
XSEDE Technical Report Series: XSEDE-2019.1 1

Optimization and parallelization of a time series classification algorithm
Robert S. Sinkovits

San Diego Supercomputer Center, email: sinkovit@sdsc.edu

Abstract – This technical report describes the steps taken
to optimize and parallelize a time series classification
algorithm as part of an Extended Collaborative Support
Services (ECSS) project with XSEDE researcher Ramon
Huerta at the University of California, San Diego.
Switching from the GNU compiler to the Intel compiler
and enabling Advanced Vector Extensions (AVX)
resulted in a 2x speedup, while linking to the Intel Math
Kernel Library (MKL) instead of the default LAPACK
library further improved performance and provided an
easy path to thread-level parallel execution. These
changes resulted in a combined 46x speedup relative to a
single core when running on all 16 cores of a dual-socket
Intel Sandy Bridge node. Parallelization of several loops
using OpenMP directives and the removal of an
unnecessary duplicate call to a computationally
demanding routine brought the total speedup to 86x.
Optimization of linear algebra operations using time-
space tradeoffs ultimately resulted in a total speedup of
168x relative to the original version and build of the code.

Keywords – optimization, parallelization, MKL, time-
space tradeoff, time series algorithm.

1 INTRODUCTION

The XSEDE [1] Extended Collaborative Support Services
(ECSS) program pairs PIs (i.e. recipients of awards on
compute and storage resources allocated through XSEDE)
with XSEDE computational science and technology experts
for collaborations lasting up to one year. The goal of ECSS is
to improve the productivity of the PIs through a range of
activities including software optimization and parallelization,
advanced visualization, workflow development, deployment
of science gateways, and porting software to new
architectures.

We describe here the results of a collaboration spanning
2012-2013 that addressed improving the performance of a
time series classification algorithm. This work was carried
out under the Extended Support for Research Teams (ESRT)
area of ECSS.

At the time of this collaboration the project PI, Dr. Ramon
Huerta was a Research Scientist with the BioCircuits Institute
at the University of California, San Diego. He is currently a
Principal Machine Learning Scientist at Amazon. He holds
degrees in physics and engineering and has worked primarily
in computational neuroscience and non-linear dynamics.

For background and completeness, the PI statement for the
ECSS project is reproduced below. This has been very lightly
edited for clarity and can be skipped for readers who are only
interested in the technical details of optimization and
parallelization.

PI statement: We have developed classification calibrated
algorithms that are faster to train than regular support vector
machines. The trick that we discovered by exploring a
continuous set of loss functions is that we can modify the
symmetric structure of the loss function for the negative and
positive examples, avoiding the use of a regularization term
during training. This loss function is classification calibrated
for an infinite margin for any number of classes available in
the training dataset. Moreover, the classification function
approaches de Bayes decision boundary, which is an ideal
property to fulfill for any classifier. For the implementation
of the algorithm we have used the guidance and code
optimization provided by Robert Sinkovits at the San Diego
Supercomputer Center (SDSC) to take advantage of the areas
of the code where parallelization was possible using OpenMP
and the Intel Math Kernel Libraries (MKL) [2] on Gordon
[3]. We tested the code using the SDSC resources on a set of
14 public databases, and we have found significant
advantages in training the models. The average speed gained
by the infinite margin method was about 4-fold. Every second
of computation of the comparative methods only took half a
second in the rest of the methods. Finally, the support by
XSEDE allocation ASC120025 has provided the means to
fully complete the experimental section of the paper entitled:
“On the practical implications of a continuous family of
calibrated and uncalibrated multiclass loss functions” that
will be submitted for consideration by the Journal of Machine
Learning. The experimental section was carried out on 14
datasets of different levels of complexity. In order to measure
the classification accuracy, we generate 100 different
partitions of each dataset except for four of the simplest
datasets, in which we create 1000 partitions to obtain better
average estimations. Specifically, given a data set of size N,
N/2 samples are selected as the training subset and the
remaining N/2 examples constitute the test set. The training
samples are used to explore a 10-fold cross-validation grid of
10x5 meta-parameter values while the test set is used to
report a reliable estimation of the performance of the model.
These fast training algorithms will be critical when the time
series of individual data of the elderly can be collected.

Note on terminology: This technical report was adapted
from a final report delivered to the ECSS PI. The function

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/227472264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

XSEDE Technical Report Series: XSEDE-2019.1 2

and variable names used throughout match those used in the
original version of the software.

2 SOFTWARE OPTIMIZATION AND
PARALLELIZATION

Our focus was on optimizing and parallelizing Ramon
Huerta’s autoregressive kernel application to reduce time to
solution. As originally written, this was a serial application.
The executable was built using the GNU C++ compiler (g++)
and linked the default version of the LAPACK library.
Through a combination of compiler, compiler option and
library changes together with minor modifications to
accommodate more recent LAPACK calling conventions, we
were able to achieve a speedup of 46x relative to the original
code on a single Gordon compute core. A further 3.6x
compounded speedup was realized through substantive
source code changes, resulting in a total speedup of 168x. We
had originally anticipated developing a distributed memory
version of the code using parallel linear algebra libraries, but
this was not deemed to be necessary given the dramatic
reductions in run times that we obtained using a shared
memory approach.

The next five subsections describe the compiler, library and
code changes in greater detail. Note that compiler and library
versions were not recorded but based on date of work were
likely Intel C++ 13.0 or 14.0, GCC 4.6 or 4.7 and MKL 10.0
or 11.0. Run times and relative performance gains at each
step are summarized below.
Table 1. Summary of performance improvements for ARsvm
code. All timings obtained on Gordon and speedups are relative
to original serial code run on a single Gordon core. Benchmarks
used parameters and input files provided by Huerta lab: -C 1.0
-T 0.01 -p 100 -i filter_train.0.dat -I filter_test.0.dat. Run times
for other conditions (-C 100.0) are approximately 75% lower.

Notes Cores t (h:m:s) Speedup
Original code, GNU compiler 1 11:22:00 -
Intel compiler and enable AVX 1 05:41:49 2.0
Link threaded MKL library 16 00:14:46 46.2
OpenMP directives in key loops 16 00:13:10 52.5
Remove duplicate function call 16 00:07:58 85.6
Optimization of linear algebra 16 00:04:04 167.7

2.1. Use Intel compiler and enable AVX
We encountered no difficulties in porting the software from
Huerta’s local compute resources to SDSC’s Gordon
supercomputer. The relevant setting in the original and
modified Makefile are shown below

Original
CXX = g++
CXXFLAGS= -O3 -Wall

Modified
CXX = icpc
CXXFLAGS= -O3 -xHOST -no-prec-div -Wall

The -xHOST flag instructs the compiler to use the highest-
level instruction set that is available, which in the case of
Gordon is AVX. Since we were still using the default
LAPACK libraries at this point and the code spends most of
its time in linear algebra routines, the speedup of 2x obtained
by enabling AVX is exactly what would be expected since
these routines tend to obtain a large fraction of peak
performance on both AVX (eight flops/cycle/core) and non-
AVX (four flops/cycle/core) processors.

2.2. Link MKL and use thread-level parallelism
The Intel MKL routines have been specifically tuned for
optimal performance on Intel hardware. The MKL routines
are also threaded, so going from serial execution to shared-
memory parallelism is trivial. Minor changes to the source
code were needed, though, in order to use the MKL.

(1) Long integer types must be changed to regular integers
when calling MKL. These changes must also be propagated
through the user functions that contain MKL calls.

// Original
void multXI(…, long NN, long l, double *xy, …

// Modified
void multXI(…, int NN, int l, double *xy, …

(2) Calls to MKL from C do not require name mangling (i.e.
adding of underscores or other decorators to function names).

// Original
dgemm_(…);

// Modified
dgemm(…);

(3) Some calls had to be modified to use the standard
argument list. This may involve passing pointers instead of
values and moving return values inside the argument list

// Original
info=dgetri(len, C, len, ipiv, work, lwork);

// Modified
dgetri(&len, C, &len, ipiv, work, &lwork, &info);

(4) Headers were added for MKL and OpenMP support

#include <omp.h>
#include <mkl.h>
#include <mkl_cblas.h>

(5) OpenMP compiler flag and links to MKL added to
Makefile

Original
CXX = g++
CXXFLAGS= -O3 -Wall
LDFLAGS=-lm -llapack -lblas

Modified
CXX = icpc
CXXFLAGS= -O3 -xHOST -no-prec-div -fopenmp –Wall
LDFLAGS = -lm -mkl

XSEDE Technical Report Series: XSEDE-2019.1 3

(6) Set number of cores and threads in job submission file.
Example below is taken from Gordon batch script using the
TORQUE/PBS resource manager.

#PBS -l nodes=1:ppn=16:native
export OMP_NUM_THREADS=16

2.3. Apply OpenMP directives to key loops
The original version of the code spent most of its time in the
linear algebra routines DGEMM and DSYRK. After
switching to MKL and running in parallel, the relative
amount of exclusive time spent in the two user routines kAR
and kARtest increases. Adding OpenMP directives resulted
in modest (~7%) reductions in run time. The examples below
are from kAR. Note that the loop indices are declared as
private, but this is done by default according to the OpenMP
standard.

#pragma omp parallel for private(k)
 for(k=0;k<dimx;++k)
 x[i][dimx+k]=x[j][k];

#pragma omp parallel for private(k,k2)
 for(k=0;k<Mp;++k) {
 for(k2=0;k2<k;++k2)
 Inv[k+k2*M*p]=Inv[k2+k*M*p];
 }

2.4. Remove duplicate function call
The original version of the code contained an unnecessary
duplicate call to kARtest in function simplerrorrate.
Making the call just once and reusing the result reduces the
run time from roughly 13 minutes to eight minutes.

// Original
printf("K=%lf\n",kARtest(i,j));fflush(stdout);
Ei+=ASV[j]*kARtest(i,j);

// Modified
double kARtest_result = kARtest(i,j);
printf("K=%lf\n",kARtest_result);fflush(stdout);
Ei+=ASV[j]*kARtest_result;

In this example, one might assume that the compiler could
recognize this optimization opportunity, but this cannot be
done automatically since it’s not known at compile time if the
function has side effects. Using our knowledge of the code,
we are able to safely implement this change.

2.5. Optimize linear algebra
After implementing the changes described above, the code
spends nearly all of its time in calls to DSYRK (double
precision rank k symmetric update)

 (1) 𝐶𝐶 ≔ 𝛼𝛼𝛼𝛼𝛼𝛼𝑇𝑇 + 𝛽𝛽𝐶𝐶

where α and β are constants, A and C are arrays, and AT is
the transpose of A. The following call trees show how
DSYRK is accessed from the user-defined functions
method2 and simplerrorate:

method2 → kAR → multpdblas → DSYRK
simplerrorrate → kARtest → multpdblas → DSYRK

By implementing a time-space tradeoff and making changes
that cascade through the call tree, the time spent in DSYRK
can be reduced by nearly half.

We start by expressing the N x M dimensional matrix A as
the concatenation of two N x M/2 arrays as illustrated below
using a 4 x 4 matrix as a concrete example.

(2) �

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

𝑎𝑎13 𝑎𝑎14
𝑎𝑎23 𝑎𝑎24

𝑎𝑎31 𝑎𝑎32
𝑎𝑎41 𝑎𝑎42

𝑎𝑎33 𝑎𝑎34
𝑎𝑎43 𝑎𝑎44

� = �

𝑏𝑏11 𝑏𝑏12
𝑏𝑏21 𝑏𝑏22

𝑐𝑐13 𝑐𝑐14
𝑐𝑐23 𝑐𝑐24

𝑏𝑏31 𝑏𝑏32
𝑏𝑏41 𝑏𝑏42

𝑐𝑐33 𝑐𝑐34
𝑐𝑐43 𝑐𝑐44

� = [𝐵𝐵 𝐶𝐶]

The operation AAT can then be written as the sum of two
matrix multiplications involving B and C, the two halves of
the original array.

(3) 𝛼𝛼𝛼𝛼𝑇𝑇 = [𝐵𝐵 𝐶𝐶] [𝐵𝐵 𝐶𝐶]𝑇𝑇 = [𝐵𝐵 𝐶𝐶] �𝐵𝐵
𝑇𝑇

𝐶𝐶𝑇𝑇
� = 𝐵𝐵𝐵𝐵𝑇𝑇 + 𝐶𝐶𝐶𝐶𝑇𝑇

Next, we note that the arrays that are operated on by DSYRK
have the form just described. For example, in method2 the
indices i and j are passed to kAR where the elements offset
dimx positions from the address x[i][0] are updated using the
data starting at x[j][0].

for(k=0;k<dimx;++k)
 x[i][dimx+k]=x[j][k];

The DSYRK operation is then carried out using the 2*dimx
elements starting at x[i][0]. The first and second sets of dimx
elements starting at x[i][0] correspond to the arrays B and C
in Eqns. 2 and 3.

Finally, we recognize that the we can simply pre-calculate the
DSYRK results for the sets of dimx elements starting at
x[0][0], x[1][0], … x[N-1][0] and replace the DSYRK
operations on arrays of size N x M with a matrix addition on
arrays of size N x M/2.

In the original implementation of method2 a total of N(N-
1)/2 calls to DSYRK are made indirectly through kAR and
multpdblas. In the modified version of the code an array of
N pre-calculated DSYRK results on the half-sized arrays are
instead passed to kAR where the matrix additions are
performed

// Original (simplified code from method2)
for(int i=0;i<N;++i) {
 for(j=i;j<N;++j) {
 K[j][i]=K[i][j]=kAR(i,j);

// Modified (simplified code from method2)
for(int i=0;i<N;++i) {
 for(j=i;j<N;++j) {
 K[j][i]=K[i][j]=kAR(i,j,precalc);

Similar changes are made to simplerrorrate, except in this
case two sets of pre-calculated results need to be passed to
kARtest since the array operations involve the arrays x and
SVALLX.

// Modified (simplified codefrom simplerrorrate)
for(int i=0;i<N;++i) {
 for(unsigned int j=0;j<ASV.size();++j) {

XSEDE Technical Report Series: XSEDE-2019.1 4

 double kARtest_result =
 kARtest(i,j,precalc,precalc2);

3 DISCUSSION

Through a combination of compiler, compiler flag, and
library changes together with a small set of code
modifications, we were able to reduce the run time for a
typical computationally intensive time series classification
problem from nearly 11 and 1/2 hours to just over four
minutes. Although the last change (see section 2.5) involves
a time-space tradeoff and increases the memory footprint of
the application, it still requires only a few GB of memory for
a typical problem.

In addition to delivering improved software and knowledge
transfer to Ramon Huerta and his lab, the ECSS project also
reinforced a few of the common lessons of code optimization:

1. Focus on the low-hanging fruit first, such as using
the best compiler (Intel or PGI rather than GNU),
compiler flags, and vendor-tuned libraries (e.g.
Intel’s MKL).

2. Re-profile code after optimizing since new hot spots
may have emerged.

3. Go beyond profiling and look at what the code is
doing. This may identify opportunities to eliminate
unnecessary work or reformulate the algorithms in a
more efficient manner

4 ACKNOWLEDGMENTS

This work was supported by NSF awards OAC-1053575
(XSEDE: eXtreme Science and Engineering Discovery

Environment) and ACI-1548562 (XSEDE 2.0: Integrating,
Enabling and Enhancing National Cyberinfrastructure with
Expanding Community Involvement). The deployment and
operation of the Gordon supercomputer was supported by
NSF grant OAC-0910847. The author thanks Ramon Huerta
for many useful discussions and his participation in the ECSS
program.

5 REFERENCE

[1] Towns, J., T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G.D.
Peterson, R. Roskies, J.R. Scott, and N. Wilkins-Diehr,
XSEDE: accelerating scientific discovery. Computing in
Science & Engineering, 2014. 16(5): p. 62-74.

[2] Wang, E., Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu,
and Y. Wang, Intel math kernel library, in High-
Performance Computing on the Intel® Xeon Phi™.
2014, Springer. p. 167-188.

[3] Strande, S.M., P. Cicotti, R.S. Sinkovits, W.S. Young, R.
Wagner, M. Tatineni, E. Hocks, A. Snavely, and M.
Norman. Gordon: design, performance, and experiences
deploying and supporting a data intensive
supercomputer. in Proceedings of the 1st Conference of
the Extreme Science and Engineering Discovery
Environment: Bridging from the eXtreme to the campus
and beyond. 2012. ACM.

	1 Introduction
	2 Software optimization and parallelization
	2.1. Use Intel compiler and enable AVX
	2.2. Link MKL and use thread-level parallelism
	2.3. Apply OpenMP directives to key loops
	2.4. Remove duplicate function call
	2.5. Optimize linear algebra

	3 DISCUSSION
	4 Acknowledgments
	5 Reference

