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ABSTRACT

Observations with RHESSI have enabled the detailed study of the structure of dense hard X-ray coronal sources
in solar flares. The variation of source extent with electron energy has been discussed in the context of streaming
of non-thermal particles in a one-dimensional cold target model and the results used to constrain both the physical
extent of, and density within, the electron acceleration region. Here, we extend this investigation to a more physically
realistic model of electron transport that takes into account the finite temperature of the ambient plasma, the initial
pitch angle distribution of the accelerated electrons, and the effects of collisional pitch angle scattering. The finite
temperature results in the thermal diffusion of electrons, which leads to the observationally inferred value of
the acceleration region volume being an overestimate of its true value. The different directions of the electron
trajectories, a consequence of both the non-zero injection pitch angle and scattering within the target, cause the
projected propagation distance parallel to the guiding magnetic field to be reduced, so that a one-dimensional
interpretation can overestimate the actual density by a factor of up to ∼6. The implications of these results for the
determination of acceleration region properties (specific acceleration rate, filling factor, etc.) are discussed.
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1. INTRODUCTION

During a solar flare, the surrounding plasma is heated to tens
of mega-Kelvin and electrons are accelerated to deka-keV ener-
gies and beyond. In a simple model, electrons travel through
a tenuous corona and deposit energy into a dense chromo-
spheric “thick target” via Coulomb collisions, with only a small
fraction (∼10−5) of the energy emitted as bremsstrahlung hard
X-rays, predominantly at the dense chromospheric footpoints.
Hard X-rays emitted from the corona are usually interpreted
as predominantly thermal bremsstrahlung from a hot coronal
plasma or as a combination of thermal and thin target emission.

Over the last decade, the Ramaty High Energy Solar Spec-
troscopic Imager (RHESSI; Lin et al. 2002) has provided un-
precedented imaging spectroscopy observations of both chro-
mospheric and coronal X-ray sources (for recent reviews of this
topic see Holman et al. 2011; Kontar et al. 2011a). The design
of the RHESSI instrument is such that spatial information is
fundamentally encoded as two-dimensional Fourier transforms
or visibilities. The subsequent development of sophisticated and
reliable visibility-based image reconstruction algorithms, such
as visibility forward fitting (Hurford et al. 2002; Schmahl et al.
2007) and uv_smooth (Massone et al. 2009), coupled with the
use of electron visibilities (spectral inversions of the count visi-
bility data provided by RHESSI; Piana et al. 2007) have allowed
the quantitative analysis of solar hard X-ray sources in both
photon and electron space.

RHESSI observations have revealed the morphological details
of flares with high plasma density (e.g., McKenzie et al. 1980;
Cheng et al. 1981; Feldman et al. 1994), in which the bulk of the
hard X-rays come from the corona, with only very weak or no
strong footpoint emission from the chromosphere (e.g., Veronig
& Brown 2004; Sui et al. 2004; Bastian et al. 2007; Xu et al.
2008; Lee et al. 2013). The behavior of the source extent with
energy is not consistent with a thermal source characterized by
a temperature distribution with a peak at the loop-apex, since

for such a source, the source size should decrease with energy.
Rather, the source extent grows with energy (Xu et al. 2008),
indicative of a nonthermal model in which the propagation
distance increases with energy. Apparently, the density within
the coronal region in such sources is high enough to stop
electrons prior to reaching the chromosphere; the source is a
coronal “thick target.”

Studying these events is particularly valuable since: (1) the
coronal X-ray component and hence acceleration region can be
studied without contamination from an intense chromospheric
source; and (2) such sources exhibit trends in source extent
with energy (Xu et al. 2008; Kontar et al. 2011b; Guo et al.
2012, 2013) and time (Jeffrey & Kontar 2013), which can
be used to study particle acceleration and transport processes
(e.g., Gordovskyy & Browning 2012; Gordovskyy et al. 2013).
Further, unlike footpoint-dominated solar flares (e.g., Antonucci
et al. 1982; Duijveman et al. 1982; Takakura et al. 1995;
Sakao et al. 1996; Petrosian & Donaghy 1999; Emslie et al.
2003; Mrozek & Tomczak 2004; Tomczak & Ciborski 2007;
Battaglia & Kontar 2011; Fleishman et al. 2011; Chen &
Petrosian 2013), the HXR spectra of such “coronal thick target
sources” tends to be softer than, and the sources higher than,
chromospheric sources, which generally reduces the albedo
contribution to X-ray images (Kontar & Jeffrey 2010), making
the interpretation of the spectrospatial structure of such sources
more straightforward.

Observations of compact coronal nonthermal hard X-ray
sources typically show that the extent of the source parallel to the
guiding magnetic field increases approximately quadratically
with photon energy. Since the collisional stopping distance of
an electron in a plasma also increases quadratically with particle
energy, Xu et al. (2008) explained this behavior in terms of an
extended acceleration region, from which accelerated electrons
emerge and subsequently undergo collisional transport in a
background medium of uniform density. As shown by Emslie
et al. (2008), application of such a model allows parameters such
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as the number density, n, of the region and the specific electron
acceleration rate, η (electrons s−1 per ambient electron), to be
estimated.

However, the simple one-dimensional cold target approxima-
tion used by these authors is not completely realistic for two
main reasons. First, it assumes that the injected electron trajec-
tories are completely aligned with the guiding magnetic field,
and it does not take into account pitch angle scattering (colli-
sional or otherwise) of the accelerated electrons in the target.
Second, it neglects effects associated with the finite temperature
of the ambient medium; electrons with energies comparable to
the thermal energy of the plasma ∼kBT are just as likely to gain
as lose energy during a collision, unlike the monotonic energy
loss experienced by suprathermal electrons interacting with a
cold plasma (e.g., Emslie 1978). Even for electrons that do lose
energy, they do so at a rate that is not the same as in a cold target,
so that a quadratic behavior of source extent with energy is not
necessarily expected.

Emslie (2003) and Galloway et al. (2005) analytically inves-
tigated the effects of a finite target temperature, and both found
that the associated velocity diffusion cannot be neglected when
interpreting the results of flare hard X-ray spectra. Emslie (2003)
found that, because of the reduced energy losses suffered by ac-
celerated electrons in warm targets, the inferred energy content
of the injected electron distribution was significantly reduced.
Indeed, he showed that allowance for this effect obviated the
need to introduce a low-energy cutoff in the electron distribu-
tion. Galloway et al. (2005) found that changes occurring close
to the thermal energy of the plasma meant that many flare X-
ray spectra may not be well fitted by a simple isothermal plus
power-law model.

The main motivation of our study is to incorporate the effects
of both finite target temperature and non-zero pitch angle (due to
both the finite width of the injected pitch angle distribution and
scattering within the target) in models of the variation of source
size with electron energy. We investigate how the inclusion of
each of these processes changes the behavior of the variation of
source extent with electron energy and in turn how this affects
the estimation of parameters, such as number density n and
acceleration region length, L0. We also briefly discuss how the
values of inferred parameters, such as the filling factor f and
specific electron acceleration rate η, are changed by the inclusion
of such processes.

2. ELECTRON COLLISIONAL TRANSPORT
IN A COLD PLASMA

We first briefly review electron transport within a uni-
form cold target (i.e., electron energy E � kBT , where kB is
Boltzmann’s constant and T is the target temperature), ignoring
the effects of collisional pitch angle scattering. The variation of
energy E (erg) with position z (cm)3 in such a model is given by
(see Emslie 1978)

E(E0, z) =
√

E2
0 − 2KN (z) =

√
E2

0 − 2Kn |z − z0|, (1)

where z0 is the (single) point of injection, K = 2πe4 ln Λ (where
e (esu) is the electron charge and ln Λ the Coulomb logarithm),
and N and n are the column density (cm−2) along the trajectory
and ambient number density (cm−3), respectively.

3 For easy comparison with solar observation, we will present results in
arcseconds, where 1′′ = 7.25 × 107 cm at the Sun.

This expression allows us to find the stopping position LS of
an electron of initial energy E0 within a plasma of density n (see
Brown et al. 2002), viz.

LS = z0 +
E2

0

2Kn
. (2)

Using Equation (1) and the one-dimensional continuity equa-
tion, we can also obtain the form of the electron spectrum as a
function of position in the target:

F (E, z) = F0(E0)
dE0

dE
= F0(E0)

E

E0

= E√
E2 + 2Kn|z − z0|

F0(E0[E, z]). (3)

Setting z0 = 0 and assuming a power-law injection spectrum
F0(E0) ∝ E−δ

0 , we can derive an expression for the source extent
σ as the square root of the variance

σ 2(E) =
∫ ∞

0 z2 (E2 + 2Knz)−(δ+1)/2 dz∫ ∞
0 (E2 + 2Knz)−(δ+1)/2 dz

, (4)

where the symmetry about z = 0 has been used. Evaluating the
integrals gives

σ (E) = 1

2Kn

√
8

(δ − 3)(δ − 5)
E2. (5)

The spatial extent at a given energy E depends on the spectral
index δ; for δ = 7, we obtain the form of the stopping
distance σ = Ls given by Equation (2). It should be noted
that Equation (4), and hence the spatial extent defined by
Equation (5), is applicable only for δ > 5; for δ � 5, the integral
on the numerator diverges at the upper limit. This is related to
the fact that the collisional stopping length is an increasing
function of energy ∝ E2, so that large energies give the largest
contribution to the integral for δ � 5. This issue is formally
avoided by imposing an upper energy cutoff Emax to F0(E0),
so that the upper limit in the integral (4) is finite, given by
E2

max/2Kn.
If the initial electron distribution is injected over a finite re-

gion, with the injected flux profile having the form of a Gaussian
distribution with standard deviation d, then the equation for
F(E, z) becomes (see, e.g., Kontar et al. 2014)

F (E, z) ∼ 1

d
√

2π

∫ ∞

−∞
E (E2 + 2Kn |z − z

′ |)−(δ+1)/2

× exp

(
− z

′ 2

2d2

)
dz

′
. (6)

For this case, the evaluation of F(E, z) and the correspond-
ing standard deviation σ (E) cannot be evaluated analytically.
Figure 1 (top) shows the numerical results for σ (E) for δ = 4–9
using initial source sizes of d = 0′′ and 10′′ and a number
density n = 1 × 1011 cm−3. For the d = 0′′ case, and for
cases with δ > 5 (see Equation (5)), the σ (E) results calculated
from the point-injection case (Equation (5)) are overplotted for
comparison.

The form of the spatially resolved spectrum F (z) at a
given energy E at distances further away from the peak,
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Figure 1. Top panels: the standard deviation σ calculated for a point source (left) and a source of Gaussian standard deviation d = 10′′ (right), using the moment-based
Equation (4) and the distribution of electron flux with energy and position given by Equation (6), for a target density n = 1 × 1011 cm−3. For the point source, the
curves calculated using Equation (5) for δ = 6–9 and a maximum injected energy of 30 keV are overplotted as dashed lines of the same color. Bottom panels: Gaussian
FWHM calculated by fitting Gaussian curves to F(E, z) for a point source (left) and a 10′′ source (right). Equation (7) is fitted to each curve: the corresponding values
of L0 and α are shown on each panel. The curve FWHM = 2

√
2 ln 2 d + E2/2Kn (black dashed curve; used by previous authors, e.g., Kontar et al. 2011b) is also

superimposed.

(A color version of this figure is available in the online journal.)

where F (E, z) ∼< 0.15 max[F (E)] (see Equation (6)), is not
well determined by the RHESSI observations. Thus, there is
considerable value in calculating σ not through a moment-based
approach but rather through a shape-based analysis that focuses4

on the high-intensity “core” of the spatial distribution of flux at
a given electron energy E. Therefore, we also fitted Gaussian
curves to F(E, z) in order to determine the Gaussian standard
deviation σG at each energy. This allows us to calculate the
Gaussian FWHM = 2

√
2 ln 2 σG. The curves for δ = 4, 7,

and 9 are plotted in the bottom panels of Figure 1. In general,
and as expected, the σG(E) values deduced from the shape
of the core of the F(E, z) profile are smaller than the σ (E)
values deduced from the moment-based analysis. Each curve in
Figure 1 (bottom) was fitted with an equation of the form

FWHM(E) = L0 + αE2 (7)

and the values of L0 and α are shown on each plot. In the bot-
tom panels of Figure 1, we have also overplotted FWHM =
2
√

2 ln 2 d + E2/2Kn for comparison, since this simple ap-
proximation has been used (e.g., Kontar et al. 2011b) to infer
information from observations; it is given by the black dashed
curve.

4 Keeping in mind the fundamental nature of RHESSI data as spatial Fourier
transforms (visibilities), we note that the source sizes in practice are
determined by fitting a Gaussian-like shape to the observed visibilities. Due to
this indirect imaging approach and the finite dynamic range of the instrument,
the brightest part of the image is the most reliable.

From Figure 1, we note two main points.

1. For a given energy E, σ (E) decreases with increasing
spectral index δ. This is because as δ increases, there are a
lower proportion of higher energy electrons in the overall
electron distribution. The lower energy electrons that are
representative of steeper spectra travel a smaller distance
through the plasma.

2. For a given spectral index δ, the value of the quadratic
coefficient α decreases somewhat with source size d. This
is because of the increased contribution of the acceleration
region to the overall source extent; the “propagation” region
is, to a large extent, contained within the acceleration region
itself.

Observationally, L0 is used to infer the size of the acceleration
region, while α ∝ 1/n allows us to infer the number density of
the propagation region (assumed to be the same as the density
of the acceleration region). Using the simplest one-dimensional
cold plasma approximation (α = 1/2Kn), n can be inferred
easily. However, from Figure 1, we can see that in general
α = β/2Kn, where the value of the dimensionless number
β, and hence the number density n, depends upon the properties
of both the acceleration region and the electron distribution.

Further, Equations (5) and (6) do not account for three
important processes we would expect to occur within a real
flaring coronal plasma: (1) a finite range of pitch angles in the
injected pitch angle distribution, (2) any form of pitch angle
scattering (collisional or non-collisional) within the target, and
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(3) the finite temperature of the plasma through which the
electrons travel. All of these physically important effects impact
the form of E(E0, z), the variation of electron energy with
position in the source, and incorporating them will thus change
the resulting forms of σ (E) and FWHM(E), in a manner which
we now proceed to investigate.

3. ELECTRON TRANSPORT IN A FINITE
TEMPERATURE MAXWELLIAN PLASMA WITH

COLLISIONAL PITCH ANGLE SCATTERING

As shown in the Appendix, the equation describing the
spatial distribution of the electron flux spectrum F (E,μ, z)
(electrons cm−2 s−1 keV−1) as a function of field-aligned
coordinate z (cm), energy E (keV), and pitch angle cosine μ
is

μ
∂F

∂z
= Γeff

{
∂

∂E

[
G

(√
E

kBT

)
∂F

∂E
+

1

E

(
E

kBT
− 1

)

× G

(√
E

kBT

)
F

]
+

1

8E2

∂

∂μ

[
(1 − μ2)

×
(

erf

(√
E

kBT

)
− G

(√
E

kBT

))
∂F

∂μ

]}

+ S(E,μ, z), (8)

where T is the ambient temperature (K), kB is Boltzmann’s
constant, Γeff is a Coulomb coefficient defined in the Appendix,
and G(u) is the Chandrasekhar function, given by

G(u) = erf(u) − u erf
′
(u)

2u2
, (9)

where erf(u) ≡ (2/
√

π )
∫ u

0 exp(−t2) dt is the error function.
S(E,μ, z) is a source term which we assume to be of separable
form in E, μ and z:

S(E,μ, z) = F0(E)
1√

2πd2
exp

(
− z2

2d2

)
H (μ), (10)

where F0(E) and H (μ) describe the forms of the initial
energy spectrum and pitch angle distribution, respectively.
Equation (8) describes the evolution of an injected electron dis-
tribution through a non-evolving finite temperature background
Maxwellian distribution. Ignoring the source term for now in
order to focus on the electron transport, Equation (8) can be
written in the form

μ
∂F

∂z
= ∂

∂E

(
AE(E) F

)
+

∂2

∂E2

(
DEE(E) F

)

+
∂

∂μ

(
Aμ(E,μ) F

)
+

∂2

∂μ2

(
Dμμ(E,μ) F

)
, (11)

where the coefficients

AE(E) = Γeff

2E

[
erf

(√
E

kBT

)
− 2

√
E

kBT
erf

′
(√

E

kBT

)]

≡ Γeff

2E
gth

(√
E

kBT

)
;

DEE(E) ≡ 1

2
B2

E(E) = Γeff G

(√
E

kBT

)
;

Aμ(E,μ) = μ Γeff

4E2

[
erf

(√
E

kBT

)
− G

(√
E

kBT

)]
;

Dμμ(E,μ) ≡ 1

2
B2

μ(E,μ) = (1 − μ2) Γeff

8E2

[
erf

(√
E

kBT

)

− G

(√
E

kBT

)]
. (12)

This general form of the Fokker–Planck equation is equivalent
to the following stochastic differential equations (SDE) for E
and μ in the Itô form

dE = −AE ds +BE dWE; dμ = −Aμ ds +Bμ dWμ, (13)

where the independent Wiener processes Wμ and WE are
stochastic processes with independent increments. These two
equations suggest the numerical stepping algorithm

zj+1 = zj + μj Δs; (14)

Ej+1 = Ej − Γeff

2Ej

gth(uj ) Δs +
√

2 Γeff G(uj ) Δs WE; (15)

μj+1 = μj − Γeff(erf(uj ) − G(uj ))

4E2
j

μj Δs

+

√√√√(
1 − μ2

j

)
Γeff (erf(uj ) − G(uj ))

4E2
j

Δs Wμ, (16)

where uj = √
Ej/kBT , and WE and Wμ are drawn at random

from the Gaussian distribution N (0, 1) such that 〈Wμ〉 =
〈WE〉 = 0, 〈W 2

μ〉 = 〈W 2
E〉 = 1. Equations (14)–(16) are the

form of the SDEs we use5 in our numerical simulations, which
were amended for low energies (see Section 3.1).

The coefficients AE, Aμ, BE(= √
2DEE), and Bμ(= √

2Dμμ)
are plotted against energy E in Figure 2, for a number of different
plasma temperatures T ranging from T = 0 (cold plasma) to
T = 100 MK. For ease of presentation, the Aμ and Bμ terms
are shown as a function of E for a fixed value of μ (μ = 1 for Aμ

and μ = 0 for Bμ). Below an energy Ec � kBT , the coefficient
AE becomes negative, i.e., electrons on average gain energy; the
value of Ec for which AE = 0 increases linearly with the ambient
temperature. In order that these features can be seen clearly, the
coefficient AE is plotted (top row of Figure 2) over three different
energy ranges: two (0.01–1 keV and 0.01–30 keV) plotted on
linear y-axes and 1–50 keV plotted on a logarithmic y-axis.
Further, the stochastic term BE peaks at �kBT . Therefore, in
a warm plasma, electrons with E ∼ kBT are more likely to
gain energy, both secularly and through diffusion, rather than to
lose it.

To get reliable results from the simulations, an appropriate
value of the length step Δs (Equations (14)–(16)) must be

5 We took the rms atomic number ζeff = 1, in Γeff (see Appendix), for
simplicity (i.e., we use a pure hydrogen target), but have provided the equation
for a general ζeff because it may prove useful in other studies.
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Figure 2. Plots of the energy AE , BE and pitch angle Aμ(E, μ = 1), Bμ(E, μ = 0) coefficients against electron energy E for different plasma temperatures from
T = 0–100 MK. The colors corresponding to each plasma temperature are shown in the bottom right plot. The AE coefficient is plotted three times (top row) so that
all of the features in different energy ranges can be seen clearly.

(A color version of this figure is available in the online journal.)

chosen. This was done by calculating the thermal collision
length (mean free path) λc(E) and ensuring that Δs was much
smaller than λc for all E of interest. The mean free path λc for
a 1 keV electron in a cold target of density n = 1 × 1011 cm−3

is approximately 106 cm; the mean free paths in warm targets
are even greater. For all of our simulations, we use a length step
Δs = 1 × 105 cm, much smaller than the mean free path in all
cases.

3.1. The Low-energy Limit

As the plots in Figure 2 show, AE, Aμ, and Bμ diverge
as E → 0. Therefore, following Lemons et al. (2009) and
Cohen et al. (2010), for low energies E, we replace the finite
difference Equation (15) with an analytic expression for the
energy evolution. To obtain this expression, the functions erf(u)
and erf′(u) for small u are expanded in a MacLaurin series, so
that the coefficients AE and BE become

AE = Γeff

2E
(erf(u) − 2u erf

′
(u)) � − Γeff√

πE
u, (17)

BE =
√

2 Γeff G(u) �
√

4 Γeff

3
√

π
u, (18)

and the SDE for energy in the low-energy limit, E → 0,
becomes

dE

ds
� Γeff

E

√
E

πkBT
+

(
4 Γeff

3

√
E

πkBT

)1/2

WE. (19)

For low values of E, the second (stochastic) term can be
neglected in comparison with the first (secular) term to give

dE

ds
� Γeff√

πkBT

1√
E

, (20)

which can be integrated analytically, giving

E =
[
E

3/2
0 +

3 Γeff

2
√

πkBT
(s − s0)

]2/3

. (21)

Equation (21) was used for energies below

Elow =
[

3Γeff

2
√

πkBT
Δs

]2/3

, (22)

thus guaranteeing that E � 0 everywhere. To avoid divergence,
the pitch angle cosine μ for energies E � Elow was sampled
from a uniform distribution between −1 and 1.

In the cold plasma limit T → 0, the stochastic equation for
E becomes

Ej+1 = Ej − Γeff

2Ej

Δs, (23)

which can be solved to give the usual cold target result

Ej+1 =
√

E2
j − 2Kn Δs, (24)

where K = 2Γeff/n. In this limit, the pitch angle behavior is
given by

μj+1 = μj − Γeff

4E2
j

μj Δs +

√
Γeff

4E2
j

(1 − μ2) Δs Wμ. (25)

4. SIMULATIONS

The aim of our simulations is to determine how collisional
pitch angle scattering and the finite temperature of the target
plasma affect the transport of electrons through the plasma
compared to the one-dimensional cold target result, and hence
to determine how the observed length of a hard X-ray source
varies with electron energy in a more realistic physical scenario.

5
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Our simulations used the stochastic equations for z, E, and
μ given by Equations (14)–(16) with initial conditions for
each injected electron provided by sampling the source term
S(E,μ, z); see Equation (10). Our simulations model the
evolution of an injected distribution of electrons, moving either
within a cold plasma or a plasma of finite temperature. They
do not account for the evolution of the background plasma; the
properties of the background plasma remain constant throughout
a simulation.

4.1. Simulation Input, Boundary, and End Conditions

All of our simulations used a common set of certain input
parameters. The electron number density was set to n =
1 × 1011 cm−3, a relatively high value for the coronal density,
but one which is necessarily high in order for the deka-keV
electrons to be stopped in the corona and which is chosen to
correspond to recent analyses of thick target coronal sources
(e.g., Xu et al. 2008; Kontar et al. 2011b; Jeffrey & Kontar
2013). For the Coulomb logarithm we used a typical coronal
value of ln Λ = 20. The plasma temperature is assumed uniform
along the z direction, at a value of either 0 MK, 10 MK,
20 MK, or 30 MK. The initial spatial distribution of injected
flux (“acceleration region size”) is assumed to be a Gaussian
centered at z = 0 (e.g., the position of the coronal loop apex)
with an input standard deviation of d = 10′′, corresponding
to an FWHM = 2

√
2 ln 2 d = 23.′′5. We took the initial pitch

angle distribution to be either completely beamed (i.e., half the
distribution has μ = 1 and the other half μ = −1) or isotropic.
The injected electron energy flux distribution F0(E) has the
form of a power law with spectral index δ = 4 or δ = 7, up to a
maximum energy of 50 keV, above which the energy-integrated
electron flux is negligibly small.

For the runs that use the cold target energy loss formula,
electrons lose energy monotonically. Hence, an electron is re-
moved from the simulation once its energy is below 1 keV,
and the simulations are terminated when all electrons are re-
moved. Electrons in the warm target runs are never removed,
as the electrons of energy �kBT can still gain energy through
Coulomb collisions with more energetic neighbors, as the en-
semble evolves to a thermal (Maxwellian) distribution. Thus,
for such runs the particle number is conserved and the electron
distribution asymptotically approaches the Maxwellian distribu-
tion F (E) ∼ E exp(−E/kBT ). For this distribution, the flux-
averaged energy is

E =
∫ ∞

0 E F (E) dE∫ ∞
0 F (E) dE

= 2 kBT . (26)

The simulations are terminated when the average energy of the
distribution is 2kBT and the pitch angle distribution becomes
approximately isotropic, conditions that approximate the essen-
tial features of a Maxwellian. Note that E is not the average
kinetic energy of the three-dimensional phase space distribu-
tion f (v, μ, z) (which is 〈mv2/2〉 = (3/2)kBT ). After each
distance step Δs, the values of the electron distribution function
F (E,μ, z) are saved into an array. These arrays represent the
distribution functions resulting from the continuous injection of
electrons with the source function given by Equation (10).

4.2. Gaussian Fitting and the Determination
of the Source Length FWHM

The arrays generated by each simulation were energy-binned
to give F (μ, z) in 1 keV energy bins from 1 keV to 30 keV.

The longitudinal extent of the source could be identified as
the standard deviation σ of the F (μ, z) spatial distribution in
each energy bin, calculated from the second spatial moment of
F(E, μ, z). However, in part because the injected flux distribu-
tion is assumed to be Gaussian, the forms of F (μ, z) generally
also closely resemble Gaussian forms, excluding relatively low-
intensity components at high |z|. Therefore, just as in Section 2,
we instead chose to fit a Gaussian distribution to each F (μ, z)
distribution and to thus determine the associated standard de-
viations σG and corresponding FWHM = 2

√
2 ln 2 σG in each

energy bin. In this way, we characterize the extent of the source
through the shape of its core spatial form rather than through
a moment of the entire distribution. Again, as in Section 2,
FWHM(E) = L0 +αE2 (Equation (7)) was fitted to the FWHM
versus electron energy results, and values of α and L0 were
found.

For a cold plasma with an initially beamed pitch angle
distribution and no collisional pitch angle scattering, we would
expect L0 = Linit = 2

√
2 ln 2 d, the Gaussian FWHM of

the input distribution, and a value of α equal to that found
numerically from the fits to the δ = 4 and δ = 7 curves in
Figure 1. However, the presence of a finite plasma temperature
T, an initially broad pitch angle distribution, and/or collisional
pitch angle scattering will all change the values of L0 and α
obtained. The inferred values of the acceleration region density
n depend on the value of α (α ∝ 1/n). The values of other
parameters inferred from n and the acceleration region length
L0—see Section 5—are thus dependent upon both the assumed
electron distribution and the properties of the target plasma. We
will use our results to find, for instance, how the inappropriate
use of a one-dimensional cold target assumption changes the
inferred number density by a factor larger than the observational
uncertainty and thus determine if a correction should be applied
when X-ray observations are interpreted.

4.2.1. Simulation Accuracy and Limiting Cases

In general, consideration of the errors associated with stochas-
tic simulations is a complex problem and beyond the scope of
this paper. However, we can check the convergence of the simu-
lation results against limiting analytical solutions. In the various
plots shown in Figure 3, we plot (top) the energy of a single elec-
tron versus the overall step distance traveled and (bottom) the
average energy of the entire distribution against the distance
traveled. This was done for δ = 7, and for T = 0, 10 MK,
20 MK, and 30 MK. For the cold (T = 0) case, the error in the
energy of a single electron is very small; the stochastic terms
in the difference Equations (14)–(16) are negligible, and indi-
vidual electron energies (and hence the average energy of the
entire distribution) follow the analytical results very well. How-
ever, for a finite temperature target, the stochastic part of the
difference equations plays a significant role, the dominance of
which increases with T. Hence, the energy of a single electron
fluctuates significantly, especially at low energies. However, due
to ensemble averaging, even for finite target temperatures, the
average energy of the distribution exhibits a relatively smooth
transition from the starting average energy of the distribution to
the final average value of the distribution F (E).

4.3. Numerical Results

4.3.1. Cold Plasma with Collisional Pitch Angle Scattering

We first consider the case of a cold target, with different pitch
angle injection and scattering scenarios. Eight simulations were
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Figure 3. Top panels of each plot: the energy of a single electron for the cold, 10, 20, and 30 MK simulations as a function of the overall path s traveled. For the
chosen step size Δs = 105 cm �10−3 arcsec, the change in energy over a single step is small. The randomness in the T = 10, 20, and 30 MK cases is due to thermal
fluctuations that increase with plasma temperature; the error associated with this phenomenon is difficult to estimate for a single particle. Bottom panels of each plot:
average energy of the entire distribution vs. the path s traveled for the parameters given in Section 4.1. In contrast to the results for a single particle, these show smooth
curves, with only small fluctuations for the T = 10, 20, and 30 MK cases. The black curve indicates the analytical cold target solution while the orange lines indicate
the final average energy of the F (E) distribution.

(A color version of this figure is available in the online journal.)

performed, corresponding to two spectral indices (δ = 4 and
δ = 7) and

(A) an injected bidirectional beamed distribution of electrons
(μ = −1, 1) without collisional pitch angle scattering,

(B) an injected bidirectional beamed distribution of electrons
(μ = −1, 1) undergoing collisional pitch angle scattering,

(C) an initially isotropic pitch angle distribution of electrons
without collisional pitch angle scattering, and

(D) an initially isotropic pitch angle distribution of electrons
undergoing collisional pitch angle scattering.

Figure 4 shows the Gaussian spatial FWHM plotted against
electron energy E for cases (A), (B), (C), and (D), together with
fits using Equation (7) between ∼8–25 keV. This energy range
is chosen to match with the energy ranges often used for such
observations by RHESSI. The corresponding values of α and
L0 for each scenario are shown in Figure 4, and there are two
general statements that can be made regarding the results. First,

the broader the initial pitch angle distribution, the smaller the
source length at a given energy; and second, the presence of
collisional pitch angle scattering acts to slightly decrease the
source length at a given electron energy. Both effects occur
because electrons with |μ| < 1 move a correspondingly smaller
distance along the magnetic field. The latter effect is greater at
higher electron energies but, overall, the change is rather small
(Figure 4).

The case of an initially isotropic distribution, with or without
pitch angle scattering, produces the flattest (lowest value of α)
results for each δ. For example, compared with the initially
beamed, scatter-free cases for δ = 4, 7, the isotropic, scatter-
free α’s are lower by factors of ∼2.6 and ∼3.5, respectively.

Since the coefficient α (Equation (2)) in a one-dimensional
cold target formulation is inversely proportional to the ambient
density n, the reduced penetration distance associated with the
presence of an initially broad pitch angle distribution and/or

7
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Figure 4. Gaussian FWHM vs. electron energy E for all cold plasma simulation runs with n = 1 × 1011 cm−3, Gaussian width d = 10′′ (corresponding to an injected
flux FWHM = 2

√
2 ln 2 d = 23.′′5; see Equation (6)), and with δ = 4 (left plot), and δ = 7 (right plot). The cases shown are for (A) beamed with no pitch angle

scattering (orange, blue), (B) beamed with pitch angle scattering (red, green), (C) isotropic with no pitch angle scattering (pink, navy), and (D) isotropic with pitch
angle scattering (purple, gray). An equation of the form L0 + αE2 was fitted to each curve and the values thus found for L0 and α are shown on each plot. The fits use
energies in the range ∼8–25 keV, matching the energy range fitted to RHESSI observations. The dashed-dotted lines represent the Gaussian FWHM curves fitted to
the results of Equation (6), as in the bottom panels of Figure 1. As expected, these match well with scenario (A).

(A color version of this figure is available in the online journal.)

Figure 5. For each cold target simulation scenario—(A), (B), (C), and (D)—the value of the coefficient α calculated by fitting each curve in Figure 4 is used to infer a
number density n using two different one-dimensional cold target approaches: (1) point injection α = 1/2Kn (red) and (2) an extended Gaussian input that is initially
beamed with no pitch angle scattering (blue). The actual number density of 1 × 1011 cm−3 is given by the gray dashed line and the inferred value of n is either roughly
equal to, or greater than, the actual value.

(A color version of this figure is available in the online journal.)

collisional scattering will lead to an overestimate of n if the
results are interpreted using the one-dimensional cold target
result, with the exact reduction factor dependent upon the
properties of the initial electron distribution and background
plasma.

We inferred values of n for each of the cases (A), (B), (C),
and (D) using two different interpretive approaches:

1. α1 = 1/2Kn, i.e., simple one-dimensional propagation
within a cold target, giving α1 = 0.026 arcsec keV−2 for
n = 1 × 1011 cm−3;

2. α2, found using an extended Gaussian input for an initially
beamed distribution with no pitch angle scattering, i.e.,
Equation (6) and scenario (A). From the lower right panel of
Figure 1, for n = 1 × 1011 cm−3, α2 = 0.026 arcsec keV−2

for δ = 4, and α2 = 0.012 arcsec keV−2 for δ = 7.
In Figure 5, the actual number density of the region n =

1 × 1011 cm−3 is shown by the dashed gray line, and the values
of n inferred from approaches (1) and (2) are shown by the red
and blue points, respectively. The inferred number density can
be up to six times too large, with the largest effect being for
steep spectra (the δ = 7 case) and isotropic injection (cases (C)
and (D)).

4.3.2. Hot Plasma and Collisional Pitch Angle Scattering

In this section, we study how the effect of a finite temperature
target (in the presence of collisional pitch angle scattering)
changes the electron transport through the plasma, and hence
the extent of the source with energy. We considered six further
simulations corresponding to three target temperatures (10 MK,
20 MK, and 30 MK) and pitch angle scenario (B), an injected
beamed electron distribution including pitch angle scattering,
for both δ = 4 and δ = 7.

Figure 6 shows both the spatially integrated spectra and
the spectrally integrated spatial distributions for five different
simulations: one-dimensional (beamed) cold target (black), cold
target with isotropic injection (gray), and beamed injection
in three warm target cases: T = 10 MK (orange), 20 MK
(green), and 30 MK (blue). Figure 6 shows only the spatially
and spectrally integrated evolutions of the injected electron
distribution and does not include the background cold or
Maxwellian distribution. The total spatially integrated spectra
are plotted in the top row of panels, for δ = 4 (left) and δ = 7
(right); the spatial distribution of the spectrally integrated flux
is plotted in the bottom row of panels, again for δ = 4 (left) and
δ = 7 (right).
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Figure 6. Top panels: spatially integrated spectra; bottom panels: energy-integrated spatial distributions for the following scenarios: (1) cold plasma, initially beamed
distribution with pitch angle scattering (black); (2) cold plasma, initially isotropic distribution with pitch angle scattering (gray); and warm target cases with (3) T =
10 MK (orange), (4) T = 20 MK (green), and (5) T = 30 MK (blue), with pitch angle scattering. Results are shown for both δ = 4 (left) and δ = 7 (right).

(A color version of this figure is available in the online journal.)

Not surprisingly, higher temperature targets tend to make the
overall electron spectrum more thermal in form. The lower the
temperature of the background Maxwellian plasma, the greater
the distinction between the thermal part of the distribution at
lower energies and the nonthermal power-law component at
higher energies. Also, the inclusion of thermal effects tends to
broaden the spatial distribution of the electron distribution, with
the effect being more pronounced at higher temperatures. The
spatial spread for a given input distribution is larger for a smaller
spectral index because of the larger fraction of higher energy
electrons in such flat distributions. We also found (not shown)
that, not surprisingly, the initially beamed distribution (case (B))
shows greater spreads in z than for the same six warm target runs
performed for the isotropic injection case (case (D)).

Figure 7 shows the results of the Gaussian fits to the computed
spatial distributions for all six warm target scenarios, together
with the corresponding results for the cold target case. Compared
to the cold target case, the addition of thermal effects results
in changes that affect the inferred values of both n ∝ 1/α
and L0. First, Figure 7 shows that the inferred acceleration
region length increases with temperature; the magnitude of this
increase depends somewhat on the number density n and is
relatively independent of the power-law index δ. This effect is
due to the thermal diffusive nature of the electron transport at
low energies. This result suggests that the temperature of the
background plasma must be accounted for when estimating
L0 from such observations. The determination of the actual
acceleration region length from the inferred length is discussed
further in Section 4.3.3.

As before, we fit curves of the form (7) between ∼8–25 keV,
for a better comparison with observations. These are shown by
the purple dashed lines and the values of L0 and α from the
purple fits are shown on each panel of Figure 7. However, the
presence of a finite background temperature causes the lower
energies of the distribution, in particular, to be dominated by
thermal diffusion and hence analysis of the curves in Figure 7
shows that overall, the FWHM over the entire plotted energy
range is not so well fitted by a single curve of the form
FWHM(E) = L0 +αE2. This can be clearly seen for the 20 MK,
δ = 4 curve. Therefore, we chose to fit the results with two other
FWHM(E) = L0 + αE2 curves: one component representing
the lower energy values that are controlled mainly by thermal
diffusion (gray curve) and another component representing
higher energies mainly controlled by collisional friction, since
the FWHM values should return to match those of a cold target
case when E � kBT . The L0 and α values found from the gray
and black curves are also shown on each panel of Figure 7.

To illustrate, for the T = 10 MK case, the FWHM values
match those of the cold case (red or green dashed line) after
∼10 keV, for both the δ = 4 and δ = 7 cases. This is because the
temperature diffusion is limited to energies below ∼8 keV (gray
curve); Figure 7 clearly shows this transition. Therefore for the
10 MK case, our 8–25 keV fits (purple) match that of the higher
energy black fits and cold cases reasonably well for both δ = 4
and δ = 7. By T = 20 MK, the energy range between 8–25 keV
is not so well fitted by a curve of the form of Equation (7)
and occurs because the trend of the FWHM moves from being
dominated by the effects of thermal diffusion to being dominated

9



The Astrophysical Journal, 787:86 (14pp), 2014 May 20 Jeffrey et al.

Figure 7. Plots of FWHM vs. electron energy for δ = 4 (top) and δ = 7 (bottom), and T = 10 MK, 20 MK, and 30 MK (left to right), n = 1 × 1011 cm−3 and
Gaussian width d = 10′′ (corresponding to an injected flux FWHM 2

√
2 ln 2 d = 23.′′5; see Equation (6)). Fits of the form FWHM = L0 +αE2 are shown on each plot.

The red and green dashed curves show the corresponding results for the beamed, cold plasma case with pitch angle scattering (scenario (B)). The purple dashed lines
show the best fit in the energy range 8–25 keV, the range used in the fit to RHESSI observations. Also shown are the two-component fits, one component representing
the thermal diffusion at lower energies (gray dashed curve) and another component representing collisional friction that dominates at higher energies (black dashed
curve).

(A color version of this figure is available in the online journal.)

by the effects of collisional friction at approximately 15 keV,
right in the middle of the range we are using for the fit. This is
clear for the δ = 4 case but harder to see for δ = 7 case due to
the smaller values of α. The α values of the friction-dominated
fits (black curves) are only approximately the same as for the
cold plasma case after ∼17 keV. Also, the diffusion at 20 MK
noticeably influences the length values at all energies plotted,
with the FWHM values above ∼17 keV lying above those for
the cold case. By T = 30 MK, the entire plotted energy range and
our fitted energy range between 8–25 keV is mainly controlled
by thermal diffusion, and the α values for both the δ = 4 and
δ = 7 cases are similar. All plotted FWHM values are much
larger than that of equivalent cold cases, over 10′′ at 1 keV. For
the 8–25 keV fits, the δ = 4 value is smaller than that of the
equivalent cold case, and the δ = 7 value is slightly larger.

4.3.3. Inferring the Acceleration Region Length L0 and Density n

The thermal diffusion component (gray dashed) curves in
Figure 7 use Equation (7) to fit the FWHM values at lower
energies, and hence give us L0, the inferred length of the
acceleration region. For a given temperature, the values of L0
found for both δ = 4 and δ = 7 are approximately the same,
with an average value of 25′′ for T = 10 MK, 29′′ for T = 20 MK,
and 34′′ for T = 30 MK.

Figure 8 (left) plots the values of L0 found for the thermal
diffusion-dominated (gray curve) and 8–25 keV fits against T.
Each is fitted with a curve of the form

L0(T , n) = L0(T = 0) + ξ (n)T 2 = 23.′′5 + ξ (n)T 2, (27)

where the 23.′′5 = 2
√

2 ln 2 d, with d = 10′′ the Gaussian
width of the injected electron flux distribution; see Equation (6)).

By fitting Equation (27) to each, ξ is found for both “global”
and thermal diffusion-dominated fits, and an average value of
〈ξ (n = 1×1011)〉 = 0.011 arcsec MK−2 is calculated averaging
the four fits.

To summarize, if the size L0(T = 0) and number density n
of the region have been inferred from a cold target analysis, and
n is close to n = 1 × 1011 cm−3, then the actual extent of the
acceleration region is less than would be inferred using a cold
target formula. Quantitatively, the actual size of the acceleration
region L0 can be approximated by the expression

L0 = L0(T = 0) − 0.011 T 2, (28)

where L0(T = 0) is the value deduced from a fit using the cold
target formula to an observation.

The right panels in Figure 8 also show how α from the
8–25 keV fits changes with T for both δ = 4 and δ = 7. For
δ = 4, α decreases between T = 10 MK and T = 30 MK. This
is expected, since for higher temperatures, particle diffusion is
controlling the shape of the curve, and hence the δ = 4 cold
target case has a relatively high α value. However, this is not the
case for δ = 7, where between 10–30 MK, we see α increasing
with T.

From the plots in Figure 8, the values of α for the fits
between 8–25 keV can be used to infer a number density
from observations. Two cold target approaches are used: (1)
α = 1/2Kn and (2) an extended source Gaussian input as found
from Equation (6). Also, using our results from the cold plasma
cases, we can expand (2) to account for the initial beaming of
the distribution so that a range of n can be found. Finally, we
can use (3), which is the same as (2) but accounts for pitch angle
scattering.
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Figure 8. Left panel: L0 vs. T. The blue band represents the area containing the L0 values for both the δ = 4 and δ = 7 low-energy and 8–25 keV fits from Figure 7
(gray and purple, respectively), plotted against temperature T. For each of these curves, a function of the form L0 = L0(T = 0) + ξT 2 is fitted, and average values of
〈L0(T = 0)〉 = 23.′′5 and 〈ξ (n = 1 × 1011 cm−3)〉 = 0.011 (arcsec MK−2) are found, with L0 = 〈L0(T = 0)〉 + 〈ξ〉T 2 represented by the orange dashed line. Right
panel: α from the 8–25 keV fits (Figure 7) vs. T, for δ = 4 (red) and δ = 7 (green).

(A color version of this figure is available in the online journal.)

Figure 9. Cold plasma fits are applied to the different hot plasma simulation curves to determine an inferred density that can be compared with the actual density of
the region: (1) (red lines): α1 = 1/2Kn. (2) (blue hashed areas): an extended Gaussian injection model with no pitch angle scattering that is initially either beamed
(Equation (6)) or isotropic (found from the cold plasma simulation/see Figure 4). (3) (orange regions): as in (2) but with collisional pitch angle scattering included.
For both (2) and (3), the highest inferred values for n are for a completely beamed distribution.

(A color version of this figure is available in the online journal.)

The inferred values of n for T = 10, 20, 30 MK and for
δ = 4, 7 are shown in Figure 9. For δ = 4, the largest inferred
value is ∼1.7 times larger than the actual density and the
smallest is around three times smaller; for δ = 7, the largest
value is ∼3.3 times larger and the smallest value is again about
3 times smaller. In general, (1) (cold target, point injection, red
lines) produces the largest differences, which is not surprising
since our input was an extended Gaussian, rather than point-
injection, source. However, even this simple analytical case,
that accounts very poorly for the true physical properties of
the electron distribution, only increases the number density
by a factor of about three (for a beamed finite temperature
case). Fits (2) and (3) (extended injection models, without and
with collisional scattering in the target, respectively) that do
not account for the finite temperature of the plasma provide an
inferred value for n that is quite close to the true value of n, with
the biggest uncertainty due to the unknown degree of beaming
of the injected distribution.

5. DISCUSSION AND CONCLUSIONS

Our aim in this paper was to understand how the different
injected pitch angle distributions, the collisional pitch angle
scattering, and a finite target temperature change electron
transport through a plasma, and hence the spatial properties
of compact hard X-ray sources in solar flares.

Our simulations show three main results.

1. Collisional pitch angle scattering alone does not dramat-
ically change the behavior of source length with electron
energy.

2. Beaming of the initial electron pitch angle distribution does
produce a significant change in the variation of the length of
the X-ray source with energy; distributions that are initially
beamed produce a larger variation of length with energy,
a consequence of the fact that the collisional stopping
distance is now projected onto the direction defined by
the guiding magnetic field. The difference in the coefficient
α can be up to a factor of six if a beamed approximation is
used for a distribution that is in fact completely isotropic.
The uncertainty in the initial angular distribution of the
injected electrons produces the largest uncertainty in the
inferred number density n.

3. The finite temperature of the target atmosphere leads to
thermal diffusion and an increase of the inferred accelera-
tion region length. The FWHM versus energy consists of
two competing components, one due to diffusion that is
dominant at lower energies and another due to collisional
friction that is dominant at higher energies. Which com-
ponent predominates depends in a complicated way on the
temperature of the region, on the density n, and even on
the spectral index δ. Therefore, the use of a cold target
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approximation with a single fitted curve to infer proper-
ties of the acceleration region should always be used with
caution. Our results show that applying a cold model to a
warm plasma changes the inferred acceleration length L0
by several arc seconds (see Equation (28)) and the inferred
number density by up to a factor of three (in either di-
rection), depending mainly on the initial beaming of the
electron distribution (see Figure 9).

The influence of the effects studied in this paper also influence
the determination of other quantities, such as the acceleration
region filling factor f (the fraction of the apparent source volume
in which acceleration occurs) and the specific acceleration
rate (the fraction of the ambient electron population that is
accelerated per unit time). The filling factor f is defined by

f = EM

n2V
, (29)

where V = (πW 2/4)L0 is the volume of the acceleration region,
determined from the inferred value of L0 and the observed
lateral extent W of the (cylindrical) acceleration volume, and the
emission measure (EM) is determined from, for example, fits
to the spatially integrated soft X-ray spectrum of the flare. The
effects studied in this paper show that, in general, application
of a one-dimensional cold target formula leads to erroneously
high inferred values for both the acceleration region length
L0 (see Figure 7) and density n (see Figure 9). Use of such
erroneously high values of L0 and n leads to an overestimate of
the denominator in Equation (29) and so an underestimate of
the filling factor f.

In a study of 24 coronal thick target events, using the
one-dimensional cold target result (2) to estimate L0 and n,
Guo et al. (2013) found filling factors f that were generally
somewhat less than unity. The results of this paper therefore lend
support to a value of f being even closer to unity than previously
thought. Indeed, given that f cannot exceed unity, this may place
constraints on the allowable values of n and L0. Also, since
the inferred values of n depend significantly on the pitch angle
distribution of the injected electrons, this could conceivably be
used to constrain the form of the injected pitch angle distribution.
In particular, broad injected distributions lead to relatively small
values of the coefficient α (see Figure 4), and hence to inferred
densities that are higher than the actual target density (Figure 9).
Correcting for such an effect in the interpretation of a particular
event could imply an actual target density that was too small to be
compatible with the observationally inferred emission measure,
thus ruling out the hypothesis of a broad injected distribution of
accelerated electrons.

Inference of the acceleration region length L0, lateral extent
W, and density n also gives the number of electrons available
for acceleration:

N = nV = n

(
πW 2

4

)
L0. (30)

This, combined with the inference of dN (E0)/dt , the rate
of electron acceleration beyond energy E0 (obtained rather
straightforwardly from spatially integrated hard X-ray data)
provides the value of the specific acceleration rate (electrons
s−1 per ambient electron)

η(E0) = 1

N
dN (E0)

dt
. (31)

Overestimating the value of the acceleration region volume and
density through the use of an over simplistic one-dimensional
cold target model thus causes an overestimate of N and, since
dN (E0)/dt is fixed, this causes an underestimate of η(E0). In
their multi-event study, Guo et al. (2013) found typical values for
η(E0 = 20 keV) were of the order of 10−2 s−1; application of the
more physically realistic source models considered herein will
increase η even further, thus placing more profound constraints
on the electron acceleration mechanism.

For future work, it should be noted that our simulations could
be made more self-consistent by allowing for the temperature
increase of the background plasma due to the energy loss of the
injected electron distribution. They also could be augmented by
including spatial variations in temperature and/or density along
the loop. Also, it should be noted that a recent study by Kontar
et al. (2014) shows how the presence of non-collisional pitch
angle scattering (e.g., involving magnetic field inhomogeneities)
results in a different (non-quadratic) predicted behavior for
the variation of source length with energy. The code we have
developed for this work can be rather straightforwardly extended
to the study of diffusion of particles across the guiding field
in a warm target (e.g., Bian et al. 2011) and hence to study
the variation of source length with energy in this alternative
scenario.

Finally, this study has shown that simulating more realistic
effects, such as isotropic electron distributions (as indicated
by recent studies—e.g., Kontar & Brown 2006; Kašparová
et al. 2007; Dickson & Kontar 2013), in general, produces
a more gradual variation of source length with energy, i.e.,
smaller values of the coefficient α. Therefore, depending on the
electron distribution spectral index, observed steep behaviors
(high values of α) may be indicative of other processes at
work within the coronal region. For instance, throughout our
simulations, we assumed that the length of the acceleration
region length L0 did not depend on electron energy E. However,
depending on the acceleration process, this may not be the case.
For example, if L0 grows with energy, this may produce a larger
value of α than expected, and hence the analysis of this effect
may tell us something about the acceleration mechanism itself.
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APPENDIX

FOKKER–PLANCK EQUATION COEFFICIENTS

In order to describe the transport of electrons through a coro-
nal plasma of finite temperature T, accounting for collisional
pitch angle scattering, a Fokker–Planck equation can be used.
We take the three-dimensional form from Lifshitz & Pitaevskii
(1981) and Karney (1986) in spherical coordinates. Assuming
azimuthal symmetry and adding a source term for electrons
S(v, μ, z), this is given by

df (v, z, θ, t)

dt
= ∂f

∂t
+ v cos θ

∂f

∂z
= − 1

v2

∂

∂v
(v2 Sv)

− 1

v sin θ

∂

∂θ
(sin θ Sθ ) + S(v, μ, z), (A1)
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where f (v, θ, z, t) is the phase space distribution function
(electrons cm−3 [cm s−1]−3), v (cm s−1) is the total particle
speed, θ is the pitch angle to the guiding magnetic field (along
the direction z), t is time (s), and the coefficients Sv and Sθ are
given by

Sv = −Dvv

∂f

∂v
+ Fv f, Sθ = −Dθθ

1

v

∂f

∂θ
. (A2)

Here, Dvv and Dθθ are the velocity and pitch angle diffusion
terms while Fv is the velocity collisional friction term. These
three terms are, respectively, given by

Dvv = Γ
2v

(
erf(u)

u2
− erf

′
(u)

u

)
≡ Γ

v
G(u)

Dθθ = Γ
4v

([
2 − 1

u2

]
erf(u) +

erf
′
(u)

u

)
≡ Γ

2v
(erf(u) − G(u))

Fv = − Γ
v2

(erf(u) − u erf
′
(u))≡−2 Γ

v2
u2 G(u),

(A3)

where the dimensionless velocity u = v/(
√

2 vth), vth =√
kBT /me, Γ = 4πe4 ln Λ n/m2

e , erf(u) is the error function,
and G(u) is the Chandrasekhar function, given by

G(u) = erf(u) − u erf
′
(u)

2u2
. (A4)

Substituting into the Fokker–Planck Equation (A1) gives

df (v, θ, t)

dt
= Γ

2v2

{
∂

∂v

(
2 v G(u)

∂f (v, θ, t)

∂v

+ 4 G(u) u2 f (v, θ, t)
)

+
1

v sin θ

∂

∂θ

×
(

sin θ [erf(u) − G(u)]
∂f (v, θ, t)

∂θ

)}
.

(A5)

Current imaging spectroscopy X-ray observations with in-
struments such as RHESSI have a time resolution of the order of
several seconds (it takes a full spacecraft rotation period ∼4 s to
yield a reliable image), which is much longer than the timescale
for transport of deka-keV electrons (v ∼ 1010 cm s−1) along
the typical length of a coronal loop (∼109 cm). Therefore, it is
appropriate to consider the time-independent case. It is also con-
venient to convert from the variable θ to the variable μ = cos θ ,
giving

μv
∂f (v, μ, z)

∂z
= Γ

2v2

{
∂

∂v

(
2 v G(u)

∂f (v, μ, z)

∂v

+ 4 u2 G(u) f (v, μ, z)
)

+
1

v

∂

∂μ

(
(1 − μ2)

× [erf(u) − G(u)]
∂f (v, μ, z)

∂μ

)}
+ S(v, μ, z). (A6)

We assume that the source term S(v, μ, z) is separable in
v, μ, and z, with the spatial variation assumed to have a
Gaussian form:

S(v, μ, z) = f0(v)
1√

2πd2
exp

(
− z2

2d2

)
H (μ), (A7)

where f0(v) and H (μ) are the initial velocity and pitch angle
distribution functions.

For a background plasma with a finite temperature T, the input
distribution will evolve to a thermal distribution of the form

f (v) ∼ exp

(
− mv2

2kBT

)
, (A8)

leading to an average kinetic energy of

〈
mv2

2

〉
=

∫ ∞
0

mv2

2 f (v)d3v∫ ∞
0 f (v)d3v

= 3

2
kBT . (A9)

In the high-electron velocity limit u � 1, erf(u) → 1 and one
finds G(u) → 1/2u2 = (vth/v)2. In this limit, Equation (A6)
becomes

μv
∂f (v, μ, z)

∂z
= Γ

v2

{
∂

∂v

(
v2

th

v

∂f (v, μ, z)

∂v
+ f (v, μ, z)

)

+
1

2v

∂

∂μ

(
(1 − μ2)

∂f (v, μ, z)

∂μ

)}
+ S(v, μ, z). (A10)

If the temperature of the plasma is also small compared to the
typical particle energies, then we can formally take T = 0 (i.e.,
vth = 0). Equation (A10) then becomes

μ
∂f (v, μ, z)

∂z
= Γ

v3

{
∂f (v, μ, z)

∂v

+
1

2v

∂

∂μ

(
(1 − μ2)

∂f (v, μ, z)

∂μ

)}
+ S(v, μ, z), (A11)

which is the transport equation for a cold plasma with azimuthal
symmetry, often used in solar physics (e.g., Kovalev & Korolev
1981).

The energy flux F (E,μ, z) (electrons cm−2 s−1 erg−1)
is related to the three-dimensional phase space distribution
function f (v, μ, z) by

v f (v, μ, z) v2 dv = F (E,μ, z) dE, (A12)

so that

f (v, μ, z) = m

v2
F (E,μ, z) = m2

2

F (E,μ, z)

E
. (A13)

Using this relation, we can write the Fokker–Planck
Equation (A6) in terms of electron energy E and the electron
flux distribution F (E,μ, z), which is a more useful form for
comparison with observations. The result is

μ
∂F

∂z
= Γm2

{
∂

∂E

[
G(u[E])

∂F

∂E
+

G(u[E])

E

(
E

kBT
− 1

)
F

]

+
1

8E2

∂

∂μ

[
(1 − μ2)(erf(u[E]) − G(u[E]))

∂F

∂μ

]}
+ SF (E,μ, z), (A14)

where we have used u(E) = √
E/kBT .

The solar corona contains elements other than hydrogen, and
for an element with atomic number ζ , the Coulomb energy loss
scales as ζ 2 (e.g., Emslie 1978). We thus account for these

13
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additional elements by adopting an effective atomic number
ζeff = ∑

i niζ
2
i /

∑
i ni . Defining Γeff = Γζeffm

2, we obtain

μ
∂F

∂z
= Γeff

{
∂

∂E

[
G(u[E])

∂F

∂E
+

G(u[E])

E

(
E

kBT
− 1

)
F

]

+
1

8E2

∂

∂μ

[
(1 − μ2)(erf(u[E]) − G(u[E]))

∂F

∂μ

]}
+ SF (E,μ, z). (A15)
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