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ABSTRACT

The motivation of this study is to identify music without the original recording. The exist-

ing solutions tackle variations in some properties such as background sound and white noise,

but the identification of samples containing large variations in key, tempo, ornamentation,

and harmonization remains largely unsolved.

This study takes an existing algorithm and uses an existing data set to explore the param-

eters required for successful identification, as well as variations in key. The findings show a

simple way to identify and normalize the key of a sample. Future work will tackle tempo

and ornamentation challenges.
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CHAPTER 1: INTRODUCTION

1.1 MY MOTIVATION

Imagine having a song stuck in your head, but being unable to remember the song name.

Maybe the lyrics were elusive or unclear, or maybe it never had any in the first place. Well,

I have one, but I wish mine was such a popular song that humming it to my music major

friends would have solved my problem.

I ran into one person who knew the name of my mystery song when I was in 7th grade,

but 7th grade has long been forgotten. I didn’t write down the name of the song, and the

first place I’d heard it was a remix in a different language. I’ve been searching ever since,

and I hope one day that I can find it by humming to my phone.

Meanwhile, I’ve tried all sorts of different music recognition software. Shazam uses an

efficient algorithm for exact tracks [1]. Several other apps appear to do the same, but there

does not appear to be a published algorithm for them [2, 3, 4].

The Musipedia website offers several different methods to search melodies, including vir-

tual pianos, microphone input, rhythm search, and contour search. The virtual pianos take

mouse clicks on a Javascript piano, or midi input from an external controller; the microphone

inputs are raw sound; the rhythm search is tapped into the input using the space bar on

a computer keyboard; the contour search uses Parson’s code, which is requires the user to

compare each individual note to the one before it and sometimes to judge whether or not

grace notes are entered.

Unfortunately, the virtual pianos, microphone inputs, and rhythm search all had the same

problem: you have to have the same timing as the original. The contour search was successful

for many very popular songs, but was confusing to use.

This research problem, music recognition, is my chance to take a look at the Shazam

algorithm and try it out. Hopefully, I will end up with something I can use to locate my

mystery song.

1



Figure 1.1: The preprocessing that creates fingerprints

1.2 HOW SHAZAM WORKS

Avery Wang’s 2003 paper,“An Industrial-Strength Audio Search Algorithm,” described

the underlying technique Shazam uses to recognize exact tracks [1]. For each piece or song,

Shazam takes the spectrogram of the signal, determines the relative peaks, and plots the

peaks as a cleaner version of the spectrogram. A spectrogram is a plot of frequency over

time, and the designation of “relative peaks” is not specified.

Then, Shazam chooses a large set of anchor points throughout the song, and creates pairs

with each anchor point and a set of neighboring points. The neighboring points are all of

the points within an area following the anchor point, within some range of time and within

some range of notes above and below the anchor point. All of the pairs for a song are then

each made into a hash, or fingerprint, and saved in a database along with their absolute

time of occurence for later use. The average number of pairs per anchor point is referred to

as the fan-out factor. See Figure 1.1 for the preprocessing data flow.

When searching, the same technique is used to generate hashes for the query. Then, for

each song that contains matching hashes, the matching hashes are plotted: the query’s time

on the vertical axis, the song’s time on the horizontal axis, and one plotted dot per hash

match. If a diagonal of dots appears, that means the query’s hashes coincides with the song

sequentially along that period of time, then the song is deemed a result. For a non result,

only a scatter of matching hashes would occur.

The Shazam paper gives a few hints for anchor point choice, expected fan-out factor,

and diagonal finding, but exact implementation details are not included. I will use this

opportunity to explore various metrics used to choose anchor points, keeping the effect of

tempo and note density in mind.
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1.3 WHY IS THIS HARD?

There are many properties that can differ between two tracks of the same song. Any two

recordings of the same song by two different artists are almost guaranteed to be different, in

timbre and sometimes in instrument. Even the same artist may perform a song at a slightly

different key or tempo, with different ornamentation, or even with different harmonization

depending on his or her mood. Ornamentation is a set of notes that are added close in pitch

and time to the song without changing the structure; an example can be found in Figure

1.2. Harmonization and orchestration are types of accompaniments that can be added to a

song’s melody, usually to make it sound better.

Even holding the above properties constant by using two instances of the same recording

in two different environments, the background and incidental noise can cause a mismatch

between the tracks. Shazam solves this case. The exact track is identified through peaks

and their relationships, and the algorithm is developed specifically to match songs of the

same key and tempo, regardless of background (and sometimes foreground) noise. In some

instances, editing of the ornamentation may result in matches as well, but the challenge

in changing ornamentation is more the reproduction of the exact key and tempo, not the

ornamentation itself.

The problem that Shazam doesn’t solve is when the same artist changes the key or the

tempo. A different harmonization would also register as a different song entirely. It may be

up for debate whether or not it is a different song given that many remixes sound completely

different than the original. Remixes aside, even perceptible but small changes in key or tempo

cannot be matched by Shazam.

Given two recordings of the same song by two different artists, we may face two different

instruments, or at least two different voices. Studies on the signals of human voices expose

the difficulty of this subject in music transcription [5]. Voices may sometimes differ so much

that each voice can be thought of as a different instrument.

This is then not a signal processing problem, but rather a music theory problem. The signal

processing and hashing algorithm presented by Shazam is sufficient for identifying exact

tracks, but it cannot match songs that differ widely in timbre, key, tempo, ornamentation,

and harmonization.
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“Rights of Man,” variation 1:

“Rights of Man,” variation 2:

“Rights of Man,” variation 3:

“Rights of Man,” variation 4:

“Rights of Man,” variation 5:

“Rights of Man,” variation 6:

Figure 1.2: Example showing different ornamentation for the same song [6]
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1.4 RELATED WORK

Related work can be broken up into three different categories: signal processing, genre

categorization, and musical structure matching. Each topic explores an interesting aspect of

the music recognition problem. Although there is overlap between the three, they are still

distinct topics.

The first of these is signal processing, which I chose to eliminate from my experiments in

this thesis. The topic has been tackled from many different angles, and many publications

in the conference proceedings of the International Society of Music Information Retrieval

(ISMIR) address the topic as “transcription.” Techniques include Non-negative Matrix Fac-

torization (NMF) [7], Deep Canonical Correlation Analysis (DCCA) [8], and various neural

networks [9, 10]. A cursory Google search will show the trending transcription software in

the music industry.

Genre categorization is also a very popular topic, and that is not surprising considering

it can be monetized through music recommendation services [11]. Like signal processing,

many different techniques have been used to attempt genre categorization, including deep

learning [12]. However, this is not the problem I am trying to solve.

Actual musical structure recognition is an ill-defined problem and doesn’t seem to be

explored much. The only publicly accessible papers for any kind of music recognition were

either the Shazam paper [1] or similar fingerprinting algorithms [13, 14]. However, Midomi

[3], SoundHound [2], Google Music Search [4], and Musipedia [15] all offer their own music

recognition services. I did not find any papers documenting their algorithms.

1.5 MY APPROACH

For simplicity, I decided to use MIDI inputs. MIDI uses numbers to indicate note name,

velocity (sometimes equated with loudness), and start/end time for each note. This clear

format allowed me to focus on the algorithm without having to worry about signal processing.

Signal processing involves converting the raw wave signals into frequencies, then figuring out

where the notes are and where they started/ended. It’s surprisingly difficult, as I found out

while working on my final project from CS 598 PS last fall [16].
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Using the note names, I could assume correct pitch, intensity, and duration. I used Python

to read the files and run experiments. I originally planned on making my own datasets with

a MIDI controller, but due to time and musical skill limits, I quickly realized this was not

feasible. I searched online for datasets, selected representative samples in Section 2.1, and

designed experiments that could use the representative samples to examine the Shazam

algorithm choices in Section 2.2.

I looked for datasets of MIDI files and chose one that contained many duplicates of songs

that I could use to compare against. I took each song that had multiple files and generated

a heatmap, using colors to show the note duration and velocity. These were helpful in

determining what aspects of the song were important in the identification algorithm. Some

results were unexpected, as described in Section 2.3.

For this study, I did not consider key changes within the same song. This may involve

windowing the song to check snippets instead of the whole song. To window the song is

to chop it up into pre-determined lengths and evaluate the snippets individually. This is

worth considering at some point; I have included a guide in Section 3.1 with ideas on things

I would like to explore in the future but considered out of scope for this thesis.
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CHAPTER 2: EXPERIMENT

2.1 DATASETS I USED

I used the dataset “clean midi” from the Lakh MIDI Dataset [17, 18], which contain

labelled MIDI files indicating their artist and title. I searched through it for any numbered

duplicate filenames, and created a list of filenames for each.

MIDI files are simple, but they are constructed of messages rather than objects. I made

a fork, or copy, of the midi2ly library by gin66 on GitHub [19] to convert the messages into

Python objects, to keep track of pieces, tracks within pieces, and notes within tracks. My

fork contains the code for that [20].

Figure 2.1: Three different files with numbered, duplicate filenames.
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2.1.1 Spectrograms

Since I am working with MIDI files, I am not actually plotting real spectrograms. Real

spectrograms plot the frequency on the vertical axis and time stamps on the horizontal axis.

MIDI uses note numbers instead of frequencies to show pitch, so I put the note numbers on

the vertical axis and time stamps on the horizontal axis, which is similar, so I call my plots

spectrograms anyways.

There were many sets of files that were named similarly. For each set of similarly named

files, I made spectrograms of all the files next to each other to compare the files. Figure 2.1

is a spectrogram comparison for one of these songs. Note that the time units are in seconds.

For each song, I plotted all the files with the same song name along the same time axis.

However, some files simply had a different tempo or number of repeats, so the results were

different per song. These plots had a more interesting feature when I plotted them using a

heatmap for duration or velocity. When the axes were independent, the relative durations

seemed to match up, except for some select bass notes. The velocities matched very similarly

between files of the same song.

When looking at the spectrograms, I noticed that many contained the same three most

popular notes, so in Section 2.2 I decided to take a look at note popularity when choosing

anchor points.

In addition to plotting duration on a spectrogram, I also plotted the changes in duration

compared the average of notes around it. The plots I tried were comparing against the

averages within 1 second, within 2 seconds, within 3 seconds, within 5 seconds, and within

10 seconds of each note. Normalizing plots for changes in duration actually turned out

to be not all that helpful, since the plots looked similar to simply plotting the durations

themselves. I concluded that there was significant enough difference in duration even within

1s that normalization had minimal effect on the structure of the music.

2.2 ANCHOR POINT CHOICE

I considered three different ways to choose my anchor points:

1. Choose all points, or notes

2. Choose the three most popular named notes by duration

3. Choose the points that were longer than their neighbors

4. Choose the points with higher velocity
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The first was mentioned in the Shazam paper. The second, I expected to be the tonic,

dominant, and subdominant, or the most musically significant notes, of any piece in a major

key. The third, I expected to be beginning or ending notes in a measure. Some songs were

very dense, so I concentrated on the last two in an effort to reduce computation resource

requirements.

2.2.1 Three Popular Notes

I tried highlighting the top three notes, expecting to see the tonic, dominant, and sub-

dominant of the songs. I expected these notes to be the most frequent, or at least to take

up the most duration, due to their responsibility in providing a sense of closure to a phrase.

It made sense to expect these notes to happen more frequently or at least last longer, such

as at the end of a stanza.

Unfortunately, the top three were inconsistent and most of the time didn’t even match up

with the expected tonic, dominant, and subdominant notes. I then plotted the histograms

of the named notes to see if there was some way to understand the note distribution. At

first, I simply plotted the notes in Figure 2.10, found in Section 2.3. I fiddled around with

this a little, and realized that I could weight the distribution by duration, which clarified

the similarities between files of the same song, like in Figure 2.11, also in Section 2.3.

2.2.2 Longer Than Neighbors

In an attempt to choose points in a more sparse way, I considered choosing points that

were longer than their neighbors. My reasoning was that longer notes would have more

emphasis, and would be more likely to be similar across samples. I took a plot of relative

length to the surrounding 1 seconds, 2 seconds, 3 seconds, 5 seconds, and 10 seconds, and

realized that there was no perceptible difference between those plots and the spectrograms

themselves, so that put me right back at square one.

2.2.3 Higher Velocity

I also took a look at the velocity of the notes, expecting the higher velocity notes to be

more important and thus more replicable. I plotted the spectrograms with the velocity in

the heatmap colors in Figure 2.2; the velocity tended to only show on higher notes or during

specific sections, but with no obvious way to distinguish the “landmark” notes using velocity.
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Figure 2.2: Spectrograms of “Don’t Want To Miss A Thing” with heatmaps of velocity and
duration.
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Figure 2.3: Spectrograms of files named “Andavo a cento all’ora”

Figure 2.4: Histograms of Notes for “Andavo a cento all’ora” by number of notes.

2.2.4 Using All Notes

Although some of these songs might be reliably recognized through choosing a select

number of anchor points, it may be feasible to use all notes as anchor points. This creates a

graph that is more dense, but since the second point for each edge chosen is determined by

relatively narrow boundaries, the fan-out factor can be kept fairly low, and thus the density

of the graph is limited by the note density of the file in question.
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Figure 2.5: Histograms of Notes for “Andavo a cento all’ora” weighted by duration.

2.2.5 Bass and Treble Distinction

After taking a look at the spectrograms I plotted, I noticed that some files would be very

sparse due to containing notes that were only above or below Middle C, or note number 60.

I made a guess for “bass only” or “treble only” based on the number of notes above or below

Middle C. I counted the number of notes above note number 60 and below note number 60;

if 80 percent or more of the notes were on either side, I would mark them as “bass only” for

below, or “treble only” for above.

Bass and treble tracks have some unique characteristics that distinguish them from tracks

that contain both. Bass lines tend to act as a musical anchor and generally tend to be more

repetitive, with the most popular notes of the song dominating its time. I would hazard

a guess that the bass lines were karaoke tracks. Treble tracks tend to carry the melody of

the song, giving it a musical contour, but not necessarily providing much anchor for note

popularity.

Figure 2.3 shows two versions of a song, one containing the full song range and one con-

taining mostly or only bass notes. Despite the range difference, their named note histograms

still look very similar, in both Figure 2.4 and 2.5. This shows how powerful the histogram

technique can be.

Out of the 711 songs that had more than one file, I was able to parse the MIDI files for

646 songs. There were 1783 files that existed for those 646 songs. Of these, 247 files across

180 songs contained bass only; 62 files across 49 songs contained treble only; 1 file contained

only Middle C occurring in various rhythms across the whole file. This is interesting because

the bass lines are very likely to contain anchoring notes for the song, and the treble only

files are very likely to contain the melody of the song.
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Figure 2.6: Spectrograms of files named “Blueberry Hill”

2.3 NOTE NORMALIZATION

Looking at the spectrograms and seeing similarities was helpful, but some were in different

keys and it’s difficult to tell what key a song is in by looking at the spectrogram. In Figure

2.6, one can see that the first, second, and fourth look very similar, the third is slightly

similar to those, but the last two look completely different. Are they still the same song?
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Figure 2.7: Histograms of Notes for “Blueberry Hill” by number of notes.
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Figure 2.8: Histograms of Notes for “Blueberry Hill” weighted by duration.
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Figure 2.9: Spectrograms of files named “Are You Gonna Go My Way”

I decided to take a histogram of the named notes in each file of the song, using the number

of times a note showed up in the song, or note count, in Figure 2.7 and weighting by duration

in Figure 2.8.

2.3.1 Named Note Histograms

Figure 2.9 is what the spectrograms of four files for the same song look like. Note that

the third is bass only.

Despite the differences that can be seen in the spectrogram in Figure 2.9, you can see that

the histograms in Figures Figure 2.10 and 2.11 look strikingly similar. That makes sense

because all four files are in the same key, and are of the same song.
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Figure 2.10: Histogram of Notes for “Are You Gonna Go My Way” by number of notes.
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Figure 2.11: Histogram of Notes for “Are You Gonna Go My Way” weighted by duration.
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Figure 2.12: Spectrogram of files named “Baby Don’t Forget My Number”

Figure 2.13: Histogram of Notes for “Baby Don’t Forget My Number” by number of notes.

2.3.2 Weighted by Duration

Sometimes the histograms won’t show similarities at all unless they’re weighted by dura-

tion. The spectrograms shown in Figure 2.12 are very similar looking and are of the same

song, but their histogram in Figure 2.13 doesn’t really match. Weighting by duration in

Figure 2.14, however, shows a clear match.
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Figure 2.14: Histogram of Notes for “Baby Don’t Forget My Number” weighted by duration.

This makes sense when we think about the way notes are used in a song. Some shorter

notes that may not affect the melody include ornamentation and travel notes. Travel notes

are not the primary notes of a song. They are typically very short and provide interest,

which drives their note count high. But since their duration is very short, weighting by

duration brings out the more important notes of the song.

Why did the note count work for “Are You Gonna Go My Way” even without weighting by

duration? Here, we must also take into consideration the effect popularly seen in harpsichord

music. The harpsichord is an instrument constructed similarly to a piano except, instead

of hammers and dampers in a piano, it uses a plucking motion that renders a very short

note. Due to the lack of sustain, harpsichord pieces were and are usually written with a very

regular note pattern, repeating the important notes many times. The mandolin, a similar

instrument, also has negligible sustain which produces similar results.

2.3.3 Key Changes

The histograms can also show key changes. Figure 2.15 shows another match that looks

like the same song; however, the histograms in Figures 2.16 and 2.17 don’t show an obvious

match even when weighted by duration. It turns out that the song is shifted by three

half-notes.
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Figure 2.15: Spectrograms of files named “American Patrol”

Figure 2.16: Histogram of Notes for “American Patrol” by number of notes.

In order to see the shift, move the entire bottom plot 3 notes to the left. The large peak

in the bottom plot at Dis/Ees will match up with the large peak in the top plot at C/C;

the dip in the bottom plot at E/E will match up with the dip in the top plot at Cis/Des;

the large peak in the bottom plot at F/F will match up with the large peak in the top plot

at D/D. This continues all the way until we wrap the left three notes in the bottom plot at

C/C, Cis/Des, and D/D with the right three notes in the top plot at A/A, Ais/Bb, B/B.

This shift is shown in Figure 2.18 using a hue spectrum. By matching the hues, we can see

that the peaks and valleys match on the histogram.
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Figure 2.17: Histogram of Notes for “American Patrol” weighted by duration.

Figure 2.18: Pitch shift demonstration for “American Patrol” weighted by duration.
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Figure 2.19: Spectrograms of files named “Annie’s Song”

Figure 2.20: Histograms of files named “Annie’s Song” by number of notes.

2.3.4 Annie’s Song

Sometimes, however, the note histograms will not show everything. Annie’s Song, shown

in Figure 2.19, is an example of how two renditions of the same song can look completely

different, both by note count in Figure 2.20 and by duration in Figure 2.21. I converted these

two MIDI files into WAV files, and they are indeed the same song. However, the second file

shown has a different introduction section and changes key in the middle of the song. There

were several songs that changed key in the data set that I used. This is a good reminder

that music is a creative art, after all.
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Figure 2.21: Histograms of files named “Annie’s Song” weighted by duration.

2.3.5 Note Normalization

The histograms showed me that key normalization may not be as simple as choosing the

top three notes. The nuance shown in the histograms is important in determining what

matches. Since this becomes a pattern matching problem for the general shape of a 12–

point histogram, this may be a good problem to throw at a machine learning algorithm to

match against major, minor, and other musically standard scales to determine or normalize

a song’s key.

If nothing else, it can serve as an additional feature to be used in reliability or speed of

the search. For reliability, one can get a histogram and run them against results to double

check a match. For speed, one can search first by 12 transpositions of the histogram and

use the best preliminary matches to search faster through the smaller dataset.
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CHAPTER 3: CONCLUSION

Although Shazam is able to recognize exact tracks even in case of background noise, the

algorithm is not fundamentally built to recognize musical structure. Differences in key and

tempo easily confuse it, but there may be ways to adapt the Shazam algorithm to recognize

them.

Despite my initial expectations, selecting simply by note duration, note velocity, and top

three most popular named notes did not yield a very clear or consistent match for files of

the same song. However, key detection or normalization can be done using histograms of

the main named notes.

Tempo, ornamentation, and orchestration might be addressed by doing more preprocessing

or additional calculation based on the structure of existing songs. See my thoughts about

these in Section 3.1.

3.1 FUTURE WORK

Future work will include addressing the issues caused by key changes within the same song

and determining criteria for choosing secondary points that form the edges in the graph.

For addressing issues caused by key changes within the same song, I mentioned windowing

the song to check snippets instead of the entire file. Windowing is chopping the song into

pieces of pre-determined length, and evaluating them individually. Some variables include

length and overlap of the windows. Due to unintended side effects of windowing, one must

also consider the tail effects, especially in tapering the windows and how they affect the

requirements for overlap.

For choosing boxes to determine the second point in each pair, I have two questions.

What kind of pitch and time limitation will produce the best fan factor? What magnitude

of fan factor can a moderately large server system tolerate to serve the intended number of

target audience? I might consider the note density of the pieces themselves and the general

tendency in music to not jump more than an octave at a time. I might consider using student

cloud subscriptions to test and tweak these parameters.
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Beyond key changes, music recognition can also benefit from being tempo agnostic. If

there was a way to pick out ornamentation and harmonization from the songs, it may

help; however, the histograms may have already addressed that issue. I would welcome the

opportunity to test this theory. Paying more attention to musical structure and variation

during music recognition is distinct from the signal processing of specific tracks, and I am

excited to see that there is a lot more to discover about it.
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