
c© 2019 Sungmin Lim



A HIERARCHICAL ADAPTIVELY BOOSTED IN-MEMORY
CLASSIFIER IN 6T SRAM

BY

SUNGMIN LIM

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Adviser:

Professor Naresh R. Shanbhag



ABSTRACT

Recent emerging machine learning applications such as Internet-of-Things

and medical devices require to be operated in a battery-powered platform.

As the machine learning algorithms involve heavy data-intensive computa-

tions, interest in energy-efficient and low-delay machine learning accelerators

is growing. Because there is a trade-off between energy and accuracy in ma-

chine learning applications, it is a reasonable direction to provide scalable

architecture which has diverse operating points.

This thesis presents a high-accuracy in-memory realization of the Ad-

aBoost machine learning classifier. The proposed classifier employs a deep

in-memory architecture (DIMA), and employs foreground calibration to com-

pensate for PVT variations and improve task-level accuracy. The proposed

architecture switches between a high accuracy/high power (HA) mode and

a low power/low accuracy (LP) mode via soft decision thresholding to pro-

vide an elegant energy-accuracy trade-off. The proposed realization achieves

an EDP reduction of 43X over a digital architecture at an iso-accuracy of

95% for the MNIST dataset, which is an improvement of 5% over a previous

in-memory implementation of AdaBoost.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The high energy and delay costs of current day machine learning (ML) algo-

rithms inhibit their deployment for real-time always-on inference on sensor-

rich platforms such as wearables, UAVs, personal biomedical devices, Internet

of Things (IoT), and many others. In such systems, the data movement dom-

inates the high energy and latency cost [1]. As a result, energy-efficient and

low-latency machine-learning hardware is required to sustain the always-on

functionality (e.g. face detection) amid resource constraints such as limited

form factor for mobility, processing time for real-time streamed-in input data,

and energy for battery-powered platform (Fig. 1.1). However, the current ML

platforms (e.g. CPU, GPU, and FPGA) based on von Neumann architec-

ture [2] are not suitable in the battery-powered hardware due to their high

data movement cost [3].

A number of machine learning accelerators [4–10] to reduce the data move-

ment cost using data reuse methods have been proposed, but these target the

server platform and are limited by the memory-processor interface. There-

fore, overcoming von Neumann structure should be the first step to build

a data-intensive computing architecture for the emerging applications. Ad-

ditionally, there is a fundamental trade-off between energy and accuracy in

most ML applications. Therefore, it is a reasonable direction to implement

scalable architecture with a wide spectrum of operating points because all the

applications do not necessarily require highly accurate networks with large

energy consumption.
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Figure 1.1: Simplified von Neumann machine-based inference.

1.2 Related Work

Recently, in-memory architectures [1, 11–14] were proposed to address the

data movement cost. Such architectures embed low-swing analog computa-

tions in the periphery of the SRAM bit-cell array (BCA) to minimize memory

access rates, substantially reducing the energy-delay product (EDP) of in-

ference, but can lead to degradation in task-level accuracy due to circuit

non-idealities such as Vt variations in the bitcell array (BCA). Nevertheless,

IC prototypes have realized up to 100× reduction in the energy-delay product

(EDP) [12] at iso-accuracy with digital architectures.

The multi-functional in-memory inference processor [1] and the random

forest accelerator [11] achieve significant gains in the energy efficiency (10×)

and throughput (5.3×) over a conventional digital architecture by exploiting

the inherent error tolerance of machine learning algorithms. In contrast, [12]

shows that training with chip-in-the-loop can improve DIMA’s accuracy but

at the expense of a large retraining overhead, e.g., requiring 6400 images

for binary classification. On the other hand, [11] implemented the random

forest algorithm on DIMA using an embedded crossbar for feature extraction

to achieve high accuracy in an 8-class traffic sign recognition task. However,

the crossbar can be too complex to be employed in always-on applications.
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For the always-on IoT applications, the AdaBoost [15] algorithm is attrac-

tive due to its low computational complexity and good accuracy. In spite

of its simplicity, not much work has been done on realizing the AdaBoost

algorithm using in-memory architectures except for [13]. In [13], a 10-class

in-memory AdaBoost classifier [13] achieved an energy efficiency of 630 pJ

per decision. However, the achievable accuracy was limited to 90% for the

MNIST dataset, which was improved to 91% via the use of four in-memory

ICs [16] indicating the challenge of improving the task-level accuracy of Ad-

aBoost using in-memory architectures. Also, 25% of SRAM bit-cells had to

be allocated to compensate for comparator offsets, compromising the memory

density [13,16].

As another approach for an efficient architecture, there are a number of at-

tempts to build the scalable hardware which have a trade-off between energy,

delay and accuracy. Dynamic Voltage-Accuracy Scaling (DVAS) [17] exploits

shorter critical paths combined with lower precision for scaled voltage. As

a next version, Dynamic Voltage-Accuracy-Frequency Scaling (DVAFS) [7]

made additional frequency scaling possible. Precision scaling [6, 7, 17] is

widely used with masking input or weight bits. Lastly, hierarchical recogni-

tion by [7] provides increasing numbers of classes as it goes to last recognition

stage with growing complexity. As an orthogonal way of scaling, this thesis

proposes hybrid mode using soft decision value to determine an operating

point.

1.3 Thesis Contributions and Organization

This thesis proposes a hierarchical architecture to realize in-memory Ad-

aBoost with improved accuracy for always-on applications using decision

tree-based weak classifiers. The proposed architecture computes a soft deci-

sion margin in its low-power/low-accuracy model (LP mode), and switches

to a high-accuracy/high-power mode (HA mode) only when the confidence

level indicated by the soft decision margin in the LP mode is low. The pro-

posed architecture is experimentally validated via test configurations of a

previously reported IC [11] using 8-b precision for both weights and input

pixels. The proposed in-memory AdaBoost realization achieves a 43× re-

duction in EDP at an iso-accuracy of 95% over a digital neural network [18].
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This is a 5% improvement in accuracy over the previous in-memory AdaBoost

implementation [13] though at a higher EDP.

This remainder of thesis is organized as follows. Chapter 2 explains back-

ground for DIMA and AdaBoost. Implementing the AdaBoost algorithm on

DIMA, the proposed architecture, and foreground calibration techniques are

described in Chapter 3. The measurement results including energy, through-

put, and accuracy from both component-level and task-level are described in

Chapter 4. Finally, Chapter 5 concludes the thesis.
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CHAPTER 2

BACKGROUND

2.1 Deep In-memory Architecture (DIMA)

2.1.1 DIMA Overview

This thesis employs the DIMA platform to implement an energy-efficient and

low-latency AdaBoost algorithm accelerator. DIMA reads multiple rows of

a standard 6T SRAM bitcell array (BCA) per precharge via pulse width

modulated (PWM) wordline (WL) pulses to read word-level information.

This stage is called multi-row functional read [1]. It processes the consequent

bitline (BL) voltage drops ∆VBL via column pith-matched bitline processor

(BLP) in the periphery of the BCA (Fig. 2.1).

The BLP computes scalar distances such as multiplication and scalar com-

parison. Following BLP output is aggregated in the cross bitline processing

stage for dimension reduction operation (e.g. sum). This work uses BLP as

scalar comparison for thresholding.

While the conventional SRAM architecture requires a L : 1 column mux

ratio (typically L = 4 to 32) due to large area of sense amplifiers (SA) as

shown in Fig. 2.2, DIMA does not require SAs to read memory because it

directly uses ∆VBL without massive data transfer [1,11]. Column mux limits

the number of bits per access to NCOL/L in standard SRAM compared to

NCOL × 4 in DIMA with multi-row read as shown in Fig. 2.1. As a result,

DIMA reduces dominant memory access cost in computations [3] compared

to the conventional digital architecture. Comparing data-flow conventional

digital architecture (Fig. 2.2) and DIMA (Fig. 2.1), it is clear that DIMA

has fewer intermediate steps than the digital architecture. This implies that

DIMA has strong benefits in terms of energy and delay.
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2.1.2 Multi-row Functional Read

The multi-row functional read (Fig. 2.3) creates voltage drop ∆VBL which is

proportional to B-bit word data D(=
∑B−1

i=0 2idi) stored in column-major.

The ∆VBL(D) can be fomulated as:

∆VBL(D) =
VPRE

RBLCBL

T0

B−1∑
i=0

2i−1di = ∆VlsbD,

where VPRE is BL precharge voltage, RBL is resistance of the BL discharge

path via the access and pull-down NMOS transistors, CBL is BL parasitic

capacitance, and T0 is minimum pulse width enabled on WL. Here, D is the

integer number of one’s complement of D. The unit BL voltage drop ∆Vlsb =
VPRE

RBLCBL
is a function of WL voltage VWL as RBL depends on VWL. As ∆VBL

is closely related to energy consumption, VWL can be used to implement

scalable architecture.
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2.2 Adaptive Boosting (AdaBoost)

The ensemble classifier is one of the machine learning classification algo-

rithms. The ensemble methods create a strong classifier by combining weak

classifiers which are inaccurate with around 50% detection failure rate. An

analog circuit can exploit this property because the analog computations are

usually faster and lower energy, but less accurate, than digital implemen-

tations. Therefore, designing a weak classifier in analog domain can take

advantage of ensemble classification.

AdaBoost, as an ensemble method, adds the weak learners iteratively to

build a highly accurate network by training the weak learners on differ-

ent distributions over the example dataset. Let us say training examples

〈(I1, y1), (I2, y2), ..., (Im, ym)〉 are given, where Ii ∈ I is an image sample in

the training set I and yi ∈ {−1,+1} is a label. In the first step, a distribution

D1 on the training set is initialized as:

D1(i) = 1/m, ∀ i = 1, ...,m.

The distribution D is used to give different weighting distributions on exam-

ples at each training sequence. In the t-th iteration, a current weak learner

focuses on misclassified input images in the previous iteration in order to re-

duce the same errors at a subsequent learner by weighting the failed images,

namely adaptively boosting. Given an input set, the t-th weak classifier qt

is trained to minimize the weighted error εt, which is a sum of the product

of the i-th weak hypothesis qt(Ii) ∈ {−1, +1} error and the i-th distribution

Dt(i) in the t-th iteration:

εt =
m∑
i=1

Dt(i) · 1[qt(Ii) 6= yi].

Once the εt is determined, AdaBoost chooses a parameter αt as follows:

αt =
1

2
ln(

1− εt
εt

).

The higher value of αt means that the t-th weak classifier is more reliable,

having high impact on a final (strong) classification. In the next iteration,

AdaBoost updates the distribution Dt to Dt+1 for i = 1, ...,m as follows:

8
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Figure 2.4: 10-class classifier with 45 strong classifiers.

Dt+1(i) =
Dt(i)exp(−αtyiqt(Ii))

Zt

,

where Zt is a normalization factor:

Zt =
m∑
i

Dt(i)exp(−αtyiqt(Ii)).

Finally, during inference, a test image Ij is classified as:

ŷ(Ij) = sign(
M∑
t=1

αtqt(Ij)),

where M is a total number of weak classifiers.

This thesis employs a simple comparison between a pixel value and a

trained threshold as a single weak classifier in AdaBoost inference, result-

ing in binary output qt. In order to build a 10-class classifier, the C10
2 = 45

strong binary classification results are computed using the one-vs.-one strat-

egy. Note that the one-vs.-one strategy only distinguishes two classes (binary

decision). As shown in Fig. 2.4, the strong binary decisions from the 45 one-

vs.-one classifiers are fed into a plurality voter and the final decision (e.g., 5)

is made.
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CHAPTER 3

DIMA-BASED ADABOOST
ARCHITECTURE

3.1 Implementation Challenges

Implementing a multi-class inference system in-memory using AdaBoost with

decision trees presents the following challenges: (1) Crossbar cost : Each

strong classifier (Fig. 3.1) needs to use a different subset of features necessitat-

ing a crossbar whose complexity increases with feature dimension. (2) Circuit

non-idealities : DIMA is vulnerable to various circuit non-idealities such as

PVT variations and non-linearity due to low-voltage analog operations. (3)

Retraining complexity : Retraining to overcome circuit non-idealities incurs

significant complexity overhead, e.g., 25% of memory capacity [13] devoted to

offset calibration, and massive retraining dataset [12]. By implementing Ad-

aBoost on the in-memory architecture IC [11], this work demonstrates the

benefits of exploiting the intrinsic error-tolerance of an ensemble classifier

and the energy-efficiency of a mixed-signal implementation.

3.2 Proposed In-memory Architecture

The proposed architecture in Fig. 3.1 realizes a 10-class classifier output ŷ by

plurality voting the outputs ŷn (n = 1, . . . , N = 45) of N = C10
2 = 45 boosted

(strong) binary classifiers. The n-th strong classifier’s output obtained is

ŷn = sgn(|ỹn − T̂n|), (3.1)

10
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where T̂n is the strong classifier threshold, and the soft decision ỹn is com-

puted as

ỹn =
256∑
m=1

αnmqnm. (3.2)

Here, αnm’s are the trained strong classifier parameters, and qnm (n =

1, . . . , 45;m = 1, ..., 256) are the weak classifier decisions obtained as:

qnm =

1 if Tnm > Xi

0 otherwise,
(3.3)

where Tnm is the trained pixel threshold of the m-th weak-classifier within

the n-th strong classifier, and Xi is a pixel with index i ∈ [1, 256]. Though

each weak classifier has low accuracy, e.g., slightly greater than 50%, each

strong classifier generates a > 90% accuracy. Plurality voting of 45 such

strong binary classifiers generates the final 10-class prediction. Each weak

classifier is a scalar comparator that compares pixel Xi with a pixel threshold

Tnm via in-memory computations in [11], thereby addressing challenges (2)

and (3) in section 3.1. Using scalar comparators as weak classifiers enables

simple foreground calibration, where the threshold and all possible pixel val-

ues are compared in-memory to retrain the thresholds. In this manner, the

comparator offset and bit-cell variation are compensated for without requir-

ing complex gradient descent based approaches [12,13] with massive training

datasets.

Challenge (1) is addressed by introducing three strong classifier modes

(Fig. 3.2): (a) a high-accuracy (HA) mode by realizing a many-to-one map-

ping of pixels to a threshold via a crossbar, (b) a low-power (LP) mode by

realizing a one-to-one mapping of pixels to a threshold bypassing the cross-

bar to achieve energy and delay efficiency at the cost of accuracy, and (c)

a hybrid mode to obtain the energy-efficiency of the LP mode and accuracy

of the HA mode by selectively enabling crossbar using soft decision margin

(SDM = |ỹn − T̂n|) of the LP mode (Fig. 3.2). Here, the LP mode works as

an always-on early detector to filter binary decisions of the strong classifiers

which have SDM < Th (low-confidence decisions), where Th is the margin

threshold. The costly HA mode is enabled to improve accuracy only if the

12



soft decision margin in the LP mode is low. Challenge (1) in the HA mode

is further addressed by deterministic sub-sampling (DSS) [11], where four

groups of weak classifiers are constrained to use a dedicated one-of-four 4:1

sub-sampled input images. Therefore, a single 256:1 crossbar can be re-

placed by four 64:1 crossbars achieving significant complexity reduction with

less than 0.2% accuracy degradation.

3.3 Circuit Design

The proposed 10-class classifier (Fig. 3.3) includes a SRAM BCA to store

pretrained 8-b thresholds THA
nm , TLP

nm and 6-b pixel index pn,m, multi-row

wordline (WL) drivers, 64-b I/O with a 4:1 column mux, DSS input buffer

to store streamed-in 256 8-b pixels Xi, four 64:1 crossbars, and peripherals

for standard read/write operations. The LP and HA modes use THA
nm and

TLP
nm , respectively, to classify an image. The crossbar is enabled only in the

HA mode and routes pixels to replica bit-cell array via the pixel index pn,m

which is stored in the BCA at the start of in-memory comparison [11].

In-memory comparison (Fig. 3.4) [11] begins by storing the 128 pixels of X

into the replica BCA, which is designed to write the 8-b pixels Xi efficiently

by having additional write BL with access transistors. Storing the X in the

replica BCA (Fig. 3.5) allows fast writing through a separate write BL (WBL)

and wordline (WWL) by eliminating the overheads of slow write operation

into normal BCA. The multi-row WL driver applies binary pulse-width mod-

ulated pulses simultaneously to WL3−0 and RWL3−0 to discharge BL (BLB)

creating voltage swing ∆VBL(∆VBLB) proportional to X − T (T −X). Here,

linearity of the multi-row read is improved by reading 4-b MSBs and LSBs

separately from adjacent columns followed by a capacitively weighted charge

sharing that assigns 16× greater weight to the MSBs. The WL voltage is

reduced (e.g. 0.65 V) to prevent destructive read and further improve the

linearity.

Finally, in-memory comparison phase generates 128 binary weak decisions

qn1∼128, requiring two such cycles to compute one strong classifier decision ŷn.

After 90 such in-memory cycles, the final multi-class decision ŷ is generated

via plurality voting the 45 binary strong decisions ŷn. The computation of

ỹn, ŷn, and plurality voting to obtain ŷ is done off-chip.
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3.4 Retraining with Foreground Calibration

Figure 3.6 shows the foreground calibration process to reduce weak classifier

errors due to process variations. The foreground calibration uses in-memory

comparisons to estimate the offset ∆Tnm between ideal Tnm and realized

T̃nm caused by PVT variations in bit-cells and comparators. By comparing

ramp signal Rk and off-chip trained thresholds (Tnm), the update Tnm ←
Tnm + ∆Tnm is performed and stored in the BCA to compensate for the

variations. By doing so, foreground calibration achieves 1.3× better memory

density than [13] without requiring dedicated offset cancellation bit-cells and

25× lower retraining dataset complexity than [12].
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CHAPTER 4

MEASUREMENT RESULTS

This chapter provides the measured results from the prototype IC [11] includ-

ing energy, delay, and accuracy. By comparing component- and task-level

accuracy, DIMA-based AdaBoost architecture demonstrates its robustness

to circuit non-idealities and its trade-off between energy and accuracy. The

prototype IC from [11] with measurement setup is shown in Fig. 4.1 and its

summary is presented in Table 4.1.

4.1 Component-level Accuracy

Figure 4.2 shows the distribution of measured classification results using first

and second weak classifiers in 3 vs. 5 strong classifier with different bit-line

voltage swing ∆VBL per-LSB. Blue and red dots represent the measured

classification results that are positive and negative, respectively. The black

vertical and horizontal lines are used to mark individual ideal thresholds for

the first and second weak classifiers. In Fig. 4.2, the classification distribu-

tion with lower ∆Vlsb = 15 mV shows more imprecise behaviors than the

classification with higher ∆Vlsb = 25 mV because of higher SNR.

Figure 4.3 shows the measured comparator error rate induced by circuit

non-idealities at different BL voltage swings per-LSB for two configurations:

Table 4.1: Measurement summary (∆Vlsb = 30 mV)

LP mode HA mode Hybrid mode

Energy/decision
19 120 67.3

(nJ/decision)
Throughput

331k 21k 117.7k
(decisions/s)

MNIST
92% 95% 95%

Accuracy

18



1.
2 

m
m

1.2 mm

q

Bit-cell
Array

M
R

-W
L 

d
ri

ve
r&

Pu
ls

e 
ge

n.

Bit-cell
Array

M
R

-W
L 

d
ri

ve
r&

P
u

ls
e

 g
e

n
.

M
R

-W
L 

d
ri

ve
r&

P
u

ls
e

 g
e

n.

Normal Read/Write

64
-b

 b
u

s

Replica bitcell array
Analog comparators

Input buffer & 
Cross bar

D
ig

it
al

 C
TR

L

Test
block

Base station

(Host PC)

Prototype PCB Microcontroller 

module board

q[1:128]

Technology
65nm

CMOS
Die size 1.2mm  1.2mm

SRAM

capacity

16kB

         
Bit-cell

dimension
2.11   2.11  

CTRL

Frequency
1GHz

Supply

voltage
1V

Figure 4.1: Chip micrograph [11] and measurement setup.

19



(a)

(b)

Figure 4.2: Measured results (◦: q = 0, •: q = 1) of the first and second
weak classifiers at: (a) ∆Vlsb = 25 mV, and (b) ∆Vlsb = 15 mV, where each
dot corresponds to one of the MNIST test images for the number 3 and 5.
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2.7x↓ 

Figure 4.3: Measured results with (without) foreground calibration:
comparator error rate vs. misclassification rate w.r.t. ∆Vlsb for MNIST
dataset.

with and without foreground calibration. The comparison-level errors are

measured at each ∆Vlsb [1] by counting the errors during the classification

with MNIST dataset. As the ∆Vlsb increases, the comparator errors reduce

from 50% (53%) to 0.7% (2.5%) with (without) foreground calibration. As

shown in Fig. 4.3, the foreground calibration dramatically improves task-level

misclassification rate by 21% at ∆Vlsb= 15 mV. In other words, the optimal

operating point can be pushed to the limit where energy efficiency increases

at the same level of misclassification rate.

4.2 Task-level Accuracy and Energy

Figure 4.4 shows the misclassification rate for the 10-class MNIST hand-

written digit recognition task [19]. As benchmark, we compare with a digital

architecture with an identically sized SRAM array and a synthesized digital

processor. The energy of the conventional architecture is obtained by mea-

suring the SRAM read energy from the prototype IC [11] and the energy
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2.6% 

LP mode with foreground calibration

HA mode with foreground calibration
HA mode 

LP mode 

Figure 4.4: Measurement results: error rate vs. ∆Vlsb for HA mode and LP
mode.

of the digital processor from post-layout simulations. The energy and delay

costs of off-chip processing in our architecture are estimated from post-layout

simulations. The robustness of classification accuracy to circuit nonidealities

is observed as the BL swing ∆Vlsb is reduced. Measurements (Fig. 4.5) show

92% (95%) accuracy in the LP (HA) mode at throughput of 331k (21k) de-

cisions/s and energy-efficiency of 19 (120) nJ/decision. This corresponds to

14.7× (7.3×) lower EDP in the LP (HA) mode compared to a conventional

digital implementation. In the hybrid mode (Fig. 4.6), 9.70× EDP reduction

at accuracy of 95%, energy consumption of 67.3 nJ/decision, and through-

put of 117.7K are achieved at Th = 2. In addition, the hybrid mode enables

roughly 26× EDP scalability. Figure 4.7 provides a comparison with recent

works that use the MNIST dataset. The proposed in-memory AdaBoost re-
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Figure 4.5: Misclassification rate vs. energy in HA mode and LP mode.

alization achieves a 43× reduction in EDP at an iso-accuracy of 95% over a

digital neural network [18]. This is a 5% improvement in accuracy over the

previous in-memory AdaBoost implementation [13] though at a higher EDP.

The higher EDP of our implementation is primarily due to the lower row-

parallelism in [11] which reduces the throughput. Furthermore, the proposed

architecture can provide energy vs. accuracy scalability by simply adjusting

the margin threshold Th as shown in Fig. 4.7. Note that one of the mea-

surement points in [18] is used for iso-accuracy comparison. The comparison

graph (Fig. 4.7) also indicates that hybrid mode provides a better EDP point

(Th = 2.0) than HA mode at the same accuracy.
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C1:                  (energy),                   (accuracy)
C2:                  (energy),                   (accuracy)

Figure 4.6: Error rate vs. average energy in hybrid mode in two
configurations: C1=[∆Vlsb(LP) = 15 mV; ∆Vlsb(HP) = 30 mV] and
C2=[∆Vlsb(LP) = 30 mV; ∆Vlsb(HP) = 30 mV].
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Figure 4.7: Accuracy vs. EDP for 10-class MNIST dataset. Throughput
and energy scaled to a 65 nm process [13,17,18,20,21].
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This work presents a hierarchical AdaBoost in-memory classifier to provide

scalable architecture in the trade-off between energy and accuracy. As a

result, the prototype IC demonstrates that the hybrid mode shows EDP re-

duction of 9.70× (95% accuracy) at energy consumption of 67.3 nJ/decision,

compared to a conventional digital architecture for MNIST dataset. Also,

this work shows 43× reduction of EDP in the same accuracy and 5% improve-

ment of accuracy at a similar level of EDP. Foreground calibration compen-

sates for the circuit non-idealities of DIMA, achieving task-level accuracy

improvement of 21%.

To summarize, there are two crucial points based on the prototype IC mea-

surements. First, a scalable architecture by cascading two different modes

achieves high accuracy of the HA mode (95%) and low energy consumption

(67.3 nJ/decision) that lies between that of the HA and LP modes. Second,

foreground calibration helps maximally utilize benefits of mixed-signal com-

putations in terms of delay and energy without accuracy loss at low retraining

cost, showing EDP reduction of 43× compared to the state-of-the-art digital

architecture.

5.2 Future Work

Alternative high-density memory technologies such as NAND flash and MRAM

can replace SRAM in this work. As the proposed AdaBoost architecture has

a simple structure, resource-constrained applications like IoT devices can

employ the proposed design to sustain the always-on functionality. Another
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extension to on-chip foreground calibration IC can also be considered to

achieve higher robustness under severe resource constraints.
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