 | | s t a t e vb == −1 | | s t a t e vb == −2 | | s t a t e vb == 2))

1326 {

1327 enab l e 3 1 = 1 ;

1328 enab l e 3 2 = 1 ;

1329 ph i 3 = ph i 3 x pr ime ;

1330 d i r 3 = 1 ;

1331 }

1332 e l s e i f (s t a t e s 3 == −1 && (s ta t e vb == 0 | | s t a t e vb == 1 | | s t a t e vb == 2 | | s t a t e vb == −2))

1333 {

1334 enab l e 3 1 = 1 ;

1335 enab l e 3 2 = 1 ;

1336 ph i 3 = ph i 3 x ;

1337 d i r 3 = 0 ;

1338 }

1339 e l s e i f (s t a t e s 3 == 2 && (s ta t e vb == 0 | | s t a t e vb == −1 | | s t a t e vb == −2))

1340 {

1341 enab l e 3 1 = 1 ;

1342 enab l e 3 2 = 1 ;

1343 ph i 3 = phi 3 xx pr ime ;

1344 d i r 3 = 1 ;

1345 }

1346 e l s e i f (s t a t e s 3 == 2 && (s ta t e vb == 1))

1347 {

1348 enab l e 3 1 = 1 ;

1349 enab l e 3 2 = 1 ;

1350 ph i 3 = ph i 3 x pr ime ;

1351 d i r 3 = 1 ;

1352 }

1353 e l s e i f (s t a t e s 3 == −2 && (s ta t e vb == 0 | | s t a t e vb == 1 | | s t a t e vb == 2))

1354 {

1355 enab l e 3 1 = 1 ;

1356 enab l e 3 2 = 1 ;

1357 ph i 3 = phi 3 xx ;

1358 d i r 3 = 0 ;

1359 }

1360 e l s e i f (s t a t e s 3 == −2 && (s ta t e vb == −1))

1361 {

147

1362 enab l e 3 1 = 1 ;

1363 enab l e 3 2 = 1 ;

1364 ph i 3 = ph i 3 x ;

1365 d i r 3 = 0 ;

1366 }

1367 e l s e i f ((s t a t e s 3 == 0 && sta t e vb == 0) | | (s t a t e s 3 == 1 && sta t e vb == 1) | | (s t a t e s 3 == 2 &&

sta t e vb == 2) | | (s t a t e s 3 == −1 && sta t e vb == −1) | | (s t a t e s 3 == −2 && sta t e vb == −2))

1368 {

1369 enab l e 3 1 = 0 ;

1370 enab l e 3 2 = 0 ;

1371 ph i 3 = 0 ;

1372 d i r 3 = 0 ;

1373 }

1374 e l s e i f (s t a t e s 3 == 0 && sta t e vb == 1)

1375 {

1376 enab l e 3 1 = 1 ;

1377 enab l e 3 2 = 1 ;

1378 ph i 3 = ph i 3 x ;

1379 d i r 3 = 0 ;

1380 }

1381 e l s e i f (s t a t e s 3 == 0 && sta t e vb == −1)

1382 {

1383 enab l e 3 1 = 1 ;

1384 enab l e 3 2 = 1 ;

1385 ph i 3 = ph i 3 x pr ime ;

1386 d i r 3 = 1 ;

1387 }

1388 e l s e i f (s t a t e s 3 == 0 && sta t e vb == 2)

1389 {

1390 enab l e 3 1 = 1 ;

1391 enab l e 3 2 = 1 ;

1392 ph i 3 = phi 3 xx ;

1393 d i r 3 = 0 ;

1394 }

1395 e l s e i f (s t a t e s 3 == 0 && sta t e vb == −2)

1396 {

1397 enab l e 3 1 = 1 ;

1398 enab l e 3 2 = 1 ;

1399 ph i 3 = phi 3 xx pr ime ;

1400 d i r 3 = 1 ;

1401 }

1402 //end o f dpp3 d e c i s i o n

1403 //dpp4 d e c i s i o n

1404 i f (s t a t e s 4 == 1 && (s ta t e vb == 0 | | s t a t e vb == −1 | | s t a t e vb == −2 | | s t a t e vb == 2))

1405 {

1406 enab l e 4 1 = 1 ;

1407 enab l e 4 2 = 1 ;

1408 ph i 4 = ph i 4 x pr ime ;

1409 d i r 4 = 1 ;

1410 }

1411 e l s e i f (s t a t e s 4 == −1 && (s ta t e vb == 0 | | s t a t e vb == 1 | | s t a t e vb == 2 | | s t a t e vb == −2))

1412 {

1413 enab l e 4 1 = 1 ;

1414 enab l e 4 2 = 1 ;

1415 ph i 4 = ph i 4 x ;

1416 d i r 4 = 0 ;

1417 }

1418 e l s e i f (s t a t e s 4 == 2 && (s ta t e vb == 0 | | s t a t e vb == −1 | | s t a t e vb == −2))

1419 {

1420 enab l e 4 1 = 1 ;

1421 enab l e 4 2 = 1 ;

148

1422 ph i 4 = phi 4 xx pr ime ;

1423 d i r 4 = 1 ;

1424 }

1425 e l s e i f (s t a t e s 4 == 2 && (s ta t e vb == 1))

1426 {

1427 enab l e 4 1 = 1 ;

1428 enab l e 4 2 = 1 ;

1429 ph i 4 = ph i 4 x pr ime ;

1430 d i r 4 = 1 ;

1431 }

1432 e l s e i f (s t a t e s 4 == −2 && (s ta t e vb == 0 | | s t a t e vb == 1 | | s t a t e vb == 2))

1433 {

1434 enab l e 4 1 = 1 ;

1435 enab l e 4 2 = 1 ;

1436 ph i 4 = phi 4 xx ;

1437 d i r 4 = 0 ;

1438 }

1439 e l s e i f (s t a t e s 4 == −2 && (s ta t e vb == −1))

1440 {

1441 enab l e 4 1 = 1 ;

1442 enab l e 4 2 = 1 ;

1443 ph i 4 = ph i 4 x ;

1444 d i r 4 = 0 ;

1445 }

1446 e l s e i f ((s t a t e s 4 == 0 && sta t e vb == 0) | | (s t a t e s 4 == 1 && sta t e vb == 1) | | (s t a t e s 4 == 2 &&

sta t e vb == 2) | | (s t a t e s 4 == −1 && sta t e vb == −1) | | (s t a t e s 4 == −2 && sta t e vb == −2))

1447 {

1448 enab l e 4 1 = 0 ;

1449 enab l e 4 2 = 0 ;

1450 ph i 4 = 0 ;

1451 d i r 4 = 0 ;

1452 }

1453 e l s e i f (s t a t e s 4 == 0 && sta t e vb == 1)

1454 {

1455 enab l e 4 1 = 1 ;

1456 enab l e 4 2 = 1 ;

1457 ph i 4 = ph i 4 x ;

1458 d i r 4 = 0 ;

1459 }

1460 e l s e i f (s t a t e s 4 == 0 && sta t e vb == −1)

1461 {

1462 enab l e 4 1 = 1 ;

1463 enab l e 4 2 = 1 ;

1464 ph i 4 = ph i 4 x pr ime ;

1465 d i r 4 = 1 ;

1466 }

1467 e l s e i f (s t a t e s 4 == 0 && sta t e vb == 2)

1468 {

1469 enab l e 4 1 = 1 ;

1470 enab l e 4 2 = 1 ;

1471 ph i 4 = phi 4 xx ;

1472 d i r 4 = 0 ;

1473 }

1474 e l s e i f (s t a t e s 4 == 0 && sta t e vb == −2)

1475 {

1476 enab l e 4 1 = 1 ;

1477 enab l e 4 2 = 1 ;

1478 ph i 4 = phi 4 xx pr ime ;

1479 d i r 4 = 1 ;

1480 }

1481 //end o f dpp4 d e c i s i o n

149

1482

1483 s t a t e s 1 1 = s t a t e s 1 ;

1484 s t a t e s 2 1 = s t a t e s 2 ;

1485 s t a t e s 3 1 = s t a t e s 3 ;

1486 s t a t e s 4 1 = s t a t e s 4 ;

1487 s t a t e vb 1 = sta t e vb ;

1488 }

1489

1490 void Swap One In (void)

1491 {

1492 i f (swap one counter == 2)

1493 {

1494 h i g h s i d e h i g h r e s s e r v e r 2 = 1 ;

1495 h i g h s i d e l o w r e s s e r v e r 2 = 0 ;

1496 l o w s i d e s e r v e r 2 = 1 ;

1497 swap one counter += 1 ;

1498 }

1499 e l s e i f (swap one counter == 1∗ swap one mult ip)

1500 {

1501 h i g h s i d e h i g h r e s s e r v e r 2 = 1 ;

1502 h i g h s i d e l o w r e s s e r v e r 2 = 1 ;

1503 l o w s i d e s e r v e r 2 = 1 ;

1504

1505 swap one counter += 1 ;

1506 }

1507 e l s e i f (swap one counter == 3∗ swap one mult ip)

1508 {

1509 h i g h s i d e h i g h r e s s e r v e r 2 = 0 ;

1510 h i g h s i d e l o w r e s s e r v e r 2 = 1 ;

1511 l o w s i d e s e r v e r 2 = 1 ;

1512

1513 swap one counter = 1 ;

1514 swap one i n f l a g = 0 ;

1515 }

1516 e l s e

1517 {

1518 swap one counter += 1 ;

1519 }

1520 }

1521

1522 void Swap All In (void)

1523 {

1524 i f (swap a l l c oun t e r == 2)

1525 {

1526 h i g h s i d e h i g h r e s s e r v e r 1 = 1 ;

1527 h i g h s i d e l o w r e s s e r v e r 1 = 0 ;

1528 l o w s i d e s e r v e r 1 = 1 ;

1529

1530 h i g h s i d e h i g h r e s s e r v e r 2 = 1 ;

1531 h i g h s i d e l o w r e s s e r v e r 2 = 0 ;

1532 l o w s i d e s e r v e r 2 = 1 ;

1533

1534 h i g h s i d e h i g h r e s s e r v e r 3 = 1 ;

1535 h i g h s i d e l o w r e s s e r v e r 3 = 0 ;

1536 l o w s i d e s e r v e r 3 = 1 ;

1537

1538 h i g h s i d e h i g h r e s s e r v e r 4 = 1 ;

1539 h i g h s i d e l o w r e s s e r v e r 4 = 0 ;

1540 l o w s i d e s e r v e r 4 = 1 ;

1541

1542 swap a l l c oun t e r += 1 ;

150

1543 }

1544 e l s e i f (swap a l l c oun t e r == 1∗ swap a l l mu l t ip)

1545 {

1546 h i g h s i d e h i g h r e s s e r v e r 1 = 1 ;

1547 h i g h s i d e l o w r e s s e r v e r 1 = 1 ;

1548 l o w s i d e s e r v e r 1 = 1 ;

1549

1550 h i g h s i d e h i g h r e s s e r v e r 2 = 1 ;

1551 h i g h s i d e l o w r e s s e r v e r 2 = 1 ;

1552 l o w s i d e s e r v e r 2 = 1 ;

1553

1554 h i g h s i d e h i g h r e s s e r v e r 3 = 1 ;

1555 h i g h s i d e l o w r e s s e r v e r 3 = 1 ;

1556 l o w s i d e s e r v e r 3 = 1 ;

1557

1558 h i g h s i d e h i g h r e s s e r v e r 4 = 1 ;

1559 h i g h s i d e l o w r e s s e r v e r 4 = 1 ;

1560 l o w s i d e s e r v e r 4 = 1 ;

1561

1562 swap a l l c oun t e r += 1 ;

1563 }

1564 e l s e i f (swap a l l c oun t e r == 3∗ swap a l l mu l t ip)

1565 {

1566 h i g h s i d e h i g h r e s s e r v e r 1 = 0 ;

1567 h i g h s i d e l o w r e s s e r v e r 1 = 1 ;

1568 l o w s i d e s e r v e r 1 = 1 ;

1569

1570 h i g h s i d e h i g h r e s s e r v e r 2 = 0 ;

1571 h i g h s i d e l o w r e s s e r v e r 2 = 1 ;

1572 l o w s i d e s e r v e r 2 = 1 ;

1573

1574 h i g h s i d e h i g h r e s s e r v e r 3 = 0 ;

1575 h i g h s i d e l o w r e s s e r v e r 3 = 1 ;

1576 l o w s i d e s e r v e r 3 = 1 ;

1577

1578 h i g h s i d e h i g h r e s s e r v e r 4 = 0 ;

1579 h i g h s i d e l o w r e s s e r v e r 4 = 1 ;

1580 l o w s i d e s e r v e r 4 = 1 ;

1581

1582 swap a l l c oun t e r = 1 ;

1583 s w a p a l l i n f l a g = 0 ;

1584 }

1585 e l s e

1586 {

1587 swap a l l c oun t e r += 1 ;

1588 }

1589 }

1590

1591 void Swap One Out (void)

1592 {

1593 h i g h s i d e h i g h r e s s e r v e r 2 = 0 ;

1594 h i g h s i d e l o w r e s s e r v e r 2 = 0 ;

1595 l o w s i d e s e r v e r 2 = 0 ;

1596

1597 swap one out f l ag = 0 ;

1598 }

1599

1600 void Swap All Out (void)

1601 {

1602 h i g h s i d e h i g h r e s s e r v e r 1 = 0 ;

1603 h i g h s i d e l o w r e s s e r v e r 1 = 0 ;

151

1604 l o w s i d e s e r v e r 1 = 0 ;

1605

1606 h i g h s i d e h i g h r e s s e r v e r 2 = 0 ;

1607 h i g h s i d e l o w r e s s e r v e r 2 = 0 ;

1608 l o w s i d e s e r v e r 2 = 0 ;

1609

1610 h i g h s i d e h i g h r e s s e r v e r 3 = 0 ;

1611 h i g h s i d e l o w r e s s e r v e r 3 = 0 ;

1612 l o w s i d e s e r v e r 3 = 0 ;

1613

1614 h i g h s i d e h i g h r e s s e r v e r 4 = 0 ;

1615 h i g h s i d e l o w r e s s e r v e r 4 = 0 ;

1616 l o w s i d e s e r v e r 4 = 0 ;

1617

1618 s w a p a l l o u t f l a g = 0 ;

1619 }

1620

1621 //−−−

1622 // Conf igurat ion Functions : Below func t i on s i n i t i a l i z e GPIOs and c o n f i g u r e s ADC and EPWM

1623 //−−−

1624

1625 void In i t i a l i z e GPIOs ()

1626 {

1627 EALLOW; // f o l l o w i n g r e g i s t e r s are protec ted

1628 // GPIO−50 (Pin#86 in exper imenter board) − PIN FUNCTION = Enable S igna l f o r DPP 1 pr i sw i t ches

1629 GpioCtrlRegs .GPBMUX2. b i t . GPIO50 = 0 ; // 0 = GPIO

1630 GpioCtrlRegs .GPBDIR. b i t . GPIO50 = 1 ; // 1 = OUTput , 0 = INput

1631 GpioDataRegs .GPBCLEAR. b i t . GPIO50 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1632 // GpioDataRegs .GPBSET. b i t . GPIO50 = 1 ; // uncomment i f −−> Set High i n i t i a l l y

1633 //−−

1634 // GPIO−13 − PIN FUNCTION = Enable S igna l f o r DPP 1 sec swi tches

1635 GpioCtrlRegs .GPAMUX1. b i t . GPIO13 = 0 ; // 0=GPIO

1636 GpioCtrlRegs .GPADIR. b i t . GPIO13 = 1 ; // 1=OUTput , 0=INput

1637 GpioDataRegs .GPACLEAR. b i t . GPIO13 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1638 // GpioDataRegs .GPASET. b i t . GPIO13 = 1 ; // uncomment i f −−> Set High i n i t i a l l y

1639 //−−

1640 // GPIO−12 − PIN FUNCTION = Enable S igna l f o r DPP 2 pr i sw i t ches

1641 GpioCtrlRegs .GPAMUX1. b i t . GPIO12 = 0 ; // 0 = GPIO

1642 GpioCtrlRegs .GPADIR. b i t . GPIO12 = 1 ; // 1 = OUTput , 0 = INput

1643 GpioDataRegs .GPACLEAR. b i t . GPIO12 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1644 // GpioDataRegs .GPASET. b i t . GPIO12 = 1 ; // uncomment i f −−> Set High i n i t i a l l y

1645 //−−

1646 // GPIO−14 − PIN FUNCTION = Enable S igna l f o r DPP 2 sec swi tches

1647 GpioCtrlRegs .GPAMUX1. b i t . GPIO14 = 0 ; // 0=GPIO

1648 GpioCtrlRegs .GPADIR. b i t . GPIO14 = 1 ; // 1=OUTput , 0=INput

1649 GpioDataRegs .GPACLEAR. b i t . GPIO14 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1650 // GpioDataRegs .GPASET. b i t . GPIO14 = 1 ; // uncomment i f −−> Set High i n i t i a l l y

1651 //−−

1652 // GPIO−15 − PIN FUNCTION = Enable S igna l f o r DPP 3 pr i sw i t ches

1653 GpioCtrlRegs .GPAMUX1. b i t . GPIO15 = 0 ; // 0 = GPIO

1654 GpioCtrlRegs .GPADIR. b i t . GPIO15 = 1 ; // 1 = OUTput , 0 = INput

1655 GpioDataRegs .GPACLEAR. b i t . GPIO15 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1656 // GpioDataRegs .GPASET. b i t . GPIO15 = 1 ; // uncomment i f −−> Set High i n i t i a l l y

1657 //−−

1658 // GPIO−25 − PIN FUNCTION = Enable S igna l f o r DPP 3 sec swi tches

1659 GpioCtrlRegs .GPAMUX2. b i t . GPIO25 = 0 ; // 0=GPIO

1660 GpioCtrlRegs .GPADIR. b i t . GPIO25 = 1 ; // 1=OUTput , 0=INput

1661 GpioDataRegs .GPACLEAR. b i t . GPIO25 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1662 // GpioDataRegs .GPASET. b i t . GPIO25 = 1 ; // uncomment i f −−> Set High i n i t i a l l y

1663 //−−

1664 // GPIO−24 − PIN FUNCTION = Enable S igna l f o r DPP 4 pr i sw i t ches

152

1665 GpioCtrlRegs .GPAMUX2. b i t . GPIO24 = 0 ; // 0 = GPIO

1666 GpioCtrlRegs .GPADIR. b i t . GPIO24 = 1 ; // 1 = OUTput , 0 = INput

1667 GpioDataRegs .GPACLEAR. b i t . GPIO24 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1668 // GpioDataRegs .GPASET. b i t . GPIO24 = 1 ; // uncomment i f −−> Set High i n i t i a l l y

1669 //−−

1670 // GPIO−27 − PIN FUNCTION = Enable S igna l f o r DPP 4 sec swi tches

1671 GpioCtrlRegs .GPAMUX2. b i t . GPIO27 = 0 ; // 0=GPIO

1672 GpioCtrlRegs .GPADIR. b i t . GPIO27 = 1 ; // 1=OUTput , 0=INput

1673 GpioDataRegs .GPACLEAR. b i t . GPIO27 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1674 // GpioDataRegs .GPASET. b i t . GPIO27 = 1 ; // uncomment i f −−> Set High i n i t i a l l y

1675 //−−

1676 // GPIO−33 − PIN FUNCTION = GPIO Testing , Toggle

1677 GpioCtrlRegs .GPBMUX1. b i t . GPIO33 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1678 GpioCtrlRegs .GPBDIR. b i t . GPIO33 = 1 ; // 1=OUTput , 0=INput

1679 // GpioDataRegs .GPBCLEAR. b i t . GPIO33 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1680 // GpioDataRegs .GPBSET. b i t . GPIO33 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1681 //−−

1682 // GPIO−26 − PIN FUNCTION = Enable S igna l f o r High Side High Res HotSwap − Server1

1683 GpioCtrlRegs .GPAMUX2. b i t . GPIO26 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1684 GpioCtrlRegs .GPADIR. b i t . GPIO26 = 1 ; // 1=OUTput , 0=INput

1685 GpioDataRegs .GPACLEAR. b i t . GPIO26 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1686 // GpioDataRegs .GPASET. b i t . GPIO26 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1687 //−−−

1688 // GPIO−16 − PIN FUNCTION = Enable S igna l f o r High Side Low Res HotSwap − Server1

1689 GpioCtrlRegs .GPAMUX2. b i t . GPIO16 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1690 GpioCtrlRegs .GPADIR. b i t . GPIO16 = 1 ; // 1=OUTput , 0=INput

1691 GpioDataRegs .GPACLEAR. b i t . GPIO16 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1692 // GpioDataRegs .GPASET. b i t . GPIO16 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1693 //−−

1694 // GPIO−18 − PIN FUNCTION = Enable S igna l f o r Low Side HotSwap − Server1

1695 GpioCtrlRegs .GPAMUX2. b i t . GPIO18 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1696 GpioCtrlRegs .GPADIR. b i t . GPIO18 = 1 ; // 1=OUTput , 0=INput

1697 GpioDataRegs .GPACLEAR. b i t . GPIO18 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1698 // GpioDataRegs .GPASET. b i t . GPIO18 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1699 //−−

1700 // GPIO−17 − PIN FUNCTION = Enable S igna l f o r High Side High Res HotSwap − Server2

1701 GpioCtrlRegs .GPAMUX2. b i t . GPIO17 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1702 GpioCtrlRegs .GPADIR. b i t . GPIO17 = 1 ; // 1=OUTput , 0=INput

1703 GpioDataRegs .GPACLEAR. b i t . GPIO17 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1704 // GpioDataRegs .GPASET. b i t . GPIO17 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1705 //−−−

1706 // GPIO−19 − PIN FUNCTION = Enable S igna l f o r High Side Low Res HotSwap − Server2

1707 GpioCtrlRegs .GPAMUX2. b i t . GPIO19 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1708 GpioCtrlRegs .GPADIR. b i t . GPIO19 = 1 ; // 1=OUTput , 0=INput

1709 GpioDataRegs .GPACLEAR. b i t . GPIO19 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1710 // GpioDataRegs .GPASET. b i t . GPIO19 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1711 //−−

1712 // GPIO−21 − PIN FUNCTION = Enable S igna l f o r Low Side HotSwap − Server2

1713 GpioCtrlRegs .GPAMUX2. b i t . GPIO21 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1714 GpioCtrlRegs .GPADIR. b i t . GPIO21 = 1 ; // 1=OUTput , 0=INput

1715 GpioDataRegs .GPACLEAR. b i t . GPIO21 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1716 // GpioDataRegs .GPASET. b i t . GPIO21 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1717 //−−

1718 // GPIO−23 − PIN FUNCTION = Enable S igna l f o r High Side High Res HotSwap − Server3

1719 GpioCtrlRegs .GPAMUX2. b i t . GPIO23 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1720 GpioCtrlRegs .GPADIR. b i t . GPIO23 = 1 ; // 1=OUTput , 0=INput

1721 GpioDataRegs .GPACLEAR. b i t . GPIO23 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1722 // GpioDataRegs .GPASET. b i t . GPIO23 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1723 //−−−

1724 // GPIO−29 − PIN FUNCTION = Enable S igna l f o r High Side Low Res HotSwap − Server3

1725 GpioCtrlRegs .GPAMUX2. b i t . GPIO29 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

153

1726 GpioCtrlRegs .GPADIR. b i t . GPIO29 = 1 ; // 1=OUTput , 0=INput

1727 GpioDataRegs .GPACLEAR. b i t . GPIO29 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1728 // GpioDataRegs .GPASET. b i t . GPIO29 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1729 //−−

1730 // GPIO−31 − PIN FUNCTION = Enable S igna l f o r Low Side HotSwap − Server3

1731 GpioCtrlRegs .GPAMUX2. b i t . GPIO31 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1732 GpioCtrlRegs .GPADIR. b i t . GPIO31 = 1 ; // 1=OUTput , 0=INput

1733 GpioDataRegs .GPACLEAR. b i t . GPIO31 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1734 // GpioDataRegs .GPASET. b i t . GPIO31 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1735 //−−

1736 // GPIO−20 − PIN FUNCTION = Enable S igna l f o r High Side High Res HotSwap − Server4

1737 GpioCtrlRegs .GPAMUX2. b i t . GPIO20 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1738 GpioCtrlRegs .GPADIR. b i t . GPIO20 = 1 ; // 1=OUTput , 0=INput

1739 GpioDataRegs .GPACLEAR. b i t . GPIO20 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1740 // GpioDataRegs .GPASET. b i t . GPIO20 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1741 //−−−

1742 // GPIO−22 − PIN FUNCTION = Enable S igna l f o r High Side Low Res HotSwap − Server4

1743 GpioCtrlRegs .GPAMUX2. b i t . GPIO22 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1744 GpioCtrlRegs .GPADIR. b i t . GPIO22 = 1 ; // 1=OUTput , 0=INput

1745 GpioDataRegs .GPACLEAR. b i t . GPIO22 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1746 // GpioDataRegs .GPASET. b i t . GPIO22 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1747 //−−

1748 // GPIO−87 − PIN FUNCTION = Enable S igna l f o r Low Side HotSwap − Server4

1749 GpioCtrlRegs .GPBMUX2. b i t . GPIO51 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1750 GpioCtrlRegs .GPBDIR. b i t . GPIO51 = 1 ; // 1=OUTput , 0=INput

1751 GpioDataRegs .GPBCLEAR. b i t . GPIO51 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1752 // GpioDataRegs .GPASET. b i t . GPIO51 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1753 //−−

1754 // GPIO−28 − PIN FUNCTION = Enable S igna l f o r Stack 1

1755 GpioCtrlRegs .GPAMUX2. b i t . GPIO28 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1756 GpioCtrlRegs .GPADIR. b i t . GPIO28 = 1 ; // 1=OUTput , 0=INput

1757 GpioDataRegs .GPACLEAR. b i t . GPIO28 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1758 // GpioDataRegs .GPASET. b i t . GPIO28 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1759 //−−−

1760 // GPIO−30 − PIN FUNCTION = Enable S igna l f o r Stack 2

1761 GpioCtrlRegs .GPAMUX2. b i t . GPIO30 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1762 GpioCtrlRegs .GPADIR. b i t . GPIO30 = 1 ; // 1=OUTput , 0=INput

1763 GpioDataRegs .GPACLEAR. b i t . GPIO30 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1764 // GpioDataRegs .GPASET. b i t . GPIO30 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1765 //−−−

1766 // GPIO−32 − PIN FUNCTION = Enable S igna l f o r Stack 3

1767 GpioCtrlRegs .GPBMUX1. b i t . GPIO32 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1768 GpioCtrlRegs .GPBDIR. b i t . GPIO32 = 1 ; // 1=OUTput , 0=INput

1769 GpioDataRegs .GPBCLEAR. b i t . GPIO32 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1770 // GpioDataRegs .GPBSET. b i t . GPIO32 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1771 //−−−

1772 // GPIO−34 − PIN FUNCTION = Enable S igna l f o r Stack 4

1773 GpioCtrlRegs .GPBMUX1. b i t . GPIO34 = 0 ; // 0=GPIO, 1=I2C−SDA, 2=SYNCI , 3=ADCSOCA

1774 GpioCtrlRegs .GPBDIR. b i t . GPIO34 = 1 ; // 1=OUTput , 0=INput

1775 GpioDataRegs .GPBCLEAR. b i t . GPIO34 = 1 ; // uncomment i f −−> Set Low i n i t i a l l y

1776 // GpioDataRegs .GPBSET. b i t . GPIO34 = 0 ; // uncomment i f −−> Set High i n i t i a l l y

1777 EDIS ;

1778 }

1779

1780 void Adc Config ()

1781 {

1782 EALLOW;

1783 AdcRegs .ADCCTL2. b i t .ADCNONOVERLAP = 1 ; // Enable non−over lap mode . This w i l l e l im ina t e 1 s t

sample i s s u e and improve INL/DNL performance .

1784 AdcRegs .ADCCTL1. b i t . INTPULSEPOS = 1 ; // ADCINT1 t r i p s 1 cy c l e p r i o r to ADC r e s u l t l a t ch i ng

in to i t s r e s u l t r e g i s t e r

154

1785 AdcRegs . INTSEL1N2 . b i t . INT1E = 1 ; // Enabled ADCINT1

1786 AdcRegs . INTSEL1N2 . b i t . INT1CONT = 0 ; // Disab le ADCINT1 Continuous mode

1787 AdcRegs . INTSEL1N2 . b i t . INT1SEL = 3 ; // setup EOC5 to t r i g g e r ADCINT1 to f i r e . SEE below

two l i n e s . This i s why EOC5 s e t s ADCINT1− i t corresponds to the l a s t conver s ion

1788

1789 AdcRegs .ADCSOC0CTL. b i t .CHSEL = 8 ; // 0 ; / / 8 ; // s e t SOC0 channel s e l e c t to ADCINB0; SOCx can

be s e t to any ADCINyz

1790 AdcRegs .ADCSOC1CTL. b i t .CHSEL = 9 ; // 3 ; / / 9 ; // s e t SOC1 channel s e l e c t to ADCINB1

1791 AdcRegs .ADCSOC2CTL. b i t .CHSEL = 10 ; // 2 ; //10 ; // s e t SOC2 channel s e l e c t to ADCINB2

1792 AdcRegs .ADCSOC3CTL. b i t .CHSEL = 11 ; // ; / / 1 1 ; // s e t SOC3 channel s e l e c t to ADCINB3

1793 AdcRegs .ADCSOC4CTL. b i t .CHSEL = 12 ; // ; / / 1 1 ; // s e t SOC4 channel s e l e c t to ADCINB4

1794

1795 AdcRegs .ADCSOC0CTL. b i t .TRIGSEL = 5 ; // s e t SOC0 s t a r t t r i g g e r on EPWM1A

1796 AdcRegs .ADCSOC1CTL. b i t .TRIGSEL = 5 ; // s e t SOC1 s t a r t t r i g g e r on EPWM1A, due to round−

rob in SOC0 conver t s f i r s t then SOC1

1797 AdcRegs .ADCSOC2CTL. b i t .TRIGSEL = 5 ; // s e t SOC2 s t a r t t r i g g e r on EPWM1A, due to round−

rob in SOC1 conver t s f i r s t then SOC2

1798 AdcRegs .ADCSOC3CTL. b i t .TRIGSEL = 5 ; // s e t SOC3 s t a r t t r i g g e r on EPWM1A, due to round−

rob in SOC2 conver t s f i r s t then SOC3

1799 AdcRegs .ADCSOC4CTL. b i t .TRIGSEL = 5 ; // s e t SOC4 s t a r t t r i g g e r on EPWM1A, due to round−

rob in SOC4 conver t s f i r s t then SOC4

1800

1801 AdcRegs .ADCSOC0CTL. b i t .ACQPS = 6 ; // s e t SOC0 S/H Window to 7 ADC Clock Cycles , (6 ACQPS

plus 1)

1802 AdcRegs .ADCSOC1CTL. b i t .ACQPS = 6 ; // s e t SOC1 S/H Window to 7 ADC Clock Cycles , (6 ACQPS

plus 1)

1803 AdcRegs .ADCSOC2CTL. b i t .ACQPS = 6 ; // s e t SOC2 S/H Window to 7 ADC Clock Cycles , (6 ACQPS

plus 1)

1804 AdcRegs .ADCSOC3CTL. b i t .ACQPS = 6 ; // s e t SOC3 S/H Window to 7 ADC Clock Cycles , (6 ACQPS

plus 1)

1805 AdcRegs .ADCSOC4CTL. b i t .ACQPS = 6 ; // s e t SOC4 S/H Window to 7 ADC Clock Cycles , (6 ACQPS

plus 1)

1806 EDIS ;

1807

1808 // Below l i n e s assume ePWM1 c lock i s a l ready enabled in I n i t S y s C t r l () ;

1809 EPwm1Regs .ETSEL. b i t .SOCAEN = 1 ; // Enable SOC on A group

1810 EPwm1Regs .ETSEL. b i t .SOCASEL = 1 ; // S e l e c t SOC from TBCTR = 0

1811 EPwm1Regs .ETPS. b i t .SOCAPRD = 2 ; // Generate pu l se on 2nd event . These b i t s determine how

many s e l e c t e d ETSEL[SOCASEL] events need to occur be f o r e an EPWMxSOCA pul se i s generated .

1812 }

1813

1814 void EPwm Config ()

1815 {

1816 EPwm1 Config () ;

1817 EPwm2 Config () ;

1818 EPwm3 Config () ;

1819 EPwm4 Config () ;

1820 EPwm5 Config () ;

1821 EPwm6 Config () ;

1822 EPwm7 Config () ;

1823 EPwm8 Config () ;

1824 }

1825

1826 void EPwm1 Config ()

1827 {

1828 EPwm1Regs .TBPRD = per iod ; // Set t imer per iod , PWM frequency = 1 / per iod

1829 EPwm1Regs .TBPHS. h a l f .TBPHS = 0 ; // Time−Base Phase Reg i s ter , master ’ s phase = 0

1830

1831 EPwm1Regs .TBCTL. b i t .CTRMODE = TB COUNT UPDOWN; // Count−up mode : used f o r asymmetric PWM

1832 EPwm1Regs .TBCTL. b i t .PHSEN = TB DISABLE ; // Disab le phase load ing

1833 EPwm1Regs .TBCTL. b i t .PRDLD = TB SHADOW; // Set Shadowed load

155

1834 EPwm1Regs .TBCTL. b i t .SYNCOSEL = TB CTR ZERO; // Sync down−stream module

1835 EPwm1Regs .TBCTL. b i t .HSPCLKDIV = TB DIV1 ; // Pr e s c a l e r = 0 f o r max f r e q

1836 EPwm1Regs .TBCTL. b i t .CLKDIV = TB DIV1 ; // Pr e s ca l e r = 1 f o r max f r e q

1837

1838 EPwm1Regs .AQCTLA. b i t .ZRO = AQ SET; // Set PWM2A on Zero

1839 EPwm1Regs .AQCTLA. b i t .PRD = AQ CLEAR; // Clear PWM2A on event A, up count

1840 EPwm1Regs .AQCTLB. b i t .ZRO = AQ CLEAR; // Set PWM2B on Zero

1841 EPwm1Regs .AQCTLB. b i t .PRD = AQ SET; // Clear PWM2B on event B, up count

1842 }

1843

1844 void EPwm2 Config ()

1845 {

1846 EPwm2Regs .TBPRD = per iod ; // Set t imer per iod , PWM frequency = 1 / per iod

1847 EPwm2Regs .TBPHS. h a l f .TBPHS = phi 1 ; // Time−Base Phase Reg i s ter , s l av e ’ s phase = phi

1848

1849 EPwm2Regs .TBCTL. b i t .CTRMODE = TB COUNT UPDOWN; // Count−up mode : used f o r asymmetric PWM

1850 EPwm2Regs .TBCTL. b i t .PHSEN = TB ENABLE; // Enable phase loading , This i s s l av e

1851 EPwm2Regs .TBCTL. b i t .PRDLD = TB SHADOW; // Set Shadowed load

1852 EPwm2Regs .TBCTL. b i t .SYNCOSEL = TB SYNC IN ; // Sync down−stream module , s lave , sync from epwm1

1853 EPwm2Regs .TBCTL. b i t .HSPCLKDIV = TB DIV1 ; // Pr e s c a l e r = 0 f o r max f r e q

1854 EPwm2Regs .TBCTL. b i t .CLKDIV = TB DIV1 ; // Pr e s ca l e r = 0 f o r max f r e q

1855

1856 EPwm2Regs .AQCTLA. b i t .ZRO = AQ SET; // Set PWM2A on Zero

1857 EPwm2Regs .AQCTLA. b i t .PRD = AQ CLEAR; // Clear PWM2A on event A, up count

1858 EPwm2Regs .AQCTLB. b i t .ZRO = AQ CLEAR; // Set PWM2B on Zero

1859 EPwm2Regs .AQCTLB. b i t .PRD = AQ SET; // Clear PWM2B on event B, up count

1860 }

1861

1862 void EPwm3 Config ()

1863 {

1864 EPwm3Regs .TBPRD = per iod ; // Set t imer per iod , PWM frequency = 1 / per iod

1865 EPwm3Regs .TBPHS. h a l f .TBPHS = 0 ; // Time−Base Phase Reg i s ter , s l av e ’ s phase = phi

1866

1867 EPwm3Regs .TBCTL. b i t .CTRMODE = TB COUNT UPDOWN; // Count−up mode : used f o r asymmetric PWM

1868 EPwm3Regs .TBCTL. b i t .PHSEN = TB DISABLE ; // Enable phase loading , This i s s l av e

1869 EPwm3Regs .TBCTL. b i t .PRDLD = TB SHADOW; // Set Shadowed load

1870 EPwm3Regs .TBCTL. b i t .SYNCOSEL = TB SYNC IN ; // Sync down−stream module , s lave , sync from epwm1

1871 EPwm3Regs .TBCTL. b i t .HSPCLKDIV = TB DIV1 ; // Pr e s c a l e r = 0 f o r max f r e q

1872 EPwm3Regs .TBCTL. b i t .CLKDIV = TB DIV1 ; // Pr e s ca l e r = 0 f o r max f r e q

1873

1874 EPwm3Regs .AQCTLA. b i t .ZRO = AQ SET; // Set PWM2A on Zero

1875 EPwm3Regs .AQCTLA. b i t .PRD = AQ CLEAR; // Clear PWM2A on event A, up count

1876 EPwm3Regs .AQCTLB. b i t .ZRO = AQ CLEAR; // Set PWM2B on Zero

1877 EPwm3Regs .AQCTLB. b i t .PRD = AQ SET; // Clear PWM2B on event B, up count

1878 }

1879

1880 void EPwm4 Config ()

1881 {

1882 EPwm4Regs .TBPRD = per iod ; // Set t imer per iod , PWM frequency = 1 / per iod

1883 EPwm4Regs .TBPHS. h a l f .TBPHS = phi 2 ; // Time−Base Phase Reg i s ter , s l av e ’ s phase = phi

1884

1885 EPwm4Regs .TBCTL. b i t .CTRMODE = TB COUNT UPDOWN; // Count−up mode : used f o r asymmetric PWM

1886 EPwm4Regs .TBCTL. b i t .PHSEN = TB ENABLE; // Enable phase loading , This i s s l av e

1887 EPwm4Regs .TBCTL. b i t .PRDLD = TB SHADOW; // Set Shadowed load

1888 EPwm4Regs .TBCTL. b i t .SYNCOSEL = TB SYNC IN ; // Sync down−stream module , s lave , sync from epwm1

1889 EPwm4Regs .TBCTL. b i t .HSPCLKDIV = TB DIV1 ; // Pr e s c a l e r = 0 f o r max f r e q

1890 EPwm4Regs .TBCTL. b i t .CLKDIV = TB DIV1 ; // Pr e s ca l e r = 0 f o r max f r e q

1891

1892 EPwm4Regs .AQCTLA. b i t .ZRO = AQ SET; // Set PWM2A on Zero

1893 EPwm4Regs .AQCTLA. b i t .PRD = AQ CLEAR; // Clear PWM2A on event A, up count

1894 EPwm4Regs .AQCTLB. b i t .ZRO = AQ CLEAR; // Set PWM2B on Zero

156

1895 EPwm4Regs .AQCTLB. b i t .PRD = AQ SET; // Clear PWM2B on event B, up count

1896 }

1897

1898 void EPwm5 Config ()

1899 {

1900 EPwm5Regs .TBPRD = per iod ; // Set t imer per iod , PWM frequency = 1 / per iod

1901 EPwm5Regs .TBPHS. h a l f .TBPHS = 0 ; // Time−Base Phase Reg i s ter , s l av e ’ s phase = phi

1902

1903 EPwm5Regs .TBCTL. b i t .CTRMODE = TB COUNT UPDOWN; // Count−up mode : used f o r asymmetric PWM

1904 EPwm5Regs .TBCTL. b i t .PHSEN = TB DISABLE ; // Enable phase loading , This i s s l av e

1905 EPwm5Regs .TBCTL. b i t .PRDLD = TB SHADOW; // Set Shadowed load

1906 EPwm5Regs .TBCTL. b i t .SYNCOSEL = TB SYNC IN ; // Sync down−stream module , s lave , sync from epwm1

1907 EPwm5Regs .TBCTL. b i t .HSPCLKDIV = TB DIV1 ; // Pr e s c a l e r = 0 f o r max f r e q

1908 EPwm5Regs .TBCTL. b i t .CLKDIV = TB DIV1 ; // Pr e s ca l e r = 0 f o r max f r e q

1909

1910 EPwm5Regs .AQCTLA. b i t .ZRO = AQ SET; // Set PWM2A on Zero

1911 EPwm5Regs .AQCTLA. b i t .PRD = AQ CLEAR; // Clear PWM2A on event A, up count

1912 EPwm5Regs .AQCTLB. b i t .ZRO = AQ CLEAR; // Set PWM2B on Zero

1913 EPwm5Regs .AQCTLB. b i t .PRD = AQ SET; // Clear PWM2B on event B, up count

1914 }

1915

1916 void EPwm6 Config ()

1917 {

1918 EPwm6Regs .TBPRD = per iod ; // Set t imer per iod , PWM frequency = 1 / per iod

1919 EPwm6Regs .TBPHS. h a l f .TBPHS = phi 3 ; // Time−Base Phase Reg i s ter , s l av e ’ s phase = phi

1920

1921 EPwm6Regs .TBCTL. b i t .CTRMODE = TB COUNT UPDOWN; // Count−up mode : used f o r asymmetric PWM

1922 EPwm6Regs .TBCTL. b i t .PHSEN = TB ENABLE; // Enable phase loading , This i s s l av e

1923 EPwm6Regs .TBCTL. b i t .PRDLD = TB SHADOW; // Set Shadowed load

1924 EPwm6Regs .TBCTL. b i t .SYNCOSEL = TB SYNC IN ; // Sync down−stream module , s lave , sync from epwm1

1925 EPwm6Regs .TBCTL. b i t .HSPCLKDIV = TB DIV1 ; // Pr e s c a l e r = 0 f o r max f r e q

1926 EPwm6Regs .TBCTL. b i t .CLKDIV = TB DIV1 ;

1927

1928 EPwm6Regs .AQCTLA. b i t .ZRO = AQ SET; // Set PWM2A on Zero

1929 EPwm6Regs .AQCTLA. b i t .PRD = AQ CLEAR; // Clear PWM2A on event A, up count

1930 EPwm6Regs .AQCTLB. b i t .ZRO = AQ CLEAR; // Set PWM2B on Zero

1931 EPwm6Regs .AQCTLB. b i t .PRD = AQ SET; // Clear PWM2B on event B, up count

1932 }

1933

1934 void EPwm7 Config ()

1935 {

1936 EPwm7Regs .TBPRD = per iod ; // Set t imer per iod , PWM frequency = 1 / per iod

1937 EPwm7Regs .TBPHS. h a l f .TBPHS = 0 ; // Time−Base Phase Reg i s ter , s l av e ’ s phase = phi

1938

1939 EPwm7Regs .TBCTL. b i t .CTRMODE = TB COUNT UPDOWN; // Count−up mode : used f o r asymmetric PWM

1940 EPwm7Regs .TBCTL. b i t .PHSEN = TB DISABLE ; // Enable phase loading , This i s s l av e

1941 EPwm7Regs .TBCTL. b i t .PRDLD = TB SHADOW; // Set Shadowed load

1942 EPwm7Regs .TBCTL. b i t .SYNCOSEL = TB SYNC IN ; // Sync down−stream module , s lave , sync from epwm1

1943 EPwm7Regs .TBCTL. b i t .HSPCLKDIV = TB DIV1 ; // Pr e s c a l e r = 0 f o r max f r e q

1944 EPwm7Regs .TBCTL. b i t .CLKDIV = TB DIV1 ; // Pr e s ca l e r = 0 f o r max f r e q

1945

1946 EPwm7Regs .AQCTLA. b i t .ZRO = AQ SET; // Set PWM2A on Zero

1947 EPwm7Regs .AQCTLA. b i t .PRD = AQ CLEAR; // Clear PWM2A on event A, up count

1948 EPwm7Regs .AQCTLB. b i t .ZRO = AQ CLEAR; // Set PWM2B on Zero

1949 EPwm7Regs .AQCTLB. b i t .PRD = AQ SET; // Clear PWM2B on event B, up count

1950 }

1951

1952 void EPwm8 Config ()

1953 {

1954 EPwm8Regs .TBPRD = per iod ; // Set t imer per iod , PWM frequency = 1 / per iod

1955 EPwm8Regs .TBPHS. h a l f .TBPHS = phi 4 ; // Time−Base Phase Reg i s ter , s l av e ’ s phase = phi

157

1956

1957 EPwm8Regs .TBCTL. b i t .CTRMODE = TB COUNT UPDOWN; // Count−up mode : used f o r asymmetric PWM

1958 EPwm8Regs .TBCTL. b i t .PHSEN = TB ENABLE; // Enable phase loading , This i s s l av e

1959 EPwm8Regs .TBCTL. b i t .PRDLD = TB SHADOW; // Set Shadowed load

1960 EPwm8Regs .TBCTL. b i t .SYNCOSEL = TB SYNC IN ; // Sync down−stream module , s lave , sync from epwm1

1961 EPwm8Regs .TBCTL. b i t .HSPCLKDIV = TB DIV1 ; // Pr e s c a l e r = 0 f o r max f r e q

1962 EPwm8Regs .TBCTL. b i t .CLKDIV = TB DIV1 ; // Pr e s ca l e r = 0 f o r max f r e q

1963

1964 EPwm8Regs .AQCTLA. b i t .ZRO = AQ SET; // Set PWM2A on Zero

1965 EPwm8Regs .AQCTLA. b i t .PRD = AQ CLEAR; // Clear PWM2A on event A, up count

1966 EPwm8Regs .AQCTLB. b i t .ZRO = AQ CLEAR; // Set PWM2B on Zero

1967 EPwm8Regs .AQCTLB. b i t .PRD = AQ SET; // Clear PWM2B on event B, up count

1968 }

1969 //===

1970 // End o f f i l e .

1971 //===

158

APPENDIX C

FREQUENCY RESPONSE OF A SIX-LEVEL FCML BUCK

CONVERTER

In Section 7.2.5, the dynamic behavior of the FCML buck converter was approximated by the

dynamic behavior of a conventional buck converter in order to tune the compensator parameters.

This approximation is experimentally validated by comparing the frequency response of FCML

and conventional (two-level) buck converters. Here, the experimental comparison study is briefly

explained and the results are provided.

Control-to-inductor current and control-to-output voltage frequency response are needed to de-

velop multiloop feedback in PFC applications. A low-cost experimental setup to measure open loop

frequency response of the six-level FCML and conventional buck converters is created. Figure C.1

depicts a high-level diagram of the experimental setup which consists of six-level and conven-

tional buck converter prototypes used in Chapter 8, a Texas Instruments F28377D microcontroller,

and a Tektronix MSO4034 digital oscilloscope. The six-level FCML converter prototype shown

in Figure 8.3 is configured as a conventional buck converter, and both the six-level FCML and

conventional buck converter are updated with the parameters listed in Table C.1 for the frequency

response comparison study. The microcontroller both runs the converters in dc-dc operation and

generates disturbance on control input (i.e., duty ratio). The oscilloscope measures the disturbance,

output voltage and current.

In Figure C.1, Dfixed is a fixed duty ratio, equal to 0.12 given the operating conditions in Ta-

ble C.1. At every transistor switching period (i.e., 1
fsw

), Dfixed is disturbed by d̃ which is generated

by the Trigonometric Math Unit (TMU) of the microcontroller and a constant scaler, which are

shown in Figure C.1 as sin(.) and K, respectively. The TMU outputs a sine wave consisting of

floating point numbers between -1 and 1 at disturbance frequency, fd̃. The TMU output is sent

to a digital to analog converter (DAC) module to generate a representative voltage (Dm) of the

disturbance. Note that since the DAC module cannot generate negative voltage, TMU output is

properly scaled and offset considering DAC module range and resolution in order to be captured by

159

+
+

d

Dfixed= Vout

Vin Dfixed + d vout,m

~

sin(.)

~

PWM

K

DAC

6-level or 2-level
transistor stage

iout,m
+

+

d

Dfixed= Vout

Vin Dfixed + d

~

sin(.)

~

PWM

DAC

6-level or 2-level
transistor stage

Dm
Microcontroller Power converter under test

fd
~

Figure C.1: High-level diagram of the frequency response comparison experimental setup.

Table C.1: Updated components and specifications for the frequency response comparison of
two-level and six-level configurations of the hardware prototype

Specification New Value

Input Voltage 40 V
Output Voltage 4.8 V
Output Power 20 W

Component New Value

Filter Inductor 6.8 µH
Output Capacitor 160 µF
Flying Capacitor (only in 6-level) 13.2 µF per level
fsw 80 kHz

the oscilloscope. Disturbed control signal (Dfixed + d̃) is sent to PWM module the microcontroller

to drive six-level or two-level transistor stage, both consisting of the same transistors, inductor and

output capacitor as shown in Figure C.1.

In order to analyze the frequency response of the converter under test, fd̃ is manually adjusted

between 20 Hz and 10 kHz at select frequencies while the converter is operating. The oscilloscope

continuously captures Dm, the ac coupled output voltage (vout,m) and the ac coupled output current

(iout,m) for each different fd̃, and calculates the peak-to-peak values of Dm, vout,m, and iout,m, and

the phase difference between Dm and vout,m, and between Dm and iout,m. The calculated quantities

are manually recorded in a spreadsheet. In this experiment, K is empirically chosen as 0.01. Note

that the peak-to-peak voltage of Dm needs to be rescaled by K to properly represent d̃.

Manually recorded quantities of the control-to-output voltage frequency response of the con-

ventional and six-level FCML buck converters are given in Tables C.2 and C.3, respectively. For

the control-to-output current response measurement, the conventional buck converter with speci-

160

fications given in Table C.1 resulted in excessive current ripple, and does not produce meaningful

results. Thus, control-to-output current response is only recorded for the six-level FCML converter

as given in Table C.4. The results given in Tables C.2, C.3 and C.4 are also plotted in Figures C.2

and C.3 along with the theoretical model of the conventional buck converter as explained in [186]

for reference.

Table C.2: Control-to-output voltage frequency response of the six-level FCML buck converter

fd̃ Phase vout,m Dm Dm×K Gain [dB]
[Hz] [◦] [Vp−p] [Vp−p] [Vp−p] (=20×log(

vout,m
Dm×K))

20 -21.12 0.92 2.26 0.0226 32.19
50 -10.83 0.94 2.24 0.0224 32.46
100 -7.23 0.92 2.28 0.0228 32.12
200 -2.4 0.96 2.24 0.0224 32.64
300 -1.804 0.94 2.24 0.0224 32.46

397.7 0 0.94 2.24 0.0224 32.46
500 8.036 0.96 2.24 0.0224 32.64

603.4 -2.793 0.98 2.24 0.0224 32.82
701 1.816 0.94 2.24 0.0224 32.46

795.8 7.162 0.96 2.28 0.0228 32.49
909.9 2.948 0.94 2.24 0.0224 32.46
1000 5.7 0.98 2.28 0.0228 32.67
2013 18.12 1.08 2.28 0.0228 33.51
3051 30.51 1.36 2.24 0.0224 35.67
3982 58.94 1.74 2.2 0.022 37.96
4167 80.45 1.82 2.24 0.0224 38.20
4563 73.54 1.84 2.2 0.022 38.45
4778 99.3 1.82 2.2 0.022 38.35
4977 115.6 1.66 2.24 0.0224 37.40
6284 165.1 1.04 2.24 0.0224 33.34
7650 165.5 0.66 2.2 0.022 29.54
7751 171 0.54 2.12 0.0212 28.12
9007 153 0.36 2.28 0.0228 23.97

As shown in Figures C.2 and C.2, the measured control-to-output voltage and control-to-output

current frequency response of the six-level FCML converter match the theoretical model of a con-

ventional buck converter.

161

Table C.3: Control-to-output voltage frequency response of the conventional buck converter

fd̃ Phase vout,m Dm Dm×K Gain [dB]
[Hz] [◦] [Vp−p] [Vp−p] [Vp−p] (=20×log(

vout,m
Dm×K))

20.04 19.12 1.02 2.64 0.0264 31.74
49.5 2.926 1.04 2.7 0.027 31.71
100.7 -1.83 1.06 2.72 0.0272 31.81
199.2 1.233 1.12 2.72 0.0272 32.29
303.3 2.69 1.1 2.76 0.0276 32.01
395.3 -7.332 1.1 2.8 0.028 31.88
503.4 -3.603 1.06 2.88 0.0288 31.32
603 -0.491 1.08 2.76 0.0276 31.85
705 -5.806 1.08 2.68 0.0268 32.11

793.7 -4.353 1.12 2.88 0.0288 31.80
909.1 11.57 1.12 2.76 0.0276 32.17
1000 0.1 1.121 2.6 0.026 32.69
1992 -10.29 1.24 2.76 0.0276 33.05
3027 -24.29 1.56 2.67 0.0267 35.33
4000 -60.48 2.42 2.44 0.0244 39.93
4223 -69 2.56 2.68 0.0268 39.60
4449 -101 2.76 2.48 0.0248 40.93
4973 -109.5 2.3 2.52 0.0252 39.21
4996 -130 1.52 2.64 0.0264 35.20
6635 -154.7 1 2.76 0.0276 31.18
7634 -160 0.7 2.8 0.028 27.96
8922 -142.9 0.58 2.6 0.026 26.97

Table C.4: Control-to-output current frequency response of the six-level FCML buck converter

fd̃ Phase iout,m Dm Dm×K Gain [dB]

[Hz] [◦] [Ap−p] [Vp−p] [Vp−p] (=20×log(
iout,m
Dm×K))

1000 128.2 0.8 2.24 0.0224 31.06
2000 123 2.48 2.32 0.0232 40.58
2280 135 3.44 2.28 0.0228 43.57
4001 45.78 11 2.2 0.022 53.98
4218 19.67 11.8 2.2 0.022 54.59
4444 20.27 13.4 2.2 0.022 55.69
4751 11.4 13.8 2.24 0.0224 55.79
5333 -84.72 12.6 2.2 0.022 55.16
5720 -113.6 11.5 2.2 0.022 54.37
6667 -121 8.08 2.24 0.0224 51.14
8005 -158.2 5.12 2.16 0.0216 47.50
10000 -169.9 3.08 2.26 0.0226 42.69

162

101 102 103 104 105

M
ag

ni
tu

de
 [d

B
]

10

20

30

40

50

Frequency [Hz]
101 102 103 104 105

P
ha

se
 [d

eg
]

-200

-150

-100

-50

0

50

Theoretical model

Measured 6-level buck FCML

Measured conventional buck

Figure C.2: Control-to-output voltage frequency response of the six-level FCML and conventional
buck converter.

101 102 103 104 105

M
ag

ni
tu

de
 [d

B
]

20

30

40

50

60

Frequency [Hz]
101 102 103 104 105

P
ha

se
 [d

eg
]

-200

-100

0

100

200

Theoretical model
Measured 6-level buck FCML

Figure C.3: Control-to-output current frequency response of the six-level FCML buck converter.

163

APPENDIX D

DESIGN FILES OF PROTOTYPE FCML BUCK CONVERTER

This appendix contains PCB layouts of the prototype FCML buck converter.

Figure D.1: PCB layout of prototype FCML hardware: Top layer, silkscreen and solder mask.
Not to scale due to page width.

Figure D.2: PCB layout of prototype FCML hardware: Bottom layer, silkscreen and solder mask.
Not to scale due to page width.

164

Figure D.3: PCB layout of prototype FCML hardware: Second layer. Not to scale due to page
width.

Figure D.4: PCB layout of prototype FCML hardware: Third layer. Not to scale due to page
width.

165

APPENDIX E

MICROCONTROLLER CODE USED IN FCML BUCK PFC

CONVERTER EXPERIMENTAL STUDY

This appendix contains microcontroller code used in FCML buck PFC converter experimental

study.

Listing E.1: main.c

1 #inc lude ” F28x Project . h” // Device Header f i l e and Examples Inc lude F i l e

2

3 // Inc lude header f i l e s − by EC

4 #inc lude ” g l o b a l v a r i a b l e s . h”

5 #inc lude ” g l o b a l d e f i n e . h”

6 #inc lude ” i n i t i a l i z e . h”

7 #inc lude ” operat ion . h”

8

9 void main (void)

10 {

11 // Step 1 . I n i t i a l i z e System Control :

12 I n i t S y s C t r l () ;

13

14 // Disab le a l l p e r i p h e r a l c l o ck s to save power . Required c l o ck s must be i n i t i a l i z e d by

commenting out the corresponding l i n e s in D i sab l eA l lPe r iphe ra lC lk s () in i n i t i a l i z e . c

15 // NOTE: Per iphe ra l c l o ck s were i n i t i a l i z e d in I n i t S y s C t r l () .

16 D i sab l eA l lPe r iphe ra lC lk s () ;

17

18 // Step 2 . I n i t i a l i z e GPIO

19 In i tGpio () ;

20 In i tRec t i f i e rGPIOs () ; // I n i t i a l i z e the a c t i v e r e c t i f i e r GPIOs

21 InitDebugGPIOs () ; // I n i t i a l i z e the Debug GPIO

22

23 // Step 3 . I n i t i a l i z e I n t e r rup t s

24 I n i t I n t e r r u p t s () ; // I n i t i a l i z e the i n t e r r u p t s

25

26 // Step 4 . I n i t i a l i z e ADC, DAC and ePWM modules

27 InitADCs () ; // I n i t i a l i z e the ADC modules

28 InitDACs () ; // I n i t i a l i z e the DAC modules

29 InitEPwmModules () ; // I n i t i a l i z e the ePWM modules

30

31 // measure MCU a m p l i f i e r b i a s value here at zero cur rent .

32 bias measurement () ; // t h i s func t i on w i l l take a few seconds

33

34 #i f d e f ADC CALIBRATION

35 ADC cal ibrat ion () ;

36 #end i f

37

38 // This has to be done , o therwi se the corresponding XX sum v a r i a b l e might not have the c o r r e c t

number

39 // Clear the moving average array f o r Vout s i g n a l

166

40 memset (Vout array , 0 , NUM POINTS HC) ;

41

42 // Step 5 . Enable In t e r rup t s

43 Enab le Inte r rupts () ;

44

45 // Step 6 . i n f i n i t e loop

46 whi le (1) {} ;

47 }

48

49 i n t e r rup t void a d c t r i g g e r (void) // This func t i on i s c a l l e d at every SAMPLING PERIOD seconds .

50 {

51 #i f d e f TIMING CHECK

52 GpioDataRegs .GPASET. b i t . GPIO16 = 1 ;

53 #end i f

54

55 pe r i od counte r++; // Inc r ea s e per iod counter .

56

57 Vac neg = (s igned) AdcaResultRegs .ADCRESULT0;

58 Vac pos = (s igned) AdcbResultRegs .ADCRESULT0;

59 Vout = (s igned) AdcaResultRegs .ADCRESULT1;

60 I ind = (s igned) AdccResultRegs .ADCRESULT0;

61

62 I ind = Iind−I i n d b i a s ;

63

64 Vac neg adcin = Vac neg∗REG2ADCIN;

65 Vac pos adcin = Vac pos∗REG2ADCIN;

66 Vout adcin = Vout∗REG2ADCIN;

67 I i nd adc in = I ind ∗REG2ADCIN;

68

69 Vac neg rea l = Vac neg adcin ∗ ADCIN2REAL VAC NEG;

70 Vac pos r ea l = Vac pos adcin ∗ ADCIN2REAL VAC POS;

71 Vout rea l = Vout adcin ∗ ADCIN2REAL VOUT;

72 I i n d r e a l = I i nd adc in ∗ ADCIN2REAL IIND ; // I i n d a d c i n z e r o i s f o r a d d i t i o n a l o f f s e t i f needed ,

i n i t i a l l y zero

73

74 Vac rea l = fabs (−Vac pos r ea l+Vac neg rea l) ; // Since ADCIN2REAL VAC NEG and ADCIN2REAL VAC POS

are not the same , c a l c u l a t e the r e a l value be f o r e the moving average .

75

76 //ADC Averaging

77 //Moving average f o r Vout

78 Vout array sum = Vout array sum + Vout − Vout array [moving ave po inter] ; // Sum = Sum + newest

value − o l d e s t value

79 Vout array [moving ave po inter] = Vout ; // Replace the sample value

80 Vout moving ave = Vout array sum∗MOV AVE DIVIDER; // Update the moving average ,

This i s the i n t e g e r r ep r e s en t a t i on o f the r e a l value

81 Vout rea l moving ave = Vout moving ave∗REG2ADCIN∗ADCIN2REAL VOUT;

82

83 moving ave po inter++; // Move the po in t e r forward

84 i f (moving ave po inter==NUM POINTS HC) // Reset HC moving ave pointer at every

NUM POINTS HC i t e r a t i o n s

85 moving ave po inter = 0 ;

86

87 //Window average f o r Vac pos , Vac neg and Vout around Vac peak

88 i f ((VAC PEAK START < pe r i od counte r) && (per iod counter<VAC PEAK END)){ // Averaging window

around peak

89 Vac pos sum = Vac pos sum + Vac pos ;

90 Vac neg sum = Vac neg sum + Vac neg ;

91 // Div i s ion , ADC to r e a l value conver s ion and sum r e s e t are done a f t e r pos h cyc or

neg h cyc i s dec ided .

92 }

93

167

94 // PLL

95 notch out2 = notch out1 ;

96 notch out1 = notch out ;

97 notch in2 = notch in1 ;

98 notch in1 = notch in ;

99 notch in = co spu f32 (theta) ∗(Vac pos−Vac neg) ;

100 notch out = notch b2∗ notch in+notch b1∗notch in1+notch b0∗notch in2−notch a1∗notch out1−notch a0

∗notch out2 ;

101

102 notch out sum = notch out sum+K i p l l ∗notch out ;

103 p l l P I o u t = Kp pl l∗notch out+notch out sum ;

104 the ta p r e = theta ;

105 theta = theta + (SAMPLING PERIOD)∗(60+ p l l P I o u t) ;

106

107 // Determine a c t i v e r e c t i f i e r gat ing s i gna l , aka zero c r o s s i n g s

108 i f (theta pre <0.5 && theta >=0.5)

109 neg h cyc = 1 ;

110 e l s e i f (theta pre <1 && theta >=1)

111 pos h cyc = 1 ;

112 e l s e

113 {

114 pos h cyc = 0 ;

115 neg h cyc = 0 ;

116 }

117

118 i f (theta >=1)

119 theta = theta − 1 ;

120 e l s e i f (theta <0)

121 theta = theta + 1 ;

122

123 i f (pos h cyc == 1){// This block i s executed once when pos h a l f c y c l e s t a r t s

124 Vac neg rea l ave = (Vac neg sum>>VAC PEAK DIVIDER)∗REG2ADCIN∗ADCIN2REAL VAC NEG;

125 Vac neg sum = 0 ;

126

127 GpioDataRegs .GPASET. b i t . GPIO12 = 1 ; //REC POS PWM

128 GpioDataRegs .GPACLEAR. b i t . GPIO15 = 1 ; //REC NEG PWM

129 }

130 i f (neg h cyc == 1){// This block i s executed once when neg h a l f c y c l e s t a r t s

131 Vac pos r ea l ave = (Vac pos sum>>VAC PEAK DIVIDER)∗REG2ADCIN∗ADCIN2REAL VAC POS;

132 Vac pos sum = 0 ;

133

134 GpioDataRegs .GPACLEAR. b i t . GPIO12 = 1 ; //REC POS PWM

135 GpioDataRegs .GPASET. b i t . GPIO15 = 1 ; //REC NEG PWM

136 }

137

138 i f ((pos h cyc == 1) | | (neg h cyc == 1)) // This block i s executed once in every h a l f c y c l e when

each h a l f c y c l e s t a r t s .

139 {

140 Vac rea l peak = 0 .5∗ (Vac pos r ea l ave+Vac neg rea l ave) ; // more r ipp l e , f a s t e r response

141

142 // Deciding the r e f e r e n c e vo l tage f o r the output

143 i f (Vout ramp mode == 1){ //Vout i s ramped to Vout idea l a f t e r Vac peak exceeds

Vout ramp start

144 i f (s tar tup completed == 0){

145 i f (Vac rea l peak<Vout ramp start)

146 Vre f s t a r tup = VREF SCALER∗Vac rea l peak ;

147 e l s e {

148 i f (Vout rea l mov ing ave f ixed<Vout idea l)

149 Vre f s t a r tup = Vre f s t a r tup + 0 . 0 1 ;

150 e l s e {

151 Vre f s t a r tup = Vout idea l ;

168

152 startup completed = 1 ;

153 }

154 }

155 Vref = Vre f s t a r tup ;

156 }

157 i f ((s tartup completed == 1)&&(Vac rea l peak<Vout ramp start)) // Vout i s ramped down

from Vout idea l i f Vac peak becomes l e s s than Vout ramp start

158 Vref = Vref − 0 . 0 0 5 ;

159 }

160 e l s e // i f Vout i s not ramped up to Vout idea l , Vref f o l l o w s Vac peak by pre s e rv ing

conver s ion ra t i on given by VREF SCALER

161 Vref = VREF SCALER∗Vac rea l peak ;

162

163 i f (Vref manual mode == 1) // Overwrites prev ious output vo l tage r e f e r e n c e d e c i s i o n .

Manually ad jus t the r e f e r e n c e by updating V r e f f i x e d .

164 Vref = V r e f f i x e d ;

165

166 // Voltage Loop

167 Vout err = Vref − Vout rea l moving ave ;

168

169 Vout err sum = Vout err sum + Ki v∗Vout err ;

170

171 i f (Vout err sum > Vout err sum sat)

172 Vout err sum = Vout err sum sat ;

173 i f (Vout err sum < −Vout err sum sat)

174 Vout err sum = −Vout err sum sat ;

175

176 iL peak = Kp v∗Vout err + Vout err sum ;

177

178 i f (iL peak > i L peak sa t)

179 iL peak = iL peak sa t ;

180 i f (iL peak < i L p e a k s a t)

181 iL peak = i L p e a k s a t ;

182

183 // Change phase s h i f t d i r e c t i o n i f needed

184 Update PS dir (p s d i r) ;

185

186 // Fix the Vout moving ave to use a constant value in FF mode

187 Vout rea l mov ing ave f i xed = Vout rea l moving ave ;

188

189 // Reset cur rent PI loop v a r i a b l e s

190 i L e r r = 0 ;

191 i L r e f = 0 ;

192 I i n d r e a l = 0 ;

193 i f (i L e r r s u m r e s e t ==0)

194 iL er r sum = 0 ;

195

196 // Reset counters and f l a g s

197 pe r i od counte r = 0 ;

198 p f c count e r = 0 ;

199 }

200

201 // Once PLL i s locked , generate an i n t e r n a l Vac s i g n a l .

202 Vac in t e rna l = Vac rea l peak ∗ f abs (s i n p u f 3 2 (theta)) ;

203

204 #i f n d e f MANUAL CUTOFF

205 i f (Vout rea l < Vac in t e rna l){// TURN ON THE CONVERTER

206 enab l e p f c = 1 ; // i n d i c a t e s the conver te r i s on

207 p f c count e r++;

208

209 GpioDataRegs .GPASET. b i t . GPIO16 = 1 ;

169

210 }

211 e l s e i f (Vout rea l > Vac in t e rna l){ // TURN OFF THE CONVERTER

212 enab l e p f c = 0 ; // i n d i c a t e s the conver te r i s o f f

213

214 GpioDataRegs .GPACLEAR. b i t . GPIO16 = 1 ;

215 }

216 #end i f

217 #i f d e f MANUAL CUTOFF

218 i f ((manua l cuto f f count < pe r i od counte r) && (per iod counter<NUM POINTS HC−manua l cuto f f count)

){ // CONVERTER ON

219 enab l e p f c = 1 ; // i n d i c a t e s the conver te r i s on

220 p f c count e r++;

221

222 //GpioDataRegs .GPASET. b i t . GPIO16 = 1 ;

223 }

224 e l s e { // CONVERTER OFF

225 enab l e p f c = 0 ; // i n d i c a t e s the conver te r i s o f f

226

227 //GpioDataRegs .GPACLEAR. b i t . GPIO16 = 1 ;

228 }

229 #end i f

230

231 i f (pe r i od counte r > NUM POINTS HC+1) { // pe r i od counte r = SAMPLING FREQ / TWICE LINE FREQ at

h a l f cyc le , not sure i f t h i s i f−block i s ever c a l l e d . Keeping i t here j u s t in case .

232 GpioDataRegs .GPACLEAR. b i t . GPIO12 = 1 ; //REC POS PWM

233 GpioDataRegs .GPACLEAR. b i t . GPIO13 = 1 ; //REC NEG SD

234 GpioDataRegs .GPACLEAR. b i t . GPIO14 = 1 ; //REC POS SD

235 GpioDataRegs .GPACLEAR. b i t . GPIO15 = 1 ; //REC NEG PWM

236

237 pe r i od counte r = 0 ;

238 }

239

240 // Current Loop

241 i f (enab l e p f c == 1){

242 // Ca lcu la te cur rent r e f e r e n c e o f f s e t

243 i f ((i L r e f o f f s e t m o d e == 1) && (p f c count e r == 1)){

244 i f (iL re f mode == 1)

245 i L r e f o f f s e t = fabs (s i n p u f 3 2 (theta))∗ iL peak ;

246 e l s e

247 i L r e f o f f s e t = s i n p u f 3 2 (theta)∗ s i n p u f 3 2 (theta)∗ iL peak ;

248 }

249 e l s e i f ((i L r e f o f f s e t m o d e == 0) && (p f c count e r == 1))

250 i L r e f o f f s e t = i L r e f o f f s e t d e b u g ;

251

252 I i n d r e a l = I i n d r e a l + I i n d a d c i n z e r o ;

253

254 i f (iL re f mode == 1)

255 i L r e f = fabs (s i n p u f 3 2 (theta))∗ iL peak − i L r e f o f f s e t ;

256 e l s e

257 i L r e f = s i n p u f 3 2 (theta)∗ s i n p u f 3 2 (theta)∗ iL peak − i L r e f o f f s e t ;

258

259 i L e r r = i L r e f − I i n d r e a l ;

260 iL er r sum = iL err sum + Ki iL∗ i L e r r ;

261

262 i f (iL er r sum > i L e r r sum sa t)

263 iL er r sum = iL e r r sum sa t ;

264 i f (iL er r sum < i L e r r s u m s a t)

265 iL er r sum = i L e r r s u m s a t ;

266

267 D iL = Kp iL∗ i L e r r + iL err sum ;

268

170

269 i f (f f mode == 0)

270 D f f = 0 ;

271 e l s e i f (f f mode == 1)

272 D f f = Vout rea l / Vac in t e rna l ;

273 e l s e i f (f f mode == 2)

274 D f f = Vref / Vac in t e rna l ;

275 e l s e i f (f f mode == 3)

276 D f f = Vout rea l moving ave / Vac in t e rna l ;

277 e l s e i f (f f mode == 4)

278 D f f = Vout rea l mov ing ave f i xed / Vac in t e rna l ;

279 e l s e i f (f f mode == 5){

280 d e l t a i L = i L r e f − i L r e f 1 ;

281 D f f = (FF CONSTANT∗ d e l t a i L+Vref) / Vac in t e rna l ; //FF CONSTANT i s de f ined in

g l o a b a l d e f i n e . h

282 i L r e f 1 = i L r e f ;

283 }

284 i f (D ff>D f f s a t)

285 D f f = D f f s a t ;

286 e l s e i f (D ff<D f f s a t)

287 D f f = D f f s a t ;

288

289 D = D iL + D f f ;

290

291 i f (D>D sat)

292 D = D sat ;

293 e l s e i f (D<D sat)

294 D = D sat ;

295

296 enable FCML = 1 ;

297 }

298 e l s e i f (enab l e p f c == 0){

299 enable FCML = 0 ;

300 }

301

302 #i f d e f FIXED DUTY

303 D = f ixed D ;

304 enable FCML = 1 ;

305 #end i f

306 Update duty (D) ;

307

308 i f (enable FCML != enable FCML pre){ // Turn ON/OFF FCML i f needed

309 i f (enable FCML == 1)

310 Update deadtime (deadtime hs , deadt ime l s) ;

311 e l s e i f (enable FCML == 0)

312 Update deadtime ((2∗PERIOD)+deadtime hs , (2∗PERIOD)+deadt ime l s) ;

313 }

314

315 enable FCML pre = enable FCML ;

316

317 switch (d a c c s e l e c t){

318 case 1 :

319 dacc out = D;

320 break ;

321 case 2 :

322 dacc out = D iL ;

323 break ;

324 case 3 :

325 dacc out = D f f ;

326 break ;

327 case 4 :

328 dacc out = i L r e f ;

171

329 break ;

330 case 5 :

331 dacc out = I i n d r e a l ;

332 break ;

333 case 6 :

334 dacc out = i L e r r ;

335 break ;

336 case 7 :

337 dacc out = iL err sum ;

338 break ;

339 case 8 :

340 dacc out = Vac in t e rna l ;

341 break ;

342 case 9 :

343 dacc out = Vout rea l mov ing ave f i xed ;

344 break ;

345 case 10 :

346 dacc out = Vout rea l moving ave ;

347 break ;

348 case 11 :

349 dacc out = Vac neg ;

350 break ;

351 case 12 :

352 dacc out = Vac pos ;

353 break ;

354 case 13 :

355 dacc out = Vout rea l ;

356 break ;

357 case 14 :

358 dacc out = Vac rea l ;

359 break ;

360 case 15 :

361 dacc out = Vac rea l peak ;

362 break ;

363 case 16 :

364 dacc out = Vac rea l peak ;

365 }

366

367 DaccRegs .DACVALS. b i t .DACVALS = dacc out∗ d a c c m u l t i p l i e r+d a c c o f f s e t ;

368

369 // Clear the f l a g and wait f o r next i n t e r rup t

370 AdcaRegs .ADCINTFLGCLR. b i t .ADCINT1 = 1 ; // c l e a r INT1 f l a g

371 PieCtr lRegs .PIEACK. a l l = PIEACK GROUP1;

372

373 #i f d e f TIMING CHECK

374 GpioDataRegs .GPACLEAR. b i t . GPIO16 = 1 ;

375 #end i f

376 }

Listing E.2: initialize.c

1 #inc lude ” F28x Project . h” // Device H e a d e r f i l e and Examples Inc lude F i l e

2 #inc lude ” i n i t i a l i z e . h”

3 #inc lude ” g l o b a l d e f i n e . h”

4

5 void D i sab l eA l lPe r iphe ra lC lk s () {

6

7 EALLOW;

8 CpuSysRegs .PCLKCR0. b i t .CLA1 = 0 ;

9 CpuSysRegs .PCLKCR0. b i t .DMA = 0 ;

172

10 CpuSysRegs .PCLKCR0. b i t .CPUTIMER0 = 0 ;

11 CpuSysRegs .PCLKCR0. b i t .CPUTIMER1 = 0 ;

12 CpuSysRegs .PCLKCR0. b i t .CPUTIMER2 = 0 ;

13 CpuSysRegs .PCLKCR0. b i t .HRPWM = 0;

14 CpuSysRegs .PCLKCR0. b i t .TBCLKSYNC = 0 ;

15

16 CpuSysRegs .PCLKCR1. b i t . EMIF1 = 0 ;

17 CpuSysRegs .PCLKCR1. b i t . EMIF2 = 0 ;

18

19 CpuSysRegs .PCLKCR2. b i t .EPWM1 = 0 ;

20 CpuSysRegs .PCLKCR2. b i t .EPWM2 = 0 ;

21 CpuSysRegs .PCLKCR2. b i t .EPWM3 = 0 ;

22 CpuSysRegs .PCLKCR2. b i t .EPWM4 = 0 ;

23 CpuSysRegs .PCLKCR2. b i t .EPWM5 = 0 ;

24 CpuSysRegs .PCLKCR2. b i t .EPWM6 = 0 ;

25 CpuSysRegs .PCLKCR2. b i t .EPWM7 = 0 ;

26 CpuSysRegs .PCLKCR2. b i t .EPWM8 = 0 ;

27 CpuSysRegs .PCLKCR2. b i t .EPWM9 = 0 ;

28 CpuSysRegs .PCLKCR2. b i t .EPWM10 = 0 ;

29 CpuSysRegs .PCLKCR2. b i t .EPWM11 = 0 ;

30 CpuSysRegs .PCLKCR2. b i t .EPWM12 = 0 ;

31

32 CpuSysRegs .PCLKCR3. b i t .ECAP1 = 0 ;

33 CpuSysRegs .PCLKCR3. b i t .ECAP2 = 0 ;

34 CpuSysRegs .PCLKCR3. b i t .ECAP3 = 0 ;

35 CpuSysRegs .PCLKCR3. b i t .ECAP4 = 0 ;

36 CpuSysRegs .PCLKCR3. b i t .ECAP5 = 0 ;

37 CpuSysRegs .PCLKCR3. b i t .ECAP6 = 0 ;

38

39 CpuSysRegs .PCLKCR4. b i t .EQEP1 = 0 ;

40 CpuSysRegs .PCLKCR4. b i t .EQEP2 = 0 ;

41 CpuSysRegs .PCLKCR4. b i t .EQEP3 = 0 ;

42

43 CpuSysRegs .PCLKCR6. b i t . SD1 = 0 ;

44 CpuSysRegs .PCLKCR6. b i t . SD2 = 0 ;

45

46 CpuSysRegs .PCLKCR7. b i t . SCI A = 0 ;

47 CpuSysRegs .PCLKCR7. b i t . SCI B = 0 ;

48 CpuSysRegs .PCLKCR7. b i t . SCI C = 0 ;

49 CpuSysRegs .PCLKCR7. b i t . SCI D = 0 ;

50

51 CpuSysRegs .PCLKCR8. b i t . SPI A = 0 ;

52 CpuSysRegs .PCLKCR8. b i t . SPI B = 0 ;

53 CpuSysRegs .PCLKCR8. b i t . SPI C = 0 ;

54

55 CpuSysRegs .PCLKCR9. b i t . I2C A = 0 ;

56 CpuSysRegs .PCLKCR9. b i t . I2C B = 0 ;

57

58 CpuSysRegs .PCLKCR10. b i t .CAN A = 0 ;

59 CpuSysRegs .PCLKCR10. b i t .CAN B = 0 ;

60

61 CpuSysRegs .PCLKCR11. b i t .McBSP A = 0 ;

62 CpuSysRegs .PCLKCR11. b i t .McBSP B = 0 ;

63 CpuSysRegs .PCLKCR11. b i t .USB A = 0 ;

64

65 CpuSysRegs .PCLKCR12. b i t . uPP A = 0 ;

66

67 CpuSysRegs .PCLKCR13. b i t .ADC A = 0 ;

68 CpuSysRegs .PCLKCR13. b i t .ADC B = 0 ;

69 CpuSysRegs .PCLKCR13. b i t .ADC C = 0 ;

70 CpuSysRegs .PCLKCR13. b i t .ADC D = 0 ;

173

71

72 CpuSysRegs .PCLKCR14. b i t .CMPSS1 = 0 ;

73 CpuSysRegs .PCLKCR14. b i t .CMPSS2 = 0 ;

74 CpuSysRegs .PCLKCR14. b i t .CMPSS3 = 0 ;

75 CpuSysRegs .PCLKCR14. b i t .CMPSS4 = 0 ;

76 CpuSysRegs .PCLKCR14. b i t .CMPSS5 = 0 ;

77 CpuSysRegs .PCLKCR14. b i t .CMPSS6 = 0 ;

78 CpuSysRegs .PCLKCR14. b i t .CMPSS7 = 0 ;

79 CpuSysRegs .PCLKCR14. b i t .CMPSS8 = 0 ;

80

81 CpuSysRegs .PCLKCR16. b i t .DAC A = 0 ;

82 CpuSysRegs .PCLKCR16. b i t .DAC B = 0 ;

83 CpuSysRegs .PCLKCR16. b i t .DAC C = 0 ;

84

85 EDIS ;

86 }

87

88 void In i tRec t i f i e rGPIOs () {

89

90 // Conf igure GPIO12 , GPIO13 , GPIO14 , GPIO15 as GPIO output p ins f o r a c t i v e r e c t i f i e r .

91 // GPIO12 i s connected to REC POS PWM net

92 // GPIO13 i s connected to REC NEG SD net

93 // GPIO14 i s connected to REC POS SD net

94 // GPIO15 i s connected to REC NEG PWM net

95 // make sure they are o f f be f o r e changing the pin to output

96 GpioDataRegs .GPACLEAR. b i t . GPIO12 = 1 ; //REC POS PWM

97 GpioDataRegs .GPACLEAR. b i t . GPIO13 = 1 ; //REC NEG SD

98 GpioDataRegs .GPACLEAR. b i t . GPIO14 = 1 ; //REC POS SD

99 GpioDataRegs .GPACLEAR. b i t . GPIO15 = 1 ; //REC NEG PWM

100 GPIO SetupPinMux (12 , GPIO MUX CPU1, 0) ;

101 GPIO SetupPinOptions (12 , GPIO OUTPUT, GPIO PUSHPULL) ;

102 GPIO SetupPinMux (13 , GPIO MUX CPU1, 0) ;

103 GPIO SetupPinOptions (13 , GPIO OUTPUT, GPIO PUSHPULL) ;

104 GPIO SetupPinMux (14 , GPIO MUX CPU1, 0) ;

105 GPIO SetupPinOptions (14 , GPIO OUTPUT, GPIO PUSHPULL) ;

106 GPIO SetupPinMux (15 , GPIO MUX CPU1, 0) ;

107 GPIO SetupPinOptions (15 , GPIO OUTPUT, GPIO PUSHPULL) ;

108 }

109

110 void InitDebugGPIOs () {

111

112 GpioDataRegs .GPACLEAR. b i t . GPIO16 = 1 ; // GPIO16 i s con f i gured as a debug pin

113 GPIO SetupPinMux (16 , GPIO MUX CPU1, 0) ;

114 GPIO SetupPinOptions (16 , GPIO OUTPUT, GPIO PUSHPULL) ;

115 }

116

117 void I n i t I n t e r r u p t s () {

118

119 // See Sect ion 2 . 4 . 4 . 1 Enabling In t e r rup t s o f Technica l Manual spruhm8g . pdf , p . 9 2 .

120

121 // Sub−Step 1 : Disab le i n t e r r u p t s g l o b a l l y .

122

123 // I n i t i a l i z e the PIE con t r o l r e g i s t e r s to t h e i r d e f a u l t s t a t e .

124 // The d e f a u l t s t a t e i s a l l PIE i n t e r r u p t s d i s ab l ed and f l a g s

125 // are c l e a r ed .

126 I n i t P i e C t r l () ;

127

128 // Disab le CPU i n t e r r u p t s and c l e a r a l l CPU in t e r rup t f l a g s :

129 EALLOW;

130 IER = 0x0000 ;

131 IFR = 0x0000 ;

174

132 EDIS ;

133

134 // Sub−Step 2 : Enable the PIE by s e t t i n g the ENPIE b i t o f the PIECTRL r e g i s t e r .

135

136 // I n i t i a l i z e the PIE vector tab l e with po in t e r s to the s h e l l I n t e r rupt

137 // Se rv i c e Routines (ISR) .

138 // This w i l l populate the e n t i r e table , even i f the i n t e r rup t

139 // i s not used in t h i s example . This i s u s e f u l f o r debug purposes .

140 // The s h e l l ISR rou t i n e s are found in F2837xD DefaultIsr . c .

141 // ENPIE b i t o f the PIECTRL r e g i s t e r i s s e t in at the end o f the In i tPieVectTable () func t i on .

142 In i tPieVectTable () ;

143

144 // Sub−Step 3 : Write the ISR vector f o r each i n t e r rup t to the appropr ia te l o c a t i o n in the PIE

vector table , which can be found in Table 2−2.

145

146 //Map ISR func t i on s

147 EALLOW;

148

149 PieVectTable .ADCA1 INT = &a d c t r i g g e r ; // func t i on f o r ADC in t e r rup t . ADCA1 in t e r rup t has the

h ighe s t p r i o r i t y . See Table 2−2.

150

151 // Sub−Step 4 : Set the appropr ia te PIEIERx b i t f o r each in t e r rup t . The PIE group and channel

ass ignments can be found in Table 2−2.

152 PieCtr lRegs . PIEIER1 . b i t . INTx1 = 1 ; // Enable PIE in t e r rup t f o r ADCa INT1 , see Table 2 .2

153

154 // Sub−Step 5 : Set the CPU IER b i t f o r any PIE group conta in ing enabled i n t e r r u p t s . Enable

h igher p r i o r i t y rea l−time debug events

155 IER |= M INT1 ; // Enable group 1 i n t e r r u p t s

156 //ERTM; // Enable Global r ea l t ime i n t e r rup t DBGM. ”EC: Not sure what t h i s does , commenting out

f o r now .”

157

158 EDIS ;

159

160 // Sub−Step 6 : Enable the i n t e r rup t in the p e r i p h e r a l .

161 // This i s done in p e r i p h e r a l i n i t i a l i z a t i o n .

162

163 // Sub−Step 7 : Enable i n t e r r u p t s g l o b a l l y .

164 // This s tep i s done in main . c by Enab le Inte r rupts ()

165 }

166

167 void InitADCs () {

168

169 // I n i t i a l i z e ADC sampling

170 InitADCa () ; // i n i t i a l i z e ADCa

171 InitADCb () ; // i n i t i a l i z e ADCb

172 InitADCc () ; // i n i t i a l i z e ADCc

173 InitADCd () ; // i n i t i a l i z e ADCd

174 }

175

176 void InitADCa () {

177

178 EALLOW;

179 CpuSysRegs .PCLKCR13. b i t .ADC A = 1 ; // Enable ADC A Clock . I n i t i a l l y i t was d i s ab l ed in

D i sab l eA l lPe r iphe ra lC lk s () .

180

181 // wr i t e c o n f i g u r a t i o n s

182 AdcaRegs .ADCCTL2. b i t .PRESCALE = 6 ; // s e t ADCCLK d i v i d e r to /4

183 AdcSetMode (ADC ADCA, ADC RESOLUTION 12BIT, ADC SIGNALMODE SINGLE) ;

184

185 // Set pu l se p o s i t i o n s to l a t e (at the end o f conver s ion)

186 AdcaRegs .ADCCTL1. b i t . INTPULSEPOS = 1 ;

175

187

188 //power up the ADC

189 AdcaRegs .ADCCTL1. b i t .ADCPWDNZ = 1 ;

190

191 //SOC0 measures VAC POS SENSE on pin ADCINA2

192 AdcaRegs .ADCSOC0CTL. b i t .CHSEL = 2 ; //SOC0 w i l l convert pin A2

193 AdcaRegs .ADCSOC0CTL. b i t .ACQPS = 20 ; // sample window (# of SYSCLK, needs to corresponds to at

l e a s t 75 ns)

194 AdcaRegs .ADCSOC0CTL. b i t .TRIGSEL = 5 ; // t r i g g e r on ePWM1 SOCA

195

196 AdcaRegs .ADCSOC1CTL. b i t .CHSEL = 4 ; //SOC1 w i l l convert pin A4

197 AdcaRegs .ADCSOC1CTL. b i t .ACQPS = 20 ; // sample window (# of SYSCLK, needs to corresponds to at

l e a s t 75 ns)

198 AdcaRegs .ADCSOC1CTL. b i t .TRIGSEL = 5 ; // t r i g g e r on ePWM1 SOCA

199

200 AdcaRegs .ADCINTSEL1N2. b i t . INT1SEL = 1 ; //end o f SOC1 w i l l s e t INT1 f l a g

201 AdcaRegs .ADCINTSEL1N2. b i t . INT1E = 1 ; // enable INT1 i n t e r r u p t s

202 AdcaRegs .ADCINTSEL1N2. b i t . INT1CONT = 0 ; //No f u r t h e r ADCINT1 pu l s e s are generated u n t i l

ADCINT1 f l a g i s c l e a r ed by user

203 AdcaRegs .ADCINTFLGCLR. b i t .ADCINT1 = 1 ; //make sure INT1 f l a g i s c l e a r ed

204

205

206

207 EDIS ;

208 }

209

210 void InitADCb (void){

211

212 EALLOW;

213 CpuSysRegs .PCLKCR13. b i t .ADC B = 1 ; // Enable ADC B Clock . I n i t i a l l y i t was d i s ab l ed in

D i sab l eA l lPe r iphe ra lC lk s () .

214

215 // wr i t e c o n f i g u r a t i o n s

216 AdcbRegs .ADCCTL2. b i t .PRESCALE = 6 ; // s e t ADCCLK d i v i d e r to /4

217 AdcSetMode (ADC ADCB, ADC RESOLUTION 12BIT, ADC SIGNALMODE SINGLE) ;

218

219 // Set pu l se p o s i t i o n s to l a t e (at the end o f conver s ion)

220 AdcbRegs .ADCCTL1. b i t . INTPULSEPOS = 1 ;

221

222 //power up the ADC

223 AdcbRegs .ADCCTL1. b i t .ADCPWDNZ = 1 ;

224

225 //SOC0 measures VAC POS SENSE on pin ADCINB2

226 AdcbRegs .ADCSOC0CTL. b i t .CHSEL = 2 ; //SOC0 w i l l convert pin B2

227 AdcbRegs .ADCSOC0CTL. b i t .ACQPS = 20 ; // sample window (# of SYSCLK, needs to corresponds to at

l e a s t 75 ns)

228 AdcbRegs .ADCSOC0CTL. b i t .TRIGSEL = 5 ; // t r i g g e r on ePWM1 SOCA

229

230 EDIS ;

231 }

232

233 void InitADCc (void){

234

235 EALLOW;

236 CpuSysRegs .PCLKCR13. b i t .ADC C = 1 ; // Enable ADC C Clock . I n i t i a l l y i t was d i s ab l ed in

D i sab l eA l lPe r iphe ra lC lk s () .

237

238 // wr i t e c o n f i g u r a t i o n s

239 AdccRegs .ADCCTL2. b i t .PRESCALE = 6 ; // s e t ADCCLK d i v i d e r to /4

240 AdcSetMode (ADC ADCC, ADC RESOLUTION 12BIT, ADC SIGNALMODE SINGLE) ;

241

176

242 // Set pu l se p o s i t i o n s to l a t e (at the end o f conver s ion)

243 AdccRegs .ADCCTL1. b i t . INTPULSEPOS = 1 ;

244

245 //power up the ADC

246 AdccRegs .ADCCTL1. b i t .ADCPWDNZ = 1 ;

247

248 //SOC0 measures VAC POS SENSE on pin ADCINB2

249 AdccRegs .ADCSOC0CTL. b i t .CHSEL = 4 ; //SOC0 w i l l convert pin C4

250 AdccRegs .ADCSOC0CTL. b i t .ACQPS = 20 ; // sample window (# of SYSCLK, needs to corresponds to at

l e a s t 75 ns)

251 AdccRegs .ADCSOC0CTL. b i t .TRIGSEL = 5 ; // t r i g g e r on ePWM1 SOCA

252

253 EDIS ;

254 }

255

256

257 void InitADCd (void){

258

259 EALLOW;

260 CpuSysRegs .PCLKCR13. b i t .ADC D = 1 ; // Enable ADC D Clock . I n i t i a l l y i t was d i s ab l ed in

D i sab l eA l lPe r iphe ra lC lk s () .

261

262 // wr i t e c o n f i g u r a t i o n s

263 AdcdRegs .ADCCTL2. b i t .PRESCALE = 6 ; // s e t ADCCLK d i v i d e r to /4

264 AdcSetMode (ADC ADCD, ADC RESOLUTION 12BIT, ADC SIGNALMODE SINGLE) ;

265

266 // Set pu l se p o s i t i o n s to l a t e (at the end o f conver s ion)

267 AdcdRegs .ADCCTL1. b i t . INTPULSEPOS = 1 ;

268

269 //power up the ADC

270 AdcdRegs .ADCCTL1. b i t .ADCPWDNZ = 1 ;

271

272 //SOC0 measures VRECT SENSE on pin ADCIND2

273 AdcdRegs .ADCSOC0CTL. b i t .CHSEL = 2 ; //SOC0 w i l l convert pin D2

274 AdcdRegs .ADCSOC0CTL. b i t .ACQPS = 20 ; // sample window (# of SYSCLK, needs to corresponds to at

l e a s t 75 ns)

275 AdcdRegs .ADCSOC0CTL. b i t .TRIGSEL = 5 ; // t r i g g e r on ePWM1 SOCA

276

277 EDIS ;

278 }

279

280 void InitDACs () {

281

282 EALLOW;

283

284 // Enable DACOUTA

285

286 CpuSysRegs .PCLKCR16. b i t .DAC A = 1 ; // Enable DAC A Clock . I n i t i a l l y i t was d i s ab l ed in

D i sab l eA l lPe r iphe ra lC lk s () .

287 //Use VDAC as the r e f e r e n c e f o r DAC

288 DacaRegs .DACCTL. b i t .DACREFSEL = 1 ;

289 // Enable DAC output

290 DacaRegs .DACOUTEN. b i t .DACOUTEN = 1 ;

291 // Set DAC to some i n i t i a l va lue

292 DacaRegs .DACVALS. b i t .DACVALS = 2048;

293

294 // Enable DACOUTB

295 CpuSysRegs .PCLKCR16. b i t .DAC B = 1 ; // Enable DAC B Clock . I n i t i a l l y i t was d i s ab l ed in

D i sab l eA l lPe r iphe ra lC lk s () .

296 //Use VDAC as the r e f e r e n c e f o r DAC

297 DacbRegs .DACCTL. b i t .DACREFSEL = 1 ;

177

298 // Enable DAC output

299 DacbRegs .DACOUTEN. b i t .DACOUTEN = 1 ;

300 // Set DAC to some i n i t i a l va lue

301 DacbRegs .DACVALS. b i t .DACVALS = 2048;

302

303 // Enable DACOUTC

304 CpuSysRegs .PCLKCR16. b i t .DAC C = 1 ; // Enable DAC C Clock . I n i t i a l l y i t was d i s ab l ed in

D i sab l eA l lPe r iphe ra lC lk s () .

305 //Use VDAC as the r e f e r e n c e f o r DAC

306 DaccRegs .DACCTL. b i t .DACREFSEL = 1 ;

307 // Enable DAC output

308 DaccRegs .DACOUTEN. b i t .DACOUTEN = 1 ;

309 // Set DAC to some i n i t i a l va lue

310 DaccRegs .DACVALS. b i t .DACVALS = 2048;

311

312 EDIS ;

313 }

314

315 void InitEPwmModules () {

316

317 // Set PWM clock the same as SYSCLK

318 EALLOW;

319 ClkCfgRegs .PERCLKDIVSEL. b i t .EPWMCLKDIV = 0x0 ;

320 EDIS ;

321

322 // Enable ePWM c lo ck s . I n i t i a l l y they were d i s ab l ed in D i sab l eA l lPe r iphe ra lC lk s ()

323 EALLOW;

324 CpuSysRegs .PCLKCR2. b i t .EPWM1=1;

325 CpuSysRegs .PCLKCR2. b i t .EPWM2=1;

326 CpuSysRegs .PCLKCR2. b i t .EPWM3=1;

327 CpuSysRegs .PCLKCR2. b i t .EPWM4=1;

328 CpuSysRegs .PCLKCR2. b i t .EPWM5=1;

329 CpuSysRegs .PCLKCR2. b i t .EPWM6=1;

330 EDIS ;

331

332 // I n i t GPIO pins

333 InitEPwm1Gpio () ; //EPwm1 i s used as master c l o ck

334 InitEPwm2Gpio () ; //EPwm2a/b i s f o r SW1H/L

335 InitEPwm3Gpio () ; //EPwm3a/b i s f o r SW2H/L

336 InitEPwm4Gpio () ; //EPwm4a/b i s f o r SW3H/L

337 InitEPwm5Gpio () ; //EPwm5a/b i s f o r SW4H/L

338 InitEPwm6Gpio () ; //EPwm6a/b i s f o r SW5H/L

339

340

341 in t ps2=(2∗PERIOD) ∗2/(NUM LEVELS−1) ;

342 i n t ps3=(2∗PERIOD) ∗1/(NUM LEVELS−1) ;

343 i n t ps4 =0; //Phase s h i f t r e g i s t e r s must be d i s t r i b u t e d l i k e t h i s

344 i n t ps5=(2∗PERIOD) ∗1/(NUM LEVELS−1) ; // in order to ach ieve the PS−PWM order from top to bottom

switch p a i r s

345 i n t ps6=(2∗PERIOD) ∗2/(NUM LEVELS−1) ; // that we are used to from p u b l i c a t i o n s .

346

347 InitEPwmMaster (PERIOD) ;

348 InitEPwmFCML(&EPwm2Regs , PERIOD, ps2 , 1) ;

349 InitEPwmFCML(&EPwm3Regs , PERIOD, ps3 , 1) ;

350 InitEPwmFCML(&EPwm4Regs , PERIOD, ps4 , 0) ;

351 InitEPwmFCML(&EPwm5Regs , PERIOD, ps5 , 0) ;

352 InitEPwmFCML(&EPwm6Regs , PERIOD, ps6 , 0) ; //Note that the d i r e c t i o n b i t has no e f f e c t un l e s s PWM

i s COUNT UP DOWN

353

354 // Synchronize a l l ePWMs to the TBCLK. Note that t h i s w i l l a l s o s t a r t ADC convers ion s i n c e ADC

are t r i g g e r e d by ePWM1

178

355 EALLOW;

356 CpuSysRegs .PCLKCR0. b i t .TBCLKSYNC = 1 ;

357 EDIS ;

358

359 }

360

361 void InitEPwmMaster (in t32 per iod){

362

363 EALLOW;

364

365 EPwm1Regs .TBPHS. a l l = 0x00000000 ;

366 EPwm1Regs .TBPRD = per iod ; // Set t imer per iod . Note PWM counting s t a r t s

from 0

367 EPwm1Regs .TBPRDHR = 0 ;

368 EPwm1Regs .TBCTR = 0x0000 ; // Clear counter

369

370 // Set up TBCLK

371 EPwm1Regs .TBCTL. b i t .CTRMODE = TB COUNT UPDOWN; // Count up and down

372 EPwm1Regs .TBCTL. b i t .PHSEN = TB DISABLE ; // Disab le Phase load ing

373 EPwm1Regs .TBCTL. b i t .HSPCLKDIV = TB DIV1 ; // Clock r a t i o to SYSCLKOUT

374 EPwm1Regs .TBCTL. b i t .CLKDIV = TB DIV1 ; // Slow to observe on the scope

375 EPwm1Regs .TBCTL. b i t .SYNCOSEL = TB CTR ZERO; // output EPWMxSYNCO when CTR=0

376

377 // Setup compare r e g i s t e r l oad ing

378 EPwm1Regs .CMPCTL. b i t .LOADAMODE = CC CTR ZERO; // load from shadow r e g i s t e r from at both CTR=

ZERO and CTR=PRD

379 EPwm1Regs .CMPCTL. b i t .SHDWAMODE = CC SHADOW;

380

381 // Setup compare

382 EPwm1Regs .CMPA. b i t .CMPA = period >>1; // Master duty cyc l e = 0 . 5 . The value doesn ’ t matter

in t h i s c o n f i g u r a t i o n . Only used f o r monitor ing epwm1a pin . (PIN#160)

383

384 // Set a c t i on s

385 EPwm1Regs .AQCTLA. b i t .PRD = AQ SET;

386 EPwm1Regs .AQCTLA. b i t .ZRO = AQ CLEAR;

387

388 // Enable master−PWM int e r rup t pu l se gene ra t i on s

389 EPwm1Regs .ETSEL. b i t .SOCAEN = 1 ; // enable SOC on A group

390 EPwm1Regs .ETSEL. b i t .SOCASEL = ET CTR PRD; // S e l e c t SOC at PRD, so that the measurements are

a l i gned with epwm4b−mid point , and duty cyc l e update occurs be f o r e epwm4a goes low . Measurements

occur only 5 times during switch t r a n s i t i o n s , t e s t ed f o r 0.1<D<0.95. Note that epwm4 c o n t r o l s

SW3, a . k . a the middle switch pa i r in FCML.

391 EPwm1Regs .ETPS. b i t .SOCAPRD = 1 ; // Generate pu l se on 1 s t event

392

393 EDIS ;

394 }

395

396 void InitEPwmFCML(v o l a t i l e s t r u c t EPWM REGS ∗ pwmregs , in t32 period , in t32 phase , in t16 d i r){

397

398 EALLOW;

399

400 pwmregs−>TBPHS. a l l = 0x00000000 ; // Reset time−base counter phase r e l a t i v e to the

time−base that i s supply ing the synchron i za t i on input

401 pwmregs−>TBPRD = per iod ; // Set t imer per iod . Note PWM counting s t a r t s

from 0

402 pwmregs−>TBPRDHR = 0 ;

403 pwmregs−>TBPHS. b i t .TBPHS = phase ; // Set phase s h i f t

404 pwmregs−>TBCTL. b i t .PHSDIR = d i r ; // phase s h i f t d i r e c t i o n

405 pwmregs−>TBCTR = 0x0000 ; // Clear counter

406

407 // Set up TBCLK

179

408 pwmregs−>TBCTL. b i t .CTRMODE = TB COUNT UPDOWN; // Count up and down

409 pwmregs−>TBCTL. b i t .PHSEN = TB ENABLE; // Phase load ing

410 pwmregs−>TBCTL. b i t .HSPCLKDIV = TB DIV1 ; // Clock r a t i o to SYSCLKOUT

411 pwmregs−>TBCTL. b i t .CLKDIV = TB DIV1 ; // Slow to observe on the scope

412 pwmregs−>TBCTL. b i t .SYNCOSEL = TB SYNC IN ; // output EPWMxSYNCO from EPWMxSYNCI

413

414 // Setup compare r e g i s t e r l oad ing

415 pwmregs−>CMPCTL. b i t .LOADAMODE = CC CTR PRD; // load from shadow r e g i s t e r from at both CTR=

ZERO and CTR=PRD

416 pwmregs−>CMPCTL. b i t .SHDWAMODE = CC SHADOW;

417

418 // Setup compare

419 pwmregs−>CMPA. b i t .CMPA = period >>1;

420 // pwmregs−>CMPA. b i t .CMPAHR = (1<<8) ; // From Shibin ’ s code , not sure why s e t to 256

s i n c e HR mode i s not used . EC

421

422 // Below r e g i s t e r s assume :

423 // 1 . PWMA i s high s ide , PWMB i s low s i d e .

424 // 2 . main duty c o n t r o l s high s i d e .

425 // 3 . deadtime c o n t r o l s the time gap between the f a l l i n g and r i s i n g edge o f PWMA and PWMB.

426 // 4 . deadtime > 2∗PERIOD c l e a r s both PWMA and PWMB outputs at the same time . Used to FCML

switch p a i r s OFF when needed . Tested f o r 0 .005 < main duty < 0 .995 , and 1 < deadtime hs &

deadt ime l s < 10 .

427

428 // Set a c t i on s

429 pwmregs−>AQCTLA. b i t .CAU = AQ SET;

430 pwmregs−>AQCTLA. b i t .CAD = AQ CLEAR;

431

432 // Setup the deadband

433 pwmregs−>DBCTL. b i t .OUT MODE = DB FULL ENABLE;

434 pwmregs−>DBCTL. b i t .POLSEL = DB ACTV HIC;

435 pwmregs−>DBCTL. b i t . IN MODE = DBA ALL;

436 pwmregs−>DBRED = deadtime hs ;

437 pwmregs−>DBFED = deadt ime l s ;

438

439 EDIS ;

440 }

441

442 void bias measurement ()

443 {

444 // seems that the f i r s t ADC reading might not be accurate , do a dummy read

445 whi le (AdcaRegs .ADCINTFLG. b i t .ADCINT1 != 1) ; // wait f o r f i r s t s e t o f measurement to f i n i s h

446 dummy read = AdcaResultRegs .ADCRESULT0;

447 dummy read = AdcaResultRegs .ADCRESULT1;

448 dummy read = AdcbResultRegs .ADCRESULT0;

449 dummy read = AdcbResultRegs .ADCRESULT1;

450 dummy read = AdccResultRegs .ADCRESULT0;

451 dummy read = AdccResultRegs .ADCRESULT1;

452 dummy read = AdcdResultRegs .ADCRESULT0;

453 dummy read = AdcdResultRegs .ADCRESULT1;

454 AdcaRegs .ADCINTFLGCLR. b i t .ADCINT1 = 1 ; // c l e a r INT1 f l a g

455

456 // wait

457 // make sure wait f o r 1 s at l e a s t f o r a l l the ex t e rna l c i r c u i t to power on ! ! ! ! !

458 // 1 s i s the measured delay from power on to cur rent s ens ing amp has va l i d s i g n a l

459 // otherwi se the b ia s measurement might have unexpected e r r o r

460 DELAY US(1000000) ;

461

462 int32 I ind b ia s sum = 0 ;

463 int32 adc count = 0 ;

464 f o r (adc count =0; adc count <512; adc count++)

180

465 {

466 whi le (AdcaRegs .ADCINTFLG. b i t .ADCINT1 != 1) ; // wait f i r s t s e t o f measurements to f i n i s h

467 I ind b ia s sum += AdccResultRegs .ADCRESULT0; // read r e s u l t from ADCc0 f o r IL b i a s

468

469 AdcaRegs .ADCINTFLGCLR. b i t .ADCINT1 = 1 ; // c l e a r INT1 f l a g

470 }

471 I i n d b i a s = I ind bias sum >>9; // Divide by 2ˆ9 (=512)

472 }

473

474 void ADC cal ibrat ion ()

475 {

476 int16 moving ave po inter = 0 ;

477 int16 dummy read array [NUM POINTS HC]={0} ;

478 int32 dummy read array sum = 0 ;

479

480 memset (dummy read array , 0 , NUM POINTS HC) ;

481

482 whi le (1)

483 {

484 whi le (AdcaRegs .ADCINTFLG. b i t .ADCINT1 != 1) ; //Wait u n t i l ADC t r i g g e r s .

485 // Fol lowing commands are executed at SWITCHING FREQUENCY

486

487 //dummy read = AdcaResultRegs .ADCRESULT0; // Vac neg

488 dummy read = AdcaResultRegs .ADCRESULT1; //Vout

489 //dummy read = AdcbResultRegs .ADCRESULT0; // Vac pos

490 //dummy read = AdcbResultRegs .ADCRESULT1; //

491 //dummy read = AdccResultRegs .ADCRESULT0; // I ind

492 //dummy read = AdccResultRegs .ADCRESULT1; //

493 //dummy read = AdcdResultRegs .ADCRESULT0; //Vrec

494 //dummy read = AdcdResultRegs .ADCRESULT1;

495

496 // Although not needed , perform moving average f o r dummy read to read s t a b l e numbers in

Express ions panel

497 dummy read array sum = dummy read array sum + dummy read − dummy read array [

moving ave po inter] ; // Sum = Sum + newest value − o l d e s t value

498 dummy read array [moving ave po inter] = dummy read ; // Replace the

sample value

499 dummy read moving ave = dummy read array sum∗MOV AVE DIVIDER∗REG2ADCIN; //

Update the moving average , This should correspond to the vo l tage at the ADC pin .

500

501 moving ave po inter++; // Move the po in t e r forward

502 i f (moving ave po inter==NUM POINTS HC) // Reset moving ave po inter at

every NUM POINTS HC i t e r a t i o n s

503 moving ave po inter = 0 ;

504

505 AdcaRegs .ADCINTFLGCLR. b i t .ADCINT1 = 1 ; // Clear ADC f l a g

506 }

507 }

Listing E.3: initialize.h

1 #i f n d e f INITIALIZE H

2 #de f i n e INITIALIZE H

3

4 #inc lude ” g l o b a l d e f i n e . h”

5

6 // Function d e f i n i t i o n s

7 void D i sab l eA l lPe r iphe ra lC lk s () ;

8 void In i tRec t i f i e rGPIOs () ; // I n i t i a l i z e a c t i v e r e c t i f i e r c on t r o l GPIO pins

9 void InitDebugGPIOs () ; // I n i t i a l i z e debug GPIO pins

181

10

11 void I n i t I n t e r r u p t s (void) ; // i n i t i a l i z e nece s sa ry i n t e r r u p t s

12 i n t e r rup t void a d c t r i g g e r (void) ;

13

14 void InitADCs (void) ;

15 void InitADCa (void) ; // I n i t i a l i z e ADCa, measure Vac neg on A2 (SOC0)

16 void InitADCb (void) ; // I n i t i a l i z e ADCb, measure Vac pos on B2 (SOC0)

17 void InitADCc (void) ; // I n i t i a l i z e ADCc, measure cur rent on C4 (SOC0)

18 void InitADCd (void) ; // I n i t i a l i z e ADCd, measure Vrect on D2 (SOC0)

19

20 void bias measurement (void) ; // measure b ia s value from current a m p l i f i e r

21

22 void ADC cal ibrat ion (void) ; // ADC c a l i b r a t i o n

23

24 void InitDACs () ; // i n i t i a l i z e DAC A, B and C

25

26 void InitEPwmModules (void) ; // i n i t i a l i z e ePWM modules

27 void InitEPwmMaster (in t32 per iod) ; // i n i t i a l i z e ePWM1 as c lock master

28 void InitEPwmFCML(v o l a t i l e s t r u c t EPWM REGS ∗ pwmregs , in t32 period , in t32 phase , in t16 d i r) ; //

i n i t i a l i z e ePWM2 − ePWM6 as FCML con t r o l s i g n a l s

29

30 // FCML con t r o l v a r i a b l e s

31 extern v o l a t i l e f l o a t D;

32 extern int16 deadtime hs ;

33 extern int16 deadt ime l s ;

34 extern int16 I i n d b i a s ;

35 extern int16 dummy read ;

36 extern f l o a t 3 2 dummy read moving ave ;

37 // extern int16 d i r ;

38

39 // Function to c l e a r a block o f memory

40 void memset (void ∗mem, in t ch , s i z e t l ength) ;

41

42 #end i f /∗ INITIALIZE H ∗/

Listing E.4: operation.c

1 #inc lude ” F28x Project . h” // Device H e a d e r f i l e and Examples Inc lude F i l e

2 #inc lude ” operat ion . h”

3 #inc lude ” g l o b a l d e f i n e . h”

4

5

6 void Update duty (f l o a t 3 2 duty)

7 {

8 Uint16 d = 0 ;

9

10 i f (duty > 1) // This case i s only executed i f main duty i s entered by mistake in dc−dc mode

11 d = 0 . 5 ; //AC−DC mode must have i t ’ s own sa tu ra t i on block . d i s never b igge r than 0 . 9 9 5 .

12 e l s e i f (duty < 0) // This case i s only executed i f main duty i s entered by mistake in dc−dc mode

13 d = 0 . 5 ; //AC−DC mode must have i t ’ s own sa tu ra t i on block . d i s never b igge r than 0 . 9 9 5 .

14 e l s e

15 d = (1−duty)∗PERIOD; //To con t r o l high s i d e switch on−time with duty around COUNT UP DOWN

peak , not zero

16

17 EPwm2Regs .CMPA. b i t .CMPA = d ;

18 EPwm3Regs .CMPA. b i t .CMPA = d ;

19 EPwm4Regs .CMPA. b i t .CMPA = d ;

20 EPwm5Regs .CMPA. b i t .CMPA = d ;

21 EPwm6Regs .CMPA. b i t .CMPA = d ;

22

182

23 }

24

25 void Update deadtime (f l o a t 3 2 deadtime hs , f l o a t 3 2 deadt ime l s)

26 {

27

28 EPwm2Regs .DBRED = deadtime hs ;

29 EPwm2Regs .DBFED = deadt ime l s ;

30 EPwm3Regs .DBRED = deadtime hs ;

31 EPwm3Regs .DBFED = deadt ime l s ;

32 EPwm4Regs .DBRED = deadtime hs ;

33 EPwm4Regs .DBFED = deadt ime l s ;

34 EPwm5Regs .DBRED = deadtime hs ;

35 EPwm5Regs .DBFED = deadt ime l s ;

36 EPwm6Regs .DBRED = deadtime hs ;

37 EPwm6Regs .DBFED = deadt ime l s ;

38 }

39

40 void Update PS dir (in t16 d i r)

41 {

42 EPwm2Regs .TBCTL. b i t .PHSDIR = d i r ;

43 EPwm3Regs .TBCTL. b i t .PHSDIR = d i r ;

44 EPwm5Regs .TBCTL. b i t .PHSDIR = 1−d i r ;

45 EPwm6Regs .TBCTL. b i t .PHSDIR = 1−d i r ;

46 }

Listing E.5: operation.h

1 #i f n d e f OPERATION H

2 #de f i n e OPERATION H

3

4 #inc lude ” g l o b a l d e f i n e . h”

5

6

7

8 #end i f /∗ OPERATION H ∗/

9

10 void Update duty (f l o a t duty) ; // change duty r a t i o to a given value

11 void Update deadtime (f l o a t deadtime hs , f l o a t deadt ime l s) ; // change deadtime to a given value

12 void Update PS dir (i n t d i r) ;

183

APPENDIX F

ADDITIONAL EXPERIMENTAL RESULTS WITH SIX-LEVEL

BUCK CONVERTER

F.1 Step-down dc-dc application

Although the six-level buck converter prototype is designed for single-phase PFC application, the

FCML buck stage shown in Figure 8.2 can be operated as a step-down dc-dc converter. As men-

tioned in Section 2.1, nominal 400 V is a common voltage level in data center applications; therefore,

the six-level FCML converter is configured as a 400 V to 48 V dc-dc converter to showcase its per-

formance as a high voltage step-down dc-dc converter. Using the same 100 V rated GaN transistors,

the six-level buck converter stage of the hardware prototype in Section 8.1 can withstand 400 V

input voltage with 20% margin. The switching frequency, flying capacitor and inductor of the

FCML buck stage are updated as in Table F.1 to increase the efficiency and output power for

400 V to 48 V dc-dc step-down application. The updated FCML buck stage for step-down dc-dc

conversion still fits in a box volume of 1.63 in3. Experimental results provided here are achieved

with the same heat sink mentioned in Section 8.1, resulting in 3.38 in3 total converter box volume.

Efficiency of the six-level buck stage for 380/400 V to 48 V dc-dc conversion is given in Figure F.1.

For 380/400 V dc input voltage, the six-level buck converter can provide up to 775 W output

power, yielding 229 W/ in3 power density. At 380 V input peak and full load efficiency are 97%

and 94.1%, respectively. At 400 V dc input voltage, peak and full load efficiency are 96.7% and

94.5%, respectively. If cooled down with forced air, at 400 V dc input voltage, the six-level buck

converter output power can be increased to 1100 W, yielding 325 W/ in3 power density. It achieves

96.7% peak and 91.9% full load efficiency.

F.2 Power factor correction application

The power factor at 240 VRMS input voltage can be increased by adding a 10 Ω resistor in series

between the power supply and the converter to damp distortion of the input current waveform. The

184

Table F.1: Updated components of the FCML buck stage for step-down dc-dc application

Component Manufacturer & Part Number Details
Flying capacitor TDK C5750X6S 450 V, 2.2 µF, 8 in parallel per level
Inductor Vishay ILHP5050EZER 5.6 µH, 2 in series
Input capacitor TDK C5750X6S 450 V, 2.2 µF, 8 in parallel
Switching Frequency 60 kHz

Output current [A]

0 5 10 15 20 25

E
ff

ic
ie

n
cy

 [
%

]

88

90

92

94

96

98

100

V
in

= 380 V

V
in

= 400 V

V
in

= 400 V with forced air cooling

Figure F.1: Six-level FCML buck converter dc-dc conversion efficiency at 400 V input voltage.

six-level FCML buck converter then can achieve 0.8386 power factor and 92.083% power conversion

efficiency (excluding 13.67 W power loss on the series input resistor) at rated current, as can be

seen in Figure F.2.

185

vin

iin

iout

vout

Pin

Pout

Figure F.2: The input and output voltage, current, and power of the six-level buck converter in
PFC operation at 240 VRMS input voltage with 10 Ω series resistor between the ac power supply
and the converter.

186

REFERENCES

[1] J. G. Koomey, “Estimating total power consumption by servers in the us and the world,”
Lawrence Berkeley National Laboratory, Tech. Rep., 2007.

[2] R. E. Brown, E. R. Masanet, B. Nordman, W. F. Tschudi, A. Shehabi, J. Stanley, J. G.
Koomey, D. A. Sartor, and P. T. Chan, “Report to congress on server and data center energy
efficiency: public law 109-431,” Lawrence Berkeley National Laboratory, Tech. Rep., 2007.

[3] A. Shehabi, S. J. Smith, D. A. Sartor, R. E. Brown, M. Herrlin, J. G. Koomey, E. R. Masanet,
N. Horner, I. L. Azevedo, and W. Lintner, “United states data center energy usage report,”
Ernest Orlando Lawrence Berkeley National Laboratory, Tech. Rep. LBNL-1005775, June
2016 2016.

[4] R. Ascierto, “Uptime institute global data center survey,” Uptime Institute, Tech. Rep., 2018.

[5] P. T. Krein, “Data center challenges and their power electronics,” CPSS Trans. Power Elec-
tron. Appl., vol. 2, no. 1, 2017.

[6] P. S. Shenoy and P. T. Krein, “Differential power processing for dc systems,” IEEE Trans.
Power Electron., vol. 28, no. 4, pp. 1795–1806, April 2013.

[7] E. Candan, “A series-stacked power delivery architecture with isolated converters for energy
efficient data centers,” M.S. thesis, University of Illinois at Urbana-Champaign, 2014.

[8] Y. Lei, W. C. Liu, and R. C. N. Pilawa-Podgurski, “An analytical method to evaluate and
design hybrid switched-capacitor and multilevel converters,” IEEE Trans. Power Electron.,
vol. 33, no. 3, pp. 2227–2240, March 2018.

[9] E. Candan, D. Heeger, P. Shenoy, and R. Pilawa-Podgurski, “Hot-swapping analysis and
implementation of series-stacked server power delivery architectures,” IEEE Tran. Power
Electron., vol. 32, no. 10, pp. 18 071–8088, Oct 2017.

[10] E. Candan, P. S. Shenoy, and R. C. N. Pilawa-Podgurski, “A distributed bi-directional hys-
teresis control algorithm for server-to-virtual bus differential power processing,” in Proc.
IEEE 16th Workshop Control and Modeling Power Electron., July 2015, pp. 1–8.

[11] E. Candan, P. S. Shenoy, and R. C. N. Pilawa-Podgurski, “Unregulated bus operation of
server-to-virtual bus differential power processing for data centers,” in Proc. 32nd Annu.
IEEE Appl. Power Electron. Conf. and Expo., March 2017, pp. 1632–1639.

[12] E. Candan, P. S. Shenoy, and R. C. N. Pilawa-Podgurski, “A 6-level flying capacitor multi-
level converter for single phase buck-type power factor correction,” in Proc. 34th Annu. IEEE
Appl. Power Electron. Conf. and Expo., March 2017.

187

[13] E. Candan and R. C. Pilawa-Podgurski, “DC data centers,” in DC Distribution
Systems and Microgrids, T. Dragičević, P. Wheeler, and F. Blaabjerg, Eds. UK:
Institution of Engineering and Technology, 2018, pp. 343–366. [Online]. Available:
https://digital-library.theiet.org/content/books/10.1049/pbpo115e ch14

[14] N. Rasmussen, “Ac vs. dc power distribution for data centers,” Schneider Electric,
White Paper, 2011. [Online]. Available: https://www.apc.com/salestools/SADE-5TNRLG/
SADE-5TNRLG R6 EN.pdf

[15] D. F. D. Tan, “A review of immediate bus architecture: A system perspective,” IEEE J.
Emerging Sel. Topics Power Electron., vol. 2, no. 3, pp. 363–373, Sept 2014.

[16] M. Ton, B. Fortenbery, and W. Tschudi, “Dc power for improved data center
efficiency,” Lawrence Berkeley National Laboratory, Report, 2008. [Online]. Available:
https://datacenters.lbl.gov/sites/all/files/DC%20Power%20Demo 2008.pdf

[17] T. Yamashita, S. Muroyama, S. Furubo, and S. Ohtsu, “270 v dc system - a highly efficient
and reliable power supply system for both telecom and datacom systems,” in Proc. 21st IEEE
Int. Telecommun. Energy Conf., Jun 1999, pp. 1–6.

[18] U. Carlsson, M. Flodin, J. Akerlund, and A. Ericsson, “Powering the internet - broadband
equipment in all facilities - the need for a 300 v dc powering and universal current option,”
in Proc. 25th IEEE Int. Telecommun. Energy Conf., Oct 2003, pp. 164–169.

[19] A. Sannino, G. Postiglione, and M. H. J. Bollen, “Feasibility of a dc network for commercial
facilities,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1499–1507, Sept 2003.

[20] F. Bodi and E. H. Lim, “380/400 v dc powering option,” in Proc. 33rd IEEE Int. Telecommun.
Energy Conf., Oct 2011, pp. 1–8.

[21] M. Salato, A. Zolj, D. J. Becker, and B. J. Sonnenberg, “Power system architectures for 380v
dc distribution in telecom datacenters,” in Proc. IEEE Int. Telecommun. Energy Conf., Sept
2012, pp. 1–7.

[22] A. Pratt, P. Kumar, and T. V. Aldridge, “Evaluation of 400v dc distribution in telco and data
centers to improve energy efficiency,” in Proc. 29th IEEE Int. Telecommun. Energy Conf.,
Sept 2007, pp. 32–39.

[23] Final draft ETSI EN 300 132-3-1 environmental engineering (EE); power supply interface at
the input to telecommunications and datacom (ICT) equipment; part 3: operated by rectified
current source, alternating current source or direct current source up to 400 V; sub-part 1:
direct current source up to 400 V, European Telecommunications Standards Institute Std.
EN 300 123-3-1, Rev. 2.1.1, 10 2011.

[24] Draft ETSI EN 301 605 environmental engineering (EE); earthing and bonding of 400 VDC
data and telecom (ICT) equipment, European Telecommunications Standards Institute Std.
ETSI EN 301 605, Rev. V1.1.1, 10 2013.

[25] IEC 61643-21 low voltage surge protective devices part 21: surge protective devices con-
nected to telecommunications and signalling networks performance requirements and testing
methods, International Electrotechnical Commission Std. IEC 61 643-21, Rev. 1.2, 07 2012.

188

[26] T. Aldridge, A. Pratt, P. Kumar, D. Dupy, and G. AlLee, “Evaluating 400v direct-
current for data centers a case study comparing 400 vdc with 480-208 vac power
distribution for energy efficiency and other benefits,” Intel Labs, White Paper, 2010.
[Online]. Available: https://blogs.intel.com/wp-content/mt-content/com/research/Direct%
20400Vdc%20White%20Paper.pdf

[27] V. Sithimolada and P. W. Sauer, “Facility-level dc vs. typical ac distribution for data centers:
a comparative reliability study,” in Proc. TENCON IEEE Region 10 Conf., Nov 2010, pp.
2102–2107.

[28] D. Kintner, “Duke energy - EPRI dc powered data center demonstration executive summary,”
Electric Power Research Institute (EPRI), Tech. Rep., 2011.

[29] N. Rasmussen and J. Spitaels, “A quantitative comparison of high efficiency ac vs. dc power
distribution for data centers,” Schneider Electric, White Paper, 2012. [Online]. Available:
https://www.apc.com/salestools/NRAN-76TTJY/NRAN-76TTJY R4 EN.pdf

[30] M. Szpek, B. J. Sonnenberg, and S. M. Lisy, “400vdc distribution architectures for central
offices and data centers,” in Proc. 36th IEEE Int. Telecommun. Energy Conf., Sept 2014, pp.
1–6.

[31] N. Rasmussen, “Review of four studies comparing efficiency of ac and dc distribution
for data centers,” Schneider Electric, White Paper, 2012. [Online]. Available: https:
//www.schneider-electric.com.ar/es/download/document/APC VAVR-8Q7K7N EN/

[32] L. Schrittwieser, J. W. Kolar, and T. B. Soeiro, “99% efficient three-phase buck-type SiC
MOSFET PFC rectifier minimizing life cycle cost in dc data centers,” CPSS Trans. Power
Electron. Appl., vol. 2, no. 1, pp. 47–58, 2017.

[33] F. Xu, B. Guo, L. M. Tolbert, F. Wang, and B. J. Blalock, “An all-SiC three-phase buck
rectifier for high-efficiency data center power supplies,” IEEE Trans. Ind. Appl., vol. 49, no. 6,
pp. 2662–2673, Nov 2013.

[34] Z. Liu, F. C. Lee, Q. Li, and Y. Yang, “Design of GaN-based MHz totem-pole PFC rectifier,”
IEEE J. Emerging Sel. Topics Power Electron., vol. 4, no. 3, pp. 799–807, Sept 2016.

[35] M. Kasper, D. Bortis, G. Deboy, and J. W. Kolar, “Design of a highly efficient (97.7%) and
very compact (2.2 kw/dm3) isolated acdc telecom power supply module based on the multicell
isop converter approach,” IEEE Trans. Power Electron., vol. 32, no. 10, pp. 7750–7769, Oct
2017.

[36] S. Qin, Y. Lei, Z. Ye, D. Chou, and R. C. N. Pilawa-Podgurski, “A high power density power
factor correction front end based on seven-level flying capacitor multilevel converter,” IEEE
J. Emerging Sel. Topics Power Electron., pp. 1–1, 2018.

[37] D. Huang, S. Ji, and F. C. Lee, “LLC resonant converter with matrix transformer,” IEEE
Trans. Power Electron., vol. 29, no. 8, pp. 4339–4347, Aug 2014.

[38] W. Zhang, B. Guo, F. Xu, Y. Cui, Y. Long, F. Wang, L. M. Tolbert, B. J. Blalock, and
D. J. Costinett, “Wide bandgap power devices based high efficiency power converters for
data center application,” in Proc. 2nd IEEE Workshop Wide Bandgap Power Devices and
Appl., Oct 2014, pp. 121–126.

189

[39] M. D. Seeman, S. R. Bahl, D. I. Anderson, and G. A. Shah, “Advantages of GaN in a high-
voltage resonant LLC converter,” in Proc. 29th Annu. IEEE Appl. Power Electron. Conf.
and Expo., March 2014, pp. 476–483.

[40] J. Biela, U. Badstuebner, and J. W. Kolar, “Design of a 5-kW, 1-U, 10-kW/dm3 resonant
dc-dc converter for telecom applications,” IEEE Trans. Power Electron., vol. 24, no. 7, pp.
1701–1710, July 2009.

[41] Z. Ye, Y. Lei, and R. C. N. Pilawa-Podgurski, “A resonant switched capacitor based 4-to-1
bus converter achieving 2180W/in3 power density and 98.9% peak efficiency,” in Proc. 33rd
Annu. IEEE Appl. Power Electron. Conf. and Expo., March 2018, pp. 121–126.

[42] D. Reusch and J. Strydom, “Evaluation of gallium nitride transistors in high frequency res-
onant and soft-switching dc-dc converters,” IEEE Trans. Power Electron., vol. 30, no. 9, pp.
5151–5158, Sept 2015.

[43] Y. Li, X. Lyu, D. Cao, S. Jiang, and C. Nan, “A 98.55% efficiency switched-tank converter
for data center application,” IEEE Trans. Ind. Appl., pp. 1–1, 2018.

[44] D. Cao, X. Lyu, Y. Li, Z. Ni, J. Johnson, S. Jiang, and C. Nan, “An ultra efficient composite
modular power delivery architecture for solar farm and data center,” in Proc. 33rd Annu.
IEEE Appl. Power Electron. Conf. and Expo., March 2018, pp. 73–80.

[45] J. S. Rentmeister and J. T. Stauth, “A 48v:2v flying capacitor multilevel converter using
current-limit control for flying capacitor balance,” in Proc. 32nd Annu. IEEE Appl. Power
Electron. Conf. and Expo., March 2017, pp. 367–372.

[46] A. Kumar and K. K. Afridi, “Single-stage isolated 48v-to-1.8v point-of-load converter utiliz-
ing an impedance control network for wide input range operation,” in Proc. IEEE Energy
Conversion Congr. and Expo., Oct 2017, pp. 2003–2009.

[47] M. Chen, K. K. Afridi, S. Chakraborty, and D. J. Perreault, “Multitrack power conversion
architecture,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 325–340, Jan 2017.

[48] L. Jia, S. Lakshmikanthan, X. Li, and Y. F. Liu, “New modeling method and design opti-
mization for a soft-switched dc-dc converter,” IEEE Trans. Power Electron., vol. 33, no. 7,
pp. 5754–5772, July 2018.

[49] D. Reusch, F. C. Lee, D. Gilham, and Y. Su, “Optimization of a high density gallium nitride
based non-isolated point of load module,” in Proc. IEEE Energy Conversion Congr. and
Expo., Sept 2012, pp. 2914–2920.

[50] B. K. Rhea, L. L. Jenkins, W. E. Abell, F. T. Werner, C. G. Wilson, R. N. Dean, and D. K.
Harris, “A 12 to 1 v five phase interleaving GaN POL converter for high current low voltage
applications,” in Proc. 2nd IEEE Workshop Wide Bandgap Power Devices and Appl., Oct
2014, pp. 155–158.

[51] L. L. Jenkins, C. G. Wilson, J. D. Moses, J. M. Aggas, B. K. Rhea, and R. N. Dean,
“Optimization of a 96% efficient 121 v gallium nitride based point of load converter,” in
Proc. 29th Annu. IEEE Appl. Power Electron. Conf. and Expo., March 2014, pp. 2098–2104.

190

[52] P. S. Shenoy, M. Amaro, J. Morroni, and D. Freeman, “Comparison of a buck converter and a
series capacitor buck converter for high-frequency, high-conversion-ratio voltage regulators,”
IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7006–7015, Oct 2016.

[53] W. Lee and B. Sarlioglu, “Design and analysis of integrated planar inductor for GaN HEMT-
based zero-voltage switching synchronous buck converter,” in Proc. IEEE Power Energy
Conf. at Illinois, Feb 2018, pp. 1–6.

[54] P. T. Krein, R. S. Balog, and M. Mirjafari, “Minimum energy and capacitance requirements
for single-phase inverters and rectifiers using a ripple port,” IEEE Trans. Power Electron.,
vol. 27, no. 11, pp. 4690–4698, Nov 2012.

[55] “Detailed inverter specifications, testing procedure, and technical approach and
testing application requirements for the little box challenge.” [Online]. Available:
https://littleboxchallenge.com/pdf/LBC-InverterRequirements-20150717.pdf

[56] S. Qin, Y. Lei, C. Barth, W. C. Liu, and R. C. N. Pilawa-Podgurski, “A high power density
series-stacked energy buffer for power pulsation decoupling in single-phase converters,” IEEE
Trans. Power Electron., vol. 32, no. 6, pp. 4905–4924, June 2017.

[57] U. Anwar, D. Maksimovic, and K. K. Afridi, “A simple control architecture for four-switch
buck-boost converter based power factor correction rectifier,” in Proc. IEEE 18th Workshop
Control and Modeling Power Electron., July 2017, pp. 1–6.

[58] D. Reusch and J. Glaser, Dc-dc converter handbook - a supplement to GaN transistors for
efficient power conversion. Efficient Power Conversion Corporation, 2015.

[59] L. A. Barroso, J. Clidaras, and U. Hölzle, The datacenter as a computer: an introduction to
the design of warehouse-scale machines, 2nd ed. Morgan & Claypool, 2013.

[60] D. Maiquet and G. Kervarrec, “New flexible powering architecture for integrated service
operators,” in Proc. Twenty-Seventh IEEE Int. Telecommun. Energy Conf., Sept 2005, pp.
575–580.

[61] G. AlLee and W. Tschudi, “Edison redux: 380 vdc brings reliability and efficiency to sus-
tainable data centers,” IEEE Power Energy Mag., vol. 10, no. 6, pp. 50–59, Nov 2012.

[62] W. P. Turner, J. H. Seader, and V. E. Renaud, “Tier standard: topology,” Uptime
Institute, Tech. Rep., 2012. [Online]. Available: https://uptimeinstitute.com/publications/
asset/tier-standard-topology

[63] 1100 IEEE recommended practice for powering and grounding electronic equipment, Institute
of Electrical and Electronics Engineers Std. IEEE STD 1100-2005, December 2015.

[64] M. Chen, M. Araghchini, K. K. Afridi, J. H. Lang, C. R. Sullivan, and D. J. Perreault, “A
systematic approach to modeling impedances and current distribution in planar magnetics,”
IEEE Trans. Power Electron., vol. 31, no. 1, pp. 560–580, Jan 2016.

[65] U. Badstuebner, J. Biela, and J. W. Kolar, “Design of an 99%-efficient, 5kW, phase-shift pwm
dc-dc converter for telecom applications,” in Proc. 25th Annu. IEEE Appl. Power Electron.
Conf. and Expo., Feb 2010, pp. 773–780.

191

[66] R. Simanjorang, H. Yamaguchi, H. Ohashi, K. Nakao, T. Ninomiya, S. Abe, M. Kaga, and
A. Fukui, “High-efficiency high-power dc-dc converter for energy and space saving of power-
supply system in a data center,” in Proc. 26th Annu. IEEE Appl. Power Electron. Conf. and
Expo., March 2011, pp. 600–605.

[67] Vicor BCM bus converter BCM48Bx480y300A00 isolated fixed ratio dc-dc converter,
1st ed., Vicorpower, 08 2016. [Online]. Available: http://cdn.vicorpower.com/documents/
datasheets/BCM48B 480 300A00.pdf

[68] S. V. Araujo, P. Zacharias, and B. Sahan, “Novel grid-connected non-isolated converters for
photovoltaic systems with grounded generator,” in Proc. 29th IEEE Annu. Power Electron.
Specialists Conf., June 2008, pp. 58–65.

[69] Y. Sverdlik, “Apple reaches 100% renewable energy across all data cen-
ters,” 2013. [Online]. Available: https://www.datacenterdynamics.com/news/
apple-reaches-100-renewable-energy-across-all-data-centers/

[70] Y. Sverdlik, “eBay’s Utah data center offers a glimpse into the fu-
ture,” 2013. [Online]. Available: https://www.datacenterdynamics.com/news/
ebays-utah-data-center-offers-a-glimpse-into-the-future/

[71] R. C. N. Pilawa-Podgurski and D. J. Perreault, “Submodule integrated distributed maxi-
mum power point tracking for solar photovoltaic applications,” IEEE Trans. Power Electron.,
vol. 28, no. 6, pp. 2957–2967, June 2013.

[72] S. Qin, S. T. Cady, A. D. Domı́nguez-Garćıa, and R. C. N. Pilawa-Podgurski, “A distributed
approach to maximum power point tracking for photovoltaic submodule differential power
processing,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2024–2040, April 2015.

[73] T. P. Foulkes, “Developing an active, high-heat-flux thermal management strategy for power
electronics via jumping-droplet phase-change cooling,” M.S. thesis, University of Illinois at
Urbana-Champaign, 2017.

[74] T. Foulkes, J. Oh, P. Birbarah, J. Neely, N. Miljkovic, and R. C. N. Pilawa-Podgurski,
“Active hot spot cooling of GaN transistors with electric field enhanced jumping droplet
condensation,” in Proc. 32nd Annu. IEEE Appl. Power Electron. Conf. and Expo., March
2017, pp. 912–918.

[75] J. Koomey, “A simple model for determining true total cost of ownership for data centers,”
Uptime Institute, White Paper, 2007.

[76] N. Rasmussen, “Determining total cost of ownership for data center and network
room infrastructure,” Schneider Electric, White paper, 2011. [Online]. Available:
https://www.apc.com/salestools/CMRP-5T9PQG/CMRP-5T9PQG R4 EN.pdf

[77] E. M. Landsman, “Scalable data center architecture for on-demand power infrastructure,” in
Proc. Eighteenth Annu. IEEE Appl. Power Electron. Conf. and Expo., vol. 1, Feb 2003, pp.
10–13 vol.1.

[78] T. Shimizu, M. Hirakata, T. Kamezawa, and H. Watanabe, “Generation control circuit for
photovoltaic modules,” IEEE Trans. Power Electron., vol. 16, no. 3, pp. 293–300, May 2001.

192

[79] T. Shimizu, O. Hashimoto, and G. Kimura, “A novel high-performance utility-interactive
photovoltaic inverter system,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 704–711,
March 2003.

[80] G. R. Walker and J. C. Pierce, “Photovoltaic dc-dc module integrated converter for novel
cascaded and bypass grid connection topologies design and optimization,” in Proc. 37th
IEEE Power Electron. Specialists Conf., June 2006, pp. 1–7.

[81] P. Shenoy, K. Kim, B. Johnson, and P. Krein, “Differential power processing for increased
energy production and reliability of photovoltaic systems,” IEEE Trans. Power Electron.,
vol. 28, no. 6, pp. 2968–2979, June 2013.

[82] C. Olalla, D. Clement, M. Rodriguez, and D. Maksimovic, “Architectures and control of
submodule integrated dc-dc converters for photovoltaic applications,” IEEE Trans. Power
Electron., vol. 28, no. 6, pp. 2980–2997, June 2013.

[83] C. Olalla, C. Deline, and D. Maksimovic, “Performance of mismatched PV systems with
submodule integrated converters,” IEEE J. Photovoltaics, vol. 4, no. 1, pp. 396–404, Jan
2014.

[84] C. Schaef and J. T. Stauth, “Multilevel power point tracking for partial power processing
photovoltaic converters,” IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 4, pp.
859–869, Dec 2014.

[85] Y. Levron, D. R. Clement, B. Choi, C. Olalla, and D. Maksimovic, “Control of submodule
integrated converters in the isolated-port differential power-processing photovoltaic architec-
ture,” IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 4, pp. 821–832, Dec 2014.

[86] C. Olalla, C. Deline, D. Clement, Y. Levron, M. Rodriguez, and D. Maksimovic, “Performance
of power-limited differential power processing architectures in mismatched pv systems,” IEEE
Trans. Power Electron., vol. 30, no. 2, pp. 618–631, Feb 2015.

[87] J. Galtieri and P. T. Krein, “Impact of differential power processing on inter-row shading
in solar arrays,” in Proc. IEEE 16th Workshop Control and Modeling Power Electron., July
2015, pp. 1–8.

[88] R. Bell and R. C. N. Pilawa-Podgurski, “Decoupled and distributed maximum power point
tracking of series-connected photovoltaic submodules using differential power processing,”
IEEE J. Emerging Sel. Topics Power Electron., vol. 3, no. 4, pp. 881–891, Dec 2015.

[89] S. Qin, C. B. Barth, and R. C. N. Pilawa-Podgurski, “Enhancing microinverter energy capture
with submodule differential power processing,” IEEE Trans. Power Electron., vol. 31, no. 5,
pp. 3575–3585, May 2016.

[90] K. Doubleday, B. Choi, D. Maksimovic, C. Deline, and C. Olalla, “Recovery of inter-row
shading losses using differential power-processing submodule dc-dc converters,” Solar
Energy, vol. 135, pp. 512 – 517, 2016. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0038092X1630192X

[91] Y. T. Jeon, H. Lee, K. A. Kim, and J. H. Park, “Least power point tracking method for
photovoltaic differential power processing systems,” IEEE Trans. Power Electron., vol. 32,
no. 3, pp. 1941–1951, March 2017.

193

[92] C. Liu, D. Li, Y. Zheng, and B. Lehman, “Modular differential power processing (mDPP),”
in Proc. IEEE 18th Workshop Control and Modeling Power Electron., July 2017, pp. 1–7.

[93] C. Liu, Y. Zheng, D. Li, and B. Lehman, “Distributed MPPT for modular differential power
processing in scalable photovoltaic system,” in Proc. 33rd Annu. IEEE Appl. Power Electron.
Conf. and Expo., March 2018, pp. 1098–1103.

[94] S. Rajapandian, K. L. Shepard, P. Hazucha, and T. Karnik, “High-voltage power delivery
through charge recycling,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1400–1410, June
2006.

[95] E. K. Ardestani, R. T. Possignolo, J. L. Briz, and J. Renau, “Managing mismatches in
voltage stacking with coreunfolding,” ACM Trans. Archit. Code Optim., vol. 12, no. 4, pp.
43:1–43:26, Nov. 2015. [Online]. Available: http://doi.acm.org/10.1145/2835178

[96] C. Schaef and J. T. Stauth, “Efficient voltage regulation for microprocessor cores stacked in
vertical voltage domains,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1795–1808, Feb
2016.

[97] T. Tong, S. K. Lee, X. Zhang, D. Brooks, and G. Y. Wei, “A fully integrated reconfigurable
switched-capacitor dc-dc converter with four stacked output channels for voltage stacking
applications,” IEEE J. Solid-State Circuits, vol. 51, no. 9, pp. 2142–2152, Sept 2016.

[98] E. Ebrahimi, R. T. Possignolo, and J. Renau, “SRAM voltage stacking,” in Proc. IEEE Int.
Symp. Circuits and Syst., May 2016, pp. 1634–1637.

[99] S. K. Lee, T. Tong, X. Zhang, D. Brooks, and G. Y. Wei, “A 16-core voltage-stacked system
with adaptive clocking and an integrated switched-capacitor dc-dc converter,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 4, pp. 1271–1284, April 2017.

[100] K. Blutman, A. Kapoor, A. Majumdar, J. G. Martinez, J. Echeverri, L. Sevat, A. P. van der
Wel, H. Fatemi, K. A. A. Makinwa, and J. P. de Gyvez, “A low-power microcontroller in
a 40-nm CMOS using charge recycling,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp.
950–960, April 2017.

[101] S. M. Ahsanuzzaman, A. Parayandeh, A. Prodić, and D. A. Johns, “A building block ic for
designing emerging hybrid and multilevel converters,” IEEE J. Emerging Sel. Topics Power
Electron., vol. 6, no. 2, pp. 500–514, June 2018.

[102] P. Wang and M. Chen, “Towards power FPGA: Architecture, modeling and control of multi-
port power converters,” in Proc. IEEE 19th Workshop Control and Modeling Power Electron.,
June 2018, pp. 1–8.

[103] Y. Yang and T. Lehmann, “Current recycling in linear regulators for biomedical implants,”
in Proc. 53rd IEEE Int. Midwest Symp. Circuits and Syst., Aug 2010, pp. 545–548.

[104] Y. Yang, H. Chun, and T. Lehmann, “Dual-stacked current recycling linear regulators with
48% power saving for biomedical implants,” IEEE Trans. Circuits and Syst. I Reg. Papers,,
vol. 60, no. 7, pp. 1946–1958, July 2013.

[105] C. Pascual and P. Krein, “Switched capacitor system for automatic series battery equaliza-
tion,” in Proc. Twelfth Annl. IEEE Appl. Power Electron. Conf. and Expo., vol. 2, Feb 1997,
pp. 848–854 vol.2.

194

[106] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Design considerations
for charge equalization of an electric vehicle battery system,” IEEE Trans. Ind. Appl., vol. 35,
no. 1, pp. 28–35, Jan 1999.

[107] C. Karnjanapiboon, K. Jirasereeamornkul, and V. Monyakul, “High efficiency battery man-
agement system for serially connected battery string,” in IEEE Int. Symp. Ind. Electron.,
July 2009, pp. 1504–1509.

[108] M. Einhorn, W. Guertlschmid, T. Blochberger, R. Kumpusch, R. Permann, F. V. Conte,
C. Kral, and J. Fleig, “A current equalization method for serially connected battery cells
using a single power converter for each cell,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp.
4227–4237, Nov 2011.

[109] F. Baronti, G. Fantechi, R. Roncella, and R. Saletti, “High-efficiency digitally controlled
charge equalizer for series-connected cells based on switching converter and super-capacitor,”
IEEE Trans. Ind. Informatics, vol. 9, no. 2, pp. 1139–1147, May 2013.

[110] M. Y. Kim, J. H. Kim, and G. W. Moon, “Center-cell concentration structure of a cell-to-cell
balancing circuit with a reduced number of switches,” IEEE Trans. Power Electron., vol. 29,
no. 10, pp. 5285–5297, Oct 2014.

[111] F. Mestrallet, L. Kerachev, J. C. Crebier, and A. Collet, “Multiphase interleaved converter
for lithium battery active balancing,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2874–
2881, June 2014.

[112] M. Evzelman, M. M. U. Rehman, K. Hathaway, R. Zane, D. Costinett, and D. Maksi-
movic, “Active balancing system for electric vehicles with incorporated low-voltage bus,”
IEEE Trans. Power Electron., vol. 31, no. 11, pp. 7887–7895, Nov 2016.

[113] M. Shousha, A. Prodić, V. Marten, and J. Milios, “Design and implementation of assist-
ing converter-based integrated battery management system for electromobility applications,”
IEEE J. Emerging Sel. Topics Power Electron., vol. 6, no. 2, pp. 825–842, June 2018.

[114] J. McClurg, Y. Zhang, J. Wheeler, and R. Pilawa-Podgurski, “Re-thinking data center power
delivery: Regulating series-connected voltage domains in software,” in Proc. IEEE Power
Energy Conf. at Illinois, Feb 2013, pp. 147–154.

[115] E. Candan, P. S. Shenoy, and R. C. N. Pilawa-Podgurski, “A series-stacked power delivery
architecture with isolated differential power conversion for data centers,” IEEE Trans. Power
Electron., vol. 31, no. 5, pp. 3690–3703, May 2016.

[116] J. McClurg, R. Pilawa-Podgurski, and P. Shenoy, “A series-stacked architecture for high-
efficiency data center power delivery,” in Proc. IEEE Energy Conversion Congr. and Expo.,
Sept 2014, pp. 170–177.

[117] Y. Zhang, E. Candan, and R. C. N. Pilawa-Podgurski, “A series-stacked architecture with
4-to-1 GaN-based isolated converters for high-efficiency data center power delivery,” in Proc.
IEEE Energy Conversion Congr. and Expo., Oct 2017, pp. 4467–4474.

[118] D. Das and P. T. Krein, “Voltage regulation of a series-stacked system of processors by
differential power processing,” in Proc. IEEE 16th Workshop Control and Modeling Power
Electron., July 2015, pp. 1–7.

195

[119] A. Stillwell and R. C. N. Pilawa-Podgurski, “A resonant switched-capacitor converter with
GaN transistors for series-stacked processors with 99.8% power delivery efficiency,” in Proc.
IEEE Energy Conversion Congr. and Expo., Sept 2015, pp. 563–570.

[120] D. Das and P. T. Krein, “A bidirectional wide load range multiphase buck/boost converter
for differential power processing,” in Proc. IEEE 18th Workshop Control and Modeling Power
Electron., July 2017, pp. 1–7.

[121] P. S. Shenoy, “Improving performance, efficiency, and reliability of dc-dc conversion sys-
tems by differential power processing,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2012.

[122] B. Davies, “Analysis of inrush currents for dc powered IT equipment,” in Proc. IEEE 33rd
Int. Telecommun. Energy Conf., Oct 2011, pp. 1–4.

[123] J. Alimeling and W. Hammer, “PLECS-piece-wise linear electrical circuit simulation for
simulink,” in Proc. IEEE Int. Conf. Power Electron. and Drive Syst., vol. 1, 1999, pp. 355–360
vol.1.

[124] R. W. DeDoncker, M. H. Kheraluwala, and D. M. Divan, “Power conversion apparatus for
dc/dc conversion using dual active bridges,” U.S. patent US5 027 264A, 1991.

[125] M. Kheraluwala, R. Gascoigne, D. Divan, and E. Baumann, “Performance characterization of
a high-power dual active bridge dc-to-dc converter,” IEEE Trans. Ind. Appl., vol. 28, no. 6,
pp. 1294–1301, Nov 1992.

[126] F. Krismer and J. Kolar, “Accurate power loss model derivation of a high-current dual active
bridge converter for an automotive application,” IEEE Trans. Ind. Electron., vol. 57, no. 3,
pp. 881–891, March 2010.

[127] H. Qin and J. W. Kimball, “Generalized average modeling of dual active bridge dc-dc con-
verter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2078–2084, April 2012.

[128] D. Costinett, D. Maksimovic, and R. Zane, “Design and control for high efficiency in high
step-down dual active bridge converters operating at high switching frequency,” IEEE Trans.
Power Electron., vol. 28, no. 8, pp. 3931–3940, Aug 2013.

[129] A. Waterland, Stress POSIX workload generator. [Online]. Available: http://people.seas.
harvard.edu/∼apw/stress

[130] VICOR PFM4414xB6M48D0yAz Datasheet, 1st ed., VICOR, Aug. 2018. [Online]. Available:
http://www.vicorpower.com/documents/datasheets/ds PFM4414xB6M48D0yAz.pdf

[131] VICOR DCM3714xD2H53E0yzz Datasheet, 1st ed., VICOR, July 2018. [Online]. Available:
http://www.vicorpower.com/documents/datasheets/DCM3714xD2H53E0yzz ds.pdf

[132] “80 plus certification,” 2018. [Online]. Available: https://www.plugloadsolutions.com/
80PlusPowerSupplies.aspx

[133] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correc-
tion: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749–755, May 2003.

196

[134] H. Endo, T. Yamashita, and T. Sugiura, “A high-power-factor buck converter,” in Proc. 23rd
Annu. IEEE Power Electron. Specialists Conf., June 1992, pp. 1071–1076 vol.2.

[135] Y.-W. Lo and R. J. King, “High performance ripple feedback for the buck unity-power-factor
rectifier,” IEEE Trans. Power Electron., vol. 10, no. 2, pp. 158–163, Mar 1995.

[136] G. Spiazzi, “Analysis of buck converters used as power factor preregulators,” in Proc. Conf.
Rec. 28th Annu. IEEE Power Electron. Specialists Conf., vol. 1, Jun 1997, pp. 564–570 vol.1.

[137] L. Huber, L. Gang, and M. M. Jovanovic, “Design-oriented analysis and performance evalu-
ation of buck PFC front end,” IEEE Trans. Power Electron., vol. 25, no. 1, pp. 85–94, Jan
2010.

[138] V. Vlatkovic, D. Borojevic, and F. C. Lee, “Input filter design for power factor correction
circuits,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 199–205, Jan 1996.

[139] M. C. Ghanem, K. Al-Haddad, and G. Roy, “A new single phase buck-boost converter with
unity power factor,” in Proc. Conf. Rec. IEEE Ind. Appl. Conf. Twenty-Eighth IAS Annu.
Meeting, Oct 1993, pp. 785–792 vol.2.

[140] G. K. Andersen and F. Blaabjerg, “Current programmed control of a single-phase two-switch
buck-boost power factor correction circuit,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp.
263–271, Feb 2005.

[141] M. Chen and J. Sun, “Feedforward current control of boost single-phase PFC converters,”
IEEE Trans. Power Electron., vol. 21, no. 2, pp. 338–345, March 2006.

[142] F. Zhang, J. Xu, P. Yang, and Z. Chen, “Single-phase two-switch PCCM buck-boost PFC
converter with fast dynamic response for universal input voltage,” in Proc. 8th Int. Conf.
Power Electron., May 2011, pp. 205–209.

[143] M. O. Badawy, Y. Sozer, and J. A. D. Abreu-Garcia, “A novel control for a cascaded buck-
boost PFC converter operating in discontinuous capacitor voltage mode,” IEEE Trans. Ind.
Electron., vol. 63, no. 7, pp. 4198–4210, July 2016.

[144] T. A. Meynard and H. Foch, “Multi-level conversion: high voltage choppers and voltage-
source inverters,” in Proc. 23rd Annu. IEEE Power Electron. Specialists Conf., Jun 1992, pp.
397–403 vol.1.

[145] D. Reusch, F. C. Lee, and M. Xu, “Three level buck converter with control and soft startup,”
in Proc. IEEE Energy Conversion Congr. and Expo., Sept 2009, pp. 31–35.

[146] K. Kesarwani and J. T. Stauth, “Resonant and multi-mode operation of flying capacitor
multi-level dc-dc converters,” in Proc. IEEE 16th Workshop Control and Modeling Power
Electron., July 2015, pp. 1–8.

[147] V. Yousefzadeh, E. Alarcon, and D. Maksimovic, “Three-level buck converter for envelope
tracking applications,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 549–552, March 2006.

[148] C. A. Teixeira, D. G. Holmes, and B. P. McGrath, “Single-phase semi-bridge five-level flying-
capacitor rectifier,” IEEE Trans. Ind. Appl., vol. 49, no. 5, pp. 2158–2166, Sept 2013.

197

[149] A. Parastar, A. Gandomkar, and J. Seok, “High-efficiency multilevel flying-capacitor dc/dc
converter for distributed renewable energy systems,” IEEE Trans. Ind. Electron., vol. 62,
no. 12, pp. 7620–7630, Dec 2015.

[150] N. Vukadinović, A. Prodić, B. A. Miwa, C. B. Arnold, and M. W. Baker, “Ripple minimizing
digital controller for flying capacitor dc-dc converters based on dynamic mode levels switch-
ing,” in Proc. 32nd Annu. IEEE Appl. Power Electron. Conf. and Expo., March 2017, pp.
1090–1096.

[151] D. Chou, Y. Lei, and R. C. N. Pilawa-Podgurski, “A zero-voltage switching, physically flexible
multilevel GaN dc-dc converter,” in Proc. IEEE Energy Conversion Congr. and Expo., Oct
2017, pp. 3433–3439.

[152] Z. Liao, Y. Lei, and R. C. N. Pilawa-Podgurski, “Analysis and design of a high power density
flying-capacitor multilevel boost converter for high step-up conversion,” IEEE Trans. Power
Electron., pp. 1–1, 2018.

[153] A. Stillwell, M. E. Blackwell, and R. C. N. Pilawa-Podgurski, “Design of a 1 kV bidirec-
tional dc-dc converter with 650 V GaN transistors,” in Proc. 33rd Annu. IEEE Appl. Power
Electron. Conf. and Expo., March 2018, pp. 1155–1162.

[154] T. Modeer, C. B. Barth, N. Pallo, W. H. Chung, T. Foulkes, and R. C. N. Pilawa-Podgurski,
“Design of a GaN-based, 9-level flying capacitor multilevel inverter with low inductance
layout,” in Proc. 32nd Annu. IEEE Appl. Power Electron. Conf. and Expo., March 2017, pp.
2582–2589.

[155] Y. Lei, C. Barth, S. Qin, W. C. Liu, I. Moon, A. Stillwell, D. Chou, T. Foulkes, Z. Ye, Z. Liao,
and R. C. N. Pilawa-Podgurski, “A 2-kw single-phase seven-level flying capacitor multilevel
inverter with an active energy buffer,” IEEE Trans. Power Electron., vol. 32, no. 11, pp.
8570–8581, Nov 2017.

[156] C. B. Barth, T. Foulkes, W. H. Chung, T. Modeer, P. Assem, P. Assem, Y. Lei, and R. C. N.
Pilawa-Podgurski, “Design and control of a GaN-based, 13-level, flying capacitor multilevel
inverter,” in Proc. IEEE 17th Workshop Control and Modeling Power Electron., June 2016,
pp. 1–6.

[157] N. Pallo, T. Foulkes, T. Modeer, S. Coday, and R. Pilawa-Podgurski, “Power-dense multilevel
inverter module using interleaved GaN-based phases for electric aircraft propulsion,” in Proc.
33rd Annu. IEEE Appl. Power Electron. Conf. and Expo., March 2018, pp. 1656–1661.

[158] I. Moon, C. F. Haken, E. K. Saathoff, E. Bian, Y. Lei, S. Qin, D. Chou, S. Sedig, W. H.
Chung, and R. C. N. Pilawa-Podgurski, “Design and implementation of a 1.3 kW, 7-level
flying capacitor multilevel ac-dc converter with power factor correction,” in Proc. 32nd Annu.
IEEE Appl. Power Electron. Conf. and Expo., March 2017, pp. 67–73.

[159] S. Qin, Z. Liao, Z. Ye, D. Chou, N. Brooks, and R. C. N. Pilawa-Podgurski, “A 99.1%
efficient, 490 W/in3 power density power factor correction front end based on a 7-level flying
capacitor multilevel converter,” in Proc. 33rd Annu. IEEE Appl. Power Electron. Conf. and
Expo., March 2018, pp. 729–736.

[160] B. P. McGrath and D. G. Holmes, “Multicarrier PWM strategies for multilevel inverters,”
IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 858–867, Aug 2002.

198

[161] R. H. Wilkinson, T. A. Meynard, and H. du Toit Mouton, “Natural balance of multicell
converters: The general case,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1658–1666,
Nov 2006.

[162] Y. Lei, “High-performance power converters leveraging capacitor-based energy transfer,”
Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2017.

[163] A. Ruderman, B. Reznikov, and M. Margaliot, “Simple analysis of a flying capacitor converter
voltage balance dynamics for dc modulation,” in Proc. 13th Int. Power Electron. and Motion
Control Conf., Sept 2008, pp. 260–267.

[164] B. Reznikov and A. Ruderman, “Four-level single-leg flying capacitor converter voltage bal-
ance dynamics analysis,” in Proc. 13th European Conf. Power Electron. and Appl., Sept 2009,
pp. 1–10.

[165] A. Ruderman and B. Reznikov, “Five-level single-leg flying capacitor converter voltage bal-
ance dynamics analysis,” in Proc. 35th Annu. Conf. IEEE Ind. Electron. Soc., Nov 2009, pp.
486–491.

[166] B. Reznikov and A. Ruderman, “Six-level single-leg flying capacitor converter voltage balanc-
ing dynamics analysis,” in Proc. 14th Int. Power Electron. and Motion Control Conf., Sept
2010, pp. 7–14.

[167] A. Shukla, A. Ghosh, and A. Joshi, “Capacitor voltage balancing schemes in flying capacitor
multilevel inverters,” in Proc. IEEE 38th Annu. Power Electron. Specialists Conf., June 2007,
pp. 2367–2372.

[168] M. Khazraei, H. Sepahvand, K. Corzine, and M. Ferdowsi, “A generalized capacitor voltage
balancing scheme for flying capacitor multilevel converters,” in Proc. 25th Annu. IEEE Appl.
Power Electron. Conf. and Expo., Feb 2010, pp. 58–62.

[169] A. Stillwell, E. Candan, and R. C. N. Pilawa-Podgurski, “Constant effective duty cycle control
for flying capacitor balancing in flying capacitor multi-level converters,” in Proc. IEEE 19th
Workshop Control and Modeling Power Electron., July 2018, pp. 1–6.

[170] M. E. Blackwell, A. Stillwell, and R. C. Pilawa-Podgurski, “Dynamic level selection for full
range ZVS in flying capacitor multi-level converters,” in Proc. IEEE 19th Workshop Control
and Modeling Power Electron., July 2018, pp. 1–6.

[171] Z. Ye, Y. Lei, Z. Liao, and R. C. N. Pilawa-Podgurski, “Investigation of capacitor voltage
balancing in practical implementations of flying capacitor multilevel converters,” in Proc.
IEEE 18th Workshop Control and Modeling Power Electron., July 2017, pp. 1–7.

[172] Z. Ye, Y. Lei, W. C. Liu, P. S. Shenoy, and R. C. N. Pilawa-Podgurski, “Design and imple-
mentation of a low-cost and compact floating gate drive power circuit for GaN-based flying
capacitor multi-level converters,” in Proc. 32nd Annu. IEEE Appl. Power Electron. Conf.
and Expo., March 2017, pp. 2925–2931.

[173] N. Pallo, T. Modeer, and R. C. N. Pilawa-Podgurski, “Electrically thin approach to switching
cell design for flying capacitor multilevel converters,” in Proc. IEEE 5th Workshop Wide
Bandgap Power Devices and Appl., Oct 2017, pp. 411–416.

199

[174] S. Pirog and R. Stala, “Selection of parameters for balancing circuit of dc-dc and ac-ac
multicell converters,” in Proc. European Conf. Power Electron. and Appl., Sept 2005, pp.
1–10.

[175] R. Stala, S. Pirog, M. Baszynski, A. Mondzik, A. Penczek, J. Czekonski, and S. Gasiorek,
“Results of investigation of multicell converters with balancing circuit – Part I,” IEEE Trans.
Ind. Electron., vol. 56, no. 7, pp. 2610–2619, July 2009.

[176] R. Stala, S. Pirog, A. Mondzik, M. Baszynski, A. Penczek, J. Czekonski, and S. Gasiorek,
“Results of investigation of multicell converters with balancing circuit – Part II,” IEEE Trans.
Ind. Electron., vol. 56, no. 7, pp. 2620–2628, July 2009.

[177] Y. S. Lee, S. J. Wang, and S. Y. R. Hui, “Modeling, analysis, and application of buck
converters in discontinuous-input-voltage mode operation,” IEEE Trans. Power Electron.,
vol. 12, no. 2, pp. 350–360, Mar 1997.

[178] V. Grigore and J. Kyyra, “High power factor rectifier based on buck converter operating
in discontinuous capacitor voltage mode,” IEEE Trans. Power Electron., vol. 15, no. 6, pp.
1241–1249, Nov 2000.

[179] L. Solero, V. Serrao, M. Montuoro, and A. Romanelli, “Low THD variable load buck PFC
converter,” in Proc. 29th IEEE Annu. Power Electron. Specialists Conf., June 2008, pp.
906–912.

[180] J. Cardesin, J. Sebastian, P. Villegas, A. Hernando, and A. Fernandez, “Average small-signal
model of buck converter used as power factor preregulator,” in Proc. Conf. Rec. IEEE Ind.
Appl. Conf. Thirty-Seventh IAS Annu. Meeting, vol. 3, Oct 2002, pp. 2147–2151 vol.3.

[181] X. Wu, J. Yang, J. Zhang, and M. Xu, “Design considerations of soft-switched buck PFC
converter with constant on-time (COT) control,” IEEE Trans. Power Electron., vol. 26,
no. 11, pp. 3144–3152, Nov 2011.

[182] X. Wu, J. Yang, J. Zhang, and Z. Qian, “Variable on-time (VOT)-controlled critical conduc-
tion mode buck PFC converter for high-input ac/dc HB-LED lighting applications,” IEEE
Trans. Power Electron., vol. 27, no. 11, pp. 4530–4539, Nov 2012.

[183] M. C. Ghanem, K. Al-Haddad, and G. Roy, “A new control strategy to achieve sinusoidal
line current in a cascade buck-boost converter,” IEEE Trans. Ind. Electron., vol. 43, no. 3,
pp. 441–449, Jun 1996.

[184] R. Ramabhadran, Y. Levy, B. Roberts, and V. Pradeep, “Low THD multipliers for BCM
buck and cascaded buck-boost PFC converters,” in Proc. IEEE Energy Conversion Congr.
and Expo., Oct 2017, pp. 5293–5297.

[185] S. Qin, “Toward high-efficiency high power density single-phase dc-ac and ac-dc power con-
version - architecture, topology and control,” Ph.D. dissertation, University of Illinois at
Urbana-Champaign, 2017.

[186] L. Corradini, D. Maksimovic, P. Mattavelli, and R. Zane, Digital Control of High-Frequency
Switched-Mode Power Converters. Wiley-IEEE Press, 2015.

200

[187] T. Foulkes, T. Modeer, and R. C. N. Pilawa-Podgurski, “Developing a standardized method
for measuring and quantifying dynamic on-state resistance via a survey of low voltage GaN
HEMTs,” in Proc. 33rd Annu. IEEE Appl. Power Electron. Conf. and Expo., March 2018,
pp. 2717–2724.

[188] B. P. McGrath and D. G. Holmes, “Analytical modelling of voltage balance dynamics for
a flying capacitor multilevel converter,” IEEE Trans. Power Electron., vol. 23, no. 2, pp.
543–550, March 2008.

[189] J. Sun, “On the zero-crossing distortion in single-phase PFC converters,” IEEE Trans. Power
Electron., vol. 19, no. 3, pp. 685–692, May 2004.

201

