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Optimization and parallelization of a time series classification algorithm 
Robert S. Sinkovits 

San Diego Supercomputer Center, email: sinkovit@sdsc.edu

Abstract – This technical report describes the steps taken 
to optimize and parallelize a time series classification 
algorithm as part of an Extended Collaborative Support 
Services (ECSS) project with XSEDE researcher Ramon 
Huerta at the University of California, San Diego. 
Switching from the GNU compiler to the Intel compiler 
and enabling Advanced Vector Extensions (AVX) 
resulted in a 2x speedup, while linking to the Intel Math 
Kernel Library (MKL) instead of the default LAPACK 
library further improved performance and provided an 
easy path to thread-level parallel execution. These 
changes resulted in a combined 46x speedup relative to a 
single core when running on all 16 cores of a dual-socket 
Intel Sandy Bridge node. Parallelization of several loops 
using OpenMP directives and the removal of an 
unnecessary duplicate call to a computationally 
demanding routine brought the total speedup to 86x. 
Optimization of linear algebra operations using time-
space tradeoffs ultimately resulted in a total speedup of 
168x relative to the original version and build of the code. 

Keywords – optimization, parallelization, MKL, time-
space tradeoff, time series algorithm. 

1 INTRODUCTION 

The XSEDE [1] Extended Collaborative Support Services 
(ECSS) program pairs PIs (i.e. recipients of awards on 
compute and storage resources allocated through XSEDE) 
with XSEDE computational science and technology experts 
for collaborations lasting up to one year. The goal of ECSS is 
to improve the productivity of the PIs through a range of 
activities including software optimization and parallelization, 
advanced visualization, workflow development, deployment 
of science gateways, and porting software to new 
architectures. 

We describe here the results of a collaboration spanning 
2012-2013 that addressed improving the performance of a 
time series classification algorithm. This work was carried 
out under the Extended Support for Research Teams (ESRT) 
area of ECSS. 

At the time of this collaboration the project PI, Dr. Ramon 
Huerta was a Research Scientist with the BioCircuits Institute 
at the University of California, San Diego. He is currently a 
Principal Machine Learning Scientist at Amazon. He holds 
degrees in physics and engineering and has worked primarily 
in computational neuroscience and non-linear dynamics. 

For background and completeness, the PI statement for the 
ECSS project is reproduced below. This has been very lightly 
edited for clarity and can be skipped for readers who are only 
interested in the technical details of optimization and 
parallelization. 

PI statement: We have developed classification calibrated 
algorithms that are faster to train than regular support vector 
machines. The trick that we discovered by exploring a 
continuous set of loss functions is that we can modify the 
symmetric structure of the loss function for the negative and 
positive examples, avoiding the use of a regularization term 
during training. This loss function is classification calibrated 
for an infinite margin for any number of classes available in 
the training dataset. Moreover, the classification function 
approaches de Bayes decision boundary, which is an ideal 
property to fulfill for any classifier. For the implementation 
of the algorithm we have used the guidance and code 
optimization provided by Robert Sinkovits at the San Diego 
Supercomputer Center (SDSC) to take advantage of the areas 
of the code where parallelization was possible using OpenMP 
and the Intel Math Kernel Libraries (MKL) [2] on Gordon 
[3]. We tested the code using the SDSC resources on a set of 
14 public databases, and we have found significant 
advantages in training the models. The average speed gained 
by the infinite margin method was about 4-fold. Every second 
of computation of the comparative methods only took half a 
second in the rest of the methods. Finally, the support by 
XSEDE allocation ASC120025 has provided the means to 
fully complete the experimental section of the paper entitled: 
“On the practical implications of a continuous family of 
calibrated and uncalibrated multiclass loss functions” that 
will be submitted for consideration by the Journal of Machine 
Learning. The experimental section was carried out on 14 
datasets of different levels of complexity. In order to measure 
the classification accuracy, we generate 100 different 
partitions of each dataset except for four of the simplest 
datasets, in which we create 1000 partitions to obtain better 
average estimations. Specifically, given a data set of size N, 
N/2 samples are selected as the training subset and the 
remaining N/2 examples constitute the test set. The training 
samples are used to explore a 10-fold cross-validation grid of 
10x5 meta-parameter values while the test set is used to 
report a reliable estimation of the performance of the model. 
These fast training algorithms will be critical when the time 
series of individual data of the elderly can be collected. 

Note on terminology: This technical report was adapted 
from a final report delivered to the ECSS PI. The function 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/227472264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


XSEDE Technical Report Series: XSEDE-2019.1 2 

and variable names used throughout match those used in the 
original version of the software. 

2 SOFTWARE OPTIMIZATION AND 
PARALLELIZATION 

Our focus was on optimizing and parallelizing Ramon 
Huerta’s autoregressive kernel application to reduce time to 
solution. As originally written, this was a serial application. 
The executable was built using the GNU C++ compiler (g++) 
and linked the default version of the LAPACK library. 
Through a combination of compiler, compiler option and 
library changes together with minor modifications to 
accommodate more recent LAPACK calling conventions, we 
were able to achieve a speedup of 46x relative to the original 
code on a single Gordon compute core. A further 3.6x 
compounded speedup was realized through substantive 
source code changes, resulting in a total speedup of 168x. We 
had originally anticipated developing a distributed memory 
version of the code using parallel linear algebra libraries, but 
this was not deemed to be necessary given the dramatic 
reductions in run times that we obtained using a shared 
memory approach.  

The next five subsections describe the compiler, library and 
code changes in greater detail. Note that compiler and library 
versions were not recorded but based on date of work were 
likely Intel C++ 13.0 or 14.0, GCC 4.6 or 4.7 and MKL 10.0 
or 11.0. Run times and relative performance gains at each 
step are summarized below. 
Table 1. Summary of performance improvements for ARsvm 
code. All timings obtained on Gordon and speedups are relative 
to original serial code run on a single Gordon core. Benchmarks 
used parameters and input files provided by Huerta lab: -C 1.0 
-T 0.01 -p 100 -i filter_train.0.dat -I filter_test.0.dat. Run times 
for other conditions (-C 100.0) are approximately 75% lower. 
 
Notes Cores t (h:m:s) Speedup 
Original code, GNU compiler 1 11:22:00 -  
Intel compiler and enable AVX 1 05:41:49 2.0 
Link threaded MKL library 16 00:14:46 46.2 
OpenMP directives in key loops 16 00:13:10 52.5 
Remove duplicate function call 16 00:07:58 85.6 
Optimization of linear algebra 16 00:04:04 167.7 

 

2.1. Use Intel compiler and enable AVX 
We encountered no difficulties in porting the software from 
Huerta’s local compute resources to SDSC’s Gordon 
supercomputer. The relevant setting in the original and 
modified Makefile are shown below 

# Original 
CXX = g++  
CXXFLAGS= -O3  -Wall 

# Modified 
CXX = icpc 
CXXFLAGS= -O3 -xHOST -no-prec-div -Wall 

The -xHOST flag instructs the compiler to use the highest-
level instruction set that is available, which in the case of 
Gordon is AVX. Since we were still using the default 
LAPACK libraries at this point and the code spends most of 
its time in linear algebra routines, the speedup of 2x obtained 
by enabling AVX is exactly what would be expected since 
these routines tend to obtain a large fraction of peak 
performance on both AVX (eight flops/cycle/core) and non-
AVX (four flops/cycle/core) processors. 

2.2. Link MKL and use thread-level parallelism 
The Intel MKL routines have been specifically tuned for 
optimal performance on Intel hardware. The MKL routines 
are also threaded, so going from serial execution to shared-
memory parallelism is trivial. Minor changes to the source 
code were needed, though, in order to use the MKL. 

(1) Long integer types must be changed to regular integers 
when calling MKL. These changes must also be propagated 
through the user functions that contain MKL calls. 

// Original 
void multXI(…, long NN, long l, double *xy, … 

// Modified 
void multXI(…, int NN,  int l, double *xy, … 

(2) Calls to MKL from C do not require name mangling (i.e. 
adding of underscores or other decorators to function names). 

// Original 
dgemm_(…); 

// Modified 
dgemm(…); 

(3) Some calls had to be modified to use the standard 
argument list. This may involve passing pointers instead of 
values and moving return values inside the argument list 

// Original 
info=dgetri(len, C, len, ipiv, work, lwork); 

// Modified 
dgetri(&len, C, &len, ipiv, work, &lwork, &info); 

(4) Headers were added for MKL and OpenMP support 

#include <omp.h> 
#include <mkl.h> 
#include <mkl_cblas.h> 

(5) OpenMP compiler flag and links to MKL added to 
Makefile 

# Original 
CXX = g++                                                                  
CXXFLAGS= -O3  -Wall 
LDFLAGS=-lm -llapack -lblas 

# Modified 
CXX = icpc 
CXXFLAGS= -O3 -xHOST -no-prec-div -fopenmp –Wall 
LDFLAGS = -lm -mkl 
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(6) Set number of cores and threads in job submission file. 
Example below is taken from Gordon batch script using the 
TORQUE/PBS resource manager. 

#PBS -l nodes=1:ppn=16:native 
export OMP_NUM_THREADS=16 

2.3. Apply OpenMP directives to key loops 
The original version of the code spent most of its time in the 
linear algebra routines DGEMM and DSYRK. After 
switching to MKL and running in parallel, the relative 
amount of exclusive time spent in the two user routines kAR 
and kARtest increases. Adding OpenMP directives resulted 
in modest (~7%) reductions in run time. The examples below 
are from kAR. Note that the loop indices are declared as 
private, but this is done by default according to the OpenMP 
standard. 

#pragma omp parallel for private(k) 
   for(k=0;k<dimx;++k) 
      x[i][dimx+k]=x[j][k]; 

#pragma omp parallel for private(k,k2) 
   for(k=0;k<Mp;++k) { 
      for(k2=0;k2<k;++k2) 
         Inv[k+k2*M*p]=Inv[k2+k*M*p]; 
   } 

2.4. Remove duplicate function call 
The original version of the code contained an unnecessary 
duplicate call to kARtest in function simplerrorrate. 
Making the call just once and reusing the result reduces the 
run time from roughly 13 minutes to eight minutes. 

// Original 
printf("K=%lf\n",kARtest(i,j));fflush(stdout); 
Ei+=ASV[j]*kARtest(i,j); 

// Modified 
double kARtest_result = kARtest(i,j);            
printf("K=%lf\n",kARtest_result);fflush(stdout); 
Ei+=ASV[j]*kARtest_result; 

In this example, one might assume that the compiler could 
recognize this optimization opportunity, but this cannot be 
done automatically since it’s not known at compile time if the 
function has side effects. Using our knowledge of the code, 
we are able to safely implement this change. 

2.5. Optimize linear algebra 
After implementing the changes described above, the code 
spends nearly all of its time in calls to DSYRK (double 
precision rank k symmetric update) 

 (1)   𝐶𝐶 ≔  𝛼𝛼𝛼𝛼𝛼𝛼𝑇𝑇 +  𝛽𝛽𝐶𝐶 

where α and β are constants, A and C are arrays, and AT is 
the transpose of A. The following call trees show how 
DSYRK is accessed from the user-defined functions 
method2 and simplerrorate: 

method2 → kAR → multpdblas → DSYRK 
simplerrorrate → kARtest → multpdblas → DSYRK 

By implementing a time-space tradeoff and making changes 
that cascade through the call tree, the time spent in DSYRK 
can be reduced by nearly half.  

We start by expressing the N x M dimensional matrix A as 
the concatenation of two N x M/2 arrays as illustrated below 
using a 4 x 4 matrix as a concrete example. 

(2)   �

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

𝑎𝑎13 𝑎𝑎14
𝑎𝑎23 𝑎𝑎24

𝑎𝑎31 𝑎𝑎32
𝑎𝑎41 𝑎𝑎42

𝑎𝑎33 𝑎𝑎34
𝑎𝑎43 𝑎𝑎44

� = �

𝑏𝑏11 𝑏𝑏12
𝑏𝑏21 𝑏𝑏22

𝑐𝑐13 𝑐𝑐14
𝑐𝑐23 𝑐𝑐24

𝑏𝑏31 𝑏𝑏32
𝑏𝑏41 𝑏𝑏42

𝑐𝑐33 𝑐𝑐34
𝑐𝑐43 𝑐𝑐44

� = [𝐵𝐵 𝐶𝐶] 

 

The operation AAT can then be written as the sum of two 
matrix multiplications involving B and C, the two halves of 
the original array. 

(3)    𝛼𝛼𝛼𝛼𝑇𝑇 =  [𝐵𝐵 𝐶𝐶] [𝐵𝐵 𝐶𝐶]𝑇𝑇 = [𝐵𝐵 𝐶𝐶] �𝐵𝐵
𝑇𝑇

𝐶𝐶𝑇𝑇
� = 𝐵𝐵𝐵𝐵𝑇𝑇 + 𝐶𝐶𝐶𝐶𝑇𝑇 

Next, we note that the arrays that are operated on by DSYRK 
have the form just described. For example, in method2 the 
indices i and j are passed to kAR where the elements offset 
dimx positions from the address x[i][0] are updated using the 
data starting at x[j][0].  

for(k=0;k<dimx;++k) 
   x[i][dimx+k]=x[j][k]; 

The DSYRK operation is then carried out using the 2*dimx 
elements starting at x[i][0]. The first and second sets of dimx 
elements starting at x[i][0] correspond to the arrays B and C 
in Eqns. 2 and 3. 

Finally, we recognize that the we can simply pre-calculate the 
DSYRK results for the sets of dimx elements starting at 
x[0][0], x[1][0], … x[N-1][0] and replace the DSYRK 
operations on arrays of size N x M with a matrix addition on 
arrays of size N x M/2. 

In the original implementation of method2 a total of N(N-
1)/2 calls to DSYRK are made indirectly through kAR and 
multpdblas. In the modified version of the code an array of 
N pre-calculated DSYRK results on the half-sized arrays are 
instead passed to kAR where the matrix additions are 
performed 

// Original (simplified code from method2) 
for(int i=0;i<N;++i) { 
   for(j=i;j<N;++j) { 
      K[j][i]=K[i][j]=kAR(i,j); 

// Modified (simplified code from method2) 
for(int i=0;i<N;++i) { 
   for(j=i;j<N;++j) { 
      K[j][i]=K[i][j]=kAR(i,j,precalc); 

Similar changes are made to simplerrorrate, except in this 
case two sets of pre-calculated results need to be passed to 
kARtest since the array operations involve the arrays x and 
SVALLX. 

// Modified (simplified codefrom simplerrorrate) 
for(int i=0;i<N;++i) { 
   for(unsigned int j=0;j<ASV.size();++j) { 
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      double kARtest_result = 
             kARtest(i,j,precalc,precalc2); 

3 DISCUSSION 

Through a combination of compiler, compiler flag, and 
library changes together with a small set of code 
modifications, we were able to reduce the run time for a 
typical computationally intensive time series classification 
problem from nearly 11 and 1/2 hours to just over four 
minutes. Although the last change (see section 2.5) involves 
a time-space tradeoff and increases the memory footprint of 
the application, it still requires only a few GB of memory for 
a typical problem.  

In addition to delivering improved software and knowledge 
transfer to Ramon Huerta and his lab, the ECSS project also 
reinforced a few of the common lessons of code optimization:  

1. Focus on the low-hanging fruit first, such as using 
the best compiler (Intel or PGI rather than GNU), 
compiler flags, and vendor-tuned libraries (e.g. 
Intel’s MKL). 

2. Re-profile code after optimizing since new hot spots 
may have emerged. 

3. Go beyond profiling and look at what the code is 
doing. This may identify opportunities to eliminate 
unnecessary work or reformulate the algorithms in a 
more efficient manner 
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