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Abstract

Solving systems of linear algebraic equations is crucial for many computational problems
in science and engineering. Numerous techniques are available for solving such linear sys-
tems, including direct methods such as Gaussian elimination and iterative methods such
as GMRES. This thesis proposes a method for exploiting compression while computing the
solution to a given discretized system of linear algebraic equations and investigates both its
overall effectiveness in practice and which factors determine its effectiveness. The method is
based on computing an approximate solution in a reduced space, and thus we seek a basis in
which the solution has a compressed representation and can consequently be computed more
efficiently. We address three primary issues: (1) how to compute an approximate solution to
the given discretized linear system using a given basis, (2) how to choose a basis that yields
significant compression, and (3) how to detect when the basis is of sufficient dimension to
provide a satisfactory approximation. While all three aspects have antecedents in previous
ideas and methods, we combine, adapt, and extend them in a manner we believe to be novel
for the purpose of solving discretized linear systems. We demonstrate that the resulting
method can be competitive with, and sometimes outperform, current standard methods and
is effective for efficiently solving linear systems resulting from the discretization of major
classes of continuous problems.
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Chapter 1: Compression Method

1.1 MOTIVATION

In this thesis, we explore a simple and general approach to computing an approximate
solution to a discretized system of linear algebraic equations based on the idea that the
most convenient basis for the discretization may not yield an efficient representation of the
solution. To motivate such a method, we present an illustrative example. Consider solving
a differential equation, discretized using a finite difference method. While discretizing using
finite differences yields a sparse linear system, for most problems one would expect that the
solution vector to such a linear system would be dense but have an underlying pattern, as
it represents samples of the smooth solution function. This leads to the natural question:
might there be a compressed representation of the solution vector if it is represented in a
different discrete space, where a representation of a solution is said to be compressed if it
depends on far fewer parameters than the dimension of the linear system? If so, how can we
exploit the compressed representation to compute the solution vector more efficiently, and
how can we choose such a discrete space? We will see that the answer to the first question
is often “yes,” and the answers to the second question are the topic of this thesis.

1.2 OVERVIEW OF THESIS

In the remainder of this chapter, we present a method that exploits such compression
when solving systems of linear equations and discuss the details of the method as well as
its relationship to other existing ideas and methods. In Chapter 2, we discuss forming and
choosing a discrete basis for the compression space. Chapters 3 and 4 present numerical
results to test specific hypotheses and the overall effectiveness of the method on 1D and 2D
test problems, respectively. Chapter 5 presents a termination criterion to determine when
the dimension of the discrete basis suffices to produce a satisfactory approximate solution.
A preliminary version of a portion of this work was presented in [1].

1.3 BASIC COMPRESSION METHOD

We begin by formalizing the concept of a compressed representation of a solution. Let
Ax = b be an m × n linear system, where the m × n matrix A and m-vector b are given,
and the unknown solution n-vector x is to be determined. A solution x has a compressed
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representation in a basis X if there exists a k-vector z for which x ≈ Xz, where X is an
n × k basis matrix and k ≪ n. Although we refer to X as a basis, it is not necessarily
assumed to be of full rank.

We now formulate an algorithm for exploiting such compression when solving a system
of linear algebraic equations. Simply stated, for a linear system Ax = b, we sample the
column space of A and then project b onto the subspace spanned by the samples, thereby
approximating the right-hand-side vector b by a linear combination of the columns of AX.
This basic method is stated more formally in Algorithm 1.1.

Algorithm 1.1 Basic Compression Method
Given m× n matrix A and m-vector b;
Choose integer k, k ≤ n;
Choose n× k matrix X;
Y = AX;
Solve m× k least squares problem Y z ∼= b for z;
x = Xz;

The resulting vector x is an approximate solution because

Ax = AXz = Y z ∼= b.

As stated in Section 1.1, the most convenient basis for the discretization may not yield a
compressed representation of the solution. To distinguish it from the discretization basis, we
refer to X more specifically as the compression basis. The choice of X is crucial to both the
accuracy of the approximation and the efficiency of the method. We address in Chapter 2
how to choose X, including how the discretization basis affects this choice.

Algorithm 1.1 is formally applicable whether or not A is square or has full rank; in any
case, it computes an appropriate approximate solution. If A has full column rank, it approx-
imates the conventional solution (this holds for both square nonsingular and overdetermined
full column rank cases). If A lacks full column rank (including the underdetermined case),
it will compute a regularized solution. In our investigation, we focus primarily on the square
case m = n, but the lessons learned are applicable to the other cases as well.

The possibility of a rank deficient Y in Algorithm 1.1, due to rank deficiency of X or of
A, can be handled easily. If Y is rank deficient, simply compute a basic solution using the
QR factorization already computed (see e.g., [2, p. 136]). This is an appropriate remedy as
we seek a compressed representation of the solution.

Although Algorithm 1.1 is formally applicable to any linear system, we will focus on
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discretized linear systems in order to leverage the properties of the underlying continuous
solution function and the particular discretization in choosing an effective compression basis.

1.4 RELATED WORK

If one assumes that A is square and nonsingular and X is of full rank, then Algorithm 1.1
becomes a special case of the Prototype Projection Method [3, Algorithm 5.1] by taking
V = X, W = AX, and starting with x = 0. Our Algorithm 1.1 is substantially more
general, however, in that we make none of those assumptions. Furthermore, we will consider
a number of choices for X that are substantially different from those considered in [3]. The
basis matrix X can also be interpreted as a right preconditioner [3, Equation (9.2)], but we
do not require that X be square and nonsingular, nor do we solve the resulting modified
system by a standard iterative method.

Another perspective comes from the numerical solution of ill-posed problems, such as
integral equations of the first kind, for which an otherwise uselessly noisy solution can be
regularized by restricting the computed solution to a designated subspace. An example is
subspace restricted SVD [4, 5], in which the truncated SVD (TSVD) method is applied to
a projected version of the system matrix A, with the projection based on a user-chosen
subspace that is specified in advance, which means that its dimension k must be fixed in
advance. Our Algorithm 1.1 is simpler and more efficient than SVD-based methods, and
most importantly, it lends itself readily to an incremental implementation (as we show in
Section 1.6), thereby enabling k to be determined on the fly based on a residual tolerance
or other measure of error.

Yet another antecedent from the perspective of ill-posed problems is [6, p. 115], where
essentially the same idea as Algorithm 1.1 is suggested as a potential type of regularization
for ill-conditioned systems, but it is illustrated using only one choice of basis, namely the
discrete cosine transform (DCT), and it is not developed any further.

Our approach also differs from augmented or enriched Krylov subspace methods (see
[7, 8, 9]) in that we dispense with the Krylov subspace entirely and rely solely on the
subspace spanned by X, which may bear no direct relation to the system matrix A. Such
methods are used for the numerical solution of a variety of problems, including ill-posed
problems.
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1.5 RELATED THEORY

While more flexible then Saad’s Prototype Projection Method [3, Algorithm 5.1], Al-
gorithm 1.1 is fundamentally an oblique projection method onto X orthogonal to AX.
As such, we summarize the applicable projection method theory. First, from [3, Propo-
sition 5.3] and taking x0 = 0, we know that a vector x̂ is the solution if and only if
∥b−Ax̂∥2 = minx̂∈K ∥b−Ax∥2, where K is the space spanned by the columns of X. Ad-
ditionally, as a projection method, per [3, Section 5.2.3], ∥x̂ − x∗∥2 ≥ ∥(I − PK)x∗∥2, and
thus, the relative error is bounded below by the sine of the acute angle between the true
solution x∗ and the subspace K. Although this bound is valid for the wide range of bases we
investigate in Chapter 2, it is not useful for choosing X or k, as it is a lower, not an upper
bound on the error.

1.6 INCREMENTAL FORMULATION

In principle, the number k of compression basis vectors controls the tradeoff between
cost and accuracy. Additional accuracy can usually be attained by increasing k, which
incurs higher cost. However, one may have no foundation for choosing k a priori. This
leads to Algorithm 1.2, a more practical version of the method, which proceeds to build up
the compression basis X incrementally, stopping at the k for which a residual tolerance is
met. Technically, Algorithm 1.2 is an incremental implemenation of a direct method, not an
iterative method, as typically for the bases discussed in Chapter 2 the successive vectors xk

are known in advance, and the previous vectors are not required to generate the next vector.
Algorithm 1.2 is stated with a residual tolerance for convenience; for some problems,

however, a residual tolerance alone may not be sufficient. A more robust stopping criterion
is discussed in Chapter 5. Henceforth, our investigation focuses on this incremental form of
the algorithm.

In an incremental version of the method, such as Algorithm 1.2, rank deficiency can be
detected by monitoring rkk, the diagonal entry of R. If the relative magnitude of rkk falls
below some tolerance, simply skip to the next basis vector, if any. Thus, the final Y need
never be rank deficient.
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Algorithm 1.2 Incremental Compression Method
Given m× n matrix A, m-vector b, tolerance tol;
k = 1;
Choose n-vector xk; Xk = [xk];
yk = Axk; Yk = [yk];
Solve m× 1 least squares problem Ykz ∼= b for z by QR factorization;
while (∥b− Ykz∥2 > tol)

k = k + 1;
Choose n-vector xk; Xk = [Xk−1,xk];
yk = Axk; Yk = [Yk−1,yk];
Update and extend QR factorization of Yk−1 to incorporate yk;
Solve m× k least squares problem Ykz ∼= b using updated QR;

x = Xkz;

1.7 COMPUTATIONAL COST

To characterize the overall cost for a given X, we consider the major components of the
method and both their cost per iteration and their cost for k iterations. For consistency with
traditional well-known operation counts, we will count only the number of multiplications
and assume a similar number of additions, and we exclude lower order terms.

For Algorithm 1.1, k is fixed and the major components of the algorithm are:

• Computing Y = AX,

• Solving least squares problem Y z ∼= b,

• Computing resulting solution as x = Xz.

We assume A contains nnz nonzero entries and the least squares problem is solved by
computing the QR factorization using Householder transformations and then solving Rz =

QTb. We assume Q is not explicitly formed, but instead QTb is computed by applying the
Householder transformations to b. As this contributes only lower order terms, the cost of
doing so is neglected. The computational costs of the various components of Algorithm 1.1
are summarized in Table 1.1.

For Algorithm 1.2, the individual components of the method are the same; however, as it
is an incremental algorithm, we must consider the cost per step and whether any components
are now duplicated each step. The main changes with the incremental algorithm are that
the QR factorization is now performed incrementally and updated and extended with each
additional basis vector, and once the QR factorization is updated, the least squares problem
must be solved for each intermediate value of k. Table 1.2 summarizes the approximate
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Component Cost

Compute Y = AX O(k ∗ nnz )

Compute QR factorization to form Rz = QTb k2m− 1

3
k3

Solve k × k upper triangular system Rz = QTb for z
1

2
k2

Compute x = Xz nk

Table 1.1: Computational cost breakdown for Algorithm 1.1.

costs for each component of Algorithm 1.2, both per step k and the full cost per component
to reach the final k. To distinguish between the value of k at the current step and the final
value of k in the expressions of computational cost, for this comparison only, we use k̂ to
denote the intermediate values and denote the final value as k.

Component Cost for Step k̂ Total Cost to Reach k

Compute yk̂ = Ak̂xk̂ O(nnz ) O(k ∗ nnz)

Update and extend QR factorization of Yk̂ k̂((m− k̂ + 1) +m) k2m− 1

3
k3

Solve upper triangular system Rk̂zk̂ = QT
k̂
b for zk̂

1

2
k̂2

1

6
k3

Compute xk = Xkzk - nk

Table 1.2: Computational cost breakdown for Algorithm 1.2.

If X is dense, then the resulting Y will also be dense. But if X is sparse, then Y may be
sparse as well, in which case sparsity could potentially be exploited when computing the QR
factorization to lower the cost further. In any case, the cost per iteration of Algorithm 1.2
is comparable with that of GMRES [10], plus the cost of generating the basis vectors xk,
which varies from trivial to more significant, depending on the chosen basis.
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Chapter 2: Compression Bases

A crucial aspect of the compression-based method is the choice of the basis matrix X.
Among the many possible compression bases, the particular choice will clearly affect the
overall performance of the method. Roughly speaking, we want to choose a basis for which
Algorithm 1.2 will capture the main features of the solution as quickly as possible. This
chapter discusses how to approach choosing a basis, the issues that arise when considering
a given basis for use in the compression-based method, and describes each of the individual
families of bases we considered.

2.1 CHOOSING A BASIS

In seeking a compressed representation of the solution to the linear system, the method
solves for z, a vector of coefficients of discrete basis vectors (the columns of X) that approxi-
mates the solution to the discretized linear system. The components of the solution x to the
linear system may be samples of the true solution function (for simple discretizations such
as the finite difference method for differential equations or the Nystrom method for integral
equations) or coefficients of basis functions (e.g., for collocation or Galerkin discretizations).
See Appendices B.1 and C.1 for details of the various discretization methods.

One would expect that using more complex discretizations, where the components of x,
the solution vector to the discretized linear system, are coefficients in a functional expansion,
may affect which bases perform well. To consider this issue in more detail, we first adopt
the following terminology. A function defined on a continuous (discrete) domain is called
global (dense) if it is nonzero or nonnegligible on a relatively large portion of its domain.
Conversely, it is called local (sparse) if it is nonzero or nonnegligible on only a small portion of
its domain. A basis is said to be modal (nodal) if it consists of global (local) basis functions.
Additionally, some bases, notably hierarchical bases, are combinations of these.

Using this terminology, consider Table 2.1, which can help guide the choice of compression
basis, depending on the properties of the underlying continuous solution and the basis for the
discretization. In general, the table can be interpreted as follows: to approximate a global
function (column 1) using a nodal basis (column 2) yields a dense coefficient vector (column
3), whereas using a modal basis (column 2) may yield a sparse coefficient vector (column
3), depending on the convergence rate of the functional expansion. For a local function, on
the other hand, using a nodal basis (column 2) may yield a sparse coefficient vector (column
3), whereas a modal basis (column 2) yields a dense coefficient vector (column 3). Table 2.1
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is also applicable for approximating discrete functions, with global and local interpreted as
dense and sparse, respectively.

The motivation for this table is drawn from approximation theory. To illustrate, consider
interpolating the known true solution function for greengard-ex1 (see Section B.2) with
Chebyshev polynomials (interpolating a global function using a modal basis). Interpolat-
ing (with Chebyshev extrema as the interpolation points) gives the coefficients plotted in
Figure 2.1, where we see that most of the coefficients are essentially zero, and the nonzero
coefficients decay rapidly. This example illustrates how rapid convergence of the functional
expansion yields a sparse coefficient vector.

function to be basis coefficient
approximated type vector

global nodal dense
global modal sparse
local nodal sparse
local modal dense

Table 2.1: Guide to choosing a basis.
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Figure 2.1: Coefficient values when interpolating true solution function for greengard_ex1 with Chebyshev
polynomials.

To solve a problem using the compression-based method, we must consider both the basis
used for the discretization and the compression basis used by the solver, so we make two
passes through Table 2.1 to help guide the choice of basis. For the first pass, we consider
the basis for the discretization, and the table then indicates what to expect for the solution
vector to the discretized linear system. Simple discretizations, with no explicit discretization
basis, are implicitly local. On the second pass, we consider approximating a discrete function,
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namely the solution vector x to the discretized linear system. For the compression-based
method to be advantageous, we need to choose a basis in the second pass that yields a
sparse coefficient vector. For instance, to approximate a global solution function discretized
using the Galerkin method with a nodal basis, we expect a dense solution vector x. So, to
approximate this dense solution vector (back to column 1), in order to have a chance for a
sparse z (column 3), we need a modal basis (column 2). Interestingly, this indicates that
for a global solution function (by far the most common case), the compression basis and the
discretization basis should be of opposite types to benefit most from the compression-based
method, effectively decoupling the two bases.

2.2 ISSUES

In this section, we describe issues that arise when considering a basis for use in the
compression method. These issues are applicable in a general sense to both 1D and higher-
dimensional problems and are therefore discussed primarily in general terms. Any details
that apply only to higher dimensions are discussed in the Section 2.3, after discussing the
details of how to extend 1D bases to higher dimensions.

2.2.1 Ordering of Basis Vectors

For the compression-based method to realize the full benefit of a compressed representa-
tion of the solution, the relevant discrete basis vectors (those with non-negligible coefficients)
must come early in the incremental process, and thus the ordering of the basis vectors is
crucial to the effectiveness of the method. Fortunately, many of the bases derived from ap-
proximation theory and signal processing have a natural ordering that works well for most
applications. For example, consistent with their convergence theory, polynomial bases are
naturally ordered from lower to higher degrees, and sinusoidal bases are naturally ordered
from lower to higher frequencies. In practice, the terms of lower degree or frequency usu-
ally carry the main signal, while the terms of higher degree or frequency tend to represent
unwanted noise. For this reason, the compression-based method can have a regularizing
effect, especially for poorly conditioned problems. Similarly, for hierarchical or multiresolu-
tion bases, ordering from coarser to finer levels is the natural ordering. We expect the same
natural orderings motivated by approximation theory and signal processing to generally be
best for the compression-based method, a hypothesis we investigate in Section 3.5. We will
see that for some highly localized bases, however, the best ordering is less clear and may
depend on the specific problem.

9



2.2.2 Evaluation Points

As discussed previously, many compression bases are motivated by continuous functions
considered in approximation theory. For use in the compression-based method, however,
continuous basis functions must be converted into discrete basis vectors by evaluating each
continuous function at a discrete set of points. In particular, for 1D problems with continuous
basis functions ϕj(t), j = 1, . . . , k, the entries of the corresponding discrete n×k basis matrix
X are given by

xi,j = ϕj(ti), (2.1)

where ti, i = 1, . . . , n. are the evaluation points.
Using equally-spaced evaluation points ti in Equation 2.1 may be the most natural and

convenient choice. However, any distinct evaluation points could be chosen. From approxi-
mation theory, we know that accuracy and conditioning are often improved by using zeros
of orthogonal polynomials, whose distribution tends to be clustered toward the endpoints of
the interval domain. Therefore, in addition to equally-spaced evaluation points, we explore
the use of evaluation points based on Chebyshev and Legendre polynomials.

For bases that are inherently discrete, such as those motivated by digital signal processing
(DSP), there is no explicit need to choose evaluation points. However, many of these bases
are derived from continuous basis functions evaluated at discrete points, which may or may
not be optminally chosen for use as a compression basis. Thus, in addition to the conventional
evaluation points for such bases, we also consider alternative choices.

As discussed previously, we focus on solving linear systems resulting from the discretization
of continuous problems. Therefore, each entry of the solution vector x corresponds to a
specific degree of freedom, which may correspond to a specific coordinate or to a specific
discretization basis function (depending on the discretization). By virtue of the ordering
assumed during the discretization and formation of A, these degrees of freedom have a
specific ordering. As the effectiveness of the compression method relies on detecting a pattern
in the solution vector x, it is important for the ordering of the evaluation points to be
compatible with the ordering of the degrees of freedom of the discretization points. For 1D
problems, when the degrees of freedom correspond to spatial coordinates, there is a common
natural ordering for both the coordinates of the degrees of freedom and the evaluation points.
Therefore, incompatibility is generally not a concern in 1D. We discuss compatibility for
higher dimensions in Section 2.2.2.

We explore the effect of the specific discretization on the choice of evaluation points
and investigate the impact of the choice of evaluation points on the effectiveness of the
compression-based method in Section 3.4 and Section 3.5, respectively.
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2.2.3 Orthogonality

For both theoretical and numerical reasons, it may be advantageous for the basis matrix
X to be orthogonal. Many of the discrete bases we consider are derived from orthogonal
functions (via either specified transforms or evaluation of continuous basis functions) and
are therefore orthogonal or nearly orthogonal. (Note that sampling continuous, orthogonal
functions does not guarantee that the resulting discrete basis vectors are orthogonal.) If
desired, any basis can be orthogonalized on the fly as in Algorithm 2.3 (at substantial
additional expense). It is crucial to emphasize, however, that the method does not require
an orthogonal (or orthogonalized) X. The method can even accommodate rank deficient X
by simply discarding redundant samples (as revealed by the QR factorization).

Algorithm 2.3 Orthogonal Compression Method
Given m× n matrix A, m-vector b, tolerance tol;
k = 1;
Choose n-vector xk; Xk = [xk];
yk = Axk; Yk = [yk];
Solve m× 1 least squares problem Ykz ∼= b for z by QR factorization;
while (∥b− Ykz∥2 > tol)

Choose n-vector s;
Solve n× k least squares problem Xkt ∼= s using QR factorization;
k = k + 1;
xk = s−Xk−1t; Xk = [Xk−1,xk];
yk = Axk; Yk = [Yk−1,yk];
Update and extend QR factorization of Yk−1 to incorporate yk;
Solve n× k least squares problem Ykz ∼= b using updated QR;

x = Xkz;

2.3 2D EXTENSIONS OF BASES

Most of the bases to be discussed in Section 2.4, are derived from 1D continuous functions
or 1D discrete transforms and therefore lend themselves naturally to 1D problems. For
systems of linear equations resulting from 2D problems, the 1D bases can be extended to
2D by forming tensor products of the 1D basis functions [11, p. 118]. Specifically, given a
set of 1D basis functions ϕj(t), j = 1, . . . , n, we define a set of 2D basis functions as

ψi,j(s, t) = ϕi(s)ϕj(t), i, j = 1, . . . , n. (2.2)
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2.3.1 Ordering of Basis Vectors in 2D

As with 1D basis functions, the ordering of the basis vectors for 2D basis functions is
crucial to the effectiveness of the method. In 1D, most of the bases have natural orderings,
often representing low-to-high frequency. However, as the 2D basis functions have multiple
indices, they have no default linear ordering. The doubly-indexed basis functions can be
viewed as a 2D grid of basis function such as the following for n = 4.

ψ0,0 ψ0,1 ψ0,2 ψ0,3

ψ1,0 ψ1,1 ψ1,2 ψ1,3

ψ2,0 ψ2,1 ψ2,2 ψ2,3

ψ3,0 ψ3,1 ψ3,2 ψ3,3


While many linear orderings over a set of doubly-indexed basis functions can be defined,

an ordering that captures the overall low-to-high frequency trend that defines the natural
ordering for the sets of 1D basis functions is desirable. We next define a few possible linear
orderings of 2D basis functions, and we investigate the impact of the choice of ordering on
the effectiveness of the method for 2D test problems in Section 4.3.

Diagonal Ordering

One such traversal of the 2D grid of doubly-indexed basis functions traverses in order
of the diagonals starting in the upper left and ending in the lower right. We call this the
diagonal ordering, and it is defined by the following rules:

1. Order the functions by the sum of the two indices, from smallest to largest.

2. Within a subset having the same sum of indices, order the functions by the maximum
of the two indices, smallest to largest.

3. Within a subset having the same sum of indices and maximum index, order the func-
tions by the first index, smallest to largest.

For n = 4, a graphical depiction of the diagonal ordering is shown in Figure 2.2.
This results in the overall ordering for n = 4

ψ0,0, ψ0,1, ψ1,0, ψ1,1, ψ0,2, ψ2,0, ψ1,2, ψ2,1, ψ0,3, ψ3,0, ψ2,2, ψ1,3, ψ3,1, ψ2,3, ψ3,2, ψ3,3.
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
ψ0,0 ψ0,1 ψ0,2 ψ0,3

ψ1,0 ψ1,1 ψ1,2 ψ1,3

ψ2,0 ψ2,1 ψ2,2 ψ2,3

ψ3,0 ψ3,1 ψ3,2 ψ3,3

 ≈


0 1 4 8

2 3 6 11

5 7 10 13

9 12 14 15


Figure 2.2: Graphical depiction of diagonal ordering for 2D basis functions.

Chevron Ordering

Another ordering, which we call the chevron ordering, can be obtained by traversing
through chevron patterns, starting in the upper left and ending in the lower right entries
of the matrix. This ordering corresponds to switching rules (1) and (2) in Section 2.3.1,
resulting in the following set of rules:

1. Order the functions by the maximum of the two indices, smallest to largest.

2. Within a subset having the same maximum index, order the functions by the sum of
the two indices, smallest to largest.

3. Within a subset having the same sum of indices and maximum index, order the func-
tions by the first index, smallest to largest.

This ordering is depicted by the diagram in Figure 2.3 for n = 4, which illustrates the
chevron pattern. 

ψ0,0 ψ0,1 ψ0,2 ψ0,3

ψ1,0 ψ1,1 ψ1,2 ψ1,3

ψ2,0 ψ2,1 ψ2,2 ψ2,3

ψ3,0 ψ3,1 ψ3,2 ψ3,3

 ≈


0 1 4 9
2 3 6 11
5 7 8 13
10 12 14 15


Figure 2.3: Graphical depiction of chevron ordering for 2D basis functions.

This results in the overall ordering for n = 4

ψ0,0, ψ0,1, ψ1,0, ψ1,1, ψ0,2, ψ2,0, ψ1,2, ψ2,1, ψ2,2, ψ0,3, ψ3,0, ψ1,3, ψ3,1, ψ2,3, ψ3,2, ψ3,3.

Circular Ordering

The diagonal and chevron patterns represent ordering by the 1-norm and ∞-norm of the
index pairs, respectively. An alternative ordering, based on the idea of circular truncation
of basis functions for spectral methods [11, p. 119], yields circular arc patterns by instead
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ordering by the 2-norm of the index pairs. We call this the circular ordering, and it is defined
by the following rules:

1. Order the functions by the 2-norm of the index pair (i.e.,
√
i2 + j2), smallest to largest.

2. Within a subset having the same 2-norm of the index pairs, order the functions by the
first index, smallest to largest.

This results in the overall ordering for n = 5 (shown for n = 5 in order to illustrate the
difference in the pattern from the chevron ordering)

ψ0,0, ψ0,1, ψ1,0, ψ1,1, ψ0,2, ψ2,0, ψ1,2, ψ2,1, ψ2,2, ψ0,3, ψ3,0, ψ1,3, ψ3,1,

ψ2,3, ψ3,2, ψ0,4, ψ4,0, ψ1,4, ψ4,1, ψ3,3, ψ2,4, ψ4,2, ψ3,4, ψ4,3, ψ4,4.

Alternative Orderings

For basis functions ordered by increasing degree or frequency, the chevron and diagonal
orderings generally favor lower degree over higher degree, while also favoring more balanced
blends over more skewed blends. However, one could simply traverse the 2D grid of basis
functions in a row-major or column-major order, which corresponds to favoring a lower
degree in one dimension over the other. We refer to these as row-major and column-major;
however, in general, we would not expect these to be competitive with the diagonal or
chevron orderings that more comprehensively favor lower degrees.

2.3.2 Evaluation Points for 2D Bases

As discussed in Section 2.2.2, to obtain discrete basis vectors from continuous basis func-
tions, the continuous basis functions are evaluated at discrete points, and the evaluation
points should be compatible with the discretization points. For 2D problems, the evaluation
points now lie in a 2D domain. For standard evaluation points, such as equally-spaced points,
Chebyshev extrema, etc., these evaluation points form a grid in the 2D domain. Evaluating
the 2D basis functions described in Section 2.3 at the grid of evaluation points results in 2D
basis vectors.

For use in the compression-based method for solving linear systems, however, the basis
vectors must be 1D. For standard evaluation points forming a 2D grid, it may seem natural
simply to flatten the grid of evaluation points, say in row- or column-major order. While
this may be natural for some discretizations that take a similar approach with ordering
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the degrees of freedom, for 2D problems with more complex discretizations the degrees of
freedom for the discretized problem may not be ordered in a systematic spatial ordering
based on their corresponding coordinates. Furthermore, for some discretizations, such as 2D
finite elements with an irregular mesh, the spatial coordinates corresponding to the degrees
of freedom may be irregularly placed throughout the domain.

Because of this, for 2D problems where the degrees of freedom correspond to spatial
coordinates, there is no natural linear ordering of evaluation points that ensures compatibility
with the ordering of the degrees of freedom. To ensure compatibility, some knowledge
of the discretization is therefore necessary. In particular, utilizing the spatial coordinates
corresponding to the degrees of freedom as evaluation points, and in the same order, will
ensure compatibility. An example illustrating the importance of compatibility of evaluation
points for 2D problems is illustrated in Section 4.4.

2.4 BASES CONSIDERED

We consider bases from a variety of sources. Many of the bases considered are motivated
by approximation theory, which is concerned with the development of accurate and efficient
approximations to continuous functions, (see, e.g., [12, 13, 14]). For a linear system whose
solution represents an underlying continuous function, approximation theory provides a plen-
tiful source of potential bases. Another source of potential bases is digital signal processing,
which seeks efficient representations of discrete signals, often for purposes of compression or
filtering.

In the subsequent sections, we describe each of the individual families of bases considered.
Results with many of these families of bases will be presented in Chapters 3 and 4. For
brevity, we do not include here all of the detailed equations and methods for generating
the bases; full details can be found in the references cited. This is primarily an overview
of the different bases we consider for the purposes of understanding the performance of the
compression-based method for solving linear systems.

Most of the bases discussed are illustrated in Appendix A (in some cases only one of
several versions is illustrated). When the original bases are directly defined as continuous
basis functions, they are illustrated as continuous functions. Bases that are directly defined
as discrete basis vectors are illustrated as discrete using stem plots.
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2.4.1 Random Sampling

As stated in Chapter 1, the compression-based method samples the column space of A
and projects b onto the subspace spanned by the samples. Randomized methods based on
random sampling have been shown to be useful in various other areas of numerical linear
algebra, such as the randomized singular value decomposition (SVD) [15]. However, as our
compression-based method relies on detecting a pattern in the solution to find a compressed
representation, we do not expect that random sampling will be efficient. We test this hy-
pothesis by considering random bases drawn from various distributions in Section 3.5.9.

2.4.2 Polynomials

Various polynomial basis functions are assessed as potential bases for our method. For
orthogonal polynomials, we consider both the Legendre polynomials and the Chebyshev
polynomials. In addition to these common orthogonal polynomials, we also consider the
Lagrange polynomial basis functions, also known as the cardinal polynomials, and the Bern-
stein polynomial basis functions. For the Bernstein polynomial basis functions, we specifi-
cally consider the n Bernstein polynomials of degree n−1. Note that for the Lagrange basis
functions a set of points, ti, i = 1, . . . , n, must be chosen to define the basis functions (in
addition to choosing any evaluation points) and the i-th basis function is 1 at ti and 0 at tj,
where j ̸= i. To avoid ill-conditioning when evaluating the basis functions (which becomes
a problem even with fairly small n), the Lagrange basis is defined using the Chebyshev
extrema. These four sets of polynomials are illustrated for n = 8 in Appendix A.

2.4.3 Piecewise Polynomials

Another family of bases considered is piecewise polynomial bases. We consider both the
standard nodal piecewise linear basis function (i.e., “hat functions”), which are commonly
used in finite element methods, and hierarchical piecewise linear basis functions, which have
a variety of applications including sparse grids [16, 17] and multigrid methods [18]. In the
hierarchical piecewise linear basis, the basis vectors are defined using nested grids. Each
basis function is still piecewise linear, but the grid is refined at each successive level, causing
the individual basis functions to be nonzero over less of the domain as the level increases.
Illustrations of both of these bases for n = 9 are shown in Appendix A. The hierarchical
basis is shown with the basis vectors separated by level.
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2.4.4 Sinusoids

A variety of sinusoidal bases are considered. Specifically, we consider bases related to the
discrete cosine transfrom (DCT), the discrete sine transform (DST), and the discrete Hartley
transform (DHT).

The DCT, originally presented in [19] with applications to pattern recognition and filtering,
has been used in many areas of science and engineering, such as JPEG image compression.
The basis functions for the DCT are actually a class of discrete Chebyshev polynomials [19].
Additional details regarding the DCT can be found in [20, 21, 22]. The DST is another
popular transform due to its use in transform coding [23].

There are eight different versions of both the DCT and the DST. The eight versions
represent slight differences in the treatments of the boundaries (specifically whether they
are treated as odd or even and around which point – endpoint or midpoint). The formulas
for all eight versions of both the DST and DCT can be found in [24]. One version of
the DCT and one version of the DST are illustrated in Appendix A. In addition to the
eight canonical DCT (DST) versions, we also consider simply cosines (sines) of increasing
frequency evaluated at the various evaluation points discussed in Section 2.2.2.

The DHT, originally presented in [25], uses both sines and cosines, and is closely related
to the DFT (discrete Fourier transform), with the primary difference that it takes real inputs
to real outputs. As we are attempting to approximate a real solution vector x, this is a more
appropriate basis to consider than the DFT. Specific formulas for the DHT can be found in
[20, 22]. The DHT is also illustrated in Appendix A.

2.4.5 Square Waves

Square wave bases are made up of square pulses, typically with two allowed states (e.g.,
−1, 1 or 0, 1), and have many applications such as signal processing, image processing,
and compression. The primary square wave bases we consider are Walsh, Haar, and Slant
transform basis functions.

The Walsh functions form a complete orthogonal set over the unit interval and are the
basis functions for the Walsh-Hadamard transform, which has found numerous applications
such as signal processing, pattern recognition, filtering, compression, etc. [21]. The Walsh
basis functions have three commonly used orderings: sequency, Hadamard, and Paley. The
Walsh functions take one of two values: −1 or 1. Thus, the Walsh functions are nonzero
over the whole domain. Additional details regarding generating the Walsh functions can be
found in [21, 26].
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The Haar functions also form a complete orthogonal set of functions and are the basis
functions for the Haar transform. Unlike the Walsh functions, the Haar functions are nonzero
over only a small portion of the domain. Additional details on generating the Haar basis func-
tions can be found in [21]. Haar functions (and the Haar transform matrix) are commonly
found in both normalized and unnormalized forms. However, for the compression-based
method, normalization of a basis vector by a constant has no impact on the effectiveness,
as it merely changes the value of the corresponding coefficient in z. Thus, we consider only
the unnormalized Haar basis vectors.

The Slant transform is slightly different than Walsh and Haar in that, while still being
made up of square waves, it contains some stair-like waveforms. The Slant transform has
been applied to image processing with the idea that it can more efficiently represent linear
changes in the image brightness [27]. Details on constructing the Slant transform basis
matrix can be found in [21, 27].

Illustrations of each of these sets of basis functions can be found in Appendix A. Addi-
tionally, various orderings for the Walsh functions are also illustrated.

2.4.6 Wavelets

The Haar transform discussed above is one of the simplest wavelet transforms. We also
consider bases derived from the wavelet transform with other wavelets, such as those in the
Daubechies or Symlets families (see the “Wavelet Browser” in [28] for details on specific
wavelets). We specifically consider bases derived from the multilevel wavelet decomposition
in PyWavelets [28]. Additionally, we look at other bases derived from wavelets. The Haar
transform and the Walsh-Hadamard transform are closely related, with the Walsh-Hadamard
transform being considered a wavelet packet coming from the full tree decomposition [29,
p. xiv]. In a similar manner, we consider additional bases obtained from the full tree of
the wavelet packet decomposition in [28] with other wavelets. Illustrations of basis func-
tions obtained from the multilevel wavelet decomposition and the full tree wavelet packet
decomposition for a single wavelet can be found in Appendix A.

2.4.7 Gaussians

Gaussian functions have a variety of applications in science, engineering, mathematics,
and statistics. We consider both nodal and hierarchical bases derived from Gaussian func-
tions. Gaussian functions are specifically considered because the amount of overlap between
them can be controlled by adjusting a parameter c. The overlap parameter c is inversely
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proportional to the width of the Gaussian; additional details on the relationship can be found
in Appendix A. Increasing c decreases the width of the Gaussian, thereby decreasing the
overlap, whereas decreasing c increases the width of the Guassian and the amount of overlap.
Illustrations of nodal and hierarchical Gaussian bases with various amounts of overlap can
be found in Appendix A.

2.4.8 Sinc Functions

Sinc functions are commonly used in signal processing and interpolation of signals from
samples, so we consider them as a possible compression basis. As with Gaussians, we consider
both nodal and hierarchical bases composed of sinc functions. Illustrations of the nodal and
hierarchical sinc functions can be found in Appendix A.
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Chapter 3: 1D Numerical Results

In this chapter we present numerical results for the compression-based method on a variety
of 1D test problems. We first discuss the test problems and the experimental setup, and
then present a range of results to test and verify specific hypotheses and illustrate the overall
effectiveness of the method.

3.1 1D TEST PROBLEM DETAILS

We are primarily concerned with linear systems resulting from discretizing continuous
problems. In this chapter, we focus our investigation on solving discretized integral equations
and differential equations in one dimension (results for 2D test problems are presented in
Chapter 4). Specifically, for integral equations, we focus on linear systems resulting from the
discretization of Fredholm integral equations of the first kind in one dimension using Nystrom
(quadrature), collocation, and Galerkin discretizations. For differential equations, we focus
on linear systems resulting from the discretization of second-order, linear, constant coefficient
boundary value problems (BVPs) in one dimension using finite difference, collocation, and
Galerkin discretizations.

Due to the nature of the compression-based method, many linear system test problems in
the literature are unsuitable for our purposes. A substantial fraction of the linear system test
problems in the literature artificially generate the right-hand-side vector b by multiplying
the matrix resulting from the discretization with either the constant vector e of all ones
or a random vector. In the first case, any compression basis with a constant vector as the
first basis vector will find the exact solution after one step, making the problem trivially
easy. In the second case (a random solution vector), it is the opposite – a problem that
is uncharacteristically hard. In this case, there is by definition no pattern to the solution
vector, so we would not expect it to have a compressed representation. Because of these
concerns, we employ test problems found in the literature that are fully specified without
such arbitrary choices. In addition, we also use a few test problems, denoted with names
designed_*, that are designed by us to have specific solutions for use in targeted testing of
specific hypotheses.

An overview of the various discretizations and detailed formulas for each test problem can
be found in Appendices B and C for 1D integral equation and boundary value problems,
respectively.
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3.2 EXPERIMENTAL SETUP

All results presented are obtained using Python with IEEE double precision arithmetic.
Functions and data structures from NumPy [30, 31] and SciPy [32] are utilized wherever
appropriate. Unless otherwise stated, all boundary value problems have Dirichlet boundary
conditions. For each test, Algorithm 1.2 is run until a relative residual tolerance of 10−15

has been reached or until k = n. This is done to illustrate the full behavior of the method,
although in practice one would stop as soon as a satisfactory solution has been attained (see
Chapter 5).

For convenience of implementation, the bases and problems are translated to the domain
[0, 1] in some instances. Additionally, for some tests involving non-simple discretizations,
the discretization basis functions must be homogeneous. In such cases, the Chebyshev
discretization basis is actually a modified Chebyshev basis, where the basis functions are
modified to satisfy homogeneous boundary conditions (see Section A.1.1 for details).

Throughout these results, when we discretize via finite differences we use equally-spaced
mesh points, and for composite trapezoid quadrature we use equally-spaced nodes. For
Clenshaw-Curtis quadrature we use Chebyshev extrema as the nodes wherever possible, and
use Chebyshev roots as the nodes only when necessary (for problems with open domains).

Most results are illustrated with plots of the relative error and relative residual. The
residual is computed as the discrete 2-norm of the residual vector from the solution to
the linear system. For simple discretizations, where the entries of the solution vector are
samples of the continuous solution, the error vector is computed using the solution vector
from the compression-based method and the vector obtained by sampling the true solution
function at the discretization points. For other discretizations (where the components of the
solution to the linear system are coefficients of basis functions), the true solution function
and the approximate solution function from the coefficients obtained via the compression-
based method are both sampled at 200 evenly spaced points and an error vector is computed.
These 200 evenly spaced points are chosen because they are unlikely to be biased towards any
given set of discretization points (since they will not agree with any discretization points or
quadrature points for our tests). For either type of discretization, the error is then computed
using the discrete 2-norm of the error vector. Because we compare the computed approximate
solution with the known true solution of the original continuous problem, the error reported
includes discretization error as well as the error in solving the discretized linear system.

Many of these results compare the performance of the compression-based method with
GMRES and TSVD. Although it is possible for the compression-based method to repro-
duce GMRES and TSVD by an appropriate choice of basis, for purposes of comparing their
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effectiveness with the compression-based method, we use standard native implementations
of these methods. This is done to be as fair and unbiased as possible when comparing the
results. We specifically compare with GMRES and TSVD as they are similarly general meth-
ods (i.e., they do not rely on any special properties of the linear system such as symmetry
of A.)

3.3 EXAMPLE SOLUTIONS

Before delving into specific results, we first show a couple of examples to illustrate how
and why the compression-based method can work well. Figure 3.1 shows an example com-
paring the sequence of solutions obtained by Algorithm 1.2 as k increases, with Chebyshev
polynomials evaluated at equally-spaced points as the compression basis, and the true solu-
tion for the integral equation problem gravity_c1, discretized using the Nystrom method
with composite trapezoid quadrature. Although this problem is discretized with n = 128,
we see that an excellent solution is already obtained at k = 6. Note that we are not simply
approximating the continuous true solution directly using Chebyshev polynomials, but only
indirectly by solving the discretized linear system using the compression-based method of Al-
gorithm 1.2. Similarly, Figure 3.2 shows the sequence of solutions obtained by Algorithm 1.2,
with Chebyshev polynomials evaluated at equally-spaced points as the compression basis,
compared with the true solution for the BVP greengard-ex1, discretized using finite dif-
ferences with n = 128. Results are presented only for odd k as only those basis functions
have an effect since the solution is even. We see that with k = 11, an excellent solution is
obtained. These examples illustrate the ability of the compression-based method to obtain
useful solutions with relatively small k; they are not meant to be taken as representative of
the behavior for all of the test problems considered.
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Figure 3.1: Plots of solution obtained by compression-based method for k = 1, . . . , 6 for gravity_c1 dis-
cretized using Nystrom method using composite trapezoid quadrature with n = 128 (as discussed in Sec-
tion 3.3). Chebyshev polynomials evaluated at equally-spaced points are used as the compression basis.
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Figure 3.2: Plots of solution obtained by compression-based method for k = 1, 3, 5, . . . , 11 for greengard-ex1
discretized using finite differences with n = 128 (as discussed in Section 3.3). Chebyshev polynomials
evaluated at equally-spaced points are used as the compression basis.

3.4 TABLE VERIFICATION

To verify the various paths for the two passes through Table 2.1, we use the integral
equation problem designed_sine_ie and the boundary value problem designed_sine_bvp,
which both have global solutions. While problems with global solutions are most common, in
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order to verify the table fully, we also use one problem with a local solution, greengard-ex2.
For each test, we consider both collocation and Galerkin discretizations. Whenever applica-
ble, both discretizations are tested with two sets of bases, piecewise linear (hierarchical and
nodal) and polynomials (Chebyshev and Lagrange), for the modal and nodal discretization
and compression bases.

Figure 3.3 and Figure 3.4, illustrate the full results (both sets of bases for both discretiza-
tions) for designed_sine_ie and designed_sine_bvp, respectively. The left and right
columns of subfigures in Figure 3.3 and Figure 3.4 correspond to discretizing with nodal
and modal discretization bases, respectively. Considering the left column of subfigures in
Figure 3.3 and Figure 3.4, Table 2.1 suggests that for a problem with a global solution
discretized with a nodal basis, a modal compression basis is necessary to have a chance
of a sparse coefficient vector, and the results for the various discretizations and nodal dis-
cretization bases confirm that the modal compression bases (hierarchical piecewise linear or
Chebyshev) perform best. Similarly, Table 2.1 suggests that for a problem with a global
solution discretized with a modal basis, a nodal compression basis is required to have a
chance of a sparse coefficient vector, and the results in the right column of subfigures in
Figure 3.3 and Figure 3.4 confirm that the nodal compression bases (nodal piecewise linear
or Lagrange) indeed perform best.

Similarly, for the BVP greengard-ex2, Figure 3.5 illustrates the full results (polynomial
bases for the collocation discretization and both sets of bases for Galerkin discretizations),
with the left and right columns of subfigures corresponding to discretizing with nodal and
modal discretization bases, respectively. Considering Figure 3.5a, Figure 3.5c, and Fig-
ure 3.5e, we see that for a local solution problem discretized with a local basis, a local
compression basis performs best, which agrees with Table 2.1. In particular, we also see the
importance of ordering. This is a boundary layer problem (see Figure C.4), whose solution
is nonzero only near the left and right boundaries. The Lagrange and nodal piecewise lin-
ear compression bases taken in outside-in (OI) order perform well, whereas the same nodal
compression bases taken in the usual left-to-right ordering do not achieve a good solution
until k = n.

Considering Figure 3.5b, Figure 3.5d, and Figure 3.5f, Table 2.1 suggests that for a problem
with a local solution discretized with a modal basis, a modal compression basis is required to
have a chance of a sparse coefficient vector. This is one test that does not support the table as
the nodal compression bases, composed of the Lagrange polynomials or nodal piecewise linear
polynomials, performs better than the corresponding modal compression basis. However, the
table is merely a guide and to perform well one would need an appropriate global basis. For
Figure 3.5b, Figure 3.5d, and Figure 3.5f, the solutions to the discretized linear systems are
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vectors of coefficients of the modal basis functions. Although these vectors are likely not to be
overly sparse, to perform well we would need to have a discrete compression basis for which
the vectors of coefficients to the modal basis functions have compressed representations. It
is not unreasonable that these coefficients may not be approximated well by the standard
global bases.

It is important to remark that, although we present results both for problems with global
and local solutions in order to test Table 2.1 fully, in practice global solutions are far more
common, and for problems with global solutions, Table 2.1 has proved consistently valid in
our tests.

It is crucial to recognize that the right column of subfigures in Figure 3.5 is simply consid-
ered for completeness, and a global discretization is an unconventional, and likely imprac-
tical, choice for a problem with a local solution. Additionally, although the local solution
problem considered is a BVP, these results should not be taken as differentiating the validity
of the table between these two classes of problems. The vast majority of our tests confirm
Table 2.1 for both integral equations and boundary value problems.

25



0 10 20 30 40 50 60 70

k

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 R

e
si

d
u
a
l

Basis
Lagrange

Cheb ChX

0 10 20 30 40 50 60 70

k

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

R
e
la

ti
v
e
 E

rr
o
r

(a) Discretized with collocation using Lagrange basis.
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(b) Discretized with collocation using Chebyshev basis.
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(c) Discretized with collocation using nodal PL basis.
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(d) Discretized with collocation using hierarchical PL ba-
sis.
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(e) Discretized with Galerkin using Lagrange basis.
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(f) Discretized with Galerkin using Chebyshev basis.
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(g) Discretized with Galerkin using nodal PL basis.
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(h) Discretized with Galerkin using hierarchical PL basis.

Figure 3.3: Global vs. local basis results for designed_sine_ie as discussed in Section 3.4.
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(a) Discretized with collocation using Lagrange basis.
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(b) Discretized with collocation using Chebyshev basis.
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(c) Discretized with Galerkin using Lagrange basis.
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(d) Discretized with Galerkin using Chebyshev basis.
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(e) Discretized with Galerkin using nodal PL basis.
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(f) Discretized with Galerkin using hierarchical PL basis.

Figure 3.4: Global vs. local basis results for designed_sine_bvp as discussed in Section 3.4.
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(a) Discretized with collocation using Lagrange basis.
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(b) Discretized with collocation using Chebyshev basis.
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(c) Discretized with Galerkin using Lagrange basis.

0 10 20 30 40 50 60 70

k

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 R

e
si

d
u
a
l

Basis
Lagrange

Cheb ChX

0 10 20 30 40 50 60 70

k

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

R
e
la

ti
v
e
 E

rr
o
r

(d) Discretized with Galerkin using Chebyshev basis.
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(e) Discretized with Galerkin using nodal PL basis.
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(f) Discretized with Galerkin using hierarchical PL basis.

Figure 3.5: Global vs. local basis results for greengard-ex2 as discussed in Section 3.4.
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3.5 PRELIMINARY TESTING

In this section, we illustrate results for targeted experiments designed to test specific
hypotheses. The primary purpose of these tests is to determine the best options within
the compression-based method before proceeding to more comprehensive testing in which
we compare its effectiveness with that of other methods. We perform a variety of tests for
each family of compression basis functions on a single boundary value problem and a single
integral equation problem, designed_sine_bvp and deisgned_sine_ie, respectively, both
discretized with simple discretizations. These problems are specifically designed by us to
have the same true solution: a simple sine that closely resembles a low degree polynomial.
For many of the tests we illustrate results with plots; however, for brevity, some results are
simply discussed.

3.5.1 Scaling

We first test how effectiveness varies with the size of the problem. Specifically, as
we increase the problem size, how does the value of k required for a good approximate
solution vary? This question is investigated in Figure 3.6 for designed_sine_ie and
designed_sine_bvp where the problems are discretized with varying numbers of points,
n = 64, 128, 256. As n increases, the minimum achievable error decreases because the dis-
cretization error decreases, but the value of k required to achieve the minimum error remains
essentially constant. While not unexpected, this is impressive as it indicates that the dimen-
sion of the compression subspace required by the compression-based method grows little, if
any, with n. While presented here only for the Chebyshev polynomial compression basis,
we see a similar lack of dependence of k on n for other problems and compression bases.

3.5.2 Evaluation Points

We raised the issue of the choice of evaluation points in Section 2.2.2. To investigate this is-
sue, we consider one compression basis (Chebyshev polynomials) evaluated at equally-spaced
points (Eq), Chebyshev extrema (ChX), Chebyshev roots (ChR), and the Gauss-Legendre
(Leg) points. The results are shown for designed_sine_ie and designed_sine_bvp in Fig-
ure 3.7. Specifically, Figure 3.7a and Figure 3.7b show the results for designed_sine_ie
discretized with composite trapezoid quadrature and Clenshaw-Curtis quadrature, respec-
tively. We see that best performance is obtained when the evaluation points match the nodes
for the quadrature rule used to discretize the problem. Similarly, in Figure 3.7c, where the
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(a) Relative error and relative residual for designed_sine_ie discretized with composite trapezoid quadrature.
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(b) Relative error and relative residual for designed_sine_bvp discretized using finite differences.

Figure 3.6: Scaling n comparison with Chebyshev polynomials evaluated at equally-spaced points as com-
pression basis: n = 64, 128, 256 (as discussed in Section 3.5.1).

problem is discretized with finite differences (equally-spaced mesh points), we see that Cheb
Eq is the most effective by far. While presented here only for Chebyshev polynomials as the
compression basis, similar effects are seen for other compression bases as well. Overall, our
tests show that a compression basis is most effective when the evaluation points match the
discretization points.

3.5.3 Polynomials

In Section 2.4 a variety of polynomial bases were discussed, leading to the natural ques-
tion of which polynomial bases are most effective as a compression basis. In Figure 3.8a and
Figure 3.8b we compare Chebyshev, Legendre, Lagrange, and Bernstein polynomial com-
pression bases with the polynomials evaluated at equally-spaced points (with the exception
of Lagrange which are evaluated at the points used to define them) on designed_sine_ie
and designed_sine_bvp, respectively. We see that Chebyshev and Legendre compression
bases perform well, achieving a reasonably small error at about k = 8 with n = 128.
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(a) Relative error and relative residual for designed_sine_ie discretized with composite trapezoid quadrature.
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(b) Relative error and relative residual for designed_sine_ie discretized using Clenshaw-Curtis quadrature.
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(c) Relative error and relative residual for designed_sine_bvp discretized using finite differences.

Figure 3.7: Comparison of evaluation points for Chebyshev polynomial compression basis as discussed in
Section 3.5.2.

Bernstein and Lagrange perform poorly, however, with the error decreasing slowly (in
the case of desinged_sine_ie) or hardly decreasing at all until k ≈ n (in the case of
designed_sine_bvp). Since the performance of Chebyshev and Legendre is almost indis-
tinguishable, we will henceforth use Chebyshev polynomials as the polynomial compression
basis of choice for simple discretizations.
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(a) Relative error and relative residual for designed_sine_ie discretized with composite trapezoid quadrature.
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(b) Relative error and relative residual for designed_sine_bvp discretized using finite differences.

Figure 3.8: Comparison of polynomial compression bases as discussed in Section 3.5.3.

It is unsurprising that some of the polynomial compression bases perform well, as these
problems have true solutions that closely resemble a low degree polynomial. We also inves-
tigate whether there is any difference in effectiveness if the solution actually is a polynomial,
as opposed to just closely resembling a polynomial, by testing the same four polynomial
compression bases on designed_poly_ie and designed_poly_bvp. The results are unsur-
prising (and excluded here for brevity): both Chebyshev and Legendre compression bases
perform well, achieving a small error at k = 5, as the solution is a 4th degree polynomial.
This is not significantly different from the results for the designed sine problems, which is
expected as the solutions closely resemble one another.

In Section 2.2 we discussed the importance of the ordering of the basis vectors for the
effectiveness of the compression-based method. Based on approximation theory we expect
that polynomial compression bases will be more effective when taken in the natural low-
to-high degree ordering. We test this hypothesis with the Chebyshev compression basis on
designed_sine_ie and designed_sine_bvp, considering the basis vectors taken in both
low-to-high and high-to-low ordering. The results are not surprising (and excluded here
for brevity), with low-to-high degree ordering performing vastly better. Other bases with
similar theory motivating certain orderings showed similar results.
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3.5.4 Piecewise Polynomials

We also use designed_sine_ie and designed_sine_bvp to test the effectiveness of the
piecewise polynomial compression bases. In Figure 3.9, we compare the performance of
nodal and hierarchical piecewise linear compression bases with equally-spaced evaluation
points. Examining these results, we see that in both cases the hierarchical compression
basis performs better than the nodal basis, which is expected as designed_sine_ie and
designed_sine_bvp have global solutions and thus, according to Table 2.1, when discretized
with finite differences (an implicitly nodal discretization), a modal compression basis would
be required to have a chance to do well.
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(a) Relative error and relative residual for designed_sine_ie discretized with composite trapezoid quadrature.
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(b) Relative error and relative residual for designed_sine_bvp discretized using finite differences.

Figure 3.9: Comparison of piecewise polynomial compression bases as discussed in Section 3.5.4.

3.5.5 Sinusoids

Due to the sheer number of versions of the DCT and DST, we do not show full test results
here, though the results showed that none of the standard DCT or DST perform particularly
well or poorly as compression bases. Consequently, we illustrate a comparison among selected
sinusoids. From the canonical DCT and DST we include DCT2 and DST7, which tend to
perform better than the other canonical DCT and DST, respectively. Additionally, we
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compare these to alternative compression bases of sines and cosines simply evaluated at
the discretization points. This comparison is shown in Figure 3.10. Examining the results,
we see that, for both problems, sines evaluated at evenly spaced points perform well as a
compression basis. However, this is to be expected as the true solution function for these
problems is a sine function. The other bases, on the other hand, perform moderately well
for designed_sine_ie, but they are not particularly effective for designed_sine_bvp. We
also examined the use of the DHT as a compression basis, but it was not effective, and the
results are omitted here for brevity.
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(a) Relative error and relative residual for designed_sine_ie discretized with composite trapezoid quadrature.

0 20 40 60 80 100 120

k

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 R

e
si

d
u
a
l

Basis
DCT2

DST7

Sin Eq

Cos Eq

0 20 40 60 80 100 120

k

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 E

rr
o
r

(b) Relative error and relative residual for designed_sine_bvp discretized using finite differences.

Figure 3.10: Comparison of selected sinusoidal compression bases as discussed in Section 3.5.5.

There are connections between the canonical versions of the DCT and DST and boundary
conditions. Namely, the canonical versions of the DCT and DST are the eigenvectors of
second difference matrices with various boundary conditions [33]. We have investigated
whether this has an impact on which versions of the DCT or DST perform best, i.e. if
the boundary conditions associated with the best performing version match the boundary
conditions for the problem. We found no clear correlation between the best performing
version and the boundary conditions in the matrix. Overall, DCT2 performs best, but
the DCT2 basis vectors are the eigenvectors of the second difference matrix with both left
and right Neumann boundary conditions enforced at the midpoint, while we consider only
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boundary conditions enforced at the endpoints. This lack of correlation is unsurprising,
however, and can be attributed to a combination of a variety of factors that have a stronger
impact on performance. In [19], it is noted that the DCT2 basis vectors are actually sampled
Chebyshev polynomials. In fact, the basis vectors for DCT2 are the same as the basis
vectors for the Discrete Chebyshev Transform [34]. As we illustrate in Section 3.5.3, the
choice of evaluation points is crucial to performance. For the compression-based method,
we can incorporate knowledge of the solution to perform better by simply choosing sines,
cosines, or Chebyshev polynomials for the compression basis and evaluating them at points
corresponding to the discretization points.

3.5.6 Square Waves

A variety of square wave bases are tested to determine their effectiveness as compression
bases. Specifically, we consider the Haar basis, Slant basis, and each of the three standard
orderings for the Walsh basis. The results of this comparison are shown in Figure 3.11
for designed_sine_ie and designed_sine_bvp. Among the orderings for Walsh, Walsh
Paley performs best, but it is still ineffective overall. Interestingly, the Walsh functions yield
noticeable drops in the error when k is a power of two. Various other orderings for Walsh
have been investigated attempting to capture these drops in error sooner, but have not been
fruitful. Overall, Slant is the most effective of the square wave bases.

3.5.7 Wavelets

Similar to square wave bases, we also consider bases derived from wavelets other than
the Haar wavelet as discussed in Section 2.4.1. A variety of wavelet bases are tested to
determine their effectiveness as compression bases. Figure 3.12 illustrates results for a com-
parison of a few selected wavelet bases derived from the multi-level wavelet decomposi-
tion “Wav” and the full-tree wavelet packet decomposition “Wav Pckt” with a few wavelet
families for designed_sine_ie and designed_sine_bvp. In Figure 3.12a, we see that for
designed_sine_ie, the wavelet bases derived from the Symlets 4 (sym4) wavelet multi-
level and full-tree wavelet decompositions perform best of the bases considered. However, in
Figure 3.12b, we see that for designed_sine_bvp, none of the wavelet bases perform well.
Overall, the wavelet bases are not generally effective as compression bases for these types of
problems and are not considered further.
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(a) Relative error and relative residual for designed_sine_ie discretized with composite trapezoid quadrature.
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(b) Relative error and relative residual for designed_sine_bvp discretized using finite differences.

Figure 3.11: Comparison of various square wave compression bases and their applicable orderings as discussed
in Section 3.5.6.

3.5.8 Gaussians

To investigate the effect of overlap between compression basis functions, we consider Gaus-
sian basis functions with adjustable overlap between them. We investigate their effectiveness
as a compression basis as well as the optimal amount of overlap. Figure 3.13 illustrates a per-
formance comparison between nodal and hierarchical Gaussian bases, with various degrees
of overlap for each, on designed_sine_ie and designed_sine_bvp. In general, we see that
hierarchical Gaussian bases are more effective than nodal Gaussian bases, which is expected
according to Table 2.1. For both hierarchical and nodal Gaussian bases, as the overlap
increases the basis becomes more global and more effective. However, there is a tradeoff
between overlap and ill-conditioning: as overlap increases the basis functions become more
global, but the basis matrix becomes more ill-conditioned. Therefore, we see there is an
optimal amount of overlap beyond which effectiveness decreases. Examining the error plots
in Figure 3.13, this tradeoff is not necessarily clear, but looking at the residual plots as well,
we see that for hierarchical Gaussian bases, the optimal overlap is approximately c = 0.125,
and for nodal Gaussian bases, the optimal overlap is approximately c = 0.01. With the
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(a) Relative error and relative residual for designed_sine_ie discretized with composite trapezoid quadrature.
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(b) Relative error and relative residual for designed_sine_bvp discretized using finite differences.

Figure 3.12: Comparison of various wavelet compression bases and their applicable orderings as discussed
in Section 3.5.7.

optimal amount of overlap, the nodal Gaussian basis is essentially global as well and is more
competitive with the hierarchical Gaussian bases, but still less effective. To confirm that the
behavior we see is not specific to Gaussians, we also performed a similar test with quartic
polynomials and saw the same overlap trend.

Somewhat similar to Gaussians, we also considered nodal and hierarchical compression
bases composed of sinc functions. Illustrations of the results are omitted for brevity, but
overall nodal and hierarchical sinc bases are not effective as compression bases. Although
commonly used in signal processing, considering the shape of the sinc functions (with damped
oscillations), the poor performance is not unexpected. The numerous oscillations are more
likely to contribute to noise than capture the main pattern of the solution with relatively
few basis vectors.

3.5.9 Random Sampling

Results for randomly generated bases (“random bases”) are illustrated in Figure 3.14.
We consider random bases drawn from both uniform and normal distributions and modified
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(a) Relative error and relative residual for designed_sine_ie discretized with composite trapezoid quadrature.
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(b) Relative error and relative residual for designed_sine_bvp discretized using finite differences.

Figure 3.13: Comparison of nodal and hierarchical Gaussian compression bases with various amounts of
overlap as discussed in Section 3.5.8.

random bases (where the first vector is taken to be the constant vector of all ones). Due
to the randomness, results with a random basis vary significantly between runs, making it
difficult to glean any information from a single run. Because of this variability, the results
presented are averaged over 100 runs to ensure that the overall trend is shown. From these
results, we see that compression bases generated by random sampling are ineffective, with
the error decreasing very slowly (or not at all) until the final basis vectors. This is expected,
however. As we hypothesized in Section 2.4.1, random basis vectors are unable to capture a
pattern in the solution with few basis vectors, and they are therefore not suitable for use in
the compression-based method

3.5.10 Preliminary Conclusions

These individual tests on designed_sine_ie and designed_sine_bvp discretized with
simple discretizations allow us to draw a number of preliminary conclusions regarding the
effectiveness of the various options for the compression-based method. For these global solu-
tion problems discretized with simple discretizations, as indicated by Table 2.1, global bases
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(a) Relative error and relative residual for designed_sine_ie discretized with composite trapezoid quadrature.
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(b) Relative error and relative residual for designed_sine_bvp discretized using finite differences.

Figure 3.14: Comparison of various random sampling compression bases as discussed in Section 3.5.9.

such as Chebyshev polynomials and hierarchical Gaussians with significant overlap show
strong potential as compression bases, whereas local bases such as Lagrange polynomials
and nodal piecewise linear appear to be inefficient as compression bases. We also conclude
that there are a variety of crucial factors to consider regarding a compression basis, including
the ordering of the basis vectors, where the natural order is typically best, when applicable,
and the choice of evaluation points, where matching the discretization points is typically
best, when applicable. Additionally, while sinusoidal bases can be effective, the canonical
discrete transform versions are not always the best choice. We also conclude that some bases,
including Bernstein polynomials, DHT, sinc functions, and random sampling are simply not
competitive as compression bases and will not be considered further.

3.6 COMPREHENSIVE RESULTS

To illustrate the overall effectiveness of the compression-based method, we present results
of the best performing compression bases (among the many bases listed in Section 2.4) on
the test problems from the literature described in Section 3.1 with details in Appendices B
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and C. For each test, results will also be shown for GMRES and TSVD. Whenever possible
(when A is square and full rank), the error and residual for the solution from a direct solver
are also shown (specifically NumPy’s [30] built-in direct solver). As this is a fixed error and
residual, results for the direct solver are indicated by a horizontal straight line on each plot.
We first present results for implicit (simple) and explicit nodal discretizations and then for
modal discretizations.

3.6.1 Nodal Discretizations

We begin by presenting results for simple discretizations, which are implicitly nodal, of
problems with global solutions. For a nodal discretization of a problem with a global solu-
tion, Table 2.1 indicates that, in order to have a chance to do well, a modal compression basis
is required. Thus, we illustrate the best performing modal compression bases. Wherever
appropriate, the evaluation points for the compression basis are chosen to match the dis-
cretization points (e.g., ChebEq is chosen when the discretization points are equally spaced).

Results are illustrated for a variety of integral equation and boundary value test problems
with global solutions in Figure 3.15. The integral equations are discretized using composite
trapezoid quadrature with n = 128. The boundary value problems are discretized using
finite differences, primarily with n = 128. For greengard-ex3, due to the highly oscillatory
nature of the solution, it is necessary to have more points to resolve this behavior, so we
take n = 512, and the results are illustrated in Figure 3.15e.

From these results, we see that multiple bases perform well for many of the problems, and it
is possible for the best performing basis to achieve a lower error with smaller k than GMRES
or TSVD. For gravity_c1, the best bases achieve a lower error overall than conventional
methods. We also see how the nature of the solution can affect performance. For example, we
see in Figure 3.15b that sampled sines perform extremely well for gravity_c1, a problem for
which the true solution is a combination of sines. However, sines do not universally perform
well, illustrating how additional information about the solution can help guide the basis
choice. Overall, while other bases may occasionally perform as well or better (depending
on the nature of the solution), Chebyshev polynomial bases and hierarchical Gaussian bases
with significant overlap tend to perform best.
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(a) Relative error and relative residual for overall test for
deriv2_c1 discretized by Nystrom method using composite
trapezoid quadrature with n = 128.
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(b) Relative error and relative residual for overall test for
gravity_c1 discretized by Nystrom method using compos-
ite trapezoid quadrature with n = 128.
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(c) Relative error and relative residual for overall test
for shaw discretized by Nystrom method using composite
trapezoid quadrature with n = 128.
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(d) Relative error and relative residual for overall test for
greengard-ex1 discretized using finite differences with n =
128.
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(e) Relative error and relative residual for overall test for
greengard-ex3 discretized using finite differences with n =
512.
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(f) Relative error and relative residual for overall test for
fornberg discretized using finite differences with n = 128.

Figure 3.15: Overall tests comparing best performing modal compression bases for integral equation problems and boundary value problems with
global solutions discretized using simple discretizations (implicitly nodal) as discussed in Section 3.6.1.
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In addition to results for simple discretizations, which are implicitly nodal, we also present
results for explicitly nodal discretizations of problems with global solutions. From the pre-
liminary testing in Section 3.5, it is important to match the evaluation points to the dis-
cretization points. This is also an important consideration here as the nodal bases have
certain points that are used to define them. We define the Lagrange polynomials using
the Chebyshev extrema (for conditioning purposes), and we define the nodal piecewise lin-
ear basis using equally-spaced points. Because of the impact of the matching of points on
performance, slight modifications have been made in the choice of compression bases when
using an explicitly local discretization to use those that match. For example, when using
Galerkin discretized with Lagrange polynomials (defined using the Chebyshev extrema), we
use the Chebyshev polynomials sampled at the Chebyshev extrema instead of the Chebyshev
polynomials sampled at equally-spaced points.

Due to the inordinate number of combinations of discretization methods and discretization
bases, we show only a few representative results (one for each problem), which are illustrated
in Figure 3.16. Overall, these results are similar to the comprehensive testing results for
simple discretizations in Figure 3.15. In most cases, one or more compression bases perform
well. In general, Chebyshev polynomials (evaluated at the points matching those used to
define the discretization basis) and hierarchical Gaussian bases (with the optimal overlap
value determined in Figure 3.13) tend to perform best. Occasionally, other bases perform
well, but this is typically due to special instances as we have seen previously. For example,
in Figure 3.16a hierarchical piecewise linear performs well because the true solution for
deriv2_c1 is a linear polynomial.
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(a) Results for deriv2_c1 discretized using collocation
with nodal piecewise linear basis with uniform collocation
points.
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(b) Results for gravity_c1 discretized using Galerkin with
nodal piecewise linear basis.
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(c) Results for shaw discretized using collocation with La-
grange basis with Chebyshev extrema collocation points.
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(d) Results for greengard-ex1 discretized using Galerkin
with Lagrange basis.
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(e) Results for greengard-ex3 discretized using Galerkin
with nodal piecewise linear basis.
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(f) Results for fornberg discretized using collocation with
Lagrange basis with Chebyshev extrema collocation points.

Figure 3.16: Selected nodal discretization with modal compression bases results for problems with global solutions as discussed in Section 3.6.1.
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Local Solutions

While the results in Figures 3.15 and 3.16 focused on problems with global solutions,
we also present results for the single local solution problem, greengard-ex2, discretized
using finite differences. As indicated by Table 2.1 and illustrated in Section 3.4, the best
performing bases for greengard-ex2 with nodal discretizations are nodal compression bases
taken in outside-in order as it is a boundary layer problem. We compare the performance for
both the “Lagrange OI” and the “Nodal PL OI” compression bases with traditional methods
in Figure 3.17. We see that the performance for each nodal compression basis is the same,
as both evaluate to the identity matrix when sampled at the points used to define the basis
functions. We also see that the method is reasonably competitive with GMRES for this
problem.
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Figure 3.17: Relative error and relative residual for overall test for greengard-ex2.

3.6.2 Modal Discretizations

We now present results for the test problems with modal discretizations. As discussed
in Section 3.4, modal discretizations of problems with local solutions are an unconventional
and likely impractical choice, and, as illustrated in Figure 3.5, the modal compression bases
considered are not effective at capturing the pattern in the solution vector from such a
discretization. Thus, we do not present additional results for greengard-ex2 with modal
discretizations beyond those presented in Figure 3.5.

According to Table 2.1 for a modal discretization of a problem with a global solution, we
expect that a nodal compression basis is required to have a chance of performing well. As the
remaining test problems have global solutions, we present results only for nodal compression
bases. As with explicit nodal discretizations, due to the inordinate number of combinations
of discretization methods and discretization bases, we show only a few representative results
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(one for each problem). In Figure 3.18, we compare all of the available local bases (nodal
Gaussian, Lagrange, piecewise linear) as well as the identity matrix for deriv2_c1. Each
of the local bases is evaluated at its natural points (i.e., the points used to define them).
Interestingly, the results for all of these local bases are identical. This is unsurprising,
however, as each local basis matrix reduces to the identity matrix when evaluated at its
natural points. Therefore, in Figure 3.19 we present results for the remaining test problems
with only the identity matrix as the local compression basis.
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Figure 3.18: Full nodal compression basis comparison for deriv2_c1 discretized using collocation with
Chebyshev polynomials with equally-spaced collocation points as discussed in Section 3.6.2.
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(a) Results for gravity_c1 discretized using collocation
with hierarchical piecewsise linear basis with equally-
spaced collocation points.
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(b) Results for shaw discretized using Galerkin with Cheby-
shev basis.
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(c) Results for greengard_ex1 discretized using Galerkin
with Chebyshev basis.
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(d) Results for greengard_ex3 discretized using collocation
with Chebyshev basis.
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(e) Results for fornberg discretized using Galerkin with
hierarchical piecewise linear basis.

Figure 3.19: Selected global discretizations with nodal compression bases results for problems with global solutions as discussed in Section 3.6.2.
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In Figures 3.18 and 3.19, we see that for numerous problems a reasonably low error is ob-
tained with relatively small k. For deriv2_c1, in Figure 3.18, we see that the error decreases
sharply at first, obtaining an excellent solution almost immediately. This is unsurprising as
the problem is discretized with collocation using the Chebyshev basis, and the true solution
is simply a linear function, so only the first couple of coefficients are necessary. With the
identity matrix as the compression basis taken in left-to-right order, these coefficients are
determined almost immediately. In Figure 3.18, we also see a regularizing effect, where,
after a certain value of k, the error begins to increase rapidly as increasing the dimension
of the compression subspace with additional basis vectors is simply adding unwanted noise.
Overall, with the identity matrix as the compression basis matrix, our compression-based
method reduces to an incremental QR factorization that is truncated and therefore has the
potential to perform well for problems having effectively low rank.

3.7 TESTING SUMMARY

Overall, these results illustrate that the compression-based method has the potential to
perform well on linear systems resulting from the discretization of 1D continuous problems.
For most 1D problems, one or more compression bases perform well, and in numerous cases
the best performing basis achieves a lower error with smaller k than GMRES or TSVD.
For some problems, we see a regularizing effect, with the minimum error achieved by the
compression-based method lower than the minimum error with conventional methods, mak-
ing the compression-based method an interesting option for linear systems resulting from
ill-posed problems, which typically require regularization.

While the method has the potential to perform well, the basis must be chosen carefully,
and the properties of the solution affect both the choice of basis and the ordering of the
basis vectors. For instance, properties such as whether the solution is low or high frequency,
odd or even, etc. can affect the performance of certain bases and orderings. Whether the
solution function is global or local and what type of basis is used for the discretization can
help guide the choice of basis for the solver, as in Table 2.1.
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Chapter 4: 2D Numerical Results

In this chapter we present numerical results for the compression-based method applied to
2D test problems. As with 1D numerical results, we first provide an overview of the types
of test problems considered, discuss the experimental setup, and then present results to test
specific hypotheses and illustrate the overall effectiveness of the method.

4.1 2D TEST PROBLEM DETAILS

For the 1D results in Chapter 3, we consider linear systems resulting from discretizing
continuous problems, and we explicitly perform the discretization of the problems in order
to investigate comprehensively the impact of the discretization on the effectiveness of the
method. For the 2D numerical results, however, we consider a wider range of test problems
with various levels of knowledge of the details of the discretization. For some problems, such
as those discretized with simple discretizations and used for preliminary testing, detailed
knowledge of the discretization is available and utilized. Other test problems are more
complex and are used directly in their discretized form provided by the source packages,
without detailed knowledge of the discretization. In essence, these discretized problems are
treated as “quasi-black-box” problems, and we do not control details of the discretization
other than the size of the resulting linear system.

The 2D test problems considered, regardless of the level of knowledge of the discretization
utilized, all fundamentally result from the discretization of an underlying continuous prob-
lem. While we use the terminology “quasi-black box” to refer to the test problems for which
we do not utilize detailed knowledge of the discretization, we do not consider truly general
problems that are not derived from underlying continuous problems, as there is no expecta-
tion that the compression-based method would be an effective choice for such problems. For
the compression-based method to be effective, there must be a compressed representation of
the solution and a suitable basis must be identified for computing it. Therefore, unless an
effective basis is available, the compression-based method is not well suited to truly general
linear systems.

General information for the 2D test problems can be found in Appendix D. As we no
longer focus solely on the continuous form of the problem, for many of the problems we do
not give detailed equations, but instead provide details on the source package of the problem,
any necessary details for generating the problem, and an illustration of the solution. For
those problems not taken from the original source in a fully discretized form, full formulas
for the underlying continuous problems are included in Appendix D.
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4.2 EXPERIMENTAL SETUP

All results presented are obtained using Python 2.7 with IEEE double precision arithmetic.
Some test problems are generated using additional software. Specifically, the test problems
ir-* are generated by the IR Tools MATLAB package [35], and the resulting discretized
linear systems are written out to full machine precision and read in by the Python code,
which runs the compression-based method. Similarly, all 2D problems discretized with finite
elements are discretized using FEniCS [36, 37], and the resulting linear system is explicitly
assembled using the code in Listing D.1.

Functions and data structures from NumPy [30, 31] and SciPy [32] are utilized wherever
appropriate. For each test, the compression-based method is run until a relative residual
tolerance of 10−15 has been reached or until k = n. This is done to illustrate the full behavior
of the method, although in practice one would stop as soon as a satisfactory solution has
been attained, the topic of Chapter 5.

As discussed in Section 2.3.2, in order to obtain 1D basis vectors, which are required for
the compression-based method, a 1D ordering of the evaluation points must be determined,
which is separate from which linear ordering is used to traverse the grid of doubly-indexed
basis functions as discussed in Section 2.3. The notation “Eq”, etc. is used to denote a 1D
ordering of the evaluation points obtained by flattening a 2D grid of evaluation points in row-
major order. However, as discussed in Section 2.3.2, it is crucial that the evaluation points
are compatible with the discretization. Accordingly, we introduce the notation “Custom”
to denote other evaluation points or other linear orderings of the evaluation points, such as
the ordered coordinates corresponding to the ordered degrees of freedom for the discretized
problem.

Most results are illustrated with plots of the relative error and relative residual. As in
Chapter 3, the residual is computed as the discrete 2-norm of the residual vector from the
solution to the linear system. As some 2D test problems are taken directly in discretized
form from the original source, we do not always have the details of the discretization and
the underlying continuous problem. Therefore, we adjust how we compute the error for
2D test problems, and for many 2D problems the error is not computed in comparison to
the true solution function, which was the approach for 1D numerical tests. Specifically,
for problems explicitly discretized by us using finite differences or the Nystrom method,
the underlying continuous problem is known and the true solution vector is obtained by
sampling the true solution function at the discretization points. For problems discretized
using finite elements, the true solution vector is taken as the vector computed using the
standard built-in direct solver for the discretized linear systems. For problems from the
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IR Tools package [35] (i.e., ir-*), the true solution vector is provided by the package that
generates the problem. In all cases, the error is computed as the discrete 2-norm of the error
vector between the respective “true solution” vector and the approximate solution obtained
by the compression-based method.

As in Chapter 3, many of these results compare the performance of the compression-based
method with standard native implementations of GMRES and TSVD (instead of reproducing
them with our method), and we specifically compare with GMRES and TSVD as they are
similarly general methods (i.e., they do not rely on any special properties of the linear system
such as symmetry of A.)

4.3 PRELIMINARY TESTING

In this section, we illustrate results for any additional targeted experiments to test specific
hypotheses beyond those hypotheses tested in Section 3.5. As the majority of the hypotheses
tested in Section 3.5 are applicable in 2D as well, experiments for those tests are not repeated
here. Any additional targeted tests are performed on the 2D boundary value problem,
2d-designed-sine-bvp and 2D integral equation problem, su-ex3, which are discretized
using simple discretizations and for which the continuous formulations of the problems are
available.

As discussed in Section 2.3, unlike 1D bases, which often have a natural ordering, there
is no single, natural, linear, low-to-high frequency or degree ordering for the 2D doubly-
indexed basis functions. To investigate this issue, we test the various orderings for a single
compression basis. Specifically, we consider the 2D basis resulting from Chebyshev poly-
nomials taken in diagonal (Diag), chevron (Chev), circular (Circ), row-major (Row), and
column-major (Col) orders (as described in Section 2.3). As both of these problems are dis-
cretized using equally-spaced points, only equally-spaced evaluation points are considered.
The results are shown in Figures 4.1a and 4.1b for su-ex3 and 2d-designed-sine-bvp,
respectively. We see that, in general, diagonal, chevron, and circular orderings are most
competitive. As the circular ordering does not generally perform better and is slightly more
costly to compute, we henceforth consider only diagonal and chevron orderings. While Fig-
ure 4.1a illustrates a case where the row-major ordering appears to perform best, overall
results show that row-major and column-major orderings are not generally competitive with
diagonal and chevron orderings and typically result in slower decay of the error.

An alternative to using 2D basis functions is to map the entries of the unknown vector to
be solved for in a locality-preserving way from 2D to 1D so they can be approximated by 1D
basis functions. One such possibility is by mapping the unknowns according to a space-filling
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(a) Order comparison test results for su-ex3 with n = 32 (linear system of size n2 × n2).
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(b) Order comparison test results for 2d-designed-sine-bvp with n = 32 (linear system of
size n2 × n2).

Figure 4.1: Comparison of various orderings of 2D basis functions.

curve [38, 39], such as the Hilbert curve first described by Hilbert in 1891. We investigated
the use of space-filling curves such as the Hilbert curve for 2D test problems; however,
despite their locality preserving property, the curve obtained by reordering according to the
mapping is not smooth, which does not lend itself to being well-approximated based on the
1D results. Accordingly, space-filling curves are not an effective technique for approaching
2D problems using the compression-based method, and, hence, results are omitted.

4.4 COMPREHENSIVE RESULTS

To illustrate the overall effectiveness of the method, we present results of the best perform-
ing compression bases, as determined by the 1D testing, on the 2D test problems discussed
in Section 4.1 with details in Appendix D.

For each comprehensive test, results are also shown for GMRES and TSVD. When A is
square and full rank, the error and residual for the solution from the direct solver in NumPy
[30, 31] (or SciPy [32] if the matrix is stored in sparse format) are also shown, except for
problems for which the true solution is obtained via a direct solver.
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In Figure 4.2, the results of comprehensive tests are illustrated for su-ex3 and texas2d-ex1
discretized using simple discretizations. These are similar to the problems used for the
targeted testing in Section 4.3; however, we compare the best performing bases against
GMRES and TSVD. For these problems, as the discretization details are known, equally-
spaced evaluation points are used for the basis functions in order to match the discretization
points for both problems. For su-ex3, the results illustrated in Figure 4.2a show that the
compression-based method with Chebyshev bases performs similar to and even slightly bet-
ter than GMRES and significantly better than TSVD. It is also effective, though slightly
less so with hierarchical Gaussian compression bases. In Figure 4.2b, with a Chebyshev
basis, a low error is obtained at extremely small k relative to the problem size, achieving
a minimum error at about k = 15, a far smaller value of k than GMRES. Together the
results in Figure 4.2 clearly illustrate that, as in 1D, the compression-based method can be
competitive with, and potentially significantly outperform, other methods for problems with
smooth solutions discretized with simple discretizations.

Figure 4.3 illustrates results for fenics-simple, a simple boundary value problem dis-
cretized with finite elements on a uniform square mesh. This is a problem for which the
solution of the discretized linear system should reproduce the true solution function exactly,
as the solution is quadratic and piecewise linear elements can reproduce a quadratic exactly
on a uniform mesh [40]. As the mesh is a uniform finite element mesh on the unit square,
equally-spaced evaluation points may seem to be a reasonable choice. However, as discussed
in Section 2.3.2, we must ensure compatibility between the discretization and the evaluation
points in the ordering of the spatial coordinates.

For illustrative purposes only, Figure 4.3a presents the results when using equally-spaced,
row-wise ordered evaluation points. In contrast, Figure 4.3b illustrates results for the same
problem using a Chebyshev compression basis with the evaluation points ordered to match
the ordering of the discretization points according to the ordering of the degrees of freedom.
This problem highlights the importance of ensuring that the evaluation points match the
discretizations points, both in value and in ordering. With the evaluation points reordered to
match the ordering of the degrees of freedom, the method achieves a low error at an extremely
low value of k. In particular, Figure 4.3c illustrates the same results as Figure 4.3b, but
truncated to illustrate with more detail the behavior for small values of k. From Figure 4.3c,
it is clear that a good approximation with low error is obtained at k = 6, far less than the
k required by GMRES to achieve an equivalent error.

Figure 4.4 illustrates the overall performance of the compression-based method for solving
a slightly more complex boundary value problem discretized with finite elements. This is
the same test problem considered in Figure 4.2b, but discretized on a uniform finite element
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(a) Relative error and relative residual for su-ex3 discretized using Nystrom method with
n = 32 (linear system of size n2 × n2).
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(b) Relative error and relative residual for texas2d-ex1 test problem discretized using finite
differences with n = 32 (linear system of size n2 × n2).
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(c) View of Figure 4.2b zoomed in to show detail for initial values of k.

Figure 4.2: Comprehensive test illustrating relative error and relative residual for su-ex3 and texas2d-ex1
discretized with simple discretizations.

mesh and on an irregular finite element mesh over the unit square. As Figure 4.3 illustrates
clearly the necessity to incorporate detailed knowledge of the both discretization points and
ordering for problems discretized using finite elements, only results of the Chebyshev basis
evaluated at the coordinates corresponding to the ordered degrees of freedom are illustrated
in Figure 4.4.

Figure 4.4a illustrates results with the uniform finite element mesh. While the initial
decay of the error is rapid, the rate of decay of the error decreases after relatively few k,
although the error does continue to decrease at a slower rate. Unlike Figure 4.3, where due
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(a) Results with default (row-major flattened) ordering of compression basis evaluation points.
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(b) Results when using discretization coordinates in ordering corresponding to degrees of
freedom for basis evaluation points.
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(c) View of Figure 4.3b zoomed in to show detail for initial values of k.

Figure 4.3: Comprehensive tests illustrating relative error and relative residual for fenics-simple test
problem with n = 32 (linear system of size n2 × n2) with both row-wise equally-spaced and custom basis
evaluation points.
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to the nature of the continuous problem and the choice of discretization the components of
the solution to the linear system are exact nodal values, the approximate solution to the
problem for which results are illustrated in Figure 4.4 includes discretization error as well
as error in solving the linear system. In Figure 4.4b, results with the irregular finite element
mesh are presented. The error initially decays rapidly, then plateaus at approximately 10−3

until k ≈ n, at which point the error drops significantly. In both cases the compression-
based method does not appear to achieve the minimum error until k is quite large. However,
it is crucial to recall that, unlike in 1D, the error for these problems is not computed by
comparing to the true solution of the continuous BVP, but by instead comparing to the
solution of the linear system, and thus it does not reflect any discretization error. Based on
various estimates, the discretization error for the uniform mesh is approximately 10−3 or 10−4

(depending on the specific error estimate), with the discretization error for the irregular mesh
being a similar order of magnitude, but slightly higher. Thus, despite superficial appearances
in Figure 4.4, GMRES is not outperforming the compression-based method as, due to the
manner in which the error is computed, accuracy at an error level of 10−15 (or any value less
than discretization error) is effectively meaningless, as it does not imply a more accurate
solution to the continuous BVP. In fact, in Figure 4.4 we see that the compression-based
method exhibits a initial rapid decay of the error. In particular, in Figure 4.4a the error for
the compression-based method drops far faster than for GMRES and an error within the
range of discretization error is obtained with far smaller k than for GMRES, indicating that
the compression-based method is actually significantly outperforming GMRES.

In Figure 4.5, we illustrate results with the best performing 2D bases and 2D orderings
for ir-inverse-interpolation. For this problem, we do not utilize details about the
discretization, but instead we simply evaluate the basis functions at equally-spaced points.
From these results, we see that both hierarchical Gaussians and Chebyshev polynomials with
the diagonal and chevron orderings perform quite well, achieving a low error at approximately
k = 25 for a linear system of size 1024. We also see that all of the bases and ordering
combinations achieve a lower error overall than conventional methods, which make little to
no progress to the solution. This illustrates a 2D problem for which the performance of the
compression-based method is quite impressive.

Figures 4.6a and 4.6b illustrate results with the compression-based method for the im-
age deblurring problems ir-image-deblurring-smooth and ir-image-deblurring-hst,
respectively. As with Figure 4.5, we do not utilize detailed knowledge of the problem such
as the type of blurring or discretization details. However, as we are working with images,
equally-spaced evaluation points are a logical choice as pixels are inherently equally spaced.
In Figure 4.6a, we see that the compression-based method performs quite well with the
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(a) Discretized using finite elements with a uniform mesh with 1024 total degrees of freedom.

0 50 100 150 200 250

k

10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

R
e
la

ti
v
e
 R

e
si

d
u
a
l

Basis
Custom Cheb Chev

Custom Cheb Diag

GMRES

TSVD

0 50 100 150 200 250

k

10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

R
e
la

ti
v
e
 E

rr
o
r

(b) Discretized using finite elements with an irregular mesh with 249 total degrees of freedom.

Figure 4.4: Comprehensive tests illustrating relative error and relative residual for texas2d-ex1 discretized
with finite elements.
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Figure 4.5: Relative error and relative residual for ir-inverse-interpolation with n = 32 (linear system
of size n2 × n2).

Chebyshev basis, achieving a minimum error at k ≪ n, with hierarchical Gaussians also
performing reasonably well. Additionally, all of the compression bases illustrated achieve
a good solution with significantly smaller k than required by TVSD and GMRES. As the
true solution (unblurred) image shown in Figure D.6b is a smooth function, the strong per-
formance is expected. For Figure 4.6b, the true solution (unblurred) image is a picture of
the Hubble space telescope, which we would not expect to be well approximated by smooth
functions. Therefore, Figure 4.6b includes bases that do not regularly perform well, but
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are motivated by domains other than approximation of smooth functions. Even with these
bases, we see that none of the bases perform well; however, based on the 1D testing, this
is not unexpected as the jumps in the discrete bases need to occur at the locations of the
edges in the image, which often does not occur until sufficiently oscillatory basis vectors are
included.
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(a) Relative error and relative residual for ir-image-deblurring-smooth with n = 64
(linear system of size n2 × n2).
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(b) Relative error and relative residual for ir-image-deblurring-hst with n = 64 (linear
system of size n2 × n2).

Figure 4.6: Comprehensive tests for ir-image-deblurring-* test problems.

In Figure 4.7, we illustrate results with the best performing 2D bases and 2D order-
ings for ir-inverse-diffusion. As with the problems ir-inverse-interpolation and
ir-image-deblurring-*, this problem is not considered in its continuous form and we do
not utilize in-depth discretization details. From these results, we see that none of the com-
binations of basis and ordering perform particularly well for this problem in comparison to
TSVD or GMRES. For some values of k, however, they do achieve a lower error than the
error in the solution from a direct solver.
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Figure 4.7: Relative error and relative residual for ir-inverse-diffusion with n = 32 (linear system of
size n2 × n2).

4.5 TESTING SUMMARY

Overall, the 2D test results illustrate that the compression-based method has the poten-
tial to perform well on 2D problems. As with 1D test problems, for best performance the
evaluation points for the compression basis should match the discretization points. For 2D
problems with reasonably smooth solutions discretized using simple discretizations where
the discretization points are known and the evaluation points are chosen to match the dis-
cretization points, the method performs well. However, for other 2D test problems, the
ability to match the evaluation and discretization points and the pattern of the solution are
more challenging in 2D, particularly because more complex discretizations are often used
in 2D. If the discretization points are known, custom discrete bases obtained by evaluating
the traditional basis functions at the discretization points in the order they are used for
the discretized linear system can alleviate some issues that arise with more varied orderings
of the degrees of freedom for 2D problems, such as those resulting from finite element dis-
cretizations. Ultimately, the performance of the compression-based method in 2D is tied
closely to the ability to match the points used in the discretization with evaluation points
for the basis functions and the ability of the basis functions to approximate the pattern of
the solution with relatively few basis functions, which are the same considerations that are
crucial for its effectiveness for 1D test problems.
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Chapter 5: Stopping Criterion

The results presented thus far have been run until k = n or until a relative residual
tolerance of 10−15 has been met, in order to illustrate the full behavior of the error and the
residual. In practice, however, we will not achieve significant compression unless we can stop
with k ≪ n. The initial formulation of the incremental method in Algorithm 1.2 utilizes
the standard stopping criterion for iterative methods: to continue until a specified residual
tolerance is met. This is not an ideal stopping criterion for Algorithm 1.2, however, because
it may force running well beyond the point of diminishing returns, or worse, to the point that
the error increases, as in Figure 5.1, thus degrading the solution. In order for Algorithm 1.2
to be a viable method in practice, we need an automated stopping criterion that maximizes
compression and is robust with regards to this potential degradation of the solution with
increasing k.
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Figure 5.1: Example results (truncated at k = 90) for designed_sine_ie with n = 128 discretized using
composite trapezoid quadrature with Chebyshev polynomials for the compression basis illustrating potential
degradation of the solution as k increases.

While the results presented previously illustrated both the residual and the error, in
principle the true solution function is not generally known, as otherwise there would be no
need to solve the system. Consequently, any potential stopping criterion cannot make use of
the error, but must rely on other information available without knowing the true solution.

In this chapter, we first discuss techniques for related methods and their performance
when used in conjunction with the compression-based method. We then provide a brief
overview of the quantities available to be monitored, present a heuristic stopping criterion
based on one of these quantities, and numerically confirm its effectiveness on a variety of
test problems with varying noise levels (where applicable).
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5.1 CURRENT RELATED TECHNIQUES

Stopping criteria for conventional iterative methods are disccussed in [41, 42, 43, 44, 45,
46, 47]; however, they are either not applicable to our method or do not significantly enhance
the standard relative residual tolerance in conjunction with our method.

A variety of techniques have been developed for determining the regularization parameter
when using traditional regularization methods for solving ill-posed problems (e.g. TSVD,
Tikhonov regularization). For ill-posed problems such as integral equations, in effect, Algo-
rithm 1.2 acts as a regularization method, with k serving as a discrete regularization param-
eter. Therefore, we summarize these approaches briefly and discuss their performances when
used in conjunction with Algorithm 1.2. More detailed descriptions of these techniques can
be found in [6, chapter 5] and [48, chapter 7].

5.1.1 Summary of Techniques

The discrepancy principle, typically attributed to [49], chooses the regularization param-
eter such that the 2-norm of the residual equals the 2-norm of the error in the right-hand
side, ∥e∥2. It requires knowing either ∥e∥2 or the noise distribution

The L-curve, proposed in [50, 51], chooses the regularization parameter to correspond to
the L-shaped corner in a log-log plot of the solution norm versus the residual norm. Finding
the corner of the L-curve requires data for regularization parameter values on both sides of
the corner and typically involves maximizing the curvature (and potentially some form of
smoothing).

Generalized cross validation (GCV) [52], attempts to choose the regularization parameter
as the value for which the regularized solution will best predict omitted data values by
minimizing the GCV function.

The normalized cumulative periodogram (NCP) analysis technique, [53, 54, 55], utilizes
the DFT and power spectrum of the residual vector to choose the regularization parameter
for which the residual vector most resembles white noise.

5.1.2 Discussion of Performance

We have evaluated each of these traditional regularization parameter techniques for use
in combination with Algorithm 1.2. While these methods may perform well for some test
problems and noise levels, no single criterion performed well across all test problems and
noise levels. For instance, occasionally the residual tolerance specified by the discrepancy
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principle was too low to be achieved (even with the additional safety scale factor). For the
L-curve criterion, in some cases, there is no L-shaped corner in the solution norm versus
residual norm plot (it is in fact a straight line). In other instances, even when a corner is
present, it is not uncommon for many values of k to make up the single corner, including k
for which the error has begun increasing significantly. For the GCV technique, tests show
that, for some problems where the optimal value of k occurs before the residual bottoms out,
the GCV criterion does not stop early enough. For some problems with the NCP analysis
technique, there is no transition to high frequency noise, and, in multiple cases, the values
of k that fall within the white noise range are those for which the error in the computed
approximate solution is increasing.

5.2 POTENTIAL QUANTITIES FOR DETECTING TERMINATION

Although we cannot monitor the error, we can monitor a variety of other relevant quan-
tities throughout the incremental process, such as the individual entries and the norms of
the approximate solution vector xk, the vector of coefficients zk, and the residual vector
b−Axk, and the diagonal entries rkk in the incremental QR factorization.

While it may seem that some of these quantities could provide useful information for
detecting the effective rank of the projected problem or the representation of the solution,
most are ill-suited for use as a termination criterion. For instance, one could monitor ∥xk∥2,
as the solution norm may increase as noise begins to dominate the solution. However,
there is no guarantee the solution norm will increase, or that it will increase only when noise
dominates the solution. The coefficients zk indicate the contribution of the basis vectors, but
as the bases are not generally orthogonal, adding a new basis vector often changes the entire
vector zk, making it difficult to monitor the contribution of each individual basis vector.
Furthermore, not all basis vectors will contribute to the solution, so a small coefficient in
magnitude does not necessarily indicate convergence (in fact, often due to an even or odd
solution every other basis vector makes no contribution to the solution). Similarly, although
a nearly zero diagonal entry rkk can indicate near rank deficiency of Yk, there is no guarantee
that subsequent basis vectors will not extend the subspace.

Utilizing many of these quantities as termination indicators is insufficient due to the
unpredictable nature for future basis vectors. However, the residual, although its value is
not a direct indicator of convergence, is guaranteed to be monotonically nonincreasing as k
increases (absent rounding error). Thus, the residual may be a suitable choice if additional
information regarding the progress towards the solution can be detected based on the detailed
behavior of the residual.
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5.3 PROPOSED STOPPING CRITERION

We present a multi-faceted, heuristic stopping criterion that attempts to stop at the point
(k) of diminishing returns in the incremental version of the algorithm. Similar to some
of the stopping criteria summarized in Section 5.1.1, the criterion we present is motivated
by the idea of extracting additional information from the residual. In particular, although
the value of the residual alone may not be a sufficient stopping criterion for the reasons
previously discussed, the detailed behavior of the decay of the residual can provide additional
information.

Specifically, as Algorithm 1.2 computes a least squares approximation to the solution
over a nondecreasing sequence of subspaces, the 2-norm of the residual is guaranteed to be
monotonically nonincreasing as k increases (absent rounding effects). Although the residual
is monotonically nonincreasing, there is often a “bend” (sharp change in curvature) in the plot
of the residual 2-norm versus k when plotted on a semilogarithmic plot, using a logarithmic
scale on the vertical axis (i.e., semilogy). For some problems and noise levels, this bend occurs
when the residual “bottoms out.” In other instances, however, a bend occurs at a change
in the behavior of the residual before the residual has permanently flat-lined, and in such
cases, there is often a second distinct bend when the residual finally flattens permanently.

The natural question, then, is how and why such bends can be relevant to detecting
an appropriate termination point? In the case of two bends, the initial bend indicates a
transition from capturing the overall behavior of the solution of the continuous problem to
making additional progress towards solving the linear system more accurately, which may
not necessarily improve the overall accuracy and may even increase the error for integral
equations. More specifically, for problems that do not benefit from regularization, our test
problems have illustrated that when the residual exhibits two distinct bends, the first bend
indicates the point at which the accuracy of the approximate solution to the continuous
problems is around the discretization error, and once the approximate solution is at the level
of the dominant discretization error, no additional accuracy will be gained with respect to
the original continuous problem. Intuitively, such an initial bend in the residual curve is due
to the suddenly diminished returns to be gained from further iterations once the approximate
solution is already approximately within the discretization error. In cases with a single bend,
which occurs when the residual stagnates, the linear system has been solved as accurately as
possible and the incremental process should be terminated as there is no additional progress
to be made to the true solution to the continuous problem. Either scenario indicates that the
incremental process should be terminated at the first bend detected, regardless of whether
there may be more than one bend.
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For example, consider Figure 5.1, for which we see two distinct bends in the semilogy plot
of the residual. The first bend occurs at approximately k = 7, where the rate of decay of
the 2-norm of the relative residual transitions from quite rapid to a still distinct, but far
less rapid, decay. Correspondingly, the error attains its minimum and begins to increase
as the approximate solution transitions from capturing the behavior of the true continuous
solution to progressing towards approximating the solution to the linear system. A second
bend occurs at approximately k = 70, after which the behavior of the residual is dominated
by rounding error and is no longer monotonically nonincreasing.

For the single stopping criterion to be effective for both integral equation problems and
boundary value problems, we present a multi-faceted stopping criterion that combines de-
tecting a desired bend with more traditional aspects, such as a residual tolerance. The
primary aspects of the stopping criterion are:

• Residual tolerance: stop if a provided relative residual tolerance is met

• Residual increasing: stop if the 2-norm of the relative residual increases significantly

• Bend in residual plot: stop if a valid bend has been detected in the semilogy relative
residual plot

• Residual flat-lining: stop if a valid flatlining of the relative residual on the semilogy
plot has been detected

These primary aspects must detect changes in the behavior of the residual in a robust
manner with respect to other behaviors often present in the residual decay that are not
indicative of termination. For instance, in Figure 5.1, while the overall behavior of the
residual shows two clear bends, a stair-stepping behavior (due to odd/even effects) is also
present that is not indicative of a larger change in the decay of the residual. To be effective,
the bend detection must be robust to such stair-stepping. Specifics on overcoming such
issues are discussed in the details for each of the individual components.

The full stopping criterion is illustrated in Figure 5.2 and details of the individual com-
ponents are described in the following sections.

5.3.1 Traditional Residual Components

The first two components of the multi-faceted stopping criterion are more traditional
components based solely on the value of the residual rather than the overall behavior of
the residual. The first component is the traditional relative residual tolerance often used as
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Figure 5.2: Diagram of heuristic stopping criterion decision flow.
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the stopping criterion in many iterative methods. The default value is set sufficiently low
that this component is unlikely to trigger before the relative residual has reached the level of
rounding error. This component is primarily included so users can easily incorporate a priori
knowledge about a relative residual tolerance after which it is not worthwhile continuing.
This component is a sufficient condition for stopping, but not necessary; it will not force the
method to keep going until the tolerance is met if one of the other components detects that
the incremental process should terminate.

The second component is motivated by the fact that absent effects of rounding error and
noise, the 2-norm of the residual is guaranteed to be monotonically nonincreasing. While
rounding error may cause the 2-norm of the residual to increase slightly, if the 2-norm of the
residual increases significantly, the incremental process should stop. To ensure that rounding
error does not cause this component to indicate that the method should stop prematurely,
this check is implemented by testing whether the increase is sufficiently large relative to the
2-norm of the previous residual.

To complement these, an upper relative residual tolerance is also included. Unlike the
traditional residual tolerance, which indicates termination when the relative residual falls
below the given tolerance, the upper relative residual tolerance prevents stopping too early
by specifying a relative residual that must be achieved before the method will stop due to
satisfying the other, more complex components discussed in the next sections. The default
value is set to ensure the method has made some progress towards solving the linear system
before allowing the stopping criterion to signal to stop, and it is designed to prevent problems
that are initially vastly underresolved from stopping prematurely.

5.3.2 Residual Decay Behavior

Detecting a change in the behavior of the residual decay (i.e., identifying the location
of a bend described in Section 5.3) is similar to detecting the corner of the L-curve in the
L-curve criterion. Accordingly, we adopt a similar technique applied to the semilogy plot of
the relative residual 2-norm versus k, as we wish to stop at the point of maximum curvature
in this plot. Unlike the L-curve criterion, we cannot have access to the entire plot or even
a few values of k spread out over the entire plot, as running with a large value of k will
nullify any potential computational effectiveness. Instead, we must adaptively find bends
“on the fly,” based primarily on past information and requiring information from at most a
few steps further in Algorithm 1.2. We must first, however, approximate the curvature and
then detect for which k the curvature is at a peak.
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5.3.3 Curvature Approximation

The curvature of a 1D function y = f(x) is defined as

curvature =
|y′′|

(1 + y′2)
3
2

.

Therefore, to approximate the curvature, we must have approximations of the first and
second derivatives. While there are a variety of ways to approximate derivatives and the
curvature, we must account for the fact that the semilogy residual plot is inherently not
smooth because k is discrete. Furthermore, in some instances, such as in Figure 5.1, the
residual plot may exhibit stair-stepping, with no change every other k, due to other aspects
(such as approximating an even or odd function with polynomials, where every other basis
vector has no effect).

Initial Smoothing

The unsmooth or potentially jagged nature of the semilogy relative residual plot has the
effect of creating many small “knees” that do not actually indicate a more general change.
To address this issue, we utilize the Savitzky-Golay convolution filter coefficients [56] to
compute the smoothed log relative residual value, along with first and second derivative
values, at a given point. The Savitzky-Golay convolution coefficients allow for computation
of the function value, 1st, and 2nd derivatives obtained from fitting a low degree polynomial
over a certain window of data.

In general, we utilize the Savitzky-Golay filter with a window of five points and a poly-
nomial degree of two, where the derivatives and function values are evaluated at the center
of the interval. However, this prevents the ability to determine smoothed values for k = 1

and k = 2. To address this issue, for k = 1, a 2nd degree polynomial is fit over the log
relative residual values for k = 1, 2, 3 and then the function and its derivatives are evaluated
at the initial endpoint. Likewise, for k = 2, a 2nd degree polynomial is fit over the four
values k = 1, 2, 3, 4, and the function and its derivatives are evaluated at k = 2. In all cases,
the window extends two beyond the current k. So, to compute the smoothed log relative
residual value or the derivatives at a point k, residual information through k+2 is required.
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Peak Curvature Detection

Once the smoothed log relative residual values and 1st and 2nd derivatives for a given
point are determined, they can be used to compute an approximate curvature value. To
detect a peak in the curvature on the fly, we use an adaptation of the smoothed z-score
algorithm presented in [57], which is designed to take a vector of data values and determine
whether a given value is a peak (or signal as it is called in [57]) based only upon the previous
data values. When given a new data point, the algorithm compares the new data point by
computing the number of standard deviations the new data point lies away from the moving
mean (where the length of the moving mean is controlled by lag). If this z-score is above
a preset threshold, then the new data point is declared a peak. To ensure that a single
peak does not prevent future peaks from triggering, when computing the new moving mean
and moving standard deviation, a filtered value of the peak is used. Specifically, the filtered
value is a scaled combination of the current value and the previous filtered value, where the
scaling is controlled by the influence parameter.

For use as a component of the stopping criterion, we make a few minor adjustments to
the smoothed z-score algorithm as it is presented in [57]. Specifically, the original algorithm
detects “signals” that may be higher or lower than the mean. However, as we are looking only
for peaks, we adapt the results to look only for curvature values above the moving average
by at least threshold standard deviations. Additionally, the algorithm as presented cannot
begin detecting peaks until the lag + 1 data point (as lag data points are required for the
moving average and standard deviation). While this is important for forming a baseline
mean, it prevents the ability to detect a peak in the first few k. As some of the numerical
results in Chapter 3 illustrate, there are problems for which the optimum solution is at k
less than lag. The inability to detect any peaks in the curvature for small k could cause
the peak to be missed entirely. To counteract this, when k is less than lag but at least two,
we simply compute a moving average of the k − 1 previous curvature values, switching to a
moving average of length lag when k > lag.

5.3.4 Additional Components

In addition to just checking for a peak, checks are included within the stopping criterion
to verify that a peak is a “good” peak before stopping. First, it is possible that there
could be multiple peaks close together, and stopping at the first peak may not be the most
desirable choice. To account for this, we check a 2nd-order accurate forward difference
approximation to the first derivative to verify that the logged relative residual is reasonably
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flat immediately following the peak. This additional check requires two Savitzky-Golay
smoothed log relative residual values beyond the current. Therefore, because each Savitzky-
Golay smoothing window requires two values beyond the current k, in total the stopping
criterion requires information for four values beyond the current k to decide whether the
current k is the appropriate point at which to stop.

Also, as it is possible for the curvature to be large at any bend in the plot, it is important
to consider the individual shape of any point of maximum curvature. If the current k is a
peak in the curvature and the semilogy relative residual plot is concave down at that point,
the concave down aspect is indicative of a transition from a slowly decaying residual to a
more quickly decaying residual, which would generally indicate a poor place to stop. So,
the stopping criterion includes a check on the second derivative when a peak is detected, to
ensure that it does not stop at a point of high curvature where it is concave down.

In addition to those checks, in a few cases, it is possible for there to be no “good” peaks
in the curvature before the residual effectively flatlines. To ensure this is detected, if for a
given k no good peak is detected, the first derivative value computed using Savitzky-Golay
is checked and if it is near zero or positive and the second derivative does not indicate it is
concave down, then stop, as this indicates the residual has effectively not changed for five
values of k in a row, and that there is no indication it will start decreasing soon.

5.3.5 Specific Parameter Values

The smoothed z-score algorithm for robust peak detection presented in [57] requires mul-
tiple input parameters to determine what is detected as a peak and control its influence.
Additionally, the other checks described in Section 5.3.1 and Section 5.3.4 also require indi-
vidual tolerances. For our tests, the tolerance values and parameters in Table 5.1 are used.
We intentionally use an unrealistically low relative residual tolerance to test the effectiveness
of the remaining components of the stopping criterion. While not requiring user specifica-
tion, as the other components of the stopping criterion are designed to detect when the
residual ceases decreasing, this tolerance would likely be user specified based on additional
information regarding the problem or a desired residual known by the user. Similarly, while
the upper relative residual tolerance is designed to be sufficient with the default value, if
a user has additional knowledge about the problem and the desired solution, this tolerance
could also be adjusted by the user.
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threshold 3.0

influence 0.4

lag 4

relative residual tolerance < 10−16

upper relative residual tolerance 10−1

residual increasing factor 0.5

forward difference deriv tolerance > −0.25

Savitzky-Golay deriv tolerance > −.01

concave down tolerance < −.02

Table 5.1: Stopping criterion parameter and tolerance values.

5.4 SELECTED RESULTS

As with previous numerical results presented, all tests are performed using Python 2.7
with use of functions and data structures from the NumPy and SciPy packages wherever
appropriate. This includes utilizing the Savitzky-Golay filter functions in scipy.signal for
all of the standard window scenarios (beyond the initial two iterations, where one-sided or
lopsided windows are used for which the coefficients are calculated by actually fitting the log
relative residual values and differentiating the resulting polynomial). To limit unnecessary
clutter, we illustrate results only for the two best performing compression bases: Chebyshev
polynomials and hierarchical Gaussians with c = 0.125.

As discussed in Appendix B, in practice the right-hand sides for ill-posed problems are
often contaminated by noise. Thus, a reasonable automated stopping criterion must be
robust for various noise levels. Accordingly, for integral equations, the results presented
here have noise added to the right-hand side for various noise levels. The noise level will be
specified as η (see Appendix B for details on the type of noise added and how η controls the
level of noise).

For each of the test problem and noise level combinations, we continue as in the previous
plots illustrating both the relative error (left) and the relative residual (right). The plots
illustrating relative error are included only to evaluate the effectiveness of the stopping
criterion; neither the true solution nor the error are utilized as part of the stopping criterion.
As with the comprehensive results, the red solid, dashed, and dotted lines represent TSVD,
GMRES, and a direct solver and are included for comparison purposes. The other lines
illustrate results for Algorithm 1.2. For each of these lines, a star denotes the k at which
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the stopping criterion indicates it should stop. The solid line indicates the values of k for
which actual results were obtained in Algorithm 1.2 to make the determination to stop at
the starred value of k. As described in Section 5.3.4, in total the incremental algorithm must
have information for four values of k beyond the current unless the stopping criterion triggers
termination based on the residual tolerance or the increasing residual. So, in most cases,
the solid line will extend four values beyond the starred k. The dotted lines continuing after
the end of the solid line are included solely to provide context and illustrate the behavior
shortly after the k at which the stopping criterion signals to stop. The k range in the dotted
portion of the line is not required to be run in order to stop at the starred value of k.

For comparison, we first illustrate the results of the stopping criterion in Figure 5.3 for the
noiseless designed_sine_ie problem illustrated as motivation in Figure 5.1. This clearly
illustrates that the stopping criterion is able to detect the change in the behavior of the
residual and signal for the method to stop at a relatively small k, even though the residual
is still decreasing. Examining the error, we see that the error is nearly at its minimum at
the point the stopping criterion signaled to stop.
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Figure 5.3: Stopping criterion results for designed_sine_ie with n = 128 discretized using composite
trapezoid quadrature with no noise.

Figure 5.4 illustrates the performance on the integral equation test problems considered
in Section 3.6. Each row corresponds to a problem, and each column represents a different
noise level. Examining Figure 5.4, it is clear that, in all cases, the stopping criterion chooses
a reasonable value of k at which to stop. While the value of k chosen for each may not be
the truly optimum k, it is often very close to the optimum k, and the error is reasonably
low at the k determined by the stopping criterion. Examining across the rows, although the
actual results for the solution of the problem may change, the performance of the stopping
criterion stays roughly the same. For instance, in Figure 5.4a the minimum error attained
is approximately three to four orders of magnitude higher than in Figure 5.4b due to the
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higher noise level in the former; however, in both cases the stopping criterion chose a k close
to the optimum k to stop.

Figure 5.5 illustrates the results of the stopping criterion on the various boundary value
problems considered in Section 3.6. Unlike integral equations, boundary value problems do
not normally have noise in the right-hand side, so no artificial noise is added, and there are
no longer multiple sets of results for each problem. In Figure 5.5, we see that for the majority
of the problems, the stopping criterion is sufficient. Although it may not capture the exact
k when the error reaches the minimum, it still indicates a reasonably low k. Unlike ill-
posed problems, the boundary value problems do not exhibit the increase in error while the
residual continues to decrease, so continuing a few k further is not as problematic because
the solution is not degrading. If one had knowledge of a sufficient relative residual, the
relative residual tolerance could be adjusted; however, even with the default tight tolerance
the stopping criterion determines a reasonable value at which to stop.
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(a) Results for deriv2_c1 with noise level η = 10−5.
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(b) Results for deriv2_c1 with noise level η = 10−8.
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(c) Results for gravity_c1 with noise level η = 10−5.
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(d) Results for gravity_c1 with noise level η = 10−8.
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(e) Results for shaw with noise level η = 10−5.
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(f) Results for shaw with noise level η = 10−8.

Figure 5.4: Stopping criterion performance results for integral equation problems with varying noise levels. All problems are discretized using
composite trapezoid quadrature with n = 128.
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(a) Results for designed_sine_bvp with n = 128.
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(b) Results for fornberg with n = 128.
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(c) Results for greengard-ex1 with n = 128.
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(d) Results for greengard-ex3 with n = 512.

Figure 5.5: Stopping criterion performance results for boundary value problems discretized using finite
differences with equally spaced points.

In addition to 1D test problems, we also illustrate that the stopping criterion is effective
in 2D. To examine its effectiveness, we first remark that Figure 4.4a, for the 2D test problem
texas2d-ex1, exhibits similar behavior to Figure 5.1, with a generally jagged plot and a
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distinct bend early in the incremental process. Although on the scales plotted the jagged
behavior looks quite similar, the width of the stair steps is greater for 2D problems. Because
of the greater jaggedness in 2D, a wider smoothing window is necessary in order to ensure
that the stopping criterion is not fooled into stopping prematurely by the wide stair steps,
which are introduced by the inherent need for a linear ordering of the 2D grid of basis
functions. Figure 5.6 illustrates results of the stopping criterion applied to a uniform finite
element discretization of texas2d-ex1 with a Savitzky-Golay smoothing window size of
9. Although the stopping criterion goes slightly beyond the visible large bend, which is
expected due to the additional smoothing required, it detects a reasonable point to stop after
which the accuracy has reached the level of discretization error and only marginal additional
progress to the solution of the linear system is gained with increasing k. In particular, when
compared to the full results for the compression-based method and traditional methods
shown in Figure 4.4a, not only is the compression-based method outperforming GMRES at
the detected stopping point, but GMRES would continue to iterate far beyond discretization
error, until the residual reaches rounding error or an arbitrary residual tolerance. Thus, the
compression-based method can have a significant edge over GMRES, even beyond potentially
achieving a lower error at a given k.
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Figure 5.6: Stopping criterion results for texas2d-ex1 discretized using finite elements with a uniform mesh
with 1024 total degrees of freedom.

5.5 SUMMARY

The presented multi-faceted, heuristic stopping criterion combines traditional residual-
based stopping criteria with additional components designed to detect a significant change
in the behavior of the residual. This stopping criterion requires no knowledge of the mag-
nitude of the noise in the right-hand side (if applicable) and can be performed on the fly,
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requiring only information for a few k further. We have shown experimental results with this
stopping criterion, illustrating its ability to perform well in detecting a value of k at which
to stop in Algorithm 1.2 for many problems and noise levels (when applicable). We have
shown its applicability to both 1D and 2D problems and both integral equations and bound-
ary value problems. For all types of problems, it effectively chooses a termination point
after which little additional progress would be made towards the true continuous solution,
often terminating when the accuracy of the computed solution to the continuous problem is
approximately within the discretization error.

Unlike traditional termination criteria for methods such as GMRES, the presented stop-
ping criterion is effective without manual input from the user on the value of specific toler-
ances, although the ability to provide them is incorporated if the user has additional infor-
mation and wishes to provide them. Although the presented stopping criterion is heuristic
and is not guaranteed to perform well in all scenarios, its overall performance for integral
equation problems is comparable to, and in some cases better than, the other regularization
parameter choice techniques, and it is applicable to boundary value problems as well.
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Chapter 6: Summary

This dissertation presents a method for exploiting compression when solving discretized
linear systems. The method exploits compression by solving for an approximate solution to
the discretized linear system that is a linear combination of the discrete basis vectors that
form the compression basis. To make the basic algorithm more practical, we formulated
an incremental version of the algorithm that allows for the compression space to be built-
up incrementally, allowing for dynamic determination of the dimension of the compression
space.

We have investigated the impact of a variety of issues that arise when choosing a basis, such
as the choice and ordering of evaluation points and the choice and ordering of basis vectors.
We have illustrated results of numerical tests that confirm the importance of matching the
basis evaluation points to the discretization points.

We have also presented Table 2.1, based on approximation theory, to help guide the
choice of compression basis for a given problem and discretization basis. We have verified
the guidance in the table with experimental results. The table is merely a guide, however,
and does not guarantee a given compression basis will perform well. In particular, the table
requires an appropriate basis, taken in the correct order.

With the guidance of the table and the motivation of compression, we have investigated a
wide variety of bases for use in the compression-based method. While some of the bases we
consider have been used for solving continuous problems of similar forms, such as Chebyshev
polynomials with spectral methods, we have illustrated that these bases can be effective for
solving the linear systems from already discretized problems.

Overall, we have demonstrated the potential of the method to achieve a good approximate
solution with relatively few basis vectors for linear systems resulting from the discretization
of a variety of 1D and 2D continuous problems. We have shown that the properties of the
solution will affect the overall efficacy of the method for a particular problem. To achieve
a good approximation with relatively few basis vectors, the basis must be chosen carefully
and any details of the discretization of the problem or any known properties of the solution
should be utilized when choosing a basis and forming ordered, discrete basis vectors. For
ill-conditioned problems, the method can provide a regularizing effect and prevent undesired
noise from contaminating the solution.

We have illustrated that the method can often achieve a lower error with smaller k than
other methods such as GMRES and TSVD. We have shown how the performance of the
method scales as the size of the problem increases, with the number of basis vectors required
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to achieve a good approximate solution increasing little, if any, as n increases. In addition
to being potentially competitive in cost with standard methods for solving linear systems,
for some problems, the compression-based method can achieve better results (i.e., a more
accurate solution) than conventional methods.

We have presented a multi-faceted heuristic stopping criterion based on the norm of the
residual that can be computed on the fly, requiring results for only a few values of k beyond
the k at which it detects to stop. Unlike a simple residual tolerance that is often used as
the stopping criterion for many traditional iterative methods for solving linear systems, the
presented stopping criterion relies on monitoring both the value and the detailed behavior
of the residual norm. The main component of the stopping criterion is designed to detect
changes in the behavior of the residual that indicate diminishing returns as k increases. We
have performed numerical experiments to test the multi-faceted heuristic stopping criterion,
which verify that it usually correctly identifies an appropriate value of k at which to stop,
often terminating when the accuracy of the computed solution to the continuous problem is
approximately within the discretization error.
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Appendix A: Details of Bases

A.1 POLYNOMIALS

A.1.1 Modified Chebyshev Polynomials

As discussed in Section 3.2, for some discretizations, the discretization basis functions
must be homogeneous. Let the i-th Chebyshev polynomial be Ti(t). Although the standard
Chebyshev polynomials are not homogeneous, they can easily be modified to be homoge-
neous. The modified Chebyshev polynomials, ϕi(t) can be taken as

ϕi(t) =

Ti(t) for i = 1, 2

Ti(t)− Ti−2(t) for i > 2
.
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Figure A.1: Illustrations of a few polynomial bases.
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A.2 PIECEWISE POLYNOMIALS
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Figure A.2: Illustrations of two piecewise polynomial bases.
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A.3 SINUSOIDS
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(a) DCT1 basis functions for n = 8.
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Figure A.3: Illustrations of a few sinusoidal bases.
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A.4 SQUARE WAVES
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Figure A.4: Illustrations of various square wave bases.
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A.5 WAVELETS
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(a) Basis functions from the multilevel wavelet decom-
position with Daubechies2 wavelet for n = 16.
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Figure A.5: Illustrations of various wavelet bases.
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A.6 GAUSSIANS

A.6.1 Hierarchical
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Figure A.6: Illustrations of hierarchical Gaussian bases with various amounts of overlap.

84



A.6.2 Nodal
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tially no overlap (c = 4.0) for n = 9
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Figure A.7: Illustrations of nodal Gaussian bases with various amounts of overlap.
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A.6.3 Overlap Parameter

A standard Gaussian function is of the form

f(t) = exp

(
−(t− b)2

2σ2

)
,

where σ is the standard deviation. The parameter c we use to vary the overlap is inversely
proportional to σ. Specifically,

σ2 =
1

2(c(n− 1))2
,

where n is the number of points (at the given level) and accounts for the different scaling of
the width of the Gaussian functions at the various levels in the hierarchical Gaussian basis.
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A.7 SINC FUNCTIONS
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Figure A.8: Illustrations of sinc bases.
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Appendix B: Details of 1D Integral Equation Test Problems

The 1D integral equation test problems we consider are Fredholm integral equations of
the first kind, which take the general form∫ b

a

K(s, t)u(t) dt = f(s), (B.1)

where the kernel K(s, t) : [c, d]× [a, b] → R and right-hand side f(s) : [c, d] → R are given,
and u(t) : [a, b] → R is the solution to be determined. We consider Nystrom (quadrature),
collocation, and Galerkin discretizations for integral equation problems, and details for each
can be found in Section B.1.

Defining equations for each integral equation test problem are provided in Section B.2.
For problems with no f(s) listed, the right-hand side is constructed by multiplying the
matrix resulting from the discretization with the true solution. In order to discretize such
problems using collocation or Galerkin, we first interpolate the true solution to obtain “true”
coefficients and then use these coefficients to compute a right-hand-side vector. For each
problem, the numerical rank (computed by NumPy using the default tolerance) and condition
number (if full rank) are provided for a few selected discretization and basis combinations.

In practice, integral equation problems typically have noise in the right-hand side as the
right-hand side often comes from physically measured data, where the measurement tools
are subject to noise. To simulate this, it is common to add artificial noise to the discretized
integral equation problems. For some tests, we add such artificial noise. Specifically, when
we add artificial noise, Gaussian random noise with mean 0 and standard deviation η is
added to the right-hand-side vector and we classify the noise level by η.

B.1 DISCRETIZATIONS

B.1.1 Nystrom (Quadrature)

The Nystrom (quadrature) method is a standard technique for solving integral equations
numerically by using a quadrature rule to approximate the integral by a finite sum. Let the
nodes and weights of the quadrature rule be denoted by tj and wj, respectively, j = 1, . . . , n.
Additionally, choose n points si (which can be different, but are often the same as tj). Then,
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the approximation to Equation B.1 becomes

n∑
j=1

wjK(si, tj)u(tj) = f(si), i = 1, . . . , n,

which is a system of linear equations Ax = b, where aij = wjK(si, tj), bi = f(si), and
xj ≈ u(tj). This linear system can be solved for the vector x, whose components are discrete
samples of the approximate values of the solution function u.

B.1.2 Collocation

To discretize an integral equation by collocation, the solution u is approximated by a
linear combination of basis functions ϕj with coefficients xj, giving

u(t) ≈ v(t,x) ≡
n∑

j=1

xjϕj(t).

We then choose collocation points, si, i = 1, . . . , n. Substituting the approximate solution
into Equation B.1 and forcing it to satisfy the integral equation exactly at the collocation
points gives a linear system Ax = b, where

aij =

∫ b

a

K(si, t)ϕj(t) dt, bi = f(si), i = 1, . . . , n,

for which the solution x is a vector of coefficients of the basis functions. Depending on the
complexity of the kernel and the basis functions, the integrals defining the entries of A can
be computed analytically or approximated using numerical quadrature.

B.1.3 Galerkin

To discretize an integral equation by the Galerkin method, the solution u is approximated
by a linear combination of basis functions ϕj with coefficients xj, giving

u(t) ≈ v(t,x) ≡
n∑

j=1

xjϕj(t).

We then substitute the approximate solution into Equation B.1 and require the residual to
be orthogonal to the subspace spanned by ϕi, i = 1, . . . , n. Doing so gives a linear system
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Ax = b, where

aij =

∫ b

a

∫ b

a

K(s, t)ϕi(s)ϕj(t) ds dt, bi =

∫ b

a

f(s)ϕi(s) ds, i = 1, . . . , n.

The necessary integrals can be computed analytically or approximated using numerical
quadrature.
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B.2 TEST PROBLEM DETAILS

designed_sine_ie

This problem is specifically designed by us. The true solution closely resembles the true
solution to designed_poly, the other designed problem.

K(s, t) =

1 + s− t s < t

1 + t− s s ≥ t

f(s) =
1 + 2s cos(πs) + (2(sin(πs)− πs cos(πs))) /π

π

u(t) = sin(πt)

t ∈ [0, 1], s ∈ [0, 1]
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True Solution for designed_sine_ie

Figure B.1: Illustration of true solution for designed_sine_ie.

Discretization N Numerical Rank Condition #
Nystrom (composite trapezoid) 128 128 2.2× 104

Galerkin (modified Chebyshev) 128 120 –
Galerkin (nodal PL) 129 129 1.6× 105

Table B.1: Condition numbers of discretized designed_sine_ie for a few selected discretiza-
tions.
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designed_poly_ie

This problem is specifically designed by us. The true solution is a low degree polynomial
that closely resembles sin(πt), the solution to the other designed problem, designed_sine.
Using Hermite interpolation, let p(t) be the polynomial of degree four whose coefficients are
given by the solution to the linear system

1 0 0 0 0

1 1/2 1/4 1/8 1/16

1 1 1 1 1

0 1 0 0 0

0 1 2 3 4




c1

c2

c3

c4

c5

 =


0

1

0

π

−π

 .

The integral equation is then given by

K(s, t) =

1 + s− t s < t

1 + t− s s ≥ t

f(s) = c1(1 + 2s− 2s2)/2 + c2(1 + 3s− 2s3)/6 + c3(1 + 4s− 2s4)/12

+ c4(1 + 5s− 2s5)/20 + c5(1 + 6s− 2s6)/30

u(t) = p(t), t ∈ [0, 1], s ∈ [0, 1]
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Figure B.2: Illustration of true solution for designed_poly_ie.

Discretization N Numerical Rank Condition #
Nystrom (composite trapezoid) 128 128 2.2× 104

Galerkin (modified Chebyshev) 128 120 –
Galerkin (nodal PL) 129 129 1.6× 105

Table B.2: Condition numbers of discretized designed_poly_ie for a few selected discretiza-
tions.
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deriv2_c1

This problem is from [58]; it was originally presented in [59, p. 315].

K(s, t) =

s (t− 1) s < t

t (s− 1) s ≥ t

f(s) =
s3 − s

6

u(t) = t

t ∈ [0, 1], s ∈ [0, 1]
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Figure B.3: Illustration of true solution for deriv2_c1.

Discretization N Numerical Rank Condition #
Nystrom (composite trapezoid) 128 126 –
Galerkin (modified Chebyshev) 128 118 –
Galerkin (nodal PL) 129 129 1.7× 105

Table B.3: Condition numbers of discretized deriv2_c1 for a few selected discretizations.
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gravity_c1

This problem is from [58]; it was originally presented in [60].

d = 0.25

K(s, t) = d
(
d2 + (s− t)2

)−1.5

u(t) = sin(πt) + 0.5 sin(2πt)

t ∈ [0, 1], s ∈ [0, 1]
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Figure B.4: Illustration of true solution for gravity_c1.

Discretization N Numerical Rank Condition #
Nystrom (composite trapezoid) 128 47 –
Galerkin (modified Chebyshev) 128 45 –
Galerkin (nodal PL) 129 47 –

Table B.4: Condition numbers of discretized gravity_c1 for a few selected discretizations.
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shaw

This problem is from [58]; it was originally presented in [61].

K(s, t) = (cos(s) + cos(t))2
(
sin(v)

v

)2

v = π (sin(s) + sin(t))

u(t) = a1e
−c1(t−t1)

2

+ a2e
−c2(t−t2)

2

a1 = 2, a2 = 1, c1 = 6, c2 = 2

t1 = .8, t2 = −.5

t ∈ [−π/2, π/2], s ∈ [−π/2, π/2]
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Figure B.5: Illustration of true solution for shaw.

Discretization N Numerical Rank Condition #
Nystrom (composite trapezoid) 128 20 –
Galerkin (modified Chebyshev) 128 10 –
Galerkin (nodal PL) 129 10 –

Table B.5: Condition numbers of discretized shaw for a few selected discretizations.
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Appendix C: Details of 1D Boundary Value Test Problems

The boundary value problems considered are second-order, linear, constant coefficient
boundary value problems (BVPs) in one dimension. Such problems take the general form

pu′′(t) + qu′(t) + ru(t) = f(t), (C.1)

where p, q, and r are constants and t ∈ [a, b], with additional equations to specify boundary
conditions.

We consider finite difference, collocation, and Galerkin discretizations, and an overview of
each is provided in Section C.1. To ensure consistent treatment of boundary conditions, they
are always explicitly enforced through equations in the linear system (even if the equations
are trivial). For example, when enforcing Dirichlet boundary conditions in a finite difference
discretization, we explicitly include the trivial equation x0 = u(a) as its own row in the matrix
instead of modifying the remaining matrix and incorporating the effect of the boundary
condition into the right-hand-side vector. Similarly, when using collocation or Galerkin, we
explicitly introduce an equation to enforce the boundary conditions, such as

∑
i ϕi(t0) = u(a)

for a Dirichlet condition at the left endpoint, and include it directly in the linear system,
even if it is trivial.

Defining equations for each BVP test problem are provided in Section C.2. For each
problem, the numerical rank (computed by NumPy using the default tolerance) and condition
number (if full rank) are provided for a few selected discretization and basis combinations.

C.1 DISCRETIZATIONS

C.1.1 Finite Differences

With the finite difference method, n evenly spaced mesh points, ti, are introduced in [a, b]

with mesh spacing h = (b − a)/(n − 1). The derivatives in the differential equation are
then replaced by finite difference approximations at each interior mesh point. For instance,
substituting second-order accurate centered difference approximations for the derivatives in
Equation C.1 gives

p

(
xi+1 − 2xi + xi−1

h2

)
+ q

(
xi+1 − xi−1

h

)
+ rxi = f(ti), i = 2, . . . , n− 1,
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which is a system of linear equations Ax = b whose solution gives approximate solution
values at the mesh points, xi ≈ u(ti). Note that additional equations are needed to enforce
the boundary conditions, and their form depends on the types of the individual boundary
conditions. For Neumann boundary conditions, we specifically use a second-order centered
difference approximation at the endpoint.

C.1.2 Collocation

To discretize a BVP by collocation, the solution u is approximated by a linear combination
of basis functions ϕj defined on [a, b] with coefficients xj, giving

u(t) ≈ v(t,x) ≡
n∑

j=1

xjϕj(t).

We then choose collocation points, ti in [a, b], i = 1, . . . , n. We then substitute the approxi-
mate solution into Equation C.1 and force it to satisfy the ODE at the interior collocation
points and the boundary conditions at the endpoints. Doing so gives

n∑
j=1

xj
[
pϕ′′

j (ti) + qϕ′
j(ti) + rϕj(ti)

]
= f(ti), i = 2, . . . , n− 1

as the linear system for the interior points, with additional equations used to satisfy the
boundary conditions.

C.1.3 Galerkin

To discretize a BVP by the Galerkin method, the solution u is approximated by a linear
combination of basis functions ϕj defined on [a, b] with coefficients xj, giving

u(t) ≈ v(t,x) ≡
n∑

j=1

xjϕj(t).

We then substitute the approximate solution into Equation C.1 and require the residual to
be orthogonal to the subspace spanned by ϕi, i = 1 . . . , n. Doing so gives a linear system
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Ax = b, where

aij =

∫ b

a

−pϕ′
j(t)ϕ

′
i(t) + qϕ′

j(t)ϕi(t) + rϕj(t)ϕi(t) dt,

bi =

∫ b

a

f(t)ϕi(t) dt.

These integrals can be computed analytically or approximated using numerical quadrature,
depending on the complexity of the forcing function and the basis functions. Additional
details regarding Galerkin discretizations of boundary value problems can be found in many
numerical analysis textbooks, such as [2, p. 438].
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C.2 TEST PROBLEM DETAILS

designed_sine_bvp

This problem is specifically designed by us. The true solution closely resembles the true
solution to designed_poly, the other designed problem.

u′′ = −π2 sin(πt)

u(0) = u(1) = 0

The true solution is
u(t) = sin(πt).
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)

True Solution for designed_sine_bvp

Figure C.1: Illustration of true solution for designed_sine_bvp.

Discretization N Numerical Rank Condition #
Finite differences 128 128 6.5× 103

Galerkin (Chebyshev) 128 128 1.2× 105

Galerkin (nodal PL) 129 129 7.6× 103

Table C.1: Condition numbers of discretized designed_sine_bvp for a few selected dis-
cretizations.
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designed_poly_bvp

This problem is specifically designed by us. The true solution is a low degree polynomial
that closely resembles sin(πt), the solution to the other designed problem designed_sine.
Using Hermite interpolation, let p(t) be the polynomial of degree four whose coefficients are
given by the solution to the linear system

1 0 0 0 0

1 1/2 1/4 1/8 1/16

1 1 1 1 1

0 1 0 0 0

0 1 2 3 4




c1

c2

c3

c4

c5

 =


0

1

0

π

−π

 .

Then, the boundary value problem is

u′′ = 2c3 + 6c4t+ 12c5t
2

u(0) = u(1) = 0

with true solution u(t) = p(t).

Discretization N Numerical Rank Condition #
Finite differences 128 128 6.5× 103

Galerkin (Chebyshev) 128 128 1.2× 105

Galerkin (nodal PL) 129 129 7.6× 103

Table C.2: Condition numbers of discretized designed_poly_bvp for a few selected dis-
cretizations.
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Figure C.2: Illustration of true solution for designed_poly_bvp.
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greengard-ex1

This problem is from [62]; it was originally presented in [63].

−u′′ + 400u = −400 cos2(πt)− 2π2 cos(2πt)

u(0) = u(1) = 0

The true solution is

u(t) =
e−20

1 + e−20
e20t +

1

1 + e−20
e−20t − cos2(πt).
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Figure C.3: Illustration of true solution for greengard-ex1.

Discretization N Numerical Rank Condition #
Finite differences 128 128 1.6× 102

Galerkin (Chebyshev) 128 128 1.6× 105

Galerkin (nodal PL) 129 129 9.9× 102

Table C.3: Condition numbers of discretized greengard-ex1 for a few selected discretiza-
tions.
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greengard-ex2

This is a boundary layer problem from [62]. This is a slightly modified version of the
problem; the original specified ϵ = 10−5.

ϵu′′ − u = 0, ϵ = 10−4

u(−1) = 1, u(1) = 2

The true solution is

u(t) =
e−100(t−1)(−e200t + 2e200(t+1) − 2 + e200)

e400 − 1
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Figure C.4: Illustration of true solution for greengard-ex2.

Discretization N Numerical Rank Condition #
Finite differences 128 128 1.6× 104

Galerkin (Chebyshev) 128 128 6.2× 102

Galerkin (nodal PL) 129 129 1.2× 102

Table C.4: Condition numbers of discretized greengard-ex2 for a few selected discretiza-
tions.
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greengard-ex3

This problem is from [62]. This problem has a highly oscillatory solution.

u′′ + 5u′ + 10000u = −500 cos(100t)e−5t

u(0) = 0, u(1) = sin(100)e−5

The true solution is
u(t) = sin(100t)e−5t.
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Figure C.5: Illustration of true solution for greengard-ex3.

Discretization N Numerical Rank Condition #
Finite differences 128 128 9.1× 102

Galerkin (Chebyshev) 128 128 2.7× 106

Galerkin (nodal PL) 129 129 8.5× 104

Table C.5: Condition numbers of discretized greengard-ex3 for a few selected discretiza-
tions.
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fornberg

This problem is from [64].

u′′ + u′ − 2u = −2

u(−1) = u(1) = 0

The true solution is
u(t) = 1− sinh(2)et + sinh(1)e−2t

sinh(3)
.

1.0 0.5 0.0 0.5 1.0

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

u
(t

)

True Solution for fornberg

Figure C.6: Illustration of true solution for fornberg.

Discretization N Numerical Rank Condition #
Finite differences 128 128 3.7× 103

Galerkin (Chebyshev) 128 128 3.3× 104

Galerkin (nodal PL) 129 129 3.6× 103

Table C.6: Condition numbers of discretized fornberg for a few selected discretizations.
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Appendix D: Details of 2D Test Problems

These test problems come from a variety of different problem domains. As many test
problems are taken directly from other packages in their discretized form, most test problems
do not contain details of the continuous problem, but instead contain information on the
source of the problem and how to generate it.

For problems that specify they are discretized using finite differences or Nystrom, concep-
tually the solution is defined on an n× n grid. To form the linear system, however, the grid
is flattened to a 1D solution vector in row-major order. For all other problems, the ordering
of the solution vector is determined by the source package (for problems named ir-*) or by
the discretization software (for problems discretized using FEniCS [36, 37]).

For each problem, the numerical rank (computed by NumPy using the default tolerance)
and condition number (if full rank) are provided.
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2d-designed-sine-bvp

This problem was designed by us to be the 2D analogue of designed-sine-bvp. It is a
general 2D boundary value problem of the form

−∆u = −ut0t0 − ut1t1 = f(t),

with sufficient boundary conditions, where u(t) is the unknown function to be determined.
The specific functions defining this problem are given below.

f(t) = 2π2 sin(πt0) sin(πt1)

u(t0, 0) = u(t0, 1) = u(0, t1) = u(1, t1) = 0

The true solution is
u(t) = sin(πt0) sin(πt1).

We discretize this problem using finite differences on a uniform 2D mesh. With n = 32

(n2×n2 linear system), the resulting matrix is full rank, and its condition number is 3.9×102.
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Figure D.1: Illustration of true solution for 2d-designed-sine-bvp.
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su-ex3

This is a 2D integral equation problem that is example three presented in [65, p. 195]. It
is a 2D Fredholm integral equation of the first kind that takes the general form∫ b1

a1

∫ b0

a0

K(s0, s1, t0, t1)u(t0, t1) dt0 dt1 = f(s0, s1) (D.1)

where

K(s0, s1, t0, t1) =
1√

(t0 − s0)2 + (t1 − s1)2

and the true solution is given by

u(t0, t1) = 1 + (t0 − 0.5)t0(t1 + 0.5) cos(
π

3
t1)− t1(1− t1).

We discretize this problem using composite trapezoid quadrature using midpoints for the
collocation points. As f(s0, s1) is not provided for this problem, the right-hand-side vector is
generated by computing Ax, where x is obtained by sampling the true solution function at
the discretization points flattened in row-major order. With n = 32 (n2 ×n2 linear system),
the resulting matrix is full rank, and its condition number is 1.9× 103.
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Figure D.2: Illustration of true solution for su-ex3.
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texas2d-ex1

This problem is example one in [66] and is a general, continuous boundary value problem
of the form

−∆u = −ut0t0 − ut1t1 = f(t),

with sufficient boundary conditions, where u(t) is the unknown function to be determined.
The specific functions defining this problem are

f(t) = −1(6t0t1(1− t1)− 2t30)

u(t) = uD(t), t on dΩ

where dΩ is the boundary of the domain, Ω = [0, 1] × [0, 1], and uD is the true solution
function on dΩ. The true solution is

u(t) = t1(1− t1)t
3
0.

We consider this problem discretized using finite differences on a uniform 2D mesh. We
also consider this problem discretized using finite elements with P1 finite elements on both
a uniform and irregular mesh over the unit square. The rank and condition number of the
resulting matrices are shown in Table D.1, and the true solution function and the solution of
the finite element discretization of the problem with the corresponding meshes are illustrated
in Figure D.3.

Discretization DOF Numerical Rank Condition #
Finite differences 1024 (32× 32 grid) 1024 3.9× 102

Finite elements (uniform mesh) 1024 (32× 32 grid) 1024 3.9× 102

Finite elements (irregular mesh) 249 249 8.1× 101

Table D.1: Condition numbers of discretized texas2d-ex1 for a few selected discretizations.
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(a) Illustration of true solution function.
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(b) Illustration of solution and mesh for finite element
discretization with uniform mesh with n = 32 (1024
degrees of freedom).
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(c) Illustration of solution and mesh for finite element
discretization with irregular mesh with 249 degrees of
freedom).

Figure D.3: Illustrations of true solution function and solutions of finite element discretizations of
texas2d-ex1.
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fenics-simple

This problem is taken from the FEniCS tutorial, [40]. It is the simple 2D Poisson problem
whose discretization code is provided in [40, sections 2.1, 2.2, and 2.3]. This is a Poisson
problem on a uniform finite element mesh over the unit square [0, 1]×[0, 1] with P1 elements.
As we are not interested in utilizing FEniCS to solve the problem, it is used solely to for
creating the test problem and the additional code in Listing D.1 is used to extract the explicit
discretized linear system. With n = 32, (1024 degrees of freedom), the resulting matrix is
full rank, and its condition number is 3.9× 102.

Listing D.1: Code to extract linear system from FEniCS.
1 A = assemble(a)
2 b = assemble(L)
3 bc.apply(A,b)
4 Anp = A.array()
5 bnp = b.array()
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(a) Illustration of true solution.
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(b) Solution with overlaid mesh (2D representation).

Figure D.4: Illustrations of true solution for fenics-simple with n = 32 (i.e., 1024 total degrees of freedom).
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ir-inverse-interpolation

This is a 2D inverse interpolation problem from the IR tools package [35]. With the
package, the following MATLAB code can be used to generate the problem information and
extract an explicit form of the matrix A. With n = 32 (n2×n2 linear system), the resulting
matrix is not full rank (rank = 924).

Listing D.2: Matlab generation code for ir-inverse-interpolation
1 n = 32
2 [A, b, x, ProbInfo] = PRinvinterp2(n);
3 I = eye(n^2);
4 res = zeros(n^2,n^2);
5 for i = 1:n^2
6 res(:,i) = A(I(:,i), ’notransp’);
7 end
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Figure D.5: Illustration of true solution for ir-inverse-interpolation.
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ir-image-deblurring

This is an image deblurring problem from the IR tools package presented in [35] based
on a spatially variant rotational blur. With the package, the following MATLAB code can
be used to generate the problem information with various images. With n = 64 (64 × 64

image), the resulting matrix is full rank, and its condition number is 1.3× 104.

Listing D.3: Matlab generation code for ir-image-deblurring-*
1 options = PRblurrotation(’defaults’)
2

3 % Uncomment one of the below lines to set the image
4 %options.trueImage = ’hst’
5 %options.trueImage = ’smooth’
6

7 n = 64
8 [A, b, x, ProbInfo] = PRblurrotation(n, options);
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(a) Unblurred image for ir-image-deblurring-hst.
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(b) Unblurred image for ir-image-deblurring-smooth.

Figure D.6: Images used with ir-image-deblurring-* test problems.
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ir-inverse-diffusion

This is a 2D inverse diffusion problem from the IR tools package [35]. With the package,
the following MATLAB code can be used to generate the problem information and extract
an explicit form of the matrix A. With n = 32 (32 × 32 image), the rank of the resulting
matrix is 200 (it is not full rank).

Listing D.4: Matlab generation code for ir-inverse-diffusion
1 n = 32
2 [A, b, x, ProbInfo] = PRdiffusion(n);
3 I = eye(n^2);
4 res = zeros(n^2, n^2);
5 for i = 1:n^2
6 res(:,i) = A(I(:,i), ’notransp’);
7 end
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Figure D.7: Illustration of true solution for ir-inverse-diffusion.
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