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Abstract

When evaluating any algorithm, it is essential that the data used for evaluation

be collected from the target operating environment, as well as conditions, in

order to get an accurate representation of the algorithm’s performance in that

environment. This is especially important when extrinsic sensor measurements

are used for developing and evaluating autonomous control and perception al-

gorithms intended for agricultural applications. Unfortunately, there are many

obstacles that can considerably hinder the development process, most notably

the 7-8 months in which most crops are not in season.

The work presented in this thesis allows the year-round development and

evaluation for a wide variety of autonomous control and perception algorithms

for agricultural field robotic applications, using a set of developed simulation

tools in combination with an open-source simulation platform, Gazebo. The

custom set of tools was designed such that any number of user-specific agricul-

tural environments can be simulated, and the sensor/robot configuration can be

easily customized, being useful for a wide range of agricultural research interests.

The fundamental contributions of this work are the following: (1) a col-

lection of sufficiently accurate simulated crop models for three different crop

species (corn, sorghum, and tobacco), (2) user-friendly tools for generating

a user-customizable agricultural field environment, (3) a collection of simu-

lated, commonly-used, sensors that can be attached to any simulated robot

platform, (4) a simulated model of an ultra-compact robot platform, and (5)

a set of socket-based, or UDP, tools used for testing algorithm performance

on-board target hardware and with the simulated sensors and field. Finally,

a few core autonomous control and perception algorithms, which reflect the

range of field robot research areas that could be used, are executed on-board an

ultra-lightweight ground robot platform, and the performance is evaluated and

compared in both a real-world and a simulated, agricultural environment.
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Chapter 1

Introduction

According to United Nations projections, the entire world’s human popula-

tion of 7.3 billion, as of mid-2015, is expected to increase to be between 9.2 and

10.1 billion by the year 2050 [63]. The Food and Agriculture Organization of the

United Nations suggests the global production of food needs to increase, from

the 2009 production levels, by 70%, by the year 2050 [17], to properly sustain

the reported growth in the world population. To fulfill this great of an increase

in food production levels, there must be a significant amount of improvement

in the current state-of-the-art agricultural techniques and practices, in addition

to developing innovative solutions. A potential solution, which has gained in-

terest in recent years, is the use of automation in agriculture to help solve this

increased demand in global food production. In addition to food production,

use of automation can benefit the agricultural community, because it can enable

available resources to be used more effectively, it has the capacity for improving

the efficiency of current agricultural practices, and it can help reduce production

and labor costs.

The use of autonomous systems and more specifically small and lightweight

autonomous field robots, in agriculture can be a great asset to farmers, biolo-

gists, and breeders because they can be useful for many agricultural applications.

Some examples include, the weed scouting robot platform, called AgBotII, in-

troduced by Hall et al.[26], the multi-purpose Thorvald ground robot platform

useful for seeding, weeding, and harvesting applications[24], the wheat precision

seeding robot introduced by Haibo et al.[25], and the Robotanist robot platform

developed for automated phenotyping and is capable of navigating underneath

the crop-canopy within individual rows of crops[43]. In addition to supporting
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versatile applications, autonomy in agriculture can enable site-specific appli-

cations (e.g. location-specific management, remote field sensing, etc.) to be

carried out much more effectively, and at a finer resolution, with the help of

small autonomous robots. For example, a team of small autonomous robots

could be used to execute, much more effectively, various field maintenance and

surveillance tasks by allowing high priority areas to be targeted first before going

to areas of lower priority, which would not be possible with a commonly used

large and expensive tractor for pulling the necessary farm implement across an

entire field.

Another benefit to using automation in agriculture is it can be used to

improve the efficiency of current agricultural practices. For example, current

phenotyping practices, which are extremely manual labor intensive, and prone

to human measurement errors, suffer from what is known as the “phenotyping

bottleneck” ([19], [16], [51]). Automation could help solve this “phenotyping

bottleneck” by enabling essential phenotypic measurements to be continuously

collected reliably, and consistently since machines do not suffer from fatigue as

humans do.

The previously mentioned advantages of automation in agriculture con-

tribute to a third benefit, its ability to help reduce the costs associated with

agricultural production and labor. Current agricultural practices rely predom-

inantly on the usage of large, and heavy, farm equipment (e.g. tractor) for

maintaining and harvesting of commodity crops (i.e. corn, wheat, etc.) in bulk,

however, they tend to be expensive. For applications where large farm equip-

ment is inadequate, such as the harvesting of specialty crops (i.e. strawberries,

bell peppers, etc.) which requires fine manipulation of harvested fruits, humans

labors are typically hired to perform the manual tasks required by the specific

applications. Sustaining the food production necessary for a growing world pop-

ulation will become much more difficult, due to the continued increase in labor

costs resulting from the limited availability of willing manual laborers, in addi-

tion to common expensive large farm equipment making it difficult to purchase

the additional machines required to produce and maintain the necessary crops.

Current autonomy still needs to be developed and evaluated further to fully

realize the effectiveness of automation in agriculture through safe and reliable

methods. This critical development of autonomous methods is hindered by

many obstacles including unfavorable environmental conditions, limited resource

availability, and complex environmental conditions resulting in unreliable or

inadequate algorithm performance.
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The performance of field robotic methods being developed, such as percep-

tion and autonomous control algorithms, are environmentally-driven, or rely

heavily on the interactions with the surrounding environment, and is critical for

developing robust autonomy. As a result, these methods need to be tested out-

side in their target field environments, in order to properly evaluate their perfor-

mance. This requirement can be presented with major obstacles that cannot be

easily prevented or foreseen, such as unfavorable weather and field conditions,

which can effectively halt any type of development or analysis. These types

of scenarios are detrimental to the developmental process primarily because in

most cases there is little that can be done to move the development of the per-

ception, or control, method along. Another important factor is the crops within

these field environments experience drastic morphological changes throughout

the season in a relatively short time frame (approximately 4-5 months), making

development and evaluation of safe and reliable field robotic methods time-

dependent, and difficult especially for methods that are not sufficiently reliable

or robust for deployment into the field. The relatively short time window of a

crop’s season can be a major obstacle, in which effective development and field

evaluation can be halted for 7-8 months out of the year, annually, once a crop’s

season is over (i.e. crops have been harvested).

Unlike the environmental obstacles which cannot be easily prevented, resource-

dependent obstacles can pose a problem for field robotic development, such as

when the essential robotic hardware is unavailable due to limited funding or

damaged components. For example, often times when developing innovative

compact field robots, the robotic components essential to robotic operation (i.e

actuators, sensors, etc.) can fail due to various reasons, including extended use

in harsh field conditions, being inadequately designed for the target environ-

ments, or unforeseen field conditions (i.e puddles, rocks, etc.). Although these

types of scenarios are preventable, they can still happen, which can lead to the

loss of precious time, and money, being spent for repairing, or replacing, the

necessary equipment, instead of being used towards the actual development of

the sensing or control, algorithms.

Current field robotic research is trying to solve the issue of being able to re-

liably sense, interact with, and navigate about their surrounding environment.

Achieving this can be difficult for autonomous field robotics due to the com-

plexity (i.e.highly cluttered, unstructured, constantly changing, and difficult to

model) of the agricultural environments in which they are expected to operate

in.
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In addition to these inherent complexities, developing safe and reliable au-

tonomy in these types of environments, which can also contain high-value crops,

expensive equipment, and human laborers, raises the concern of properly evalu-

ating newly developed methods in real field environments while preventing the

damage to any crops, resources, or humans, in processes. Particularly in the

early stages of their development, this concern can become a hindrance for au-

tonomous algorithms which are unable to properly handle or foresee, all the

environmental complexities which can result in failure or damage. For example,

when testing vision-based algorithms developed for the autonomous harvesting

of specialty crops, variable lighting conditions can present a challenge that can

result in damage, or complete destruction, of high-value crops, if these algo-

rithms are unable to properly handle these irregularities.

A potential solution that can help mitigate the aforementioned obstacles

is the use of simulation environments to supplement autonomous field robotic

development, and they have been shown to be effective development and evalua-

tion tools in other areas of autonomous and general robotic research ([72], [29]).

The capabilities of simulation environments, when applied to robotic develop-

ment and evaluation, include, but is not limited to, the following: (1) enables

quick testing of developed methods in various different environments, (2) en-

ables exhaustive testing, which leads to increased confidence in the robustness,

of developed solutions, (3) reduction in the costs of development, and (4) reduces

the time required for integration and troubleshooting of target hardware.

A desirable feature of simulation environments is they can allow developed

robotic methods to be evaluated in various different environments. This capa-

bility is essential for developing safe and reliable autonomy for various robotic

applications, particularly for those operating in environments which may be

difficult, or ill-advised, to re-create. For example, the USARSim simulator

allows autonomous algorithms developed for urban search and rescue appli-

cations to be tested and evaluated in different environments which would be

expensive and ill-advised to re-create in the real world (i.e. disaster scenarios

involving explosions, fires, chemical spills, and human victims)[5]. Although not

related to robotic development, the simulation system, proposed by Uno and

Kashiyama, shows an example of a simulation environment which enables the

development and evaluation of methods associated with natural disaster-related

evacuations[64]. Specifically, the presented simulation environment was used to

estimate the number of potential victims, in correspondence with the time evac-

uation begins, for a flood disaster in an urban environment. In both previously
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mentioned works, the usefulness of simulation environments is shown to capable

of allowing different algorithms and methods to be developed and evaluated, by

simulating different environments that are impossible, or difficult, to re-create.

In addition to evaluation in different virtual environments, simulation en-

vironments have the capability of enabling exhaustive testing strategies. This

gives simulation environments an advantage, which can lead to increased con-

fidence in the robustness of proposed solutions, through exhaustive testing of

developed methods in different environments and with a variety of associated

conditions. For example, when developing autonomous robotic methods for mis-

sions in space, thorough testing of these methods to validate safe and reliable

operation, is required before they can be implemented. Boge and Ma provide an

example where the use of simulation environment that can enable autonomous

methods developed for space satellite docking missions to be thoroughly tested,

and is necessary before the real missions can be carried out[9]. Similar to au-

tonomy in space, the usefulness of simulation environments to support extensive

testing and development of safe reliable autonomy holds true for the automotive

industry as well. For example, Gietelink et al. show an example where a simu-

lation environment enables newly developed advanced driver assistance systems

to be extensively tested, safely, in passenger vehicles[21]. This capability allows

new methods to be extensively tested, and further developed to improve their

robustness, in a safe environment. In both examples, extensive testing with the

help of simulations supports validation of developed methods’ reliable opera-

tion, which is important for ensuring the safety of any potential humans and

costly equipment that may interact with these systems.

Another benefit to using simulation environments is they can be used to

facilitate the design and evaluation of robotic solutions, some of which may not

have been physically implemented yet. For example, a method, which simulates

the dynamics associated with the contact and handling of different payloads

and virtual objects, was proposed which can be used evaluate different designs

of virtual manipulator systems for Space Station applications [41]. This work

shows that simulations have the capability of reducing the costs associated with

the development of potentially expensive robotic systems, by allowing potential

design candidates to be tested and optimal robotic designs to be determined,

without the need for essential hardware.

Another advantage of simulation environments is they can reduce the time

associated with the implementation of developed robotic solutions on target

hardware platforms. For example, a design approach was proposed for the de-
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velopment of chassis control systems in passenger vehicles, which can be used

to reduce algorithm development times using efficient testing and development

procedures[69]. This work shows that simulations have the ability to support ef-

ficient integration and evaluation of target hardware with developed algorithms,

via Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing, and

has the advantage of allowing rapid development for robotic solutions.

From the previously discussed advantages, simulation environments could be

a viable option for supporting autonomous field robotic development and eval-

uation for agricultural applications. In order for any meaningful and effective

development of safe and reliable autonomy in agriculture to be achieved, virtual

field environments must be simulated with sufficient accuracy. Unfortunately,

sufficiently accurate models of virtual field environments (i.e. fields, terrains,

and crops) can be difficult to acquire, due to their complexity and the time

required to create them. Furthermore, the limited availability of sufficiently ac-

curate virtual field models and open-source field robotic development software

can prevent effective development and healthy collaboration within the field

robotic academic community.

1.1 Objectives and Approaches

The work presented in this thesis attempts to take the first step towards an

open-source simulation environment capable of simulating sufficiently accurate

agricultural environments intended to support multi-purpose development and

research in the field robotic community. To address the aforementioned obsta-

cles relating to safe and reliable field robotic development and evaluation, this

thesis attempts to fulfill three primary objectives: (1) provide a collection of

sufficiently realistic simulated field and crop models, (2) support user-specific

customization of simulated fields and robotic platforms with relative ease, and

(3) support the integration of user-specific target hardware of physical robotic

platforms.

The first objective is to allow the possibility for simulating any elements

essential for developing and evaluating field robotic methods, such as sensors,

robotic platform dynamics, crop/field conditions, when the necessary physical

components are unavailable, and they should be simulated with a sufficient

degree of accuracy. The second objective is to allow the essential components

for any user-specific field environments (i.e. crops species, placement of crops,
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and terrain), and robotic systems (i.e. robot platform, a specific configuration

of attached sensors, custom robot dynamics), to be to generated and simulated

with relative ease. The final objective is to enable any given field robotic method

to be developed and evaluated on its target robotic hardware, using a simulation

of its intended field environment (i.e. simulated sensor measurements, simulated

robot dynamics, and simulated field-robot interactions).

To fulfill these objectives, this thesis presents a novel development environ-

ment that uses a 3D physics-based simulation environment combined with dis-

tributable communication mechanisms and user-friendly functionality, enabling

time-efficient development and evaluation of new Autonomous Field Robot

(AFR) perception and control methods for various developers and users.

1.2 Overview

This thesis is organized as follows: Chapter 2 discusses some related work

that has been done in the area of field robots and simulations, in addition to

providing an overview on some of the underlying methods used in this work;

Chapter 3 provides an overview of the robotic platform used and the various

components that make up the development environment/pipeline presented in

this work; Chapter 4 discusses how the various development pipeline compo-

nents were created and developed; Chapter 5 shows how the developed tools

presented were used for facilitating in the development and evaluation of a

Lidar-based algorithm used for late-season autonomous navigation within rows

of crops in corn and sorghum fields, by investigating the performance of the

Lidar-based method in both the real fields and the development environment

simulated fields; finally, Chapter 6 provides a summary of the work presented

in this thesis, the experimental results obtained, and any future work necessary

for further establishing the usefulness of the presented agricultural field robotic

development environment for other areas of agricultural research.
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Chapter 2

Background

This chapter aims to provide an overview of some the research that has been

done in the areas of research related to the use of simulations in agricultural field

robotics, in addition to any fundamental information related to the underlying

components that are used in the work presented in this thesis.

Specifically, the following chapter discusses the following topics: Section

2.1 discusses previous research done relevant to the use of simulation platforms

in agricultural field robotics, Section 2.2 provides an overview of the Robot

Operating System (ROS) framework which is used for bridging the developed

simulated field environment with the physical robot platform/hardware, and

Section 2.3 provides an introduction to the Gazebo simulation environment

used in this work as the basis for a field robot simulation and testing environment

for agricultural and biological applications.

2.1 Related Work

In this section the following will be discussed: first a handful of well-known

general-purpose robotic simulation platforms will be briefly introduced, and

lastly an overview of some of the relevant research that has previously been

done in area relating to the use of simulation platforms for assisting in the de-

velopment and evaluation of field robotic methods for agricultural applications.
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2.1.1 Simulation Platforms

When testing, or evaluating, any kind of algorithm that requires any inter-

action with, or control over, any kind of hardware, it is preferred to use the

target hardware in order to ensure that the performance of the algorithm being

developed most accurately reflects its true behavior. Unfortunately, there are

many factors that can make acquiring the necessary physical components diffi-

cult, and in some cases impossible (i.e limited funding, faulty components, and

interfacing difficulties, etc.), which can hinder the developmental progress.

In many cases, a viable approach to evaluating an algorithm’s performance

in the absence of the targeted physical system is to simulate the dynamics

of that system using a mathematical model, e.g simulating the dynamics of a

four-wheeled robot using a Dubin’s car model [46] in Matlab. In general, the

necessary complexity and accuracy of the simulated model depends on the spe-

cific algorithms used and the priorities of the developers. For some complex

systems, acquiring a sufficiently accurate model can be impractical or impos-

sible. In such cases, a 3D physics-based simulation platform may be a more

practical approach.

A 3D physics-based simulation platform, or simulation platform for brevity,

is a type of software package capable of simulating the physical interactions with,

and visual features of any, 3D objects in a virtual environment. Additionally,

simulation platforms can not only be used to alleviate some of the hassles of

simulating, and modeling, all of the necessary aspects relating to any given

dynamic, or static, system, but they can also provide other features that can

make developing and evaluating algorithms easier, such as simulating various

sensors, simulating multiple robot systems, simulating the interactions of all the

objects in any given simulated environment. There are quite a few simulation

platforms available that, in addition to providing many useful features, are able

to simulate, relatively accurately, the dynamics and kinematics of many different

types of, simple and/or complex, physical systems through the use of a physics

engine, such as the widely used open-source Open Dynamics Engine (ODE) [58].

For example, Webots [42] is a, fairly feature-rich, 3D simulation environ-

ment capable of accurately simulating multi-robot physics using an ODE-based

physics engine. Webots is capable of simulating a wide range of sensors and ac-

tuators, and can interface with the widely-used Robot Operating System (ROS)

middleware [50], allowing quick testing of developed algorithms. Another ben-

efit to Webots is that it has multi-OS support (Windows, macOS, Linux, and
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even mobile devices), as well as supporting multiple programming languages

and having a user-friendly Graphical-User-Interface (GUI), which makes it easy

for multiple research teams to collaborate on a project. An example Webots

simulation can be seen in Figure 2.1. Being able to accurately visualize and

render 3D models is a must have for any simulation platform where vision-based,

and/or Lidar-based, algorithms are being developed. This is possible using the

open-source Object-Oriented Graphics Rendering Engine (OGRE) [36], which

Webots uses for rendering its simulated objects.

Figure 2.1: Figure showing example Webots environment.1

Although there are many things that Webots does well, one drawback is that

it is not free, which makes it less desirable, and reducing the overall quality of

its community support, as opposed to its open-source counterparts. Addition-

ally, even though Webots uses a state-of-the-art rendering engine, OGRE, the

supported 3D model mesh file formats that are used to describe and define the

3D rendered objects is limited.

The Microsoft Robotics Developer Studio (MRDS) [34], is another example

of an available simulation platform that has many of the same capabilities as

Webots, such as a range of supported sensors and interface-ability with real

hardware, however, unlike Webots, MRDS is free to use. MRDS, like Webots,

has a relatively intuitive User-Interface (UI) shown in Figure 2.2. Additionally,

1Image courtesy of http://support.robotis.com/en/product/darwin-op/simulation/

webots/windows_os_installation/running.htm
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MRDS uses a physics engine developed by Nvidia, called PhysX, for sensor and

robot-world interaction simulations, as opposed to Webots ODE-based engine.

Figure 2.2: Figure showing example MRDS environment.2

Although MRDS is free to use, it is not entirely open-source, and as a re-

sult, much of its internal components are not openly available to the public.

In addition to MRDS not being fully open-source, the MRDS platform, which

is only available for Windows OS, stopped being updated and maintained, re-

sulting in a, relatively, underdeveloped simulation platform, compared to more

state-of-the-art, actively maintained, simulation platforms, as well as limited

community support.

Unlike MRDS, The Modular OpenRobots Simulation Engine (MORSE) plat-

form [13], is an example of a fully open-source 3D multi-robot simulation plat-

form. MORSE is targeted for experienced computer scientists and the academic

community, whereas MRDS targets hobbyists. Similar to MRDS, MORSE has

limited OS support outside of the Linux OS. In addition to supporting ROS,

MORSE is able to support other middlewares, such as YARP, ProcoLibs, and

more. MORSE also come with a human avatar that can be used during simu-

lations to aid in human-machine interaction (HMI) research, that can interact

with items in the simulated environment. In addition to an interact-able hu-

man avatar, MORSE is capable of simulating multiple robots with sensors in

the same environment using a state-of-the-art physics engine, Bullet[10].

2Image courtesy of https://medium.com/@titan.haryawan90/

microsoft-robotics-developer-studio-simulator-untuk-membuat-robot-3da8e033b2bd
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Figure 2.3: Figure showing example MORSE environment.3

Since MORSE is targeted for experienced computer scientist, it relies pri-

marily on the use of a command-line interface for user-control and interaction,

and has almost no GUI capabilities, Figure 2.3 shows an example simulation

using MORSE with the command-line interface.

Unlike MORSE and MRDS, where a single OS is primarily supported, The

Autonomous Robots Go Swarming (ARGoS) platform [47], is an example of an

open-source 3D multi-robot simulation platform that is available on Mac OS

and Linux. Similar to MRDS and MORSE, ARGoS comes with default physics

engine for simulating objects and interactions, although it is very limited in its

capabilities, however, it is capable of supporting other physics-engines, such as

ODE, Bullet, and more. Additionally, ARGoS allows for more than one physics-

engine to be used in parallel during simulation runtime for user-specified roles.

Similar to the previously mentioned simulation platforms, ARGoS is capable of

simulating multiple robots and objects at a time, however, it is able to do so

without any major drawbacks to computation and runtime. Figure 2.4 shows

3Image courtesy of https://www.openrobots.org/morse/doc/latest/what_is_morse.

html.
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an example simulation using ARGoS. ARGoS does not have as many features as

the other simulation platforms, such as being able to import custom 3D meshes

and it has a limited database of pre-made robot models.

Figure 2.4: Figure showing example ARGoS environment.4

The Virtual Robot Experimentation Platform (V-Rep) [11], is an example

of an open-source, multi-robot 3D simulation platform that is a feature-rich, all-

in-one simulation platform, similar to Webots. V-Rep is not free to everyone,

only members of the academic community, such as students and universities, can

acquire V-Rep for free. V-Rep is capable of accurately simulating the physics

of multiple robots and world objects, even custom particles like air and water,

with the support of a select number of state-of-the-art physics engines. V-Rep

can support the ODE, Bullet, Vortex [57], and Newton [33] physics engines,

however, unlike ARGoS with multi-engine support, V-Rep can only use one

physics engine during simulation runtime. V-Rep is very user-friendly, allowing

users to edit/modify both code and objects in the simulated environment within

its GUI, as seen in Figure 2.5. Another V-Rep feature that can be useful is the

ability to manipulate and modify, for example reducing rendering complexity,

4Image courtesy of http://www.terriblesysadmin.com/?p=76.

13



within the GUI, without the need for external 3D graphics editing software,

such as Blender [8]. V-Rep also allows interfacing with ROS through the use

of the “RosInterface” function calls, available in V-Rep’s API, in the embedded

scripts used throughout V-Rep.

Figure 2.5: Figure showing example V-Rep environment.5

Although V-Rep has many desirable features that make simulating robots

in custom environments user-friendly and easy, such as the use of custom user-

interfaces and data recording and visualization, V-Rep can be very computa-

tionally expensive, and even making the simulation of multiple robots at one

time not feasible in situations that ARGoS is capable of handling. Even though

V-Rep gives users the ability to customize objects in the simulated environment,

the modified simulation environment is saved as a V-Rep special format, which

makes dynamically changing the simulated world programmatically difficult, if

not impossible.

Although it does not have as many user-friendly features as V-Rep, Gazebo

[37] is another 3D multi-robot simulation platform that has many of the same

capabilities as V-Rep. Similar to V-Rep, Gazebo supports four state-of-the-art

physics engines, ODE, Bullet, Simbody [12], and DART [39]. Gazebo gives

users the ability to interact with the simulated robots and world objects, such

5Image courtesy of https://www.aepwebmasters.it/my-product/

installazione-e-configurazione-del-simulatore-di-robotica-v-rep-esempio-di-\

\realizzazione-di-una-cella-robotizzata-con-kuka-youbot/.
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as playing/pausing the simulation and adding/editing simulated objects in real-

time, via “drag-n-drop” type methods, editing simulated models and worlds,

and more, through its GUI, shown in Figure 2.6. Similar to V-Rep’s em-

bedded scripts, Gazebo’s “plugins” give users the ability to programmatically

control and modify most, if not all, aspects of the objects in the simulation envi-

ronment, as well as generate and utilize custom information or actions. Unlike

V-Rep, Gazebo’s API is almost entirely ROS-integrated, which allows users to

use all the functionality of ROS using ROS standard functions. This makes it

easier for users to integrate with and provides the same capabilities as, ROS.

Although it can be used on multiple operating systems, Gazebo is primarily

Linux supported.

Figure 2.6: Figure showing example Gazebo environment.6

2.1.2 Literature Review

The development of Autonomous Field Robots (AFR) is an important area of

research that can have a major positive impact for many different applications,

such as search and rescue, military, and forestry surveying.

For example, Ball et al.[6] proposed the application of a multi-robot system

used in an attempt to help solve the agricultural problem of resistant weed main-

6Image courtesy of http://bestzzz.info/cliparts/quadrotor-control-simulator/.
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tenance for “zero-tillage” practices and further highlights the utility of AFR to

benefit agricultural applications. The work proposed the use of a novel robotic

platform, in combination with a multi-robot path planner, which was used to

investigate the spray coverage of agricultural fields. The proposed platform is

based on an agricultural robot platform, called the John Deere TE Gator, and

was modified to enable autonomous field operation by using the ROS frame-

work, in combination with GPS-based local navigation, vision-based obstacle

detection, and a multi-robot path planner used for determining global naviga-

tion achieving optimal field coverage. Ball et al. perform real field evaluation

of the modified robot platform alongside 12 simulated robots used for covering

a 55 hectacres field, containing three obstacles typically found on farms (i.e. a

single human, static electricity pole, and a small utility vehicle). The real robot

platform was used to investigate the real-time capabilities of the proposed nav-

igation system in real field environments, while the simulated robots were used

to investigate the performance of the multi-robot coverage planner. The pro-

posed real robot platform was able to cover 6 hectacres in 1.8 hours and was

able to successfully navigate 97.4% of its assigned 6 hectacres while properly

avoiding obstacles. The work proposed by Ball et al. showed development and

evaluation of a real autonomous agricultural robotic platform capable of safe

and reliable navigation within real field environments using a GPS path given

by their proposed multi-robot path planner, however its application is restricted

to multi-robotic systems used for broad coverage for field maintenance and does

not address its capabilities for improvement of agriculture in other areas of

research.

Mueller-Sim et al.[43] propose a novel ground-based agricultural robot, called

the Robotanist, which was used to autonomously collect plant phenotype mea-

surements of Sorghum bicolor, which enables geneticists to improve important

crop genetics resulting in improvements to crop yields. The proposed work was

developed in order to support a variety of different possible phenotyping tasks.

In order to achieve this, Mueller-Sim et al. proposed the design of the Rob-

otanist platform showing autonomous navigation capabilities for row crops (i.e.

sorghum and corn), as well as under crop-canopy situations. Additionally, the

Robotanist is equipped with a novel manipulator and is designed to support a

modular array of contact and non-contact sensors, all of which enable the gath-

ering of vital data for various different phenotyping tasks. Mueller-Sim et al.

proposed using the robot middleware ROS to develop the Robotanist software

framework, which enables the use of both custom, and open-source, developed
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software packages for communicating with the sensor hardware, robot control,

transmission of important system information, and data processing and visual-

ization. Although the proposed Robotanist platform was shown to be capable

of autonomous navigation, underneath the crop-canopy, within crop rows of

sorghum using RTK GPS, its performance can be significantly reduced as the

crop-canopy grows to be too tall and does not address safe and reliable GPS-

denied autonomous navigation underneath the crop-canopy. Additionally, this

work only shows the usefulness of the proposed robotic platform for phenotyp-

ing applications and does not address problems in other areas of agricultural

and biological research.

For example, Bac et al.[4] review and analyze state-of-the-art, and possi-

ble future, perspectives relevant to the advancement of robotic technology for

high-value crop harvesting, and highlights the growing importance for the use

of autonomy in agricultural applications. Additionally, the work reveals that

there is still a continued need for research and testing in order to realize an im-

provement in the performance of state-of-the-art robotic harvesting technologies.

In the work, the following three sources of variation in the crop environment,

which pose a challenge to the development of autonomous crop harvesting sys-

tems, identified: (1) “Objects in a crop” (i.e. the fruit, stem, leaves, etc.), was

defined as a challenge due to crops often suffering from occlusions from leaves

and branches, as well as undesirable positions, shapes, sizes, and colors, (2) “en-

vironment” is defined as the challenge of operation in crop environments where

the visibility and accessibility of the target fruit can be difficult, and can result

from various different factors (i.e. caused by varying lights conditions, different

cultivation practices employed, etc.), and finally (3) “variation among crops”

where the consideration of all high-value crops was identified as a challenge

resulting from the difficulty of properly harvesting from many different crops,

some of which require more complex robot-crop harvesting interaction and can

be fundamentally different across different crops. In addition to identifying en-

vironmental challenges, Bac et al. performed a quantitative literature review on

existing harvesting robots that have been developed and documented, in order

to quantitatively assess the current state-of-the-art performance in harvesting

robotic technology, and the quantitative analysis on the performance of 50 dis-

tinct projects, performed within a period of 30 years, is reported and compared.

From the resulting analysis, Bac et al.. identified five different bottlenecks that

were determined to have an influence in limiting the performance of the re-

viewed robotic harvesting methods. As a result, the following three challenges
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to future R&D areas that address the identified bottlenecks, are proposed: (1)

“Simplifying the task” was identified as the R&D challenge related to the mod-

ification of the crop environment, and requires further investigation in order to

help improve the performance of robotic harvesting technology, (2) “enhanc-

ing the robot” was identified as the R&D challenge related to the improvement

of the physical robot harvesting platform design, and requires further inves-

tigation in order to realize an improvement in robotic harvesting technology

performance by enabling harvesting robots to better deal with the complexities

of their surrounding environments, and finally (3) “defining requirements and

measuring performance” was identified as the R&D challenge related to identi-

fying the goals and metrics used to benchmark and evaluate the performance of

future projects, and is essential for fostering, and enabling the implementation

in practice of, future research.

The work, of Bac et al., revealed three key challenges, caused by variations

from sources within the harvesting environment, and even though they were

proposed as obstacles that limited the performance of robotic harvesting tech-

nology, it could be argued that these challenges are fundamental obstacles to

autonomy in most, if not all, agricultural applications. In addition to the en-

vironmental factors identified by Bac et al., there are many other factors (i.e.

adverse weather, unavailable hardware, etc.) that can negatively influence the

advancement of autonomy in agriculture, and most of them cannot be con-

trolled. As result, there is a need for the use of simulations to help advance the

development of state-of-the-art agricultural methods.

Edan et al.[14] attempt to solve the problem of developing an intelligent

control system used for robotic harvesting of melons, and must be capable of op-

erating reliably in highly unstructured and dynamic agricultural environments.

In this work, Edan et al. propose the use of an intelligent control system which

uses globally accessible databases, called Blackboards, where different processes

are able to share data and results in order to work collaboratively to achieve

a specified goal. Edan et al. proposed using two Blackboards, Planning and

Control, to integrate with each other using a transfer controller and were respon-

sible for interacting with the peripherals (i.e. sensors, actuators, etc.) and for

planning appropriate trajectories and harvesting tasks. Additionally, the appli-

cation of the “traveling salesman” algorithm was proposed in order to increase

the system’s autonomous harvesting throughput by determining the melon pick-

ing sequence, which resulted in reducing the melon harvesting time by 49%. In

addition to the “traveling salesman” algorithm, an additional algorithm was
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used to vary the vehicle’s forward speed, resulting in all of the ripe melons be-

ing successfully harvested. Although an intelligent control system capable of

efficient autonomous melon harvesting was introduced, some of the vision pro-

cessing methods used required delays, which had to be simulated for system

operation, and were not developed for optimal real-time applications. In addi-

tion to non-optimal real-time vision, the developed melon harvesting methods

investigated were implemented on a robot that was connected to a tractor. As

a result, the methods proposed are not useful for applications where the robotic

harvesting systems used are required to travel through narrow individual rows of

crops. Additionally, field evaluation of the proposed methods required the pres-

ence of a human tractor operator to manually control the tractor speeds. Not

only did Edan et al. show the use of an efficient autonomous melon harvesting

system, but it was also shown that the use of 3D simulations played an impor-

tant role in the development of the resulting intelligent control system. The

3D simulations were used to plan, model, and evaluate the robot and gripper

throughout the development of the control system presented. Additionally, the

simulations were useful for comparing the various motion control algorithms and

choosing the most efficient approach, which showed a resulting improvement in

performance, however, the simulation software used is outdated and most likely

not useful for modern applications.

Zou et al. provide an example where the use of a simulation has facilitated in

the development of an intelligent agricultural field robotic control method used

for harvesting litchi trees[71]. In the work by Zou et al., a simulated virtual

environment was utilized for visually realizing the kinematic behavior of the

arm manipulator used for harvesting, and allowed behavioral knowledge to be

extracted, in relation to how the arm manipulator interacts with the litchi fruits

being harvested, which was essential in the development of the control method

proposed. Zou et al.. employs the use of EON Studio 5.0 (a virtual reality

environment development tool) and Microsoft Visual C++, in order to simulate

the virtual environment (containing a single arm manipulator and a single litchi

tree with some fruit) and controlling the arm manipulator (via a simple “point-

n-click” method). The drawbacks are: (1) environment simulated does not

entirely represent the real field environment and field conditions accurately,

(2) the simulation environment used is not open-source, limited applications,

and does not guarantee physics-based simulation for accurate analysis of the

representation of the world.

Rodriguez and Nardi[53] provide an example where the use of a simulation
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environment was used to develop and evaluate a method for visually detecting

the presence of downy mildew parasites in sunflower crop fields by estimating the

plant height or leaf color. They proposed the development of a testing simula-

tion environment used to generate images, from a simulated monocular camera

attached to a simulated UAV, which was used for developing and evaluating

the performance of a 3D reconstruction algorithm for estimating the average

plant height of simulated crops, using a simulation environment based on the

Unreal Engine 4[55]. The performance of the proposed height estimation algo-

rithm was evaluated using the known ground truth heights of the 3D crops for

comparing the accuracy of the height estimation algorithm at different UAV fly-

ing altitudes. Although it shows the usefulness of a simulation environment for

developing a crop estimation algorithm for a UAV, the proposed approach did

not account for the behavior of the real system, where the UAV moved perfectly

along the given trajectory (i.e. no kinematics or dynamics considered) and the

simulated camera was a perfect camera model (i.e. no realistic camera behaviors

or noise considered). In addition, the proposed simulation environment is only

applicable to a specific application in agriculture (e.g UAV monitoring of sun-

flower fields) and does not easily generalize to work in other areas of agricultural

research topics.

Biber et al.[7] claim that the use of an autonomous, multi-purpose, agricul-

tural robotic platform, called BoniRob, can be a competitive alternative to the

standard practice of using single, expensive, and large farm equipment by show-

ing the BoniRob’s capabilities in autonomous agricultural applications (such

as autonomous phenotyping, field maintenance tasks, etc.). In this work, a

novel navigation system is presented which allows the BoniRob to autonomously

navigate safely over row-based crop cultures and is shown to reliably navigate

autonomously continuously for three days using a 3D lidar, an IMU, and an op-

tional RTK GPS. The presented navigation system is composed of the following

four layers: (1) the “Drivers” layer, which is the lowest level layer and is used for

interfacing with the physical hardware components (i.e. actuators, sensors, etc.),

(2) the “Reactive” layer is used to process, and reactively use, sensor data (such

as row/ground detection, row/turning control, localization and mapping, etc.)

and has no knowledge of any high-level states, (3) the “Semantic” layer extends

the localization and mapping functionalities of the “reactive” layer allowing for

high-level localization and mapping using agricultural specific semantic labels

(i.e. crop row, open field, side of field, row gap, and beginning/end of row),

and finally (4) the “Planning” layer is used to coordinate the data flow between
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the various elements in the lower layers, in addition to overall system manage-

ment, and this layer contains the system configuration and state-machine of the

given specific application. The proposed work, of Biber et al., shows an effective

method for robust autonomous navigation of a multi-purpose agricultural robot,

BoniRob, it is strictly limited to applications where the robotic platform can

traverse over the crops (i.e. early stages of, and/or small, crops), and it does not

address the difficult problem of navigating reliably underneath the crop-canopy.

Although not discussed in depth, this work does provide an example where the

use of a simulation environment, Gazebo[37], was crucial during the early stages

of development of a novel autonomous field robotic navigation system when the

physical robotic platform was not available.

The availability of skilled field workers, who are willing to perform tedious

and manually intensive field labor, is very limited, resulting in an increased

demand for autonomous harvesting mechanisms. The development of safe and

reliable autonomous harvesting methods is challenging and can result in doing

more harm than good especially in applications involved with delicate crops. For

example, a robotic manipulator can easily harm or destroy vital crops if not con-

trolled properly, thus negatively influencing the effective crop yields. Shamshiri

et al. showed an example where a simulation environment, V-Rep, was used

to develop and improve vision-based perception and control algorithms, such

as visual servoing (which is a method of controlling a robot based on the input

from a vision sensor), object recognition, etc., used for autonomous harvesting of

sweet peppers, and was useful by enabling testing and debugging with zero risks

of damage to vital crops and hardware[27]. In the proposed work, V-Rep, in

combination with ROS, was used to evaluate four different vision-based control

and sensing strategies implemented using various commonly used manipulator

platforms. Additionally, experiments were performed showing the simulation

environment, as well as both simulated and real-world visual data, being used

for the development and evaluation of the following: (1) a fruit detection and

tracking algorithm which utilizes different camera views, (2) manual and auto-

mated fruit and plant scanning in four different camera orientations, (3) fruit

and plant scanning using 3D sensors (i.e. Microsoft Kinect, lidars, etc.), and (4)

a visual servoing control law used for a single, as well as multiple, end-effector(s).

Not only were various experiments performed, but the proposed simulation plat-

form was shown to be capable of simulating, relatively, realistic 3D sweet pepper

orchards (i.e. stems, leaves, fruits, etc.). In addition to relatively realistic sweet

pepper orchards, the simulation platform was able to simulate a wide range of
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different sensors, as well as a few different pairing configurations of various types

of arm/end-effector 3D models. The proposed simulation environment is an ef-

fective development and evaluation tool for autonomy in agriculture, however,

it is only useful for indoor applications and does not consider outdoor agricul-

tural environments which are a more challenging environment to simulate (i.e.

adverse, cluttered, and many unknown environmental factors). In addition to

indoor environments, the proposed work only focuses on the simulation of sweet

pepper orchards and arm manipulators and is not useful for other areas of agri-

cultural field robotic research (such as autonomous ground vehicles and common

crops like corn). Additionally, Shamshiri et al. showed the use of a simulation

environment capable of facilitating in the development and evaluation of vari-

ous different control and sensing strategies, however, they did not consider the

integration of the physical hardware components for algorithm evaluation.

Emmi et al.[15] showed how a simulation environment and a set of tools

developed to be useful for the design and evaluation of fleet-based Precision

Agriculture (PA) techniques. The proposed set of tools, called SEARFS, en-

ables users the ability to easily configure various aspects related to the fleet-

based PA systems, such as the individual robots that make up a given fleet (i.e.

sensors, actuation, team role, etc.), the characteristics of the 3D simulated field

environment (i.e. crop/weed spatial distribution/density, field obstacles, etc.),

as well as aspects related to the high-level PA fleet-management strategies (i.e.

field chemical treatment methods, weeding mechanisms, etc.). Additionally,

SEARFS allows users the ability to integrate their own custom elements, such

as individual robot control algorithms, custom robot models, as well as custom

3D crop and/or weed models. The proposed SEARFS provides a good example

of a simulation environment that can be useful for many different applications

in precision agriculture, by providing many user-configurable features for their

specific needs, however, the proposed simulation environment focuses primarily

on fleet management development and evaluation. Although SEAFRS claims

to be open-source, it is based on Webots[42] and utilizes Matlab functionality

(both of which are not free and available for everyone), which makes it diffi-

cult to use for some users. In addition to focusing on fleet management, the

proposed simulation environment is strictly simulation/software based and does

not consider physical hardware integration and support.

Linz et al.[40] use a combination of ROS and Gazebo to help develop a nav-

igation controller for field service robot navigating through vineyards. Since

outdoor trials are only feasible during limited conditions (i.e. spring and sum-
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mer), Linz et al. use Gazebo to perform preliminary development and analysis

of the intended navigation controller as it is used with a simulated robot model

in its intended environment. After preliminary development, the navigation

controller is used on the physical indoor robot platform and an artificial indoor

environment, both of which are modeled with Gazebo and are determined to

be sufficient surrogates for the intended outdoor use cases. Linz et al. show

successful usage of a simulation environment to perform preliminary tests for a

specific robot platform for a specific agricultural need prior to its application in

the field.

As the need for more autonomy in agricultural applications increases, so to

will there be an increased need for collaboration among the many different areas

within agricultural field robotics, in order to facilitate in the improvement of

autonomous agricultural field robotic methods. Even though developed methods

are published and made available to the academic community, the amount of

open-source field robotic software that has already been developed and well-

documented is limited, which can make collaboration difficult. A solution to

this could be an open-source software architecture, or framework, tailored to

the field robotic academic community which can help to cultivate collaboration

within the community and provide the tools enabling rapid development and

testing of field robotic methods.

The work presented by Wang et al.[67] shows how ROS can be used to facili-

tate, and improve the development efficiency, of a developed algorithm allowing

rapid deployment of the algorithm on an actual robot platform. Specifically,

they present of the framework in which ROS was used to aid in the deployment of

developed algorithms used on a humanoid agricultural robot platform, BUGA-

BOO, used for the task of autonomously harvesting tomatoes. It was shown

that the ROS tools that are available, particularly the robot modeling, visual-

ization, motion planning, vision processing, and serial communication tools, can

effectively reduce and benefit in the development and evaluation of robotic algo-

rithms, especially when many different developers collaborate. Unfortunately,

the proposed work only provides an example use case where the application of

ROS is capable of being beneficial for collaboration among different research

groups within agriculture, and there are no quantitative analysis or results pre-

sented in this work. Although the proposed work presents the successful use of

ROS to enable the development of an agricultural robotic platform, its use was

only investigated for the autonomous harvesting within an indoor tomato envi-

ronment, and does not address the challenges of for other areas of agricultural
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research, as well as the difficulty of safe and reliable operation within outdoor

agricultural environments.

Nebot et al. investigate the application of multiple agricultural robotic sys-

tems used for solving various tasks associated with orange groves (such as collect-

ing oranges, grove weed, and tree maintenance, etc.)[44]. In this work, a novel

control architecture, called Agriture, is presented, which combines the utilities

of three separate systems resulting in a control architecture better suited for

developing cooperative robotic systems, utilizing both physical and simulated

hardware. The proposed architecture is based on the following three systems:

(1) High-Level Architecture (HLA), (2) JADE, and (3) Player. HLA is the sys-

tem which allows the possibility for both physical and simulated entities to be

used at the same time, or individually. Entities can be anything in the system

that can be simulated (i.e. robots, sensors, environments, etc.). Additionally,

the HLA is used to handle the implicit communication between different ele-

ments within the system, as well as handling the exchange and synchronization

of data that is exchanged between various elements. The JADE system is Java-

based software framework used for agent-based application development, and

it simplifies the implementation of multi-agent systems through a middleware.

JADE is used to handle the explicit communication between system elements

and is used to determine what information goes to which agent, as well as which

tasks are assigned to which physical elements. The Player system is a network-

oriented device server used to access the actuators and sensors of a robot, via

TCP-based client/server interactions. Player is used to define the abstraction

of physical external devices, either real or simulated (i.e. robot platforms). The

Player system is accompanied with a lightweight and configurable multi-robot

simulator, called Stage, which allows the control of simulated robots in virtual

environments. Although no quantitative experiments were performed, Nebot

et al. propose potential applications where the proposed architecture could be

used. One of the proposed applications mentioned, that is of interest, is the

use of Agriture allowing hybrid development applications, where both real and

simulated elements are combined, and used, together. The proposed hybrid ap-

plication where the Agriture architecture could be useful for agricultural robot

development is the use of real robots operating in an empty warehouse, where

real video and GPS data, collected elsewhere (i.e. real orange groves), can

be overlaid such that the robot thinks that it is the real field. Unfortunately,

the presented control architecture only provides a framework that is potentially

useful for the development of multi-agent agricultural systems utilizing real,

24



simulated, and hybrid data, and no experimental results are presented. Addi-

tionally, the Agriture is only an interface for various components and has not

been shown to be useful for evaluating field robotic algorithms.

It is a challenge in the general robotic community to reliably benchmark dif-

ferent multi-robot control algorithms because they are all evaluated differently

(i.e. physical robotic setups, the method of simulation, environmental condi-

tions, etc.). Since the specific methods used for benchmarking can differ widely

within the academic community, the results published in academic papers can

be quantitatively incomparable. Yan et al.[70] proposed an open-source simula-

tion test bed to help solve this problem. The proposed approach was developed

to provide the academic community with a reproducible framework capable of

allowing many different multi-robot control algorithms to be benchmarked, and

report results, easily. The proposed testbed is based on ROS, and utilizes a set

of ROS nodes used to contain the following three developed components: (1)

MORSE, which is a 3D realistic simulation platform used for simulating the

multi-robot system, (2) various different robot controllers which are used for

individual robot control and interaction, as well as team coordination, and (3)

a monitor used to supervise all of the running experimental processes. Addi-

tionally, the work proposed the distribution of the robot controllers among a

computer cluster, which acts to simulate multiple individual robots interacting

together in real-time. The distributed robot controllers were deployed among a

cluster of 70 high-performance computers. Yan et al. proposed the use of an

open-source virtual machine in order to maximize the re-usability of the pro-

posed testbed by enabling each computer in the cluster to support the use of

ROS (i.e. computer operating systems varied and may not support ROS). Yan

et al. showed the capabilities of a simulation testbed proposed developed to sup-

port the benchmarking of, and collaboration within the academic community

of, multi-robot coordination, however, their work does not consider its applica-

tion for agricultural specific applications. Additionally, the proposed simulation

testbed is only interested in distributed approaches and requires individual robot

controllers to provide their own ROS nodes for enabling centralized approaches.

In addition to utilizing an open-source virtual machine, the proposed test bed

requires the support of ROS, which limits its ability to be used for realistic

benchmarking of physical multi-robot systems where the hardware for some of

the individual robots may not be able to support ROS and/or a virtual machine.

Jensen et al.[32] proposed an open-source software platform, called Frobo-

Mind, which was tailored specifically for field robotic applications in precision
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agriculture (PA). FroboMind aims to support the advancement of field robotic

systems utilized in agriculture by cultivating collaboration within the academic

community, facilitate in software reuse at an application level, and support quick

development and evaluation of investigated methods across a wide range of agri-

cultural projects. FroboMind is based on the commonly used robotic middleware

ROS, and its architecture is composed of the following three component layers:

(1) Perception is the layer of components that are used to perceive the sur-

rounding environment using an established abstraction of the physical sensors

to collect data, in addition to processing the collected raw data into data more

useful for other system functionalities (i.e. navigation, obstacle avoidance, etc.),

(2) Decision Making (DM) is the layer of cognitive components responsible for

keeping track of the information received from the sensors and outputting the

required robotic system behaviors, necessary for achieving a user-defined task,

and finally (3) Action is the layer of components responsible for the abstraction

and low-level control of the robotic system’s hardware components necessary to

achieve the behaviors generated from the DM layer. The aforementioned lay-

ers, and their associated components are represented in the form of individual

ROS packages, all of which are located in the FroboMind’s “architecture layer”

directory. Experimental results were obtained with the application of Frobo-

Mind for the following: (1) computational resource (i.e. CPU and RAM) loads

were collected, at 5Hz, showing the near-real-time operation of differentially-

driven robotic platform executing autonomous waypoint following, (2) during a

5 day development workshop, a breakdown on the amount of time and resources

spent on different development tasks was documented, in order to quantitatively

evaluate the effect of using FroboMind to quickly enable any custom developed

robotic platform to solve a typical PA application (i.e. autonomous naviga-

tion rows of an apple tree orchard), and finally (3) the number of lines of code

(C++, Python, etc.) contained in all of the custom developed files for running a

software-based system, or Source Lines Of Code (SLOC), that was used within

a span of 3 years throughout various PA projects (i.e. GPS-based navigation of

row crops, control of both passive and active autonomous farming implements,

etc.), was compared in order to quantitatively evaluate FroboMind’s software

reuse capabilities. FroboMind was shown to facilitate in the integration of new

software implementations onto a physical robotic platform, enabling real field

evaluations relatively quickly, however, the presence of the necessary robotic

hardware was required and does not address the application of a simulation

environment to enable hardware-dependent development. Additionally, it was
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shown that complications resulting from undesirable field conditions (i.e. chang-

ing weather) had an impact on the amount of time spent towards the success-

ful implementation and evaluation of the autonomous robotic platform in real

field trials, which highlights one of the fundamental obstacles that can hinder

the development and evaluation of most, if not all, autonomous field robotic

systems used to solve many problems faced in agricultural applications. This

fundamental obstacle is that both the physical hardware elements essential for

robotic platform operation, as well as desirable environmental and target field

conditions, must be present in order for proper and efficient field trials to be

performed. This provides a glimpse of the potential importance that simulation

environments can have for enabling the efficient development and evaluation of

novel autonomous agricultural field robotic systems and algorithms in a wide

range of agricultural applications, by allowing the simulation of both of these

essential elements (i.e. robot platform and field environment conditions).

2.2 Robot Operating System (ROS)

The Robot Operating System (ROS) [50] is a widely used open-source, mul-

tilingual (C++, Python, Java, etc.), peer-to-peer based software framework that

supports many different types of robotic platforms, manipulators, sensors, and

algorithms. Due to the vast amount of open-source developed packages, drivers,

and algorithms, the very active and wide community support, and the wide

range of supported robotic and sensor hardware, ROS can be very useful tool

that can simplify the development and evaluation of robotic algorithms for a

wide range of robotic applications, both in simulation and on hardware. Since it

provides many useful features that help to improve the development of general

robotic applications, it was chosen in this thesis to utilize these features of ROS

to develop a development environment aimed, specifically, at facilitating in the

development of field robotic methods for use in agricultural environments.

This section will first provide an overview of some the fundamental elements

of ROS that will be helpful for understanding some of the, later discussed,

components developed in this work. Finally, this section will give a brief in-

troduction to the standard utilities, provided by ROS, that can be useful for

troubleshooting and debugging of developed robotic systems.

27



2.2.1 Fundamental Components

When any work being developed uses ROS in some fashion, it is necessary to

first discuss some of the basic components that make up ROS, in order to have

a general understanding of how ROS operates. For the work developed in this

thesis, the following components, and how they are used within ROS, will be

discussed: (1) Nodes, (2) topics, (3) messages, (4) publishers and subscribers,

and finally (5) coordinate frames.

ROS nodes can be thought of as modular “software modules”, or processes

using some type of supported programming language that performs some type of

computation, or function, such as processing sensor data or controlling a robot’s

motors. When multiple nodes exist, either on a single computer or distributed

among several computers, what is known as a “ROS network” is formed. Any

node on a “ROS network” is able to interact, and share data, with other ROS

nodes on the same “ROS network”, an example can be seen Figure 2.8.

ROS topics can be thought as data sources, or a relay for a specific type

of information, such as the acceleration data received by an IMU. ROS topics

allow the data, that is available from the various sources of information over a

ROS network, to be passed between, and used by, multiple ROS nodes. Since

there can be many ROS topics available at any one time, ROS topics should be

identified by a unique string identifier, such as imu_1/acceleration_data.

ROS messages can be thought of as the container for specific information

that is available in a ROS network. A ROS message, or msg, is a strictly typed

data structure that is used to store and pass data between nodes, via topics,

and is defined in a .msg file, an example is shown in Listing 2.1. A msg can

be made up of any basic primitive data type (integer, floating points, booleans,

etc) and can even be made up of other ROS messages.

# This e x p r e s s e s a p o s i t i o n and o r i e n t a t i o n on a 2D mani fo ld .

f l o a t 6 4 x

f l o a t 6 4 y

f l o a t 6 4 theta

Listing 2.1: Example of a ROS message defined in the “Pose2D.msg” file.

ROS publishers can be thought of as the entities in charge of making infor-

mation available on a ROS network. Publishers are the components that allow

data to be available, and used, by other nodes on a ROS network. Publishers

broadcast information, stored in the form of a ROS message, to a specific ROS
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topic, in order for other ROS nodes, can use that information for their own

purposes.

ROS subscribers can be thought of as the ROS publisher counterparts.

Specifically, subscribers are the components that listen to a specific ROS topic

and receive the data of that topic as soon as any ROS messages become available.

When the ROS topic being “subscribed” to has ROS messages available, the

subscriber can be used by a ROS node to retrieve the available data, of a ROS

topic, in order to be used internally.

Although not a fundamental component of ROS, coordinate transformations

are the origins to the various objects in a robotic system that interact with each

other, and they are fundamental for properly characterizing the geometric rela-

tions between these objects. Most, if not all, robotic systems can be described

as a collection of 3D coordinate frames, such as a camera frame, robot base

frame, world frame, etc., that change over time. Each of these 3D coordinate

frames can be related to each other using a series of coordinate transformations.

These coordinate transformations can easily be represented in ROS, using the

ROS package called tf, which can automatically keep track of the all the defined

coordinate frames as they change with time while maintaining the relationship

between the frames in a tree structure. For example, shown in Figure 2.7,

the Pioneer 3AT robot would have the resulting tf tree structure, which is used

to keep track of the 3D coordinate frame’s pose for each sub-component of the

3AT robot.

(a) Figure 2.7 (continued)
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(b)

Figure 2.7: (a) Shows the Pioneer 3AT robot platform. (b) Shows the result-
ing tf tree of the Pioneer 3AT platform as represented in ROS and all of the
associations between its various sub-components.

2.2.2 Standard ROS Utilities

ROS has a variety of standard utilities that can be very useful debugging

and visualization tools, which make it easier to interact with and troubleshoot,

the many various elements operating within a ROS network. Most of these

tools can be easily used, and are interact-able, from a ROS application, called

RQT, which is based on the Qt framework[49] for developing Graphical User

Interfaces (GUI). The RQT package can be used to easily interact with the

various elements of, and tools available with, ROS from a GUI.

The topic monitor is a utility that displays all of the ROS topics that exist

on a given ROS network, in addition to being able to view the information, when

available, from each topic. Specifically, the topic monitor can be used to quickly

see which ROS topics, associated with the robot platform (i.e sensor data, mo-

tion commands, etc.), are available, the frequency in which each available topic

is being published, as well as the data (i.e sensor data, data timestamps, etc.)

associated with each available ROS topic.

The message publisher is a utility used to publish any type of ROS mes-
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sage to any ROS topic that exists on a ROS network. This is a particularly

useful utility when it is desired to quickly test the behavior of a ROS node

using a user-defined ROS message sent to a specific topic. For example, the

message publisher could be used to send commands to a developed state ma-

chine, in order to test its behavior for worst-case scenarios or scenarios that may

not occur frequently.

The node graph is a utility used to show all of the ROS nodes and topics

that exist on a ROS network at any given moment in time, as well as how

the nodes and topics interact and communicate with each other, in the form

of an undirected graph, an example of which can be seen in Figure 2.8. This

is a useful tool for verifying that various ROS nodes are properly interacting

with the other ROS nodes they should be interacting with, as well as ensuring

that the various ROS nodes are publishing to, and receiving from, the proper

ROS topics. For example, suppose that a joystick, handled by the /joy_node, is

supposed to be used to control the motion of a robot platform, via the /cmd_vel

topic, the nominal node graph can be shown in Figure 2.8. In the event that

the robot platform does not move when inputs are given to the joystick, the node

graph could be used to see if the various ROS elements exist and are properly

connected.

Figure 2.8: Shows the node graph with the available ROS topics and nodes on
the ROS network in a scenario where a joystick is used to control the motion of
robot model simulated in Gazebo. ROS nodes are represented by the elements
contained in an ellipse, ROS topics are represented by the elements contained
in a rectangle, and the ROS topic information that is shared in the form of ROS
messages is represented by the arrows connecting the different components.

The tf tree is a utility plugin that visualizes the tf tree, or the tree-like
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representation of all the relationships between the various coordinate frames

associated with the components used to compose any specified robotic platform,

or model (i.e humanoid arm manipulator). The tf tree can be visualized either

using a command-line-utility or with the available RQT plugin, associated with

the tf package. Visualizing a robotic platform’s tf tree can be useful when it is

necessary to verify that the various sub-components of a robotic platform are

properly modeled and connected to each other, in order to ensure that any pose

or sensor information is correctly generated.

The rosbag is a very useful tool that can be used to record specific, or all

of the ROS topics available on a ROS network during the time of recording, as

well as saving the recorded topics into a ROS bag, or a .bag file. In addition

to being recorded, the recorded ROS topics, of a particular .bag file can be

played back later. ROS bags are especially useful when it is desired to replay

the various ROS information available during a specific scenario, or when it

is desired to post-process, using external software such as Matlab or a python

script, the various recorded ROS topics.

Rviz is a GUI utility that can be used to visualize various forms of infor-

mation that is available over a ROS network. Some of the forms of information

that can be visualized include, but is not limited to, the following: robot models,

3D poses of various different bodies, markers useful for visualizing a trajectory

or landmarks, Lidar data, video camera streams, and IMU data. Being able

to visualize data, in itself, can be helpful to understand a given situation by

presenting the information in a different manner. Rviz is a useful tool for vi-

sualizing the various types of data available, especially when it is necessary for

viewing the information as seen from various perspectives from ROS. For ex-

ample, suppose that the output of a vision-based control algorithm, being used

by a robot platform, does not exhibit the correct behavior that should be wit-

nessed at a known location. Rviz could be useful for evaluating the validity of

the camera’s input image stream, by visualizing the raw or processed, image

stream, an example of this can be seen in Figure 2.9.
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Figure 2.9: Shows the rviz GUI showing the image stream (right window), the
lidar data (red lines), and the coordinate frames of the various sub-components
of a given robot model simulated in an example Gazebo world.

2.3 Gazebo

Although there have been many different multi-robot 3D simulation plat-

forms available, previously discussed, that offer many of the same capabilities

and features, Gazebo was chosen as the most suitable simulation environment

for use in this work, because it had the most features and capabilities suitable

for facilitating in the development, evaluation, and application of algorithms

intended for field robotics research for agricultural applications. These features

that were deemed as the most suitable for field robotic algorithm testing were

the following: (1) it is fully open-source, enabling potential collaborating devel-

opers the ability to use, as well as develop their own modified version of Gazebo

easily, (2) wider and more active community support, (3) well maintained and

better documentation of code and API, (4) easiest interaction with an interface

of ROS, (5) easier modification and programmatic generation of custom simu-

lated objects and worlds, and finally (6) best trade-off between computational

overhead of accurate simulation of complex environments and available features.

This section discusses some the fundamental aspects of Gazebo necessary for

the creation of the development environment presented in this work. The fol-

lowing section discusses the following: (1) the various elements used to compose
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any given simulated object in Gazebo, as well as how the various objects and

worlds can be represented, (2) the method in which various types of sensor mea-

surements can be simulated in Gazebo, as well as how various Gazebo simulated

objects can be interacted with and controlled, and finally (3) the structure of a

Gazebo Model Directory enabling quick, and easy, selection, as well as loading,

of various custom develop models within Gazebo.

2.3.1 Representing Simulated Objects

Gazebo is capable of simulating the physical composition for a very wide

range of custom objects (i.e robots, sensors, worlds, etc.), or models, and the

physical composition for any given object can be represented using a combina-

tion of the following two primary elements: links, and joints. The following

section discusses the properties of these two primary elements, as well as dis-

cusses how they can be assembled and used, in order for the physical body of

any given object to be simulated in Gazebo.

Figure 2.10: Shows the the different different representational (i.e. collision,
visual, and inertial) bodies that are used for defining the construction of a
simulated object, or link.

Links, an example is shown in Figure 2.10, are the individual rigid-body

components of a simulated model. Any simulated model, simple or complex,

can be composed of a single link, such as a wheel, or as multiple links, such as

an arm-type manipulator (e.g. base, arm, and manipulator). Although many

other elements can be used to create any imaginable custom body, the essential

elements used to define any link are the following:
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• Origin: The 3D pose of the coordinate frame used as the origin of the

defined link. This coordinate frame is used as the reference origin used for

relating the coordinate frame origins of the visual, collisional, and inertial

bodies respective to the associated link.

• Inertial: The inertial body of a link, used to define all of its inertial

properties, such as mass and rotational inertias.

• Visual: The visual body of a link, used to define a link’s various visual

properties such as the visual geometry, color, and texture, which are used

to form the visual rendering of the link as seen in Gazebo. A link can have

multiple visual bodies defined which can be combined to form a composite

visual body.

• Collision: The collision body of a link, used to define a link’s collisional

boundaries, or geometry. The collisional body of a link is the geome-

try that is used to simulate the contact, and dynamic collisions, with

other simulated objects in the surrounding environment. Similar to the

visual body, a link can have multiple collision bodies defined which can

be combined to form the composite collision body of a link, however, the

computational resources required by the physics engine increases as the

complexity of a link’s composite collisional body increases.

The geometrical bodies used to define both the visual and collision bodies

of a link can be represented using either simple geometrical shapes (i.e cube,

cylinder, sphere) or a supported 3D surface mesh file. Gazebo supports the

following 3D surface mesh file formats: (1) Stereolithography (STL)[54], or *.stl

files, (2) Collada[1], or *.dae files, and (3) Wavefront[52], or *.obj files.
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Figure 2.11: Shows how a joint is used to attach two different links, and how
the joint’s origin and the links’ origin coordinate frames are related relative to
each other.

Joints are the dynamic connections between two different bodies, or links,

and enable all of a simulated model’s associated links to be attached, as shown

in Figure 2.11. For example, a joint can be used to connect a simulated motor

output shaft to a simulate wheel enabling it to be controlled. Although there

are many kinematic and dynamic properties that can be defined by it, the most

basic and fundamental elements used to define any joint are the following:

• Type: is the specific type of joint (such as fixed, revolute, prismatic, and

more) used to connect the attached links.

• Origin: is the 3D transformation from the parent link’s coordinate frame

origin into the child link’s coordinate frame origin.

• Parent: is the name of the parent link.

• Child: is the name of the child link to be connected to the parent link.

• Axis: is the axis about which the translational/rotational movement, if

allowed, between the two links is allowed, in reference to the joint reference

coordinate system.

Now that it is possible to properly represent the individual elements that

could be used to construct any simulated object, it is necessary to represent
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the entire composition (i.e links, joints, plugins, etc.) of a custom simulated

object, such that it can be represented properly within ROS or simulated using

Gazebo. Two different XML-style file formats, the Unified Robot Description

Format (URDF) [65] and the Simulation Description Format (SDF) [56], both

can be used for defining all of the links, joints, and miscellaneous characteristics

(i.e attached Gazebo plugins, physics engine parameters, rendered lighting, etc.)

associated with any given simulated object in specially named files, *.urdf files

for the URDF-style and *.sdf files for the SDF-style. Both of these formats are

supported by ROS and Gazebo, and they share some common elements and can

be used to represent the same exact object. For example, the SDF and URDF

files, defined in Listing A.1 and Listing A.2 respectively, both result in the

same Gazebo-simulated simple GPS antenna, shown in Figure 2.12.

Figure 2.12: A simple GPS model simulated in Gazebo as a result of using both
the SDF and URDF model representation approaches, defined in Listing A.1
and Listing A.2, respectively.

Although both of these file formats can be used to represent and simulate

the same object, they do not share the same potential capabilities. The SDF

format is the only format that is supported for simulating a Gazebo world and

is capable of defining many characteristics other than those required to simulate

a robot model. For example, the SDF format, used within an example Gazebo

world description file (i.e *.world), can be used to define characteristics pertinent

to the Gazebo simulated world including, but is not limited to, the following

characteristics associated with the world: any simulated models (i.e obstacles,
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robots, etc.), environmental conditions (i.e lighting, atmospheric conditions,

etc.), physics simulation characteristics (i.e world physics, physics engine and

solver parameters used, etc.), and world terrain.

Contrary to the SDF format, the URDF format is only capable of defining

elements associated with a single robot or model. Although its capabilities may

seem limited to the SDF format, the URDF format is capable of implementing

the use of the XML Macros (xacro) language [68], which is not supported by the

SDF format. The xacro language (denoted by *.xacro files) within URDF files

(denoted by *.urdf.xacro files) enables the following functionalities, all of which

make the development and configuration of URDF models much easier: (1)

modular design/configuration of simulated objects, and easy re-use of previously

developed components, by enabling the use of elements defined within multi-

ple other *.urdf.xacro files, (2) support for parameterization of URDF/xacro

components, using variables and function-like methods, enables quicker modifi-

cation, configuration, and simplified use of large portions of code.

2.3.2 Gazebo Plugins

Not only can Gazebo properly simulate the physical composition of any given

object, but it can also simulate any custom behavior associated with that ob-

ject through the use of “Gazebo Plugins”. Gazebo plugins, or Plugins, are

Gazebo-standard C++ classes that have direct access to all of Gazebo’s core

functionalities. Plugins are extremely useful tools which enable developers to

have custom control over any aspect related to the Gazebo simulation environ-

ment, such as simulating a sensor measurement, controlling the behavior of a

specific simulated object, and even programmatic control of, and interaction

with, the Gazebo system, GUI, and the world. Not only do Gazebo plugins give

users control over the Gazebo environment, but they also automatically support

the integration of, and interaction with, ROS. This provides an additional layer

of ease enabling even quicker development, and easier use, of Gazebo for the

development, evaluation, and extension of autonomous robotic methods.

There are six main categories of Gazebo plugin types: (1) World plugins are

plugins that can be attached to a simulated world and give users the ability

to control various world properties (i.e physics engine, ambient lighting, etc.),

(2) Model plugins can be attached to a specific model and enable users the

control over that model’s behaviors, (3) Sensor plugins can be attached to a

specific sensor and give users the ability to have control over that sensor’s prop-
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erties and how it acquires information, (4) System plugins are executed before

the Gazebo environment is loaded and gives users the control over the Gazebo

startup process, (5) Visual plugins can be attached to specific models and gives

users control over the object’s visual properties and how it is visually rendered,

and (6) GUI plugins can be attached to the Gazebo GUI and give users the

ability to add-on to, modify, and have additional control over the Gazebo GUI

window.

As previously mentioned, one of the benefits of using Gazebo is that it has

high-quality community support and crowd-sourced content, which can enable

it to support the rapid development and testing for autonomous field robotic

methods developed specifically for agricultural applications. These benefits can

be witnessed in this thesis from the freely available and ready-to-use Gazebo

sensor and model plugins that have already been developed by Team Hector[38]

and the Gazebo development team [20]. From these open-source plugins, some

were used as is for the developed simulated sensor models (i.e IMU, GPS, Lidar,

camera, etc.) and the control of the simulated robot models (i.e differential and

skid-steering drive controllers), and some of them had been taken and modified

in order to enable custom sensor behavior more useful for rapid agricultural field

robot development and evaluation.

There are various methods in order for any open-source or custom developed

Gazebo plugin to be properly applied to and used by the Gazebo environment,

all of which depend on the specific plugin. In this thesis, the model and sensor

plugins were primarily interacted with and were therefore easily attached to and

used by the various developed simulated models by simply including them in

the respectively *.urdf.xacro files of the associated attached models.

2.3.3 Gazebo Model Database

As previously mentioned, Gazebo supports the use of the SDF format to

define custom simulated worlds. In addition to defining custom worlds, Gazebo

supports the use of the SDF format to create statically defined simulated objects,

or objects that exhibit modifications very rarely, which can be found, and kept

track of, by Gazebo allowing easy loading and simulation, using either a GUI

based “drag-n-drop” technique or including into a *.world file. This quick and

easy usage of SDF defined models is enabled with the application of the Gazebo

Model Database (GMDB), which is the collection of all the available models

that can be simulated using Gazebo. The GMDB not only keeps track of all the
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community-developed available models, but it also can keep track of any local

custom-developed models. In order for a simulated model to be recognized by,

and usable through, the GMDB, a simulated model has to be contained within

a Gazebo Model Directory (GMD) which has a specific directory structure. For

example, given a crop model, to be named test_crop_model, that is to be

used to create an example simulated agricultural field, the crop model must

be contained within a GMD, root directory named test_crop_model, which

should have the following directory structure and files:

• model.config : Meta-data about test_crop_model. Each model must

have a model.config file in its root directory, which contains meta infor-

mation about the model (such as the author, description, etc.).

• model.sdf : SDF file describing all the links, joints, plugins, and other

properties describing the model, test_crop_model.

• model.sdf.erb: Standard SDF file which can contain Ruby code embed-

ded. This option is used to programmatically generate SDF files using

Embedded Ruby code templates. Please note that the ruby conversion

should be done manually (erb model.sdf.erb ¿ model.sdf) and the final

model.sdf file must be uploaded together with the model.sdf.erb.

• meshes: A directory for all COLLADA and STL files. This is an optional

directory that contains all of the COLLADA and/or STL files for the

model.

• plugins: A directory for plugin source and header files

• materials: A directory which should only contain the textures and scripts

subdirectories. This is an optional directory that contains all of the tex-

tures, images, and OGRE scripts for the model. Texture images must be

placed in the textures subdirectory, and OGRE script files in the scripts

directory.

– textures: A directory for image files (jpg, png, etc).

– scripts: A directory for OGRE material scripts

2.4 Summary

This chapter first discussed previous work that has been done in the area of

field robotics in agricultural applications, in addition to some of the simulation
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platforms that are available and could potentially be useful for supporting field

robotic development. A brief overview of the Robot Operating System (ROS)

middleware is then presented, where some of its key components and utilities

are discussed. Finally, this chapter discusses the Gazebo simulation platform

that was chosen for use in the following work that is presented.
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Chapter 3

System Overview

This chapter provides an overview of the novel development environment

presented in this work to enable a more efficient approach to development and

field evaluation for general agricultural robotic applications, by enabling devel-

opment to take place even when unfavorable field conditions may exist or essen-

tial hardware is unavailable. Next, this chapter discusses the physical robotic

platform that was used in order to evaluate the proposed development environ-

ments capability to enable the development and evaluation of various different

autonomous field robotic algorithms intended for operation on a custom target

robotic platform in real field environments.

3.1 Novel Development Environment

The primary contribution presented in this work is the novel environment

named ARDEE, or Agricultural Robotic Development and Evaluation Environ-

ment. The ARDEE architecture is based on the ROS middleware, previously

discussed, enabling quick development, deployment, and evaluation of AFR by

utilizing the benefits of having many different open-source hardware driver in-

terfaces and general robotic algorithms already developed and well-maintained.

This section will first highlight some of the core components that make up

ARDEE and how they help to fulfill the objectives defined in this work. Fi-

nally, this section will discuss how ARDEE can be utilized to help facilitate

AFR development and evaluation for a few different scenarios in agricultural

applications.
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3.1.1 Core Components

ARDEE consists of the following three primary components: (1) Realistic

crop and field simulation, (2) realistic field robotic platform (i.e sensors, robot

base dynamics, etc.) simulation allowing development and testing regardless of

any physical resource limitations (i.e no crops, hardware, etc.), (3) UDP-based

communication mechanisms for extending ARDEE utilization across multiple

different hardware platforms and devices, and (4) user-friendly functionalities

and utility functions enabling setup, customization, and utilization of ARDEE

for supporting advancement of autonomy in agriculture (i.e enable usage and

collaboration for both expert and beginning developers/users), all of which will

be discussed later in Chapter 4.

Realistic Crop and Field Simulation

Many environments in agriculture are constantly changing (i.e. crop growth,

lighting conditions throughout the day, etc.) and will occasionally experience

drastic changes caused by weather (i.e. tornadoes, heavy rainstorms, etc.).

These changes in the environment could result in a field robot experiencing ab-

normal behaviors, which could possibly lead to damage of vital crops and/or

robotic hardware. As a result, when developing field robotic methods whose per-

formance is dependent upon its environment, it is important that these methods

be tested in their target environments, in order to properly evaluate performance

and develop sufficiently robust robotic methods.

This is particularly true in the case of field robotics in agricultural applica-

tions, where safe and reliable operation is required to prevent any harm done

to farmers, field equipment, or high-value crops. When developing safe and

robust robotic methods that may be required to operate under vastly different

field environments (i.e crop, field, and lighting conditions) it is ideal to perform

evaluation and testing within the real field environment using the target robotic

hardware.

Unfortunately, real field testing can be often times be prevented for long

periods of time, which can be a major hindrance when time-critical field robotic

development and testing is required. For example, in some areas in Illinois corn

can be out of season five months out of every year. Therefore, in an attempt to

create a development environment intended to be beneficial for a broad range

of agricultural applications and research, the following simulated crop models,

shown in Figure 3.1, have been developed in order to be properly simulated
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in Gazebo, and were chosen due to their significance in the TERRA-MEPP

and RIPE projects: (1) 22 variations of Corn, or Zea Mays, (2) 9 variations

of sorghum, or Sorghum Bicolor, and (3) 9 variations of tobacco, or Nicotiana

tabacum.

Figure 3.1 (cont.): Shows all of the available simulated corn model variations that
have been extracted for Gazebo simulation.
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Figure 3.1 (cont.): Shows all of the available simulated sorghum model variations that
have been extracted for Gazebo simulation.

Figure 3.1 (cont.): Shows all of the available simulated tobacco model variations that
have been extracted for Gazebo simulation.
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Figure 3.1: Shows an overview of all the available individual crop models that
were extracted and processed for Gazebo simulation. The crop models presented
are intended to simulate several different variations in the early and late stages
of crop development for corn, sorghum, and tobacco.

Although, the crop models presented are not useful for every possible agri-

cultural and biological application and research topic (i.e robotic harvesting ap-

plications), the process that was used to develop the Gazebo-simulatable crop

models is discussed in Section 4.2.1, such that many more specific crop species

can be added to the collection of available simulated crop models.

Field Robot and Sensors Simulation

Similar to environmental factors, there are many factors that commonly oc-

cur during field robotic development and testing that can prevent the target

robotic system from being used, such as adverse weather conditions, limited en-

ergy source, and damaged components resulting from extended operation in po-

tentially harsh field environments. Unlike environmental factors, these resource

factors can be prevented and fixed, however, they can still occur resulting in ef-

fective development and field evaluation being halted and precious development

time being wasted.

A collection of commonly used sensor models ready for Gazebo simulation

have been made available, shown in Table 3.1, and can easily be configured

and attached for any user-specific needs. These simulated sensors can be used to

supplement time-critical development and evaluation of developed field robotic

methods when essential resources (i.e. robot hardware, sensors, etc.) are un-

available.
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Sensor Type Sensor Name xacro macro call-name

GPS

Standard GPS sensor_gps

GPS w/ variable accuracy sensor_gps_with_dropout

Standard GPS on mast sensor_gps_with_mast

IMU
Hector IMU sensor_imu_hector

Modified Hector IMU sensor_imu_terra

2D Lidar

Hokuyo URG-04LX sensor_hokuyo_urg04lx

Hokuyo UST-10LX sensor_hokuyo_ust10lx

Hokuyo UTM-30LX sensor_hokuyo_utm30lx

Sick S300 sensor_sick_s300

Sick S3000 sensor_sick_s3000

Sick TIM 571 sensor_sick_tim571

RPLidar sensor_rplidar

3D Lidar Hokuyo 3D sensor_hokuyo3d

RGB

Camera

Axis M5013 sensor_axis_m5013

Axis P5512 sensor_axis

GigE uEye CP sensor_ueye_cp_gige

RGBD

Camera

Asus Xtion Pro sensor_asus_xtion_pro

Kinect sensor_kinect

Kinect V2 sensor_kinectv2

Fotonic E Series sensor_fotonic

OrbBec Astra sensor_orbbec_astra

Misc

Sonar sensor_sonar

Approximate Battery sensor_approx_battery

Rotary Encoder sensor_encoder

Table 3.1: List of all the available sensors that can be simulated and attached
to any simulated robot model.

When evaluating field robotic platforms designed to be useful for more than

just one specific agricultural application, each specific application requiring a

different suite of attached sensors, being able to switch between these different

sensor suites can get tedious if files have to be manually modified. In order to

enable more efficient use of, and swapping between, different pre-defined sensor

suite configurations, as well as robot platform base configurations, ARDEE

utilizes the modularity of the URDF/xacro to enable the configuration of many

different specific simulated robotic platform setups through the use of linking
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of separately defined configuration files into the main URDF/xacro file used for

defining the specific robot model. In order to provide an example of how this

could be achieved several different versions of the Terrasentia robotic platform,

discussed later, were imported for Gazebo simulation.

UDP-Based Communication Mechanisms

Simulating a relatively realistic environment provides the capability of de-

veloping and evaluating the performance of field robotic algorithms whose per-

formance is environment-dependent, which can sometimes be difficult using real

field conditions, such as when the specific real field conditions are not present.

Not only is it important to evaluate a field robotic algorithm’s performance in

its intended field environment, but it is also important for it to be tested, and

executed, using its intended target hardware, or Hardware-In-the-Loop (HIL).

It is important to support HIL testing, because it enables the field robotic algo-

rithm, or technique, to be integrated with its target hardware platform, which is

important for evaluating the hardware-constrained performance. The integra-

tion of the hardware components for a robotic system enables one to determine

if their developed field robotic algorithm can be implemented, feasibly, on a

real robotic system for real field applications. Unfortunately, there are many

problems that can occur during the integration of hardware which may require

debugging and troubleshooting processes that waste precious development and

field testing time. In addition to hardware integration, supporting HIL devel-

opment and testing among potentially many different robot platforms can be

difficult to support due to specific device capabilities.

In order to support HIL development and evaluation for, potentially, different

field robotic algorithms and platforms, the development environment presented

in this work incorporates UDP-based communication mechanisms which enable

the interaction of the Gazebo simulation environment (i.e simulated robot-world

interactions, simulated sensor measurements, and simulated robot controls) with

the physical hardware components across, potentially, many different robotic

platforms, whose hardware capabilities may not support the use of ROS. In order

to support HIL development and testing across different robotic platforms, and

collaborating groups, the developed communication mechanisms enable clien-

t/server interactions between the simulation environment and the target hard-

ware systems, using a developed standardized UDP packet data structure. This

combination of client/server-based interactions and standardized UDP packet
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data structures enables the de-coupled development and evaluation of many dif-

ferent field robotic algorithms, executed on their target hardware systems, an

example of this can be seen in Figure 3.2.

Figure 3.2: Shows the interaction between the developed ARDEE UDP-based
communication mechanisms and a de-coupled field robotic algorithm that is
being executed on the target hardware of a robotic platform.

As long as they are known to both the client and the server systems, the

UDP packet data structures enable the following two scenarios: (1) the various

Gazebo-simulated sensor measurements generated from the interaction with a

Gazebo-simulated field environment can be broadcasted to, received by, and

used for evaluating, the field robotic algorithm that is being investigated, and

executed, on its target robotic platform, and (2) the algorithm-generated com-

mands from the robotic platform can be broadcasted to, received by, and use

for controlling the simulated robot, thus driving the simulated robot-field inter-

actions.

By allowing the Gazebo simulated robot and sensor measurements to be used

for evaluating any algorithm of interest as it is being executed on the target

hardware of its intended robotic platform, the development environment can

be used for partial, or entire, system hardware integration, and will ultimately

enable quicker deployment of newly developed field robotic methods onto target

robotic platforms for real field testing.

3.1.2 Applications

ARDEE enables one of the two following approaches which can be used

for field-ready development, deployment, and evaluation of any field robotic

algorithm: (1) Simulation-based development, and (2) Simulation Hybrid de-

velopment. By supporting the use of these two approaches, ARDEE enables the

following benefits to be realized by field robotic algorithm developers:
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• Field robotic algorithms can be developed when necessary field conditions,

as well as essential hardware components (i.e sensors, actuators, etc.), are

not present.

• The time spent on integrating hardware, troubleshooting algorithmic logic,

and debugging miscellaneous aspects during the early stages of a newly

developed field robotic platform, and/or algorithm, can be used more ef-

ficiently.

• The limited time available for real field testing and evaluation can be

used more efficiently by enabling the development of a field-ready robotic

system throughout the entire year.

Figure 3.3: Shows how ARDEE can be used for simulation-based development
and evaluation of a robotic algorithm and/or methods implemented using ROS
components (i.e nodes, topics, etc.).

Simulation-Independent is the approach that only uses the simulation

environment, and does not consider the integration of hardware, and the in-

teraction between the various elements can be seen in Figure 3.3. In this
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approach, ARDEE can be used to generate and simulate the specific field envi-

ronment and robotic platform described for the hypothetical scenario, and for

evaluating the field robotic algorithm, mentioned, it could be developed, in a

variety of ways, as a ROS node that subscribes to the topics of all of the avail-

able simulated sensors, and publishes the algorithm-generated robot controls to

the specified ROS topic that is used to control the simulated robot. This ROS

node could be executed on the computer dedicated to running the Gazebo sim-

ulation, or it could be executed from computational hardware, separate from

the Gazebo-dedicated computer, that can support ROS and is connected to

the same ROS network that is running the Gazebo simulation. By enabling

this approach, ARDEE allows the hypothetical field robotic algorithm to be

extracted from its publication and developed in software such that its feasibility

for operation in various different field environments and field conditions, can be

evaluated, regardless of whether the target field conditions and/or the target

hardware is present and available.

51



Figure 3.4: Shows the interaction with ARDEE and a custom robotic platform
(running a robotic algorithm) for HIL development and evaluation.

Simulation Hybrid, or HIL, is the approach that integrates the target

hardware components of either the partial, or the entire, robotic system, and

uses the simulation environment as a surrogate for the real physical robot-field

interaction dynamics, and the interaction between the various elements can be

seen in Figure 3.4. In this approach, ARDEE is used to generate and simulate

the specific field environment and robotic platform described for the hypothet-

ical scenario. Additionally, the ARDEE communication mechanisms allow the

hypothetical autonomous field robot navigation algorithm to developed, de-

ployed, and evaluated for real-time operation on the target hardware system,

which does not support ROS, by allowing it to interact with and utilize the in-

formation available from the ROS-based simulated sensors and robot platform

that is simulated in Gazebo.
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Using the following process, ARDEE can be used to evaluate the real-time

behavior of the hypothetical navigation algorithm, executing on a separate hard-

ware system, as it interacts with a ARDEE-simulated field of corn: (1) all the

available simulated sensors, attached to the simulated robotic platform, and

their measurements are serialized into UDP packets, which are then sent out

to the network from ARDEE and made available for use by the target robotic

system using the Simulated Sensors Server (discussed in Section 4.5.2),

(2) the target robotic system, listening to the simulated sensors server, chooses

which simulated sensors measurement UDP packets to receive, de-serialize, and

store for later algorithm use, with a user-developed simulated sensor client us-

ing the documented and supported standardized UDP packet data structures,

(3) the stored sensor measurements are then processed and used as inputs for

the next computational step of the implemented algorithm, as if they were re-

ceived from the on-board physical sensors, (4) the algorithm generates new data

and controls that can be saved to file, or sent out to for controlling the robot’s

motion, (5) the algorithm-generated motion commands are then sent to a user-

developed controls server used to serialize the algorithm-generated commands

into a standardized UDP data packet and broadcasted back to the simulation

computer to control the simulated robot’s motion, and can optionally be used by

the on-board motion controllers to control the on-board actuators of the physical

robot platform, (6) all available newly generated algorithm-outputted controls

are received by the Controls Client (discussed in Section 4.5.3) operating on

the simulation computer, which de-serializes the desired UDP packets received,

converts the de-serialized command data into a corresponding ROS message,

and then publishes the converted algorithm-generated commands to the ROS

topic corresponding to the simulated robot model’s motion controller, (7) the

simulated robot’s behavior is updated in the Gazebo simulation environment,

using either the algorithm-generated controls or manually-generated controls

(i.e joystick, etc.), and new simulated sensor measurements of the surrounding

Gazebo-simulated field environment are generated. The aforementioned process

is repeated for the entire length of time specified by the user.

3.2 Robotic Platform

A high-throughput phenotyping field robotic platform currently being used

in real field experiments was used for evaluating the usefulness of the presented
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development environment for developing and evaluating AFR methods and algo-

rithms intended for operation with a physical robotic platform and its associated

hardware components. The mobile robot platform used, is a low-cost, ultra light

and compact ( 0.35 m wide, 6.6 kg), 3D-printed agricultural field robot, called

Terrasentia [35], shown in Figure 3.5. It is currently being used for automating

the process of collecting field data necessary to improve the identification of key

plant traits for efficient phenotyping.

Figure 3.5: (1) Shows the physical Terrasentia robot platform, and (2) shows
the isometric view of the Terrasentia robot platform as modeled with a 3D CAD
program.

The Terrasentia robot is equipped with four 12V DC motors, each having

a 71.165:1 planetary gearbox (69 kgf-cm, 20A max stall torque and current

respectively) allowing robot movement over rough terrain, and a quadrature

encoder (3,416 pulses/rev) providing speed measurements and incremental po-

sitioning. Two dual-channel Roboclaw motor controllers are used for reliable

speed control of the four DC motors independently, and they are used to drive

the Terrasentia robot’s motion using a skid-steering drivetrain. Each Roboclaw

motor controller is able to supply each motor channel with 30A of continuous

current, as well as controlling each motor’s speed using a PID controller that

can be automatically tuned.

An RTK GPS unit (Septrino Altus NR3) is mounted on top of the Terrasen-

tia robot giving the robot centimeter-level accurate global positions at a rate up

to 20Hz. A 9 Degree of Freedom (DoF) Razor IMU, capable of outputting raw

accelerometer, gyroscope, and magnetometer readings at 100Hz, is mounted

directly in the center of the Terrasentia robot facilitating in the estimation of

robot pose and motion. A Hokuyo UST-10LX Lidar is equipped providing a 2D

scan, with 40mm accurate distance measurements with a max range of 30m, at

40Hz, which can be used for both perception and navigation of the surrounding
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environment.

The Terrasentia robot is also equipped with three camera gimbal units

mounted on the front, left, and right sides giving the Terrasentia robot three

different stabilized camera views, which can be used for visual navigation, crop

phenotyping, environment perception, and more. Each camera gimbal unit has

the following installed: (1) a 2 megapixel RGB USB camera able to feed color

images at a rate of 120FPS (640x480 pixels), or 30 FPS (1920x1080 pixels),

(2) a 6DoF IMU (BNO-055) providing absolute camera orientation feedback,

and (3) a brushless gimbal motor used to stabilize the camera angle given IMU

feedback.

The main control unit of the Terrasentia robot is a Raspberry Pi 3 B+

(RPi3), having a 1.4GHz 64-bit quad-core processor, dual-band wireless LAN,

Bluetooth 4.2/BLE, Ethernet, and four USB 2.0 ports. The RPi3 is used for

interfacing with all of the onboard hardware (i.e actuators, sensors, etc.), in

addition to running all of the autonomous navigation algorithms. In addition to

the RPi3, the Terrasentia robot is equipped with an Intel NUC mini-computer,

with an i7 CPU and 8Gb RAM, which is used for camera streaming, field data

collection, and optionally running any machine vision algorithms.

The Terrasentia robot has a Linksys E1200 router installed. The router is

not only used for allowing communication between the NUC and RPi3, but it

is also used as a wireless access point (AP) enabling the use of an in-house

developed, Android app for manually controlling the Terrasentia robot, as well

as controlling and configuring many other aspects of the Terrasentia robot (i.e

controlling camera angles, recording data, etc.). Figure 3.6 shows all of the

hardware components and their interaction with each other.
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Figure 3.6: Shows a diagram of all of the hardware components on-board a
Terrasentia robot platform which allow for autonomous operation within agri-
cultural environments.
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Chapter 4

Development of Simulation

Environment

4.1 Introduction

The following chapter discusses the creation of the various components that

were used by the novel development environment presented in this work, ARDEE.

Specifically, this chapter will discuss the following topics:

Section 4.2 discusses the development of the various elements used to simu-

late field environments (i.e. crop models, plot generation utilities, terrain, etc.),

Section 4.3 discusses the development and utilization of the various simulated

sensors in the available collection of sensor models, Section 4.4 discusses the

development of the simulated Terrasentia robot platform for Gazebo simula-

tion, Section 4.5 discusses the development of the UDP-based communication

methods, and finally, Section 4.6 discusses the user-friendly utilities developed

for easy configuration and loading of any custom simulated field environment

(i.e. robot platform and field environment).

4.2 Agricultural Field Simulation

When developing field robotic algorithms intended to be deployed and evalu-

ated for real agricultural field environments, being able to simulate the different

field conditions (i.e. crops and terrain) with sufficient accuracy for various agri-

cultural fields can be an important asset, especially when the necessary physical
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field conditions are not currently present. For example, the corn grown in some

areas of Illinois is limited to being available for approximately ∼8 months out

of every year, which can cause a considerable setback to the effective develop-

ment of any field robotic algorithm intended for operation in corn fields. By

enabling various different field conditions to be simulated relatively realistically,

field robotic methods can be developed more efficiently all year long, as opposed

to only a portion of the year.

This section discusses the development of the different elements used for en-

abling various different sufficiently accurate, or realistic, field environments to

be simulated, for a wide range of possible field robotic research. More specif-

ically, this section discusses the following topics: (1) the development of the

Gazebo simulatable models for different species, and variations, of crops poten-

tially useful for a wide range of possible agricultural research topics, (2) the

simulated field generation script used to generate a more realistic user-defined

crop field model, and (3) the two different simulated terrain models that are

available and how they were developed.

4.2.1 Realistic Crop Simulation

The creation of high-quality 3D crop models from scratch can be a painstak-

ingly tedious and long process and can require 3D graphics modeling expertise,

which many field robotic developers don’t want to spend the time doing. As a

result, high-quality 3D crop models are not a widely available resource.

The approach used in this thesis was to utilize already created 3D graphical

models, obtainable from websites such as Thingiverse[61], GrabCAD[23], and

Turbosquid[62], and adapt these models for simulation in Gazebo, however, the

usefulness of this approach is entirely dependent upon the existence of realistic

crop models being available.

In order for ARDEE to be a useful field robotic development tool for, poten-

tially, many different areas of agricultural and biological research the following

three crop species, which appeal to a majority of agricultural field robotics re-

search, were made into Gazebo-simulatable crop models and made available

for usage: (1) 22 different variations of corn, or Zea mays, (2) 9 variations

of sorghum, or Sorghum bicolor, and (3) 9 variations of tobacco, or Nicotiana

tabacum. The following section discusses the process used for enabling the

collection of available crops models, shown in Figure 3.1, to be simulated in

Gazebo, thus facilitating in agricultural field robotic algorithm development and
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evaluation.

3D Mesh Generation

When creating Gazebo models, the following components are required, in

order to develop a high-quality 3D simulation of a crop: (1) 3D surface mesh

file, or a file containing the 3D construction of the simulated object’s surface, (2)

mesh textures, or images of the object’s visual textures, and (3) any other visual

features (important lighting, shadowing, etc.). All of these components can be

created, modified, and extracted using any 3D computer graphics modeling

software, such as Blender[8] which was used in this work.

High-quality 3D models for corn, sorghum, and tobacco, had already been

designed by the xFrog team[30], in addition to many other agricultural and

biological foliage and plant models. The 3D models designed by the xFrog team

were not free, however, the 3D meshes purchased were of high-quality and were

designed with an acceptable degree of accuracy. Additionally, the 3D models

provided included different crop model variations, as well as 3D surface mesh file

formats. As a result, the amount of time required to create all of the Gazebo-

simulated crop models, shown in Figure 3.1, was greatly reduced. All of these

Gazebo-simulated models were derived from three different xFrog plant libraries

(i.e. corn, sorghum, and tobacco), each containing nine different model variants,

which are capable of representing various stages of the crops’ life cycle (i.e. early,

mid, and late season). Most of these model variants contained individual crop

stalks, however, some consisted of a grouping of crop stalks.

Gazebo Model Preparation

Some 3D graphics model preparation was necessary (using Blender), in order

to properly simulate all of the reported crop models in Gazebo.
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Figure 4.1: Shows one of the xFrog corn meshes consisting of multiple individual
corn stalks in Blender. Blender was used to separate each individual crop stalks
and extract them as their own separate crop model meshes in order to increase
the number of crop models variants.

First, it was necessary to essentially “crop” out, from the xFrog crop meshes

containing multiple crop model meshes, individual crop stalks into their own

separate meshes, an example is shown in Figure 4.1, in order to increase the

total number of individual simulated crop stalk variations available. After indi-

vidual crop stalk mesh extraction, the resulting number of available crop model

meshes to be usable in Gazebo were the following: corn (22 variants), sorghum

(9 variants), and tobacco (9 variants).

Next, it was necessary to export the components from each individually

extracted 3D crop model, in order to be properly visualized and simulated in

Gazebo. The following specific components needed to be exported: (1) a Gazebo

supported 3D geometry mesh file, and (2) all the images necessary to recreate

a graphics model’s visual textures. Exporting the necessary texture images,

used to visualize the various color mappings and features, for a 3D graphic

model is fairly straightforward because Gazebo can support many types of image

formats. In order for a model’s geometrical bodies to be properly rendered and

visualized, a 3D graphic model’s surface geometries need to be exported, and

represented, into one of the following Gazebo-supported file formats: (1) the

Stereolithography format (STL)[54], as a .stl file, (2) a Wavefront geometry

60



definition format (OBJ)[52], as a .obj file, or (3) the COLLAborative Design

Activity (COLLADA) format[1], as a .dae file. The COLLADA file format was

chosen as the format to represent the crop models in Gazebo, due to its ability

to capture the visual, as well as 3D surface geometry, attributes of a graphic

model. Blender was used to export the .dae mesh file and the texture images

for each of the graphical crop models extracted from the original xFrog crop

models.

After all of the necessary components have been extracted for every individ-

ual crop model, the final step required for simulation in Gazebo was the creation

of the GMD, discussed in Section 2.3.3, for all of the extracted crop models.

The following process was executed for each crop model, in order to create and

configure the GMD for visualization and simulation in Gazebo:

(Step i) Create a uniquely named empty directory, consisting of the same structure

and subdirectories as a GMD.

(Step ii) Place all of the Blender exported components (i.e. 3D surface mesh file

and texture images) into the GMD for their respective crop models.

(Step iii) Create an OGRE material script which was necessary to ensure proper

visual rendering in Gazebo of the simulated crop models, discussed in

more detail later.

(Step iv) Create the model.sdf file used to defined the Gazebo simulated model and

its associated body elements (i.e. visual, inertial, collision).

Gazebo Model Modifications

OGRE is used for rendering any simulated, in Gazebo, object’s visualizable

components. Specifically, OGRE defines a “material” as the property which de-

termines a surface mesh’s visual properties to be rendered, such as colors, tex-

tures, and lighting properties, and is defined using a “material script”. Although

Gazebo automatically handles the OGRE interfacing for most of the primary

OGRE material property configurations (i.e. colors and textures), “material

scripts” offer users the ability to define complex materials not easily defined

with Gazebo native features.

It should be noted that the OGRE material script mentioned in (Step iii),

is not normally needed when creating any normal simulated, specifically vol-

umetric body types, object model, such as a cube or cylinder, using Gazebo
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native features. This is because an OGRE material, by default, is only visible

from one side (i.e. the inside of the model is not visible). This can be problem-

atic for flat-surfaces, or in the case of simulated crop models the leaves, flowers,

and fruits. To visualize these flat surfaces, it was found that it was necessary

to disable this default OGRE property, by enabling the “both-side visibility”

property[45]. This can be done for each crop model by creating an OGRE ma-

terial script, similar to the one shown in Listing A.14, which is referenced, and

linked, to each crop model, via the model.sdf file similar to the one shown in

Listing A.24.

It can be seen in Figure 4.2 that the use of the OGRE script greatly

improves the crop model’s visual quality, and thus the simulated camera RGB

data.

Figure 4.2: Shows the effects before and after effects, top and bottom respec-
tively, of using an OGRE material script to fix the “both-side visibility” issue
for an early season corn crop model.

In addition to the OGRE material scripts that had to be developed for

proper visual rendering, it was necessary to determine each crop model’s colli-
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sional body. Ideally, a simulated crop model should be modeled with soft-body

dynamics, or as deformable objects, such that it would be possible to accurately

simulate the behaviors of a real crop, such as swaying of the leaves and branches

caused by strong winds. At the time of writing, feasibly modeling soft-body dy-

namics for simulated objects in Gazebo is not easily possible. This is largely

a result from the limited availability of physics-based simulation software that

can support soft-body dynamics. Additionally, simulating soft-body dynamics

adds an additional level of complexity that increases the computational demands

required for simulation.

Therefore, it is necessary to determine the rigid-body geometric approxi-

mation for the <collision> body, for each of the extracted crop models, to

ensure that external objects properly interact with simulated crop models. This

<collision>, or collisional, body acts as a “hard-stop” which is like the col-

lision with a solid wall, and the geometry of this collisional body is used to

determine when other simulated objects come into contact with each. The most

rigid structural member for common agricultural crops is the main central stalk,

and for most row-based crops (i.e. corn, sorghum, tobacco) this can be roughly

approximated as a cylinder. Therefore, the geometric approximation used for

the <collision> bodies of the all of the Gazebo crop models was a cylinder

that was approximately the same width and height for each of the respective

crop models.

Not only does this help keep the simulation’s computational demands at

reasonable levels, but this also allows for more accurate simulation of dynami-

cal interactions between the simulated crops and external objects essential for

developing field robotic methods (i.e. obstacle avoidance, autonomous naviga-

tion, etc.). For example, assume the mesh file containing 3D surface geometry

was used, instead of a simple cylinder, for a crop model’s collisional body. This

makes not just the crop’s main stalk, but also the crop’s leaves, act as a “hard-

stop”, which results in collisional behavior between a simulated robot model and

the crop model that is not realistic. This results in simulated robots colliding

with crop leaves, like they were colliding with a solid wall, thus preventing the

simulated robot model from passing through rows of simulated crops. Addition-

ally, this does not accurately simulate the interaction between a real robot and

crop, where the robot is able to move through rows of crops by “pushing aside”

crop leaves.

The method used for determining the width and height measurements for

the crop models’ collisional body consisted of visually matching the collision
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body displayed in Gazebo to that of the perceived visual body of the crop’s

main stalk, shown in Figure 4.3. The accuracy of the collisional body for the

various crop models’, although rough approximates currently, could be later

modified to reflect these dimensions more accurately.

Figure 4.3: Roughly shows how the dimensions of the various crop models’
<collision> bodies was derived. The parameters of the collision bodies visu-
alized in Gazebo, depicted as the transparent orange cylinders, were modified
until the cylinders were roughly the size of the crop’s center stalk.

4.2.2 User-Friendly Field Model Generation

When using a simulation for developing field robotic methods in agriculture,

simulating individual realistic crop models, rather than using simple geome-

try (i.e. cube, cylinder, etc.), within any field environment is important for

getting a better approximation of the true performance for any developed al-

gorithm, especially those whose performance depends on a plant-by-plant basis

(i.e. robotic harvesting, weed maintenance, etc.). In addition to individual

crops, simulating realistic field models, which is defined by all of the individ-

ual uniquely placed crops models in an entire field, is also important when

evaluating the performance and behaviors of developed field robotic algorithms,
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especially those whose performance depend on the many different crop models in

the surrounding environment (i.e. obstacle avoidance, autonomous navigation,

etc.).

The Gazebo simulated crops models, discussed in the previous section, en-

able sufficiently realistic simulation for a collection of visually diverse crops

models. In addition to realistic individual crops models, realistic field models

can be procedurally generated, for any user-specific needs, by manually placing

all of the crop models within a simulated field model. Even though it enables

user’s to custom-generate any simulated realistic field model they desire, this

procedural generation approach requires each individual crop model to be man-

ually placed and arranged, for all of the crops in an entire field, which can be a

time-consuming task that does not generalize well for large fields containing a

vast amount of crop models.

Therefore, a custom field generation Python script[48], shown in Figure

4.4, was developed in order to speed up, and automate, the process of procedu-

rally generating any custom field model and its associated files for simulation in

Gazebo. The script was designed to accomplish two main objectives: realistic

simulation of actual field environments, and user-friendly usage and customiza-

tion.
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Input : poolCM Gazebo crop model selection pool
Input (Optional) : centersuser user-custom array of ideal mean stalk center locations for entire

field
Arguments (Optional): nrows rows per plot,

Nplots number of plots in X/Y axes,

Rnoise Gaussian noise covariance diagonals,
lrow length of plots (m),
ρemerge min/max stalk emergence probability,
hstalk min/max mean stalk height (m),
dstalks spacing b/w rows and stalks in rows(m),
dplots spacing between plots in X/Y axes(m),

ofield GPS origin of field (latitude/longitude)

Result : Script-generated *.urdf.xacro file used by Gazebo to simulate the user-specified,
randomized, crop field model.

/* Generate mean stalk coordinates if not already provided by user */

1 if centersuser not provided then
2 Xfield = []
3 Oplots = GenerateMeanPlotOrigins(Nplots , dplots , lrow, ofield)

4 for oi in Oplots do
5 Xplot = GeneratePlotIdealMeanStalkCenters(nrows, dstalks , lrow,

Nplots , oi)

6 Xfield .append(Xplot)

7 end

8 else
9 Xfield = centersuser

10 end

/* Generate the relatively realistic simulated field model XML string */

11 for xstalk in Xfield do
12 εi = GenerateStalkEmergenceThreshold(ρemerge)

13 if randn() > εi then
14 x̂stalk = RandomizeIdealMeanStalkCenter(xstalk , Rnoise)

15 posei = GenerateRandomStalkPose()

16 hbiomass = RandomizedBiomassHeight(hstalk)

17 strmodel = GrabRandomGazeboModelSample(poolCM )

18 strtmp = GenerateModelXmlString(x̂stalk , posei , hbiomass, strmodel)

19 strxml = strxml + strtmp

20 else
21 continue
22 end

23 SaveFieldXmlFile(strxml) /* Generate field model file */

24

25 end

Figure 4.4: Shows the workflow of, and the logic used in, the developed Python
script which enables custom generation of a relatively realistic simulated crop
model for any user’s specific needs.

Simulating Realistic Crop Fields

When designing the field generation script, the primary objective was for

the generated custom field model to be capable of more realistically simulat-
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ing physical field environments, and in particular the collection of all the crops

within any field and their specific arrangement. It would be possible to simulate

a field of crops (e.g. corn) using a collection of perfectly placed cylinders, how-

ever, this would not be sufficient for simulating all of the noise and variability

inherent in agricultural environments, such as the one shown in Figure 4.5.

Figure 4.5: Shows the Terrasentia robot platform about to enter a row of corn
in an example agricultural field that is not properly maintained for weeds.

Therefore, in order to create more realistic simulated field models the de-

veloped script attempts to mimic the noise and variability in natural growth

of crops in agricultural field environments, by incorporating the following four

different sources of environmental variations into the simulated field model: (1)

probabilistic crop model emergence, (2) additive Gaussian noise on the individ-

ual crop stalks’ mean geometric center, (3) random sampling from the pool of

available Gazebo crop models, and finally (4) randomization of each selected

Gazebo crop models pose (i.e. angular orientation).

Modern Precision Agriculture (PA) technologies that are readily available

to farmers can be used for enabling more precise planting of crops, and allow

farmers to formulate possible planting strategies for, or the exact placement

for all the crop seeds in, an entire field. Similarly, the developed script uses

a planting strategy, defined as an array of Cartesian coordinates that describe

the center locations for all of the crops planted within any given field, is used
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to programmatically-generate a realistic simulated field model. The field gener-

ation script allows users to define their own custom planting strategies, either

programmatically or as input arguments to the developed script. In the case

where a user-custom planting strategy is not defined, the developed script uses

a simple default strategy where crops are planted in plots consisting of a user-

defined number of straight rows. It is assumed that for this default strategy,

the mean crop center locations can be derived using a combination of different

geometric field measurements, such as spacing between rows of crops, spacing

between individual stalks within a row, and the length of the rows, all of which

can be easily configured for any simulated field model users may desire, via

input arguments passed at script runtime.

State-of-the-art PA technologies allow for these planting strategies to be

accomplished with sufficient accuracy, however, due to environmental factors,

such as wind, rain, and animals, the seeds that are planted, and eventually

emerge, rarely ever grow in perfectly aligned rows in agricultural fields. For

example, often times planted seeds may, occasionally, grow slightly offset from

the intended planted location. As a result, the developed script implements the

use of additive Gaussian noise in an attempt to more accurately simulate, and

represent, this source of variation in the center locations of all the crops in a field,

like the one shown in Figure 4.6. More specifically, a zero-mean multi-variate

Gaussian noise distribution, with user-definable covariances, is used to generate

a random “offset” Cartesian coordinate for each crop model. The randomly

sampled “offset” coordinate is added to its corresponding crop’s mean location,

defined by the planting strategy used, to replicate the noisy placement for all

of the crops planted in real fields.
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Figure 4.6: Shows the difference between the perfectly placed crop stalk centers
generated using the default planting strategy (Green) and the more realistic
crop stalk centers generated by the script using additive Gaussian noise (Red).

In addition to imperfect crop locations, often times in agriculture some of

the seeds that are planted may never grow due to the various different environ-

ment and soil conditions, such as insufficient soil nutrients or extreme weather

conditions. The successful growth, or emergence, of the planted crops, is largely

dependent on the probability that a crop receives adequate growth conditions.

In order to simulate this probabilistic emergence, a random number is generated

for each simulated crop model that is used to determine whether the simulated

crop model emerges, thus being used in the simulation. The successful emer-

gence of a particular simulated crop model is determined by comparing the

randomly generated number, associated with it, against a probabilistic thresh-

old defined for successful emergence.

Lastly, all crops experience growth differently which results in every crop

grown in agriculture being a unique specimen. For example, the growth in

stalks of corn often results in the key features of two different corn stalks being

far from similar, such as placement of leaves, stem width, and corn husk size.

In respect to agricultural field robotics, these differences, in the different crop

features, directly impact the performance of robotic control and perception al-
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gorithms which rely on extrinsic sensory inputs, such as vision, Lidar, and even

GPS when the upper layer of crop leaves (or crop canopy) becomes dense and

reduces satellite signal accuracy. As a result, when a simulation of an agricul-

tural field environment is used to evaluate developed field robotic algorithms, it

is important that the virtual field environment used is capable of representing

this variation among different crops sufficiently so that the algorithm’s resulting

performance is a better approximate to how it would perform in real field envi-

ronments. Representing this variation among crops can be achieved using the

last two elements mentioned, random Gazebo crop model sampling and Gazebo

crop model orientation randomization. By incorporating these two elements,

it is possible to represent the variation among crops in the simulated field suf-

ficiently (i.e. less uniform) using the limited available selection of within the

collection of simulated crop models.

(a) Figure 4.7 (continued)

70



(b) Figure 4.7 (continued)

Figure 4.7: (a) Shows a figure of the noisy crop stalk locations generated using
the generation script. (b) Shows the corresponding resulting simulated field
model automatically generated using the Python script discussed.

By combining any defined planting strategy and all of these user-configurable

sources of variation, the developed field generation script is able to generate a

custom-defined simulated field model, like the one shown in Figure 4.7, capable

of realistically replicating the inherent noise and variability found in common

agricultural field environments.

User-Friendly Features

When developing a simulation environment for facilitating with field robotic

development within the academic community, the generation of realistic sim-

ulated field models is essential to allow proper evaluation of an algorithm’s

performance. In order for a simulation environment, intended to assist in field

robotic development within the academic community, to fully realize its po-

tential, it should be relatively easy for its intended users to use and apply its

functionality for their own specific needs.

Therefore, when developing the custom field generation script, the second

objective was that is should be user-friendly, and be relatively easy for users

to generate simulated field models for their specific needs. This objective was

chosen to cultivate collaboration, as well as the use of ARDEE, within the

academic community, by allowing custom field models to be quickly created
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and easily modified for any user’s specific needs. As a result, the developed field

generation script incorporates the following two design features: it can easily be

used among users with different programming skills, and it supports quick and

simple configuration of the parameters used for custom simulated field model

generation.

The first user-friendly feature incorporated is that the field generation script

was developed using Python, which enables quick application and usage of the

developed script’s functionalities, as well as allows users to more easily configure

parameters, and adapt script logic, to fit their own purposes, regardless of pro-

gramming experience. In addition to being developed in Python, the developed

script automatically generates the files necessary for simulating a user-defined

field model in Gazebo, which makes it easier for users to create their own cus-

tomized field models, regardless of their experience using ROS/Gazebo (i.e.

ROS/Gazebo knowledge is not required).

The second feature incorporated to promote the user-friendly application of

the developed script is that it enables any simulated field model to be quickly

configured and modified for custom field simulation in Gazebo. This can be

achieved through the use of the script’s supported command-line arguments,

that allow users to modify the parameters that the script uses for generating

the custom field model, at runtime (i.e. manual modification of script code not

required). Not only can these command-line arguments be used for configuring

the parameters used for the default planting strategy (crop centers array) gener-

ation, but they also enable to specify the various probabilistic parameters used

for generating the randomized sources of environmental variations, discussed

previously.

4.2.3 Simulated Terrain Generation

Not only is simulating realistic 3D crop models important, but it is equally

important to be capable of simulating the terrain and soil characteristic for any

given user-specific field environment. This is an important capability, because

the terrain and soil of a field can, not only influence the dynamics resulting from

the robot-field interaction, but it also influences the measurements received from

the robot platform’s onboard sensors.

Any given field’s terrain can roughly be characterized using the following

three properties: (1) the heightmap, or the elevation of the ground, which defines

a field’s bumpiness/flatness, (2) the textures, or the visual details, which defines
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how the terrain is visualized, and (3) the dynamic parameters, such as coefficient

of friction, coefficient of restitution, etc., which define the dynamic interactions

between the terrain and external objects.

Soil can be roughly characterized using the following two properties: (1) the

soil compactness, or how tightly packed the particles in the soil are packed, can

be used to define how easily the soil can be displaced, which also defines the dy-

namics for soil-wheel interactions, and (2) moisture content, or how dry/muddy

the soil is, can be used to define, among other things, how the particles of soil

group, or clump, together, as well as how they can clump to other objects (i.e.

tire tread).

Accurately modeling not just the dynamic properties of the terrain, such as

the coefficient of friction in dynamic environments, but also the soil properties

in constantly changing field environments is difficult and is an active area of field

robotic research. Additionally, properly simulating soil (i.e. a collection of many

small particles), as well as the dynamics of wheel-soil interactions, with modern

simulation platforms is either impossible or is computationally inefficient, where

real-time evaluation in simulation is not possible. Therefore, it was determined

that accurate simulation of soil composition and variable terrain/soil dynamics

and soil was out of the scope for this project.

As a result, the dynamic properties of the field terrains simulated using

ARDEE was assumed to be constant and uniform throughout the terrain. Ad-

ditionally, it was assumed that a single rigid-body model will be used to rep-

resent both the simulated soil and terrain in Gazebo. These were determined

to be sufficient for simulating agricultural field environments, because they can

easily allow the use of ARDEE for developing, and evaluating in real-time, field

robotic methods to a point where it is possible for entire robotic systems and

methods to operate robustly, or well enough to acquire useful data for further

improvements, in their target field environments.

Since it is now modeled as a single rigid-body, sufficiently realistic soil/ter-

rain for a simulated field can be characterized as simulated terrain models that

are visually similar to real field terrains, and cause more realistic (i.e. noisy)

simulated robot dynamic behaviors resulting in the generation of more realistic

simulated sensor measurements.

The main objective of this section is to discuss the following two approaches

used for generating custom simulated field terrains for any user-specific needs:

(1) image-based, and (2) 3D mesh-based.
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Image-Based Generation

The first approach that can be used to generate a custom field’s terrain is

an image-based approach, which combines the use of a custom grayscale image

used for defining the terrain’s elevation heightmap, and any custom combination

of texture images which can be used to represent the terrain’s visual rendering.

Figure 4.8: Shows an example of a programmatically generated terrain model,
by using a programmatically created custom grayscale image used for the ter-
rain’s <heightmap> element, in combination with some standard Gazebo avail-
able texture images.

The custom simulated field terrain, shown in Figure 4.8, was generated by

combining the following components into the model.sdf located in the specific

GMD, named for this specific field terrain: (1) a programmatically generated

grayscale heightmap image, shown in Figure 4.9, and some generic texture

images, shown in Figure 4.10, that was already available with Gazebo.
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Figure 4.9: (Left) Shows the whole grayscale image generated by a custom
python script. Although very difficult to see, the lighter regions, or rows, of the
image correspond with pixels having values of 1, out of 255. (Right) Shows the
same grayscale image, but with pixel values of 100 in order to exaggerate the
generated rows. This image also emphasizes the difficulty in creating the same
grayscale image manually.

Figure 4.10: Shows all of the Gazebo standard texture images that were used
to visualize the color of the terrain model, as seen in Figure 4.8.

The grayscale image, shown in Figure 4.9, is used to represent the ter-
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rain’s heightmap, or the collision 3d surface geometry, and is specified in the

<heightmap> SDF tag-block (Lines 26 - 55) of the model.sdf file, shown in

Listing A.23. In Gazebo, the heightmap grayscale image’s pixel values (0-

255) are used to represent the elevation values for each of the areas in the

scaled-up simulated model. Although the grayscale image shown was generated

programmatically, the grayscale image used for the heightmap can be created

using alternative methods such as the following: (1) heightmap grayscale im-

age can be created manually using image editing software, such as the GNU

Image Manipulation Program (GIMP) [22], and (2) available websites, such as

terrain.party [60], can be used to download real-world terrain data, not just the

grayscale image, for various locations in the world.

It should be noted that it can be extremely difficult to capture the fine-

grained elevation details, such as the ruts from a tractor or the small clods

of soil, of a field when creating a grayscale heightmap image manually. For

example, the small “dirt mounds”, represented by the slightly raised areas in

Figure 4.8, would have had to be created, in GIMP, using an extremely small

(∼1 - 2 pixel) paint tool. While using this size of a paint tool to modify a very

small area of pixels at a time is possible, it is very easy to make many small

mistakes that can quickly add up to, potentially, be a very time-consuming task.

Mesh-Based Generation

The second method for generating the customized field terrain was done

by using an already created 3D graphic model to represent the field’s terrain.

The 3D graphics model, created by [2] was found, again, using TurboSquid. In

order for the graphics model to be used as Gazebo model to simulate a field’s

terrain, the process, previously discussed in Section 4.2.1, was used to create

the simulated terrain model, shown in Figure 4.11.
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Figure 4.11: Shows an example of a terrain model that was created using the
same approach discussed in Section 4.2.1, however the meshes used to create
the surface geometry is different.

Although only two specific methods were discussed it should be noted that

there may exist, potentially, better methods in which a custom field’s terrain

can be created. Ideally, only a few terrain heightmaps would have to be created,

in combination with many different specific terrain texture images, in order to

provide users a quick and easy way to simulate their specific field’s terrain, since

the majority of agricultural fields have similar elevation characteristics.

4.3 Simulated Sensors

Another important feature that ARDEE should be capable of, is the ability

to simulate various types of sensors that have potential use for any number

of agricultural applications. Not only should the various sensors be physically

simulated (i.e. visual, collision, etc.), but it is equally important to be able

to simulate the respective sensors’ measurement behaviors. Although not as

important, quick and easy modification of the properties (such as specific noise

parameters, the location on the robot the sensor is attached to, and the sensor

resolution) associated with the various simulated sensor models that may be

attached to any simulated robotic platform is an important feature ARDEE
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should be capable of allowing in order to further reduce the amount of time

spent on customizing simulated sensor behaviors.

The following section discusses the following: first custom Gazebo “sensor”

plugins required for properly simulating sensor measurements useful for field

robotic development that were not already available were developed, then the

Gazebo sensor models used for simulating and attaching any of the available

sensors, in the collection shown in Table 3.1, to any simulated robotic platforms

were developed, and finally an investigation of the simulated Lidar measurement

behaviors is discussed.

4.3.1 Custom Gazebo Plugins

Similar to ROS, Gazebo’s open-source community allows rapid simulation

and evaluation using already developed Gazebo plugins, simulated robotic mod-

els, and even simulated sensor models. Gazebo plugins allow users to easily

configure and simulate most, if not all, of the necessary sensors they may wish

to use for their specific purposes. The following section discusses some of the

custom sensor plugins developed in order to simulate some of the specific sen-

sors models, and behaviors, that can be useful for agricultural field robotic

development.

Rotary Encoders

Rotary encoders are used for many common robotic platforms and a wide

range of other applications. In agricultural field robotic specific applications,

such as in [35], encoder readings are necessary for autonomous navigation through-

out a field. As a result, it is should be possible to attach, and simulate, a mod-

ifiable rotary encoder. Although simulating rotary encoders is not an overly

difficult task, it is surprisingly, not widely available as an already developed

standalone Gazebo plugin. Therefore, it was necessary to develop a plugin

which allows users to simulate a rotary encoder, and attach to any arbitrary

object in Gazebo such as the rotary encoder model shown in Figure 4.12.

The developed plugin is able to simulate essentially any rotary encoder by

easily allowing users to configure a specific simulated encoder by changing the

core rotary encoder parameters for the associated simulated encoder element,

an example is shown in Listing A.5.
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Figure 4.12: Shows the Gazebo simulated model associated with the developed
rotary encoder plugin.

Using the developed encoder plugin, users now have access to the simulated

encoder sensor readings associated with the attached simulated dynamic objects.

The simulated encoder readings are generated by Gazebo which keeps track of

all of the various joints’ dynamic information related to each of the joints as

they change over the course of the simulation. The developed plugin uses the

attached joint’s angular position and velocity information, kept track by Gazebo,

in order to create the encoder readings based on the user-defined parameters

and publishes the simulated encoder readings to the user-specified ROS topic

for use across the ROS network.

As a matter of convenience, the skid-steering plugin, already created by [20],

was slightly modified incorporating the developed simulated encoder plugin code

for publishing the simulated encoder readings for each of the independent driving

motors.

Variable-Accuracy GPS

The use of GPS and RTK-GPS is a very commonly used sensor, and in pre-

cision agriculture it is essential. Therefore, it is necessary that have a simulated

GPS sensor that is able to accurately represent the true GPS behavior while op-

erating in an agricultural environment. Although there is an already developed

plugin to simulate a GPS sensor [38], the simulated GPS measurements that

this plugin generates assumes the noise parameters are fixed, however, in real-

world agricultural environments, the noise is not always constant. For example,

in a real-world agricultural field, the GPS accuracy is optimal when it is in open

areas, however when under heavy occlusion from late-season crop canopies the
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GPS accuracy fluctuates very frequently. As a result, it is necessary to develop a

method in which the GPS behavior, caused by multi-path errors and occlusions,

is properly simulated.

The developed plugin was based on the already developed, and open-source,

GPS plugin [38], however, it was modified such that GPS measurement accuracy

could programmatically update the GPS noise parameters in order to simulate

the dynamic GPS accuracy based on environmental conditions, such as multi-

path errors and reduced GPS accuracy while under crop canopies.

The, potentially, many sources for GPS error can be defined by two different,

configurable, XML-formatted files. The first file is used to define the different

GPS noise coefficients and the range of conditions in which that specific noise

is applied to the GPS measurements, an example can be seen in Listing A.6.

Specifically for a small compact robot, like the one discussed in Section 3.2,

which is intended to be traveling between rows of crops, and under the crop

canopy, the range of crop heights were used as the conditions for each noise

coefficient.

In order for the various user-defined GPS noise coefficients to be correlated

to specific areas of a simulated field, the second XML-formatted file is used

to represent the bounding regions in which the GPS measurements should be

affected by the different GPS noise coefficients defined, an example can be seen

in Listing A.7. In order for them to use a specific GPS noise coefficient, the

defined bounding regions have an associated average crop height, which is used

to determine which GPS noise coefficient is applied to it, an example can be

seen in Figure 4.13.
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Figure 4.13: Shows an example field environment containing three primary re-
gions used to dynamically modify the measurement accuracy of the simulated
GPS.

Approximate Battery Usage

When developing health-critical robotic algorithms it is essential that the

remaining battery life can be measured. Specifically being able to simulate a

battery is useful for developing and evaluating any algorithms requiring battery-

dependent functionality, such as a state machine which gives a robot a different

directive once remaining battery life has reached a certain limit. For example,

for a team of autonomous robots used for agricultural field maintenance (i.e.

weeding, watering, etc.) it is important to know each robot’s health so that it is

possible to know when a robot should be brought back to recharge. As a result,

it is necessary to incorporate a simulated battery plugin that users can use for

developing any battery-dependent functionality.

It should be noted that there exists an already available and developed bat-

tery plugin [31] which provides a more in-depth usage, and more accurate sim-

ulation, of a battery depending on the user-defined components which consume

the battery health. Additionally, since the plugin provides a more accurate sim-

ulation of a battery it could take some time in order for the simulated battery

health to reach a certain level. In cases where a user may want to do a very quick

test of some developed battery-dependent functionality, or algorithm behavior,

using this plugin could be an unfavorable option.
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Therefore, a user-friendly battery plugin was developed in order to provide

a simulated battery plugin which allows quick evaluation of battery-dependent

functionality and can easily be used by users who may have little to no experi-

ence with ROS/Gazebo. It should also be noted that if users wish to evaluate

any battery-dependent functionality, or algorithm behavior, where the simu-

lated battery is represented accurately, it is recommended that users use the

plugin available in [31], which the developed plugin is modeled off of.

In order to configure, and use, the simulated battery for a given simulated

robot, users only have to add the battery plugin XML block, similar to the one

shown in Listing A.8, to the robot in which the battery is associated with.

4.3.2 Sensor Model Collection

Now that it is possible to generate the various sensor measurements, poten-

tially useful for agricultural field robotic applications, in Gazebo, it is necessary

to develop the simulated sensor models, in order to define the “physical” body of

the simulated sensor and attach a Gazebo “sensor” plugin to for generating sim-

ulated sensor measurements. All of the available simulated sensor models, shown

in Table 3.1, are packaged as individual URDF/xacro files (i.e. *.urdf.xacro)

containing all of the essential elements required for the specific sensor to be

properly simulated in Gazebo, such as associated 3D surface mesh files, Gazebo

plugins (either open-source from [38][20] or custom developed from the above

sections), and more.

In addition to neatly containing all of the necessary files and definitions re-

quired for simulation, each of the specific simulated sensor models have been

defined within their own individual xacro:macro blocks, which greatly simpli-

fies the configuration of sensor parameters (i.e. sensor noise, etc.) and the

attachment to any robotic platform, via the passing of input arguments into

the xacro:macro call XML-block. In the case of the specific off-the-shelf sensors

that have been made available, whose specific characteristics have been defined

in a provided datasheet and will not change, the use of the xacro:macro enables

sensors to be very easily attached to any given robotic platform with a simple

xacro:macro call. For example, the Hokuyo UST-10LX Lidar can easily be at-

tached to any given robot by using only 3 lines of XML code, shown in Listing

4.1, which also enable easier reading of a custom robots URDF file.
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1 <xac ro : s en so r hokuyo us t10 l x name=”hokuyo” parent=” b a s e f o o t p r i n t ”

c o l o r=” black ”>

2 <o r i g i n xyz=” 0 .22 0 0 .173 ” rpy=”0 0 0”/>

3 </ xac ro : s en so r hokuyo us t10 l x>

Listing 4.1: Example URDF xacro snippet (lines 8-10) used to add a Hokuyo

UST-10LX Lidar to a robot. Lines 1-6 are optional comments.

Contrary to specific off-the-shelf sensors, the generic sensor models that have

been provided (i.e. IMU, GPS, etc.), are the sensors where the fundamental

sensing behaviors are the same, but the specific properties can be different.

For these types of sensors, the developed xacro:macros give users much more

control over the simulated sensor model that would be attached to any given

robot model. For example, the code is shown in Listing A.9 is an example of

a generic IMU model that has been custom configured and attached to a robot.

4.3.3 Lidar Behavior Investigation

During the process of developing the various components for simulating the

available sensor models, there were some important details, related to the sim-

ulated Lidar sensor data, that was discovered. These details are important to

discuss, because it was noticed that the simulated Lidar sensor had different

fundamental behaviors, depending on the type of plugin used with the simu-

lated Lidar sensor model. The natural behavior for the sensor measurements of

a real Lidar is correlated with the strength of the returned laser light which is

reflected off of the various surfaces within the surrounding environment. Nor-

mally the surfaces of the environment are the ones which are seen visually. As a

result, in order to correctly generate the measurements of a simulated Lidar, in

certain cases, it matters which plugin is used. Therefore, this section discusses

the discovered behaviors and their impact on the generated measurements for

a simulated Lidar sensor.

The particular behaviors noticed were discovered as a result of using the

following two Gazebo model plugins, created and available [20], both of which

are used to simulate 2D Lidar sensor measurements: (1) the gazebo_ros_laser,

or the collision-based, plugin, and (2) the gazebo ros gpu laser, or the visual-

based, plugin. The only fundamental difference between these two plugins is in

the methods used to represent, and generate simulated sensor readings from, the

surrounding environment. For example, the collision-based plugin interacts with

the collisional bodies, defined by the <collision> element block, whereas the

83



visual-based plugin interacts with the visual bodies, defined by the <visual>

element block, of the various objects in the surrounding environment.

In cases where the simulated objects in the surrounding environment have

relatively simple geometries and the <collision> and <visual> element blocks

both reference the same geometric bodies, there is no difference between the sim-

ulated readings returned from both plugins, however, this can not be said for

cases where the <collision> and <visual> element blocks do not reference the

same geometric bodies. For example, due to the complex surface geometry, the

developed simulated crop models, discussed in Section 4.2.1, use the complex

geometric body for the <visual> element block, and for the <collision> ele-

ment block a simple cylindrical body is used, for reasons discussed in Section

4.2.1. In this case, using the collision-based plugin will produce Lidar measure-

ments which do not accurately simulate how a real Lidar sensor would sense the

surrounding environment, as seen in Figure 4.14. As a result, for these cases,

the correct plugin to use is the visual-based plugin, which generates an accurate

representation of the sensed objects in the surrounding environment, as seen in

Figure 4.14.

Figure 4.14 (continued)
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Figure 4.14 (continued)

Figure 4.14: Shows the simulated Lidar readings of a simulated tobacco crop
model for the following: (Top) CPU-based simulated Lidar measurements are
generated based on the <collision> bodies defined for the simulated crop mod-
els, represented by the transparent orange cylinder, and (Bottom) GPU-based
simulated Lidar measurements are generated based on the <visual> bodies de-
fined for a simulated crop model, and results in a more accurate reflection of
what an actual Lidar scan would return.

In addition to the methods used to represent and interact with the surround-

ing environment, the computational resources (i.e. CPU, RAM, GPU) that each

plugin uses was discovered to be different. For example, it was noticed that the

collision-based plugin was CPU expensive, whereas the visual-based plugin was

GPU expensive and used hardly any CPU.

4.4 Simulated Robot Model

The Terrasentia robotic platform, discussed previously, is a novel robotic

platform that has been developed in-house and is currently being used for a

variety of different agricultural and biological field robotic applications. In ad-

dition to being used to evaluate the effectiveness of ARDEE, three different

versions of the Terrasentia robotic platform, shown in Figure 4.15, were im-

ported for Gazebo simulation to show the following: (1) the process that can

be used to enable other field robotic researchers’ custom robotic platforms to be

evaluated in Gazebo, and (2) the benefit of the robot configuration approach

developed which utilizes the modularity of the separate URDF/xacro config-

uration files to enable different custom robot platform bases (i.e. core body,

or no sensors) and custom configured arrangement of simulated sensors can be
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easily and quickly swapped to enable any custom robot model configuration to

be simulated in Gazebo for any user-specific needs, with little effort.

Figure 4.15: Shows the various Terrasentia platforms from different stages of
development in Gazebo: (Top Left) first generation design, (Top Right) next-
generation, or 2019, design, and (Bottom Center) currently used version, or
2018 design.

4.4.1 Robot Model Configuration

Since there are various research groups and individuals who are using the

same robot platform, each using their own specific combination of sensors nec-

essary for their own research needs, the URDF file format is the more suitable

file format to be used to create and represent the simulated robot model. Since

using the URDF/xacro format allows representing a simulated robot model as

a collection of xacro macros, or modular sections of URDF elements (poten-

tially defined across multiple different files), it is possible to modularize the

simulated robot model. There can be many different ways to construct a single

model, however, in this thesis, the simulated robot model is represented, and

created, using a combination of elements defined by the following three primary

file categories, which are defined by separately named URDF/xacro files:
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Type i Robotic Component Files - is the category of files used to contain the

individual components that can be used to construct any custom simulated

robot model (i.e. links, joints, Gazebo plugins, etc.).

Type ii Configuration Files - is the category of files used for containing all

of the URDF/xacro parameters/components (i.e. dynamic coefficients,

attached sensors, etc.) that can be used for specific simulated robot model

customization, or enabling a specific arrangement of simulated sensors

required for a particular application (such as crop phenotyping) to be

quickly and easily equipped by many different custom simulated robot

models.

Type iii Robot Assembly Files - is the category of files used to assemble all of

the components (defined in Type i files) and specific configuration files

(defined in Type ii) required to create a specific custom simulated robot

model.

Configuration files have been separated into the following two categories,

both of which should be located in terrasentia description/config: (1)

Sensors is the category of configuration files, denoted by the * sensors config

file naming convention, that contains all the simulated sensor model links that

are to be attached to a given object, as well as all of their respective config-

urations, and (2) Robot Base is the category of configuration files, denoted

by the * config.urdf.xacro file naming convention used to define all of the

parameters that could be used modify any aspect associated with the core body,

or base, of a simulated robot model (i.e. 3D surface meshes used for simulated

bodies, model plugin parameters, dynamic coefficients, etc.). An example of a

sensors and a robot base configuration file categories can be seen in Listing

A.12 and Listing A.11, respectively. By separating configuration files in this

way, all of the specifically configured sensors defined in a sensor configuration

file (which may be modified frequently) can easily be used across many different

robotic platforms, while limiting the modification of a specific simulated robot

model’s base configuration.

4.4.2 Extracting Custom Robot Components

The first step that is required in order to be able to simulate any custom

robotic platform (in this case the Terrasentia platform) in Gazebo, the target

robot’s simulated model (i.e. links, joints, etc.) has to be created and defined,
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in addition to the generation of each individual component’s 3D surface mesh

into a Gazebo-supported file format. In other words, all of the individual body

elements that make up the entire physical robot’s body have to be created,

defined, and attached together using the URDF/xacro format. This can be a

tedious task if done from scratch, without the help of a Computer-Aided De-

sign (CAD) program, such as Autodesk Fusion360[3] or Solidworks[18]. For

the Terrasentia robot platform, the various available versions, shown in Figure

4.15, have already developed using a CAD software, either Autodesk Fusion360

or Solidworks. This makes it easy to extract each individual component’s 3D

surface mesh (as an STL file), however, extracting the information required for

the various URDF/xacro elements (i.e. inertial/visual/collision body informa-

tion, 3D coordinate transforms of joints, etc.) associated with each individual

component is still a tedious process.

Solidworks has a very useful add-on[59], or plugin, that is able to auto-

matically export either an individual Solidworks part, or an assembly, into a

comprehensive URDF model directory containing all the necessary files and ele-

ments (i.e. all necessary URDF elements, 3D geometry mesh files, 3D coordinate

frame poses for links and joints, etc.). The resulting directory, and subdirecto-

ries, are automatically structured and named such that the generated URDF is

ready for simulation in Gazebo, in addition to roslaunch files used to start the

Gazebo simulation with the generated URDF model in it.

This Solidworks plugin can greatly expedite the process of importing any

custom robotic platform design into Gazebo enabling quick development and

testing with ROS, however, it does not generate the URDF/xacro format which

is desired for modular configuration and parameterized components. Therefore,

each plugin-generated *.urdf element (i.e. wheel, leg, chassis, etc.) was ex-

tracted and re-formatted into its own parameterized xacro:macro enabling easy

reuse of previously developed individual components for potential future designs,

an example can be seen in Listing A.10. In order to easily identify and use

them later, the individually extracted components for the different Terrasentia

platform versions (i.e. TSv1, TSv2, and TSv3) were separated into the following

three Type i files (located in the terraentia description/urdf directory),

each representing the respective Terrasentia models: (1) links v1.urdf.xacro,

(2) links v2.urdf.xacro, and (3) links v3.urdf.xacro.
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4.4.3 Torsional Spring Joint Plugin

Now that the robot model can be simulated in Gazebo using the URDF/xacro

format, it is necessary to verify that the simulated robot model, not only looks

but also, behaves dynamically the same as the real robot would, such as the

legs and wheels moving similarly.

Figure 4.16: (Left) Shows how the simulated robot legs fall inside of the robot
chassis due to the spring force not being properly simulated, as well as the
defined angular limits not being enforced, which is clearly incorrect. (Right)
Shows how the simulated robot legs do not produce any restoring spring force
necessary for supporting the weight of the simulated robot model, which is
incorrect spring behavior.

While evaluating the robot model’s behavior in the simulation environment,

it was found that some aspects of the physical robot’s leg joints, or the joints

connecting the robot’s movable legs to the robot chassis, were not properly sim-

ulated. The first behavioral aspect found to be incorrect was that the angle

limits, although defined, for the leg joints were not properly being simulated,

or enforced, causing the legs to move into the robot’s chassis, shown in Figure

4.16, which is a physically impossible scenario. The second behavioral aspect

found was that the spring force, from the robot’s suspension system, used to

push the legs to their natural home location (fully extended) was not being sim-

ulated at all, as seen in Figure 4.16. It was found that both of these problems

were caused by the same issue, which was that the URDF properties relating

to the joint limits and the joint dynamics were not being properly translated

by Gazebo which resulted in Gazebo not simulating those aspects. In order for

Gazebo to simulate these behaviors, it is necessary to either represent the robot

model using the SDF format or create a plugin that tells Gazebo how to sim-

ulate the joint behavior. In order to properly simulate the leg joint dynamics,

while keeping the configurability and modularity inherent of the URDF/xacro

format, a simple Gazebo “model plugin” was created to ensure that the spring
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force used to push out against the leg is generated while enforcing the angular

limits set.

In order to simulate the spring force created by the linear springs in the leg

suspension system of the physical robot, the spring force can be modeled as a

torsional harmonic oscillator, and is calculated using the following equation:

Fsuspension = −bθ̇ − k(θ − θref ) (4.1)

where b, k, θ̇, θ, and θref represent the damping coefficient, spring stiff-

ness, joint angular velocity, current joint angle, and the reference joint angle,

respectively. In addition to the configurable coefficients for spring stiffness and

damping, the plugin allows the users to define the angular limits that need to

be enforced. Since all of the leg joints should behave in the same fashion, only

one Gazebo “model” plugin, which allows the user to configure the parameters

related to the specific joint the plugin is attached to, was created in C++, and

is shown in Appendix Listing A.26 and Listing A.27. In order to be able

to use any custom Gazebo plugin with any Gazebo simulated object, it has to

first be successfully compiled and built from source (i.e. CMake/Make, ROS’s

catkin make, or similar tools).

Once built, the custom plugin can then be easily attached and configured for

any number of simulated joints by adding the code snippet, shown in Listing

A.4, to an xacro macro block for attaching to a simulated leg link which should

have a spring suspension element. Since it is parameterized, the suspension

plugin parameters can easily be modified by linking and passing a specified

robot base configuration file to the desired “robot model assembly” file.

4.4.4 Controlling the Simulated Robot

A simulated robot model is worthless if it can not be controlled or moved

when given target commands. Typically in mobile-robot navigational control

algorithms, the generated target commands, used to control the general motion

of the robot’s body with respect to the world, are the target linear and angular

velocities of the robot’s body. The specific behaviors of the robot’s individual

actuators necessary to achieve these target commands can vary greatly depend-

ing on the defined motion model (i.e. differential drive, tricycle drive, etc.) of

the robot. Additionally, regardless of the robot’s specific motion model, it is

essential that the actuators (either physical hardware or simulated) need to be

able to be controlled properly according to the target commands received. In
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the case of physical hardware it is a simple matter of sending the necessary sig-

nals needed to control the various hardware elements, however for the simulated

robot model a Gazebo “model” plugin must be created in order to receive that

target robot commands (over ROS topic) and then tell Gazebo to move all the

necessary actuators (joints) according to the robot’s desired assigned motion

model. The source of the generated target robot commands matters as well.

For example, if the motion controller is a ROS node which outputs the target

commands via a ROS topic then all that is needed is to send the commands to

the same ROS topic that the simulated robot’s motion controller plugin listens

to. If, however, the target robot commands are generated by a motion controller

running on a computer, or machine, separate from the computer used to run

the simulation environment, then the target commands need to be communi-

cated somehow between machines and then once received, be reformatted, and

published to the specific ROS topic that is used by the Gazebo plugin to move

the respective simulated actuators, more discussion on this in Section 4.5.

The specific motion model that defines the simulated Terrasentia model’s

kinematic and dynamic behavior is the skid-steering motion model. In order to

make the simulated robot model move, and be controlled, with a skid-steering

motion behavior, it is necessary to create a plugin in order to receive high-level

robot body motion target commands and control each of the simulated robot

models motors such that the desired target robot body motion is achieved.

Luckily, there is already a skid-steer Gazebo plugin controller available, [20],

which simply needs to be attached to the simulated robot model, in a similar

fashion as shown in Listing A.3, in order for the simulated robot model to

be controlled. This plugin was used as the simulated robot model’s low-level

motion controller throughout this work.

4.4.5 Final Model Assembly

The final step necessary for simulating any custom robotic platform in

Gazebo (in this case the Terrasentia platform), is the creation of the specific

robotic platform’s robot model assembly file, which is used to combine all of

the necessary components and configuration files, previously discussed, into a

single uniquely-named file (located in the terrasentia description/robots

directory), as well as the only file referenced and used to spawn the custom robot

into Gazebo. For example, the robot model assembly file, shown in Appendix

Listing A.13, was used for simulating the first-generation Terrasentia robot
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platform in Gazebo, shown in Figure 4.17, by referencing the configuration

files (using the xacro:include call in Lines 15-17) tsv1 config.urdf.xacro

and tsv1 sensors config.urdf.xacro for the robot base (shown in Appendix

Listing A.11) and the attached sensors (shown in Appendix Listing A.12),

respectively.

It is assumed that the core compositional elements used for constructing the

robot model’s base will very rarely ever have to be changed. Therefore, the

robot model assembly file should only have to be created, and modified, once

in order to define the individual body components used to represent the robot

model’s base, and how they need to be connected, shown in Lines 23-101 of

Listing A.13.

Figure 4.17: Shows the first-generation Terrasentia robot platform simulated in
Gazebo using the robot model assembly file created in Listing A.13.

4.5 Distributed Data Communication

The primary approach, of using ARDEE, for HIL development and eval-

uation, of any field robotic algorithm being implemented on custom robotic

hardware, is to transfer any essential information, needed to evaluate the per-

formance of a field robotic method, between the custom robotic hardware and a

de-coupled computer system used for simulating any user-specific test environ-

ment (i.e. simulated robot, sensors, and field), using ARDEE. Therefore, some

communication method needs to be developed in order to enable this essential

information to be easily transferred between many different devices.

One of the main benefits of using ARDEE for general agricultural field

robotic development is that it enables the behavior and performance of a field

robotic algorithm to be evaluated in as if it were in a real field, via the Gazebo
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simulated robot and field. Unfortunately, one of the drawbacks to using any-

thing that is based on ROS is that it can only be utilized by ROS-supported

hardware, which could limit the effectiveness of ARDEE for general agricultural

field robotic research. As a result, some methodology for converting communi-

cated information from system agnostic to ROS-specific data, and vice versa,

should be utilized by ARDEE in order to enable HIL development and testing

to a wider range of agricultural robotic systems.

This section discusses the custom methods that were developed in order to

address the aforementioned issues related to distributed HIL development and

evaluation of field robotic methods among many different devices. Specifically,

the following topics are discussed: (1) the method used for communicating in-

formation between devices using ARDEE and various external devices, (2) the

custom data server mechanism developed for communicating sensor informa-

tion to ARDEE-external devices, and (2) the custom control client mechanism

developed for receiving ARDEE control information generated from ARDEE-

external devices.

4.5.1 Transporting Data

The standard transport protocol used for communicating the necessary in-

formation for developing and evaluating field robotic algorithms (i.e. sensor

measurements, robot commands, etc.) between many different devices was cho-

sen to be the User Datagram Protocol (UDP). UDP was chosen as the basis for

data communication because it lacks any delays caused by data retransmission,

is suitable for real-time data transmission (e.g live video streaming and sensor

data broadcasting), and can be used by any network-able devices (i.e. support

Ethernet or wireless communication).

When using UDP for communication between many different devices, in-

formation is contained, and communicated, in packets, known as “datagrams”,

and is composed of a “header” and “data”, as shown in Figure 4.18.
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Figure 4.18: Shows the structure of a basic UDP datagram which is used to
communicate information across many different devices.

The UDP header contains the following information: (1) source port number,

which is the number of the sender, (2) destination port number, or the port the

datagram is addressed to, (3) data length, or the length in bytes of the UDP

header and any encapsulated data, and (4) checksum, which is optional and

used in error checking. Additionally, it is necessary for each device to know

each others port and ip address, in order for any UDP datagram to be sent

from a source process (server) and successfully received by an end-user process

(client).

Figure 4.19: Shows the two custom UDP packets (ARDEE Message Header and
ARDEE Message Data) used to compose an ARDEE Message packet and their
respective data structures.

Although a UDP datagram by itself is well equipped to achieve many differ-

ent low-latency data transmission applications among many different devices, it

was necessary to develop a customized UDP packet combined structure, termed

an “ARDEE Message Packet”, in order to enable the various types of informa-

tion, specific to field robotic HIL development and testing, to be communicated

between a computer running a Gazebo simulation and many different devices.
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An ARDEE Message Packet is composed of the following two UDP packets,

shown in Figure 4.19: (1) an ARDEE Message Header and (2) an ARDEE

Message Data.

The ARDEE Message Header is a UDP packet containing all of the

following meta-data, defined in Appendix Listing A.16, associated with the

proceeding ARDEE Message Data packet:

1. Component Id - is used to help identify which component the following

data corresponds to, and is useful when dealing with multiples of the same

data (i.e. two encoders).

2. Message Type - is used to identify the type of message that follows (i.e.

control message, sensor data, etc.).

3. Data Type - if the following message is sensor data, then this is used to

specify what kind of sensor type the data is associated with (i.e. IMU,

GPS, Lidar, etc.).

4. Measurement Type - if the following message is sensor data, then this is

used to specify if the following sensor data has only one measurement (i.e.

one IMU reading), or multiple measurements (i.e. multiple range readings

from a single Lidar scan), associated with it.

5. Measurement Length - if the following message is sensor data with

multiple measurements, then this used to specify how many measurement

values should be read in.

The ARDEE Message Header is used to help specify how the incoming

ARDEE Message Data should be read in, as well as enabling more efficient

communication of data between devices. For example, the ARDEE Message

Header can be used to filter ARDEE Messages for the ones containing the data

that is relevant to the user’s specific needs, instead of receiving every incoming

message. The ARDEE Message Data is the UDP packet containing all of

the essential data associated with the ARDEE Message that is being sent, all

of which is defined in Appendix Listing A.17.

By sending these two custom standardized UDP packets in succession, it is

possible to communicate any essential information required for HIL development

using UDP-based client/server interactions between a simulation computer and

any target robotic platforms, an example is shown in Figure 4.20.
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Figure 4.20: Shows a simplistic overview of the method used for communicating
data between a device using ARDEE and an external robotic platform, via
ARDEE Message’s.

4.5.2 Simulated Sensor Server

One of the benefits that ARDEE provides is the ability to simulate rela-

tively realistic agricultural field environments, different variations of common

crop species, as well as simulated sensor measurements, all of which can be useful

for field robotic development and testing for agricultural and biological applica-

tions. For example, when developing a vision-based algorithm being developed

for autonomous navigation underneath crop canopies, or for autonomous har-

vesting, ARDEE can be used to test the performance of this algorithm using

simulated camera data received during interaction with a simulated target field

environment, which could be useful for preventing any damage to high-value

crops during early developmental stages. Unfortunately, ARDEE is based on

ROS, which means that any field robotic platform, which cannot support ROS,

will not be able to utilize any useful simulated sensor measurements.

As a result, ARDEE utilizes a UDP server mechanism, called the “Simulated

Sensor Server” (SSS), that was developed to enable the various, ROS-specific,

simulated sensor measurements to be utilized by a wider range of field robotic

platforms, that may or may not be able to support ROS. In order for the SSS to

accomplish this, the following components, shown in Figure 4.21, were used:

(1) a custom ROS node, (2) a UDP Serializer, and finally (3) an ARDEE

Message Packet Broadcaster, or AMPB for brevity.
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Figure 4.21: Shows the interaction between the different components of ARDEE
and the developed Simulated Sensor Server, as well as how they interact together
to broadcast the simulated sensor measurements for distributed HIL develop-
ment and testing.

The Custom ROS Node is the component that interfaces with ROS, via

ROS Subscribers, to retrieve any available simulated sensor measurements, via

their respective ROS topics. The ROS node’s primary purpose is for receiving

and extracting ROS-specific data as soon as they become available.

As soon as a simulated sensor’s measurement is available, and extracted,

from its associated ROS topic, the UDP Serializer serializes the extracted

simulated sensor’s information such that it can be packed into an ARDEE Mes-

sage to be sent out later. The UDP Serializer uses ARDEE-standardized sensor

data structures, defined in Appendix Listing A.17, for containing various types

of sensor measurements into their corresponding serialize-able data structure,

which can be later packed into a UDP datagram, broadcast, and then unpacked

by any capable external device. Currently, the following types of simulated sen-

sors are supported, however, additional types of sensors can easily be supported

later: (1) Rotary encoders, (2) battery voltage, (3) IMU (accelerometers, gy-

roscope, and compass), (4) GPS, (5) RGB/RGBD cameras, and (6) 2D/3D

Lidars.

Finally, the AMPB is used to load all of the serialized data, as well as meta-

data (which can vary depending on the combination of sensor type and specific

sensor source), associated with any extracted simulated sensor, into its respec-

tive ARDEE Message packet or ARDEE Message Header and ARDEE Message
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Data packets. As soon as a complete ARDEE Message packet is prepared and

ready, the AMPB then broadcasts, first the ARDEE Message Header packet

then the ARDEE Message Data packet, out to a specified port, at a specified

ip address.

All of these components are contained in a C++ class in order to allow for the

immediate broadcasting of ROS-extracted data as soon as it is becomes available

for minimal delay, in addition to the ability to easily configure the various ROS

sensor topics to listen to and what port and ip address to broadcast to, like in

the example shown in Appendix Listing A.18.

Since it is the intent for ARDEE to enable HIL development among, poten-

tially, many different custom robotic platforms, it is left up to the developers

of a specific robotic platform to implement their own ARDEE sensor client to

receive and extract the data of interest into any format, or programming lan-

guage, they desire for seamless integration and use within their specific system.

In order to successfully receive any broadcast simulated sensor measurements,

all that a user’s specific client needs to know is the following: (1) the ip ad-

dress that the simulated sensor measurements are being broadcast from (i.e.

the simulation computer using ARDEE), (2) the port that the simulated sensor

measurements are being broadcast to, and finally (3) all of the ARDEE data

types, defined in Appendix Listing A.16 and Listing A.17.

The benefit to this is that any custom robotic platform will be able to use

any broadcast simulated sensor’s measurement, once received and extracted,

as if it came from its physical sensor, which is vital for allowing field robotic

methods to be developed and tested for field-readiness without the need to

go out into the real field (which may or may not have desired field testing

conditions). Additionally, this approach makes it such that any field robotic

algorithm being investigated does not need to be developed any differently for

HIL development and testing, and the only thing that is different between HIL

and real field development and testing is where the field robotic algorithm’s

input comes from.

4.5.3 Robot Controls Client

When developing any kind of field robotic control algorithm, such as low-level

motion control of an individual field robot, distributed control of multi-agent

teams of field maintenance robots, or autonomous field robotic harvesting, it

is important that the various robotic commands generated from the developed
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algorithm, as executed from its target hardware, are able to control the respec-

tive elements being simulated in the Gazebo environment (i.e. robot velocity

commands, multi-agent team commands, or robotic harvesting manipulator con-

trol), in order to properly evaluate real-time performance on target hardware.

Additionally, this allows a proper end-to-end evaluation of algorithm perfor-

mance, by allowing the simulated system dynamics to be driven, and sensor

measurements accordingly, as they would have been if they were in a real field

environment.

As a result, ARDEE utilizes a UDP client mechanism, called the “Controls

Client” (CC), that was developed to enable any Gazebo simulated object to be

controlled by a wide range of external robotic platforms, that may or may not

support ROS. The CC accomplishes this with the use of the following compo-

nents, which are similar to the SSS, shown in Figure 4.22: (1) an ARDEE

Message Packet Receiver, or AMPR for brevity, (2) a UDP De-Serializer,

and finally (3) a custom ROS node.

Figure 4.22: Shows the interaction between the different components of ARDEE
and the developed Controls Client, as well as how they interact together to
control a Gazebo simulated object for distributed HIL development and testing.

Before discussing the different components developed for the CC, it should

be noted that, similar to SSS, it is left up to the developers of a specific robotic

platform to implement their own UDP mechanism for packing any desired com-

mand outputs, generated from either a specific field robotic algorithm or any
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other specific methods used controlling the robotic system (i.e. joystick, fail-

safes, etc.) and any other relevant data, into the necessary ARDEE Message

Header and ARDEE Message Data packets, using all of the ARDEE standard

data types defined in Appendix Listing A.16 and Listing A.17, and broad-

casting the resulting ARDEE Message packet out through a specified port,

sending it to the ip address corresponding to that of the simulation computer

running the ARDEE CC. As a result, de-coupled development and testing is

possible across many different robotic systems with the use of a pre-determined

standardized data structures, which prevent the need for any interacting end-

devices (i.e. other robotic platforms, other simulation computers, etc.) having

to know the various, potentially, custom-developed internal mechanisms of the

other devices.

Similar to how the SSS uses the AMPB, the CC uses the AMPR to listen

for any UDP packets which are being broadcast to a specified port, from a

robot-specific ip address. Since the broadcast UDP packets should consist of the

ARDEE Message structure, the CC uses the first UDP datagram (i.e. a ARDEE

Message Header), from a pair of received packets, and uses that to listen for any

ARDEE Message’s containing robot control data. Once an ARDEE Message

Header is received for any robot control data, the AMPR sends all of the data

from the retrieved ARDEE Message packet to the UDP De-Serializer to be

extracted.

The UDP De-Serializer de-serializes all of the relevant information from

the received, serialized, ARDEE Message packet into the standardized data

structures, defined in Appendix Listing A.16 and Listing A.17, correspond-

ing to the specific robot control data received, and is sent to the CC custom

ROS node. Currently, the only control data types that are supported is the mo-

tion control commands (specified in Lines 83 - 87 of Listing A.17), however,

additional forms of control data types, such as Gazebo simulation play/pause,

multi-agent robot team macro commands, camera angle control, robotic har-

vestor controls, and much more, could be easily supported later.

The CC Custom ROS Node uses the de-serialized, extracted, and stan-

dardized control data, and re-formats it into the necessary ROS message format,

specific to the control data type received so that the control data can be commu-

nicated over the ROS network. Finally, the CC ROS node publishes, via ROS

Publishers, the re-formatted ROS message data to control the intended ROS

components by publishing the ROS message data to the specified ROS topic.

All of these components are contained in a C++ class, shown in Appendix
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Listing A.19, in order to allow for immediate publishing of the extracted con-

trol data to the ROS network as soon as any externally-broadcast control data

becomes available, which allows for a minimal delay in control.

4.6 User-Friendly Launch Utilities

Now that all of ARDEE components have been developed to enable not only

relatively realistic simulation of agricultural field environments and field robotic

platform, but also platform-independent HIL development and evaluation of

field robotic algorithms implemented on their target hardware, the final ARDEE

element was the development of user-friendly utilities, such that, both expert

and novice, users are able to easily and quickly configure, simulate, and utilize

all of the, previously discussed, ARDEE components developed.

Not only do these utilities enable user-defined, relatively, realistic field robotic

testing environments (i.e. field and robotic platform) to be simulated, but they

also help to further reduce development times by using more efficient trou-

bleshooting, data visualization, and robotic development methods, all of which

are possible with the help from the open-source community and standard pack-

ages that with using ROS.

This section will discuss some of the user-friendly utilities that were devel-

oped making it easier for, both novice and expert, users to configure, load, and

run various ARDEE components to fit their specific needs. Specifically, this

section discusses the following topics: (1) using the rosrun command to run

individual ROS nodes, (2) using the roslaunch command for running an eas-

ily configurable collection of ROS nodes, and finally (3) executing the custom

bash/shell scripts developed enabling a compacted and runtime configurable

execution of many different elements.

4.6.1 Using rosrun

Since most, if not every, aspect of the simulation implements ROS function-

ality, users are able to run the various aspects of the simulation environment

using ROS standard command-line utilities. The most basic command-line util-

ity available is the rosrun command. The rosrun command is used for running

a single ROS node, which can be used for printing the terminal output state-

ments from an individual node, which can be useful when troubleshooting its

operation. Using the rosrun command can be useful for viewing a specific ROS
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node’s terminal printouts (i.e. debugging, verbose, warning, etc. statements),

as opposed to having, potentially, many different ROS nodes outputting print

statements in the same terminal which can make it difficult to decipher certain

ROS node operations. For example, the ARDEE Controls Client, discussed in

Section 4.5.3, can be run individually by executing the following command in

a terminal:

1 rosrun a rdee b r idge c o n t r o l s c l i e n t n o d e

After executing this command, the Controls Client begins listening for any

incoming ARDEE Message packets that may be broadcast from an external

robotic platform, in addition to printing out the robot controls it is receiv-

ing. This functionality can be particularly useful for establishing whether robot

controls, generated from an external robotic platform, are being received suc-

cessfully or not.

Additionally, ROS nodes can sometimes fail, for various reasons, and as a

result, it may sometimes be necessary to kill the failed node and restart it, which

can be problematic when running multiple ROS nodes at the same time using

the roslaunch command, discussed later. When this happens, it is necessary

to kill all of the ROS nodes, not just the one, which can result in time wasted

due to waiting for ROS nodes to be restarted, especially when some of the ROS

nodes take a while to start. Users are notified by the ROS system, via command

terminal statements, when a ROS node fails. Well-developed ROS nodes capable

of robustly handling fail-case scenarios should not typically fail, however, it is

more likely for ROS nodes when they are in early, or proof-of-concept, stages of

development. By executing these ROS nodes that are more likely to fail using

the rosrun command, it is possible to more efficiently test and debug developed

ROS nodes by isolating them from a collection of ROS nodes that only need to

be executed once.

For example, this was useful during the initial development of the ARDEE

UDP mechanisms, where the ROS nodes, used within the UDP mechanisms,

would fail due to improper UDP communication initialization. As a result of

using rosrun, it was possible to prevent having to restart the Gazebo simula-

tion (i.e. field with multiple crops and simulated robot model), which could

sometimes take quite a while to load, depending on the number of resources

that had to be rendered and spawned.
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4.6.2 Using roslaunch

Although it is possible to run all of the necessary ROS nodes required for us-

ing the ARDEE simulation environment for testing any developed field robotic

methods by executing each node singularly using the rosrun command, how-

ever, this requires the use of a separate terminal window for the lifespan of

each ROS node executed, which can lead many terminal windows being opened

at one time. As a result, it can be tedious when navigating between all the

various terminal windows, and can even cause viewing the Gazebo simulation

to be difficult. Luckily, there is another ROS standard command-line utility,

called roslaunch, which is able to execute multiple ROS nodes defined in ROS

launch files, or XML-formatted *.launch files. Additionally, it is possible to pass

command-line arguments giving users the ability to dynamically modify various

ROS node input parameters on-the-fly.

In this work, the roslaunch command was used for loading any custom

simulation environment in two main portions, both of which are defined in their

own separate .launch files, in the following order of execution: (1) the simulated

world, and (2) the simulated robot model and any other utilities.

Simulated World Launching: The simulated world can be composed of

many different elements which describe the environment in which simulated

robots operate in, and interact with, such as physics, lighting conditions, en-

vironmental conditions, and the simulated objects associated with the world

(i.e. terrain, crops, etc.), all of which is defined SDF-formatted *.world files.

For agricultural field robot development, it can be expected that there will be

many crop models being simulated in Gazebo at any given moment, which can

result in the simulated world taking a while to load properly in Gazebo, due

to the potentially resource-expensive rendering operations on Gazebo start-up.

Therefore, it was chosen to launch, before anything else, all of the world-related

components for any given simulated field environment, in a single *.launch file.

Not only does this ensure that the simulated world is properly initialized and

simulated before running any un-related ROS nodes but it also helps to reduce

the likelihood for a ROS node to fail due to any potential over-usage of available

computational resources.

Furthermore, a handful of various, user-configurable, custom *.launch files

have been created (located in the ardee world/launch), one example can be

seen in Listing A.20, such that users can easily choose which simulated world,

and any other configuration parameters, they want to load at runtime, by sim-
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ply passing the command-line arguments after the launch file to be loaded, an

example is shown in Listing 4.2, which results in the simulated world shown in

Figure 4.23. Additionally, it is possible to easily add-on, and switch between,

many different user-custom worlds since all of the worlds available for simulating

should be located in the ardee world/worlds directory.

1 ros launch ardee wor ld custom world . launch world :=farm . world

Listing 4.2: Shows the terminal command used to simulate the user-specified

world shown in Figure 4.23.

Figure 4.23: Shows the simulated world resulting from the execution of Listing
4.2.

Simulated Robot Model Launching: Once a simulated world is success-

fully loaded in Gazebo, the second .launch file that is executed is responsible

for loading a user-specified simulated robot model in Gazebo, as well as any

additional ROS nodes required by the user for developing and evaluating any

field robotic algorithm, such as ROS nodes for controlling and interacting with

the loaded simulated robot model, ROS nodes for visualization and debugging

(i.e. rviz, rqt, etc.), any custom user-developed ROS nodes (i.e. nodes run-

ning any developed algorithms, or methods), and more. This second launch file

should give users the ability to quickly, and easily, configure the specific simu-

lated robot, as well as evaluation, ROS nodes they wish to use, in addition to

any input node parameters used for runtime configuration. For example, the

launch file shown in Listing A.21 which does the following: (1) spawns a user-

defined robot model configuration with a user-defined pose, (2) configures and
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loads the ROS nodes for the user-defined method of simulated robot control,

(3) starts any additional debugging and visualization tools (i.e. rviz, rqt, etc.),

and (4) executes any other ROS nodes necessary for proper interaction with the

simulated robot model and/or hardware.

Additionally, the launch file, in Listing A.21, allows many of the spe-

cific ROS node parameters to be modified on-the-fly by passing the necessary

command-line arguments for a specific ROS node. For example, the following

terminal command can be used to execute the same launch file, in Listing 4.3,

but instead loads a different simulated robot model, as shown in Figure 4.24,

from the specified default robot:

1 ros launch t e r r a s e n t i a d e s c r i p t i o n l a u n c h d e f a u l t t s v 1 . launch

bot model := t s v 2 d e f a u l t . urdf . xacro u s e j oy := true dev joy :=/dev/

input / j s 0

Listing 4.3: Shows the terminal command used to simulate the user-specified

robot model shown in Figure 4.24 and configures the robot model to be control

using the user-specified joystick interface.

Figure 4.24: Shows the simulated robot model simulated in Gazebo as a result
from the execution of Listing 4.3.

4.6.3 Using bash/shell scripts

Using the roslaunch command helps to execute, and dynamically configure,

multiple ROS nodes in a compact form, however, it lacks the capability to define,

and execute, custom terminal commands on its own which may be necessary for

some users who want to execute any non-ROS utilities, such as executing the

custom python script, discussed in Section 4.2.2, used to generate a custom
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and randomized simulated crop field. Additionally, in order to allow users who

are not familiar with, or have no desire to learn ROS, using a bash/shell script

to perform all the necessary environmental setup and configuration of the var-

ious ROS elements can make using the ARDEE simulation environment seem

less daunting a task to those who may be new to using ROS. Additionally, using

bash/shell scripts allows for a user-friendly, streamlined, user-interface that can

be useful for configuring and loading everything required to run a custom simu-

lation environment, for both beginners and experts alike. Therefore, a handful

of bash/shell scripts, such as the one shown in Listing A.22, were developed

in order to perform all of the necessary setup procedures, and customization re-

quired, for launching a specific simulation scenario, in addition to providing a,

relatively, user-friendly command-line user-interface for executing various ROS

components. For example, the simulation environment, shown in Figure 4.25,

can be simulated by executing the terminal command, shown in Listing 4.4.

The bash/shell first uses the first two shell script arguments which are used to

select an available Gazebo terrain model and crop field model which are com-

bined into a custom generated *.world file which is then passed to the roslaunch

command, as the “world” input argument, executed for loading the specified

Gazebo. Next, the shell script tells the user (via terminal output) that it is

waiting for the user to tell it when it should begin loading the simulated robot

model into Gazebo (i.e. wait until the user sees the successful initialization of

Gazebo). Finally, the shell script, at any point where the user wants to stop

the simulation, executes the shell commands that properly shut down all of the

system services used for simulation, so that the entire simulation is shut down

quickly and properly.

1 . / run custom world ardee wor ld / urdf / c o r n p l o t . urdf . xacro

ardee models / heightmap ground

Listing 4.4: Shows the terminal command used to execute the custom bash/shell

script which allows a user to hand-pick what terrain and field they wish to load

into Gazebo, and then eventually loads a default robot model and the Rviz

GUI used to show all the ARDEE simulated measurements. The result of the

terminal command can be seen in Figure 4.25.

Not only does utilization of the custom bash/shell scripts show a quick, easy,

and user-friendly method for loading a user-specified simulated world, robot

model, and Rviz GUI, as shown in Figure 4.25, but the resulting simulated
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Terrasentia robot’s sensor measurement visualized in the Rviz GUI provides a

sneak-peek into the potential realistic simulated sensor capabilities that ARDEE

could be very useful for HIL development and evaluation for may different field

robotic algorithms.

Figure 4.25: Shows the result from executing the terminal command, shown in
Listing 4.4. Additionally, the Rviz GUI (Bottom) shows a preview of ARDEE’s
usefulness in its ability to generate seemingly realistic simulated Lidar (red
points), as well as the simulated front, left, and right RGB camera video streams
of the Terrasentia robot platform (leftmost three small windows stacked on each
other).
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Chapter 5

Lidar-Based Navigation

One desirable capability of the developed simulation environment tools,

discussed in this work, is the ability to evaluate environment-dependent field

robotic methods as they perform using simulated sensor measurements, and in

simulated environments, that can not be easily replicated using conventional

methods, such as Matlab. For example, it would be extremely difficult to

simulate the various Lidar measurements, and evaluate the performance of a

Lidar-based navigation method, using Matlab.

As a result, the Lidar-Based In-Row Navigation Technique (LBIRNT), dis-

cussed in detail in [28], was used to investigate the feasibility of using the devel-

oped simulation tools for the development of a Lidar-based navigation algorithm

capable of robustly, and reliably, autonomously navigating the Terrasentia robot

platform between individual rows of crops, throughout a variety of late-season

field conditions.

5.1 Introduction

The LBIRNT uses the range measurements obtained from 2D Lidar scan to

extract, and navigate about, the estimated center of the crop row using a set of

heuristics of the Lidar data.
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Figure 5.1: Shows the workflow of the method developed in [66].

The primary elements of the Lidar-based navigation technique used can be

described in the following three steps, and the workflow of these steps is shown

in Figure 5.1: (1) the estimation of the navigation lines, (2) the validation

of the estimated lines, and (3) controlling the robot’s motion. For sake of

completeness, the following section will briefly describe the keys ideas for these

major components.

5.1.1 Line Estimation

The first primary LBIRNT step deals with the estimating of the linear model

describing the rows of crops on both sides of the robot (left and right) used for

navigating about the center of the crop row.

Before the crop row lines can be estimated, the raw Lidar measurements

need to be pre-processed so that they can be useful for estimating the crop

row lines, as well as reducing the computational costs by removing unnecessary

measurements. For pre-processing, the LBIRNT first converts the raw Lidar

measurements from polar coordinates into Cartesian coordinates, then separates

the measurements into either the left or right, side. After being separated

between left and right sides, the Lidar measurements are then filtered, only

keeping measurements that are found within a rectangular area (for both the

left and right sides) where the crop rows are expected to be in. The last pre-

processing step, before the crop row lines are estimated, consists of choosing a

subset of the filtered Lidar measurements that will be used for estimating the

left/right crop lines, and should have a high probability of containing the most
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essential Lidar measurements that are characteristic of the crop rows. This

subset of data is chosen using a simple histogram-based method to determine

the left/right bin index from which the Lidar measurements should be pulled

from.

Now that the raw Lidar measurements have been sufficiently pre-processed

and filtered, the obtained Lidar subset data is used for estimating the linear

coefficients for both the left and right crop rows using linear least squares re-

gression for fitting the Lidar data to the slope and y-intercept of a linear model,

using (5.1) and (5.2) respectively.
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After both the left and right linear models have been estimated, the esti-

mated linear models are used to extract some additional information about the

estimated lines which will be used later for validating how reliable the estimated

lines are, and they consist of the following: line length, lateral distances to ob-

tained lines, estimated line angle, standard deviation from the original values,

and the change in the lateral distance from the previously found lateral distance.

5.1.2 Estimated Line Validation

The second LBIRNT step primarily deals with validating the reliability of

the estimated crop row lines by using a series of “validity checks”. This step

determines the estimated crop row lines that are actually used to navigating

within the row of crops, depending on the validity of the current estimated

lines.

The first “validity checks” performed check validity of the extracted line in-

formation from the individual (left and right) estimated lines looking at whether

the estimated lateral distances are within an acceptable bounds and if the change

in the current estimate line angle from previously found line angle is within an

acceptable threshold, for both left/right sides.

The second series of “validity checks” check to make sure that the individual

estimated lines as a whole are valid. For these checks, two derived values, Lane

Width LW and “Line Grade” are used for determining left and right line validity.

For example, the “Line Grade” for the left side of the robot is calculated using
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(5.3),

LineGrade[L] =
np[L]

np[L] + np[R]
+

ly[L]

ly[L] + ly[R]

+

(
1 − sd[L]

sd[L] + sd[R]

)
+

(
1 − dd[L]

dd[L] + dd[R]

)
(5.3)

where np[S] represents the number of data points used for the line fitting in

(5.1) and (5.2), ly[S] represents the length of the fitted lines in the y-axis, sd[S]

represents the standard deviation of the difference between the original input y-

values and the resulting fitted line’s y-values, and dd[S] represents the difference

in the orthogonal distance to the previously used and current estimated line.

The [S] in all of the previously mentioned variables is a placeholder used to

represent the line in which the variable is associated with, either the left side

[L] or the right side [R].

Finally, a set of heuristics are used for determining how all of the neces-

sary estimated, extracted, and derived values are updated for the next update

iteration.

5.1.3 Robot Control

The final LBIRNT step uses the estimated crop row lines resulting from the

previous steps to derive the center line of the crop lane. This center line is used

as the target for a classic PID controller which is used to control the robot’s

turn-rate in order to reduce the error between the robot’s position and angle

relative to the derived centerline.

5.2 Experimental Field Scenarios

In order to investigate, and evaluate, how accurately the developed simula-

tion tools are able to replicate the Lidar measurements that would be acquired

from real agricultural field environments, experiments were performed investi-

gating the performance of the LBIRNT in some of its target field environments.

Currently, the LBIRNT is successfully being used to autonomously navigate

within a variety of corn and sorghum field environments. The LBIRNT has

not been tested in real fields of tobacco as extensively as it has been in fields

of corn and sorghum, thus there is an insufficient amount of useful real field
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data needed for comparison with the ARDEE simulated data. As a result, the

evaluation of simulated tobacco fields is not discussed in this work. The three

experiments that were performed investigated the LBIRNT’s performance in

three different, both simulated and real, field environments: a controlled indoor

testing environment, a corn field, and a sorghum field.

In this section, the experimental setup and the testing procedures used for

all the experiments performed will first be discussed. Finally, the specific field

environments used for each experiment will be discussed.

5.2.1 Experimental Methodology

Regardless of the specific field environment and conditions being used dur-

ing testing, the LBIRNT algorithm is developed in C++, and operates on the

Terrasentia robot’s hardware (i.e Raspberry Pi). This was done in order to

investigate the usefulness of the developed simulation tools in their ability to

effectively facilitate in the development of field robotic algorithms on their in-

tended target hardware. As a result, the field robotic algorithm being developed,

in this case, the LBIRNT, will exhibit the same behavior whether it is interact-

ing with a physical robot in a physical environment or a simulated robot in a

simulated environment.

The only difference between a physical-based, and a simulation-based, inter-

action, with respect to the LBIRNT, is where the required sensor measurements

come from, and what the algorithm-generated command outputs control. In

the typical physical-based, or normal real-world, interaction case, the LBIRNT

simply communicates with the robot’s physical sensors (i.e Hokuyo Lidar) to re-

trieve necessary measurements to generate PID target commands used to control

the physical DC motors.

Alternatively, in the simulation-based interaction case, the simulated sen-

sor measurements are serialized in a standardized UDP packet structure and

broadcasted from the computer running the simulation environment, using the

previously discussed sensor relay module. A simple UDP client operating on the

target robot’s hardware receives any available simulated sensor measurements

being broadcasted and de-serializes the simulated sensor measurements into a

standard format such that the measurements are indiscernible from the physi-

cal sensors. Using the received, and unpacked, simulated sensor measurements,

the LBIRNT generates PID target commands. Instead of controlling the robot’s

physical motors, a simple UDP server (operating on the target robot’s hardware)
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serializes the algorithm-generated target commands into a standardized UDP

data packet structure and then broadcasted. These broadcasted commands are

then received by the simulation computer, using the previously discussed con-

trols relay module, and the unpacked into the ROS topic used to control the

simulated robot model.

For investigating the LBIRNT’s performance in both real and simulated agri-

cultural field environments, the same experimental procedure is used regardless

of the specific field environment used for testing.

Figure 5.2: Shows an example experimental setup where the Terrasentia robot
is placed close to the beginning of a row of corn and near the center, before
beginning an autonomous run.

The experimental procedure used for each experiment consists of the follow-

ing steps:

1. Before initiating autonomous row-following mode, the robot should be

located relatively close to the entrance of any given row of crops, as well

as relatively near the center of the crop row, similar to what is shown in

Figure 5.2.

2. The following steps should be repeated (throughout the entire length of

any given row of crops):

(a) Update Sensor Measurements: New Lidar measurements are

received, whether being received from the simulation environment or

the physical robot’s Lidar and pre-processed for LBIRNT usage.

(b) Estimate/Extract Line Information: Pre-processed updated Li-

dar point-cloud data is used to update estimated row lines and the

resulting estimated line information is extracted for later validation

steps.
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(c) Update Robot Motion: New robot motion control commands are

generated based on the updated line estimates for left and right sides.

PID controller is updated to achieve updated robot motion com-

mands.

3. Once both, left and right sides, rows of the crop are no longer viewable by

the Lidar, robot motion should cease, thus ending a single experimental

run.

5.2.2 Scenario 1: Artificial Corn Row

The first scenario performed took place in a controlled testing environment

where artificial, but relatively realistic, corn stalks, 23 evenly spaced 6 in apart,

was set up to form an ideal row of corn with a 30 in spacing, shown in Figure

5.3. The purpose of this experiment was to investigate the LBIRNT’s per-

formance in a controlled setting where the environment remains constant and

environmental variables can easily be identified. In using this controlled envi-

ronment, a baseline assessment of the developed simulation tools’ capabilities

for simulating Lidar measurements can be presented. Additionally, this testing

environment was used because it can be representative of a testing environment

that would typically be used, if the simulation tools developed in this work did

not exist, during the early stages of an algorithm’s development, in the sense

that it allows an algorithm to be tested, on the target hardware, and developed

further without worrying about damaging high-value assets (i.e crops, etc.).

Figure 5.3: (Left) Shows the indoor controlled testing setup previously being used for
LBIRNT development, during times when crops have been harvested, using realistic
artificial corn stalks. (Right) Shows the simulated replication of the physical testing
environment using the developed simulation utilities.
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Since the terrain of the controlled environment was flat, the simulated field

terrain was created by using a simple black grayscale image representing a flat

heightmap. The field generation script, previously discussed in Section 4.2.2,

was used to create the simulated corn rows, simply by passing the necessary

command-line arguments such that the following real field characteristics are

replicated: a single plot of corn containing two rows of crops, the spacing be-

tween the rows is 30in, each row contains 23 stalks (randomly chosen simulated

corn stalk models) spaced 6in evenly apart. When creating the simulated corn

field model, the script-generated locations for each corn stalk did not include

add any noise to each stalk’s mean center, because the corn stalk locations of the

real controlled testing environment are perfectly aligned. By combining both

the generated terrain model and the generated field model, the simulated replica

of the real controlled testing environment is created, as shown in Figure 5.3.

5.2.3 Scenario 2: Real Corn Field

Figure 5.4: (Left) Shows an example portion of what is typically seen in actual corn
fields that the Terrasentia robot normally navigates. (Right) Shows the simulated
replication of a small portion of a typical corn field that would be encountered using
the python script-generated field model and field terrain model using the presented
simulation utilities.

The second scenario takes place in a typical field of corn, similar to what is

shown in Figure 5.4. In contrast to the controlled environment, this field envi-

ronment does not have easily identifiable environmental parameters. This field

environment was used to investigate how capable the presented simulation tools

are able to simulate, with some degree of accuracy, the inherent randomness

of a typical corn field. Additionally, this experiment was performed to investi-
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gate how effective the simulated corn models are able to simulate physical corn

stalks, with some degree of accuracy.

The accuracy of simulated field terrain was assumed to be of secondary

concern, since the primary source of information required by the LBIRNT lies

in the interaction with the physical, and simulated, crops. As a result, the

simulated field’s terrain was programmatically generated using a custom python

script that created a grayscale image, used for the Gazebo heightmap, containing

rows of pixels simulating periodically uneven terrain. This was done in order

to capture, with a low degree of accuracy, the effect on the resulting Lidar

measurements that can be expected from a typically rough and uneven terrain.

Since the creation of the simulated counterpart of a typical corn field is not

as straight-forward as the controlled field environment, a few assumptions had

to be made on the configuration of the corn stalks before the simulated corn field

could be created. The first assumption is that there are four rows of corn with a

mean spacing between each row of corn is approximately 30in. Secondly, it was

assumed that each row of corn was approximately 5m long, with an average of

50 mature corn stalks per row. With these assumptions in mind, the previously

discussed field generation script was used to generate a resulting plot of corn

rows capable of simulating with a sufficient degree the inherent randomness that

could be encountered in a typical corn field. Using both the programmatically

generated terrain and corn field model, the resulting simulated corn field, used

to replicate the targeted real corn field, can be seen in Figure 5.4.

5.2.4 Scenario 3: Real Sorghum Field

The third scenario takes place in a typical field of sorghum, similar to Figure

5.5. This field environment has many similarities to that of a typical corn field

in regards to the behavior of the received Lidar measurements due to the sim-

ilarities in the leaves encountered at Lidar-level, however in sorghum fields the

Lidar measurements contains a considerably higher amount in “noise” resulting

from the highly cluttered, with frequent sensor occlusions, present in sorghum

rows. This field environment was used to investigate how capable the presented

simulation tools are able to simulate, with some degree of accuracy, the inher-

ent adverse operating conditions of a typical field of sorghum. Additionally, this

experiment was performed to investigate how effective the simulated sorghum

models are able to simulate physical sorghum stalks, with some degree of accu-

racy.
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Figure 5.5: (Left) Shows an example portion of what is typically seen in actual
sorghum fields that the Terrasentia robot normally navigates. (Right) Shows
the simulated replication of a small portion of a typical corn field that would
be encountered using the python script-generated field model and field terrain
model using the presented simulation utilities.

In the case of a field of sorghum, the terrain was very similar to that of

the average field of corn. As a result, the same programmatically-generated

heightmap discussed in the previous section was used for simulating the sorghum

field’s terrain. The field of sorghum was generated similar to the field of corn,

where there are four 5m-long rows of mature sorghum, spaced approximately

30in apart, each containing an average of 50 mature sorghum stalks; however

when using the field generation script, there was a slight increase in the Gaussian

noise that was added to each of the mean sorghum stalk centers. The resulting

simulated sorghum field can be seen in Figure 5.5.

5.3 Results

Using the experimental procedure previously discussed, the performance of

the LBIRNT deployed on the Terrasentia robot’s hardware, as well as the raw

Lidar measurements, obtained in both the real, and Gazebo-simulated, field

environments in order to investigate the presented development environment’s

ability to accurately represent, and simulate, the real field conditions necessary

for Lidar-based field robotic algorithm development and evaluation. In this sec-

tion, the obtained raw Lidar measurements, as well as the LBIRNT’s crop-row
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line detection performance, obtained, in real-time, from the three experimental

scenarios defined are presented in this section.

Figure 5.6 presents the results obtained from the first experimental sce-

nario, shown in Figure 5.3. By using a controlled testing environment, in

which the exact positions of the clutter-free artificial corn stalks in a physically-

simulated corn row, it is possible to establish a baseline comparison of the results

obtained, from both the physical and Gazebo-simulated environments.

Figure 5.6: Shows both the raw Lidar measurements and the LBIRNT generated
perceived crop row distances obtained from both the real-world (dark green
and light green, respectively) and Gazebo-simulated (dark blue and light blue,
respectively) controlled testing environments shown in Figure 5.3.

In Figure 5.6, it can be seen that the simulated raw Lidar measurements

(displayed in blue) and the real raw Lidar measurements (displayed in green)

obtained are nearly identical. Not just raw Lidar measurements, but even the

behavior of the LBIRNT resulting from both the real and simulated environ-

ments are a close match.

Unfortunately, the first experimental scenario is not a representative sub-

stitute for actual corn field environments, and could even be mathematically

simulated. As a result, the second experimental field environment scenario,

shown in Figure 5.4, investigates the presented development environment’s
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ability to simulate the Lidar measurements, necessary for developing and eval-

uating Lidar-based field robotic algorithms, in actual corn field environments,

which are highly cluttered, random, and are nearly impossible to mathemati-

cally simulate.

Figure 5.7: Shows both the raw Lidar measurements and the LBIRNT generated
perceived crop row distances obtained from both the real-world (dark green
and light green, respectively) and Gazebo-simulated (dark blue and light blue,
respectively) corn field environments shown in Figure 5.4.

In Figure 5.7, the results obtained from the second experimental scenario

(corn field) are presented. Although they are not as easy to compare opposed

to those obtained in the first scenario, it can roughly be seen that the raw

Lidar measurements obtained from the simulated replica of the real corn field

relatively accurately replicates the essence of the real Lidar measurements that

were obtained from the real corn field. Additionally, it can be seen that the be-

havior of the LBIRNT resulting from the simulated Lidar measurements closely

matches the LBIRNT’s behavior resulting from the real Lidar measurements,

which further validates the presented development environment’s ability to rela-

tively accurately simulate the Lidar measurements that would be obtained from

a real corn field.
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Similar to the second scenario, the third experimental scenario (sorghum

field) investigates the presented development’s ability to accurately simulate

the Lidar measurements, necessary for developing and evaluating Lidar-based

field robotic algorithms, in sorghum field environments, which are increasingly

more dense and cluttered compared to corn fields.

Figure 5.8: Shows both the raw Lidar measurements and the LBIRNT generated
perceived crop row distances obtained from both the real-world (dark green
and light green, respectively) and Gazebo-simulated (dark blue and light blue,
respectively) sorghum field environments shown in Figure 5.5.

Figure 5.8 presents the results obtained from the third experimental sce-

nario. Unlike the second scenario, the Lidar measurements obtained, from the

real sorghum field, contain a significantly higher degree of noise and clutter

caused by the frequently encountered leaf occlusions from the sorghum field’s

dense foliage. Although it does not properly simulate this high degree of noise

and clutter in some areas of the row, it can be seen from the figure that result-

ing simulated Lidar measurements, for the most part, effectively simulate the

noisy Lidar measurements obtained from the real sorghum field. The resulting

LBIRNT’s behavior supports this, where the estimated distances to the center of
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the left and right sides of the crop row from the simulated Lidar measurements

closely match those resulting from the real Lidar measurements.

5.4 Discussion

In this section, the capabilities and effectiveness of the development envi-

ronment, presented in this thesis, used as a field robotic algorithm development

and evaluation tool for Lidar-based methods are investigated.

In addition, the behavior of an Lidar-based field robotic method developed

for under-canopy autonomous navigation of a novel ultra-lightweight, and com-

pact, robotic platform, and the raw Lidar measurements used by it, are pre-

sented, and compared, in three different environments, both simulated and real,

which are representative of the typical agricultural field environments that the

robotic platform normally operates within.

The results presented show that the development environment presented in

this work is able to relatively accurately simulate the Lidar measurements that

would be obtained from a real field environment.
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Chapter 6

Conclusion

6.1 Future Work

In this work, ARDEE’s ability to effectively allow the development and eval-

uation of a Lidar-based field robotic algorithm on real hardware for both real and

simulated field environments, using the presented simulated corn and sorghum

crop models, was presented. Furthermore, the accuracy of the simulated vision

data to the real vision data needs to be investigated for all three crop models

using different field environments.

In addition to comparing the raw Lidar measurements, the experimental

results presented a Lidar-based navigation algorithm that was already developed

and is used, for autonomous under-canopy navigation. Therefore, by combing

the need to verify the visual accuracy of the simulated crop models, future

work should quantitatively evaluate the effectiveness of ARDEE as it is used

to develop a novel vision-based full season navigation method from a proof-of-

concept stage to a field-ready deployment stage.

The novel vision-based approach has shown promise for real-time operation

(i.e 30FPS) during early stages of corn using real camera data collected and

has been shown to be capable of working in a variety of corn and sorghum

fields during later stages in crop development, examples shown in Figure 6.1.

Furthermore, ARDEE has already been used for preliminary development of the

vision-based navigation approach, also shown in Figure 6.1.
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Figure 6.1: Shows the preliminary results of the experimental vision-based full-season nav-
igation method for different field environments. (Top Left) Shows reliable performance for
an early-season corn field, (Top Right) Shows sufficient performance for a fairly cluttered
late-season corn field, (Bottom Left) Shows sufficient performance for a mid-season corn
field, (Bottom Right) Shows good performance in the ARDEE simulated early season corn
field.

Unfortunately, more development and evaluation is required in order for

it to be reliable enough for full-season autonomous navigation, an example of

non-reliable results can be seen in Figure 6.2, and needs to be robust to the

following cases: varying field and lighting conditions, various developmental

stages of different crop species, to frequent camera occlusions resulting from

crop leaves.
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Figure 6.2: Shows an example field environment (grain sorghum) where the
vision-based navigation approach does not work well and requires further inves-
tigation.

6.2 Summary

In summary, this thesis presents a novel Agricultural Robotic Development

and Evaluation Environment (ARDEE) used for a more efficient approach to the

development and evaluation of any field robotic method intended for operation

on, potentially, many different physical robotic platforms being used for real

field applications.

ARDEE incorporates the use of the Gazebo simulation environment, in com-

bination with a collection of relatively realistic agricultural crop models and

simulated sensor models, to enable field robotic methods to be developed and

tested for a variety of different field environments all-year long, which is difficult,

or impossible, to do using traditional field development and testing methods.

Through the use of the custom developed UDP-based communication mecha-

nisms employed, ARDEE allows partial, as well as entire, system development

and hardware integration, potentially across many different custom field robotic

platforms. Not only does the standardized UDP mechanisms allow the develop-

ment of field robotic systems ready for real field testing, in spite of any hardware

limitations, but they also support the use of the Gazebo simulated world (i.e sim-

ulated sensor measurements, simulated robot control, custom field-robot inter-

action dynamics, etc.) to evaluate the real-time operation of custom-developed

field robotic algorithms executed on target robotic hardware, which may or may

not support the use of ROS, as if they were in a real physical field.
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Experimental results were presented comparing the raw Lidar measurements

obtained for three different pairs (i.e real and corresponding simulated counter-

part) of agricultural field environments. The results showed that the simulated

raw Lidar measurements (resulting from the ARDEE simulation) very closely

matched real raw Lidar measurements (resulting from a physical Hokuyo UST-

10LX Lidar) for all three field environment variations.

In addition to raw Lidar measurements, the experimental results presented

were used to compare the real-time performance of a Lidar-based under-canopy

crop row navigation technique, executed on the target hardware of a novel field

robotic platform (Terrasentia), from operation in the same three different pairs

of field environments. The results showed that ARDEE, and the developed

UDP-based communication mechanisms, successfully enables the development

and evaluation of a Lidar-based field robotic algorithm’s real-time performance

on its target hardware using the Gazebo simulated environment as a surrogate

for the sensor measurements input and the control of the robotic platform.
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[72] Leon Žlajpah. “Simulation in robotics”. In: Mathematics and Comput-

ers in Simulation 79.4 (2008). 5th Vienna International Conference on

Mathematical Modelling/Workshop on Scientific Computing in Electronic

Engineering of the 2006 International Conference on Computational Sci-

ence/Structural Dynamical Systems: Computational Aspects, pp. 879 –

897. issn: 0378-4754. doi: https://doi.org/10.1016/j.matcom.2008.02.017.

url: http://www.sciencedirect.com/science/article/pii/S0378475408001183.

132

https://doi.org/10.4271/2002-01-1565
https://doi.org/10.4271/2002-01-1565
https://doi.org/10.4271/2002-01-1565
https://doi.org/https://doi.org/10.1016/j.matcom.2008.02.017
http://www.sciencedirect.com/science/article/pii/S0378475408001183


Appendix A: Code Listings

A.1 Background

A.1.1 Example SDF Model Representation

1 <?xml v e r s i on=’ 1 .0 ’ ?>

2 <sd f v e r s i o n=” 1 .4 ”>

3 <model name=” s imple gps ”>

4 <pose>0 0 0 0 0 0</ pose>

5 <s t a t i c> f a l s e</ s t a t i c>

6

7 < !−− ====================================================

8 Phys i ca l Body Component D e f i n i t i o n s

9 ========================================================= −−>
10 < l i n k name=” g p s l i n k ”>

11 < !−− I n e r t i a l Body ( Used by Phys ics Engine ) Parameters −−>
12 < i n e r t i a l>

13 <mass>0 .5</mass>

14 <pose>0 0 0 0 0 0</ pose>

15 < i n e r t i a>

16 <ixx>0 .05</ ixx>

17 <ixy>0 .0</ ixy>

18 <i x z>0 .0</ ix z>

19 <iyy>0 .05</ iyy>

20 <i y z>0 .0</ iy z>

21 < i z z>0 .05</ i z z>

22 </ i n e r t i a>

23 </ i n e r t i a l>

24

25 < !−− C o l l i s i o n a l Body ( w i l l h i t other o b j e c t s ) Parameters −−>
26 <c o l l i s i o n name=” c o l l i s i o n ”>

27 <pose>0 0 0 0 0 0</ pose>

28 <geometry>
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29 <mesh>

30 <u r i>model: // s imple gps mode l /meshes/antenna 3GO16 . s t l<

/ u r i>

31 </mesh>

32 </geometry>

33 </ c o l l i s i o n>

34

35 < !−− Visua l Body ( the one seen in Gazebo ) Parameters −−>
36 <v i s u a l name=” v i s u a l ”>

37 <pose>0 0 0 0 0 0</ pose>

38 <geometry>

39 <mesh>

40 <u r i>model: // s imple gps mode l /meshes/antenna 3GO16 . s t l<

/ u r i>

41 </mesh>

42 </geometry>

43 </ v i s u a l>

44 </ l i n k>

45

46 < !−− ====================================================

47 Gazebo Sensor P lug in : Generates measurements

48 ========================================================= −−>
49 <p lug in name=”${name} c o n t r o l l e r ” f i l ename=” l i b g a z e b o r o s g p s .

so ”>

50 <bodyName>g p s l i n k</bodyName>

51 <frameId>g p s l i n k</ frameId>

52 <topicName>gps</topicName>

53 <velocityTopicName>gps/ f i x v e l o c i t y</ velocityTopicName>

54 <updateRate>5</updateRate>

55 <gauss ianNoi se>0 .05 0 .05 0 .05</ gauss ianNoi se>

56 <alwaysOn>1</alwaysOn>

57

58 < !−− Use GPS coo rd ina t e s o f Urbana , IL f o r o r i g i n o f

r e f e r e n c e −−>
59 < !−− Ref . A l t i tude i s he ight above WGS84 e l l i p s o i d . NOT SEA

LEVEL −−>
60 <r e f e r e n c e A l t i t u d e>−32.593</ r e f e r e n c e A l t i t u d e>

61 <r e f e r e n c e L a t i t u d e>40.1105875</ r e f e r e n c e L a t i t u d e>

62 <r e f e r enceLong i tude>−88.2072697</ r e f e r enceLong i tude>

63 </ p lug in>

64

65 </model>

66 </ sd f>

Listing A.1: Shows the SDF code that can be used to create a simple GPS

sensor like the one shown in Figure 2.12.
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A.1.2 Example URDF Model Representation

1 <?xml v e r s i on=” 1 .0 ”?>

2 <robot name=” sen so r gp s ” xmlns :xacro=” ht tp : //www. ros . org / wik i / xacro

”>

3

4 <x a c r o : i n c l u d e f i l ename=” $( f i n d a r d e e s e n s o r s ) / urdf / i n c l u d e s /

m a t e r i a l s . urdf . xacro ”/>

5

6 <xacro:macro name=” sen so r gp s ” params=”name parent ∗ o r i g i n

c o l o r r e f l a t r e f l o n g r e f h ead d r i f t v e l d r i f t no i s e v e l n o i s e

update rate ”>

7

8

9 < l i n k name=”${name} l i n k ”>

10 < i n e r t i a l>

11 <mass value=” 0 .5 ”/>

12 <o r i g i n rpy=”0 0 0” xyz=”0 0 0”/>

13 < i n e r t i a ixx=” 0 .05 ” ixy=”0” ix z=”0” iyy=” 0 .05 ” i y z=”0” i z z=

” 0 .05 ”/>

14 </ i n e r t i a l>

15 <v i s u a l>

16 <o r i g i n rpy=”0 0 0” xyz=”0 0 0”/>

17 <geometry>

18 <mesh f i l ename=” package : // a r d e e s e n s o r s /meshes/

antenna 3GO16 . s t l ”/>

19 </geometry>

20 <x a c r o : c o l o r m a t e r i a l c o l o r=”${ c o l o r }”/>

21 </ v i s u a l>

22 <c o l l i s i o n>

23 <o r i g i n rpy=”0 0 0” xyz=”0 0 0”/>

24 <geometry>

25 <mesh f i l ename=” package : // a r d e e s e n s o r s /meshes/

antenna 3GO16 . s t l ” s c a l e=” 1 .0 1 .0 1 .0 ”/>

26 </geometry>

27 </ c o l l i s i o n>

28 </ l i n k>

29

30

31 < j o i n t name=”${name} j o i n t ” type=” f i x e d ”>

32 <a x i s xyz=”0 1 0”/>

33 <x a c r o : i n s e r t b l o c k name=” o r i g i n ”/>

34 <parent l i n k=”${ parent }”/>

35 <c h i l d l i n k=”${name} l i n k ”/>

36 </ j o i n t>
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37

38 <x a c r o : c o l o r g a z e b o parent=”${name} l i n k ” c o l o r=”${ c o l o r }”/>

39

40

41 < !−− ====================================================

42 Gazebo Sensor P lug in : Generates measurements

43 ========================================================= −−>
44 <gazebo>

45 <p lug in name=”${name} c o n t r o l l e r ” f i l ename=” l i b g a z e b o r o s g p s

. so ”>

46 <bodyName>g p s l i n k</bodyName>

47 <frameId>g p s l i n k</ frameId>

48 <topicName>gps</topicName>

49 <velocityTopicName>gps/ f i x v e l o c i t y</ velocityTopicName>

50 <updateRate>5</updateRate>

51 <gauss ianNoi se>0 .05 0 .05 0 .05</ gauss ianNoi se>

52 <alwaysOn>1</alwaysOn>

53

54 < !−− Use GPS coo rd ina t e s o f Urbana , IL f o r o r i g i n o f

r e f e r e n c e −−>
55 < !−− Ref . A l t i tude i s he ight above WGS84 e l l i p s o i d . NOT SEA

LEVEL −−>
56 <r e f e r e n c e A l t i t u d e>−32.593</ r e f e r e n c e A l t i t u d e>

57 <r e f e r e n c e L a t i t u d e>40.1105875</ r e f e r e n c e L a t i t u d e>

58 <r e f e r enceLong i tude>−88.2072697</ r e f e r enceLong i tude>

59 </ p lug in>

60 </ gazebo>

61

62 </ xacro:macro>

63 </ robot>

Listing A.2: Shows the URDF/xacro code that can be used to create a simple

GPS sensor like the one shown in Figure 2.12.

A.2 Environment Development

A.2.1 Skid-Steering Plugin

1 <gazebo>

2 <p lug in name=” s k i d s t e e r d r i v e c o n t r o l l e r ” f i l ename=”

l i b g a z e b o r o s s k i d s t e e r d r i v e . so ”>

3 <updateRate>50 .0</updateRate>

4 <robotNamespace></robotNamespace>
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5 < l e f t F r o n t J o i n t> f r o n t l e f t w h e e l r e v</ l e f t F r o n t J o i n t>

6 <r i gh tFrontJo in t> f r o n t r i g h t w h e e l r e v</ r i gh tFrontJo in t>

7 < l e f t R e a r J o i n t>r e a r l e f t w h e e l r e v</ l e f t R e a r J o i n t>

8 <r i gh tRearJo in t>r e a r r i g h t w h e e l r e v</ r i ghtRearJo in t>

9 <whee lSeparat ion>0 .4318</ whee lSeparat ion>

10 <topicName>cmd vel</topicName>

11 <robotBaseFrame>b a s e f o o t p r i n t</robotBaseFrame>

12 <torque>10</ torque>

13 <broadcastTF>t rue</broadcastTF>

14 <commandTopic>cmd vel</commandTopic>

15 <odometryTopic>odom</odometryTopic>

16 <odometryFrame>/odom</odometryFrame>

17 <covar i ance x>0 .0001</ covar i ance x>

18 <covar i ance y>0 .0001</ covar i ance y>

19 <covar iance yaw>0 .01</ covar iance yaw>

20 </ p lug in>

21 </ gazebo>

Listing A.3: XML snippet showing how the already developed skid-steering

controller plugin can be attached to a simulated robot model in order to control

that model using high-level motion commands.

A.2.2 Torsional Spring Plugin

1 <gazebo>

2 <p lug in name=” s p r i n g p l u g i n ${ p r e f i x } ${ s u f f i x }” f i l ename=”

l i b T o r s i o n a l S p r i n g P l u g i n . so ” >

3 <j o i n t h a n d l e>${ p r e f i x } ${ s u f f i x } l e g j o i n t</ j o i n t h a n d l e>

4 < s p r i n g s t i f f n e s s>${ s t i f f n e s s }</ s p r i n g s t i f f n e s s>

5 <spring damping>${damping}</ spring damping>

6 <s p r i n g r e f e r e n c e>${ s p r i n g r e f e r e n c e }</ s p r i n g r e f e r e n c e>

7 <u p p e r l i m i t>${ u p p e r l i m i t }</ u p p e r l i m i t>

8 < l o w e r l i m i t>${ l o w e r l i m i t }</ l o w e r l i m i t>

9 <verbose>${ verbose }</ verbose>

10 </ p lug in>

11 </ gazebo>

Listing A.4: Snippet of the XML code used to attach the developed torsional

spring plugin to any simulated robot model’s leg link using the custom xacro

macro input parameters for modifying the associated dynamic spring variables.

137



A.2.3 Rotary Encoder Plugin

1 <xacro:macro name=” senso r encode r ” params=” n s :=/ parent j o i n t :=

f r o n t l e f t w h e e l r e v d : =0.15 t o p i c : =/encoder u p d a t e r a t e : =100.0

ppr : =150”>

2 < l i n k name=”${ parent } e n c o d e r l i n k ”>

3 <c o l l i s i o n>

4 <o r i g i n rpy=”−0.02 0 .03 −0.02” xyz=”0 0 0”/>

5 <geometry>

6 <box s i z e=” .03 .04 .04 ”/>

7 </geometry>

8 </ c o l l i s i o n>

9

10 <v i s u a l>

11 <o r i g i n xyz=”0 0 0” rpy=”0 0 0”/>

12 <geometry>

13 <mesh f i l ename=” package : // a r d e e s e n s o r s /meshes/

ro ta ry encode r . dae”/>

14 </geometry>

15 </ v i s u a l>

16

17 < i n e r t i a l>

18 <mass value=”1e−5” />

19 <o r i g i n xyz=”0 0 0” rpy=”0 0 0”/>

20 < i n e r t i a ixx=”1e−6” ixy=”0” ix z=”0” iyy=”1e−6” iy z=”0” i z z=”1

e−6” />

21 </ i n e r t i a l>

22 </ l i n k>

23

24 < j o i n t name=”${ parent } e n c o d e r j o i n t ” type=” f i x e d ”>

25 <o r i g i n xyz=”0 0 0” rpy=”0 0 0”/>

26 <parent l i n k=”${ parent }”/>

27 <c h i l d l i n k=”${ parent } e n c o d e r l i n k ”/>

28 </ j o i n t>

29

30

31 <gazebo>

32 <p lug in name=”${ parent } e nc o de r p lu g in ” f i l ename=”

l i b a r d e e r o s e n c o d e r . so ”>

33 <robotNamespace>${ns}</robotNamespace>

34 < j o i n t>${ j o i n t }</ j o i n t>

35 <wheelDiameter>${d}</ wheelDiameter>

36 <pulsesPR>${ppr}</pulsesPR>

37 <encoderTopic>${ t op i c }</ encoderTopic>

38 <updateRate>${ update rate }</updateRate>
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39 </ p lug in>

40 </ gazebo>

41 </ xacro:macro>

Listing A.5: XML snippet used to add the developed simulated rotary encoder

with custom parameters to a simulated object’s joint.

A.2.4 Variable-Accuracy GPS Plugin

1 <?xml v e r s i on=” 1 .0 ” ?>

2 <robot xmlns :xacro=” h t t p : // ros . org / wik i / xacro ”>

3 < f i e l d g p s n o i s e c h a r a c t e r i s t i c s>

4 <b i o m a s s h e i g h t n o i s e c o e f f i c i e n t>

5 <r1>0</ r1>

6 <r2>. 2</ r2>

7 <mean>1</mean>

8 <var iance>1</ var iance>

9 </ b i o m a s s h e i g h t n o i s e c o e f f i c i e n t>

10 <b i o m a s s h e i g h t n o i s e c o e f f i c i e n t>

11 <r1>. 2</ r1>

12 <r2>. 5</ r2>

13 <mean>1</mean>

14 <var iance>1 .2</ var iance>

15 </ b i o m a s s h e i g h t n o i s e c o e f f i c i e n t>

16 <b i o m a s s h e i g h t n o i s e c o e f f i c i e n t>

17 <r1>. 5</ r1>

18 <r2>1</ r2>

19 <mean>1</mean>

20 <var iance>1 .5</ var iance>

21 </ b i o m a s s h e i g h t n o i s e c o e f f i c i e n t>

22 <b i o m a s s h e i g h t n o i s e c o e f f i c i e n t>

23 <r1>1</ r1>

24 <r2>2</ r2>

25 <mean>1</mean>

26 <var iance>4</ var iance>

27 </ b i o m a s s h e i g h t n o i s e c o e f f i c i e n t>

28 <b i o m a s s h e i g h t n o i s e c o e f f i c i e n t>

29 <r1>2</ r1>

30 <r2>−1</ r2>

31 <mean>1</mean>

32 <var iance>5</ var iance>

33 </ b i o m a s s h e i g h t n o i s e c o e f f i c i e n t>

34 </ f i e l d g p s n o i s e c h a r a c t e r i s t i c s>
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35 </ robot>

Listing A.6: Example XML file used to define the different GPS noise coefficients

and the ranges in which they are effective.

A.2.5 Variable-Accuracy GPS Dropouts Config

1 <?xml v e r s i on=” 1 .0 ” ?>

2 <robot xmlns :xacro=” h t t p : // ros . org / wik i / xacro ”>

3 <p lo t>

4 <p l o t i d>${ p l o t i d }</ p l o t i d>

5 <p l o t r a n g e i n d e x>${ p l o t r a n g e i n d e x }</ p l o t r a n g e i n d e x>

6 <p l o t c r o s s r a n g e i n d e x>${ p l o t c r o s s r a n g e i n d e x }</

p l o t c r o s s r a n g e i n d e x>

7 <x>${x}</x>

8 <y>${y}</y>

9 <z>${ z}</z>

10 <r o t a t i o n>${ r o t a t i o n }</ r o t a t i o n>

11 <row count>${ row count}</ row count>

12 <row width>${ row width}</ row width>

13 <row length>${ row length }</ row length>

14 <ave rage he i gh t>${ ave rage he i gh t }</ ave rage he i gh t>

15 <ave rage dens i t y>${ p l o t i d }</ ave rage dens i t y>

16 </ p l o t>

17 </ robot>

Listing A.7: Example XML file used to define the different bounding regions

where GPS dropouts, or accuracy reductions, occur, including the parameters

associated with each region.

A.2.6 Simulated Battery Plugin

1 <gazebo>

2 <p lug in name=” s imu la t ed bat t e ry ” f i l ename=” l i b a r d e e r o s b a t t e r y .

so ”>

3 <updateRate>100 .0</updateRate>

4 <robotBaseFrame>b a s e f o o t p r i n t</robotBaseFrame>

5 <batteryTopic>ardee / bat te ry</ batteryTopic>

6 <batteryLink>main battery</ batteryLink>

7 <batteryName>5200mAh 3S LiPo</batteryName>

8 <capac i ty>5 .2</ capac i ty>
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9 < i n i t i a l C h a r g e>5 .2</ i n i t i a l C h a r g e>

10 <vMax>16 .0</vMax>

11 <vMin>2 .0</vMin>

12 <v I n i t i a l>14 .0</ v I n i t i a l>

13 <de l taVo l tage>0 .01</ de l taVo l tage>

14 </ p lug in>

15 </ gazebo>

Listing A.8: Example XML snippet used to add the developed simulated battery

plugin with custom parameters to a simulated robot.

A.2.7 Generic IMU Plugin

1 <xac ro : s enso r imu name=”imu” parent=” b a s e f o o t p r i n t ” c o l o r=” red ”

2 update rate=” 50 .0 ”

3 no i s e=” 0 .005 ”

4 y a w o f f s e t=” 0 .0 ”

5 yaw dr i f t=” 0 .02 ”

6 yaw noise=” 0 .01 ”

7 r a t e o f f s e t=” 0 .0 0 .0 0 .0 ”

8 r a t e d r i f t=” 0 .002 0 .002 0 .002 ”

9 r a t e n o i s e=” 0 .001 0 .001 0 .001 ”

10 a c c e l o f f s e t=” 0 .0 0 .0 0 .0 ”

11 a c c e l d r i f t=” 0 .005 0 .005 0 .005 ”

12 a c c e l n o i s e=” 0.005 0 .005 0 .005 ”>

13 <o r i g i n xyz=”0 0 0” rpy=”0 0 0”/>

14 </ xac ro : s enso r imu>

Listing A.9: Example URDF xacro snippet used to add an IMU with custom

parameters to a robot.

A.2.8 Example Specific Robot Base

1 < !−− Macro f o r c r e a t i n g the 2nd gene ra t i on c h a s s i s used to attach

a l l the other components −−>
2 <xacro:macro name=” c h a s s i s v 2 ” params=”name s t l c h a s s i s s t l l i d

c o l o r ”>

3

4 < !−− Create the c h a s s i s body l i n k −−>
5 < l i n k name=”${name}”>

6 < !−− Conf igure the i n e r t i a l body −−>
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7 < i n e r t i a l>

8 <o r i g i n xyz=”0 −0.01723 0.04522 ” rpy=”0 0 0” />

9 <mass value=” 7.227 ” />

10 < i n e r t i a

11 ixx=” 0.09243 ”

12 ixy=” 0.00023 ”

13 i x z=”0”

14 iyy=” 0.05913 ”

15 i y z=” 0.00445 ”

16 i z z=” 0 .146 ” />

17 </ i n e r t i a l>

18

19 < !−− Conf igure the v i s u a l body −−>
20 <v i s u a l>

21 <o r i g i n xyz=”−0.2325 0 .264 −0.07325” rpy=” 1.5708 0 0

” />

22 <geometry>

23 <mesh f i l ename=”${ s t l c h a s s i s }” s c a l e=” 0 .001

0 .001 0 .001 ”/>

24 </geometry>

25 <x a c r o : c o l o r m a t e r i a l c o l o r=”${ c o l o r }”/>

26 </ v i s u a l>

27

28 < !−− Conf igure the c o l l i s i o n a l body −−>
29 <c o l l i s i o n>

30 <o r i g i n xyz=”−0.2325 0 .264 −0.07325” rpy=” 1.5708 0 0

” />

31 <geometry>

32 <mesh f i l ename=”${ s t l c h a s s i s }” s c a l e=” 0 .001

0 .001 0 .001 ” />

33 </geometry>

34 </ c o l l i s i o n>

35 </ l i n k>

36

37

38 < !−− Create the l i d body l i n k to attach to the c h a s s i s body −−
>

39 < l i n k name=” l i d l i n k ”>

40 < !−− Conf igure the i n e r t i a l body −−>
41 < i n e r t i a l>

42 <o r i g i n xyz=”−0.00997 0.12337 0.07276 ” rpy=”0 0 0” /

>

43 <mass value=” 0 .01 ” />

44 < i n e r t i a

45 ixx=” 0.0242 ”

46 ixy=”0”
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47 i x z=” 0.00011 ”

48 iyy=” 0.03556 ”

49 i y z=”0”

50 i z z=” 0.01136 ” />

51 </ i n e r t i a l>

52

53 < !−− Conf igure the v i s u a l body −−>
54 <v i s u a l>

55 <o r i g i n xyz=”0 0 0” rpy=”0 0 0” />

56 <geometry>

57 <mesh f i l ename=”${ s t l l i d }” />

58 </geometry>

59 <x a c r o : c o l o r m a t e r i a l c o l o r=”${ c o l o r }”/>

60 </ v i s u a l>

61

62 < !−− Conf igure the c o l l i s i o n a l body −−>
63 <c o l l i s i o n>

64 <o r i g i n xyz=”0 0 0” rpy=”0 0 0” />

65 <geometry>

66 <mesh f i l ename=”${ s t l l i d }” />

67 </geometry>

68 </ c o l l i s i o n>

69 </ l i n k>

70

71 < !−− Attach the l i d l i n k to the c h a s s i s with a f i x e d j o i n t −−>
72 < j o i n t name=” l i d j o i n t ” type=” f i x e d ”>

73 <o r i g i n xyz=” 0.00974 0.08522 0.00018 ” rpy=” 1.5708 0 0” />

74 <parent l i n k=”${name}” />

75 <c h i l d l i n k=” l i d l i n k ” />

76 <a x i s xyz=”0 0 0” />

77 </ j o i n t>

78

79 < !−− Add f r i c t i o n to the c h a s s i s to keep i t from s l i d i n g

around in Gazebo −−>
80 <x a c r o : a d d f r i c t i o n g a z e b o parent=”${name}” mu1=” 1 .0 ” mu2=” 1 .0

” f d i r 1=”0 0 0” />

81

82 < !−− Customize the c o l o r o f both the c h a s s i s and the l i d as

seen in Gazebo −−>
83 <x a c r o : c o l o r g a z e b o parent=”${name}” c o l o r=”${ c o l o r }”/>

84 <x a c r o : c o l o r g a z e b o parent=” l i d l i n k ” c o l o r=”${ c o l o r }”/>

85
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86 </ xacro:macro>

Listing A.10: Shows an example implementation that users could use for the

creation and later usage, of a custom robot chassis. Particularly, this shows the

creation of the second-generation Terrasentia robot’s base as a Gazebo simulated

model.

A.2.9 Example Robot Base Configuration File

1 <?xml v e r s i on=” 1 .0 ” ?>

2 <robot xmlns :xacro=” h t t p : // ros . org / wik i / xacro ”>

3

4 < !−− ====================================================

5 STL Fi l epa th s

6 ========================================================= −−>
7 <xac ro :p rope r ty name=” c h a s s i s s t l ” va lue=” package : //

t e r r a s e n t i a d e s c r i p t i o n /meshes/v1/ b a s e l i n k .STL”/>

8 <xac ro :p rope r ty name=” l e g 1 s t l ” va lue=” package : //

t e r r a s e n t i a d e s c r i p t i o n /meshes/v1/ l e g t y p e 1 .STL”/>

9 <xac ro :p rope r ty name=” l e g 2 s t l ” va lue=” package : //

t e r r a s e n t i a d e s c r i p t i o n /meshes/v1/ l e g t y p e 2 .STL”/>

10 <xac ro :p rope r ty name=” l i d s t l ” va lue=” package : //

t e r r a s e n t i a d e s c r i p t i o n /meshes/v1/ l i d .STL”/>

11 <xac ro :p rope r ty name=” w h e e l s t l ” va lue=” package : //

t e r r a s e n t i a d e s c r i p t i o n /meshes/v1/ wheel . STL”/>

12

13 < !−− ====================================================

14 Def ine Var iab l e s

15 ========================================================= −−>
16 <xac ro :p rope r ty name=”WHEEL RADIUS” value=” 0.097 ”/>

17 <xac ro :p rope r ty name=”WHEEL DEPTH” value=” 0.03838 ”/>

18 <xac ro :p rope r ty name=”CHASSIS SIZE” value=” 0.35322 0 .508

0.13136 ”/>

19 <xac ro :p rope r ty name=”CHASSIS OFFSET” value=” 0.04545 ”/>

20 <xac ro :p rope r ty name=”LID SIZE” value=” 0.35322 0 .508 0 .015 ”/>

21 <xac ro :p rope r ty name=”LID OFFSET” value=” 0 .0 ”/>

22 <xac ro :p rope r ty name=”FOOTPRINT OFFSET” value=” 0.175 ”/>

23

24 < !−− ====================================================

25 Suspens ion P r o p e r t i e s

26 ========================================================= −−>
27 <xac ro :p rope r ty name=” s u s p s t i f f n e s s ” value=”100”/>

28 <xac ro :p rope r ty name=” susp damping ” value=”1”/>
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29 <xac ro :p rope r ty name=” s u s p r e f e r e n c e ” value=”0”/>

30

31 < !−− ====================================================

32 Wheel P r o p e r t i e s

33 ========================================================= −−>
34 <xac ro :p rope r ty name=”FR WHEEL FRICTION” value=” 0 .75 ”/>

35 <xac ro :p rope r ty name=”FL WHEEL FRICTION” value=” 0 .75 ”/>

36 <xac ro :p rope r ty name=”RR WHEEL FRICTION” value=” 0 .75 ”/>

37 <xac ro :p rope r ty name=”RL WHEEL FRICTION” value=” 0 .75 ”/>

38

39 < !−− ====================================================

40 Constants

41 ========================================================= −−>
42 <xac ro :p rope r ty name=”M PI” value=” 3.1415926535897931 ” />

43

44 </ robot>

Listing A.11: An example base configuration file, named

tsv1 config.urdf.xacro, for the first-generation Terrasentia simulated robot

base parameters.

A.2.10 Example Sensor Attachment Configuration File

1 <?xml v e r s i on=” 1 .0 ” ?>

2 <robot xmlns :xacro=” h t t p : // ros . org / wik i / xacro ”>

3

4 < !−− ====================================================

5 Inc lude Sensor Database f o r Ava i l ab l e Sensors

6 ========================================================= −−>
7 <x a c r o : i n c l u d e f i l ename=” $( f i n d a r d e e s e n s o r s ) / urdf /

a l l s e n s o r s . urdf . xacro ” />

8

9 < !−− ====================================================

10 Attach and Conf igure Sensors

11 ========================================================= −−>
12

13 < !−− LiDAR −−>
14 <xac ro : s en so r hokuyo us t10 l x name=”hokuyo” parent=”

b a s e f o o t p r i n t ” c o l o r=” black ”>

15 <o r i g i n xyz=” 0 .22 0 0 .173 ” rpy=”0 0 0”/>

16 </ xac ro : s en so r hokuyo us t10 l x>

17

18 < !−− Front Camera −−>
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19 <x a c r o : s e n s o r u e y e c p g i g e name=”camera” parent=”

b a s e f o o t p r i n t ” c o l o r=” purple ”>

20 <o r i g i n xyz=” 0 .23 0 0 .06 ” rpy=”0 0 0”/>

21 </ x a c r o : s e n s o r u e y e c p g i g e>

22

23 < !−− Le f t Side Camera −−>
24 <x a c r o : s e n s o r u e y e c p g i g e name=” c a m e r a l e f t ” parent=”

b a s e f o o t p r i n t ” c o l o r=” purple ”>

25 <o r i g i n xyz=”0 0 .16 0 .06 ” rpy=”0 0.349066 1 .5708 ”/>

26 </ x a c r o : s e n s o r u e y e c p g i g e>

27

28 < !−− IMU −−>
29 <xac ro : s en so r imu ardee name=”imu” parent=” b a s e f o o t p r i n t ”

c o l o r=” red ”

30 update rate=” 50 .0 ”

31 no i s e=” 0 .005 ”

32 y a w o f f s e t=” 0 .0 ”

33 yaw dr i f t=” 0 .02 ”

34 yaw noise=” 0 .01 ”

35 r a t e o f f s e t=” 0 .0 0 .0 0 .0 ”

36 r a t e d r i f t=” 0 .002 0 .002 0 .002 ”

37 r a t e n o i s e=” 0 .001 0 .001 0 .001 ”

38 a c c e l o f f s e t=” 0 .0 0 .0 0 .0 ”

39 a c c e l d r i f t=” 0 .005 0 .005 0 .005 ”

40 a c c e l n o i s e=” 0 .005 0 .005 0 .005 ”>

41 <o r i g i n xyz=”0 0 0” rpy=”0 0 0”/>

42 </ xac ro : s en so r imu ardee>

43

44 < !−− GPS w/ Var iab le Dropouts−−>
45 <xa c r o : s en so r gp s w i th d r opo u t name=”gps” parent=”

b a s e f o o t p r i n t ” c o l o r=” white ”

46 r e f l a t=” 40.1021496545 ”

47 r e f l o n g=”−88.2267974168”

48 r e f h ead=” 90 .0 ”

49 update rate=” 10 .0 ”

50 d r i f t=” 0 .0 ”

51 no i s e=” 0 .001 ”

52 v e l d r i f t=” 0.00001 ”

53 v e l n o i s e=” 0.00001 ”>

54 <o r i g i n xyz=”−0.14 0 0 .12 ” rpy=”0 0 0”/>

55 </ xac ro : s e n s o r gp s w i th d r opo u t>

56

57 < !−− Simple Simulated Battery −−>
58 <gazebo>

59 <p lug in name=” s imu la t ed bat t e ry ” f i l ename=”

l i b a r d e e r o s b a t t e r y . so ”>
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60 <updateRate>100 .0</updateRate>

61 <robotNamespace></robotNamespace>

62 <robotBaseFrame>b a s e f o o t p r i n t</robotBaseFrame>

63 <commandTopic>cmd vel</commandTopic>

64 <batteryTopic>ardee / bat te ry</ batteryTopic>

65 <batteryLink>main battery</ batteryLink>

66 <batteryName>5200mAh 3S LiPo</batteryName>

67 <constantCoef>12 .694</ constantCoef>

68 < l i n e a r C o e f>−100.1424</ l i n e a r C o e f>

69 < i n i t i a l C h a r g e>5 .2</ i n i t i a l C h a r g e>

70 <capac i ty>5 .2</ capac i ty>

71 < i n t e r n a l R e s i s t a n c e>0.061523</ i n t e r n a l R e s i s t a n c e>

72 <smoothCurrentTau>1 .9499</smoothCurrentTau>

73 <vMax>16 .0</vMax>

74 <vMin>2 .0</vMin>

75 <v I n i t i a l>14 .0</ v I n i t i a l>

76 <de l taVo l tage>0 .01</ de l taVo l tage>

77 </ p lug in>

78 </ gazebo>

79

80 </ robot>

Listing A.12: An example configuration file, named

tsv1 sensors config.urdf.xacro, for all the simulated sensors attached to

the first-generation Terrasentia simulated robot base.

A.2.11 Example Specific Robot Model Assembly URDF

1 <?xml v e r s i on=” 1 .0 ”?>

2 <robot name=”TSv1” xmlns :xacro=” h t t p : // ros . org / wik i / xacro ”>

3

4 < !−− ====================================================

5 Inc lude s f o r Components

6 ========================================================= −−>
7 <x a c r o : i n c l u d e f i l ename=” $( f i n d t e r r a s e n t i a d e s c r i p t i o n ) / urdf /

l i n k s v 1 . urdf . xacro ”/>

8 <x a c r o : i n c l u d e f i l ename=” $( f i n d t e r r a s e n t i a d e s c r i p t i o n ) / urdf /

j o i n t s v 1 . urdf . xacro ”/>

9

10 < !−− ====================================================

11 Reference the Robot Conf igurat ion F i l e s

12 ========================================================= −−>
13

14 < !−− Robot base c o n f i g u r a t i o n −−>
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15 <x a c r o : i n c l u d e f i l ename=” $( f i n d t e r r a s e n t i a d e s c r i p t i o n ) / c o n f i g /

t s v 1 c o n f i g . urdf . xacro ”/>

16 < !−− Attached s e n s o r s c o n f i g u r a t i o n −−>
17 <x a c r o : i n c l u d e f i l ename=” $( f i n d t e r r a s e n t i a d e s c r i p t i o n ) /

c o n f i g / t s v 1 s e n s o r s c o n f i g . urdf . xacro ”/>

18

19 < !−− ====================================================

20 Create each i n d i v i d u a l body l i n k component

21 ========================================================= −−>
22

23 < !−− Create the c h a s s i s which w i l l act as the s i n g l e main body

l i n k to attach everyth ing e l s e −−>
24 <x a c r o : c h a s s i s v 0 name=” b a s e f o o t p r i n t ” s t l=”${CHASSIS STL}” s i z e

=”${CHASSIS SIZE}” z o f f s e t=”${CHASSIS OFFSET}” c o l o r=” grey ”/>

25

26 < !−− Creates the l i d body −−>
27 <x a c r o : l i d s t l=”${LID STL}” s i z e=”${LID SIZE}” z o f f s e t=”${

LID OFFSET}” c o l o r=” grey ”/>

28

29 < !−− Creates each l e g body −−>
30 <x a c r o : l e g t y p e 1 p r e f i x=” f r o n t ” s u f f i x=” r i g h t ” s t l=”${

l e g 1 s t l }” c o l o r=” orange ”/>

31 <x a c r o : l e g t y p e 1 p r e f i x=” rea r ” s u f f i x=” l e f t ” s t l=”${ l e g 1 s t l }
” c o l o r=” orange ”/>

32 <x a c r o : l e g t y p e 2 p r e f i x=” f r o n t ” s u f f i x=” l e f t ” s t l=”${ l e g 2 s t l

}” c o l o r=” orange ”/>

33 <x a c r o : l e g t y p e 2 p r e f i x=” rea r ” s u f f i x=” r i g h t ” s t l=”${ l e g 2 s t l

}” c o l o r=” orange ”/>

34

35 < !−− Create each wheel body −−>
36 <xacro :whee l p r e f i x=” f r o n t ” s u f f i x=” r i g h t ” s t l=”${ w h e e l s t l }”

c o l o r=” grey ”

37 rad iu s=”${WHEEL RADIUS}” depth=”${WHEEL DEPTH}” r e f l e c t=”

1” f r i c t i o n=”${FR WHEEL FRICTION}” s c a l e=” 0.0254 ”>

38 <o r i g i n xyz=”0 −${WHEEL DEPTH} 0” rpy=”0 0 0” />

39 </ xacro :whee l>

40

41 <xacro :whee l p r e f i x=” f r o n t ” s u f f i x=” l e f t ” s t l=”${ w h e e l s t l }”

c o l o r=” grey ”

42 rad iu s=”${WHEEL RADIUS}” depth=”${WHEEL DEPTH}” r e f l e c t=”

−1” f r i c t i o n=”${FL WHEEL FRICTION}” s c a l e=” 0.0254 ”>

43 <o r i g i n xyz=”0 ${WHEEL DEPTH} 0” rpy=”0 0 −3.154” />

44 </ xacro :whee l>

45

46 <xacro :whee l p r e f i x=” rea r ” s u f f i x=” r i g h t ” s t l=”${ w h e e l s t l }”

c o l o r=” grey ”

148



47 rad iu s=”${WHEEL RADIUS}” depth=”${WHEEL DEPTH}” r e f l e c t=”

1” f r i c t i o n=”${RR WHEEL FRICTION}” s c a l e=” 0.0254 ”>

48 <o r i g i n xyz=”0 −${WHEEL DEPTH} 0” rpy=”0 0 0” />

49 </ xacro :whee l>

50

51 <xacro :whee l p r e f i x=” rea r ” s u f f i x=” l e f t ” s t l=”${ w h e e l s t l }”

c o l o r=” grey ”

52 rad iu s=”${WHEEL RADIUS}” depth=”${WHEEL DEPTH}” r e f l e c t=”

−1” f r i c t i o n=”${RL WHEEL FRICTION}” s c a l e=” 0.0254 ”>

53 <o r i g i n xyz=”0 ${WHEEL DEPTH} 0” rpy=”0 0 −3.154” />

54 </ xacro :whee l>

55

56 < !−− ====================================================

57 Attach each i n d i v i d u a l l i n k to a s i n g l e l i n k

58 ========================================================= −−>
59

60 < !−− Attach the l i d to the c h a s s i s −−>
61 <x a c r o : a t t a c h l i d parent=” b a s e f o o t p r i n t ”>

62 <o r i g i n xyz=” 0.23525 0 .0214 −0.2085” rpy=”0 0 0”/>

63 </ x a c r o : a t t a c h l i d>

64

65 < !−− Attach the l e g s to the c h a s s i s −−>
66 <x a c r o : a t t a c h l e g t y p e 1 parent=” b a s e f o o t p r i n t ” l i n k=”

f r o n t r i g h t l e g ” r e f l e c t=”−1” min=”−0.682” max=”0” s t i f f n e s s=”

${ s u s p s t i f f n e s s }” damping=”${ susp damping}” r e f e r e n c e=”${
s u s p r e f e r e n c e }”>

67 <a x i s xyz=”0 0 −1”/>

68 </ x a c r o : a t t a c h l e g t y p e 1>

69

70 <x a c r o : a t t a c h l e g t y p e 1 parent=” b a s e f o o t p r i n t ” l i n k=”

r e a r l e f t l e g ” r e f l e c t=”1” min=”−0.682” max=”0” s t i f f n e s s=”${
s u s p s t i f f n e s s }” damping=”${ susp damping}” r e f e r e n c e=”${
s u s p r e f e r e n c e }”>

71 <a x i s xyz=”0 0 −1”/>

72 </ x a c r o : a t t a c h l e g t y p e 1>

73

74 <x a c r o : a t t a c h l e g t y p e 2 parent=” b a s e f o o t p r i n t ” l i n k=”

f r o n t l e f t l e g ” r e f l e c t=”1” min=”0” max=” 0.682 ” s t i f f n e s s=”${
s u s p s t i f f n e s s }” damping=”${ susp damping}” r e f e r e n c e=”${
s u s p r e f e r e n c e }”>

75 <a x i s xyz=”0 0 −1”/>

76 </ x a c r o : a t t a c h l e g t y p e 2>

77

78 <x a c r o : a t t a c h l e g t y p e 2 parent=” b a s e f o o t p r i n t ” l i n k=”

r e a r r i g h t l e g ” r e f l e c t=”−1” min=”−0.682” max=”0” s t i f f n e s s=”${
s u s p s t i f f n e s s }” damping=”${ susp damping}” r e f e r e n c e=”${
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s u s p r e f e r e n c e }”>

79 <a x i s xyz=”0 0 1”/>

80 </ x a c r o : a t t a c h l e g t y p e 2>

81

82 < !−− Attach the wheels to each l e g −−>
83 <x a c r o : a t t a c h w h e e l l e g p r e f i x=” f r o n t ” s u f f i x=” r i g h t ”>

84 <o r i g i n xyz=” 0.1601 0.023246 0.0254775 ” rpy=”−1.5708 0

0.95382 ” />

85 <a x i s xyz=”0 1 0”/>

86 </ x a c r o : a t t a c h w h e e l l e g>

87

88 <x a c r o : a t t a c h w h e e l l e g p r e f i x=” f r o n t ” s u f f i x=” l e f t ”>

89 <o r i g i n xyz=”−0.1601 0.023246 0.0254775 ” rpy=” 1.5708 0

2.18777 ” />

90 <a x i s xyz=”0 1 0”/>

91 </ x a c r o : a t t a c h w h e e l l e g>

92

93 <x a c r o : a t t a c h w h e e l l e g p r e f i x=” rea r ” s u f f i x=” r i g h t ”>

94 <o r i g i n xyz=”−0.1601 0.023246 0.0254775 ” rpy=”−1.5708 0

−0.95382” />

95 <a x i s xyz=”0 1 0”/>

96 </ x a c r o : a t t a c h w h e e l l e g>

97

98 <x a c r o : a t t a c h w h e e l l e g p r e f i x=” rea r ” s u f f i x=” l e f t ”>

99 <o r i g i n xyz=” 0.1601 0.023246 0.0254775 ” rpy=” 1.5708 0

4.09542 ” />

100 <a x i s xyz=”0 1 0”/>

101 </ x a c r o : a t t a c h w h e e l l e g>

102

103 < !−− =========================================================

104 Skid−St e e r i ng C o n t r o l l e r used f o r Robot Motion Control

105 ==============================================================

−−>
106 <gazebo>

107 <p lug in name=” s k i d s t e e r d r i v e c o n t r o l l e r ” f i l ename=”

l i b g a z e b o r o s s k i d s t e e r d r i v e . so ”>

108 <updateRate>50 .0</updateRate>

109 <robotNamespace></robotNamespace>

110 < l e f t F r o n t J o i n t> f r o n t l e f t w h e e l r e v</ l e f t F r o n t J o i n t

>

111 <r i gh tFrontJo in t> f r o n t r i g h t w h e e l r e v</

r i gh tFrontJo in t>

112 < l e f t R e a r J o i n t>r e a r l e f t w h e e l r e v</ l e f t R e a r J o i n t>

113 <r i gh tRearJo in t>r e a r r i g h t w h e e l r e v</ r i ghtRearJo in t

>

114 <whee lSeparat ion>0 .4318</ whee lSeparat ion>
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115 <wheelDiameter>0 .194</ wheelDiameter>

116 <topicName>cmd vel</topicName>

117 <robotBaseFrame>b a s e f o o t p r i n t</robotBaseFrame>

118 <torque>10</ torque>

119 <broadcastTF>t rue</broadcastTF>

120 <commandTopic>cmd vel</commandTopic>

121 <odometryTopic>odom</odometryTopic>

122 <odometryFrame>/odom</odometryFrame>

123 <covar i ance x>0 .0001</ covar i ance x>

124 <covar i ance y>0 .0001</ covar i ance y>

125 <covar iance yaw>0 .01</ covar iance yaw>

126 </ p lug in>

127 </ gazebo>

128 </ robot>

Listing A.13: An example robot model assembly file, named tsv1.urdf.xacro,

used to assemble all of the components and sensors necessary to represent,

configure, and simulate the first-generation Terrasentia platform shown in

Figure 4.17.

A.2.12 OGRE Material Script

1 mate r i a l Corn/ LeavesBase

2 {
3 techn ique

4 {
5 pass

6 {
7 a l p h a r e j e c t i o n g r e a t e r 128

8

9 t e x t u r e u n i t

10 {
11 t ex tu re AG20lef3 . t i f

12 }
13 cu l l ha rdware none

14 c u l l s o f t w a r e none

15 }
16 }
17 }

Listing A.14: A snippet from the material script used to fix rendering issues for

the model shown in Figure 4.2.
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A.2.13 Farm Gazebo World File

1 <?xml v e r s i on=” 1 .0 ” ?>

2 <sd f v e r s i o n=’ 1 .5 ’>

3 <world name=’ d e f a u l t ’>

4

5 < !−− When Gazebo i s loaded zoom in to where the robot spawns −−>
6 <gui>

7 <camera name=” user camera ”>

8 <pose>1.953330 −2.960521 2.117045 0 0.411456

1.892190</ pose>

9 </camera>

10 </ gui>

11

12 < !−− I n i t i a l i z e some l i g h t i n g condt ions −−>
13 < l i g h t name=’ sund i r ’ type=’ d i r e c t i o n a l ’>

14 <cast shadows>1</ cast shadows>

15 <pose>0 0 10 0 −0 0</ pose>

16 <d i f f u s e>1 .0 0 .95 0 .8 1</ d i f f u s e>

17 <spe cu l a r>0 .7 0 .7 0 .7 1</ specu l a r>

18 <at tenuat ion>

19 <range>1000</ range>

20 <constant>0 .9</ constant>

21 < l i n e a r>0 .01</ l i n e a r>

22 <quadrat i c>0 .001</ quadrat i c>

23 </ at tenuat ion>

24 <d i r e c t i o n>−0.3 0 .4 −1.0</ d i r e c t i o n>

25 </ l i g h t>

26

27 < !−− Conf igure ODE Phys ics eng ine parameters −−>
28 <phys i c s type=”ode”>

29 <max s t ep s i z e>0 .005</ max s t ep s i z e>

30 <r e a l t i m e f a c t o r>1 .0</ r e a l t i m e f a c t o r>

31 <r e a l t i m e u p d a t e r a t e>0 .0</ r e a l t i m e u p d a t e r a t e>

32 <g rav i ty>0 0 −9.8</ g rav i ty>

33 </ phys i c s>

34

35 < !−− Conf igure a l l o f the scene parameters −−>
36 <scene>

37 < !−− Use a blue sky with moving c louds −−>
38 <sky>

39 <c louds>

40 <speed>12</ speed>

41 </ c louds>

42 </ sky>
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43 < !−− Show the g r id on the f l o o r −−>
44 <g r id>t rue</ g r id>

45 </ scene>

46

47 < !−− Use the python−s c r i p t generated heightmap model −−>
48 <i n c l ude>

49 <u r i>model: // heightmap ground</ u r i>

50 <pose>0 0 0 0 0 0</ pose>

51 </ inc lude>

52

53 < !−− Use an ear ly−season crop p lo t model generated us ing python

−s c r i p t −−>
54 <i n c l ude>

55 <u r i>model: // s m a l l c o r n s t a l k p l o t</ u r i>

56 <pose>0 0 0 0 0 −1.57</ pose>

57 </ inc lude>

58 </ world>

59 </ sd f>

Listing A.15: An example world assembly file, named farm.world, used

to assemble all of the components necessary to represent and configure the

simulated world shown in Figure 4.23.

A.3 UDP Communication

A.3.1 ARDEE Message Header

1 #pragma once

2

3 typede f void ArdeeMessage ;

4

5 typede f s t r u c t Ardee Msg Data Header{
6 union{
7 i n t 3 2 t component id ;

8 i n t 3 2 t header ;

9 } ;

10 i n t 3 2 t msg type ;

11 i n t 3 2 t data type ;

12 i n t 3 2 t measurement type ;

13 i n t 3 2 t measurement length ;

14 }Ardee Msg Data Header ;

15

16 typede f enum ArdeeMessageType{
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17 ARDEE MESSAGE SET PORT = 0 ,

18 ARDEE MESSAGE CONTROL = 1 ,

19 ARDEE MESSAGE DATA GPS = 2 ,

20 ARDEE MESSAGE DATA GYRO = 3 ,

21 ARDEE MESSAGE DATA ACCELERATION = 4 ,

22 ARDEE MESSAGE DATA RCCOMMANDS = 5 ,

23 ARDEE MESSAGE DATA LIDAR = 6 ,

24 ARDEE MESSAGE DATA ORIENTATION = 7 ,

25 ARDEE MESSAGE DATA ENCODER = 8 ,

26 ARDEE MESSAGE DATA FRONT CAM = 9 ,

27 ARDEE MESSAGE DATA IMU = 9 ,

28 ARDEE MESSAGE DATA BATTERY = 10 ,

29 }ArdeeMessageType ;

30

31 typede f enum ArdeeDataType{
32 ARDEE DATA NONE = 0 ,

33 ARDEE DATA ALL = 1 ,

34 ARDEE DATA GPS = 2 ,

35 ARDEE DATA GYRO = 3 ,

36 ARDEE DATA ACCELERATION = 4 ,

37 ARDEE DATA LIDAR = 5 ,

38 ARDEE DATA ORIENTATION = 6 ,

39 ARDEE DATA ENCODER = 7 ,

40 ARDEE DATA FRONT CAM = 8 ,

41 ARDEE DATA IMU = 9 ,

42 ARDEE DATA BATTERY = 10 ,

43 num ArdeeDataTypes = 11 ,

44 }ArdeeDataType ;

45

46 typede f enum ArdeeMeasurementType{
47 ARDEE MEASUREMENT SINGLE = 0 ,

48 ARDEE MEASUREMENT MULTIPLE = 1 ,

49 }ArdeeMeasurementType ;

50

51 typede f enum ArdeeControlCode{
52 ARDEE CONTROL STOP = 0 ,

53 ARDEE CONTROL START = 1 ,

54 ARDEE CONTROL PAUSE = 2 ,

55 ARDEE CONTROL RESUME = 3 ,

56 }ArdeeControlCode ;

Listing A.16: Shows the ARDEE standardized data structures defined in C++

for an ARDEE Message Header packet.
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A.3.2 ARDEE Message Data

1 #pragma once

2

3 /∗∗ SECTION:

4 BASIC DATA

5 ∗/
6 typede f s t r u c t XYZ INT{
7 i n t 3 2 t x ;

8 i n t 3 2 t y ;

9 i n t 3 2 t z ;

10 } XYZ BASE INT ;

11

12 typede f s t r u c t ORIENTATION QUATERNION BASE INT{
13 i n t 3 2 t x ;

14 i n t 3 2 t y ;

15 i n t 3 2 t z ;

16 i n t 3 2 t w;

17 } ORIENTATION QUATERNION BASE INT;

18

19 typede f s t r u c t ORIENTATION EULER BASE INT{
20 i n t 3 2 t r o l l ;

21 i n t 3 2 t p i t ch ;

22 i n t 3 2 t yaw ;

23 } ORIENTATION EULER BASE INT;

24

25 /∗∗ SECTION:

26 INTERMEDIATE DATA

27 ∗/
28 typede f s t r u c t MOTION DATA INT{
29 i n t 3 2 t x ;

30 i n t 3 2 t y ;

31 i n t 3 2 t z ;

32 XYZ INT covar iance ;

33 XYZ INT b ia s ;

34 XYZ INT o f f s e t ;

35 } XYZ DATA INT;

36

37 typede f s t r u c t Ardee Msg Ack{
38 i n t 3 2 t sequence ;

39 }Ardee Msg Ack ;

40

41 typede f s t r u c t Ardee Msg OrientationData {
42 i n t 3 2 t x ;

43 i n t 3 2 t y ;
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44 i n t 3 2 t z ;

45 i n t 3 2 t w;

46 ORIENTATION EULER BASE INT covar iance ;

47 ORIENTATION QUATERNION BASE INT b ia s ;

48 } Ardee Msg OrientationData ;

49

50 /∗∗ SECTION:

51 SENSOR DATA TYPES

52 ∗/
53 typede f s t r u c t Ardee Msg IMUData{
54 MOTION DATA INT a c c e l ;

55 MOTION DATA INT gyro ;

56 Ardee Msg OrientationData o r i e n t a t i o n ;

57 }Ardee Msg IMUData ;

58

59 typede f s t r u c t Ardee Msg GPSData{
60 i n t 3 2 t time ;

61 i n t 3 2 t l a t i t u d e ;

62 i n t 3 2 t l ong i tude ;

63 i n t 3 2 t a l t i t u d e ;

64 XYZ INT v e l o c i t y ;

65 XYZ INT covar iance ;

66 u i n t 8 t cova r i ance type ;

67 u i n t 1 6 t s e r v i c e ;

68 i n t 8 t s t a t u s ;

69 }Ardee Msg GPSData ;

70

71 typede f s t r u c t Ardee Msg GyroData{
72 i n t 3 2 t x ;

73 i n t 3 2 t y ;

74 i n t 3 2 t z ;

75 }Ardee Msg GyroData ;

76

77 typede f s t r u c t Ardee Msg Accelerat ionData {
78 i n t 3 2 t x ;

79 i n t 3 2 t y ;

80 i n t 3 2 t z ;

81 }Ardee Msg Accelerat ionData ;

82

83 typede f s t r u c t Ardee Msg MotionCommands{
84 i n t 3 2 t normal i zed speed ;

85 i n t 3 2 t normal i zed yaw rate ;

86 i n t 3 2 t m u l t i p l i e r ;

87 }Ardee Msg MotionCommands ;

88

89 typede f s t r u c t Ardee Msg LidarData{

156



90 i n t 3 2 t angle min ;

91 i n t 3 2 t angle max ;

92 i n t 3 2 t dAngle ;

93 i n t 3 2 t scan t ime ;

94 i n t 3 2 t dTime ;

95 i n t 3 2 t range min ;

96 i n t 3 2 t range max ;

97 i n t 3 2 t ranges [ 1 0 8 1 ] ;

98 i n t 3 2 t i n t e n s i t i e s [ 1 0 8 1 ] ;

99 }Ardee Msg LidarData ;

100

101 typede f s t r u c t Ardee Msg EncoderData{
102 i n t 3 2 t id ;

103 i n t 3 2 t p o s i t i o n ;

104 i n t 3 2 t speed ;

105 i n t 3 2 t qpps ;

106 }Ardee Msg EncoderData ;

107

108 typede f s t r u c t Ardee Msg BatteryData{
109 i n t 3 2 t vo l tage ;

110 i n t 3 2 t vmax ;

111 i n t 3 2 t vmin ;

112 }Ardee Msg BatteryData ;

Listing A.17: Shows the ARDEE standardized data structures defined in C++

for an ARDEE Message Data packet.

A.3.3 Sensor Server Node

1 #inc lude <ro s / ro s . h>

2 #inc lude ” . . / i n c lude / a r d e e s e n s o r r e l a y . h”

3

4 us ing namespace std ;

5 us ing namespace ardee ;

6

7 i n t main ( i n t argc , char ∗∗ argv ) {
8

9 // I n i t i a l i z e the ROS node

10 ro s : : i n i t ( argc , argv , ” a r d e e s e n s o r r e l a y n o d e ” ) ;

11 ro s : : NodeHandle nh ;

12

13 // Conf igure UDP−s p e c i f i c parameters

14 char ∗ ip = ” 1 9 2 . 1 6 8 . 1 . 1 3 5 ” ;

15 i n t recPort = 35555 ;
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16

17 // Create the SensorRelay ob j e c t c l a s s

18 TerraSensorRelay r e l a y (nh , 30000 , ip ) ;

19

20 // Conf igure the s imulated senso r ROS t o p i c s to l i s t e n f o r and

send over UDP

21 const char ∗ imuTopic = ”/ ardee /imu/custom” ; // Simulated IMU

22 const char ∗ gpsTopic = ”/ ardee /gps” ; // Simulated GPS

23 const char ∗ l i da rTop i c = ”/ ardee /hokuyo” ; // Simulated Lidar

24 const char ∗ batTopic = ”/ ardee / bat te ry ” ; // Simulated Battery

25 const char ∗ encFrTopic = ”/ ardee / encoder / f r ” ; // Simulated

Front−Right Encoder

26 const char ∗ encFlTopic = ”/ ardee / encoder / f l ” ; // Simulated

Front−Le f t Encoder

27 const char ∗ encRrTopic = ”/ ardee / encoder / r r ” ; // Simulated Rear

−Right Encoder

28 const char ∗ encRlTopic = ”/ ardee / encoder / r l ” ; // Simulated Rear

−Le f t Encoder

29

30 // Add the s imulated IMU to the senso r r e l a y

31 r e l a y . addRosSensor ( ” Hector IMU” , imuTopic , SIMULATOR DATA IMU) ;

32

33 // Add the s imulated GPS to the s enso r r e l a y

34 r e l a y . addRosSensor ( ”GPS” , gpsTopic , SIMULATOR DATA GPS) ;

35

36 // Add the s imulated Lidar to the s enso r r e l a y

37 r e l a y . addRosSensor ( ”Hokyu Lidar ” , l idarTop ic ,

SIMULATOR DATA LIDAR) ;

38

39 // Add the s imulated Battery to the s enso r r e l a y

40 r e l a y . addRosSensor ( ”Main Battery ” , batTopic ,

SIMULATOR DATA BATTERY) ;

41

42 // Add the s imulated motor encoders to the s enso r r e l a y

43 r e l a y . addRosSensor ( ”Front Right Encoder” , encFrTopic ,

SIMULATOR DATA ENCODER) ;

44 r e l a y . addRosSensor ( ”Front Le f t Encoder” , encFlTopic ,

SIMULATOR DATA ENCODER) ;

45 r e l a y . addRosSensor ( ”Rear Right Encoder” , encRrTopic ,

SIMULATOR DATA ENCODER) ;

46 r e l a y . addRosSensor ( ”Rear Le f t Encoder” , encRlTopic ,

SIMULATOR DATA ENCODER) ;

47

48 // Begin the SensorRelay node

49 r e l a y . run ( ) ;
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50 }

Listing A.18: Shows the code, created in ardee sensor server node.cpp, for

configuring various aspects associated with the developed “sensor relay” module,

such as the specific UDP port and IP address to broadcast UDP packets to and

what simulated sensor measurements to broadcast.

A.3.4 Command Client Node

1 #inc lude ” . . / i n c lude / c o n t r o l / r o s r c c o n t r o l l e r . h”

2

3 us ing namespace std ;

4

5 i n t main ( i n t argc , char ∗∗ argv ) {
6 // I n i t i a l i z e the ROS node

7 ro s : : i n i t ( argc , argv , ” a r d e e r c c o n t r o l l e r n o d e ” ) ;

8 ro s : : NodeHandle nh ;

9 ro s : : NodeHandle nh ( ”˜” ) ;

10

11 // Conf igure the l i m i t s o f the s imulated robot c o n t r o l s ( should

be based on p h y s i c a l robot ’ s l i m i t s )

12 f l o a t max vel = 1 . 2 ; // Max Linear Ve loc i ty [m/ s ]

13 f l o a t max turn radius = 0 . 3 8 1 ; // Max Turn Radius [m]

14

15 // Create the c o n t r o l s r e l a y c l a s s ob j e c t and s t a r t i t

16 RosRcControl ler s s (nh , nh , max vel , max turn radius ) ;

17 s s . run ( ) ;

18 }

Listing A.19: Shows the code, created in ardee controls client node.cpp,

which configures the controls relay node in charge of receiving any broadcasted

robot commands over UDP generated by any developed component (i.e

developed algorithm or anything else) running on an external device, and re-

packages into a ROS format to control the simulated robot model in Gazebo.

A.4 Launch Utilities

A.4.1 Simple roslaunch file
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1 <?xml v e r s i on=” 1 .0 ”?>

2 <launch>

3

4 < !−− Launch c o n f i g u r a t i o n s e t t i n g s −−>
5 <arg name=” world ” d e f a u l t=”custom . world ”/>

6 <arg name=” gui ” d e f a u l t=” f a l s e ” />

7

8 < !−− Set parameters to ROS parameter s e r v e r −−>
9 <param name=” u s e g u i ” value=” $( arg gui ) ” />

10

11 < !−− Load Gazebo world −−>
12 <i n c l ude f i l e=” $( f i n d ardee wor ld ) / launch / wor ld template .

launch ”>

13 <arg name=”world name” value=” $( f i n d ardee wor ld ) / worlds

/$( arg world ) ”/>

14 <arg name=”paused” value=” true ”/>

15 <arg name=” gui ” value=” true ”/>

16 </ inc lude>

17

18 </ launch>

Listing A.20: Shows the launch file, custom world.launch, used to load a

custom world in Gazebo, defined by the custom.world file. It should be noted

that the world template.launch file is just a copy of the open-source launch

file empty world.launch available from the gazebo ros ROS package [20].

Additionally, the .world file can be changed on-the-fly by passing a command-

line argument “world” with a value of the .world file a user wants to use.

A.4.2 Dynamically Configurable roslaunch Example

1 <?xml v e r s i on=” 1 .0 ”?>

2 <launch>

3

4 < !−− =============================

5 Parameter Conf igurat ion

6 ================================== −−>
7

8 < !−− Flags −−>
9 <arg name=” u s e j oy ” d e f a u l t=” true ”/>

10 <arg name=” use xbox ” d e f a u l t=” true ”/>

11 <arg name=” u s e r v i z ” d e f a u l t=” true ”/>

12

13 < !−− Robot pose−−>
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14 <arg name=”x” d e f a u l t=”0”/>

15 <arg name=”y” d e f a u l t=”0”/>

16 <arg name=”z” d e f a u l t=” 0 .175 ”/>

17 <arg name=” r o l l ” d e f a u l t=”0”/>

18 <arg name=” p i t ch ” d e f a u l t=”0”/>

19 <arg name=”yaw” d e f a u l t=”−3.14”/>

20

21 < !−− Robot Model c o n f i g u r a t i o n s e t t i n g s −−>
22 <arg name=” bot model ” d e f a u l t=” d e f a u l t b o t . urd f . xacro ” />

23 <param name=” r o b o t d e s c r i p t i o n ” command=” $( f i n d xacro ) / xacro

$( f i n d t e r r a s e n t i a d e s c r i p t i o n ) / robots /$( arg bot model ) ” />

24

25 < !−− Robot Control Con f igurat ion Parameters −−>
26 <arg name=” dev joy ” d e f a u l t=”/dev/ input / j s 4 ”/>

27

28 < !−− =============================

29 I n i t i a l i z e ROS Nodes

30 ================================== −−>
31

32 < !−− Necessary f o r keeping t rack o f the s imulated robot model ’

s s t a t e −−>
33 <node pkg=”r o b o t s t a t e p u b l i s h e r ” type=”s t a t e p u b l i s h e r ” name

=”r o b o t s t a t e p u b l i s h e r”>

34 <param name=”pub l i sh f r equency ” type=”double ” value

=”200.0”/>

35 </node>

36

37 <!−− Necessary f o r us ing the s imulated robot model ’ s j o i n t

s t a t e s kept t rack by Gazebo −−>
38 <node name=” j o i n t s t a t e p u b l i s h e r ” pkg=” j o i n t s t a t e p u b l i s h e r ”

type=” j o i n t s t a t e p u b l i s h e r ”>

39 <param name=” ra t e ” type=” double ” value=” 50 .0 ”/>

40 </node>

41

42 < !−− Spawn the s p e c i f i e d robot model in Gazebo with user−
de f ined pose −−>

43 <node name=” spawn te r ra s en t i a ” pkg=” gazebo ros ” type=”

spawn model”

44 args=”−x $( arg x ) −y $( arg y ) −z $( arg z ) −R $( arg r o l l )

45 −P $( arg p i t ch ) −Y $( arg yaw) −urdf −param

r o b o t d e s c r i p t i o n −model Ter raSent ia 0 ”

46 output=” sc r e en ”

47 />

48

49 < !−− Load j o y s t i c k nodes f o r manual c o n t r o l −−>
50 <group i f=” $( arg u s e j oy ) ”>
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51

52 < !−− Required f o r r e c e i v i n g j o y s t i c k inputs −−>
53 <node pkg=” joy ” type=” joy node ” name=” joy node ”>

54 <param name=”dev” value=” $( arg dev joy ) ”/>

55 </node>

56

57 < !−− Xbox C o n t r o l l e r Conf igurat ion −−>
58 <group i f=” $( arg use xbox ) ”>

59 <node pkg=” t e l e o p t w i s t j o y ” type=” te l eop node ” name

=” j o y c o n t r o l l e r n o d e ”>

60 <param name=” enab le button ” value=”7”/>

61 <param name=” a x i s a n g u l a r ” value=”2”/>

62 <param name=” s c a l e l i n e a r ” value=”1”/>

63 <param name=” s c a l e a n g u l a r ” value=” 1 .5 ”/>

64 </node>

65 </group>

66

67 < !−− PS3 C o n t r o l l e r Conf igurat ion −−>
68 <group u n l e s s=” $( arg use xbox ) ”>

69 <node pkg=” t e l e o p t w i s t j o y ” type=” te l eop node ” name

=” j o y c o n t r o l l e r n o d e ”>

70 <param name=” enab le button ” value=”11”/>

71 <param name=” a x i s a n g u l a r ” value=”2”/>

72 <param name=” s c a l e l i n e a r ” value=”1”/>

73 <param name=” s c a l e a n g u l a r ” value=” 1 .5 ”/>

74 </node>

75 </group>

76 </group>

77

78 < !−− Load UDP c o n t r o l s r e l a y module f o r e x t e r n a l dev i c e

c o n t r o l i f not us ing manual c o n t r o l −−>
79 <group u n l e s s=” $( arg u s e j oy ) ”>

80 <node pkg=” ardee b r idge ” type=” a r d e e r c c o n t r o l l e r n o d e ”

name=” udp contro l node ”/>

81 </group>

82

83 < !−− Star t RViz f o r v i s u a l i z a t i o n −−>
84 <group i f=” $( arg u s e r v i z ) ”>

85 <node name=” r v i z ” pkg=” r v i z ” type=” r v i z ”

86 args=”−d $( f i n d t e r r a s e n t i a d e s c r i p t i o n ) / c o n f i g /

r v i z / waypo in t f o l l owe r pa th s . r v i z ” />

87 </group>

88

89 < !−− Broadcast s imulated senso r measurements f o r e x t e r n a l

d ev i c e s −−>
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90 <node pkg=” a r d e e s e n s o r s ” type=” a r d e e s e n s o r r e l a y n o d e ” name=

” s im sensor node ”/>

91

92 </ launch>

Listing A.21: Shows the launch file, launch default bot.launch, used for

the following: (1) configure and load the default robot model, defined by the

default bot.urdf.xacro file, simulated in Gazebo, (2) configure and execute

the necessary nodes for the user-defined method of controlling the simulated

robot, (3) starting the sensor relay node for broadcasting the simulated sensor

measurements over UDP, and (4) starting Rviz for visualization of simulated

sensors and other important information (i.e estimated pose, etc.).

A.4.3 Example bash/shell script

1 #! / bin /bash

2 trap c t r l c INT

3

4 f unc t i on c t r l c ( ) {
5 echo ”−−−−−−−−−−− CTRL−C Triggered [EXITING] −−−−−−−−−−−−”

6 echo

7 echo

8 echo ” Shutt ing Down Gazebo Proce s s e s . . . ”

9 echo

10 echo

11 k i l l a l l g z s e r v e r

12 k i l l a l l g z c l i e n t

13 echo

14 echo

15 echo ”∗∗∗∗∗∗∗∗∗∗∗ Simulat ion Exited ∗∗∗∗∗∗∗∗∗∗∗∗∗∗”

16 e x i t

17 }
18

19

20 #

##########################################################################

21 # K i l l any pre−e x i s t i n g Gazebo p r o c e s s e s f o r proper re−
i n i t i a l i z a t i o n

22 #

##########################################################################
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23 k i l l a l l g z s e r v e r

24 k i l l a l l g z c l i e n t

25

26

27 #

##########################################################################

28 # User input argument par s ing

29 #

##########################################################################

30 i f [ −z ”$1” ] ; then

31 f i e l d=ardee wor ld / urdf /empty . urdf . xacro

32 e l s e

33 f i e l d=$1

34 f i

35 i f [ −z ”$2” ] ; then

36 heightmap=ardee models / he ightmap f l a t

37 e l s e

38 heightmap=$2

39 f i

40 i f [ −z ”$3” ] ; then

41 g p s n o i s e=ardee geo f enc e / d e f a u l t g p s b e h a v i o r . geo f ence

42 e l s e

43 g p s n o i s e=$3

44 f i

45

46 echo ”hmmm $ f i e l d $heightmap $gps no i s e ”

47

48 here=$ (pwd)

49

50 . / opt / ros / k i n e t i c / setup . bash

51 . $HOME/ catk in ws / deve l / setup . bash

52 . $HOME/theHuntingGround/ deve l / setup . bash

53

54 export GAZEBO MODEL PATH=${GAZEBO MODEL PATH} : ” $here ”/ ardee models :

55 export GAZEBO PLUGIN PATH=${GAZEBO PLUGIN PATH} : ” $here ”/

t e r r a s e n t i a d e s c r i p t i o n / p lug in s / bu i ld :$HOME/ catk in ws / deve l / l i b

:

56 export GAZEBO RESOURCE PATH=${GAZEBO RESOURCE PATH} : ” $here ”/

ardee models : ” $here ”/ a rde e geo f enc e :

57

58 #

##########################################################################

59 # Generate Custom . world f i l e with user−s p e c i f i e d models
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60 #

##########################################################################

61 p r i n t f ’<?xml ve r s i o n =”1.0” ?>

62 <sd f v e r s i o n=’ 1 .5 ’>

63 <world name=’ d e f a u l t ’>

64

65 <gui>

66 <camera name=”user camera”>

67 <pose >1.953330 −2.960521 2.117045 0 0.411456

1.892190</ pose>

68 </camera>

69 </gui>

70

71 < l i g h t name=’ sund i r ’ type=’ d i r e c t i o n a l ’>

72 <cast shadows >1</cast shadows>

73 <pose>0 0 10 0 −0 0</pose>

74 <d i f f u s e >1.0 0 .95 0 .8 1</ d i f f u s e >

75 <specu lar >0.7 0 .7 0 .7 1</specu lar>

76 <attenuat ion>

77 <range >1000</range>

78 <constant >0.9</ constant>

79 < l i n e a r >0.01</ l i n e a r >

80 <quadrat ic >0.001</ quadrat ic>

81 </attenuat ion>

82 <d i r e c t i o n >−0.3 0 .4 −1.0</ d i r e c t i o n >

83 </ l i g h t >

84

85 <phys i c s type=”ode”>

86 <max step s i ze >0.005</ max step s i ze>

87 <r e a l t i m e f a c t o r >1.0</ r e a l t i m e f a c t o r >

88 <r e a l t i m e u p d a t e r a t e >0.0</ r e a l t i m e u p d a t e r a t e >

89 <grav i ty >0 0 −9.8</ grav i ty>

90 </phys ics>

91

92 <scene>

93 <sky>

94 <c louds>

95 <speed>12</speed>

96 </clouds>

97 </sky>

98

99 <gr id>true</gr id>

100 </scene>

101

102 <inc lude>
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103 <ur i>model : // custom heightmap</ur i>

104 <pose>0 0 0 0 0 0</pose>

105 </inc lude>

106

107 <inc lude>

108 <ur i>model : // cus tom f i e ld </ur i>

109 <pose>0 0 0 0 0 0</pose>

110 </inc lude>

111

112 </world>

113 </sdf> ’ > ardee wor ld / worlds /custom . world

114

115

116 #

##########################################################################

117 #

118 #

##########################################################################

119 rm −r f ardee models / custom heightmap

120 rm −r f ardee models / c u s t o m f i e l d

121

122 mkdir ardee models / custom heightmap

123 mkdir ardee models / c u s t o m f i e l d

124

125 cp −r f ”$heightmap”/∗ ardee models / custom heightmap

126

127 cp ” $ f i e l d ” temp plots

128 cp ” $ f i e l d ” temp plants

129 end=$ ( grep −n ” 123456789 end123456789” temp plots | grep −Eo ’ ˆ [ ˆ : ] +

’ )

130 l i n e=”$ ( ( $end+1) ) ”

131 echo ” e l $end”

132 cmd=\ ’ 1 ,” $end”d\ ’

133 echo ”$cmd”

134 cmd=” sed −e $cmd < temp plots > temp plots2 ”

135 echo ”$cmd”

136 eva l ”$cmd”

137

138 cmd=\ ’ ”$end ” , ’ $d ’ \ ’

139 echo ”$cmd”

140 cmd=” sed −e $cmd < temp plants > temp plants2 ”

141 echo ”$cmd”

142 eva l ”$cmd”

143
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144 cp temp plants2 ardee models / c u s t o m f i e l d /model . sd f

145 cp temp plots2 ardee models / c u s t o m f i e l d / p l o t s . xacro

146 cp ”$3” a rde e geo f enc e / custom gps behavior . geo f ence

147

148 rm temp plants

149 rm temp plots

150 rm temp plants2

151 rm temp plots2

152

153

154 #

##########################################################################

155 # Generate Custom Fie ld Model Di rec to ry

156 #

##########################################################################

157 p r i n t f ’<?xml ve r s i o n =”1.0”?>

158

159 <model>

160 <name>Custom Fie ld </name>

161 <vers ion >1.0</ vers ion>

162 <sd f v e r s i o n=’ 1 .5 ’>model . sdf </sdf>

163

164 <author>

165 <name>Hunter Young</name>

166 <email>hunter . lw . young@gmail . com</email>

167 </author>

168

169 <d e s c r i p t i o n >

170 Fie ld o f customized crop p l o t s generated by run world . sh

171 </d e s c r i p t i o n >

172 </model>

173 ’ > ardee models / c u s t o m f i e l d /model . c o n f i g

174

175 ros launch ardee wor ld custom world . launch &

176

177 s l e e p 10

178

179 read −n1 −p ”Do you want to cont inue ? Enter ( y ) or (n) ” do i t

180

181 i f [ [ $do i t == ”Y” | | $do i t == ”y” ] ] ; then

182 ros launch t e r r a s e n t i a d e s c r i p t i o n l a u n c h d e f a u l t t s 0 . launch

183 e l s e

184 k i l l a l l g z s e r v e r

185 k i l l a l l g z c l i e n t
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186 f i

187 s l e e p 5

188 echo

189 echo ” Simulat ion Exited ”

Listing A.22: Shows the bash script used, run demo world.sh, used for the

following: (1) overlaying the necessary shell environment for proper integration

of ROS system, (2) setting up the necessary environmental variables for proper

usage of built custom plugins and proper loading and rendering of developed

models (discussed in Section 4.2), (3) simplistic commandline UI elements

for interacting with the user during the process of loading the pre-determined

simulation environment, and (4) ensuring that the Gazebo-specific processes

are properly terminated before loading of the simulation environment, as well

as upon exiting simulation upon user request (via CTRL+C).

A.5 Miscellaneous

A.5.1

1 <sd f v e r s i o n=” 1 .5 ”>

2 <model name=”heightmap”>

3 <s t a t i c>t rue</ s t a t i c>

4 < l i n k name=” l i n k ”>

5 <c o l l i s i o n name=” c o l l i s i o n ”>

6 <geometry>

7 <heightmap>

8 <u r i> f i l e : // heightmap ground /meshes/

heightmaps / corn rows . png</ u r i>

9 <s i z e>30 30 10</ s i z e>

10 <pos>0 0 0</pos>

11 </heightmap>

12 </geometry>

13

14 <s u r f a c e>

15 <contact>

16 <ode>

17 <kp>100000.0</kp>

18 <kd>10000.0</kd>

19 </ode>

20 </ contact>

21 </ s u r f a c e>
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22 </ c o l l i s i o n>

23

24 <v i s u a l name=” v i s u a l ”>

25 <geometry>

26 <heightmap>

27 <u s e t e r r a i n p a g i n g> f a l s e</

u s e t e r r a i n p a g i n g>

28 <t ex tu re>

29 <d i f f u s e> f i l e : //media/ m a t e r i a l s /

t e x t u r e s / d i r t d i f f u s e s p e c u l a r . png</ d i f f u s e>

30 <normal> f i l e : //media/ m a t e r i a l s /

t e x t u r e s / f l a t n o r m a l . png</normal>

31 <s i z e>1</ s i z e>

32 </ tex ture>

33 <t ex tu re>

34 <d i f f u s e> f i l e : //media/ m a t e r i a l s /

t e x t u r e s / g r a s s d i f f u s e s p e c u l a r . png</ d i f f u s e>

35 <normal> f i l e : //media/ m a t e r i a l s /

t e x t u r e s / f l a t n o r m a l . png</normal>

36 <s i z e>1</ s i z e>

37 </ tex ture>

38 <t ex tu re>

39 <d i f f u s e> f i l e : //media/ m a t e r i a l s /

t e x t u r e s / f u n g u s d i f f u s e s p e c u l a r . png</ d i f f u s e>

40 <normal> f i l e : //media/ m a t e r i a l s /

t e x t u r e s / f l a t n o r m a l . png</normal>

41 <s i z e>1</ s i z e>

42 </ tex ture>

43 <blend>

44 <min height>0 .5</ min height>

45 < f a d e d i s t>1</ f a d e d i s t>

46 </ blend>

47 <blend>

48 <min height>0 .5</ min height>

49 < f a d e d i s t>1</ f a d e d i s t>

50 </ blend>

51 <u r i> f i l e : // heightmap ground /meshes/

heightmaps / corn rows . png</ u r i>

52 <s i z e>30 30 10</ s i z e>

53 <pos>0 0 0</pos>

54 </heightmap>

55 </geometry>

56 </ v i s u a l>

57 </ l i n k>

58 </model>
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59 </ sd f>

Listing A.23: The model.sdf file used for the simulated field terrain as seen in

Figure 4.8.

A.5.2

1 <sd f v e r s i o n=” 1 .5 ”>

2 <model name=” c o r n v a r i a n t 1 ”>

3 <s t a t i c>t rue</ s t a t i c>

4 < l i n k name=” l i n k ”>

5 < i n e r t i a l>

6 <pose>0 0 0 0 0 0</ pose>

7 <mass>4</mass>

8 < i n e r t i a>

9 <ixx>0 .01</ ixx>

10 <ixy>0</ ixy>

11 <i x z>0</ ix z>

12 <iyy>0 .01</ iyy>

13 <i y z>0</ iy z>

14 < i z z>0 .01</ i z z>

15 </ i n e r t i a>

16 </ i n e r t i a l>

17

18 <c o l l i s i o n name=’ c o l l i s i o n ’>

19 <pose>0 0 0 .25 0 0 0</ pose>

20 <geometry>

21 <c y l i n d e r>

22 <rad iu s>0 .0075</ rad iu s>

23 <l ength>0 .5</ l ength>

24 </ c y l i n d e r>

25 </geometry>

26 <max contacts>10</ max contacts>

27 </ c o l l i s i o n>

28

29 <v i s u a l name=”stem”>

30 <geometry>

31 <mesh>

32 <u r i>model: // c o r n v a r i a n t 1 /meshes/

c o r n v a r i a n t 1 . dae</ u r i>

33 <submesh>

34 <name>Stem</name>

35 </submesh>

36 </mesh>

170



37 </geometry>

38 <mate r i a l>

39 <s c r i p t>

40 <u r i>model: // c o r n v a r i a n t 1 / m a t e r i a l s

/ s c r i p t s /</ u r i>

41 <u r i>model: // c o r n v a r i a n t 1 / m a t e r i a l s

/ t e x t u r e s /</ u r i>

42 <name>Corn/Stem</name>

43 </ s c r i p t>

44 </ mate r i a l>

45 </ v i s u a l>

46

47 <v i s u a l name=” l eave sb ”>

48 <geometry>

49 <mesh>

50 <u r i>model: // c o r n v a r i a n t 1 /meshes/

c o r n v a r i a n t 1 . dae</ u r i>

51 <submesh>

52 <name>LeavesBase</name>

53 </submesh>

54 </mesh>

55 </geometry>

56 <mate r i a l>

57 <s c r i p t>

58 <u r i>model: // c o r n v a r i a n t 1 / m a t e r i a l s

/ s c r i p t s /</ u r i>

59 <u r i>model: // c o r n v a r i a n t 1 / m a t e r i a l s

/ t e x t u r e s /</ u r i>

60 <name>Corn/ LeavesBase</name>

61 </ s c r i p t>

62 </ mate r i a l>

63 </ v i s u a l>

64

65 <v i s u a l name=” leavesm ”>

66 <geometry>

67 <mesh>

68 <u r i>model: // c o r n v a r i a n t 1 /meshes/

c o r n v a r i a n t 1 . dae</ u r i>

69 <submesh>

70 <name>LeavesMid</name>

71 </submesh>

72 </mesh>

73 </geometry>

74 <mate r i a l>

75 <s c r i p t>
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76 <u r i>model: // c o r n v a r i a n t 1 / m a t e r i a l s

/ s c r i p t s /</ u r i>

77 <u r i>model: // c o r n v a r i a n t 1 / m a t e r i a l s

/ t e x t u r e s /</ u r i>

78 <name>Corn/LeavesMid</name>

79 </ s c r i p t>

80 </ mate r i a l>

81 </ v i s u a l>

82

83 </ l i n k>

84 </model>

85 </ sd f>

Listing A.24: The model.sdf file used for one of the simulated corn models.

A.5.3

1 <?xml v e r s i on=” 1 .0 ” ?>

2 <robot xmlns :xacro=” h t t p : // ros . org / wik i / xacro ”>

3

4 < !−− ====================================================

5 Inc lude xacro:macro U t i l i t i e s

6 ========================================================= −−>
7 <x a c r o : i n c l u d e f i l ename=” $( f i n d t e r r a s e n t i a d e s c r i p t i o n ) / urdf /

i n c l u d e s / m a t e r i a l s . urd f . xacro ”/>

8 <x a c r o : i n c l u d e f i l ename=” $( f i n d t e r r a s e n t i a d e s c r i p t i o n ) / urdf /

i n c l u d e s / u t i l s . urd f . xacro ”/>

9

10 < !−− ====================================================

11 Leg Link Type 1 : (FR and RL l e g s )

12 ========================================================= −−>
13 <xacro:macro name=” l e g t y p e 1 ” params=” p r e f i x s u f f i x s t l min

max damping s t i f f n e s s s p r i n g r e f e r e n c e r e f l e c t c o l o r ∗
o r i g i n i n e r t i a l verbose=f a l s e ” >

14

15 < !−− Create and c o n f i g u r e the l e g l i n k body components −−
>

16 < l i n k name=”${ p r e f i x } ${ s u f f i x } l e g l i n k ”>

17 < !−− Conf igure the i n e r t i a l body −−>
18 < i n e r t i a l>

19 <mass value=” 0.735 ” />

20 <x a c r o : i n s e r t b l o c k name=” o r i g i n i n e r t i a l ”/>

21 < i n e r t i a ixx=” 0.0037482 ” ixy=” 0.0000302 ” ix z=”

0.000768 ” iyy=” 0.0029930 ” iy z=”−0.0000679” i z z=” 0.0021259 ” />
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22 </ i n e r t i a l>

23

24 < !−− Conf igure the v i s u a l body −−>
25 <v i s u a l>

26 <o r i g i n xyz=”0 0 0” rpy=”0 0 0” />

27 <geometry>

28 <mesh f i l ename=”${ s t l }” />

29 </geometry>

30 < !−− Defined in the ” m a t e r i a l s . urdf . xacro ”

supplemental f i l e −−>
31 <x a c r o : c o l o r m a t e r i a l c o l o r=”${ c o l o r }”/>

32 </ v i s u a l>

33

34 < !−− Conf igure the c o l l i s i o n a l body −−>
35 <c o l l i s i o n>

36 <o r i g i n xyz=”0 0 0” rpy=”0 0 0” />

37 <geometry>

38 <mesh f i l ename=”${ s t l }” />

39 </geometry>

40 </ c o l l i s i o n>

41 </ l i n k>

42

43 < !−− Attach the l e g to the main robot body l i n k c a l l e d ”

b a s e l i n k ” −−>
44 < j o i n t name=”${ p r e f i x } ${ s u f f i x } l e g j o i n t ” type=” r e v o l u t e ”>

45 <parent l i n k=” b a s e l i n k ” />

46 <c h i l d l i n k=”${ p r e f i x } ${ s u f f i x } l e g l i n k ” />

47 < l i m i t e f f o r t=”10000” v e l o c i t y=”10000” lower=”${min}” upper=”

${max}” />

48 <dynamics damping=”${damping}” s p r i n g s t i f f n e s s=”${ s t i f f n e s s }
” s p r i n g r e f e r e n c e=”${ s p r i n g r e f e r e n c e }” />

49

50 < !−− Proper ly d e f i n e the o r i g i n o f the l e g l i n k to

the base r e g a r d l e s s o f FR or RL −−>
51 <x a c r o : i f va lue=”${ s u f f i x == ’ r ight ’} ”>

52 <a x i s xyz=”0 −1 0” />

53 <x a c r o : i f va lue=”${ p r e f i x == ’ rear ’} ”>

54 <o r i g i n xyz=” ${9 .5 ∗ −0.01366} ${ r e f l e c t ∗ 0.04356}
0.03553 ” rpy=”0 −1.12663 ${ r e f l e c t ∗ 1.5708} ” />

55 </ x a c r o : i f>

56 <x a c r o : u n l e s s va lue=”${ p r e f i x == ’ rear ’} ”>

57 <o r i g i n xyz=”−0.01366 ${ r e f l e c t ∗ 0.04356} 0.03553 ” rpy=”

0 −1.12663 ${ r e f l e c t ∗ 1.5708} ” />

58 </ x a c r o : u n l e s s>

59 </ x a c r o : i f>

60 <x a c r o : u n l e s s va lue=”${ s u f f i x == ’ r ight ’} ”>
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61 <a x i s xyz=”0 1 0” />

62 <x a c r o : i f va lue=”${ p r e f i x == ’ rear ’} ”>

63 <o r i g i n xyz=” ${9 .5 ∗ 0.13031} ${ r e f l e c t ∗ 0.04356}
0.03553 ” rpy=”0 −1.12663 ${ r e f l e c t ∗ 1.5708} ” />

64 </ x a c r o : i f>

65 <x a c r o : u n l e s s va lue=”${ p r e f i x == ’ rear ’} ”>

66 <o r i g i n xyz=” 0.13031 ${ r e f l e c t ∗ 0.04356} 0.03553 ” rpy=”0

−1.12663 ${ r e f l e c t ∗ 1.5708} ” />

67 </ x a c r o : u n l e s s>

68 </ x a c r o : u n l e s s>

69 </ j o i n t>

70

71 < !−− Attach the Gazebo p lug in developed f o r a t o r s i o n a l

sp r ing −−>
72 <gazebo>

73 <p lug in name=” s p r i n g p l u g i n ${ p r e f i x } ${ s u f f i x }”

f i l ename=” l i b T o r s i o n a l S p r i n g P l u g i n . so ” >

74 <j o i n t h a n d l e>${ p r e f i x } ${ s u f f i x } l e g j o i n t</

j o i n t h a n d l e>

75 < s p r i n g s t i f f n e s s>${ s t i f f n e s s }</

s p r i n g s t i f f n e s s>

76 <spring damping>${damping}</ spring damping>

77 <s p r i n g r e f e r e n c e>${ s p r i n g r e f e r e n c e }</

s p r i n g r e f e r e n c e>

78 <verbose>${ verbose }</ verbose>

79 </ p lug in>

80 </ gazebo>

81

82 < !−− Customize the c o l o r o f the l e g component as seen in

Gazebo −−>
83 <x a c r o : c o l o r g a z e b o parent=”${ p r e f i x } ${ s u f f i x } l e g l i n k ”

c o l o r=”${ c o l o r }”/>

84 </ xacro:macro>

85

86 </ robot>

Listing A.25: Shows the code that is used to create and attach a leg link to a

robot model base.

A.5.4

1 #i f n d e f TORSIONAL SPRING PLUGIN H

2 #d e f i n e TORSIONAL SPRING PLUGIN H

3
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4 #inc lude <s t r i ng>

5

6 #inc lude ” gazebo /common/common . hh”

7 #inc lude ” gazebo /common/Events . hh”

8

9 #inc lude ” gazebo / gazebo . hh”

10

11 #inc lude ” gazebo / phys i c s / phys i c s . hh”

12 #inc lude ” gazebo / phys i c s /Model . hh”

13 #inc lude ” gazebo / phys i c s / Jo int . hh”

14

15 namespace gazebo{
16 c l a s s Tors iona lSpr ingPlug in : pub l i c ModelPlugin{
17 p r i v a t e :

18 void Expl ic i tUpdate ( ) ;

19 event : : ConnectionPtr updateConnection ;

20 common : : Time prevUpdateTime ;

21 phys i c s : : ModelPtr model ;

22

23 phys i c s : : Jo intPtr jo intHandle ;

24 std : : s t r i n g jointName ;

25 double s p r i n g S t i f f n e s s ;

26 double springDamping ;

27 double sp r ingRe f e r ence ;

28 bool verbose ;

29 pub l i c :

30

31 Tors iona lSpr ingPlug in ( ) ;

32 v i r t u a l void Load ( phys i c s : : ModelPtr model , sd f : : ElementPtr

s d f ) ;

33 v i r t u a l void I n i t ( ) ;

34 } ;

35 }
36 #e n d i f

Listing A.26: Shows the header file created for the torsional spring plugin

developed in this work.

A.5.5

1 #inc lude <ro s / ro s . h>

2 #inc lude ” gazebo / phys i c s / phys i c s . hh”

3 #inc lude ” Tors iona lSpr ingPlug in . hh”

4 us ing namespace gazebo ;
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5

6 GZ REGISTER MODEL PLUGIN( Tors iona lSpr ingPlug in )

7

8 Tors iona lSpr ingPlug in : : Tor s iona lSpr ingPlug in ( ) {}
9

10 void Tors iona lSpr ingPlug in : : Load ( phys i c s : : ModelPtr model , sd f : :

ElementPtr s d f ) {
11

12 th i s−>model = model ;

13

14 i f ( ! sd f−>HasElement ( ” j o i n t h a n d l e ” ) ) {
15 ROS INFO NAMED( ” l i b T o r s i o n a l S p r i n g P l u g i n ” , ” Plugin miss ing <

j o i n t hand l e >, d e f a u l t s to / b a s e l i n k ” ) ;

16 th i s−>jointName = ”/ b a s e l i n k ” ;

17 } e l s e th i s−>jointName = sd f−>Get<std : : s t r i ng >(” j o i n t h a n d l e ” ) ;

18

19 i f ( ! sd f−>HasElement ( ” s p r i n g s t i f f n e s s ” ) ) {
20 ROS INFO NAMED( ” l i b T o r s i o n a l S p r i n g P l u g i n ” , ” Plugin miss ing <

s p r i n g s t i f f n e s s >, d e f a u l t s to 100 .0 ” ) ;

21 th i s−>s p r i n g S t i f f n e s s = 1 0 0 . 0 ;

22 } e l s e th i s−>s p r i n g S t i f f n e s s = sd f−>Get<double >(”

s p r i n g s t i f f n e s s ” ) ;

23

24 i f ( ! sd f−>HasElement ( ” spring damping ” ) ) {
25 ROS INFO NAMED( ” l i b T o r s i o n a l S p r i n g P l u g i n ” , ” Plugin miss ing <

spring damping >, d e f a u l t s to 1 .0 ” ) ;

26 th i s−>springDamping = 1 . 0 ;

27 } e l s e th i s−>springDamping = sd f−>Get<double >(” spring damping ” ) ;

28

29 i f ( ! sd f−>HasElement ( ” s p r i n g r e f e r e n c e ” ) ) {
30 ROS INFO NAMED( ” l i b T o r s i o n a l S p r i n g P l u g i n ” , ” Plugin miss ing <

s p r i n g r e f e r e n c e >, d e f a u l t s to 1 .0 ” ) ;

31 th i s−>sp r ingRe f e r ence = 1 . 0 ;

32 } e l s e th i s−>sp r ingRe f e r ence = sd f−>Get<double >(”

s p r i n g r e f e r e n c e ” ) ;

33

34 i f ( ! sd f−>HasElement ( ” verbose ” ) ) {
35 ROS INFO NAMED( ” l i b T o r s i o n a l S p r i n g P l u g i n ” , ” Plugin miss ing <

verbose >, d e f a u l t s to f a l s e ” ) ;

36 th i s−>verbose = f a l s e ;

37 } e l s e th i s−>verbose = sd f−>Get<bool >(” verbose ” ) ;

38

39 }
40

41 void Tors iona lSpr ingPlug in : : I n i t ( ) {
42 th i s−>j o intHandle = th i s−>model−>GetJoint ( th i s−>jointName ) ;
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43 th i s−>updateConnection = event : : Events : : ConnectWorldUpdateBegin (

boost : : bind(&Tors iona lSpr ingPlug in : : Expl ic i tUpdate , t h i s ) ) ;

44 }
45

46 void Tors iona lSpr ingPlug in : : Expl i c i tUpdate ( ) {
47 common : : Time currTime = th i s−>model−>GetWorld ( )−>GetSimTime ( ) ;

48 common : : Time stepTime = currTime − th i s−>prevUpdateTime ;

49 th i s−>prevUpdateTime = currTime ;

50

51 double pos = th i s−>jo intHandle−>GetAngle (0 ) . Radian ( ) ;

52 double ve l = th i s−>jo intHandle−>GetVeloc i ty (0 ) ;

53 double f o r c e = −th i s−>s p r i n g S t i f f n e s s ∗ ( pos − th i s−>
sp r ingRe f e r ence ) − th i s−>springDamping ∗ ve l ;

54

55 i f ( th i s−>verbose ) gzdbg << ” [ Jo int ] −−−−− Pos , Vel , Force : ” <<

th i s−>jointName << ” , ” << pos << ” , ” << ve l << ” ,

” << f o r c e << std : : endl ;

56 // ROS INFO NAMED(” Tors iona lSpr ing ” , ”Pos , Vel , Force : %f , %f , %f

\ r \n” , pos , ve l , f o r c e ) ;

57

58 th i s−>jo intHandle−>SetForce (0 , f o r c e ) ;

59 }

Listing A.27: Shows the source file created for the torsional spring plugin

developed in this work.
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